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Abstract

A domain representation of a topological space X is a function, usually a quotient map, from a
subset of a domain onto X . Several di�erent classes of domain representations are introduced and
studied. It is investigated when it is possible to build domain representations from existing ones.
It is, for example, discussed whether there exists a natural way to build a domain representation
of a product of topological spaces from given domain representations of the factors. It is shown
that any T0 topological space has a domain representation. These domain representations are
very large. However, smaller domain representations are also constructed for large classes of
spaces. For example, each second countable regular Hausdor� space has a domain representation
with a countable base. Domain representations of functions and function spaces are also studied.
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1. Introduction

In this paper we study domain representations of topological spaces and properties
of such representations. The main reason for studying such representations is that they
provide a uniform method to introduce computability on abstract spaces such as R.
Scott–Ershov domains carry a natural computability theory and the representing map
from the domain onto the topological space imports the computability theory onto the
topological space. We will in this paper not directly concern ourselves with computabil-
ity but will instead study the notion of domain representability abstractly. The paper
[9] is an extended abstract of this paper. Most results herein also appear in [8, Ch. 4].
The notion of domain representations is introduced in Section 3. The domain repre-

sentations are classi�ed depending on the properties of the representation. The primary
classi�cation is by the topological properties of the representing function. Several other
useful properties that a representation may or may not have are also identi�ed.
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Our primary type of domains is Scott–Ershov domains, i.e., consistently complete al-
gebraic cpos. We consider domain representations from continuous domains in
Section 4. It is shown that the ordinary embedding of a continuous domain into an
algebraic domain is a retract domain representation. This is further used to show that
for large classes of representations from continuous domains it is possible to construct
domain representations from Scott–Ershov domains with the same properties as the
former.
Neighbourhood systems are introduced in Section 5. They are used to construct do-

main representations with many useful properties. In particular, it is shown that any
regular Hausdor� space has an upwards-closed retract representation. The neighbour-
hood system chosen in this case consists of all the non-empty closed sets of the space.
If the space is second countable, then a modi�cation of the neighbourhood system gives
a domain representation with a countable base. Furthermore, it is shown that spaces
with upwards-closed retract representations are regular Hausdor� spaces. Hence, we
have a complete characterisation of the spaces that have an upwards-closed retract
representation.
In Section 6 we observe some limitations on spaces that have e�ective domain

representations. These limitations are imposed by topological reasons since e�ective
domains must be countably based.
Domain representations where the representing elements are a subset of the maximal

elements of the domain are constructed in Section 7. It is possible to make such
constructions for arbitrary T0 spaces. However, these representations are very large and
lack some of the properties that the representations constructed in Section 5 possess.
In Section 8 we study when it is possible to uniformly build domain representations

for spaces obtained by a topological construction from domain representations of the
old spaces. We have, for example, that retract representations are uniformly closed
under retracts, subspaces, disjoint unions, and products.
Domain representations of functions are studied in Section 9.1. A function has a

domain representation if there exists a domain function inducing it. Domain functions
satisfying a natural condition always induce a continuous function on the represented
spaces. Theorem 9.3 gives su�cient conditions so that representations of functions
always exist.
Section 9.2 studies when the function space construction on domains can be used to

give domain representations of function spaces. A representation of a function space
induces a topology on the function space. Under some conditions this topology is
proven (Theorem 9.7) to be exactly the compact-open topology.

2. Domain-theoretic background

In this subsection we will briey review domain theory. We concentrate on giving
the notions and hint at some results. The proofs are generally omitted and can be
found in either [24] or [1]. Most of the material in this paper is based on what
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we call Scott–Ershov domains. Hence this section will lean towards that type of
domains.
Let D=(D;v) be a partially ordered set. A subset A⊆D is an upper set if x∈A

and xvy implies y∈A. Let ↑A= {y∈D: ∃x∈A(xvy)}. We will abbreviate ↑{x} by
↑x. The dual notions are lower set and ↓A. A subset A⊆D is directed if A 6= ∅ and
whenever x; y∈A then there is z ∈A such that xv z and yv z. The supremum, or least
upper bound, of A (if it exists) is denoted by

⊔
A.

A complete partial order, abbreviated cpo, is a partial order, D=(D; v ;⊥), such
that ⊥ is the least element in D and any directed set A⊆D has a supremum,

⊔
A.

This is also known as a pointed dcpo in the literature.
Note that our de�nition of cpo includes a bottom element. The existence of bottom

elements is useful in, e.g., function space constructions. The more general form, without
bottom, is not needed in our work. In addition, it is intuitively pleasing to have a
bottom element since this will correspond to the trivial approximation of a point in a
topological space. That is, the bottom element approximates the whole space.
Let D be a cpo. Then an element a∈D is compact if whenever A⊆D is a directed

set and av ⊔
A, then a∈↓A. The set of compact elements of D is denoted by Dc.

A cpo D is algebraic if for each x∈D, the set approx(x)= ↓x ∩ Dc is directed and
x=

⊔
approx(x). A cpo D is consistently complete if

⊔
A exists in D whenever A⊆D

is a consistent set, i.e., has an upper bound.

De�nition 2.1. A Scott–Ershov domain, or simply domain, is a consistently complete
algebraic cpo.

The topology normally used on domains is called the Scott topology. Let D be an
algebraic cpo. A subset U of D is open if
(i) U is an upper set, and
(ii) x∈U implies that there exists a∈ approx(x) such that a∈U .
An easy observation is that the Scott topology on a domain is T0. However the Scott

topology fails to be T1 on all domains except the trivial domain consisting of a single
element.
The sets ↑a, for a∈Dc, constitute a base for the Scott topology on a domain D.
Let D and E be domains. A function f :D→E is Scott continuous if f is monotone

and

f(
⊔
A)=

⊔
f[A];

for any directed A⊆D. The notion of Scott continuity coincides with the notion of
continuity induced from the Scott topology on the domains.
Any continuous function between domains is determined by its values on the compact

elements.
Let D and E be domains and let f :Dc→E be a monotone function. Then there

exists a unique extension g :D→E of f such that f= g|Dc .
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The function space [D→E] consists of all continuous functions from the domain D
into the domain E. For a∈Dc and b∈Ec the step function 〈a; b〉 de�ned by

〈a; b〉(x)=
{

b if av x;
⊥ otherwise

is a continuous function. The compact elements of the function space are �nite suprema
of consistent sets of such step functions.
Domains are often constructed as the completion of some underlying structure. We

will study the type of structure from which we can construct Scott–Ershov domains.
The compact elements Dc of a Scott–Ershov domain D form a conditional upper

semilattice with least element, abbreviated cusl. That is, a cusl is a partially ordered
set where a least upper bound exists for every pair of elements that have an upper
bound.
An ideal is a directed lower set. The ideal completion over a cusl P is the set of

all ideals over P, denoted Idl(P). When ordered by set inclusion the ideal completion
of a cusl forms a Scott–Ershov domain. For a in a cusl P; ↓a is an ideal, the principal
ideal generated by a. The compact elements of Idl(P) are the principal ideals ↓a, for
a∈P.
The representation theorem for Scott–Ershov domains tells us that any Scott–Ershov

domain is the ideal completion of a cusl.

Theorem 2.2. Let D be a Scott–Ershov domain. Then Idl(Dc) ∼= D.

We clearly have the following equivalence, for I ∈ Idl(P):
↓a⊆ I ⇔ a∈ I:

Thus the sets Ba= {I ∈ Idl(P): a∈ I} for a∈P form a base for the Scott topology on
Idl(P).
Having introduced our main type of domains we will now briey introduce a more

general type of domains, namely the continuous domains.
Let x and y be elements of a cpo D. We say that x is way below y, denoted x � y,

if for all directed subsets A of D, yv ⊔
A⇒ x∈↓A. Let�x denote {y∈D: x � y}

and�x denote {y∈D: y � x}.
An element x of a cpo D is compact if and only if it is way below itself. A

subset B of D is a basis for D if for every x∈D the set�x ∩ B is directed and has
supremum x.

De�nition 2.3. A cpo D that has a basis is a continuous cpo. If D is in addition
consistently complete then D is a continuous domain.

The de�nition of algebraic cpo is just a way of expressing that the set of compact
elements is a basis for the cpo. Hence, any algebraic cpo is a continuous cpo.
If B is a basis for a continuous cpo D, then the sets�b, for b∈B, is a base for the

Scott topology on D.
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3. Domain representations

Representations of topological spaces by domains or embeddings of topological
spaces into domains have been studied by several people. Weihrauch and Schreiber [30]
considered embeddings of metric spaces into cpos with weight and distance.
Stoltenberg-Hansen and Tucker [25, 27] introduced the notion of domain representabil-
ity. Edalat [10–12] has used embeddings into continuous dcpos to study integration,
measures and fractals. Edalat and Heckmann [13] and di Gianantonio [17] among others
have also studied similar notions. Ershov’s [14] representation of the Kleene–Kreisel
continuous functionals is an early example of a domain representation. Scott [23] has
proposed a category of equilogical spaces. The spaces in this category can also be used
to represent topological spaces, see also [6, 3].
In a domain representation D of a space we isolate the set of representing elements

DR as those that contain total or complete information. This has led to the abstract
study of domains with totality, i.e., domains with a distinguished subset of total el-
ements. This sort of study has been pursued in connection with certain type struc-
tures by Berger [4, 5], Kristiansen and Normann [19], Normann [20, 22] and Waagb�
[29].
The kind of representations or embeddings that are possible for a certain topological

space are a�ected by the choice of domains. For example, any metric space can be
embedded into the maximal elements of a continuous dcpo. For Scott–Ershov domains
we know that the set of maximal elements is Hausdor� and has a clopen base, and
hence, that any space embedded into the maximal elements of a Scott–Ershov domain
is totally disconnected.
We mostly consider domain representations by Scott–Ershov domains here. This is

due to Scott–Ershov domains having a simpler computability theory (not exploited here,
however) and, in our experience, su�ciency in terms of representability. Su�ciency
can to some extent be motivated by Theorems 4.3 and 4.4.

3.1. Classes of quotient maps

The primary classi�cation of our domain representations will be the topological prop-
erties of the representing function. We introduce here the di�erent classes of quotient
maps that we will consider.

De�nition 3.1. Let f :X →Y be a continuous function between the topological spaces
X and Y . Then
(i) f is a quotient map if V ⊆Y is open if, and only if, f−1[V ] is open,
(ii) f is pseudo-open if for any y∈Y and any open set U ⊆X containing f−1[y], y

is in the interior of f[U ],
(iii) f is open if f[U ] is open for any open subset U , and
(iv) f is a retraction if there exists e :Y →X such that f ◦ e= idY .

The notion of pseudo-open is due to Arhangelskij [2].
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Remember that if f :X →Y is a quotient then X=∼ and the image f[X ] are homeo-
morphic, where ∼ is the equivalence relation induced by f.
We observe some relationships between the introduced classes. Onto open maps are

pseudo-open and onto pseudo-open maps are quotients. Retractions are pseudo-open.
The notions of open and retraction are independent of each other. Moreover, the classes
of quotient maps introduced above are all closed under composition.

3.2. Classes of domain representations

We now give the fundamental de�nition of domain representability. The notion is a
stronger version of the one that appears in [25, 27].

De�nition 3.2. Let D be a domain, DR ⊆D, and let X be a topological space. Suppose
that ’ is a continuous mapping from DR onto X . We call the triple (D;DR ; ’)
(i) a weak domain representation of X ;
(ii) a domain representation of X if ’ is a quotient map;
(iii) a pseudo-open domain representation of X if ’ is pseudo-open;
(iv) an open domain representation of X if ’ is open;
(v) a retract domain representation of X if ’ is a retraction;
(vi) a homeomorphic domain representation of X if ’ is a homeomorphism.

We will sometimes drop the word domain from the notions above. We will also
consider continuous domain representations, i.e., representations where the structure D
is a continuous domain and not necessarily a Scott–Ershov domain. Classi�cation of
continuous domain representations is done by the same notions as otherwise introduced
in this section.
The set DR above will be called the set of representing elements. The representing

domain D contains both proper approximations and total or complete representations
of elements of X , the latter constituting the set DR. Intuitively, DR consists of those
domain elements that contain su�cient information to completely determine an element
in X via ’.
Each of the introduced classes of domain representations implies the earlier ones,

with the exception that retract representations are not necessarily open representations.
However, every retract representation (D;DR ; ’) of X with embedding � induces a
homeomorphic (and hence open) representation (D; �−1[X ]; ’) of X .
If (D;DR ; ’) is a homeomorphic representation of X , then ’−1 is an embedding of

X into D.
There are other criteria for suitability of a representation, besides the topological

properties of the representing function ’, namely the kind of the domain D and the
properties of the set DR.

De�nition 3.3. Let (D;DR ; ’) be a domain representation. The representation is
upwards-closed if d∈DR and dv e implies e∈DR and ’(e)=’(d).
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If the represented space X in the de�nition above is T1, then it is redundant to
require ’(e)=’(d).
In a natural representation we would like to consider all elements below a domain

element as approximations to the point that element represents. In this setting, the
representing elements will be total or complete in the sense that they contain total
information about the point they represent. Since any element above a representing
element contains more information we clearly see that any natural representation should
be upwards-closed.
Let (D;DR ; ’) be a domain representation. If every element of DR is a maximal

element, then we say that it is a representation by maximal elements and note that it
is upwards-closed. However, we have noted that only totally disconnected spaces can be
given an upwards-closed homeomorphic domain representation by maximal elements.
We can construct upwards-closed domain representations of a large class of spaces if
we content ourselves with representing elements that are su�ciently high up in the
domain so that no contradictory information can appear above them. More formally,
we require only that each representing element is total in the sense that ↑x is directed.
We say that we have a representation by total elements.
A dense representation is a representation (D;DR ; ’) where DR is dense in D. In

Section 9.1 denseness is used to show that functions can be represented by (or lifted
to) domain functions.
Many of our representations satisfy that for every x∈X there exists a least represen-

tative dx of x, or equivalently, ’−1[x] has a least element. Clearly, any homeomorphic
representation has this property. A representation with this property is a representation
with least representatives.
A domain representation is said to have the closed image property if ’[↑d ∩ DR]

is closed for all d∈D. This is equivalent to ’[↑a ∩ DR] being closed for all a∈Dc
since

’[↑d ∩ DR]=
⋂

a∈approx(d)
’[↑a ∩ DR]:

The following consistency requirement on representations intuitively has the con-
sequence that all representations of a point are concentrated in a small part of the
domain. A domain representation (D;DR ; ’) is local if for each x∈X , the set ’−1[x]
is consistent. Clearly, any homeomorphic representation is local.

4. Algebraic and continuous representability

In this section we show that any continuous domain has a retract representation
by an algebraic domain. This implies that any space that has a continuous domain
representation also has a domain representation via the representations of the continuous
domain.
The following lemma is well-known.
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Lemma 4.1. Let D be a continuous cpo. Then D can be embedded into an algebraic
cpo E via a continuous embedding projection pair.

Proof. Let B be a basis for D and let E= Idl(B;v). Then E is an algebraic cpo since
v is a preorder. De�ne e :D→E by x 7→�x∩B, and p :E→D by I 7→ ⊔

D I . It is
clear that (e; p) constitutes a continuous embedding projection pair.

Let D be a continuous cpo and let E be constructed as in Lemma 4.1. Let (e; p) be
the continuous embedding projection pair.

Corollary 4.2. (i) If D is a continuous !-cpo then E can be chosen to be an algebraic
!-cpo.
(ii) If D is consistently complete then E is also consistently complete.

Proof. For (i) choose a countable basis B in the proof of the lemma. The other is
trivial.

Summarising so far we have the following result.

Theorem 4.3. Every continuous domain D has a dense retract domain representation.

Proof. By Lemma 4.1 and the corollary, (E; E; p; e) is a retract domain representation
of D. The representation is clearly dense.

The representation above will be called the canonical representation of a continuous
domain.
Suppose (D;DR ; ’) is a continuous domain representation of X: Clearly, (E;

p−1[DR]; ’ ◦p) is a domain representation of X: Will the properties of the continuous
domain representation lift to the new domain representation of X ? Since the represen-
tation of the continuous domain is a retract representation, we cannot assert that the
domain representation is open even if the continuous domain representation is open.
Furthermore, the representation is not by maximal elements even if the continuous do-
main representation is by maximal elements. However, the other properties considered
in this paper are preserved. The possible loss of openness should be compared with
the simplicity and concreteness gained by using algebraic domains.

Theorem 4.4. Let (D;DR ; ’) be a continuous domain representation of X and let
(E; E; p; e) be the canonical domain representation of D constructed from the base B.
(i) If (D;DR ; ’) is by total elements; then (E; p−1[DR]; ’ ◦ p) is a domain repre-

sentation by total elements of X:
(ii) If (D;DR ; ’) is upwards-closed; then (E; p−1[DR]; ’ ◦ p) is an upwards-closed

domain representation of X:
(iii) If (D;DR ; ’) has least representatives; then (E; p−1[DR]; ’ ◦ p) is a domain

representation with least representatives of X .
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(iv) If (D;DR ; ’) has the closed image property; then (E; p−1[DR]; ’◦p) is a domain
representation with the closed image property of X:

(v) If (D;DR ; ’) is local; then (E; p−1[DR]; ’ ◦ p) is a local domain representation
of X:

Proof. (i) Suppose that I ∈p−1[x]; where x∈DR. Let J and K be ideals extending I .
We want to show that J ∪K generates an ideal. For this we have to show that any
pair of elements from J and K is consistent; so let a∈ J and b∈K . Since J is an
ideal containing I; we have that at x exists in D; likewise bt x exists. By the totality
of x; at x and bt x are consistent in D and hence also a and b.
(ii) Let I ∈p−1[DR]. Suppose that ’ ◦ p(I)= x and that I v J . By monotonicity

p(I)vp(J ) and by DR being upwards-closed we have ’ ◦ p(J )= x.
(iii) If dx is the least representative of x in D, then e(dx) is the least representative

of x in E.
(iv) Consider the image of a basic open set:

’[p[↑(↓a∩B)∩p−1[DR]]] = ’[↑a∩DR]:

The latter is closed by the closed image property of (D;DR ; ’).
(v) Suppose x; y∈p−1[DR] and ’ ◦ p(x)=’ ◦ p(y). Then p(x) and p(y) are

consistent since (D;DR ; ’) is local. Clearly, the ideal ↓ (p(x)tp(y))∩B is an upper
bound of x and y.

In order to show a similar result for dense representations some caution is required
in the choice of base from which E is constructed.

Theorem 4.5. Let (D;DR ; ’) be a dense continuous domain representation of X and
let (E; E; p; e) be the canonical domain representation of D constructed from the base
B′= {a∈B:�a 6= ∅}; where B is a base for D. Then (E; p−1[DR]; ’ ◦ p) is a dense
domain representation of X .

Proof. A basic open set in E is of the form ↑(↓a∩B), where a∈B. Since DR is
dense and�a 6= ∅, there exists x∈DR such that x∈�a. Clearly, ↓x∈↑(↓a∩B)∩p−1

[DR].

5. Standard representations by domains of �lter bases

5.1. Neighbourhood systems

This subsection introduces the notion of neighbourhood systems. These structures
will be used in the subsequent subsections to construct domain representations.
The interior and closure of a subset A⊆X are denoted by A◦ and A, respectively.
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De�nition 5.1. Let X be a topological space and let P be a family of non-empty
subsets of X such that X ∈P. Then P=(P; ⊇ ; X ) is a neighbourhood system if the
following are satis�ed:
(i) if A; A′ ∈P and A∩A′ 6= ∅ then A∩A′ ∈P, and
(ii) if x∈U , where U is open, then (∃A∈P) (x∈A◦ ⊆A⊆U ).

Examples of neighbourhood systems are: the non-empty closed sets of a regular
space; the non-empty compact sets of a locally compact regular space; and all non-
empty sets of a base for the topology together with the set X . The former two may
be called closed neighbourhood systems and the latter an open neighbourhood system.
Condition (i) makes P ordered with reverse inclusion into a cusl. Hence, the ideal

completion D= Idl(P) is a domain. The elements of D are ideals in (P; ⊇ ), i.e., they
are �lter bases in the topological sense. The Scott topology on D is generated by the
basic open sets ↑↓A=BA= {I ∈D: A∈ I} for A∈P.
The elements of P may be seen as approximations of elements of X . These approx-

imations are consistent if they have a non-empty intersection. P is an approximation
for X in the sense of [27].
For each element of the space X we de�ne two ideals of special interest.

De�nition 5.2. Let P be a neighbourhood system for X and let x∈X .
(i) Ix = {A∈P: x∈A◦}.
(ii) Jx = {A∈P: x∈A}.

Clearly, Ix ⊆ Jx, and if P is an open neighbourhood system then Ix = Jx. For any
A∈P there exists x∈A. Clearly, Jx ∈BA. Thus, the set {Jx: x∈X } is dense in D.
De�ne � :X →D by �(x)= Ix.

Lemma 5.3. (i) The function � is continuous.
(ii) If � is injective; then � is an embedding of X into D.

Proof. (i) �(x)∈BA ⇔A∈ Ix ⇔ x∈A◦.
(ii) Since {A◦: a∈P} is a base for the topology on X by De�nition 5.1(ii), and

A◦= �−1[BA] by part (i), � is an embedding.

An ideal I converges to a point x∈X , denoted I → x, if for every open set U
containing x, there is an A∈ I such that x∈A⊆U , or equivalently, if the �lter base
corresponding to I converges to x. We note that I → x if, and only if, Ix ⊆ I .

5.2. Homeomorphic representations for T0-spaces

Theorem 5.4. Any T0-space X has a dense homeomorphic representation.

Proof. Let P be a neighbourhood system consisting of all the non-empty sets of a
base for the topology together with the set X .
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Due to the T0-property of X , the function � :X →D de�ned as above is injective.
Hence, by Lemma 5.3, � is an embedding of X into D. Thus, (D; �[X ]; �−1) is a
homeomorphic representation of X .
Since P is an open neighbourhood system we have Ix = Jx, and hence, DR = �[X ] is

dense in D.

In general, the representation above is not upwards-closed and not by maximal or
total elements as the following example shows.

Example 5.5. The ideals Ix need not be maximal, in fact they need not even be total.
Suppose X =R and let P consist of all non-empty open intervals. Then Ix consists of
all open intervals containing x. Let I+0 and I−0 be the ideals generated by I0 ∪{(0; 1)}
and I0 ∪{(−1; 0)} respectively. The ideals I+0 and I−0 are not consistent, i.e., I0 is not
total.

Theorem 5.6. A space X with a retract representation (D;DR ; ’; �) is a T0-space.

Proof. If x and x′ are inseparable by open sets, then the same holds true for �(x) and
�(x′) since � is an embedding. Hence, �(x)= �(x′) since domains are T0. Applying ’
we have ’(�(x))=’(�(x′)), i.e., x= x′.

The theorem above also holds when D is a continuous domain.

5.3. Upwards-closed retract representations for regular Hausdor� spaces

Let P be a neighbourhood system for a Hausdor� space X and let D= Idl(P). Let DR

be the set of converging ideals. The Hausdor� property implies that every converging
ideal has a unique limit point. De�ne ’ :DR→X by mapping a converging ideal to
its limit point.
Let x∈X and A∈P. By the properties of a neighbourhood system, x∈A if, and

only if, there exists an ideal I containing A and converging to x. Thus, ’ will have
the closed image property since ’[BA ∩DR]=A.
It is clear that ’ is onto and that the representation will be upwards-closed. However,

in order to show continuity of ’, we need to strengthen (ii) in De�nition 5.1 to:
(ii)′ if x∈U , where U is open, then (∃A∈P) (x∈A◦ ⊆A⊆U ).

Lemma 5.7. If the neighbourhood system P satis�es (ii)′; then ’ is continuous.

Proof. Let U ⊆X be an open set and let I ∈DR converge to some point x∈U . By (ii)′

there exists a set A∈P satisfying that x∈A◦ ⊆A⊆U . It is clear that any converging
ideal containing A converges to some point in A. Hence, BA is an open neighbourhood
of I contained in ’−1[U ], i.e., ’ is continuous.

There are two immediate choices for a neighbourhood system P satisfying (ii)′ for
a regular Hausdor� space X .
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(i) For any base, all the non-empty basic open sets together with the set X .
(ii) All non-empty closed sets of X .
The former is the one chosen in Section 5.2. However, the latter choice will give

a local representation by total elements. By Example 5.5, the former choice will not
have these properties. Thus, the latter seems to be superior.
Summarising we have the following theorem.

Theorem 5.8. Any regular Hausdor� space X has a local dense upwards-closed re-
tract representation by total elements with least representatives and the closed image
property.

Proof. Choose P to consist of all non-empty closed sets of the space. Let D= Idl(P)
and let DR be the set of all converging ideals in D.
The representation is dense since {Jx: x∈X }⊆DR is dense in D.
Clearly, the ideal Jx is the greatest ideal converging to x. Hence, the representation

is local and by total elements.
The ideal Ix is the least ideal representing x.

By restricting DR to �[X ] we get a homeomorphic representation by total elements
of X . However, this representation is neither dense nor upwards-closed in general, and
it may also lack the closed image property.
Let X be a second countable regular Hausdor� space and let B be a countable base

for the topology on X . Let P consist of all �nite non-empty intersections of sets in
{U : U ∈B}. Then P satis�es the stronger version of neighbourhood systems. Note that
P is countable, i.e., the constructed domain D has a countable base.
An e�ective domain is a domain where consistency is decidable and the partial

supremum function is computable. For approximations with irregular shapes it is not
clear how to e�ectively decide whether two approximations are consistent. However,
the following example shows that there exists an e�ective domain representation of the
reals.

Example 5.9. Let P consist of the non-empty rational intervals. Then P is a neighbour-
hood system for R. To determine whether two rational intervals intersect it is su�cient
to make a few comparisons of rational numbers. The supremum is again a rational
interval and comparisons of rational numbers again su�ce to compute this interval.
The operations are clearly e�ective. Thus, the constructed domain representation of R
is e�ective.

Clearly, Theorem 5.8 does not yield an e�ective domain in general. In [7] a general
construction of e�ective domain representations of metric spaces is given.

Theorem 5.10. Let (D;DR ; ’; �) be an upwards-closed retract representation of X .
Then X is a regular Hausdor� space.
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Fig. 1. Domain D representing the Sierpinski space.

Proof. Let x1 and x2 be distinct points in X . Then �(x1) and �(x2) are inconsistent
by upwards-closed. Hence, there exist disjoint open sets Ui such that �(xi)∈Ui. Thus,
�−1[Ui] are disjoint open sets containing xi.
Let x be in the open set U . Then �(x)∈’−1[U ]. There exists a∈Dc such that

�(x)∈↑a∩DR ⊆’−1[U ].

x ∈ �−1[↑a∩DR] (open)

⊆ �−1[↓↑a∩DR] (closed)

⊆ ’[↓↑a∩DR]

= ’[↑a∩DR] (by upwards-closed)

⊆ ’[’−1[U ]]

= U:

Corollary 5.11. The spaces with upwards-closed retract representations are exactly
the regular Hausdor� spaces.

It is not possible to drop the requirement of retract in the theorem above as the
following example shows.

Example 5.12. Let X be the Sierpinski space, i.e., X = {0; 1} and the topology on X
is {∅; {1}; X }. The Sierpinski space is T1, but not Hausdor�. However, we can give
an upwards-closed open representation of the Sierpinski space.
Build a domain D as in Fig. 1. Let DR be the set of maximal elements of D. De�ne

’ as indicated in the �gure, i.e., the only non-compact element is mapped to 0, the
rest of the maximal elements are mapped to 1.
Clearly, (D;DR ; ’) represents X . It is upwards-closed since DR consists of maximal

elements. Any basic open set in D contains a maximal element that represents 1. Hence,
the forward image of any basic open set is open. Thus, the representation is open.

5.4. Representations for spaces with clopen bases

A clopen base is a base where each basic open set is also closed. A topological
space X is totally disconnected if every pair of distinct points can be separated by a
disconnection. This means that if x 6=y, then there exist disjoint open sets U and V
containing x and y respectively, such that U ∪Y =X . Any totally disconnected space
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is Hausdor�. A T0-space that has a clopen base is totally disconnected. A space that
is compact and totally disconnected has a clopen base.

Theorem 5.13. A space X with a clopen base has a dense homeomorphic represen-
tation by maximal elements with the closed image property.

Proof. Let P consist of the non-empty sets in a clopen base for X together with the
set X . Then P is a neighbourhood system for X satisfying the requirement (ii)′. Let
D= Idl(P) and let DR be the converging ideals. By the proof of Theorem 5.8 this is
a dense retract representation with the closed image property.
Clearly, Ix = Jx. Hence, ’ is injective, i.e., ’ is a homeomorphism. The ideals Jx

are maximal in D.

That the representation is by maximal elements implies that it is local and that it is
upwards-closed.
In the other direction we can show that already spaces that have local upwards-closed

open representations must have clopen bases. We start by recording the following
topological fact.

Lemma 5.14. Let f: X → Y be a continuous open onto mapping and let B be an open
base for the topology on X . Then {f[U ]: U ∈B} is an open base for the topology
on Y .

Proof. Any set of the form f[U ] is open since f is an open mapping. Suppose that y is
a point in some set V open in Y . Since f is onto we can choose an element x∈f−1[y].
The set f−1[V ] is open in X and contains x, hence there exists an U ∈B such that
x∈U ⊆f−1[V ]. Clearly y=f(x) is an element of the open set f[U ]. Moreover,
f[U ]⊆V since U ⊆f−1[V ]. Thus the set {f[U ]: U ∈B} is an open base.

Now, we show that local upwards-closed open representations have the closed image
property. This is used together with the lemma above to �nd a clopen base for the
represented space.

Lemma 5.15. A local upwards-closed open representation has the closed image prop-
erty.

Proof. Let a∈Dc. The set U =D\↓↑a is open in D. The image ’[U ∩DR] is open
since ’ is open. The sets ’[↑a∩DR] and ’[U ∩DR] cover X since, by upwards-closed,
’[↑a∩DR]=’[↓↑a∩DR]. Assume that x; y∈DR satisfy x∈↑a; y∈U and ’(x)=
’(y). By the representation being local, x and y are consistent, contradicting that
↑a∩ = ∅. Thus, ’[↑a∩DR] and ’[U ∩DR] are disjoint, and so, ’[U ∩DR] is the com-
plement of ’[↑a∩DR]. Thus, ’[↑a∩DR] is closed since the complement is open.

Theorem 5.16. The following are equivalent:
(i) X is T0 and has a clopen base.
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Fig. 2. Domain D representing the metric space {1=n: n∈N}∩ {0}.

(ii) X has a homeomorphic representation by maximal elements.
(iii) X has a local upwards-closed open representation.
(iv) X is T0 and has an open representation with the closed image property.

Proof. (i) ⇒ (ii): By Theorem 5.13.
(ii) ⇒ (iii): Trivial.
(iii) ⇒ (iv): Let x; y∈DR be such that ’(x) 6=’(y). By upwards-closed, x and

y cannot be consistent, since otherwise ’(x)=’(xty)=’(y). Hence, there exists
a∈ approx(x) such that a and y are inconsistent. By the representation being open,
’[↑a∩DR] is open, and clearly, ’(x)∈’[↑a∩DR]. Assume that there exists z ∈
↑a∩DR such that ’(z)=’(y). Then, by the representation being local, y and z are
consistent, contradicting that a and y are inconsistent. Thus, ’(y) is not in the open
set ’[↑a∩DR], i.e., X is T0.
The representation has the closed image property by Lemma 5.15.
(iv) ⇒ (i): By Lemma 5.14 and the closed image property, {’[↑a∩DR]: a∈Dc} is

a clopen base for X .

The use of the local property in the theorem above is an easy but crude way to estab-
lish the result. One gets the feeling that upwards-closed open representations represent
totally disconnected spaces. However, this is false, in general, and an exact charac-
terisation of the spaces that have upwards-closed open representations has not been
established. Example 5.12, for instance, gave an upwards-closed open representation of
a T0-space which is not totally disconnected.
The following example shows that upwards-closed open representations need not

have the closed image property. Hence, the na��ve choice of candidate for a clopen
base does not work. Yet, the space has a clopen base and is totally disconnected.

Example 5.17. Let X = {0}∪ {1=n: n∈N} with the subspace topology from R. Con-
struct a domain D as in Fig. 2 and let DR be the set of maximal elements. De�ne ’
as indicated in the �gure. Then (D;DR ; ’) is an upwards-closed open representation
of X .
The base {↑a: a∈Dc} in D induces a base B= {’[↑a∩DR]: a∈Dc} in X by

Lemma 5.14. The base B is not clopen since the forward image of the basic open
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set ↑b, where b is the element depicted in Fig. 2, is not closed. However, the set
{’[↑a∩DR]: a∈Dc\{b}} is a clopen base for the topology on X .

We have not been able to construct an upwards-closed open representation of, for
example, the reals. In fact, we know of no Hausdor� space which has an upwards-
closed open representation and which is not totally disconnected.
The results in this subsection do not hold for continuous domain representations as

is apparent from the following proposition.

Proposition 5.18. Any normal space has an upwards-closed open retract continuous
domain representation with the closed image property.

Proof. Let X be a normal space and let P consist of all the non-empty open subsets
of X . De�ne ≺ on P by U≺V ⇔V ⊆U . By normality, (P;≺) is an abstract basis.
The ideal completion D= Idl(P;≺) is a continuous domain.
Let DR be the set of ideals that contain a neighbourhood base for some point and

let ’ :D → X be de�ned by ’(I)= x if I contains a neighbourhood base of x. Then
(D;DR ; ’) is an upwards-closed open continuous domain representation of X . It is open
since an ideal I converging to x∈X belongs to the basic open set�(↓U ) if, and only
if, x∈U .
De�ne � :X → DR by �(x)= {U ∈P: x∈U}. Clearly, ’ ◦ �= id.
We leave to the reader to verify that ’[↑(↓U )∩DR]=U .

6. Representations from �rst or second countable domains

The results in this section limit the class of topological spaces that can be given
a computability theory by a domain representation since any e�ective domain must
be second countable (or countably based), and hence, �rst countable. They are conse-
quences of standard topological facts.

De�nition 6.1. (i) A topological space X is sequential if a set A⊆X is open if and
only if every sequence (xn)n converging to a point in A is eventually in A.
(ii) A topological space X is a Fr�echet space if a point lies in the closure of a set

if and only if there is a sequence in the set converging to the point.

Lemma 6.2. A �rst countable space is Fr�echet and any Fr�echet space is sequential.

Proof. Standard.

Proposition 6.3. (i) Every space represented by a �rst countable domain is sequential.
(ii) Every space pseudo-openly represented by a �rst countable domain is a Fr�echet

space.
(iii) Every space with a retract representation from a second countable domain is

second countable.
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Fig. 3. The domain Ds; x .

Proof. (i) The domain is �rst countable, and hence, sequential. Sequential spaces are
closed under quotient images. Thus, X is sequential.
(ii) The domain is �rst countable, and hence, Fr�echet. Fr�echet spaces are closed

under pseudo-open images. Thus, X is a Fr�echet space.
(iii) Let � be the embedding of X into a second countable domain D. Then {�−1[↑a

∩ �[X ]]: a∈Dc} is a countable base for X .

7. Representations by maximal elements

Any T0 space can be represented by maximal elements. However, the representation
map of the representations constructed here have weaker topological properties than the
ones constructed in Section 5. We will start by giving the construction for a simpler
case.

7.1. Representations by maximal elements for sequential spaces

We give a direct construction of a domain representation of a sequential space. In
the proof below let s denote a sequence whose elements are sn for n∈N.

Theorem 7.1. Any sequential space X has a representation by maximal elements.

Proof. Let S= {(s; x): s∈XN; x∈X; and s converges to x}. For each (s; x)∈S con-
struct a domain Ds; x (see Fig. 3) whose compact elements are

{(n; sn): n∈N}∪N:

The ordering on Ds; x is

nvm ⇔ n6m;

nv (m; sm) ⇔ n6m:

The pairs (n; sn) are maximal.
Let D be the separated sum of {Ds; x: (s; x)∈S}. The set of maximal elements

of D is Dm = {(n; sn)Ds; x : n∈N; (s; x)∈S}∪ {!Ds; x : (s; x)∈S}. De�ne a function
’ :Dm → X by

’(y)=
{

sn if y=(n; sn)Ds; x ;
x if y = !Ds; x :
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To show that ’ is continuous it is su�cient to show that ’ is continuous on each
Ds; x ∩Dm. Let U ⊆X be open and let V = ’−1[U ]∩Ds; x. Clearly any point of the
form (n; sn)∈V is interior since (n; sn) is compact in Ds; x. If !∈V then there must
exist an n such that sm ∈U for all m¿n since s converges to x in the open set U .
Hence, {y∈Ds; x: nvy}∩Dm is an open set of Dm included in V , i.e., x is an interior
point of V . Thus ’ is continuous on every Ds; x ∩Dm, and hence, on Dm.
Suppose A⊆X and ’−1[A] is open in Dm. If s → x∈A then !Ds; x ∈’−1[A] which

is open in Dm, hence there exists an open set {y: nDs; x vy}∩Dm ⊆’−1[A] such that
!Ds; x ∈{y: nDs; x vy}∩Dm. Thus, the sequence s is eventually in A. Since any sequence
converging to a point of A eventually is in A and X is a sequential space we have that A
is open. We have shown that ’ is a quotient map. Thus, (D;Dm; ’) is a representation
of X .

7.2. Representations by maximal elements for arbitrary spaces

We now generalise the above construction to show that any topological space has
a representation by maximal elements. The construction will use nets instead of se-
quences. For each net a domain is constructed and we take the separated sum of these
to be the representing domain. However, the nets over a space constitute a proper class.
We solve this problem by limiting the cardinality of the nets. Hence, we are left with
a set of nets.

De�nition 7.2. A space X is said to have a locally �-based topology if every point of
X has a neighbourhood base of cardinality less than �.

Note that saying that a space is locally !1-based is simply saying that it is �rst
countable.

Lemma 7.3. Let X be a locally �-based space for some �¿! and let N : A → X be
a net converging to some x∈X . Then there exists a net N ′: A′ → X converging to x;
such that A′ ⊆ �; N ′[A′]⊆N [A] and such that A′ does not have a greatest element.

Proof. Let B be a local base at x of cardinality less than � and let f: B → � be an
injective function. Let A′=f[B] and order A′ by a6a′ ⇔f−1(a)⊇f−1(a′). Clearly,
A′ is a directed set. For any neighbourhood U of x we have that N is eventually in
U , hence we can choose a point xU in U ∩N [A]. Let N ′(a)= xf−1(a). Then N ′ is a
net satisfying N ′[A′]⊆N [A] and A′ ⊆ �. Clearly, N ′ converges to x.
If A′ has a greatest element then we can modify the net by adding an !-chain on

top of A′ and letting the net be constant on the !-chain. We leave the formal details
to the reader.

The proof of the following theorem is very similar to the proof of Theorem 7.1.
In fact the previous proof is the special case when the only nets considered are the
!-sequences.
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Theorem 7.4. Any topological space X has a representation by maximal elements.

Proof. Choose � such that the topological space X is locally �-based; any �¿2|X | is
su�cient. Let

N= { (N; x): N is a net converging to x∈X;

and AN; x ⊆ � does not have a greatest element};

where AN; x =dom N .
For each pair (N; x)∈N we construct a domain DN;x. Let E be the domain of all

lower sets in AN; x. Clearly, AN; x is the greatest element of E. Let DN;x be the domain
obtained by augmenting E with new compact maximal elements

(a; N (a)); for a∈AN; x;

where e∈E is below (a; N (a)) if e⊆↓a. The element AN; x ∈E is not of the form ↓a
since AN; x does not have a greatest element. Hence, AN; x is maximal in DN;x.
Let D be the separated sum of {DN;x: (N; x)∈N}. Clearly,

Dm= {AN; x: (N; x)∈N}∪ ⋃
(N; x)∈N

{(a; N (a)): a∈AN; x}:

De�ne a function ’ :Dm → X by

’(y)=
{

N (a) if y=(a; N (a))DN; x ;
x if y=AN; x:

We show that ’ is continuous. Let U ⊆X be open and let V =’−1[U ]∩DN;x. Clearly
any point of the form (a; N (a))∈V is interior since (a; N (a)) is compact in DN;x.
If AN; x ∈V then there exists an a∈AN; x such that N (b)∈U for all b¿a since N
converges to x in the open set U . Hence, ↑↓a∩Dm is an open set included in V , i.e.,
AN; x is an interior point of V . Thus, ’ is continuous on every DN;x, and hence, on D.
Now, we show that ’ is a quotient. Suppose S ⊆X and ’−1[S] is open in Dm. We

have to show that S is open, which we do by showing that any net converging to some
point in S must eventually be in S. By Lemma 7.3, we only need to consider nets whose
domains are subsets of � and lack a greatest element. For a net N converging to x∈ S
we have that AN; x ∈’−1[S]. Since ’−1[S] is open in Dm, there exists d∈ (DN;x)c such
that AN; x ∈↑d∩Dm ⊆’−1[S]. The compact element d is on the form ↓a1 ∪ · · · ∪ ↓an.
Since AN; x is directed, there exists an a∈AN; x such that ai6a, for i=1; : : : ; n. Clearly,
’[↑↓a∩Dm]⊆ S, and so, for each b¿a in AN; x, we have N (b)∈ S, i.e., the net N is
eventually in S.

Moreover, since the image of a converging net under a continuous function is a
converging net, it is easy to lift a continuous function to representations of this kind
even though it is not covered by Theorem 9.3.
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8. Uniform closure properties

Now we study uniform closure properties of representations under topological con-
structions of spaces. Thus we are interested in when we can construct a new represen-
tation of the newly created space in a canonical way from the representation(s) of the
old space(s). All constructions made in this section preserve e�ectivity.

8.1. Quotients; pseudo-open and open images; and retracts

Given a representation of a space we can represent certain images of that space with
the same domain and with the same set of representing elements by composition of
the representing function and the image map.

Proposition 8.1. Representability; pseudo-open representability; retract representabil-
ity and open representability is uniformly closed under quotients; pseudo-open images;
retracts and open images; respectively.

Proof. The classes of quotient maps introduced in Section 3 are all closed under
composition.

8.2. Subspaces

Given a representation (D; DR ; ’) of a space X , we are interested in when D with
’ restricted to the inverse image of a subset Y ⊆X is a representation of Y . The
following result is easily obtained.

Proposition 8.2. Let (D; DRX ; ’) be a weak representation of X and let Y be a subset
of X; and let DRY =’−1[Y ].
(i) If (D;DRX ; ’) is a weak; pseudo-open; open; retract or homeomorphic represen-

tation; then (D;DRY ; ’ | DRY ) is a representation of the same kind of Y .
(ii) If (D;DRX ; ’) is a representation and Y is either an open or a closed subset of

X; then (D;DRY ; ’ | DRY ) is a representation of Y .

The following example shows that (ii) in the proposition above cannot be strength-
ened to an arbitrary subset Y of X , in fact, it does not hold for G� subsets.

Example 8.3. Let Z be the following subset of the euclidean plane; Z = {(x; 0): 0 6=
x∈R}∪ {( 1n ; 1): 0¡n∈N}∪ {(0; 1)}. Let (D;DR ; ’) be a retract representation of R2
constructed as in Theorem 5.8. By Proposition 8.2 (i) (D;DRZ ; ’), where DRZ =’−1[Z],
is a retract representation of Z . Let X be the projection of Z onto its �rst coordinate.
If p is the projection then (D;DRZ ; p◦’) is a representation of X since p is a quotient.
Let Y =X \{ 1n : 0¡n∈N} and let DRY =DRZ ∩’−1[p−1[Y ]]. Then (D;DRY ; p ◦’ | DRY ) is
a weak domain representation of Y .
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Let U be the open ball centred in (0; 1) with radius 12 . By the construction of D there
is ↓A∈Dc such that (0; 1)∈A◦ ⊆A⊆U . Clearly, if I ∈BA ∩DRY then ’(I)= (0; 1), i.e.,
p(’(I))= 0. Thus BA ∩DRY ⊆’−1[p−1[0]]. On the other hand, if I ∈’−1[p−1[0]] then
’(I)= (0; 1), and hence, I ∈BA. We have shown BA ∩DRY =’−1[p−1[0]]. It follows
that p ◦ ’ | DRY is not a quotient since {0} is not an open set in Y .

8.3. Disjoint sums and direct limits

We now briey consider disjoint sums and direct limits of topological spaces.

Proposition 8.4. Weak representation; representability; pseudo-open representability;
retract representability and open representability are uniformly closed under disjoint
topological sum.

Proof. Let X be the disjoint topological sum of {Xi: i∈ I} and suppose (Di; DRi ; ’i)
are weak representations of Xi. Let D be the separated sum of {Di: i∈ I}. Clearly
(D;

⊎
i D

R
i ;
⊎

i ’i) is a weak representation of X .
Observe that

⊎
i ’i has the required property if each ’i has that property.

Proposition 8.5. Weak representability and representability are uniformly closed un-
der direct limits.

Proof. By Propositions 8.1 and 8.4 using the standard construction of a direct limit as
a quotient of a disjoint sum.

8.4. Products

In this subsection we consider uniform representations of cartesian products. The
situation here is, perhaps surprisingly, somewhat problematic. For weak representations,
however, it is straightforward.

Proposition 8.6. For every i∈ I let (Di; DRi ; ’i) be a weak representation of Xi. Then
(
∏

Di;
∏

DRi ;
∏

’i); where
∏

’i(
∏

di)=
∏

’i(di); is a weak representation of
∏

Xi.

Proof. Clearly,
∏

’i is onto and continuous.

The following example shows that we cannot uniformly construct a representation
of the product space from a pair of pseudo-open representations. This provides a coun-
terexample to uniform constructions of representations and also of pseudo-open repre-
sentations.

Example 8.7. De�ne q on Q by

q(x)=
{
0 if x∈Z;
x otherwise:

Let Q′= q[Q] have the quotient topology induced by q.
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Let (D;DR ; ’) be a retract representation of Q constructed as in Theorem 5.8. Let
’′= q ◦ ’. Then (D;DR ; ’′) is a pseudo-open representation of Q′ since ’′ is the
composition of pseudo-open maps.
If ’ × ’′=(id × q) ◦ (’ × ’) is a quotient, then id × q would be a quotient.

However, id × q is not a quotient, see, e.g., [16]. Thus, (D × D;DR × DR ; ’ × ’′) is
not a representation of Q×Q′.

Proposition 8.8. Let (Di; DRi ; ’i); for i∈ I; be an open representation of Xi. Then
(
∏

Di;
∏

DRi ;
∏

’i) is an open representation of
∏

Xi.

Proof. By Lemma 8.6, it is a weak representation. A subbase for
∏

Di are the sets
Ui×

∏
j 6=i Dj, where Ui is open in Di, for i∈ I . The images ’i[Ui ∩DRi ]×

∏
j 6=i ’j[DRj ]

constitute a subbase of
∏

Xi, hence the result.

Proposition 8.9. Let (Di; DRi ; ’i; �i); for i∈ I; be a retract representation of Xi. Then
(
∏

Di;
∏

DRi ;
∏

’i;
∏

�i) is a retract representation of
∏

Xi.

Proof. By Proposition 8.6,
∏

’i is continuous. Clearly,
∏

’i ◦
∏

�i= id.

The set Ui ×
∏

j 6= i Di, where Ui is open in Di, is a subbasic open set in
∏

Di.

(
∏

�i)
−1

[
(Ui ∩DRi )×

∏
j 6=i

DRj

]
= �−1i [Ui ∩DRi ]×

∏
j 6=i

Xi:

The right-hand side is a subbasic open set in
∏

Xi since �i is continuous. Thus,
∏

�i

is continuous.

9. Functions and function spaces

9.1. Representing continuous functions

We will in this section study when functions between represented spaces can be
represented. We start with the de�nition of the notion.

De�nition 9.1. Let (D;DR ; ’) and (E; ER ;  ) be domain representations of X and Y
respectively. A continuous function f :X → Y is represented by a continuous func-
tion �f :D→E if  ( �f(x))=f(’(x)), for all x∈DR. See Fig. 4.

We now give su�cient conditions for a continuous function between representing
domains to induce a continuous function. We merely state the following easy but
important result.

Proposition 9.2. . Let (D;DR ; ’) be a representation of X and (E; ER ;  ) be a weak
representation of Y . Let �f :D→E be continuous such that �f[DR]⊆ER and
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Fig. 4. Representing a function f.

assume �f respects the equivalence relations induced by ’ and  . Then �f induces
a unique continuous function f :X →Y .

The following theorem tells us that for a large class of domain representations it is
possible to represent any continuous function. In particular, representations of functions
exist if the spaces are represented by domains constructed as in Sections 5.2 and 5.3.

Theorem 9.3. Let (D;DR ; ’) be a dense weak representation of X; and let
(E; ER ;  ; �) be a retract representation of Y: Then every continuous function f:X →Y
is represented by some continuous function �f :D→E.

Proof. The construction of �f is done in two steps. First, let f′= �◦f◦’. By hypothe-
sis, this is a continuous function from DR to ER, which induces f since
 ◦f′=  ◦�◦f◦’=f◦’. The function f′ may be considered as a continuous func-
tion from DR to E as well since ER has the subspace topology induced from E.
Secondly, the function f′ is extended to a function �f :Dc→E by �f(a)=uf′

[ ↑ a∩DR]. The in�mum is well-de�ned since ↑a∩DR is non-empty by density of
DR, and non-empty in�ma exist in consistently complete cpos. Clearly, �f is monotone,
and hence, it has a unique extension to D.
We now show that �f is indeed an extension of f′, i.e., that �f(d)=f′(d) for d∈DR.

Let a∈ approx(d), then �f(a)vf′(d) since d∈↑ a∩DR. Conversely, if b∈ approx
(f′(d)), then d∈f′−1[ ↑ b]. Hence, there exists a∈ approx(d) such that f′[ ↑ a∩DR]
⊆ ↑ b, and so, bv �f(a)vf′(d). Thus, f′(d)=

⊔
a∈ approx(d) �f(a)= �f(d):

Constructions, such as the one in the theorem above, have been studied earlier, see
for example [15].

9.2. Function spaces

In this section we consider representations of function spaces built by the function
space construction on domains. Compare the work done by di Gianantonio [17] on
representations of functions and functionals over the reals.
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Let (D;DR ; ’) and (E; ER ;  ) be representations of the topological spaces X and
Y , respectively. Let us further assume that every continuous function f :X →Y is
represented by a continuous function �f :D→E. Then let

[D→E]R = {f∈ [D→E]: f[DR]⊆ER and

(∀x; y∈DR)(’(x)=’(y)⇒  (f(x))=  (f(y)))}:
That is, [D→E]R consists of the continuous functions from D to E inducing continuous
functions from X to Y . Thus there is an epimorphism # : [D→E]R→ (X →Y ) so that
([D→E]; [D→E]R ; #) is a representation of X →Y , the continuous functions from
X to Y . This representation induces a topology � on X →Y , the quotient topology
obtained from the Scott topology on [D→E]. The question is now how this topology
is related to other topologies on X →Y and what properties it has.

De�nition 9.4. Let X and Y be topological spaces.
(i) The sets W (x; U )= {f: f(x)∈U}, for x∈X and U an open subset of Y , form

a subbase for the pointwise topology on the function space X →Y .
(ii) The sets W (K;U )= {f: f[K]⊆U}, for K a compact set in X and U an open

set in Y , form a subbase for the compact-open topology on the function space
X →Y .

(iii) A topology on the function space X →Y is jointly continuous if the evaluation
function eval: (X →Y )× X →Y de�ned by eval(f; x)=f(x) is continuous.

From general topology (see, e.g., [18]) we know that if a topology is jointly con-
tinuous then it is �ner (has more open sets) than the compact-open topology and that
the compact-open topology is �ner than the pointwise topology.
From domain theory we know that the topology on function spaces of domains is

exactly the pointwise topology and that the topology on function spaces is jointly con-
tinuous, hence the pointwise and the compact-open topology coincide for the function
space construction on domains.
Since the Scott topology on function spaces of domains is jointly continuous a natural

question is how close the induced topology is to being jointly continuous. It can be
proved that under natural conditions, the induced topology is �ner than the compact-
open topology. The next two lemmas show this for slightly di�erent conditions on the
representations.

Lemma 9.5. Let (D;DR ; ’) be a pseudo-open representation of X with least repre-
sentatives, and let (E; ER ;  ) be a representation of Y . Suppose that every continuous
function f :X →Y can be lifted to a continuous function �f :D→E. Then the topol-
ogy � on X →Y induced by the representation ([D→E]; [D→E]R ; #) is �ner than
the compact-open topology.

Proof. It is su�cient to show that each W (K;U ) belongs to �. Let S =W (K;U ) for
some K and U . We show that S ∈ � by showing that #−1[S] is open in [D→E]R. Let
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f∈#−1[S]. We will show that we can �nd an open neighbourhood of f which also
is a subset of #−1[S], thereby showing that #−1[S] is open.
Let x∈K and let dx ∈DR be the least representative of x. Then #(f)(x)∈U so

f(dx)∈  −1[U ] and hence there exists bx ∈ approx(f(dx)) such that  [ ↑ bx ∩ER]⊆U .
By continuity of f there exists ax ∈ approx(dx) such that bx vf(ax). Note that the
step function 〈ax; bx〉 is an approximation of f. We have ’−1[x]⊆ ↑ ax since dx is
the least representation of x. Since ’ is pseudo-open we have that x∈ (’[ ↑ ax ∩DR])◦.
Clearly the open sets (’[ ↑ ax ∩DR])◦, for x∈K , cover K . Hence there exists a �nite
subset of {ax: x∈K}, say {a1; : : : ; an}, such that K ⊆⋃n

i=1(’[ ↑ ai ∩DR])◦. We have
that 〈ai; bi〉vf, for i∈{1; : : : ; n}. Hence ⊔n

i=1〈ai; bi〉 exists and is below f.
We will now show that any function represented by a function in the basic open set

↑ ⊔n
i=1〈ai; bi〉 belongs to S. Let g∈ ↑ ⊔n

i=1〈ai; bi〉 ∩ [D→E]R. For x∈K there exists a
representation �x of x such that �xw ai, for some i, since K ⊆⋃n

i=1 (’[↑ai ∩DR])◦. But
g(ai)w bi since 〈ai; bi〉v g. Hence g( �x)∈  −1[U ], i.e., #(g)(x)∈U . Thus #(g)[K]⊆U ,
i.e., #(g)∈ S:

Lemma 9.6. Let (D;DR ; ’) be a retract representation of X , and let (E; ER ;  ) be a
representation of Y . Suppose that every continuous function f :X →Y can be lifted
to a continuous function �f :D→E. Then the topology � on X →Y induced by the
representation ([D→E]; [D→E]R ; #) is �ner than the compact-open topology.

Proof. Let K ⊆X be a compact set and let U ⊆Y be an open set. Choose an open set
V ⊆E such that V ∩ER =  −1[U ]. We will now show #−1[W (K;U )]=W (�[K]; V )∩
[D→E]R. Let f∈#−1[W (K;U )]. Then f[’−1[K]]⊆V , and so, in particular, f[�[K]]
⊆V . For the other direction let f∈W (�[K]; V )∩ [D→E]R. Then, since f induces a
function mapping K to U , ’−1[K] is mapped into V by f.
The set W (�[K]; V ) is compact-open, and hence, Scott-open, as observed above.

We will now show that if X is a locally compact Hausdor� space and if the
representations are of a certain kind, then the topology � induced on X →Y by the
representation of the function space will be the compact-open topology. Moreover, �
will be jointly continuous.

Theorem 9.7. Let (D;DR ; ’; �X ) be a dense retract representation with the closed
image property of a locally compact Hausdor� space X and let (E; ER ;  ; �Y ) be
a retract representation of a space Y: Then ([D→E]; [D→E]R ; #; �) is a retract
representation of X →Y with the compact-open topology.

Proof. The embedding � is obtained by a slight modi�cation of the construction in
Theorem 9.3. Let f′= �Y ◦ f ◦ ’ and de�ne f′′ :D′

c→E by f′′(a)=uf′[↑a∩DR],
where D′

c is the set of all a∈Dc such that ’[ ↑ a∩DR] is not only closed, but compact.
Finally, let �(f)(d)=

⊔{f′′(a): a∈↓d∩D′
c}.

The closed image property implies that if b∈Dc is above some a∈D′
c, then

’[ ↑ b∩DR] is compact, i.e., b∈D′
c, since closed subsets of compact sets are
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compact. Thus, �(f)(d) is the supremum of either an empty set or a directed set,
i.e., � is well-de�ned.
An argument similar to the one in Theorem 9.3 shows that �(f) induces f, i.e.,

#◦�= id. The argument requires that ↓d∩D′
c is non-empty, for d∈DR. This follows

from local compactness of X .
The induced topology � is �ner than the compact-open topology by Lemma 9.6. This

implies that # is continuous.
For continuity of �, let �(f)∈ ↑ 〈a; b〉 with a∈Dc and b∈Ec. By de�nition of � we

may restrict to a∈D′
c. Now,

�(f)∈↑〈a; b〉 ⇔ bvf′′(a)

⇔ f′[ ↑ a∩DR]⊆ ↑ b
⇔ f[’[ ↑ a∩DR]]⊆ �−1Y [ ↑ b]
⇔ f∈W (’[ ↑ a∩DR]; �−1Y [ ↑ b]):

The theorem is a generalisation of a result by di Gianantonio [17]. Note that this
result cannot be lifted to functionals since function spaces fail to be locally compact
in general.
The embedding �X is only used in showing continuity of # by use of Lemma 9.6.

Hence, in view of Lemma 9.5, the theorem can also be formulated with the condition
that the representation (D;DR ; ’) of X should be a dense pseudo-open representation
with least representatives and the closed image property.
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