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IN MEMORY OF MAGDY ASSEM (1954—1996)

This paper classifies all identities of degree 7 satisfied by the ternary commuta-
tor in an associative ternary algebra. (Seven is the lowest degree for which
non-trivial identities exist.) These identities are ternary generalizations of the
Jacobi identity for Lie algebras.  © 1998 Academic Press

INTRODUCTION

If n is any positive integer, then an n-algebra is a vector space 4 over a
field F together with a linear map w: A®" — A, where A®" denotes the
n-fold tensor power of A. In the case n = 3 we say that A4 is a ternary
algebra (or triple system). To simplify notation, we write a,a, - a
instead of w(a; ® a, ® - ®a,) fora, € A1 <i <n).

Given the n-algebra A, we can define a new n-ary operation o~ on the
same vector space by the formula

n

w(a;,8a,® ®a,) = Z e(m)a, a,, - a

TES,

T.nt

Here S, denotes the symmetric group on n letters, and e: S, — {+1} is
the sign homomorphism. We call this operation the n-commutator, and
usually write it as [a,a, ‘- a,]. The operation «~ is anticommutative in
the sense that [a,a, --- a,] = 0 whenever a, = a; for some i # j. We write
A~ for the n-algebra consisting of the vector space A with the operation
™. In the familiar case n = 2, we have an algebra A (not necessarily
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associative) with product ab, and the commutator [ab] = ab — ba satisfy-
ing the anticommutative identity [aa] = 0.

We say that A is an associative n-algebra if the ordered product of
2n — 1 elements does not depend on the position of the parentheses; that
is,

ap (@ 1) Tt Ay = Oy "'(a,' aj+n—1) Tt op—1s

whenever 1 <i <j < n. When n = 2 this reduces to the familiar identity
(ab)c = a(bc).

The commutator [ab] in an associative 2-algebra satisfies the Jacobi
identity [[ablc] + [[bcla] + [[calb] = 0. The anticommutative and Jacobi
identities together define the variety of Lie 2-algebras. The Poincaré—Bi-
rkhoff-Witt theorem implies that any Lie 2-algebra is a subalgebra of A4~
for some associative 2-algebra A. It follows that any identity satisfied by
the commutator in every associative 2-algebra follows from the Jacobi
identity.

Kurosh [K] (see also [BB, Sect. 15]) posed the question of determining
all identities satisfied by the n-commutator in an associative n-algebra. For
the case n = 3, it was shown in [B2] that there are no identities of degree
5. The purpose of this paper is (i) to show that in the case n = 3 the
simplest non-trivial identities have degree 7, and (ii) to classify all the
identities of that degree. These results are closely related to the problem
of determining the correct definition of Lie n-algebra (equivalently, deter-
mining the correct generalization of the Jacobi identity to n-algebras).
Some other papers which deal with this problem are [K], [BB], [F], [HW],
[G1], [G2], [B2], [AP].

Most of the computations referred to in this paper were programmed in
Maple V.4 and executed on a Sun Ultra 1 workstation. All the Maple
procedures are available by e-mail from the author.

STATEMENT OF THE PROBLEM USING
REPRESENTATION THEORY

In this section we express Kurosh’s problem for n = 3 in terms of the
representation theory of the symmetric group. We enumerate the permu-
tations 7, of seven letters in lexicographical order:

7, = abcdefg, T, = abcdegf, 74 = abcdfeg,

m, = abcdfge, O Tenq0 = &fedcha.

From now on we assume that the base field F is the field of complex
numbers.
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Let P§ denote the subspace of the free anticommutative ternary algebra
spanned by the distinct multilinear monomials involving k pairs of brack-
ets. Let d =d% denote the degree of these monomials, and D% the
dimension of P§. From [B2] we have

(38)1 kK1 2 3 4 5
ds=2k+1, D= kl6"- , 5 3 5 7 9 11
' DY 1 10 280 15400 1401400

The S,-module P$ has a basis consisting of

(3 ; 2) = 210 monomials of type 1: [[[ -] -] -],

1 7 )
5(3, 3 1) = 70 monomials of type 2: [[ -~ ][ ---]-].
In Tables I and Il these monomials are listed; the subscripts indicate the
position of each monomial in the lexicographical ordering of the basis of
P2, and the superscripts give the sign and the index of the corresponding
permutation of the seven letters.

Let Q% denote the subspace of the free associative ternary algebra
spanned by the (2k + 1)! permutations of 2k + 1 letters. We define a
linear map EX: P¥ — QX by expanding each commutator in PX as the
alternating sum of the six permutations of its factors:

EY: [xyz] = oz — xzy — yxz + yzx + zvy — 2.
Both P¥ and Q% are modules over the symmetric group S,, where we
define the action by permuting the symbols, not the positions. (All the
identities we consider are multilinear, so this should not cause any confu-
sion.) The commutator expansion map E% is an S,module homomor-
phism, and the space I5 of all identities of degree 2k + 1 satisfied by the
ternary commutator is the kernel of EX (and hence also an S,-module).

THE KERNEL OF THE COMMUTATOR EXPANSION MAP

It is shown in [B2] that IZ = {0}, so there are no identities for the
ternary commutator of degree 5 (that is, in which each term involves two
pairs of brackets). The remainder of this paper is devoted to studying the
space I3. For convenience we omit the sub- and superscripts on P, Q, E,
and I. Thus we are interested in the kernel I of the S;-module homomor-
phism E: P — Q. The matrix [ E] representing the linear map E has size
5040 x 280; the ij-entry is the coefficient of the ith associative monomial
in the expansion of the jth anticommutative monomial.
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Monomials of the Form [[[ ---

TABLE 1

{labe]delf '/1. (llabcldflegls™  [{labelda]ef1°
Wlabelfgldeld ™ [[labd]ce] fai7**  [lubdle fleg]d™
[labdlegie 157 Hfubd] fglee] ! H[””*]('/]f'/h;’
[Hﬂbf]'lf]whb (abeldgle 17" [[labe] Fyledits
{labflegide]sy [[["”f](/f]ff/f“ (b fldglec]H?
([labglecldflis™  [[labgleflde]s?®  [[labg]de]cf]Fy*
[[acdbe] gl ([lacd)bfleqlss [[[acd]bg]ef 'H“
((lacd) Fylbelds™ [[lacelbd] Fg)57'* [[[acelbfldg]3)
[[[HCF]@V’H“ " [Hlacel falbdl5y® Illacflbdleg)f*
[{facf)delbg) 5! {[{Mf]dg]bel_"” [lacfleg]bd] 7%
(lfacglbfldel®" ([lacgldelbf]3;*® ([[acyldflbelds™*"
([ade]bflegls® ([adelbglef1F7* [[lade]eflbglts™
(ladflbcleg)s?®  ([{adflbelegly ' [[[adflbglee]ss™
([ladfleglbelss™  (lladglble fIF7°T [[[adglbele ™
([adgleflbel*" ([[adgle flbcl3y’™ ([[ac flocldgl;>
(l[aefledlbg 2" ([[aefleglbd)z*  [[[ae fldg]belds*®
[[[aeg]bf]cd]m* [[[aeg}cd]bf]sn,‘bl [{[aeg ]Cf]”d]g—zlb
[lafglbdleelss ™ ((afglbeled)i™™ [[[afgledloe]y*®
([[bedlael F15*®® [l[bedlafleglsy™ ([bedlaglefles™
[l[bed] fglaelss® [[[ocelad] fg)d7* [[[bee]afldgles™
[[[bceldg]af]loslgg [[[bce]fglad]mazgg [[[bcf]ad]eg]l‘&gg
[[[bef)delaglios”  ([loefldglacli®  [[[be fleglad] e
{lbeglafldelty [lbegldelafIfs® [[begldflaeliy”
[ibde]afleglfit! [[[bdelaglcfliiy™ ([[bdelef]ag] 11180l
[[[bdflacleglf™ [[[bdflaeleg]iys™ ([[bdflaglee] ™ [
[[bdfleglaclys*® [[ibdglaclef] 7™ [[lbdglacleflizy >
([[bdglcflaclfz " {[{bdgleflacly ™ [[[beflacldg) iy
(l{befledlag]ise'® [[[beflegladiis®® ([[be fldg)aclrss*®
([[beglasled " (lbeglediaf] Ty * [ibegle fladliy™”
[[[bfg]ad]ce]?’llggg [{[bfg]ae]cd]ulwl [Hbfg}c‘l]“e]nlsws
([[cdelat}fg]{5\7*® [[ledelaslbglisy ™" [Hedelag]bflfsy™
[[[Cde}fglﬂb}“”’ [l[edflableglis=® Illedf]aelbg|fyy>®
({[edflbglaele®® ({[cdfleglablsy™ [{[edg] ab]ﬁflmlzm
[{ledg}belafITs™® [iledglbflael i ® Hledgle flabliyy*
([{ce flaglbdlF¥™ [[[ec flodlagl Ty [lice fTbglad]7y*
[lleegladlbf1375°° MleeglafIbdl 5" [lleeglbdiaf]s™
llefglabldelii?" Hiefgladlbel 13" [l folacibd] 15!
[[[efgldelabl ™" [[[de Flableg] ™ [lide flaclbg] i ®
([{de flbglaclii"? [[[desloglab) ™ {[[deglableft5
{{[deglbcla 1157 Uldeglhflac) 53 [ldeglefab qu‘ i
([{[df glaelbelz™" [[[dfglbe Jalzgs * [[[dFg]belaciiyy!
lle Folac]belizes™ [[lef gladlbelsr®" {[le Falbelad]gy®®

{labele gl F?
Elabdlegle f1572°

(Hobe e fldg) 5
([fabf] ”I]“/]n g
([febflegled)

[llabgldflcel 3"
{lTaede flbgl >
" {llecelbgldf 5™
[llacflbeldgl )
[[lecglbdle f1 557"
([lacgle f1balF*"
(l[ade]eglbf]5™
T [[ladflee]bglsy®
[fadg]bfleelis !
[[aeflbdleg)t*
[{laeglbeldf)"
[{laey df]bblsf ?
i
{
Il
Il
fl
(l
Il
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Monomials of the Form [[ --+

TABLE II

619

(labc]{de flg]3" [[abc}{deg}f]z_

(labd]fceglfIF*°  [[abdllcfglel7”

l[abellefgld]fy? [[abe]ldfglcliy®

l[abfl[degle]{s?  [labgllcde] f137"
(lacd][beflg)3** [[acd)[beg) f135*°
([ace]ibdg] f1357° [face]lbfgldly? ™ |
(acf]ibegldl3*® [lacf)[deg]bl3;""
(lacg][de 10} [adel[bCf]g]+289
([adf[beelg}i’™* [ladf]lbeglel};™
([adg][beflelss™® [ladg][befle]{?*
([aef][bdgle]3i*® [[acfllcdg]bls;**
([aeglledf18125"*® [lafgl(bedleli™

([abe][df glel™

[[abd][efgleld*
([abflfedelg] "
([abg][cdf]e] s
([acd]ipfglelds*®
llacel[dfg}b}3: ™
([acg]bde] £l
[[ade] [ng]f]38290
([adf][beg]c]i*®
([adg]{cef1b)3*°
([aeg][bed] 1557
[lafq] [bce]d]5857s

(labd)[ceflgl;*"  (labd][ceg] f15°
([abe] cdflglg*®  [[abe]edg]fl7s"
([abflledglely*  [[abfllcegld] i

([abgllce fldIi5® [labg]ldefle]y *°
([acd)[efglbly)™* (ace][bdf]glzs *®
llacf][bdelgl3s™ [lacsbdgle]s ™
llacgllbafle]3y™*  [[acg]be 1]z
([ade](bfglel3s™®? [ladel[cfg]blag*®
([adf[ceg]bl '™ (ladg][beel f1357°"
([aefNbedlglds"™ llaef)lbeg)dlzs™
({aeg)[bef)dI3* [aeg]bdf]e]55”
lafgllbde]clds™ [lafgllcdelblss™

({bed]lefglalS™ [lbeelidfglalsy®®  [[beflldeglalis™ [(beglideflalsy*® [[bde]lcfglalds ™
([bdf[ceglalse *** [[bdg]ce flald7 °*° [[bef][cdglaliy™®? [[beg)[cdfalgs '*® [[bfg][cde]a]+1306

Simple S,-modules will be denoted [ p], where p is a partition of 7. Thus
the 15 distinct simple S;-modules (with dimensions given in the second
row) are

[71 [61] [52] [51%] [43] [421] [41%] [3%1] [322] [321?] [31*] [2°%1] [221%] [21°] [17]
1 6 14 15 14 35 20 21 21 35 15 14 14 6 1

The space P decomposes as a direct sum P =P @& P" of S,-modules,
where P’ is the span of the 210 monomials of type 1, and P” is the span of
the 70 monomials of type 2. (It is clear that these are submodules, since
the action of S, does not affect the bracket arrangement.) We have the
following result on the S,-module structure of P’ and P”. Similar results
for the case n = 2 and 2 < k < 6 can be found in [B1].

LeEMMA.  The characters of the S;-modules P', P", and P are given in the
following table. In the partitions labelling the conjugacy classes, parts equal to
1 are omitted.

id 2 22 222 3 32 322 33 4 42 43 5 52 6 7
P 210 -50 14 -6 6 -2 2 0 0 0 O O O 00
p 700 -20 6 -4 4 -2 0 1 0 2 0 0 0 -10
P 280 -70 20 -10 10 -4 2 1 0 2 O O O -1 0

From this we obtain the multiplicities of the simple S,-modules in P', P", and
P. The modules [7), . ..,[41%] do not occur in the decomposition:

[321] [322] [321?] [31] [281] [221%] [21%] [1]
P 1 1 2 1 2 3 2 1
P’ 0 0 1 0 1 1 1 1
P 1 1 3 1 3 4 3 2



620 MURRAY BREMNER

Proof.  First choose conjugacy class representatives in S,. Apply each of
these to each monomial of type 1, and determine the trace of each
representative on P'. Then use the character table of S, to derive the
decomposition of P’. The same method applies to the monomials of type 2,
giving the decomposition of P”. (This computation took 44.46 sec.) |

The following theorem is the main result of this paper. We use the
following notation:

X! denotes the monomials of type 1,

X!(j) denotes the jth letter in X].

X!(j, k) denotes the set containing the jth and kth letters of X7,

X;(jA) denotes the permutation obtained by omitting the jth letter
of X},

Xi’(jA,z) denotes the permutation obtained by omitting the jth and
kth letters of X/.

Similarly with X" denoting the monomials of type 2.

THEOREM. The kernel I of the commutator expansion map E: P — Q has
dimension 7, and as S,-modules I = [21°] @ [1"]. A generator of I is the
alternating sum on b, ¢, d, e, f, g of l[[bcdlaelfg] + [[abcldef 1g], which can
also be expressed as

Y oe(X@)Xi+ X e(xr(D)x;.

X/(®)=a X/(V=a

A basis for I is obtained by applying to this identity the permutations with
indices 1 + 720i (0 < i < 6); in cycle notation, these are
0, (ab), (acb), (adch), (aedcb), (afedcb), (agfedch).

A generator of the six-dimensional submodule of 1 isomorphic to [21°] is
(1/12 of) the linearization of the alternating sum on c,d,e, f, g of
Al[acd]aelfg] + 2ll[cdelaflag] — [[acdllefglal, which can also be expressed
as

Y x@Y)x+ X (X(46)X
X/(1,4)={a, b} X[(4,6)={a, b}

- X e(xr(@7)xr
X/, 7)=A{a, b}

A basis for this submodule is obtained by applying to this identity the
permutations with indices 1 + 120i (0 < i < 6); these are (), (bc), (bdc),
(bedc), (bfedc), (bgfedc).

A generator (and basis) of the one-dimensional submodule isomorphic to
[1'] is (1/24 of) the alternating sum on a, b, c,d, e, f, g of [[[abclde]lfg] —
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[[abclldef 1g], which can also be expressed as

Le(X)X; -3 (X)) X

l

Proof. These calculations, like those in the lemma, were done using
Maple procedures on a Sun workstation.

The first procedure generated the 280 permutations corresponding to
the monomials of types 1 and 2. The second procedure expanded the
commutators in each of the monomials. Each expanded monomial is a list
of 6 = 216 permutations, which were stored together with their signs and
lexicographical index. The third procedure used a matrix B of size 400 X
280 (initially set to zero); it then read the rows of the matrix [ E] in blocks
of 120 into the last 120 rows of B and computed the reduced row—echelon
form of B. After all 42 (= 5040,/120) blocks were processed in this way,
the matrix B was equal to the reduced row—echelon form of [E]. (This
method was used to save memory, since the matrix [ E] was never stored all
at once.) A basis for the nullspace of B was then computed; the nullspace
of B is the same as the nullspace of [E] (This entire calculation took
4520.30 s.) The results showed that the kernel I has dimension 7. The
lemma shows that any seven-dimensional submodule of P is isomorphic to
[21°] @ [17].

A second set of procedures took the basis vectors of the nullspace of
[E], computed the result of applying the commutator expansion map to
each of these vectors, and verified that the result was always the zero
vector. This shows that each basis vector of the nullspace of [ E] is indeed
an identity satisfied by the ternary commutator. (This verification took
17.12s)

A third set of procedures determined a basis for the submodule gener-
ated by each of the basis vectors of the nullspace of [ E]. Four of the basis
vectors generated the whole kernel I, and the other three generated the
six-dimensional submodule. The first two identities in the theorem (and
the corresponding basis permutations) were obtained from these calcula-
tions. These first two identities have coefficients in {—1,0,1}. The list of
280 coefficients for the generator of I is

0000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000+-+000-+~000+=+000-+-000+-+000-+~000+-+000+-+000-+
=000+-+000-+-000+-+000-+-000-+-000+-+000-+-000+-+000-+-000+-+000-+-000
dodo—bbdodocd bttt ot ottt b o b oot b m b et d e =4+ =+=0000000000
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The list of coefficients for the generator of [21°] is

000000000000000000000000000000+-+000-+-000+-+000=+-000+-+000-+-000+-+0
00+-+000-+-000+-+000+-+000-+-000+-+000-+-000+-+000-+-000+-+000+-+000~+
~000+-+0000+-+-00-+=+00+-+-00+=+-00=+-+00+=+-00-+-+00+-+-00-+=+00+=+-0
00000000000000000000000-000+000-000+000-000+000-000-000+000~=+=+-+-=+~-

(This computation took 35,060.70 s.)

A fourth set of procedures determined a basis for the one-dimensional
submodule of I as follows. A general linear combination of the basis
vectors of the nullspace of [E] was computed. Each transposition in S,
was applied to this general vector, and the result set equal to the negative
of the general vector. The third identity in the theorem is a basis for the
solution space of these equations. This identity was checked by applying
the commutator expansion map and verifying that the result was the zero
vector. (This calculation took 169.93 s.)

The above calculations were checked by a fifth set of procedures that
read in the rows of [E] one at a time; this allowed the computer to keep
track of which rows resulted in an increase in the rank of B. The output
consisted of a list of 273 row indices corresponding to a basis of the row
space of [ E], thereby verifying that the kernel has dimension 7. These row

TABLE III
A Basis of the Row Space of the Commutator Expansion Matrix
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indices are listed in Table I11. (This calculation took 54,700.57 s to get to
row 2161 and 131,015.17 s to get to row 5040.) |
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