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ABSTRACT
A variety of real-world applications heavily relies on the analysis
of transient data streams. Due to the rigid processing requirements
of data streams, common analysis techniques as known from data
mining are not applicable. A fundamental building block of many
data mining and analysis approaches is density estimation. It pro-
vides a well-defined estimation of a continuous data distribution, a
fact which makes its adaptation to data streams desirable. A con-
venient method for density estimation utilizes kernels. However,
its computational complexity collides with the rigid processing re-
quirements of data streams. In this work, we present a new ap-
proach to this problem that combines linear processing cost with
a constant amount of allocated memory. We even support a dy-
namic memory adaption to changing system resources. Our kernel
density estimators over streaming data are related to M-Kernels, a
previously proposed technique, but substantially improve them in
terms of accuracy as well as processing time. The results of an ex-
perimental study with synthetic as well as real-world data streams
substantiate the efficiency of our approach and its superiority to
M-Kernels with respect to estimation quality and processing time.

1. INTRODUCTION
A variety of heterogeneous real-world applications depends on

an adequate online analysis of massive data streams. In order to
gain insight into the characteristics of those streams, one could ap-
ply data mining and analysis techniques. They provide for instance
functionality to reveal interesting patterns, detect outliers, or iden-
tify critical regions of the data. The constantly growing volume of
data streams as well as their volatile nature, however, prevent the
direct application of common ’offline’ mining techniques; the data
arrives faster than it can be analyzed. In fact, to be applicable to
data streams, an analysis technique has to meet stringent process-
ing requirements [10]. One requirement, for instance, is to process
the stream in one pass.

Taking those requirements into account, we address in this paper
the adaptation of a fundamental building block of many analysis
techniques, namely density estimation, to the data stream scenario.
The main objective of density estimation is to reveal the unknown
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probability density function of a distribution, given solely a repre-
sentative sample of values. A density estimator is a comprehen-
sive statistical model of the process described by the sample val-
ues. With a well-defined density estimator at hand, a variety of
data analysis issues can be addressed: ”In general, density esti-
mation provides a classical basis across statistics for virtually any
kind of data analysis in principle, including clustering, classifica-
tion, regression, time series analysis, active learning, and so on...”
[14]. With this work, we aim to provide a foundation for the appli-
cation of these analysis tasks to data streams by adapting density
estimation in compliance with the aforementioned processing re-
quirements.

In most real-world applications over streams, we have no a pri-
ori knowledge about the stream. For that reason, the class ofnon-
parametricdensity estimation approaches is very appealing as they
make no assumptions on the unknown density function; ”the data
speak strictly for themselves” [24]. Since data streams are often dis-
crete observations of continuous, real-valued distributions, e.g. tem-
perature, heart rate, we confine the subsequent considerations to
continuous density estimators. A theoretically well-founded and
also practically approved approach for the nonparametric estima-
tion of continuous distributions utilizes kernels [23], [24]. Kernel-
based density estimators can approximateany distribution arbitrar-
ily good (in probabilistic terms), provided the associated sample is
sufficiently large [24]. Hence, an adaptation of kernel density es-
timation to data streams seems to be a highly promising approach.
However, the heavy computational cost of kernel density estimators
is a severe obstacle; their memory allocation is linear in the sample
size, accompanied by linear evaluation cost. As these facts violate
the aforementioned processing requirements, we can not directly
build kernel density estimators over data streams.

1.1 Our Contributions
In this paper, we tackle the problem of resource-aware kernel

density estimators over streaming data. Our main contributions are:

• We build on the general idea of M-Kernels [7], a previously
proposed approach for kernel density estimation over data
streams. More specifically, we solve major drawbacks of
M-Kernels concerning their parameter settings and essential
processing steps.

• Our approach complies with the rigid processing require-
ments of data streams: We process each element once in
constant time while building an estimator online. Its constant
amount of allocated memory can be dynamically adapted to
changing system resources. We also keep pace with chang-
ing data streams by emphasizing recent data with the help of
exponential smoothing.



• For the core operation of the algorithm, the merge of two
adjacent kernels, we introduce a new cost measure whose
exact evaluation is inexpensive to compute while producing
an optimal merge kernel.

• We complement our analytical results by a discussion of effi-
cient implementation techniques. A tree-based implementa-
tion ensures that the processing cost is logarithmic in the size
of the allocated memory; it also allows an efficient evaluation
of an estimator.

• A thorough experimental study confirms that our estimators
perform well for synthetic and real-world data streams and
that they are superior to M-Kernels.

The outline of this paper is as follows. In Section 2, we sketch
related work. We prepare the ground for our approach by an in-
troduction to our data stream model, its processing requirements,
kernel density estimation, and M-Kernels in Section 3. In Section
4, we discuss the details of our approach. We assessed its quality
in an experimental study, whose results are given in Section 5. Fi-
nally, we conclude with a summary and an outlook on our future
work in Section 6.

2. RELATED WORK
The analysis and mining of transient data streams has come to the

fore in recent years. Concerning stream mining, [12] gives a com-
prehensive overview of arising questions, challenges, and associ-
ated techniques mining. For an adaptation to data streams, mining
algorithms have to meet specific processing requirements [10]. Up
to now, several core algorithms of data mining were successfully
adapted to data streams, e.g. classification [2], change detection
[5]. In [1], the authors address the problem of clustering evolving
data streams. They use so-called microclusters to periodically store
local and temporal summary statistics of the current clusters. The
kernel entries we later present also store local statistics to summa-
rize elements, but their application and the used statistics distin-
guish both techniques from each other.

Another important aspect is the incorporation of different min-
ing techniques into a stream mining system. StatStream [25] for
instance is a tool kit for the simultaneous analysis of multiple time
series. Gigascope [9] as another example is a stream database pro-
viding mining and analysis techniques for network traffic. The
MAIDS [3] project aims at combining mining methods for mul-
tidimensional data streams within a system prototype.

In this work, we specifically tackle the adaptation of kernel den-
sity estimation to data streams. Density estimation as research topic
in mathematical statistics is thoroughly discussed in [23, 24]. In
data mining and analysis, it serves as building block for a plethora
of probabilistic learning methods [14]. Those methods span a range
from clustering in spatial databases [11] to biased sampling [17].
Database research also reaps the benefits of kernel density estima-
tion, e.g. in estimating the selectivity of range queries [6], [18].

The computational complexity of kernel density estimation ren-
ders its application to massive data sets difficult. In order to reduce
this complexity, [14] provides an approximate solution for offline
data sets. The basic idea is to establish a dual-tree structure: one
tree partitions a given set of training data and the other one the
query set. A simultaneous traversal of both trees allows an efficient
evaluation of sets of query points. Another approximate solution
for multidimensional data relies on a multi-pole based algorithm
[20]. This technique provides online computable kernel density es-
timators by maintaining a multivariate Taylor series expansion for
the estimator. Concerning their applicability to data streams, both

approaches do not meet the requirement of a constant amount of
allocated memory [10] (see also Section 3.1); both allocate mem-
ory linear in the size of the data set. They also do not support the
tracking of evolving streams.

There are also initial approaches for kernel density estimation
over data streams. [22] presents a kernel-based solution for the se-
lectivity estimation of range queries over multidimensional spatial
streams. Its basic idea is to update local variances with a kd-tree-
like structure on top of a continuously maintained sample. This
approach has difficulties in capturing evolving streams. As already
mentioned in Section 1, M-Kernels are another technique for com-
puting kernel density estimators over onedimensional data streams.
Due to their relevance for this work, we take a closer look at them
in Section 3.5.

3. PRELIMINARIES
In this section, we present our underlying data stream model and

its processing constraints. Then, we give a brief introduction to ker-
nel density estimation. We point out the problems of its adaptation
to data streams, followed by a detailed discussion of M-Kernels.

3.1 Data Stream Model
A one-dimensional data stream consists of an unbounded se-

quenceX1, X2, ... of numbers withXi ∈ R for i ∈ N. Except
where otherwise stated, we assume that the stream represents at
each time instant a sample with independent and identically dis-
tributed (iid) observations of an unknown continuous random vari-
ableX. The premise of independence of two arbitrary stream ele-
ments is reasonable for most applications as data sources typically
send their elements autonomously, e.g. temperature sensors. The
premise of an identical distribution is weakened in Section 4.5.

In general, these assumptions allow us to apply a variety of sta-
tistical analysis techniques to determine meaningful models for a
stream, e.g. cluster, decision trees.

3.2 Processing Requirements
To keep pace with transient data streams, an analysis technique

has to meet the following stringent processing requirements [10]:

1. Each element is processed only once.

2. The per-element processing time is constant.

3. The amount of allocated memory is constant.

4. A valid model is available anytime.

5. The models incorporate changes in the data stream.

6. The provided models should be equivalent to their offline
counterparts.

As the practical applicability of an analysis technique also depends
on whether it can be integrated into complex systems, we add an-
other processing requirement:

7. A model can adapt its allocated memory to changing system
resources anytime.

With respect to these requirements, we specifically aim to pro-
vide kernel density estimators over data streams.



3.3 Kernel Density Estimation
One of the core concepts in mathematical statistics is theproba-

bility density function (pdf). Essentially, each continuous random
variableX has a unique pdff . A pdf is a positive, real-valued func-
tion which integrates to one. Asf provides a comprehensive sum-
mary, all information ofX can be extracted. Hence, the knowledge
of f is crucial to the analysis ofX. Let for instanceX describe the
heart rate of a patient. Granted that the associated pdf is known,
we can compute amongst other characteristics mean and variance
or determine the probability that the heart rate lies within a certain
range.

In real-world scenarios, however, neitherX nor its pdf are known.
Typically, we only have observations ofX in form of a sample
X1, ..., Xn with Xi ∈ R for i = 1, ..., n. Density estimation, a
core topic in mathematical statistics, attends to this problem and
provides suitable methods to estimate a pdf with a sample as major
ingredient. Parametric approaches assume thatf falls in a specific
parametric family, e.g. Gaussian densities. Contrary to, nonpara-
metric approaches do not assume any specific form off . They are
very appealing as they solely base on the sample. Hence, they avoid
specifying the wrong parametric family as possible with parametric
approaches.

A theoretically well-founded and practically approved nonpara-
metric approach is kernel density estimation [24], [23]. Akernel
density estimator(KDE) with kernel function K andbandwidth
h(n) is defined as

f̂ (n)(x) :=
1

n

nX
i=1

1

h(n)
K

�
x − Xi

h(n)

�
, x ∈ R (1)

for independent and identically distributed observationsX1, ..., Xn

drawn from a continuous distribution with unknown pdff . Essen-
tially, a KDE is the overall sum of ’bumps’ centered at each ob-
servationXi. While the bandwidthh(n) determines the width of
each bump, the kernel function determines its shape. In the fol-
lowing, we refer to those bumps askernels. Figure 1 displays two
KDEs based on different bandwidths for a sample consisting of 7
observations and with the Gaussian kernel as kernel function.

Figure 1: Kernel density estimates and underlying kernels with
(left) bandwith=0.2 and (right) bandwidth=0.4

The KDEs in this figure indicate that the bandwidth significantly
affects the shape of a KDE. In fact, an adequate setting of the
bandwidth is of utmost importance for the quality of a KDE and
considerable research effort has been spent for the development of
appropriate bandwidth strategies [23]. To guarantee probabilistic
convergence, the bandwidth has to decreases with the sample size
[24]. Figure 1 provides a grasp of the effects that arise from vary-
ing the bandwidth. If the bandwidth is chosen too low, the KDE is
undersmoothed and introduces spurious details. If the bandwidth is
chosen too high, the KDE is oversmoothed and hides important de-
tails. For sample sizes converging to infinity, the bandwidths tend
to zero. Then, the resulting KDE is a sum of Dirac delta functions

at the sample points [24].
Contrary to the bandwidth, the setting of the kernel function is

minor. It mostly suffices to choose a kernel function that is a density
itself, e.g. Gaussian kernel, Uniform kernel, Epanechnikow kernel
[23]. Note that a KDE as sum of kernels inherits among other prop-
erties continuity and differentiability from its kernel function. From
a practical point of view, it is advisable to choose a bounded ker-
nel function as it reduces for a given point the number of kernels
to evaluate. In case of a kernel function with unbounded support,
each kernel must be evaluated.

As already mentioned in Section 2, kernel density estimation has
become highly relevant in various application scenarios. ”Apart
from the histogram, the kernel estimator is probably the most com-
monly used estimator and is certainly the most studied mathemat-
ically.” [24]. Its broad acceptance results from the combination
of simplicity with desirable mathematical properties [23]. First, a
KDE strictly relies on the sample without a priori distribution as-
sumptions, e.g., membership of a family of standard distributions,
range of the support. Second, a KDE is asymptotically unbiased.
Third, a KDE is consistent in terms of the mean integrated squared
error, i.e., the more sample points, the better the estimation qual-
ity. Fourth, compared to histograms as common setting in database
systems, KDEs have a higher rate of convergence and they can pro-
duce smooth estimates.

Finally, let us mention that kernel density estimation was also
discussed for the case of dependant data [15], but in the context of
stochastic processes.

3.4 Kernel Density Estimation over Streaming
Data

The aforementioned benefits of kernel density estimation recom-
mend its adaptation to data streams as we could gain meaningful
insights into the characteristics of the stream. A suitable adaptation
can also serve as foundation for the application of common offline,
density-based mining techniques to transient data streams.

Since we assume a data stream to be aniid sample of an un-
known continuous distribution (see Section 3.1), the adaptation of
kernel density estimation seems straightforward. However, the com-
putational cost of KDEs collides with the processing requirements
presented in Section 3.2: According to (1), a KDE requests mem-
ory linear in the sample size, i.e. in the size of the stream. Even
if large amounts of data could be stored, the use of KDEs will be-
come unfeasible due to high evaluation cost. Furthermore, common
bandwidth strategies require access to the complete sample. Con-
sequently, each processed element of the stream would have to be
accessible anytime. Hence, kernel density estimation in its original
form can not be directly applied to data streams.

A naive approach for an adaptation is to continuously maintain
a constant-size sample of already processed elements. With the
sample, one can build a KDE anytime which, however, only relies
on the current sample elements. Therefore, the estimation quality
does not improve anymore after the sample has been initialized as
the consistency of KDEs presupposes an increasing sample size.

3.5 M-Kernel Approach
In [7], the authors proposed M-Kernels for kernel density esti-

mation over onedimensional data streams. This technique only par-
tially complies with the processing requirements presented in Sec-
tion 3.1. Essentially, anM-Kerne l is a kernel withmeanX

(n)
i and

bandwidthh
(n)
i that is additionally weighted withc(n)

i . The over-
all sum of M-Kernels constitutes the current KDE aftern processed



stream elements:

f̂ (n)(x) :=
1

n

mX
i=1

c
(n)
i

h
(n)
i

K

 
x − X

(n)
i

h
(n)
i

!
(2)

with
Pm

i=1 c
(n)
i = n. Contrary to the continuously increasing

number of processed data stream elementsn, the maximum num-
ber of M-Kernels is restricted tom. To keep the number of M-
Kernels and therefore the amount of allocated memory constant,
M-Kernels can be merged. The accuracy loss of a merge is mea-
sured withmerge costsL1costs

(n)
i . The entirety of M-Kernels

〈X(n)
i , h

(n)
i , c

(n)
i , L1costs

(n)
i 〉, i = 1, ..., m is organized in a list

sorted byX(n)
i .

3.5.1 Parameter Settings
The Gaussian kernel is used as underlying kernel function in (2).

The bandwidth as second parameter is initially set to 1 for a new
M-Kernel, but changes due to subsequent merges.

3.5.2 Processing of M-Kernels
As long as the number of M-Kernels is less or equalm, a new M-

Kernel< Xn+1, 1, 1, L1costs(n+1) > is inserted for each new el-
ementXn+1 that is not equal to the mean of an existing M-Kernel.
If that is the case, i.e.,∃i ∈ {1, ..., m} : X

(n)
i = Xn+1, the asso-

ciated weightc(n)
i is incremented.

If the total number of M-Kernels exceeds maximum numberm
after an insertion, the two M-Kernels〈X(n)

i , h
(n)
i , c

(n)
i , L1costs

(n)
i 〉

and〈X(n)
j , h

(n)
j , c

(n)
j , L1costs

(n)
j 〉 closest to each other are sub-

stituted by theirmerge kernel〈X∗, h∗, c
(n)
i + c

(n)
j , L1costs(n)〉.

Mean X∗ and bandwidthh∗ of this merge kernel minimize the
merge costs functionL1costs(X, h) which measures the mean
absolute deviation between two M-Kernels:

L1costs(X, h) :=

∞Z
−∞

���� c
(n)
i

h
(n)
i

K
�x − X

(n)
i

h
(n)
i

�
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c
(n)
j

h
(n)
j

K
�x − X

(n)
j

h
(n)
j

�
−

c
(n)
i + c

(n)
j

h
K
�x − X

h

�����dx. (3)

As it suffices to consider merges between adjacent M-Kernels, an
M-Kernel only storesL1costs

(n)
i := L1costs(X∗, h∗) which refers

to the merge costs with its successor. In case of a merge, the M-
Kernel with overall minimum merge costs is merged with its list
successor. After a merge, the merge costs of the merge kernel as
well as of its left neighbor are updated.

However, the lack of a closed formula forL1costs(X, h) ren-
ders the computation of its minima difficult. The authors propose
to overcome this problem with numerical approximations.

3.5.3 Drawbacks of M-Kernels
The following drawbacks of M-Kernels severely limit their ap-

plicability:

• The unbounded support of the Gaussian kernel, which is used
as underlying kernel function, exacerbates an efficient evalu-
ation of M-Kernels.

• There is no theoretical foundation for the proposed band-
width computation. It is not ensured that the bandwidth de-
creases with the sample size; but this is a fundamental as-
sumption for the consistency of KDEs [24].

• The numerical approximation of the minima in (3) causes
additional computational effort and less accurate values.

4. OUR APPROACH
In the following, we propose our redesign of the M-Kernel ap-

proach particularly with regard to their drawbacks. Not only do we
present suitable parameter settings and improvements of essential
processing steps, we also provide efficient algorithms.

4.1 Kernel Entries and their Processing
Instead of M-Kernels, we use kernel entries for KDEs over stream-

ing data. An M-Kernel - see Section 3.5 - is characterized by
〈X(n)

i , h
(n)
i , c

(n)
i , L1costs

(n)
i 〉. Contrary to, akernel entry is char-

acterized by〈X(n)
i , c

(n)
i , min

(n)
i , max

(n)
i , L2costs

(n)
i 〉. Like M-

Kernels, a kernel entry stores meanX
(n)
i and weightc(n)

i . Addi-
tionally, they are equipped with minimummin

(n)
i and maximum

max
(n)
i . Other differences to M-Kernels are the usage of a global

bandwidth for all kernel entries as well as a new definition of merge
costsL2costs

(n)
i .

For an incoming elementXn+1, we establish a new kernel en-
try 〈Xn+1, 1, Xn+1, Xn+1, L2costs

(n+1)
i 〉, providedXn+1 is not

equal to the mean of an existing kernel entry. If this is the case, we
only increment the associated weight of this kernel.

In case the total number of kernel entries exceeds the current
maximum numberm, we perform analogous to M-Kernels a merge
step. More concretely, we determine and substitute the pair of adja-
cent kernel entries〈X(n)

i , c
(n)
i , min

(n)
i , max

(n)
i , L2costs

(n)
i 〉 and

〈X(n)
j , c

(n)
j , min

(n)
j , max

(n)
j , L2costs

(n)
j 〉 with overall minimum

merge costs by theirmerge kernel. The merge kernel is defined as
〈X∗, c

(n)
i +c

(n)
j , min{min

(n)
i , min

(n)
j }, max{max

(n)
i , max

(n)
j },

L2costs(n)〉.
Before we discuss the computation ofX∗, we present the para-

meter settings of a KDE based on kernel entries.

4.2 Parameter Settings
Contrary to M-Kernels, which rely on the Gaussian Kernel, we

employ a kernel function with bounded support. Kernel functions
with unbounded support lead to high evaluation cost as every kernel
contributes to the result (see equation (1)). In this work, we decided
to use theEpanechnikow kernel:

K(x) := 0.75 · (1 − x2) · 1[−1,1](x), x ∈ R. (4)

Not only has this kernel function a simple form, its accuracy is also
asymptotically optimal among all kernels [14]. As we will see, the
computation of the merge costs as well as the evaluation of a KDE
strongly rely on the simple form of this kernel.

As already mentioned in Section 3.3, the bandwidth as second
parameter of a KDE is vital to the estimation quality. Theoretically
founded and practically well-established bandwidth strategies [23]
assign a global bandwidth to all kernels. However, these strategies
depend on the complete sample, which corresponds in our scenario
to all processed stream elements. Consequently, the one-pass par-
adigm is violated. We overcome this problem with an approxi-
mate solution that complies with the processing requirements of
data streams. More precisely, we consider a simple but convenient
bandwidth strategy, namely thenormal scale rule[24]. For a sam-
ple with n elements and standard deviationσ(n), the bandwidth
defined by this rule is defined as:

h(n) := 1.06 · σ(n) · n−
1
5 . (5)



For the sake of an online computation ofh(n), we have to estimate
the standard deviationσ(n) of the data stream in an online fashion
in amortized constant time. A suitable estimate ofσ(n) is the sam-
ple standard deviation, which itself can be estimated in one pass
with a numerically stable algorithm presented in [8]. Given this es-
timateσ̂(n), we can continuously compute an approximate global
bandwidthĥ(n) while consuming the data stream:

h(n) = 1.06 · σ(n) · n−
1
5 ≈ ĥ(n) := 1.06 · σ̂(n) · n−

1
5 . (6)

4.3 Evaluation Strategies
The entirety of kernel entries combined with the upper parameter

settings allows us to establish a KDE anytime.
Analogous to the M-Kernel approach, we define the current KDE

aftern processed elements as

f̂ (n)(x) =
1

n

mX
i=1

c
(n)
i

ĥ(n)
K

 
x − X

(n)
i

ĥ(n)

!
. (7)

In the following, we refer to this strategy asone-value-evaluation.
For infinite data streams, this strategy is not suitable as the resulting
KDE will be a sum ofm Dirac delta functions, i.e., it consists of
m singularitiesX

(n)
i , i = 1, ..., m. This is the consequence of

bandwidths tending to zero for increasing sample sizes.
We circumvent this problem with ourmin-max-evaluationstrat-

egy. Remember that each kernel entry stores a counterc
(n)
i for the

number of ’incorporated’ elements and, additionally, their mini-
mummin

(n)
j and maximummax

(n)
j . We gain advantage of these

local statistics by evaluatingc(n)
i elements equidistantly distributed

over[min
(n)
i , max

(n)
i ] for each kernel entry:

f̂ (n)(x) =
1
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i=1

c
(n)
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K
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(n)
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−(j − 1)
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(n)
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(n)
i

c
(n)
i − 1

��
. (8)

This strategy ensures that the complete data range will be cov-
ered with elements, i.e., it has an inherent smoothing. Due to that
smoothing, the problem of singularities for infinite data streams can
not occur anymore. A necessary requirement for the application of
this strategy is that the inner sum in (8) can be converted into a
closed formula; otherwise, the evaluation cost would beO(n). The
Epanechnikow kernel allows us to determine a closed formula with
rather simple algebraic conversions. Due to space constraints, how-
ever, we have to omit a detailed discussion.

Besides the evaluation, the Epanechnikow Kernel also plays an
important role in the computation of the merge costs.

4.4 Merge Costs Computation
Our definition of merge costs for two kernel entries also bases

on the inherent objective in (2): Consider the sum of two ker-
nels weighted withc(n)

i andc
(n)
j over meansX(n)

i andX
(n)
j re-

spectively. We set their merge kernel as the kernel with weight
c
(n)
i + c

(n)
j whose suitably chosen mean ensures an optimal ap-

proximation of the sum. Thus, the means and the weights are the
crucial factors during merge. For the sake of completion, let us
mention that, given the min-max-evaluation strategy, we could ad-
ditionally incorporate the generated points in the merge costs com-
putation; but this would complicate the subsequent computations
massively.

In the following, we examine the mean squared deviation, a com-
mon measure for the similarity of real-valued functions, to quantify

the accuracy loss induced by the merge of two kernel entries:

L2costs(X) :=

∞Z
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ĥ(n)
K
�x − X

(n)
i
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ĥ(n)

��2

dx

(9)

with X as the only variable. The M-Kernel approach, in contrast,
includes the bandwidth as second variable at the expense of a more
complicated (and inaccurate) computation of the minimum. We
set the mean of the merge kernel as minimumX∗ of L2costs(X)
and thus minimize the accuracy loss of the merge: the merge is
optimal with respect to the mean squared deviation. It is important
to note that the closer two kernels are with respect to their means,
the smaller are their merge costs. Hence, it suffices to consider only
the merge of adjacent kernel entries. For that reason, we define
L2costs

(n)
i := L2costs(X∗) as cost of merging thei-th and the

(i + 1)-th kernel entry.
For illustrative purposes, we present in Figure 2 the shape of

L2costs(X) for two kernel entries. The left y-axis describes the
weighted kernels and the right oneL2costs(X), while the x-axis
describes the support of the kernel functions as well as the possible
means of the merge kernel.

Figure 2: Merge of kernel entries with h(n) = 1

Concerning the existence and the computation of the minimum
of L2costs(X), the following theorem holds:

THEOREM 1. For two arbitrary kernel entries, the minimum of
L2costs(X) exists and can be computed in constant time.

In the following proof, we only present the essential steps as the
computation of the minimum is rather technical. In the proof, we
benefit again from the simple form of the Epanechnikow kernel.

PROOF. We consider two arbitrary kernel entries with meansXi

andXj . In case ofXi = Xj , the minimum ofL2costs(X) equals
Xi. In the following, we assumeXi < Xj without loss of gener-
ality.



The minimum ofL2costs(X) corresponds to the roots of its first
derivative. To compute the first derivative, we have to transform (9)
into a closed formula via integration. We start with converting the
integral of the squared sum in (9) into a sum of integrals over sep-
arate products. We refer to the resulting integrals assummands.
Their integrands are products of two kernels with meansX, X

(n)
i ,

or X
(n)
j and supports[X− ĥ(n), X + ĥ(n)], [X(n)

i − ĥ(n), X
(n)
i +

ĥ(n)], or [X(n)
j − ĥ(n), X

(n)
j + ĥ(n)] respectively. Hence, the inter-

section of the associated pair of supports determines the integration
borders of a summand. However, each summand that incorporates
X has consequently integration borders varying inX. Thus, the in-
tegration of the summands is not straightforward as they depend on
the variableX. We overcome this problem by partitioning the sup-
port of L2costs(X) appropriately, so that the integration borders
of each summand are uniquely defined for an arbitraryX.

For this partitioning, we examine the relative position of the ker-
nel supports[X(n)

i − ĥ(n), X
(n)
i + ĥ(n)] and[X

(n)
j − ĥ(n), X

(n)
j +

ĥ(n)] to each other. Given[X − ĥ(n), X + ĥ(n)], we distinguish
whether this support intersects both other supports. We compute
the largestk with X

(n)
j − X

(n)
i ≥ kĥ(n), i.e. k = b(X(n)

j −
X

(n)
i )/ĥ(n)c. If k ∈ {0, 1, 2, 3}, the supports intersect. Other-

wise, they do not.

Figure 3: Integration borders for k = 0 based on the support
partitioning for L2costs(X)

In case ofk /∈ {0, 1, 2, 3}, the mean of the merge kernel is the
mean of the kernel with higher weight. Ifc(n)

i = c
(n)
j , X

(n)
i and

X
(n)
j both minimize (9), i.e., we can set the mean asX

(n)
i or X

(n)
j .

In case ofk ∈ {0, 1, 2, 3}, we defineIi as integration inter-
val of a summand whose integrand is the product of kernels over
X andX

(n)
i (Ij analogous withX andX

(n)
j ). In order to deter-

mineIi andIj , we slide a kernel with continuously varying support
[X − ĥ(n), X + ĥ(n)] over the x-axis and examine simultaneously
the effects onIi andIj by evaluating the intersection of the sup-
ports, i.e.[X − ĥ(n), X + ĥ(n)] ∩ [X

(n)
i − ĥ(n), X

(n)
i + ĥ(n)]

and [X − ĥ(n), X + ĥ(n)] ∩ [X
(n)
j − ĥ(n), X

(n)
j + ĥ(n)]. For

k = 0, Figure 3 displays the different cases of intersections, the
resulting support partitioning forL2costs(X), as well as the in-
tegration intervalsIi and Ij within each support partition. For
X ∈ [X

(n)
j − 2ĥ(n), X

(n)
i ], the computation ofIi and Ij is il-

lustrated as an example. The support partitions fork = 1, 2, 3 can
be derived analogously.

Eventually, the support partitioning delivers a piecewise defini-
tion of L2costs(X), so that the integration interval of each sum-
mand in (9) is uniquely defined. Given the primitive of the Epanech-
nikow kernel, we integrateL2costs(X) on each support partition
and finally receive a closed formula. Actually, it is a polynomial of

degree 5 in each partition. We determine the minima of those poly-
nomials by calculating the roots of their derivatives, which requires
to solve quartic equations. Eventually, we compare the ’local’ min-
ima in each partition and get the uniquely defined overall minimum
of the loss function.

Overall, the support partitioning as well as the subsequent com-
putation of the minimum requires constant time.

Now that we presented the main components of our KDEs over
data streams, we will discuss a natural extension that allows us to
keep pace with evolving data streams.

4.5 Capturing evolving Streams
An inherent difficulty for stream analysis techniques is that the

characteristics of a data stream can vary over time. Financial data,
for instance, has typically a more volatile nature rather than being
stable over time. Hence, an analysis technique also has to take
changes of the stream properly into account. In the following, we
show how our technique meets this requirement.

Let us examine an evolving stream from a formal point of view.
Remember that we consider a data stream as sample of an unknown
random variable (see Section 3.1). Up to now, we assumed the
stream to be stable, i.e., all stream elements follow the same distri-
bution. Contrary to, the distribution underlying an evolving stream
will change over time and, as a consequence, also the underlying
pdf we want to estimate. In order to overcome this problem, we
couple our online KDEs withexponential smoothing[13], a pop-
ular weighting scheme in time series analysis and forecasting.

The basic idea of this coupling is to give older data less weight in
the evaluation of an online KDE. For reasons of simplicity, we limit
the following considerations to the one-value-evaluation strategy.
Let us consider the current KDE after an insertion of a new element
Xn and before the merge step is performed (the element shall not
be a duplicate):

f̂ (n)(x) =
1

n

mX
i=1

c
(n−1)
i

ĥ(n)
K

 
x − X

(n−1)
i

ĥ(n)

!

+
1

n
· 1

ĥ(n)
K

�
x − Xn

ĥ(n)

�

=
n − 1

n
· ĥ(n−1)

ĥ(n)
f̂ (n−1)(x)

+
1

n
· 1

ĥ(n)
K

�
x − Xn

ĥ(n)

�
(10)

for n ≥ 2 and f̂ (1)(x) = 1

ĥ(1) K
�

x−X1
ĥ(1)

�
. Hence, each kernel

entry is equally weighted with1/n. With exponential smoothing,
these equal weights are substituted by exponentially decreasing
ones. Concretely, givenα ∈ (0, 1), each new element receives
weight α and triggers a re-scaling of older weights by a factor
(1 − α):

f̂ (n)
α (x) = (1 − α)

ĥ(n−1)

ĥ(n)
f̂ (n−1)

α (x)

+α
1

ĥ(n)
K

�
x − Xn

ĥ(n)

�
(11)

for n ≥ 2 andf̂
(1)
α (x) = 1

ĥ(1) K
�

x−X1
ĥ(1)

�
.

For illustration purposes, we assume the maximum numberm of
kernel entries to be unbounded and determine the resulting weight-



ing sequence. Forn ≥ 2 holds

f̂ (n)
α (x) = (1 − α)n−1 · 1

ĥ(n)
K

�
x − X1

ĥ(n)

�

+

n−1X
i=2

(1 − α)n−2α · 1

ĥ(n)
K

�
x − Xi

ĥ(n)

�

+α · 1

ĥ(n)
K

�
x − Xn

ĥ(n)

�
. (12)

Instead of equal weights1
n

for each kernel, we now have ’dis-
counted’ weights(1 − α)n−2α and(1 − α)n−1 for older kernels
andα for the new kernel. In general, the weighting sequence sums
to 1 for eachn ∈ N. This is a necessary prerequisite for each KDE
as otherwise the integration of the pdf to 1, a fundamental property,
is violated. M-Kernels, for example, also support a weighting by
means of a fadeout function [7], but the resulting weighting scheme
violates this prerequisite.

An aspect not yet discussed is the setting ofα. With α, we can
control the impact of old and new data respectively. The higherα is
set, the higher recent data is weighted in the current KDE. Contrary
to, the lowerα is set, the higher older data is weighted.

Let us also mention that this weighting scheme models a kind of
’smooth’ sliding window. Contrary to common sliding windows,
where older elements are ’abruptly’ discarded, we smoothly fade
them out. Sliding windows are a popular technique in data stream
processing [4] where it often suffices to answer queries with re-
spect to recent data, as older data typically can not be stored due to
limited system resources.

4.6 Resource-awareness
To run within a system with limited resources, the resource-

awareness of an analysis technique is a crucial factor. Complex
systems for the analysis of multiple data streams will run many
analysis tasks simultaneously, given only a limited amount of com-
putational resources. Hence, the techniques underlying the analysis
tasks must be able to adapt to changing resources. Our technique
meets this requirement due to its inherent mechanisms for a seam-
less resource adaptation. Since evaluation as well as storage cost
are defined in terms of kernel entries, we only discuss the adap-
tation to a changed amount of available memory. If the available
amount of memory increases, we establish new kernel entries for
new elements - except duplicates - without merging until the new
maximum capacity is reached. If the memory decreases, we simply
perform the merge step sufficiently often to reduce the total number
of kernel entries until they fit in the available memory.

4.7 Implementation Aspects
For practical purposes, we discuss two suitable implementations

of our approach. While one implementation bases on a sorted list,
the other one bases on trees. Besides the underlying data struc-
tures, their policies for the update of the merge costs distinguish
the implementations from each other.

4.7.1 List-based Implementation
Similar to M-Kernels, we organize the entirety of kernel en-

tries 〈X(n)
i , c

(n)
i , min

(n)
i , max

(n)
i , L2costs

(n)
i 〉, i = 1, ..., m, in

a linked list sorted by meanX(n)
i .

4.7.1.1 Insertion Step.
If a new arriving element equals the mean of an existing kernel

entry, we increment its weight. If not, we insert a new kernel entry
in compliance with the ordering by mean.

A new element also affects our bandwidth setting due to the de-
pendency on the number of processed elements. As the bandwidth
is part of our merge costs function - see (9) - the merge costs of all
kernel entries are also affected. Consequently, we have to update all
merge costs if a new element arrives. Wile performing an update,
we can determine the current kernel entry with overall minimum
merge costs to simplify the merge step.

4.7.1.2 Merge Step.
In case of a merge due to an exceeded maximum capacitym, we

substitute the adjacent kernel entries with overall minimum merge
costs by their merge kernel. The merge kernel is located between
its associated kernel entries, i.e., the merge step does not violate the
list ordering. After merging, we update the merge costs between the
merge kernel and its left neighbor (if existent) and that between the
merge kernel and its right neighbor (if existent).

4.7.1.3 Algorithm Analysis.
The insertion of a new element has complexityO(m) due to

the update of all merge costs. If the kernel entry with minimum
merge costs is determined, the merge step hasO(1). Overall, the
complexity of the list-based implementation isO(m).

4.7.2 Tree-based Implementation
The tree-based implementation has a substantially lower com-

plexity compared to the list-based one. This implementation is
approximate because we do not recompute the merge costs of all
kernel entries after an update of the bandwidth; we only recompute
the merge costs of those entries that are ’locally’ affected by an
insertion or a merge.

Let us examine the requirements for processing a set of kernel
entries. On the one hand, an ordering by mean is desirable as it
supports the efficient insertion and search of kernel entries. On the
other hand, an ordering by merge costs is desirable as it supports the
efficient detection of the kernel entry with minimum merge costs.
We satisfy both requirements simultaneously with a data structure
consisting of a binary search tree and a priority search tree. We
store the kernel entries in a binary search tree (mean tree) with
the meanX(n)

i as underlying ordering criterion. Additionally, we
maintain a priority search tree termedmerge costs treewith entries
〈L2costs

(n)
i , X

(n)
i 〉 and the merge costs as ordering criterion.

4.7.2.1 Insertion Step.
For a new inserted element, either an already inserted kernel en-

try is updated or a new entry is inserted into the mean tree. In both
cases, we recompute the merge costs between the associated kernel
entry and its predecessor (if existent) and that between this entry
and its successor (if existent). In order to keep both trees consis-
tent, we remove the associated ’old’ merge costs from the merge
costs tree and insert the new merge costs.

4.7.2.2 Merge Step.
If the overall number of kernel entries exceedsm after an in-

sertion, we merge the adjacent kernel entries with minimum merge
costs. We remove the minimum merge costs from the merge costs
tree and determine the associated kernel entry in the mean tree. In
compliance with the mean tree ordering, we substitute this kernel
entry by its merge kernel and remove its successor. Finally, we up-
date the merge costs between the merge kernel and its predecessor
(if existent) and that between the merge kernel and its new suc-
cessor (if existent). While doing so, we keep the merge costs tree
consistent by removing and inserting the associated merge costs.



4.7.2.3 Algorithm Analysis.
The insertion of a new element as well as the merge step both

have complexityO(log m). Hence, the overall performance of the
tree-based implementation isO(log m) per stream element, com-
pared toO(m) of the list-based one.

4.7.2.4 Comparison with list-based Implementation.

Due to the upper procedure, only kernel entries locally affected
by an insertion or a merge receive an update of their merge costs
with respect to the current bandwidth. For that reason, the tree-
based implementation gives an approximate solution. Contrary to,
the list-based implementation recomputes all merge costs in case
of an updated bandwidth at the expense of higher processing costs.
However, merges are most likely to occur in dense data regions
where the probability for new elements will be higher than in sparse
regions. For the tree-based implementation follows that the merge
costs in these regions are with a high probability up-to-date, i.e.,
this implementation is virtually self-adaptive. The results of our
experimental study showed that the loss in accuracy by this ap-
proximation only had minor effects on the overall quality of the re-
sulting KDEs, whereas the processing time substantially improved
compared to the list-based implementation.

4.7.3 Implementation of Exponential Smoothing
According to equation (11), the kernel entry of a new element

receives weightα, while the other kernel entries are rescaled with
(1−α). Thus, the application of the smoothed KDEs causes inser-
tion cost ofO(m) for the list-based and the tree-based implemen-
tation. This deteriorates the processing cost of tree-based KDEs
from O(log m) to O(m).

5. EXPERIMENTAL EVALUATION
We scrutinized our approach in a thorough experimental study

whose core results are presented in the following. Within the ex-
periments, we primarily addressed the following questions: How
do our KDEs perform for different real-world data streams? How
is their runtime behavior in terms of processing time? How do they
react to sudden changes of their available amount of memory?

5.1 Settings

5.1.1 Techniques
According to Section 4, we can construct different variants of

KDEs with our approach. On the one hand, we can use list-based
KDEs, and, on the other hand, tree-based ones. For both, we can
apply the one-value-evaluation or the min-max-evaluation strategy.
As list-based KDEs with min-max-evaluation did not significantly
differ from the other techniques, we do not present their results for
the sake of clarity. In order to get an impression of the performance
of our KDEs, we included M-Kernels as competitive technique in
our experiments. In the subsequent charts, we associated each tech-
nique with a specific line type as displayed in Figure 4. All tech-

Figure 4: Line types of the techniques

niques were implemented with PIPES [19], our Java library for ad-
vanced data stream processing and analysis.

5.1.2 Data Sets
In order to assess these techniques, we considered synthetic as

well as real-world data streams. We chose a set of heterogeneous
real-world data streams from the time-series archive of UC River-
side [16]: BURSTIN, NETWORK, FLUIDDYNAMICS, PACKET,
and POWERDATA. Those data streams originate from diverse fields
like facility monitoring or networking and exhibit different charac-
teristics, e.g. noisy/smooth, stationary/non-stationary. We addition-
ally included a synthetic data set, called Claw, whose underlying
density is a mixture of Gaussian densities [21].

5.1.3 Quality Measure
While processing a data stream, we continuously evaluated the

quality of the current KDEf̂ (n) by comparing it with the best off-
line KDE f̂opt. There, f̂opt is the best KDE over the complete
data stream, computed with unlimited computational resources. We
measured the quality of̂f (n) with respect tof̂opt by means of the
mean squared error:

MSE(n) :=
1

500

500X
i=1

�
f̂opt(xi) − f̂ (n)(xi)

�2

(13)

wherex1, ..., x500 is an equidistant partition of the support off̂opt.

5.2 Estimation Quality
An important question is whether our KDEs ’converge’ in terms

of a decreasing MSE for an increasing number of processed ele-
ments, i.e., the better the quality the more elements are processed?
In order to answer this question, we continuously comparedf̂ (n)

andf̂opt by evaluating the current MSE always after 500 elements
had been processed. For the different techniques, whose perfor-
mance for the separate data streams is displayed in Figure 5, we
observed the following trends:

5.2.1 Performance of our KDEs
The results indicate that our KDEs are very robust as the MSE

decreased for an increasing number of processed elements. In a
few cases, the quality temporarily worsened, indicated by an in-
creased MSE. This can be explained with the temporary emphasis
on features that receive less weight in the optimal KDE. Overall,
our KDEs achieved excellent rates of convergence and succeeded
in estimating the densities underlying the examined data streams.

5.2.2 Performance of M-Kernels
M-Kernels were clearly inferior to our KDEs as they mostly

failed to capture the unknown density. The MSE of M-Kernels
was constant in the average, i.e., M-Kernels did not improve any-
more. A closer examination revealed that they basically suffered
from an inappropriately chosen bandwidth which mostly induced
an oversmoothed estimation hiding important details.

5.2.3 List- vs. tree-based KDEs
While list-based KDEs ensure that the kernel entries are always

up-to-date with respect to the bandwidth, tree-based KDEs only
update locally affected kernel entries. However, the differences
in quality between tree- and list-based KDEs were only marginal;
their performance was almost identical. If we take the higher process-
ing costs of list-based KDEs into account, we can state that tree-
based KDEs are the better choice for practical purposes.



Figure 5: Logarithmically scaled MSE for different data streams

For tree-based KDEs, we additionally examined the min-max-
evaluation strategy. For BURSTIN, this strategy was superior to
one-value-evaluation. We traced this effect back to the smoothing
of this strategy in sparse data regions.

5.3 Processing Time
An aspect of utmost importance is the processing time of an on-

line technique as it has to cope with volatile data streams given only
limited computational resources. We provide a notion of the com-
putational complexity of the techniques described above by com-
paring the time they required for processing a complete data stream.
We set the parameters as in the last experiment and measured the
time in seconds while the stream was processed. Figure 6 displays
the results. They indicate that M-Kernels had the longest process-
ing time due to the computational effort for the numerical approxi-
mation of the mean of the merge kernel. Our list-based KDEs were
faster than M-Kernels. However, they were also clearly inferior to
tree-based KDEs. This effect results from the logarithmic cost for
an insertion whereas linear costs arise for list-based KDEs.

Another aspect we examined is the influence of the evaluation
strategies - see Section 4.3 - on the processing time. There, the dif-
ferences between tree-based KDEs with one-value-evaluation and
min-max-evaluation were marginal.

5.4 Resource-awareness
We emphasized in this work the necessity of resource-awareness

as it is a fundamental prerequisite for the use of an online analysis
technique within a complex system. For that reason, we examined
how our KDEs react to sudden changes of their available amount of

Figure 6: Processing time in seconds

memory. We studied the arising effects for tree-based KDEs with
one-value-evaluation over a stream of Claw data. While processing
the stream, we randomly varied the maximum number of kernel
entries from minimum 10 to maximum 100 each 5000 elements.
By examining the continuously computed MSE, we can study the
impact of those memory modifications on the quality of the KDEs.

Figure 7 summarizes the results of this experiment. While the
x-axis displays the number of processed elements, the left y-axis
displays the MSE and the right y-axis the number of kernel entries.
The curve plots the MSE and the crosses depict the current number
of kernel entries. We observe that our KDEs react very flexible to
changes of the maximum number of kernel entries. Note that even
significant decreases of the kernel entry number only caused a mo-



Figure 7: MSE of tree-based KDE for a changing number of
kernel entries

mentary loss in accuracy; afterward the KDEs ’recovered’ again,
indicated by a henceforth decreasing MSE.

6. CONCLUSIONS
In this work, we attended to the adaptation of kernel-based den-

sity estimation to the data stream scenario in compliance with rigid
processing requirements. Kernel density estimation is among the
most appealing nonparametric estimation techniques in statistics
and its adaptation to data streams provides a sophisticated base for
further stream analysis.

In particular, we proposed a new solution whose basic idea is to
summarize processed elements with simple statistics. These sta-
tistics are stored in kernel entries which are the essential building
blocks of an estimator. An intelligent merge scheme for those ker-
nel entries allows us to adapt to changing system resources. As the
characteristics of the stream may also change, we additionally in-
corporated exponential smoothing to fade out the weight of older
data. Besides these basic principles of our technique, we discussed
suitable implementations. While the list-based estimator has the
highest accuracy at the expense of linear processing cost, the tree-
based estimator has logarithmic processing cost at the expense of a
slight inaccuracy. Our experimental results for real-world streams
indicate that both methods provide a high degree of accuracy which
improves constantly the more elements are processed. In compar-
ison to M-Kernels, a previous kernel method for data streams, our
tree-based estimators were superior as they combined much higher
accuracy (on average two orders of magnitude) with substantially
lower processing cost (also roughly two orders of magnitude).

In our future work, we will generalize our approach to multidi-
mensional data streams. This requires to develop new data struc-
tures which support an efficient storage of kernel entries as well as
a fast evaluation of the estimator. Another aspect we will address
is the coupling of our technique with change point detection meth-
ods as known from stochastic process theory in order to locate and
react to concept drifts in the stream.
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