
Reasoning About Co–Büchi Tree Automata�

Salvatore La Torre1 and Aniello Murano1,2

1 Università degli Studi di Salerno
2 Hebrew University

{slatorre, murano}@unisa.it

Abstract. We consider co–Büchi tree automata along with both alter-
nating and generalized paradigms, as a characterization of the class of
languages whose complement is accepted by generalized Büchi tree au-
tomata. We first prove that for alternating generalized co–Büchi tree
automata the simulation theorem does not hold and the generalized ac-
ceptance does not add to the expressive power of the model. Then, we
show that the emptiness problem for this class is Exptime-complete.
For the class of languages whose complement is accepted by determin-
istic generalized Büchi tree automata, we get better complexity bounds:
we give a characterization of this class in terms of generalized co–Büchi
tree automata that yields an algorithm for checking the emptiness that
takes time linear in the product of the number of states and the number
of sets in the acceptance condition. Finally, we compare the classes of
languages whose complement is respectively accepted by deterministic
and nondeterministic Büchi tree automata with the main classes studied
in the literature.

1 Introduction

Since its early days the theory of automata had an astonishing impact in com-
puter science. Several models of automata have been extensively studied and
applied to many fields. In the sixties, with their pioneering work, Büchi [Büc62],
McNaughton [McN66], and Rabin [Rab69, Rab70] enriched this theory by intro-
ducing finite automata on infinite objects. Such automata turn out to be very
useful for those areas of computer science where nonterminating computations
are studied. They give a unifying paradigm to specify, verify, and synthesize re-
active systems [Kur94, VW86, VW94]. A system specification can be translated
into an automaton, and thus, questions about systems and their specifications
are reduced to decision problems in the automata theory. More precisely, given
a system S and its specification ϕ, we can design an automaton AS represent-
ing the system and an automaton A¬ϕ accepting all computations that violate
the specification. Thus, we can check the correctness of S with respect to ϕ by
checking the emptiness of AS ×A¬ϕ.

� This research was supported by the MIUR grants 60% 2003-2004.

Z. Liu and K. Araki (Eds.): ICTAC 2004, LNCS 3407, pp. 527–542, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

528 S. La Torre and A. Murano

In system modelling, computations can be seen as finite or infinite sequences
of system states. To model nondeterminism, it is useful and natural to arrange
computations in trees. It is worth noticing that some concurrent programs, such
as operating systems, communication protocols, and air-traffic control systems,
are intrinsically nondeterministic and nonterminating. Moreover, nondetermin-
ism is successfully used to obtain models of concurrent programs in general
(nondeterministic interleaving of atomic processes).

Automata on infinite objects recognize objects according to an acceptance
criteria. In the literature, several acceptance criteria have been fruitfully inves-
tigated on words and trees: recall Büchi, co–Büchi, Muller, Rabin, Streett, and
parity acceptance conditions (for more on these models see [GTW02]). For ex-
ample, in the Büchi condition a subset of the automaton states is defined as
accepting and a word/tree is accepted if and only if there exists a run such that
“at least an accepting state repeats infinitely often”. The co–Büchi condition
expresses the dual condition, that is, it requires that “all states that are not
accepting repeats finitely often” or equivalently “all the states that repeat in-
finitely often are accepting”. Büchi and co–Büchi conditions can be generalized
in the sense that more than one subset of states can be defined as accepting.
Thus, an infinite word/tree is accepted by a generalized Büchi automaton if and
only if for each accepting set there is at least a state that repeats infinitely
often. Consistently, an infinite word/tree is accepted by a generalized co–Büchi
automaton if and only if there is an accepting set that contains all the states
that repeat infinitely often.

Generalized Büchi and co–Büchi acceptance conditions lead to automata with
fewer states and simpler underlying structure than the corresponding standard
conditions. For example, the traditional translation of an Ltl formula ϕ to a
Büchi word automaton results in an automaton with 2O(|ϕ|×|ϕ|) states [VW94],
while using generalized Büchi automata we only need 2O(|ϕ|) states [GPVW95].
Generalized conditions have become popular in system verification and now are
fruitfully used in several applications [Kur94]. The generalized co-Büchi condi-
tion was first introduced and studied on infinite words in [Lan69]. Its extension
to infinite trees has been investigated in [LMN02].

The kind of acceptance condition influences both the closure properties and
the complexity of the decision algorithms. For generalized Büchi and generalized
co-Büchi tree automata non-emptiness is decidable in polynomial time [VW86,
LMN02], for Rabin tree automata it is known to be NP-complete [Rab69]. On the
other hand, generalized Büchi and generalized co-Büchi tree automata are not
closed under language complementation, while Rabin and Muller tree automata
are [Tho90].

Alternating tree automata along with the co–Büchi paradigm characterize
the complement of languages nondeterministically accepted by Büchi tree au-
tomata [MS87]. Here, we consider these automata along with the generalized
paradigm, namely, we consider alternating generalized co–Büchi tree automata
(AGCTA), as a direct characterization of the class of languages whose comple-
ment is accepted by generalized Büchi tree automata (co–GBTA). In [MS87], it

Reasoning About Co–Büchi Tree Automata 529

is shown that while alternation does not give more expressive power to Muller,
parity, Rabin, Street and Büchi paradigms (simulation theorem), it allows us
to get more succinct automata. For example, translating an alternating Büchi
tree automaton to a Büchi tree automaton might involve an exponential blow-
up [MS95]. Once the simulation theorem holds, emptiness for alternating au-
tomata can be checked in an easy, and often efficient, way via translation to the
corresponding nondeterministic model. For example, for an alternating Büchi
tree automaton, we can construct a language equivalent Büchi tree automaton
(which involves an exponential blow-up) and thus we can check for emptiness the
starting automaton in exponential time which matches the known lower bound
for the computational complexity of this problem.

Here, we prove that unfortunately the simulation theorem does not hold for
AGCTA. In fact, we observe that generalized co–Büchi tree automata are not
sufficiently powerful to characterize co–GBTA. We also prove that AGCTA and
alternating co–Büchi tree automata (ACTA) are polynomially equivalent, that
is, there exists a polynomial translation from an AGCTA to a language equiv-
alent ACTA and viceversa. We observe that, when the generalized and the cor-
responding non-generalized paradigms are language equivalent, the generalized
one is still of interest since it can lead to more succinct automata with evident
benefits in designing efficient algorithms. As an example, we recall that nonde-
terministic generalized Büchi word automata and nondeterministic Büchi word
automata are polynomially equivalent [Cho74]. However, computing the comple-
ment of a nondeterministic generalized Büchi automaton without constructing
first the language equivalent nondeterministic Büchi automaton, may result in
an automaton that is more succinct by an exponential factor [KV04].

Using the equivalence between AGCTA and ACTA, it follows that an AGCTA
A can be translated to a parity tree automaton with two parity sets whose size
is polynomial in the size of A. Thus, the emptiness problem for alternating
generalized co–Büchi tree automata can be decided in exponential time. This
result is also complete, since we can reduce the emptiness problem for weak
alternating Büchi tree automata that is known to be Exptime–hard [KVW00].

To characterize the class of languages whose complement is accepted by gen-
eralized deterministic Büchi tree automata (co–DGBTA) we use the generalized
co–Büchi paradigm along with the request that at least one path of an accept-
ing run must be successful (∃–acceptance). This kind of “existential” acceptance
differs from the usual request for tree automata that all paths need to be success-
ful in order to accept. With respect to the emptiness problem, this “existential”
acceptance condition is equivalent to consider the tree automaton as a word
automaton: each transition is split into several transitions (one for each state
successor). Thus, given a DGBTA A with n states and k accepting sets, we can
construct a Büchi word automaton B with O(nk) states such that the language
accepted by B is empty if and only if the complement of the language accepted
by A is empty. Using the fact that for Büchi word automata the emptiness prob-
lem is decidable in linear time [EL85], checking the emptiness for co–DGBTA
can be decided in quadratic time. We recall that an elegant characterization of

530 S. La Torre and A. Murano

co-DGBTA can be obtained via weak alternating Büchi tree automata. Unfor-
tunately, this characterization gives an exponential-time algorithm to solving
the emptiness problem for co–DGBTA, since the emptiness problem for weak
alternating Büchi tree automata is Exptime–complete [KVW00].

The rest of the paper is organized as follows. In Section 2, we give some
basic definitions and recall some results of the theory of finite automata on
infinite trees. In Section 3, we recall the concept of alternation and the main
properties of alternating tree automata. In Section 4, we consider alternation
along with the generalized co–Büchi paradigm and compare the corresponding
class of accepted languages with the main classes of languages considered in the
literature. In Section 5, we deal with the class of languages whose complement
is accepted by deterministic Büchi tree automata. Finally, we conclude with few
remarks in Section 6.

2 Preliminaries

Let Σ be an alphabet, k be a positive integer, and Dom = {0, 1, . . . , k − 1}∗.
We define an infinite k-ary Σ-tree t as a map t : Dom → Σ. The elements in
Dom are the nodes of the tree, the empty word ε corresponds to the root and
for each w ∈ Dom, wi is its i-child for i ∈ {0, 1, . . . , k − 1}. In the following,
unless differently stated, an infinite k-ary Σ-tree will be referred to simply as a
tree. Let u, v ∈ Dom, we say that u precedes v, denoted as u < v, if there exists
an x such that v = ux. Let π ⊆ Dom, π is a path of a tree t if it is a maximal
subset of Dom linearly ordered by <. If π is a path of a tree t, then t/π denotes
the restriction of the function t to the set π. We say that a symbol a ∈ Σ occurs
infinitely often in t/π if there exists an infinite number of nodes u ∈ π such that
t(u) = a. The set of symbols that occur infinitely often in t/π is denoted by
Inf(t/π).

Given a tree t and a node u ∈ Dom, we define the subtree of t rooted at u as
the tree tu such that tu(v) = t(uv), for uv ∈ Dom. Let Σ be a finite alphabet,
we denote by Tω

Σ the set of Σ-valued trees. A language is a subset of Tω
Σ . Given

a language L ⊆ Tω
Σ we denote with L the complement of L, that is, L = Tω

Σ\L.
In the following, we deal exclusively with binary trees (Dom = {0, 1}∗). All
the results we obtain also hold for k-ary trees, where k ≥ 2. According to the
introduced notation, we use t0 and t1 to denote, respectively, the subtrees of t
rooted respectively at 0 and 1 (the two children of the root). Moreover, with π0
we denote the path {0}∗.

A finite automaton on infinite trees (TA) is a tuple A = 〈Σ,Q,Q0, δ, F 〉
where Σ is the input alphabet, Q �= ∅ is a finite set of states, Q0 ⊆ Q is the set
of initial states, δ ⊆ Q×Σ×Q×Q is the transition relation, and F specifies the
acceptance condition (a condition that defines a subset of Qω, we define several
types of acceptance conditions below). Intuitively, each transition suggests a
nondeterministic choice for the next configuration of the automaton. If |Q0| = 1
and δ is a total function δ : Q×Σ → Q×Q, then A is a deterministic automaton
(DTA). Given an input tree t, a run r of A on t is a Q–tree such that r(ε) ∈ Q0,

Reasoning About Co–Büchi Tree Automata 531

DBTA

MTA

DMTA BTA

GCTA

DGCTA

�
�
�
�

��

�
�
�
�

��

��

����

Fig. 1. Relationships between (D)BTA, (D)MTA and (D)GCTA

and (r(u), t(u), r(u0), r(u1)) ∈ δ, for all u ∈ Dom. With RunA(t) we denote the
set of runs of a TA A on a tree t. Clearly, if A is deterministic then |RunA(t)| = 1.
Different classes of languages are obtained defining different notions of successful
run. A tree t is accepted by a TA A if there exists a successful run r of A on
t, that is, r satisfies the acceptance condition on all the paths of t. We consider
here the following conditions:

– a run r satisfies a generalized Büchi condition F = {F1, . . . , Fk} ⊆ 2Q iff for
each path π of r and for each set Fi ∈ F , Inf(r/π) ∩ Fi �= ∅;

– a run r satisfies a generalized co–Büchi condition F = {F1, . . . , Fk} ⊆ 2Q iff
for each path π of r there is a set Fi ∈ F such that Inf(r/π) ⊆ Fi;

– a run r satisfies a Muller condition F = {F1, . . . , Fk} ⊆ 2Q iff for each path
π of r, Inf(r/π) ∈ F ;

– a run r satisfies a Rabin condition F = {(B1, G1), . . . , (Bk, Gk)} ⊆ 2Q×Q iff
for each path π of r, there is a pair (Bi, Gi) ∈ F such that Inf(r/π)∩Bi = ∅
and Inf(r/π) ∩Gi �= ∅;

– given a partition F = {F1, F2, . . . , F2k}, k ≥ 1, of the set of states, a run r
satisfies the parity condition F iff for each path π of r the minimal index i
for which Inf(r/π) ∩ Fi �= ∅ is even.

In the following, we refer to the number k appearing in the acceptance con-
dition as the index of the corresponding automaton. Recall that Büchi and co–
Büchi conditions are defined as the corresponding generalized conditions defined
above with index 1. With L(A) we denote the language accepted by a TA A,
that is, the set of accepted trees.

To denote the different types of tree automata, we will use acronyms of the
form DXTA and XTA, where X is one of B, GB, C, GC, M, R, P. The letter
D stands for deterministic and the X is used to denote the kind of acceptance
condition: Büchi (B), generalized Büchi (GB), co-Büchi (C), generalized Co–
Büchi (GC), Muller (M), Rabin (R) and parity (P). For example, deterministic
co–Büchi tree automata are denoted by DCTA. We also use the same acronyms
to denote the corresponding class of accepted languages.

Figure 1 recalls the known relationships between all the considered classes
of tree languages (automata) [Rab70, LMN02, Tho90, GTW02]. Since Rabin and
parity conditions are equivalent to the Muller condition, the classes of languages

532 S. La Torre and A. Murano

accepted by the corresponding tree automata coincide in both the deterministic
and nondeterministic paradigms. Thus, when we compare the class of languages
we only refer to MTA and DMTA, and the obtained results clearly apply to the
other classes. Analogously, since the class of languages (D)GBTA and (D)BTA
coincide, in the language comparisons we only refer to (D)BTA.

The following theorem summarizes the closure properties of the above classes
of automata and languages [Tho90, LMN02].

Theorem 1

– DMTA, DGBTA, and DGCTA are closed under intersection, but they are
not closed under union and complementation.

– GBTA and GCTA are closed under intersection and union, but they are not
closed under complementation.

– MTA is closed under intersection, union, and complementation.

In the following theorem, we recall some known results on the decision prob-
lems for Büchi, generalized co–Büchi, Rabin, and parity tree automata.

Theorem 2

– The emptiness problem for BTA is decidable [Rab70], and is LogSpace-
complete for Ptime[VW86].

– The emptiness problem for GCTA is decidable and is in Ptime [LMN02].
– The emptiness problem for PTA is UP ∩ co–UP [Jur98]1.
– The non-emptiness problem for RTA is Np-complete [Rab69, EJ88].

3 Alternating Tree Automata

Alternating automata generalize the notion of nondeterminism by allowing sev-
eral successor states along the same branch of the tree [MS87]. Muller and Schupp
were the first to apply to tree automata the concept of alternation, introduced
by Chandra, Kozen, and Stockmeyer [CKS81]. Here we briefly recall the basic
definitions and refer to [MS95] for more details.

An alternating tree automaton is a TA with the transition relation defined as
a function δ : Q×Σ → B+(K ×Q), where K is the set of directions in the tree
(K = {0, 1}, for binary trees) and B+(K ×Q) is the set of all positive boolean
combinations of pairs (d, q), where d is a direction and q is a state.

As an example, δ(q, a) = ((0, q0) ∨ (1, q1)) ∧ (1, q0) means that the automa-
ton has two nondeterministic choices: one copy of the automaton proceeds to
the 0-child of the current node entering state q0 and another copy proceeds to
the 1-child also entering state q0; or two copies proceed to the 1-child entering
respectively states q1 and q0. Hence, ∨ and ∧ in δ(q, a) represent, respectively,
choice and concurrency.

1 The class UP is a subset of NP, where each word accepted by the Turing machine
has a unique accepting run.

Reasoning About Co–Büchi Tree Automata 533

A run of an alternating automaton on a binary tree t is a ({0, 1}∗×Q)–labeled
(possibly non binary) tree such that the root is labelled (ε, q0) and labels of each
node and its successors must satisfy the transition relation δ. For example, if
t(ε) = a and δ(q0, a) = ((0, q1) ∨ (0, q2)) ∧ ((0, q3) ∨ (1, q2)), then, a run r on t
at level 1 must include a node labeled (0, q1) or a node labeled (0, q2), and must
include a node labeled (0, q3) or a node labelled (1, q2).

As for standard tree automata, we can couple different acceptance conditions
to an alternating tree automaton, defining different classes of languages and au-
tomata. To denote alternating automata, we use a prefix “A” to the acronyms
used so far. For example, we use ABTA to denote alternating Büchi tree au-
tomata, as well as the class of languages accepted by these automata.

In [Cho74], it is shown that GBTA and BTA are polynomially equivalent.
In the next lemma, we extend this result to the alternating paradigm. That is,
given an AGBTA with m states and index k, we can build a language equivalent
ABTA with O(m(k + 1)) states.

Lemma 1. Given an AGBTA A, there exists an ABTA A′ accepting L(A) and
whose size is polynomial in the size of A.

Proof. Let A = 〈Q,Σ, δ,Q0, {F1, . . . Fk}〉 be an AGBTA. Consider A′ = 〈Q ×
{0, . . . k}, Σ, δ′, Q0×{0}, Q×{k}〉 as an ABTA, such that, for each formula δ(q, σ)
in A, the automaton A′ contains a formula δ′(q, i, σ) obtained from δ(q, σ) by
coupling each pair (q′, d) in δ(q, σ) with a value j as follows: (i) j=0 if i = k, (ii)
j = i+ 1 if q ∈ Fj , or (iii) j = i otherwise. Thus, A′ enters an accepting state if
at least one state for all accepting sets from A has been visited infinitely often.
Thus, L(A′) = L(A) and the size of A′ is polynomial in the size of A.
�

In [MS87], Muller and Schupp introduced weak alternating Büchi tree au-
tomata (WABTA) as a special case for ABTA. In a WABTA, we have a Büchi
acceptance condition F ⊆ Q and there exists a partition of Q into disjoint sets,
Q1, . . . , Qm, such that for each set Qi, either Qi ⊆ F , in which case Qi is an
accepting set, or Qi∩F = ∅, in which case Qi is a rejecting set. In addition, there
exists a partial order ≤ on the collection of the Qi’s such that for every q ∈ Qi

and q′ ∈ Qj for which δ(q, σ, q′, q′′) or δ(q, σ, q′′, q′) occurs, we have Qj ≤ Qi.
Thus, transitions from a state in Qi lead to states in either the same set Qi or in
a lower one. It follows that every infinite path of a run of a WABTA ultimately
gets “trapped” within some Qi . The path then satisfies the acceptance condition
if and only if Qi is an accepting set.

The main properties about weak alternating Büchi, alternating Büchi, and
alternating parity tree automata are summarized in the following theorem. We
recall that an alternating automaton is deterministic if and only if the transition
relation δ does not use ∨ [MS95].

Theorem 3

– Given an A(D)BTA (resp., an A(D)PTA) A, there exists a (D)BTA (resp., a
(D)PTA) accepting L(A), whose size is exponential in the size of A [MS87].

534 S. La Torre and A. Murano

– The emptiness problem for(W)ABTA is Exptime–complete[KVW00,MS87].
– The emptiness problem for APTA is in Exptime [EJ91,Wil01].

Directly from Lemma 1 and Theorem 3 we also get the following result.

Corollary 1. The emptiness problem for AGBTA is decidable in exponential
time.

As discussed in [MS87], an advantage of using alternation is that one can
complement an alternating automaton by dualizing its transition function and
acceptance condition. Formally, given a transition function δ, let ˜δ denote the
dual function of δ. That is, for every ϕ ∈ δ, we have ϕ̃ in ˜δ, where ϕ̃ is obtained by
ϕ switching ∨ and ∧ and by switching true and false. The dual of an acceptance
condition F , denoted as ˜F , is a condition that holds exactly on all the runs on
which F does not hold. In particular, by denoting with ˜A = 〈Q,Σ, ˜δ,Q0, ˜F 〉 the
dual automaton of an automaton A = 〈Q,Σ, δ,Q0, F 〉, the following holds.

Theorem 4. [MS87] For an ABTA A, the ACTA ˜A accepts L(A), and viceversa.

4 Alternating Generalized Co–Büchi Tree Automata

In this section, we deal with alternating tree automata along with the generalized
co–Büchi paradigm (AGCTA, for short). The definition of duality given in the
previous section, along with the result shown in Theorem 4 makes this class
a suitable choice for a direct characterization of the class of languages whose
complement is in AGBTA, as pointed out in the following.

Corollary 2. Given an AGBTA A, its dual ˜A is an AGCTA accepting L(A),
and viceversa, given an AGCTA A, its dual ˜A is an AGBTA accepting L(A).

Since A(G)CTA accepts the class of languages whose complement is accepted
by (G)BTA, in the following, we also denote the class of languages accepted by
A(G)CTA as co–(G)BTA. Lemma 2 shows that the class of languages accepted
by AGCTA is polynomially equivalent to that accepted by ACTA.

Lemma 2. Given an AGCTA A, there exists an ACTA A′ accepting L(A) and
whose size is polynomial in the size of A.

Proof. Let A be an AGCTA, from Corollary 2, it follows that there exists an
AGBTA B such that L(B) = L(A). From Lemma 1, it is possible to build an
ABTA B′ whose size is polynomial in the size of B such that L(B) = L(B′).
From Theorem 4, there exists an ACTA A′ dual to B′ such that L(B′) = L(A′).
Thus, L(A′) = L(B′) = L(B) = L(A) and the size of A′ is polynomial in the
size of A, from the definition of duality.
�

The above lemma is useful to show the following result.

Theorem 5. The emptiness problem for AGCTA is Exptime–complete.

Reasoning About Co–Büchi Tree Automata 535

Languages Ranking
L1 = {t ∈ T ω

Σ | ∃ π, either a �∈ Inf(t/π) or b �∈ Inf(t/π)} (GCTA ∩ BTA) \ DMTA
L1 = {t ∈ T ω

Σ | ∀ π, a ∈ Inf(t/π) and b ∈ Inf(t/π)} DBTA \ GCTA
L2 = {t ∈ T ω

Σ | ∀ π, either a �∈ Inf(t/π) or b �∈ Inf(t/π)} DGCTA \ BTA
L2 = {t ∈ T ω

Σ | ∃ π, a ∈ Inf(t/π) and b ∈ Inf(t/π)} BTA \ GCTA
L3 = {t ∈ T ω

Σ | a �∈ Inf(t/π0)} (BTA ∩ GCTA ∩ DMTA) \ DBTA
L3 = {t ∈ T ω

Σ | a ∈ Inf(t/π0)} DBTA

Fig. 2. Some tree languages and their classification [LMN02]

Proof. We first show that given an AGCTA A there exists an APTA B accepting
L(A) and whose size is polynomial in the size of A. From Lemma 2, we first
translate A into an ACTA A′, whose size is polynomial in the size of A. Let
A′ = 〈Q,Σ, δ,Q0, {F}〉 be the obtained ACTA. An APTA accepting L(A′) is
the automaton B = 〈Q,Σ, δ,Q0, {Q\F, F}〉. Thus, for the emptiness problem
for AGCTA membership to Exptime follows from the fact that the size of B
is linear in the size of A′, the size of A′ is polynomial in the size of A, and the
emptiness problem for APTA is in Exptime (see Theorem 3).

For the lower bound, we observe that each weak alternating Büchi tree au-
tomaton A can be translated into a language equivalent alternating co–Büchi
tree automaton by simply interpreting its acceptance set as a co–Büchi condi-
tion. In fact, by the structure of the transition relation of a WABTA and the
property that each set of the partition of its states is either contained into or
disjoint from the acceptance set, we get that, along the paths of an accepting run
of A, the states that repeat infinitely often are only states within the acceptance
set. Since the emptiness problem for weak alternating Büchi tree automata is
Exptime–hard [KVW00], we get that the emptiness problem for ACTA, and
thus AGCTA, is Exptime-hard.
�

Directly from the above result, we also obtain the following.

Corollary 3. The universality problem for GBTA is Exptime-complete.

Proof. The upper bound follows from Corollary 2 and from the fact that the
emptiness problem for AGCTA is decidable in exponential time (Theorem 5).
For the lower bound, we observe that the universality problem for automata on
finite trees is Exptime–hard [Sei90].
�

We now study the relationships between co–BTA and the classes of languages
we have introduced in the previous sections. For this purpose, in Figure 2 we list
some languages along with their ranking relatively to the classification illustrated
in Figure 1. For more details see [LMN02]. For all these languages we assume
that Σ = {a, b}. Since the classes of languages co–GBTA, co–BTA, AGCTA,
and ACTA coincide, in the following we only use co–BTA to refer to this class.

Lemma 3. co–BTA � GCTA.

Proof. This result can be shown using the languages L1 and L1. From the table
in Figure 2, we know that L1 ∈ BTA, thus L1 ∈ co–BTA, while L1 �∈ GCTA.
�

536 S. La Torre and A. Murano

Directly from the non–equivalence between generalized co–Büchi and alter-
nating generalized co–Büchi paradigms shown in Lemma 3, we get the following
important result for the latter.

Theorem 6. The simulation theorem does not hold for alternating generalized
co–Büchi tree automata.

The following lemma states the results of all the remaining comparisons in-
volving the class co–BTA. The complete picture of the relationships among all
discussed classes is given in Figure 3.

Lemma 4

1. GCTA ⊂ co–BTA.
2. DMTA ⊂ co–BTA.
3. BTA and co–BTA are not comparable.
4. co–BTA �⊆ (GCTA ∪ BTA ∪ DMTA).
5. (BTA \ (GCTA ∪ DMTA)) ∩ co–BTA �= ∅.
6. BTA ∪ co–BTA ⊂ MTA.

Proof. To prove that GCTA ⊆ co–BTA, we recall that any GCTA A is also
an AGCTA, and thus, from Theorem 4, L(A) is the complement of a language
accepted by the AGBTA B dual of A. Thus, the result follows from the fact that
the generalized Büchi paradigm is equivalent to Büchi. Strict containment is a
consequence of Lemma 3. Thus part 1 holds.

To prove that DMTA ⊆ co–BTA, we first observe that on a tree t, a deter-
ministic tree automaton can only check that the acceptance condition holds on
a fixed path of t, or on all paths of t. Thus, given a DMTA M , L(M) consists of
all trees such that the acceptance condition of M does not hold on a fixed path
or on a nondeterministicly selected path of t. Since a nondeterministic selection
can be easily done in BTA, and since on a single path the deterministic Muller
paradigm is equivalent to the nondeterministic Büchi one (see [Tho90]), we con-
clude that L(M) is in BTA, thus, L(M) is in co–BTA. Moreover, since GCTA
⊆ co–BTA and DMTA ⊆ co–BTA but GCTA and MTA are not comparable (see
Figure 1), we get that part 2 holds.

BTADBTADMTA

GCTA

MTA

co−BTA

�
�
�
�

�
�
�
�

��

����

����

Fig. 3. Summary of the comparisons involving co–BTA

Reasoning About Co–Büchi Tree Automata 537

Part 3 follows directly from the non–closure under complementation of BTA
(Theorem 1). Finally, to prove parts 4, 5, and 6 we can respectively use the
languages {t ∈ Tω

Σ | t0 ∈ L1 and t10 ∈ L2 and t11 ∈ L1}, {t ∈ Tω
Σ | t0 ∈ L1

and t1 ∈ L1} and {t ∈ Tω
Σ | t0 ∈ L2 and t1 ∈ L2}, where L1, L2, L3, and their

complements are given in Figure 2.
�

5 Co–DGBTA

In this section, we deal with the class of languages whose complement is de-
terministically accepted by generalized Büchi tree automata (co–DGBTA, for
short). We study the relationships of co–DGBTA with the other classes intro-
duced so far and the complexity of the emptiness problem. Clearly, from the
results obtained in the previous sections, the fact that DGBTA is polynomially
equivalent to DBTA, and the fact that DBTA is a special case of BTA, it follows
that the emptiness problem for co–DGBTA can be solved in exponential time.
Here, we prove that this problem is indeed decidable in polynomial time.

The first example of class within BTA closed under complementation has
been the remarkable characterization by Rabin [Rab72] of languages defined by
a formula of weak monadic logic (where only quantifiers over finite sets are al-
lowed): A language L is weakly definable if and only if both L and its complement
L are accepted by Büchi tree automata. In [MS87], it is shown that a language is
weakly definable if and only if it is accepted by a weak alternating Büchi tree au-
tomaton. The class of languages accepted by these automata includes co–DBTA.
In general, we have the following strict containment.

Lemma 5. DBTA ∪ co–DBTA ⊂ WABTA.

Proof. Let L = {t ∈ Tω
Σ | t0 ∈ L3 and t1 ∈ L3}, where L3 and L3 are given in

Figure 2. Since L3 is not in DBTA, it follows that L is not in DBTA ∪ co–DBTA.
On the other hand, since both L3 and L3 are in BTA, it follows that L is in
WABTA. Hence, L ∈ WABTA \(DBTA ∪ co–DBTA).
�

Recall that an alternating automaton is deterministic if and only if the tran-
sition relation δ does not use ∨ [MS95]. Directly form this definition and from
the fact that complementing a WABTA by dualization gives an automaton with
the same paradigm [MS87], we get the following characterization for co–DBTA.

Corollary 4. Each language in co–DBTA is accepted by a WABTA whose tran-
sition relation contains only disjunctions.

From Theorem 3, it follows that the emptiness problem for co–DBTA with
the characterization given by Corollary 4 can be solved in exponential time. As
we show in the following, this complexity can be reduced to a polynomial if we
use a direct approach. First observe that a tree is not accepted by a DGBTA A
if and only if the unique run r of A on t contains a path π that does not satisfy
the acceptance condition. Thus, it is possible to characterize the complement

538 S. La Torre and A. Murano

of a language accepted by a DGBTA A with an automaton that, for each tree,
nondeterministically selects a path and then deterministically checks that π does
not satisfy the acceptance condition of A. This last corresponds to check that
π satisfies the generalized co–Büchi condition obtained dualizing the acceptance
condition of A. Thus, we modify the definition of accepting run. Given a tree t
and a GCTA B with an accepting condition F = {F1, . . . , Fk}, we say that a run
r ∈ RunB(t) is ∃–successful if there exists a path π of r, such that Inf(r/π) ⊆ Fi

for some Fi ∈ F . A tree t is ∃–accepted by B if there exists an ∃–successful run of
B on t. The language ∃–accepted by B is denoted by L∃(B). In the next lemma,
we show that the ∃–acceptance along with the generalized co–Büchi paradigm
suffices to accept co–DGBTA.

Lemma 6. Given a DGBTA B, there exists a DGCTA A such that L∃(A) =
L(B). Moreover, if B is DBTA then A is DCTA.

Proof. Let L be a language whose complement is accepted by a DGBTA B =
〈Q,Σ, δ,Q0, {F1, . . . , Fk}〉. Let A = 〈Q,Σ, δ,Q0, {Q\Fi | i = 1, . . . , k}〉 be a
DGCTA. A tree t �∈ L(B) if and only if the only run r in RunB(t) (B is de-
terministic) is not successful. That is, r contains at least a path π such that
Inf(r/π)∩Fi = ∅, for some i. Thus, by the definition of ∃-acceptance, t �∈ L(B)
if and only if t ∈ L∃(A).
�

With respect to the emptiness problem, notice that the characterization of
co–DGBTA via “existential” tree automata is equivalent to consider tree au-
tomata as word automata2. In more details, given a DGBTA B, consider a
generalized co-Büchi word automaton C that is obtained from B by dualizing
the acceptance condition and splitting each transition into several transitions,
one for each state successor. That is, for each transition (s, σ, s′, s′′) of B, we get
two transitions (s, σ, s′) and (s, σ, s′′) of C. It is easy to verify that there is a tree
that is not accepted by B if and only if there is a word accepted by C. Using
this observation, we get an efficient algorithm for solving the emptiness problem
for co–DGBTA. First, we notice that a generalized co-Büchi word automaton
can be easily translated into a language equivalent generalized Büchi word au-
tomaton whose size is linear in the size of the starting automaton. Thus, given
a DGBTA B with n states and k accepting sets, we can construct a Büchi word
automaton A with O(nk) states such that the language accepted by A is empty
if and only if the complement of the language accepted by B is empty. Since the
emptiness problem for Büchi word automata is decidable in linear time [EL85],
we get that checking for the emptiness of L(B) can be done in O(nk) time. Thus,
the following theorem holds.

Theorem 7. Given a DGBTA B with n states and index k, checking if L(B)
is empty can be done in O(nk) time.

2 Tree automata generalize word automata, in the sense that a word is a tree of arity
1. Thus, we omit a formal definition of word automata here.

Reasoning About Co–Büchi Tree Automata 539

The rest of the section is devoted to compare co-DGBTA with the other
classes considered in this paper.

Lemma 7. Given a DGBTA B, there exists a GCTA A such that L(A) = L(B).
Moreover, if B is DBTA then A is CTA.

Proof. Let L be a language whose complement is accepted by a DGBTA B =
〈Q,Σ, δ,Q0, {F1, . . . , Fk}〉. We build a GCTA A that nondeterministically selects
a path and on this path checks that the acceptance condition of B does not hold.
Formally, A = 〈{q}∪Q,Σ, δ′, Q0, {{q}∪Q\Fi | i = 1, . . . , k}〉 be a GCTA, where
q �∈ Q and δ′ is defined as follows. For each (s, σ, s′, s′′) ∈ δ, the transition
relation δ′ contains (s, σ, q, s′′) and (s, σ, s′, q); moreover, δ′ contains (q, σ, q, q).
A tree t �∈ L(B) if and only if the only run r in RunB(t) (B is deterministic) is
not successful. That is, r contains at least a path π such that Inf(r/π)∩Fi = ∅,
for some i. Thus, there exists a run r in RunA(t) such that for each path π, either
Inf(r/π) = {q} or there is an i such that Inf(r/π) ⊆ Q\Fi. Hence, t �∈ L(B) if
and only if t ∈ L(A).
�

From the above construction, notice that co–DGBTA can be linearly charac-
terized by GCTA. In the next lemma, we show that co–DGBTA can be polyno-
mially characterized by BTA (notice that it is linear starting from co–DBTA).

Lemma 8. Given a DGBTA B, there exists a BTA A accepting L(B), whose
size is polynomial in the size of B.

Proof. By [Cho74], we can restrict to DBTA. Let L be a language whose com-
plement is accepted by a DBTA B = 〈Q,Σ, δ,Q0, F 〉. We build a BTA A that
nondeterministically selects a path and on this path checks that the accep-
tance condition of B does not hold. Formally, A = 〈Q′, Σ, δ′, Q′

0, F
′〉 is such

that (i) Q′ = Q×{0, 1, 2}; (ii) Q′
0 = Q0×{0}; (iii) F ′ = Q×{1, 2}; (iv) if

(s, σ, s′, s′′) ∈ δ, the transition relation δ′ contains: ((s, 0), σ, (s′, h), (s′′, 1)) and
((s, 0), σ, (s′, 1), (s′′, h)), for h ∈ {0, 2}, ((s, 1), σ, (s′, 1), (s′′, 1)), ((s, 2), σ, (s′, 2),
(s′′, 1)) for s′ ∈ Q \F , and ((s, 2), σ, (s′, 1), (s′′, 2)) for s′′ ∈ Q \F . First, observe
that size of A is linear in the size of B. Moreover, A accepts a tree t if and only
if, for the only run r of B on t (B is deterministic), there exists a path π of
r on which final states of B occur only finitely often. This is done by nonde-
terministically selecting a path π (unselected paths are marked with 1 in the
second component of the states) and then checking that the property holds on
π. For this purpose, on the selected path the second component of the states is
nondeterministically set to 2. Once 2 is entered the run stops unless only states
in Q \ F are met on the selected path. Thus, L(B) = L(A), and the lemma is
shown.
�

Let us observe that the characterizations of co–DGBTA given in Lemmas 7
and 8 yield solutions to the emptiness problem for co–DGBTA via reductions to
the same problem for GCTA and BTA, respectively. Since the best known upper
bounds on the time complexity of the emptiness problem for GBTA and GCTA

540 S. La Torre and A. Murano

BTADBTA

MTA

DMTA

GCTA

DGCTA co−DBTA

��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

����

�
�
�
�

Fig. 4. Summary of the comparisons involving co–DBTA

are both quadratic in the number of states and linear in the index of the au-
tomaton [Rab70, LMN02], the time complexity resulting from these approaches
is asymptotically worse than the upper bound stated in Theorem 7.

In the following lemmas, we complete the comparisons involving co–DBTA
and the classes GCTA, (D)BTA and DMTA. The complete picture of the com-
parisons is given in Figure 4.

Lemma 9. co–DBTA⊂GCTA∩BTA.

Proof. The inclusion co–DBTA ⊆ GCTA ∩ BTA is a direct consequence of Lem-
mas 7 and 8. To prove the strict inclusion, we can use the language L = {t ∈
Tω

Σ | t0 ∈ L1 and t1 ∈ L1}, where L1 is given in Figure 2.
�

Lemma 10

1. (a) co–DBTA ∩ DBTA �= ∅;
(b) co–DBTA ∩ (DMTA \ DBTA) �= ∅;
(c) co–DBTA \ DMTA �= ∅.

2. (a) ((BTA ∩ GCTA ∩ DMTA) \ DBTA) �⊆ co–DBTA;
(b) ((BTA ∩ GCTA) \ DMTA) �⊆ co–DBTA.

Proof. Consider first part 1. To prove statement (a), we use the language L =
{t ∈ Tω

Σ | ∀ x ∈ π0, t(x) = a}. For statements (b) and (c), we respectively use
L3 and L1 given in Figure 2.

Consider now part 2. To prove statement (a) we use L = {t ∈ Tω
Σ | t0 ∈ L3 and

t1 ∈ L3}. Finally, for statement (b) we use L = {t ∈ L | t0 ∈ L1 and t1 ∈ L1},
where L1 and L3 are given in Figure 2.
�

6 Conclusion

Büchi and co–Büchi conditions are of interest for expressing requirements over
nonterminating computations [GTW02]. For example, consider a drink-dispenser
machine, we may want to express a requirement such as “users can always choose
in the future coffee or tea” (typically a Büchi condition). In system verification,

Reasoning About Co–Büchi Tree Automata 541

we may want to prove that the computations of a system do not violate a re-
quirement. In particular, in the automata theoretic approach, given a system
model S and its specification ϕ, we can construct an automaton A capturing
the computations of S and an automaton B capturing the negation of ϕ. Thus,
S is correct with respect to ψ if L(A) ∩ L(B) is empty [VW86, VW94]. In the
above example, the negation of the assertion consists of requiring that “users
can be prevented from choosing both coffee and tea from a given point on” (a
co–Büchi condition). Thus, to prove a model A of the drink-dispenser correct
with respect to the first requirement, we can model the second requirement as
a tree automaton with co–Büchi acceptance and check if its intersection with A
is empty.

In this paper, we have dealt with co–Büchi acceptance for branching time
specifications. As a characterization of this class we have considered alternating
generalized co–Büchi tree automata (AGCTA). We have compared the corre-
sponding class of tree languages with the main classes of languages accepted
by tree automata, showing interesting relationships. In particular, it is worth to
remark that this class strictly contains the class accepted by co–Büchi tree au-
tomata and is not comparable with that characterized via Büchi tree automata.
As a consequence of the first result we obtain that the simulation theorem does
not hold for the co–Büchi acceptance condition on tree automata.

We have also investigated the emptiness problem for AGCTA and its sub-
class of languages whose complement is accepted by deterministic generalized
Büchi tree automata (co–DGBTA). For the general class, using a simple trans-
lation to parity automata, we have proved that the emptiness for AGCTA is in
Exptime. This results is also complete since the emptiness problem for weak
alternating Büchi tree automata is Exptime-hard. For the class co–DGBTA,
we have shown a better bound, that is, the emptiness problem is decidable in
quadratic time. For this purpose, we have used a linear-time characterization
of this class of languages via generalized co-Büchi tree automata. In particular,
given a deterministic generalized Büchi tree automaton A with n states and
index k, we can check the emptiness for the complement of L(A) in time O(nk).

References

[Büc62] J.R. Büchi. On a decision method in restricted second-order arithmetic.
In Proceedings of the International Congress on Logic, Methodology, and
Philosophy of Science 1960, pages 1–12. Stanford University Press, 1962.

[Cho74] Y. Choueka. Theories of automata on ω-tapes: a simplified approach.
Journal of Computer and System Sciences, 8:117–141, 1974.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114 – 133, 1981.

[EJ88] E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics
of programs. In Proceedings 29th Annual IEEE Symp. on Foundations of
Computer Science, FOCS’88, pages 328 – 337, 1988.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determi-
nacy. In Proceedings 32nd Annual IEEE Symp. on Foundations of Com-
puter Science, FOCS’91, pages 368–377, 1991.

542 S. La Torre and A. Murano

[EL85] E.A. Emerson and C.L. Lei. Modalities for model-checking: Branching
time logic strikes back. In Proceedings of the 12th ACM Symposium on
Principles of Programming Languages, pages 84–96, 1985.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly auto-
matic verification of linear temporal logic. In Protocol Specification Testing
and Verification, pages 3 – 18. Chapman & Hall, 1995.

[GTW02] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, volume 2500 of LNCS, 2002.

[Jur98] Marcin Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP.
Information Processing Letters, 68(3):119–124, 1998.

[Kur94] R.P. Kurshan. Computer-aided Verification of Coordinating Processes: the
automata-theoretic approach. Princeton University Press, 1994.

[KV04] O. Kupferman and M.Y. Vardi. From complementation to certification. In
10th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, LNCS. Springer-Verlag, 2004.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic ap-
proach to branching-time model checking. Journal of the ACM, 47(2):312–
360, 2000.

[Lan69] L. H. Landweber. Decision problems for ω-automata. Mathematical System
Theory, 3:376–384, 1969.

[LMN02] S. La Torre, A. Murano, and M. Napoli. Weak muller acceptance condition
for tree automata. In 3rd Workshop in Verification, Model Checking, and
Abstract Interpretation, VMCAI 2002. LNCS, volume 2294: 240-254, 2002.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9:521–530, 1966.

[MS87] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees.
Theoretical Computer Science, 54:267–276, 1987.

[MS95] D. E. Muller and P. E. Schupp. Simulating alternating tree automata by
nondeterministic automata: new results and proofs of theorems of Rabin,
McNaughton, and Safra. Theoretical Computer Science, 141:69–107, 1995.

[Rab69] M.O. Rabin. Decidability of second-order theories and automata on infinite
trees. Trans. Amer. Math. Soc., 141:1 – 35, 1969.

[Rab70] M.O. Rabin. Weakly definable relations and special automata. Mathemat-
ical Logic and Foundations of Set theory, 1970.

[Rab72] M.O. Rabin. Automata on infinite objects and church’s problem. Trans.
Amer. Math. Soc., 1972.

[Sei90] H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal of
Computing, 19:424–437, 1990.

[Tho90] W. Thomas. Automata on infinite objects. In J.van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol.B, pages 133 – 191. 1990.

[VW86] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics
of programs. Journal of Computer and System Sciences, 32:182 – 211, 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Infor-
mation and Computation, 15:1 – 37, 1994.

[Wil01] Thomas Wilke. Alternating tree automata, parity games, and modal µ-
calculus. Bull. Soc. Math. Belg., 8(2), May 2001.

	Introduction
	Preliminaries
	Alternating Tree Automata
	Alternating Generalized Co--Büchi Tree Automata
	Co--DGBTA
	Conclusion

