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1 Introduction

It is a well-known fact that the boolean calculus is one of the mathematical
foundations of electronic computers. This explains the important role of the
boolean semiring in computer science. The aim of this paper is to present
other semirings that occur in theoretical computer science. These semirings
were baptized tropical semirings by Dominique Perrin in honour of the pio-
neering work of our brazilian colleague and friend Imre Simon, but are also
commonly known as (min, +)-semirings.

The aim of this paper is to present the tropical semirings and to survey
a few problems relevant to them. We shall try to give an updated status of
the different questions, but detailed solutions of most problems would be too
long and technical for this survey. They can be found in the other papers
of this volume or in the relevant literature. We tried to keep the paper self-
contained as much as possible. Thus, in principle, there are no prerequisite to
read this survey, besides a standard mathematical background. However, it
was clearly not possible to give within 20 pages a full exposition of the theory
of automata. Therefore, suitable references will be given for the readers who
would like to elaborate and join the tropical community.

The paper is organized as follows. The main definitions are introduced in
Section 2. Two apparently disconnected applications of the tropical semirings
are presented: the Burnside type problems in group and semigroup theory,
in Section 3 and decidability problems in formal language theory, in Section
4. The connection between the two problems is explained in Section 5. A
conclusion section ends the paper.

2 Mathematical objects

This section is a short presentation of the basic concepts used in this paper.
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2.1 Semigroups and monoids

A semigroup is a set equipped with an associative binary operation, usually
denoted multiplicatively [11, 12, 24, 36]. Let S be a semigroup. An element
1 of S is an identity if, for all s ∈ S, 1s = s1 = s. An element 0 of S is a
zero if, for all s ∈ S, 0s = s0 = 0. Clearly, a semigroup can have at most one
identity, since, if 1 and 1′ are two identities, then 11′ = 1′ = 1. A monoid is a
semigroup with identity. A semigroup S is commutative if, for every s, t ∈ S,
st = ts. Given two semigroups S and T , a semigroup morphism ϕ : S → T is
a map from S into T such that, for all x, y ∈ S, ϕ(xy) = ϕ(x)ϕ(y). Monoid
morphisms are defined analogously, but of course, the condition ϕ(1) = 1 is
also required.

An alphabet is a finite set whose elements are letters. A word (over the
alphabet A) is a finite sequence u = (a1, a2, . . . , an) of letters of A. The integer
n is the length of the word and is denoted |u|. In practice, the notation
(a1, a2, . . . , an) is shortened to a1a2 · · ·an. The empty word, which is the
unique word of length 0, is denoted by 1. The (concatenation) product of two
words u = a1a2 · · ·ap and v = b1b2 · · · bq is the word uv = a1a2 · · ·apb1b2 · · · bq.
The product is an associative operation on words. The set of all words on
the alphabet A is denoted by A∗. Equipped with the product of words, it is a
monoid, with the empty word as an identity. It is in fact the free monoid on
the set A. This means that A∗ satisfies the following universal property: if
ϕ : A → M is a map from A into a monoid M , there exists a unique monoid
morphism from A∗ into M that extends ϕ. This morphism, also denoted ϕ,
is simply defined by ϕ(a1 · · ·an) = ϕ(a1) · · ·ϕ(an).

2.2 Semirings

A semiring is a set k equipped with two binary operations, denoted additively
and multiplicatively, and containing two elements, the zero – denoted 0 – and
the unit – denoted 1 – satisfying the following conditions

1. k is a commutative monoid for the addition, with the zero as identity

2. k is a monoid for the multiplication, with the unit as identity

3. Multiplication is distributive over addition :
for all s, t1, t2 ∈ k, s(t1 + t2) = st1 + st2 and (t1 + t2)s = t1s + t2s

4. The zero is a zero for the second law :
for all s ∈ k, 0s = s0 = 0.

A semiring is commutative if its multiplication is commutative. Rings are
the first examples of semirings that come to mind. In particular, we denote
by Z, Q and R, respectively, the rings of integers, rational and real numbers.
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The simplest example of a semiring which is not a ring is the boolean semiring
B = {0, 1} defined by 0 + 0 = 0, 0 + 1 = 1 + 1 = 1 + 0 = 1, 1.1 = 1 and
1.0 = 0.0 = 0.1 = 0. If M is a monoid, then the set P(M) of subsets of M is
a semiring with union as addition and multiplication given by

XY = {xy | x ∈ X and y ∈ Y }

The empty set is the zero of this semiring and the unit is the singleton {1}.
Other examples include the semiring of non negative integers N = (N, +,×)
and its completion N = (N ∪ {∞}, +,×), where addition and multiplication
are extended in the natural way

for all x ∈ N , x + ∞ = ∞ + x = ∞

for all x ∈ N \ {0}, x ×∞ = ∞× x = ∞

∞× 0 = 0 ×∞ = 0

The Min-Plus semiring is M = (N ∪ {∞}, min, +). This means that in this
semiring the sum is defined as the minimum and the product as the usual
addition. Note that ∞ is the zero of this semiring and 0 is its unit. This
semiring was introduced by Simon [43] in the context of automata theory (it
is also a familiar semiring in Operations Research). Similar semirings were
considered in the literature. Mascle [32] introduced the semiring

P = (N ∪ {−∞,∞}, max, +)

where −∞ + x = x + (−∞) = −∞ for all x and Leung [25, 26] the semiring

M = (N ∪ {ω,∞}, min, +)

where the minimum is defined with respect to the order

0 < 1 < 2 < · · · < ω < ∞

and addition of the Min-Plus semiring is completed by setting x+ω = ω+x =
max{x, ω} for all x. All these semirings are called tropical semirings. Other
extensions include the tropical integers Z = (Z ∪ {∞}, min, +), the tropical
rationals Q = (Q ∪ {∞}, min, +), the tropical reals R = (R ∪ {∞}, min, +).
Mascle [31] also suggested to study the Min-Plus semiring of ordinals smaller
than a given ordinal α : Mα = ({ordinals < α}, min, +).

Quotients of M and N are also of interest. These quotients are

Nr = N /(r = ∞) N ′
r,p = N /(r = r + p)

Mr = M/(r = ∞) M′
r = M/(r = r + 1)

where (r = s) denotes the coarsest semiring congruence such that r and s are
equivalent.
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2.3 Polynomials and Series

This subsection is inspired by the book of Berstel and Reutenauer [2], which
is the standard reference on formal power series.

Let A be an alphabet and let k be a semiring. A formal power series over
k with (non commutative) variables in A is a mapping s from A∗ to k. The
value of s on a word w is denoted (s, w). The range of s is the set of words w
such that (s, w) 6= 0. A polynomial is a power series of finite range. The set
of power series over k with variables in A is denoted k〈〈A〉〉. It is a semiring
with addition defined by

(s + t, w) = (s, w) + (t, w)

and multiplication defined by

(st, w) =
∑

uv=w

(s, u)(s, v)

The set of polynomials, denoted k〈A〉, form a subsemiring of k〈〈A〉〉. If s is
an element of k, one can identify s with the polynomial s defined by

(s, w) =

{

s if w = 1
0 otherwise

The semiring k can thus be identified to a subsemiring of k〈A〉. Similarly,
one can identify A∗ to a subset of k〈A〉 by attaching to each word v the
polynomial v defined by

(v, w) =

{

1 if v = w
0 otherwise

A family of series (si)i∈I is locally finite if, for each w ∈ A∗, the set

Iw = {i ∈ I | (si, w) 6= 0}

is finite. In this case, the sum s =
∑

i∈I si can be defined by

(s, w) =
∑

i∈Iw

si

In particular, for every series s, the family of polynomials
(

(s, w)w
)

w∈A∗

is

clearly locally finite and its sum is s. For this reason, a series is usually
denoted by the formal sum

∑

w∈A∗

(s, w)w

If (s, 1) = 0, that is, if the value of s on the empty word is zero, then the
family (sn)n≥0 is locally finite, since (sn, w) = 0 for every n > |w|. Its sum is
denoted s∗ and is called the star of s. Thus

s∗ =
∑

n≥0

sn
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Note that if k is a ring, s∗ = (1− s)−1. Actually, the star often plays the role
of the inverse, as in the following example. Consider the equation in X

X = t + sX (2.1)

where s and t are series and (s, 1) = 0. Then one can show that X = ts∗ is
the unique solution of 2.1.

The set of rational series on k is the smallest subsemiring R of k〈〈A〉〉
containing k〈A〉 and such that s ∈ R implies s∗ ∈ R. Note that if k is a ring,
the rational series form the smallest subring of k〈〈A〉〉 containing k〈A〉 and
closed under inversion (whenever defined). In particular, in the one variable
case, this definition coincide with the usual definition of rational series and
justifies the terminology.

2.4 Rational sets

Given a monoid M , the semiring P(M) can be identified with B(M), the
boolean algebra of the monoid M . Thus union will be denoted by + and the
empty set by 0. It is also convenient to denote simply by m any singleton
{m}. In particular, 1 will denote the singleton {1}, which is also the unit of
the semiring P(M).

Given a subset X of M , X∗ denotes the submonoid of M generated by X.
Note that

X∗ =
∑

n≥0

Xn

where Xn is defined by X0 = 1 and Xn+1 = XnX. Thus our notation is
consistent with the notation s∗ used for power series. It is also consistent
with the notation A∗ used for the free monoid over A. The rational subsets
of M form the smallest class Rat(M) of subsets of M such that

1. the empty set and every singleton {m} belong to Rat(M),

2. if S and T are in Rat(M), then so are ST and S + T ,

3. if S is in Rat(M), then so is S∗.

In particular, every finite subset and every finitely generated submonoid of
M are rational sets.

The case of free monoids is of special interest. Subsets of a free monoid A∗

are often called languages . According to the general definition, the rational
languages form the smallest class of languages containing the finite languages
and closed under union, product and star. A key result of the theory, which
follows from a theorem of Kleene mentioned in the next section, is that ratio-
nal languages are also closed under intersection and complement. A similar
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result holds for the rational subsets of a free group, but doesn’t hold for the
rational subsets of an arbitrary monoid.

Rational languages can be conveniently represented by rational expres-
sions . Rational expressions on the alphabet A are defined recursively by the
rules:

1. 0, 1 and a, for each a ∈ A are rational expressions

2. if e and f are rational expressions, then so are e∗, (ef) and (e + f).

For instance, if a, b ∈ A, (a + ab)∗ab denotes the rational subset of A∗ con-
sisting of all elements of the form an1(ba)m1an2(ba)m2 · · ·ank(ba)mkab, where
k ≥ 0 and n1, m1, n2, m2, . . . , nk, mk ≥ 0. It contains for instance the elements
ab (take k = 0), aaaab (take k = 1, n1 = 3 and m1 = 0) and ababaaabaab
(exercise !).

Two rational expressions e and f are equivalent (e ≡ f) if they denote
the same rational language. For instance, if e and f are rational expressions,
e + e ≡ e, (e∗)∗ ≡ e∗ and (e + f) ≡ (f + e), but there are much more subtle
equivalences, such as (e∗f)∗e∗ ≡ (e+f)∗. Actually, although there are known
algorithms to decide whether two rational expressions are equivalent, there
are no finite basis of identities of the type above that would generate all
possible equivalences.

Let a∗ be the free monoid on the one-letter alphabet {a}. One can show
that for each rational subset R of a∗, there exist two integers i (the index)
and p (the period) such that

R = F + G(ap)∗

for some F ⊆ {1, a, · · · , ai−1} and G ⊂ {ai, · · ·ai+p−1}. C. Choffrut ob-
served that the rational sets of the form ana∗ (for n ≥ 0) form a sub-
semiring of Rat(a∗) isomorphic to M, since ana∗ + ama∗ = amin{n,m}a∗ and
(ana∗)(ama∗) = an+ma∗. Thus the tropical semiring embeds naturally into
Rat(a∗).

3 Burnside type problems

In 1902, Burnside proposed the following problem:

Is a finitely generated group satisfying an identity of the form xn = 1
necessarily finite?

The answer is yes for n = 1, 2, 3, 4 and 6. The case n ≤ 2 is trivial, the case
n = 3 was settled by Burnside [7], the case n = 4 by Sanov [41] and the
case n = 6 by M. Hall [14]. Although the original problem finally received a
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negative answer by Novikov-Adjan in 1968 [34] (see also [3]), several related
questions were proposed. At the end of this century, Burnside type problems
form a very active but extremely difficult research area, recently promoted
by the Fields medal of the russian mathematician E.I. Zelmanov [52, 53, 54].
Burnside type problems can also be stated for semigroups and motivate the
following definitions.

A semigroup S is periodic (or torsion) if, for all s ∈ S, the subsemigroup
generated by s is finite. This means that, for every s ∈ S, there exists n, p > 0
such that sn = sn+p. A semigroup is k-generated if it is generated by a set
of k elements. It is finitely generated if it is k-generated for some positive
integer k.

A semigroup S is locally finite if every finitely generated subsemigroup of
S is finite. It is strongly locally finite if there is an order function f such that
the order of every k-generated subsemigroup of S is smaller than or equal to
f(k).

The general Burnside problem is the following:

Is every periodic semigroup locally finite ?

Morse and Hedlund [33] observed that the existence of an infinite square-
free word over a three-letter alphabet [50, 51, 28] shows that the quotient of
A∗∪{0} by the relations x2 = 0 is infinite if |A| ≥ 3. This semigroup satisfies
the identity x2 = x3 and thus the answer is negative for semigroups. Actually,
as shown in [6], the monoid presented by 〈A | x2 = x3 for all x ∈ A∗〉 is
infinite even if |A| = 2. Note that, however, the semigroup presented by
〈A | x = x2 for all x ∈ A∗〉 is always finite.

For groups, a negative answer was given by Golod in 1964 [13] (this follows
also from the result of Novikov-Adjan mentioned above). On the positive side,
Schur [42] gave a positive answer for groups of matrices over C. Kaplansky [23]
extended this result to groups of matrices over an arbitrary field and Procesi
[39, 40] to groups of matrices over a commutative ring or even over a PI-ring,
i.e. a ring satisfying a polynomial identity. McNaughton and Zalcstein [29]
proved a similar result for semigroups of matrices over an arbitrary field. In
the same paper, they announced but didn’t prove a similar statement for
semigroups of matrices over a commutative ring or even over a PI-ring. A
complete proof of these results, which do not rely on the group case, was
given by Straubing [49] in 1983.

What happens for semigroups of matrices over a commutative semiring ?
The general question is still unsolved, but several particular instances of this
problem occurred naturally in automata theory. Mandel and Simon [30]
proved that every periodic semigroup of matrices over N or N is strongly
locally finite. Then Simon [43] proved that every periodic semigroup of ma-
trices over M is locally finite. This result was extended by Mascle [31] to
semigroups of matrices over P and over Rat(a∗).
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One of the key results to study locally finite semigroups is Brown’s theorem
[4, 5].

Theorem 3.1 (Brown) Let ϕ : S → T be a semigroup morphism. If T is
locally finite and, for every idempotent e ∈ T , ϕ−1(e) is locally finite, then S
is locally finite.

A similar result for strongly locally finite semigroups was given by Straub-
ing [49].

Theorem 3.2 (Straubing) Let ϕ : S → T be a semigroup morphism. If
T is strongly locally finite with order function f and if, for every idempotent
e ∈ T , ϕ−1(e) is strongly locally finite with order function g (not depending
on e), then S is strongly locally finite.

Two other problems on semigroups of matrices over a semiring can also be
considered as Burnside type problems:

Finiteness problem: Given a finite set A of matrices, decide whether the
semigroup S generated by A is finite or not.

Finite section problem: Given a finite set A of square matrices of size n
and i, j ∈ {1, . . . , n}, decide whether the set {si,j | s ∈ S} is finite or not,
where S denotes the semigroup generated by A.

The finiteness problem is decidable for matrices over a field (Jacob [22]),
over N and N (Mandel and Simon [30]), over M (Simon [43]), over P and
Rat(a∗) (Mascle[31, 32]). The finite section problem is decidable for matrices
over a field (Jacob [22]), over N and N (Mandel and Simon [30]), over M
(Hashiguchi [16, 20]). It is still an open problem for matrices over Rat(a∗).

These problems were first considered by Hashiguchi [15, 16] and Simon [43,
44] in connection with decidability problems on rational languages presented
in the next section.

4 Problems on rational languages

The star height of a rational expression, as defined by Eggan [10], counts
the number of nested uses of the star operation. It is defined inductively as
follows:

1. The star height of the basic languages is 0. Formally

h(0) = 0 h(1) = 0 and h(a) = 0 for every letter a
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2. Union and product do not affect star height. If e and f are two rational
expressions, then

h(e + f) = h(ef) = max{h(e), h(f)}

3. Star increases star height. For each rational expression e,

h(e∗) = h(e) + 1

For instance
(

(a∗ + ba∗)∗ + (b∗ab∗)∗
)∗

(b∗a∗ + b)∗

is a rational expression of star height 3. Now, the star height of a recognizable
language L is the minimum of the star heights of the rational expressions
representing L

h(L) = min{h(e) | e is an rational expression for L }

The difficulty in computing the star height is that a given language can be
represented in many different ways by a rational expression !

An explicit example of language of star-height n was given by Dejean and
Schützenberger [9]. Given a word u ∈ A∗ and a letter a ∈ A, denote by |u|a
the number of occurrences of a in u. For instance, if u = abbabba, |u|a = 3
and |u|b = 4. Let A = {a, b} and let

Ln = {u ∈ A∗ |u|a ≡ |u|b mod 2n−1}

Theorem 4.1 (Dejean and Schützenberger) For each n ≥ 1, the lan-
guage Ln is of star height n.

It is easy to see that the languages of star height 0 are the finite languages,
but the effective characterization of the other levels was left open for several
years until Hashiguchi first settled the problem for star height 1 [17] and a
few years later for the general case [19].

Theorem 4.2 (Hashiguchi) There is an algorithm to determine the star
height of a given rational language.

Hashiguchi’s solution for star height one is now well understood, and
deeply relies on the solution of the finite section problem for matrices over
M. Hashiguchi’s solution for arbitrary star height relies on a complicated
induction, which makes the proof very difficult to follow. Let us mention
another problem, the solution of which had a great influence on the theory
and ultimately led to the solution of the star-height problem.
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A language L has the finite power property (FPP for short) if there exists
an integer k such that

X∗ = 1 + X + X2 + · · ·+ Xk

This means that X∗ is actually a polynomial in X and in particular h(X∗) =
h(X). For instance, X = a∗ + (a + b)∗b has the FPP, since X∗ = A∗ =
1 + X + X2, but X = a∗(1 + b) does not. In 1966, Brzozowski proposed the
following problem

FPP problem: Decide whether a given rational language has FPP.

A solution was given independently by Simon [43] and Hashiguchi [15].
Simon’s proof reduces the problem to the finiteness problem of matrices over
M. This reduction will be outlined in section 6.

To conclude this section, let us mention yet another problem on rational
languages. Let R be a set of languages. A language L belongs to the poly-
nomial closure of R if it is a finite union of products of languages of R. For
instance, if R = {R1, R2} then R1+R2R1R2+R2R2 belongs to the polynomial
closure of R. The following problem was proposed by Hashiguchi [18]

Polynomial closure problem: Given a finite set R of rational languages
and a rational language R, decide whether R belongs to the polynomial closure
of R ?

Note that the FPP problem is a particular instance of this problem. Indeed,
the FPP problem amounts to know whether, given a rational language L,
L∗ belongs to the polynomial closure of the set {1, L}. It was shown by
Hashiguchi [18] that the polynomial closure problem reduces to the finite
section problem for matrices over M and is therefore decidable. See also [37]
for a survey.

A little introduction to finite automata and formal languages is in order to
explain the connection between the the FPP problem and the Burnside type
problems of Section 3.

5 Finite automata and recognizable sets

This section is a brief introduction to the theory of finite automata. A more
extensive presentation can be found in [11, 35, 36, 38].

5.1 Finite automata

A finite (nondeterministic) automaton is a quintuple A = (Q, A, E, I, F )
where Q is a finite set (the set of states), A is an alphabet, E is a subset
of Q × A × Q, called the set of edges (also called transitions) and I and F
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are subsets of Q, called the set of initial and final states, respectively. Two
edges (p, a, q) and (p′, a′, q′) are consecutive if q = p′. A path in A is a finite
sequence of consecutive edges

e0 = (q0, a0, q1), e1 = (q1, a1, q2), . . . , en−1 = (qn−1, an−1, qn)

also denoted
q0

a0−→ q1
a1−→ q2 · · · qn−1

an−1

−→ qn

The state q0 is the origin of the path, the state qn is its end , and the word
x = a0a1 · · ·an−1 is its label . It is convenient to have also, for each state q,
an empty path of label 1 from q to q. A path in A is successful if its origin
is in I and its end is in F .

The language recognized by A is the set, denoted |A|, of the labels of all
successful paths of A. A language X is recognizable if there exists a finite
automaton A such that X = |A|. Two automata are said to be equivalent
if they recognize the same language. Automata are conveniently represented
by labeled graphs, as in the example below. Incoming arrows indicate initial
states and outgoing arrows indicate final states.

Example. Let A = ({1, 2}, {a, b}, E, {1}, {2}) be an automaton, with E =
{(1, a, 1), (1, b, 1), (1, a, 2)}. The path (1, a, 1)(1, b, 1)(1, a, 2) is a successful
path of label aba. The path (1, a, 1)(1, b, 1)(1, a, 1) has the same label but is
unsuccessful since its end is 1.

An automaton.

The set of words accepted by A is |A| = A∗a, the set of all words ending with
an a.

Kleene’s theorem states the equivalence between automata and rational
expressions. Its proof can be found in most books of automata theory [11, 21].

Theorem 5.1 (Kleene) A language is rational if and only if it is recogniz-
able.

An automaton is deterministic if it has exactly one initial state, usually
denoted q0 and if E contains no pair of edges of the form (q, a, q1), (q, a, q2)
with q1 6= q2.
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The forbidden pattern in a deterministic automaton.

In this case, each letter a defines a partial function from Q to Q, which
associates with every state q the unique state qa, if it exists, such that
(q, a, qa) ∈ E. This can be extended into a right action of A∗ on Q by
setting, for every q ∈ Q, a ∈ A and u ∈ A∗:

q1 = q

q(ua) =
{

(qu)a if qu and (qu)a are defined
undefined otherwise

Then the language accepted by A is

|A| = {u ∈ A∗ | q0u ∈ F}

One can show that every finite automaton is equivalent to a deterministic
one. This result has an important consequence.

Corollary 5.1 Recognizable languages are closed under union, intersection
and complementation.

States which cannot be reached from the initial state or from which one
cannot access to any final state are clearly useless. This leads to the following
definition. A deterministic automaton A = (Q, A, E, q0, F ) is trim if for every
state q ∈ Q there exist two words u and v such that q0u = q and qv ∈ F . It
is not difficult to see that every deterministic automaton is equivalent to a
trim one.

Let A = (Q, A, E, q0, F ) and A′ = (Q′, A, E ′, q′0, F
′) be two deterministic

automata. A covering from A onto A′ is a surjective function ϕ : Q → Q′

such that ϕ(q0) = q′0, ϕ−1(F ′) = F and, for every u ∈ A∗ and q ∈ Q,
ϕ(qu) = ϕ(q)u. We denote A′ ≤ A if there exists a covering from A onto A′.
This defines a partial order on deterministic automata. One can show that,
amongst the trim deterministic automata recognizing a given recognizable
language L, there is a minimal one for this partial order. This automaton is
called the minimal automaton of L. Again, there are standard algorithms for
minimizing a given finite automaton [21].

5.2 Transducers

The modelling power of finite automata can be enriched by adding an output
function [1, 11]. Let k be a semiring. The definition of a k-transducer (or
automaton with output in k) is quite similar to that of a finite automaton. It is
also a quintuple A = (Q, A, E, I, F ), where Q (resp. I, F ) is the set of states
(resp. initial and final states) and A is the alphabet. But the set of edges E,
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instead of being a subset of Q × A × Q is a finite subset of Q × A × k × Q.
An edge (q, a, x, q′) ∈ Q × A × k × Q is graphically represented as follows

q
a |x
−→ q′

The output of a path

q0
a1 | x1

−→ q1
a2 |x2

−→ q2 · · ·
ak |xk−→ qk

is the product x1x2 · · ·xk. The output ||A||w of a word w is the sum of the
outputs of all successful paths of label w. If there is no successful path of
label w the output is 01. This defines a function ||A|| from A∗ into k, called
the output function of A.

Example. Let k = M and let A = ({1, 2, 3}, {a, b}, E, {1}, {2, 3}), with
E = {(1, a, 0, 1), (1, a, 2, 2), (2, b, 5, 2), (1, a, 1, 3), (3, b, 0, 1), (3, a, 3, 2)}.

An automaton with output.

The label of the path 1
a | 1
−→ 3

b | 0
−→ 1

a | 0
−→ 1

a | 2
−→ 2

b | 5
−→ 2 is 8. There are

three successful paths of label aaa :

1
a | 0
−→ 1

a | 0
−→ 1

a | 2
−→ 2, 1

a | 0
−→ 1

a | 0
−→ 1

a | 1
−→ 3 and 1

a | 0
−→ 1

a | 1
−→ 3

a | 3
−→ 2

Therefore the output of aaa is ||A||(aaa) = min {2, 1, 4} = 1.

5.3 Matrix representation

It is convenient to compute the output function by using matrices. Let
A = (Q, A, E, I, F ) be a k-transducer. The set MQk of Q × Q matrices
over the semiring k form a semiring for the usual addition and multiplication
of matrices, defined by

(m + m′)p,q = mp,q + m′
p,q

(mm′)p,q =
∑

r∈Q mp,rm
′
r,q

1This is consistent with the standard convention
∑

i∈∅
xi = 0
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Define a monoid morphism µ : A∗ → MQk by setting, for each a ∈ A,

µ(a)p,q =
∑

(p,a,x,q)∈E

x

where, according to a standard convention,
∑

x∈∅ = 0. Finally, let λ be the
row matrix defined by

λq =
{

1 if q ∈ I
0 otherwise

and let ν be the column matrix defined by

νq =
{

1 if q ∈ F
0 otherwise

Then the output function is computed by the following fundamental formula

||A||w = λµ(w)ν

Example. The matrix representation of the transducer of example 5.2 is
given by2

µ(a) =







0 2 1
∞ ∞ ∞
∞ 3 ∞





 µ(b) =







∞ ∞ ∞
∞ 5 ∞
0 ∞ ∞







Therefore

µ(aaa) =







0 2 1
∞ ∞ ∞
∞ ∞ ∞







The vectors λ and ν are given by

λ =
(

0 ∞ ∞
)

ν =







∞
0
0







Thus the output of aaa, given by λµ(aaa)ν, is equal to

(

0 ∞ ∞
)







0 2 1
∞ ∞ ∞
∞ ∞ ∞













∞
0
0





 =
(

0 2 1
)







∞
0
0





 = 1

2The slight ambiguity on the role of the symbol 0 may confuse the reader. Here the

semiring is the tropical semiring, its zero is ∞ and its unit is 0.
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6 Reduction of the FPP problem

In this section, we briefly outline the reduction of the FPP problem to the
finiteness problem for semigroup of matrices over M. Since a language L
has FPP if and only if (L \ {1})∗ has FPP, one may assume that L does not
contain the empty word. Next, by a simple construction, left to the reader,
one may assume that L is recognized by an automaton A = (Q, A, E, {1}, F )
with a unique initial state 1 and no edge arriving on this initial state, as in
the example below:

The automaton A.

We claim that an automaton A′ recognizing L∗ is obtained by taking 1 as the
unique final state and by adding an edge (s, a, 1) for each edge (s, a, q) ∈ E
such that a ∈ A and q ∈ F . On our example, one would add the edges
(1, a, 1), (1, b, 1), (3, a, 1) and (4, a, 1). Let us first verify that every word of
L∗ is accepted by A′. A word of L∗ is a product u = u1 · · ·uk of words of L.
Since A does not accept the empty word, each ui’s is the label of some non
empty successful path pi, whose last edge reaches a final state. Replace this
last edge (s, a, q), with q ∈ F , by (s, a, 1). One gets a path p′i from 1 to 1 and
the product p′1 · · · p

′
k is a successful path of label u. Therefore u is accepted

by A′.

Conversely, every successful path can be factorized as a product of elemen-
tary paths around 1. Necessarily, the last edge of such an elementary path is
one of the new edges (s, a, 1) of A′. Thus there is an edge of the form (s, a, q)
such that q ∈ F . Therefore the label of the elementary path belongs to L
and the label of the full path to L∗. Thus A′ recognizes exactly L∗.

Actually, the previous argument shows that a word belongs to Lk if and
only it is the label of a path of A′ containing exactly k new edges. Therefore,
one can convert A′ into a M-transducer whose output on a word u ∈ L∗ is
the smallest k such that u ∈ Lk. It suffices to have an output 0 on the edges
of A and output 1 on the new edges. This can be interpreted as a cost to
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pay to go back to the initial state. On our example, one obtains the following
transducer

The automaton B.

Now, ||B||w is exactly the least k such that w ∈ Lk if w ∈ L∗ and ∞ otherwise.
Thus L has FPP if and only if the image of the function ||B|| is finite. Now,
since ||B||w = λµ(w)ν = µ1,1(w), the equivalence of the two first conditions
of the following statement has been established.

Theorem 6.1 Let A be a finite automaton and L be the language recognized
by A. The following conditions are equivalent:

1. L has FPP,

2. the associated semigroup of matrices has a finite section in (1, 1),

3. the associated semigroup of matrices is finite.

The equivalence with the third condition is left as an exercise to the reader.
It follows from the fact that all edges with output 1 arrive in state 1.

7 Conclusion

The examples presented in this paper do not exhaust the problems on semi-
groups or languages connected with tropical semirings and the reader is in-
vited to read the literature on this domain, in particular the recent article of
Simon [48]. Roughly speaking, tropical semirings provide an algebraic setting
to decide whether a collection of objects is finite or infinite. But, as illustrated
on the FPP problem, it is usually a non trivial task to reduce a given problem
to a proper algebraic formulation.
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