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1 Introduction

Aquatic micro-organisms, many of which are ac-
tive swimmers, play a vital role in life on earth.
Phytoplankton (algae, diatoms, etc: length scale 10-
100µm, are the bottom link of the food chain in
oceans and lakes, absorbing energy from sunlight
and elementary nutrients from the water. They con-
tain and are surrounded by even smaller bacteria (2-
10µm) which break down metabolites and detritus
into those elementary nutrients and no doubt have
many other effects which have not been described.
The phytoplankton are themselves the prey for some-
what larger micro-organisms (zooplankton such as cil-
iates and heterotrophic flagellates)which in turn are
eaten by larger zooplankton such as copepods (small
crustacea) which are eaten by fish larvae and adult
fish, and so on. The phytoplankton absorb CO2 from
the water, most of which comes from the atmosphere
via complex mixing processes, and thus they play an
important role in the global carbon cycle and hence in
phenomena such as global warming. Every spring, in
every ocean, there are massive phytoplankton blooms
(population explosions) which underlie the ecology of
all aquatic species and need to be understood for fish-
eries prediction, for example. Harmful algal blooms
also occur in coastal waters (‘red tides’) and can
lead to economic damage to coastal communities that
rely on shellfish. Some micro-organisms are used by
biotechnologists to make chemicals, or are used as a
direct source of biomass in large bioreactors. Thus
the study of micro-organism behaviour is a proper
subject for scientific investigation.

The complex food web of an oceanic ecosystem
does not lend itself readily to comprehensive compu-
tational simulation; the number of species is far too
large, as is the number of ways in which they can in-
teract. In order to get a feel for the sort of effects that
can arise in such a web, idealised models have been
proposed. One such is outlined in figure 1 [1]. Or-
ganisms are arranged in two rows of three categories
each. Members of the lower row consume nutrients
and are themselves consumed by members of the top
row which are also linked by predator-prey interac-
tions. A model of the interactions consists of a set of
nonlinear ordinary differential equations. For exam-
ple, the population density of ciliates (C) is governed
by an equation of the form:

dc

dt
= Yc(gCA + gCH)C − gZCZ , (1)

where YC is the ciliate yield and the g ’s are functions
in which gPQ means the rate at which species P grazes
on species Q (the symbols A,H,Z are defined in figure
1). Examples of the sort of functions involved are:

gCA =
λcA

2

µc(A + H) + A2 + H2

gBN =
λBN

µB + N
(2)

where the λs and µs are constants.
These are standard models, but it is worth ask-

ing where the functional forms and constants come
from. In other words, how should the macroscopic,
population-level model be derived from individual be-
haviour, which itself can be investigated in detail?
This article will outline briefly some of the fluid me-
chanical aspects which have been or are being inves-
tigated to shed light on both the individual and the
collective behaviour of swimming micro-organisms.
There will be a natural but perhaps undesirable em-
phasis on work in which the writer has been involved;
readers should take these as examples of the sort of
research that may be of interest rather than an ex-
clusive definition of the field.

Figure 1: A “minimum model” for plankton
population dynamics. Arrows between boxes

represent predator-prey interactions; the letter T by
an arrow means that turbulence may have an

influence [1, 2].

2 Individual behaviour
The question of how micro-organisms swim has

attracted fluid dynamicists for over 50 years, the pi-
oneers being G.I. Taylor [3] and James Lighthill [4].
The Reynolds numbers of the cells in question, and of
their moving appendages, are very small so inertia is
negligible. It follows that the appendages cannot exe-
cute purely reversible motions if the cells are to make
progress. Biflagellate algae such as Chlamydomonas
spp execute a sort of low-Reynolds-number breast-
stroke; monoflagellates and sperm send unidirectional
waves along their flagella; bacteria generate thrust
from a bundle of rotating, fairly rigid flagella; ciliates
beat large numbers of cilia in the form of co-ordinated
waves. The hydrodynamics of such propulsive devices
was first investigated using the rather crude (but ex-
tremely useful) resistive force theory [5,6], according



to which the normal and tangential components of
the force exerted on the fluid by one short segment
of a beating flagellum are directly proportional to the
normal and tangential components of the velocity of
that segment relative to the fluid far away, but with
different, constant, coefficients of proportionality KN
and KT (KN is nearly twice as large as KT for a seg-
ment of a circular cylinder). The next level of sophis-
tication is to use slender body theory [4,7,8,9], and
these days it is feasible to do complete simulations
using the boundary element method [10].

If an organism is neutrally buoyant then the net
force acting on the whole organism is zero, an impor-
tant constraint in the theory. If it is homogeneous,
then the net torque on the organism must also be
zero. However, most micro-organisms are denser than
water and tend to sediment, though at a speed that is
much smaller than their swimming speed. For exam-
ple, dead Chlamydomanas nivalis sediment at about
3µm s−1 while live ones swim at over 50µm s−1. In
addition, C. nivalis naturally tend to swim upwards,
on average, against gravity (though individual trajec-
tories are very erratic). This is probably not because
they have a sophisticated molecular ”gravi sensor”:
there are at least two passive mechanical mechanisms
that can cause them to do so.

The first and most popular is that they are
bottom-heavy, so a deviation from the vertical gen-
erates a gravitational torque that rotates them back
towards the vertical again (albeit slowly, against the
viscous torque set up by such rotation) [11, 12]. An
alternative proposed mechanism, that has the same
effect, is based on a cell’s asymmetric shape rather
than its asymmetric mass distribution: as C. nivalis,
for example, sediments slowly relative to the fluid,
the drag on its (beating)flagella will exert a torque to
rotate them towards the upwards vertical, thus caus-
ing the cell to swim upwards in still water without
being bottom-heavy [13]. Sperm, with the flagellum
behind, would presumably tend to swim downwards.
A consequence of either of these upswimming mecha-
nisms is that the swimming direction, relative to the
fluid, will change when the cell is put into a shear
flow which exerts a viscous torque on the cell. For
example, in a vertically downwards shear flow, cells
will tend to swim towards the zone of largest down-
wards velocity. Having predicted the effect, Kessler
observed it in a downwards pipe flow, in which cells
were focused in a thin green line on the axis [11].

As stated above, bacteria generate thrust and
thereby swim in a roughly straight line, by rotating
a sort of corkscrew behind them. This corkscrew is
formed from a number of individual flagella each of
which rotates in its socket in the cell membrane. They
come together when the rotation is counter clockwise.
From time to time (stochastically) the flagellar mo-
tors turn clockwise. Then the flagella can no longer fit
together; they fly apart, and the cell tumbles, setting
off on a run in a new direction [14]. The details of this
process have been thoroughly investigated only for
Escherichia coli (a gut bacterium) but it is presumed
that other bacteria behave similarly. How the rotat-
ing flagella come together in a bundle when rotating
counter clockwise is itself a fluid mechanical problem.
Recent studies suggest that bundling could occur pas-
sively if the flagella were slightly flexible [15,16], but
there is more detailed work to be done.

It is known that bacteria exhibit chemotaxis - a
tendency to swim up gradients of chemoattractant
(food). However, they are too small to be able to

measure concentration gradients directly [17], so how
do they know to swim up the gradient? The mech-
anism (in E. coli at least) requires (a) that they can
measure concentration (i.e. ”knowing” how many
chemoreceptors on their surface are occupied), (b)
they they can remember it for a short time, so that
they can tell whether the concentration is rising or
falling with time, and (c) they can, in consequence,
alter the probability of tumbling according to the an-
swer to (b). In fact this is what they do: the tumbling
rate falls when they are swimming up a gradient, and
rises when they are swimming down it [18]. How the
chemotaxis process is affected when the bacteria are
in a shear flow, which will rotate them, has not been
investigated experimentally, but has been analysed
theoretically [19,20]. It is predicted that there are
circumstances in which they swim the wrong way!

The functions of equation (2) require that we
know the rate at which organisms take up nutrient
from the water (an equivalent problem concerns the
output of unwanted metabolites, or mate-attracting
pheromones). Even for individual cells, this problem
exhibits interesting features which have not all been
resolved. If the organism is small enough then ade-
quate nutrient uptake can be achieved, in still water,
by pure diffusion. However, larger organisms need to
enhance this rate, and can do so by moving through
or stirring the fluid around them [21].

A precise analysis of how low-Reynolds-number
stirring motions can enhance nutrient uptake has
been undertaken for a very simple model of a micro-
organism: a spherical ’squirmer’, which propels it-
self through th fluid by driving a tangential motion
along its surface [22,23]. This model was chosen for
its simplicity, not because it was meant to represent
a real organism (though it is not too bad a represen-
tation of the envelope of cilia tips in certain ciliates,
or algal colonies like Volvox, or cyanobacteria such as
the Oscillatoriaceae. The velocity field of a ’steady
squirmer’ is represented by a two-term series of so-
lutions to the Stokes equations, in which the surface
velocity on r = a is given by:

Ur = 0, Uθ =
2∑

n=1

BnVn(θ); Vn(θ)

=
2

n(n + 1)
sinθP ′n(cosθ) (3)

where (r, θ) are spherical polar co-ordinates, a is the
sphere’s radius, and the Pn are Legendre polynomi-
als. In this two-term series, B1 is proportional to
the speed at which the squirmer swims, U, and B2 is
proportional to the force-dipole, or stresslet, that it
exerts on the fluid.

In [22] the advection-diffusion equation for solute
concentration C, in the velocity field of the squirmer,
was solved numerically subject to the boundary con-
ditions C → 1 as r →∞, C = 0 on r = a. After non-
dimensionalisation the results could be expressed as
plot of the Sherwood number Sh as a function of the
Péclet number Pe for different values of the ’squirm-
ing parameter’, β = B2/B1. Here Sh is the ratio of
the actual nutrient uptake to the value it would have
through pure diffusion in a still fluid (4πaD), where
D is the solute diffusivity); Pe = Ua/D is the ratio
of advection to diffusion. Asymptotic solutions can
be found for small and for large Pe. The results are
compared with those for a rigid sphere driven through
the water at the same speed, U, by an external force.
The results confirm that squirming has negligible ef-



fect on the mass transport unless Pe > 0.2, but as Pe
rises the effect of squirming becomes more and more
important, as the concentration boundary layer on
the body surface becomes thinner. Indeed, for large
Pe it is shown that Sh ∝ Pe1/2, not Pe1/3 as for a
rigid sphere.

One question that needs to be addressed is
whether a constant C boundary condition is appro-
priate on the surface of a micro-organism? There may
be some parts of an organism’s surface across which
uptake is much faster than others so the surface con-
centration is non-uniform. Alternatively, it might be
more appropriate to consider the organelles within
the cell as sinks of solute, consuming it at a rate pro-
portional to its concentration. Then, at high Péclet
number, when the resistance to mass transport in the
fluid is low, the rate-limiting step would be the rate
at which the cell could metabolise the solute. It was
shown in [22] that in that case the Sherwood number
at high Péclet number does not increase indefinitely
but tends to a constant (albeit much greater than 1).

The value of Pe for an algal cell of radius 10µm,
swimming at 50µms−1, with a small solute of diffusiv-
ity 10−9m2s−1, is only 0.5, so the effect of swimming
or stirring is small. However, spherical colonies of
Volvox can be as big as 150µm in radius, and gener-
ate fluid motions of 100µms−1, so for them the Péclet
number is quite large and the fluid flow driven by their
flagella is very important for nutrient uptake[24].

Another aspect of nutrient uptake by small organ-
isms is that of predator-prey dynamics. At what rate
do microzooplankton encounter and consume their
phytoplankton prey? And how is this affected by
turbulence in the ambient fluid? The first coherent
models of these processes, in two papers that are al-
ready classics, were by Gerritsen & Strickler and by
Rothschild & Osborn [25,26]. The model was based
on a consideration of the volume of fluid swept out
by a swimming predator. If it swims in a straight
line at constant speed in still fluid, and if the prey
do not swim, then it will encounter all prey within a
cylinder of radius R around its trajectory, where R is
the ”contact radius”, the furthest distance at which it
perceives its prey. Thus the encounter rate (number
of contacts per unit time) is πR2VpNH , where Vp is
the predator’s swimming speed and NH is the number
density of prey. This simple swept-volume model can
be modified to account for randomly oriented prey
swimming and for turbulence; Rothschild & Osborn
obtained the following formula for the contact rate;

CR = πR2NH(V 2
p + V 2

H + 2W 2(r))1/2, (4)

where Vp, VH are the average predator and prey swim-
ming speeds and W (r) is a scale for the difference in
turbulent fluid velocities at two points separated by
a distance r. It was not clear whether r should be
chosen equal to R or not.

There were some over-simplifications in the Roth-
schild and Osborn model, so Lewis & Pedley [27] set
out to modify it and, more importantly, to test the
modified model against a numerical simulation. The
simulation consisted in placing a number of preda-
tor and prey individuals randomly in a periodic box
and allowing them to swim with random speeds and
orientations (according to specified probability dis-
tributions), recording an encounter when they came
within a distance R of each other. The fluid was
also moving randomly, with a turbulent-like incom-
pressible velocity field specified by a Fourier series,

whose terms had randomly selected wave number, fre-
quency and amplitude such that the energy spectrum
was the same as for isotropic, homogeneous turbu-
lence. Two-point correlations were not controlled so
this velocity field was different from real turbulence.
However, that would have required enormous com-
puter resources, for reasonable Reynolds numbers, as
can be seen from the corresponding work of Yamazaki
[28]. The main result, in the event, was that the mod-
ified swept-volume model (with V = R in equation
(4)) agreed rather well with the full simulations in
predicting encounter rates; the value of the model is
that it is analytical and can be used to specify the
functional forms required in equation (1).

However, encounter is not the whole story. To pre-
dict prey capture it is necessary to specify the proba-
bility of capture, given that encounter has occurred.
A simple model for this [29] led to the interesting,
if not surprising, result that if turbulence is weak or
the time taken for capture is small, then it pays the
predator to swim in order to catch prey. However, if
turbulence is strong or capture efficiency low, there
is a tendency for the prey to be swept away before
it can be captured, so it does not pay to swim; it is
better to stay still (relative to the fluid) and wait for
prey to come to you. Examples of both ’cruise’ and
’ambush’ predators are recorded in the literature.

3 Collective behaviour
We turn now to the fluid dynamic behaviour of

populations of swimming micro-organisms, in partic-
ular the phenomena of bioconvection. Bioconvection
patterns are observed in shallow suspensions of ran-
domly, but on average upwardly, swimming micro-
organisms which are a little denser than water. Im-
ages of typical bioconvection patterns formed by sus-
pensions as single-celled algae and bacteria can be
found in [12]. The basic mechanism is analogous to
that of Rayleigh-Bénard convection, in which an over-
turning instability develops when the upper regions
of fluid become denser than the lower regions. The
reason for the upswimming however depends on the
species of micro-organism: some algae are bottom-
heavy, (see above) while certain oxytactic bacteria,
such as Bacillus subtilis, swim on average up oxygen
gradients that they generate by their consumption of
oxygen.

The rational continuum modelling of bioconvec-
tion is dilute suspensions (volume fraction of cells <
0.001) has been fully described in many original pa-
pers and, in particular, in two review articles [30,31].
Here we concentrate on aspects of the phenomena or
the modelling that are not completely understood.

In a continuum model it is assumed that every
volume element, small compared with the scale of the
bulk flow, contains very many cells, so that variables
such as the cell number density n or the bulk velocity
u can be represented by their averages over the vol-
ume element. They can thus be taken to be smooth
functions of position and time t.

Averaging has to be done with care, because the
cells swim randomly - i.e. each cell undergoes a (bi-
ased) random walk, and each random walk is inde-
pendent of the trajectories of other cells. Data on
the trajectories of C. nivalis in still fluid are shown
in figure 2, from the authors of [32], where the vector
from the origin to a cross represents the vertical pro-
jection of a 1.1 second segment of a trajectory. The
bias to upswimming is clear.



Figure 2: Projections of the velocity vectors of 1.1
sec segments of trajectories of C. nivalis, represented
by the vector from the origin to the centre of each

cross (see [32]).

Perhaps the most important equation in the con-
tinuum model is the cell conservation equation:

∂n

∂t
= −∇ · [n(u + Vc)−D · ∇n], (5)

where Vc is the average cell swimming speed, rep-
resenting directed cell swimming, and the last term
represents the flux due to random cell swimming, here
modelled as a diffusive process. Both Vc and D can
be calculated if we know the probability distribution
for cell swimming velocity, incorporating both mag-
nitude and direction. The data in figure 2 provide in-
formation on this distribution, in one case. However,
assuming that the cell swimming speed was constant,
that the random reorientation experienced by a cell
was independent of its current orientation and that
the time-scale for such reorientation was small com-
pared with any other time-scale of interest, Pedley
& Kessler [33] proposed that the p.d.f. f(p)for swim-
ming direction p (a unit vector) should satisfy a quasi
steady Fokker-Planck equation. The solution of that
equation for bottom-heavy algae in a still fluid is

f(p) = µeλk·p (6)

where the unit vector k is vertically upwards, and
λ, µ are constants, which is reasonably consistent with
figure 2.

When the fluid is moving, the Fokker-Planck equa-
tion can still be used to find f (p) if it is possible to
write down an equation for (ṗ), the rate of change of
, in the absence of the random reorientations. This is
straight-forward for the bottom heavy algae, because
ṗ is determined by the balance between gravitational
and viscous torques and the latter can be evaluated
for any ambient shear flow. However, we do not have
an equation for ṗ in the case of chemotactic bacteria,
because the chemotaxis process cannot be expressed
in terms of a torque balance. In addition, there is
no general guarantee that random swimming can be
represented as a diffusion process.

In the standard model of chemotaxis in a still fluid,
first proposed by Keller and Segel [35], the cell swim-
ming term in (5) is given by Vc = χ∇C, where C is

the chemoattractant distribution (for which, in gen-
eral, another conservation equation is required) and
χ is a scalar chemotaxis parameter. The main objec-
tive of the thesis work of Bearon [19,35] was to see
under what circumstances equation (5) can still be
used for run-and-tumble, chemotaxis in a shear flow,
with some rational choice for Vc. The investigation
was highly probabilistic, starting from a master equa-
tion for Ψ(p,x, t), the number density of cells with
swimming direction p at position x and time t.

The master equation can be integrated to give an
equation of the form

∂n

∂t
= −u · ∇n−∇ · J (7)

(cf eq.(5)), where n =
∫

Ψd2p and the flux J is the
first moment of the Ψ distribution (J =

∫
Ψpd2p).

One can also obtain an equation for ∂J/∂t but that
involves the second moment, etc. It is a particular
closure assumption that the second moment can be
represented as a diffusive term; in general this may
not be done. The findings of [35], briefly, were that
the closure could be performed, and the Keller-Segel
model used in a general shear flow, only if the pertur-
bation to isotropic tumbling were small enough and
if the vorticity in the flow were much less than the
tumble rate. What to do in a general flow is still very
unclear.

All the research referred to above has been re-
stricted to dilute suspensions, in which cell-cell inter-
actions are neglected. However, there is an increas-
ing body of experimental evidence that some very in-
teresting hydrodynamic phenomena arise in concen-
trated suspensions, mainly of swimming bacteria (B.
subtilis). Mendelson et al [36] observed a popula-
tion of B. subtilis swimming in a thin liquid layer
on top of an agar gel, and reported a rich struc-
ture of meso-scale motions (by which is meant mo-
tions on length-scales intermediate between the pop-
ulation as a whole and the size or spacing of individ-
ual cells)which they called ”whorls and jets”. Dom-
browski et al [37] also observed meso-scale motions
in three-dimensional concentrated suspensions of B.
subtilis. These are not yet understood.

One approach to modelling concentrated suspen-
sions is by means of a continuum model in the form of
a mixture theory, in which the cells and the suspend-
ing fluid are regarded as two co-existent continua, in-
teracting via the laws of mechanics. This approach
was well-explained in the context of shear flows of
suspended rigid spheres by Nott & Brady [38]. A
version of the theory was applied to two-dimensional
bacterial populations by Lega & Passot [39]. Such
theories raise a number of awkward questions, such
as what do we mean by the concepts of ”pressure”
and ”viscosity” in the continuum representing parti-
cles or cells? Moreover, Lega & Passot triggered the
motion of their mixture by applying a random (white
noise) external force to the particles, despite the fact
that a neutrally buoyant swimming cell experiences
zero net force. Nevertheless, the simulation reported
by these authors did exhibit meso-scale motions. The
mixture-theory approach needs to be followed up in
greater depth.

Another approach to modelling suspensions in
which hydrodynamic cell-cell interactions are impor-
tant is being followed by Dr T. Ishikawa and myself.
It involves simulations in which each cell is followed
as it moves and in which the interaction with other



cells is analysed in a pairwise manner. Real micro-
organisms are too complicated for their geometry and
kinematics to be represented accurately in a simula-
tion of many cells. Instead we have gone back to the
”steady squirmer” introduced above. Each ’cell’ is an
identical spherical squirmer, of radius a, swimming
according to equation (3) with a given swimming
speed U and squirming parameter β. An additional
possibility is to allow the cells to be bottom-heavy, in
gravity g. The only distinction between different in-
dividuals is their orientation, or swimming direction,
p. The first step in the simulation is to calculate the
trajectories of pairs of interacting squirmers in the
absence of others. This is done by computing the vir-
tual or effective force applied to one squirmer by the
presence of another, for arbitrary initial orientations
and relative position. In the far field the effective
force can be calculated analytically, as it can in the
very near field, when the squirmers are nearly touch-
ing and lubrication theory can be used. In between
the calculation is performed numerically, using the
boundary element method. A database of the results,
covering the space of orientations and relative posi-
tions more-or-less uniformly, has been compiled and
is used to speed up the simulations of larger numbers
of spheres [40]. The macroscopic simulations are per-
formed for random conditions in a cubic domain, ex-
tended by the use of periodic boundary conditions to
represent an infinite domain. They have been used to
compute (a) the effect of squirming on the rheology of
a suspension of neutrally buoyant spheres in a simple
shear flow [41] and (b) the mean square displacement
of individual spheres: is the spreading diffusive or not
[42]? In both cases a volume fraction of 0.1 is taken as
typical. The answer in (a) is that squirming has a neg-
ligible effect on Batchelor’s [43] results for the viscos-
ity of a suspension of rigid spheres up to O(C2), when
the squirmers are not bottom-heavy, but a significant
effect when they are bottom-heavy, depending on the
orientation of the shear flow relative to g. In that
case there can also be significant non-Newtonian nor-
mal stresses. In (b), the answer is that the spreading
apart of non-bottom-heavy squirmers is correctly de-
scribed as a diffusive process (i.e. their mean square
displacement increases linearly with time t at large
times), despite the fact that all the squirmers’ mo-
tions are calculated deterministically. However, this
is valid only for time-scales greater than about 30
a/U . Current research is extending these and similar
results to larger volume fractions.
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