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Lecture 1: QCD:Asymptotic freedom and infrared safety

• QCD Lagrangian

• Gauge Invariance

• Feynman rules

• Running coupling

• β-function

• Non-perturbative QCD and infra-red divergences.
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Lagrangian of QCD

• Feynman rules for perturbative QCD follow from Lagrangian

L = −1

4
FA

αβF
αβ
A

+
X

flavours

q̄a(i�D − m)abqb + Lgauge−fixing

FA
αβ is field strength tensor for spin-1 gluon field AA

α ,

FA
αβ = ∂αAA

β − ∂βAA
α − gfABCAB

α AC
β

Capital indices A, B, C run over 8 colour degrees of freedom of the gluon field. Third
‘non-Abelian’ term distinguishes QCD from QED, giving rise to triplet and quartic gluon
self-interactions and ultimately to asymptotic freedom.

• QCD coupling strength is αS ≡ g2/4π. Numbers fABC (A, B, C = 1, ..., 8) are
structure constants of the SU(3) colour group. Quark fields qa (a = 1, 2, 3) are in triplet
colour representation. D is covariant derivative:

(Dα)ab = ∂αδab + ig
“

t
CAC

α

”
ab

(Dα)AB = ∂αδAB + ig(T
CAC

α )AB
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• t and T are matrices in the fundamental and adjoint representations of SU(3), respectively:

[t
A

, t
B

] = if
ABC

t
C

, [T
A

, T
B

] = if
ABC

T
C

where (TA)BC = −ifABC . We use the metric gαβ = diag(1,–1,–1,–1) and set
h̄ = c = 1. �D is symbolic notation for γαDα. Normalisation of the t matrices is

Tr tAtB = TR δAB, TR =
1

2
.

• Colour matrices obey the relations:

X
A

t
A
abt

A
bc = CF δac , CF =

N2 − 1

2N

Tr TCTD =
X
A,B

fABCfABD = CA δCD , CA = N

Thus CF = 4
3 and CA = 3 for SU(3).
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Gauge invariance

• QCD Lagrangian is invariant under local gauge transformations. That is, one can redefine quark
fields independently at every point in space-time,

qa(x) → q′a(x) = exp(it · θ(x))abqb(x) ≡ Ω(x)abqb(x)

without changing physical content.

• Covariant derivative is so called because it transforms in same way as field itself:

Dαq(x) → D′
αq′(x) ≡ Ω(x)Dαq(x) .

(omitting the colour labels of quark fields from now on). Use this to derive transformation
property of gluon field A

D′
αq′(x) = (∂α + igt · A′

α)Ω(x)q(x)

≡ (∂αΩ(x))q(x) + Ω(x)∂αq(x) + igt · A′
αΩ(x)q(x)

where t · Aα ≡ P
A tAAA

α . Hence

t · A′
α = Ω(x)t · AαΩ−1(x) +

i

g
(∂αΩ(x))Ω−1(x) .
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• Transformation property of gluon field strength Fαβ is

t · Fαβ(x) → t · F
′
αβ(x) = Ω(x)Fαβ(x)Ω

−1
(x) .

Contrast this with gauge-invariance of QED field strength. QCD field strength is not gauge
invariant because of self-interaction of gluons. Carriers of the colour force are themselves
coloured, unlike the electrically neutral photon.

• Note there is no gauge-invariant way of including a gluon mass. A term such as

m2AαAα

is not gauge invariant. This is similar to QED result for mass of the photon. On the other hand
quark mass term is gauge invariant.
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Feynman rules

• Use free piece of QCD Lagrangian to obtain inverse quark and gluon propagators.

• Quark propagator in momentum space obtained by setting ∂α = −ipα for an incoming
field. Result is in Table 1. The iε prescription for pole of propagator is determined by
causality, as in QED.

• Gluon propagator impossible to define without a choice of gauge. The choice

Lgauge−fixing = − 1

2 λ

“
∂αAA

α

”2

defines covariant gauges with gauge parameter λ. Inverse gluon propagator is then

Γ
(2)
{AB, αβ}(p) = iδAB

»
p
2
gαβ − (1 − 1

λ
)pαpβ

–
.

(Check that without gauge-fixing term this function would have no inverse.) Resulting
propagator is in the table. λ = 1 (0) is Feynman (Landau) gauge.
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• Gauge fixing explicitly breaks gauge invariance. However, in the end physical results will be
independent of gauge. For convenience, we usually use Feynman gauge.

• In non-Abelian theories like QCD, covariant gauge-fixing term must be supplemented by a ghost
term which we do not discuss here. Ghost field, shown by dashed lines in the above table, cancels
unphysical degrees of freedom of gluon which would otherwise propagate in covariant gauges.

• Propagators determined from −S, interactions from S.
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Alternative choice of gauge

• An alternative choice of gauge fixing is provided by the axial gauges which are fixed in terms of
another vector which we denote by b

L gauge-fixing = − 1

2 λ

“
bαAA

α

”2
,

The advantage of the axial class of gauge is that ghost fields are not required. However one pays
for this simplicity because the gluon propagator is more complicated. The inverse propagator is

Γ
(2)
{AB, αβ}(p) = iδAB

»
p2gαβ − pαpβ +

1

λ
bαbβ

–
.

The inverse of this matrix gives the gauge boson propagator,

∆
(2)
{BC, βγ}(p) =δBC

i

p2

2
4−gβγ +

bβpγ + pβbγ

b · p
−

(b2 + λp2)pβpγ

(b · p)2

3
5 .

Notice the new singularities at b · p = 0.
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What are the properties of these gauges which make them interesting? Let us specialize to the

case λ = 0, b2 = 0, (light-cone gauge).

∆
(2)
{BC,βγ}(p) = δBC

i

p2
dβγ(p, b)

where

dβγ = −gβγ +
bβpγ + pβbγ

b · p
.

In the limit p2 → 0 we find that

bβdβγ(p, b) = 0, pβdβγ(p, b) = 0 .

Only two physical polarization states, orthogonal to b and p, propagate. For this reason these

classes of gauges are called physical gauges. In the p2 → 0 limit we may decompose the
numerator of the propagator into a sum over two polarizations:

dαβ =
X
i

ε
(i)
α (p)ε

(i)
β

(p) .

In addition to the constraint ε
(i)
β

(p)pβ = 0, which is always true, in an axial gauge we have

the further constraint ε
(i)
β

(p)bβ = 0.
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Running coupling

• Consider dimensionless physical observable R which depends on a single large energy scale,
Q � m where m is any mass. Then we can set m → 0 (assuming this limit exists), and
dimensional analysis suggests that R should be independent of Q.

• This is not true in quantum field theory. Calculation of R as a perturbation series in the coupling

αS = g2/4π requires renormalization to remove ultraviolet divergences. This introduces a
second mass scale µ — point at which subtractions which remove divergences are performed.
Then R depends on the ratio Q/µ and is not constant. The renormalized coupling αS also
depends on µ.

• But µ is arbitrary! Therefore, if we hold bare coupling fixed, R cannot depend on µ. Since R

is dimensionless, it can only depend on Q2/µ2 and the renormalized coupling αS . Hence

µ2 d

dµ2
R

„
Q2

µ2
, αS

«
≡

»
µ2 ∂

∂µ2
+ µ2∂αS

∂µ2

∂

∂αS

–
R = 0 .
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• Introducing

τ = ln

„
Q2

µ2

«
, β(αS) = µ2∂αS

∂µ2
,

we have »
− ∂

∂τ
+ β(αS)

∂

∂αS

–
R = 0.

This renormalization group equation is solved by defining running coupling αS(Q):

τ =

Z αS(Q)

αS

dx

β(x)
, αS(µ) ≡ αS .

Then
∂αS(Q)

∂τ
= β(αS(Q)) ,

∂αS(Q)

∂αS
=

β(αS(Q))

β(αS)
.

and hence R(Q2/µ2, αS) = R(1, αS(Q)). Thus all scale dependence in R comes from
running of αS(Q).

• We shall see QCD is asymptotically free: αS(Q) → 0 as Q → ∞. Thus for large Q we can
safely use perturbation theory. Then knowledge of R(1, αS) to fixed order allows us to predict
variation of R with Q.
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Beta function

• Running of the QCD coupling αS is determined by the β function, which has the expansion

β(αS) = −bα2
S(1 + b′αS) + O(α4

S)

b =
(11CA − 2Nf )

12π
, b′ =

(17C2
A − 5CANf − 3CF Nf )

2π(11CA − 2Nf )
,

where Nf is number of “active” light flavours. Terms up to O(α5
S) are known.

– R.K.Ellis, Fermilab, February 2005 – 12



• Roughly speaking, quark loop diagram (a) contributes negative Nf term in b, while gluon loop

(b) gives positive CA contribution, which makes β function negative overall.

• QED β function is

βQED(α) =
1

3π
α2 + . . .

Thus b coefficients in QED and QCD have opposite signs.

• From previous section,

∂αS(Q)

∂τ
= −bα

2
S(Q)

h
1 + b

′
αS(Q)

i
+ O(α

4
S).

Neglecting b′ and higher coefficients gives

αS(Q) =
αS(µ)

1 + αS(µ)bτ
, τ = ln

“Q2

µ2

”
.

• As Q becomes large, αS(Q) decreases to zero: this is asymptotic freedom. Notice that sign of
b is crucial. In QED, b < 0 and coupling increases at large Q.

Including next coefficient b′ gives implicit equation for αS(Q):

bτ =
1

αS(Q)
− 1

αS(µ)
+ b

′
ln

“ αS(Q)

1 + b′αS(Q)

”
− b

′
ln

“ αS(µ)

1 + b′αS(µ)

”
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• What type of terms does the solution of the renormalization group equation take into account
in the physical quantity R?

Assume that R has perturbative expansion

R = αS + O(α
2
S)

Solution R(1, αS(Q)) can be re-expressed in terms of αS(µ):

R(1, αS(Q)) = αS(µ)
∞X

j=0

(−1)j(αS(µ)bτ)j

= αS(µ)
h
1 − αS(µ)bτ + α2

S(µ)(bτ)2 + . . .
i

Thus there are logarithms of Q2/µ2 which are automatically resummed by using the running
coupling. Neglected terms have fewer logarithms per power of αS .
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Lambda parameter

• Perturbative QCD tells us how αS(Q) varies with Q, but its absolute value has to be obtained
from experiment. Nowadays we usually choose as the fundamental parameter the value of the
coupling at Q = MZ , which is simply a convenient reference scale large enough to be in the
perturbative domain.

• Also useful to express αS(Q) directly in terms of a dimensionful parameter (constant of
integration) Λ:

ln
Q2

Λ2
= −

Z ∞
αS(Q)

dx

β(x)
=

Z ∞
αS(Q)

dx

bx2(1 + b′x + . . .)
.

Then (if perturbation theory were the whole story) αS(Q) → ∞ as Q → Λ. More generally,
Λ sets the scale at which αS(Q) becomes large.

• In leading order (LO) keep only first β-function b:

αS(Q) =
1

b ln(Q2/Λ2)
(LO).
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• In next-to-leading order (NLO) include also b′:

1

αS(Q)
+ b′ ln

“ b′αS(Q)

1 + b′αS(Q)

”
= b ln

“Q2

Λ2

”
.

This can be solved numerically, or we can obtain an approximate solution to second order in

1/ log(Q2/Λ2):

αS(Q) =
1

b ln(Q2/Λ2)

"
1 − b′

b

ln ln(Q2/Λ2)

ln(Q2/Λ2)

#
(NLO).

This is Particle Data Group (PDG) definition.

• Note that Λ depends on number of active flavours Nf . ‘Active’ means mq < Q. Thus for
5 < Q < 175 GeV we should use Nf = 5. See ESW for relation between Λ’s for different
values of Nf .
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• Measurements of αS are reviewed in ESW. A more recent compilation from hep-ex/0407021 is
shown above. Evidence that αS(Q) has a logarithmic fall-off with Q is persuasive.
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αS at mZ

jets & shapes 161 GeV
jets & shapes 172 GeV

0.08 0.10 0.12 0.14
(((( ))))s Z

-decays [LEP]

xF [ -DIS]
F [e-, µ-DIS]

decays

(Z --> had.) [LEP]

e e [ ]+ had
_

e e [jets & shapes 35 GeV]+ _

(pp --> jets)

pp --> bb X

0

QQ + lattice QCD

DIS [GLS-SR]

2
3

pp, pp --> X

DIS [Bj-SR]

e e [jets & shapes 58 GeV]+ _

jets & shapes 133 GeV

e e [jets & shapes 22 GeV]+ _

e e [jets & shapes 44 GeV]+ _

e e [ ]+
had

_

jets & shapes 183 GeV

DIS [pol. strct. fctn.]

jets & shapes 189 GeV

e e [scaling. viol.]+ _

jets & shapes 91.2 GeV

e e F+ _
2

e e [jets & shapes 14 GeV]+ _

e e [4-jet rate]+ _

jets & shapes 195 GeV
jets & shapes 201 GeV
jets & shapes 206 GeV

DIS [ep –> jets]

αS(MZ) = 0.1182 ± 0.0027, hep-ex/0407021, (2004)
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Non-perturbative QCD

• Corresponding to asymptotic freedom at high momentum scales, we have infra-red slavery:
αS(Q) becomes large a low momenta, (long distances). Perturbation theory is not reliable for
large αS , so non-perturbative methods, (e.g. lattice) must be used.

• Important low momentum scale phenomena

• Confinement: partons (quarks and gluons) found only in colour singlet bound states, hadrons,
size ∼ 1 fm. If we try top separate them it becomes energetically favourable to create extra
partons from the vacuum.

• Hadronization: partons produced in short distance interactions re-organize themselves to
make the observed hadrons.
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Infrared divergences

• Even in high-energy, short-distance regime, long-distance aspects of QCD cannot be ignored.
Soft or collinear gluon emission gives infrared divergences in PT. Light quarks (mq � Λ)
also lead to divergences in the limit mq → 0 (mass singularities).

– Spacelike branching: gluon splitting on incoming line (a)

p
2
b = −2EaEc(1 − cos θ) ≤ 0 .

Propagator factor 1/p2
b diverges as Ec → 0 (soft singularity) or θ → 0 (collinear or

mass singularity). If a and b are quarks, inverse propagator factor is

p2
b − m2

q = −2EaEc(1 − va cos θ) ≤ 0 ,

Hence Ec → 0 soft divergence remains; collinear enhancement becomes a divergence

– R.K.Ellis, Fermilab, February 2005 – 20



as va → 1, i.e. when quark mass is negligible. If emitted parton c is a quark, vertex
factor cancels Ec → 0 divergence.

– Timelike branching: gluon splitting on outgoing line (b)

p
2
a = 2EbEc(1 − cos θ) ≥ 0 .

Diverges when either emitted gluon is soft (Eb or Ec → 0) or when opening angle
θ → 0. If b and/or c are quarks, collinear/mass singularity in mq → 0 limit. Again,
soft quark divergences cancelled by vertex factor.

• Similar infrared divergences in loop diagrams, associated with soft and/or collinear
configurations of virtual partons within region of integration of loop momenta.

• Infrared divergences indicate dependence on long-distance aspects of QCD not correctly
described by PT. Divergent (or enhanced) propagators imply propagation of partons over
long distances. When distance becomes comparable with hadron size ∼ 1 fm, quasi-free
partons of perturbative calculation are confined/hadronized non-perturbatively, and apparent
divergences disappear.

• Can still use PT to perform calculations, provided we limit ourselves to two classes of
observables:
– Infrared safe quantities, i.e. those insensitive to soft or collinear branching. Infrared

divergences in PT calculation either cancel between real and virtual contributions or
are removed by kinematic factors. Such quantities are determined primarily by hard,
short-distance physics; long-distance effects give power corrections, suppressed by inverse
powers of a large momentum scale.
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– Factorizable quantities, i.e. those in which infrared sensitivity can be absorbed into an
overall non-perturbative factor, to be determined experimentally.

• In either case, infrared divergences must be regularized during PT calculation, even though
they cancel or factorize in the end.
– Gluon mass regularization: introduce finite gluon mass, set to zero at end of calculation.

However, as we saw, gluon mass breaks gauge invariance.
– Dimensional regularization: analogous to that used for ultraviolet divergences, except we

must increase dimension of space-time, ε = 2 − D
2 < 0. Divergences are replaced by

powers of 1/ε.
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Recap

• QCD is an SU(3) gauge theory of quarks (3 colours) and gluons (8 colours,selfinteracting)
• Renormalization of dimensionless observables depending on a single large scale implies that

the scale dependence enters through the running coupling.
• Asymptotic freedom implies that IR-safe quantities can be calculated in perturbation theory.
• α(MZ) � 0.118 in five flavour MS-renormalization scheme.
• Perturbative QCD has infrared singularities due to collinear or soft parton emission. We can

calculate infra-red safe or factorizable quantities in perturbation theory.
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