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Ž .IN MEMORY OF MAGDY ASSEM 1954]1996

This paper classifies all identities of degree 7 satisfied by the ternary commuta-
Žtor in an associative ternary algebra. Seven is the lowest degree for which

.non-trivial identities exist. These identities are ternary generalizations of the
Jacobi identity for Lie algebras. Q 1998 Academic Press

INTRODUCTION

If n is any positive integer, then an n-algebra is a vector space A over a
field F together with a linear map v : Amn ª A, where Amn denotes the
n-fold tensor power of A. In the case n s 3 we say that A is a ternary

Ž .algebra or triple system . To simplify notation, we write a a ??? a1 2 n
Ž . Ž .instead of v a m a m ??? m a for a g A 1 F i F n .1 2 n i

Given the n-algebra A, we can define a new n-ary operation vy on the
same vector space by the formula

vy a m a m ??? m a s e p a a ??? a .Ž . Ž .Ý1 2 n p .1 p .2 p .n
pgSn

� 4Here S denotes the symmetric group on n letters, and e : S ª "1 isn n
the sign homomorphism. We call this operation the n-commutator, and

w x yusually write it as a a ??? a . The operation v is anticommutative in1 2 n
w xthe sense that a a ??? a s 0 whenever a s a for some i / j. We write1 2 n i j

Ay for the n-algebra consisting of the vector space A with the operation
y Žv . In the familiar case n s 2, we have an algebra A not necessarily
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. w xassociative with product ab, and the commutator ab s ab y ba satisfy-
w xing the anticommutative identity aa s 0.

We say that A is an associative n-algebra if the ordered product of
2n y 1 elements does not depend on the position of the parentheses; that
is,

a ??? a ??? a ??? a s a ??? a ??? a ??? a ,Ž . Ž .1 i iqny1 2 ny1 1 j jqny1 2 ny1

whenever 1 F i - j F n. When n s 2 this reduces to the familiar identity
Ž . Ž .ab c s a bc .

w xThe commutator ab in an associative 2-algebra satisfies the Jacobi
ww x x ww x x ww x xidentity ab c q bc a q ca b s 0. The anticommutative and Jacobi

identities together define the variety of Lie 2-algebras. The Poincare]Bi-´
rkhoff]Witt theorem implies that any Lie 2-algebra is a subalgebra of Ay

for some associative 2-algebra A. It follows that any identity satisfied by
the commutator in every associative 2-algebra follows from the Jacobi
identity.

w x Ž w x.Kurosh K see also BB, Sect. 15 posed the question of determining
all identities satisfied by the n-commutator in an associative n-algebra. For

w xthe case n s 3, it was shown in B2 that there are no identities of degree
Ž .5. The purpose of this paper is i to show that in the case n s 3 the

Ž .simplest non-trivial identities have degree 7, and ii to classify all the
identities of that degree. These results are closely related to the problem

Žof determining the correct definition of Lie n-algebra equivalently, deter-
.mining the correct generalization of the Jacobi identity to n-algebras .

w x w x w x w xSome other papers which deal with this problem are K , BB , F , HW ,
w x w x w x w xG1 , G2 , B2 , AP .

Most of the computations referred to in this paper were programmed in
Maple V.4 and executed on a Sun Ultra 1 workstation. All the Maple
procedures are available by e-mail from the author.

STATEMENT OF THE PROBLEM USING
REPRESENTATION THEORY

In this section we express Kurosh’s problem for n s 3 in terms of the
representation theory of the symmetric group. We enumerate the permu-
tations p of seven letters in lexicographical order:i

p s abcdefg , p s abcdegf , p s abcdfeg ,1 2 3

p s abcdfge, ??? , p s gfedcba.4 5040

From now on we assume that the base field F is the field of complex
numbers.
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Let P k denote the subspace of the free anticommutative ternary algebra3
spanned by the distinct multilinear monomials involving k pairs of brack-
ets. Let d s dk denote the degree of these monomials, and Dk the3 3

k w xdimension of P . From B2 we have3

k 1 2 3 4 5
3k !Ž . kk k d 3 5 7 9 11d s 2k q 1, D s , 33 3 kk!6 kD 1 10 280 15400 14014003

The S -module P 3 has a basis consisting of7 3

7 w xs 210 monomials of type 1: ??? ? ? ? ? ,ž /3, 2, 2

1 7 w x w xs 70 monomials of type 2: ??? ??? ? .ž /3, 3, 12

In Tables I and II these monomials are listed; the subscripts indicate the
position of each monomial in the lexicographical ordering of the basis of
P 3, and the superscripts give the sign and the index of the corresponding3
permutation of the seven letters.

Let Qk denote the subspace of the free associative ternary algebra3
Ž .spanned by the 2k q 1 ! permutations of 2k q 1 letters. We define a

linear map Ek: P k ª Qk by expanding each commutator in P k as the3 3 3 3
alternating sum of the six permutations of its factors:

k w xE : xyz ¬ xyz y xzy y yxz q yzx q zxy y zyx.3

Both P k and Qk are modules over the symmetric group S , where we3 3 d
Ždefine the action by permuting the symbols, not the positions. All the

identities we consider are multilinear, so this should not cause any confu-
. ksion. The commutator expansion map E is an S -module homomor-3 d

phism, and the space I k of all identities of degree 2k q 1 satisfied by the3
k Ž .ternary commutator is the kernel of E and hence also an S -module .3 d

THE KERNEL OF THE COMMUTATOR EXPANSION MAP

w x 2 � 4It is shown in B2 that I s 0 , so there are no identities for the3
Žternary commutator of degree 5 that is, in which each term involves two

.pairs of brackets . The remainder of this paper is devoted to studying the
space I 3. For convenience we omit the sub- and superscripts on P, Q, E,3
and I. Thus we are interested in the kernel I of the S -module homomor-7

w xphism E: P ª Q. The matrix E representing the linear map E has size
5040 = 280; the ij-entry is the coefficient of the ith associative monomial
in the expansion of the jth anticommutative monomial.
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w xSimple S -modules will be denoted p , where p is a partition of 7. Thus7
Žthe 15 distinct simple S -modules with dimensions given in the second7

.row are
w x w x w x w 2 x w x w x w 3 x w 2 x w 2 x w 2 x w 4 x w 3 x w 2 3 x w 5 x w 7 x7 61 52 51 43 421 41 3 1 32 321 31 2 1 2 1 21 1
1 6 14 15 14 35 20 21 21 35 15 14 14 6 1

The space P decomposes as a direct sum P s PX [ PY of S -modules,7
where PX is the span of the 210 monomials of type 1, and PY is the span of

Žthe 70 monomials of type 2. It is clear that these are submodules, since
.the action of S does not affect the bracket arrangement. We have the7

following result on the S -module structure of PX and PY. Similar results7
w xfor the case n s 2 and 2 F k F 6 can be found in B1 .

LEMMA. The characters of the S -modules PX, PY, and P are gï en in the7
following table. In the partitions labelling the conjugacy classes, parts equal to
1 are omitted.

id 2 22 222 3 32 322 33 4 42 43 5 52 6 7
XP 210 y50 14 y6 6 y2 2 0 0 0 0 0 0 0 0
YP 70 y20 6 y4 4 y2 0 1 0 2 0 0 0 y1 0

P 280 y70 20 y10 10 y4 2 1 0 2 0 0 0 y1 0

From this we obtain the multiplicities of the simple S -modules in PX, PY, and7
w x w 3 xP. The modules 7 , . . . , 41 do not occur in the decomposition:

w 2 x w 2 x w 2 x w 4 x w 3 x w 2 3 x w 5 x w 7 x3 1 32 321 31 2 1 2 1 21 1
XP 1 1 2 1 2 3 2 1
YP 0 0 1 0 1 1 1 1

P 1 1 3 1 3 4 3 2
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Proof. First choose conjugacy class representatives in S . Apply each of7
these to each monomial of type 1, and determine the trace of each
representative on PX. Then use the character table of S to derive the7
decomposition of PX. The same method applies to the monomials of type 2,

Y Ž .giving the decomposition of P . This computation took 44.46 sec.

The following theorem is the main result of this paper. We use the
following notation:

X X denotes the monomials of type 1,i
XŽ . XX j denotes the jth letter in X .i i
XŽ . XX j, k denotes the set containing the jth and k th letters of X ,i i
X ˆŽ .X j denotes the permutation obtained by omitting the jth letteri

of X X,i
X ˆ ˆŽ .X j, k denotes the permutation obtained by omitting the jth andi

k th letters of X X.i

Similarly with X Y denoting the monomials of type 2.

THEOREM. The kernel I of the commutator expansion map E: P ª Q has
w 5 x w 7 xdimension 7, and as S -modules I ( 21 [ 1 . A generator of I is the7

www x x x ww xw x xalternating sum on b, c, d, e, f , g of bcd ae fg q abc def g , which can
also be expressed as

X ˆ X Y ˆ Ye X 4 X q e X 1 X .Ž . Ž .Ž . Ž .Ý Ýi i i i
X YŽ . Ž .X 4 sa X 1 sai i

A basis for I is obtained by applying to this identity the permutations with
Ž .indices 1 q 720 i 0 F i F 6 ; in cycle notation , these are

Ž. Ž . Ž . Ž . Ž . Ž . Ž ., ab , acb , adcb , aedcb , afedcb , agfedcb .
w 5 xA generator of the six-dimensional submodule of I isomorphic to 21 is

Ž .1r12 of the linearization of the alternating sum on c, d, e, f , g of
www x x x www x x x ww xw x x3 acd ae fg q 2 cde af ag y acd efg a , which can also be expressed

as
X ˆ ˆ X X ˆ ˆ Xe X 1, 4 X q e X 4, 6 XŽ . Ž .Ý Ýž / ž /i i i i

X XŽ . � 4 Ž . � 4X 1, 4 s a , b X 4, 6 s a , bi i

Y ˆ ˆ Yy e X 1, 7 X .Ž .Ý ž /i i
YŽ . � 4X 1, 7 s a , bi

A basis for this submodule is obtained by applying to this identity the
Ž . Ž . Ž . Ž .permutations with indices 1 q 120 i 0 F i F 6 ; these are , bc , bdc ,

Ž . Ž . Ž .bedc , bfedc , bgfedc .
Ž .A generator and basis of the one-dimensional submodule isomorphic to

w 7 x Ž . www x x x1 is 1r24 of the alternating sum on a, b, c, d, e, f , g of abc de fg y



TERNARY COMMUTATOR 621

ww xw x xabc def g , which can also be expressed as

e X X X X y 3 e X Y X Y .Ž . Ž .Ý Ýi i i i
i i

Proof. These calculations, like those in the lemma, were done using
Maple procedures on a Sun workstation.

The first procedure generated the 280 permutations corresponding to
the monomials of types 1 and 2. The second procedure expanded the
commutators in each of the monomials. Each expanded monomial is a list
of 63 s 216 permutations, which were stored together with their signs and
lexicographical index. The third procedure used a matrix B of size 400 =

Ž . w x280 initially set to zero ; it then read the rows of the matrix E in blocks
of 120 into the last 120 rows of B and computed the reduced row]echelon

Ž .form of B. After all 42 s 5040r120 blocks were processed in this way,
w x Žthe matrix B was equal to the reduced row]echelon form of E . This

w xmethod was used to save memory, since the matrix E was never stored all
.at once. A basis for the nullspace of B was then computed; the nullspace

w x Žof B is the same as the nullspace of E . This entire calculation took
.4520.30 s. The results showed that the kernel I has dimension 7. The

lemma shows that any seven-dimensional submodule of P is isomorphic to
w 5 x w 7 x21 [ 1 .

A second set of procedures took the basis vectors of the nullspace of
w xE , computed the result of applying the commutator expansion map to
each of these vectors, and verified that the result was always the zero

w xvector. This shows that each basis vector of the nullspace of E is indeed
Žan identity satisfied by the ternary commutator. This verification took

.17.12 s.
A third set of procedures determined a basis for the submodule gener-

w xated by each of the basis vectors of the nullspace of E . Four of the basis
vectors generated the whole kernel I, and the other three generated the

Žsix-dimensional submodule. The first two identities in the theorem and
.the corresponding basis permutations were obtained from these calcula-

� 4tions. These first two identities have coefficients in y1, 0, 1 . The list of
280 coefficients for the generator of I is
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w 5 xThe list of coefficients for the generator of 21 is

Ž .This computation took 35,060.70 s.
A fourth set of procedures determined a basis for the one-dimensional

submodule of I as follows. A general linear combination of the basis
w xvectors of the nullspace of E was computed. Each transposition in S7

was applied to this general vector, and the result set equal to the negative
of the general vector. The third identity in the theorem is a basis for the
solution space of these equations. This identity was checked by applying
the commutator expansion map and verifying that the result was the zero

Ž .vector. This calculation took 169.93 s.
The above calculations were checked by a fifth set of procedures that

w xread in the rows of E one at a time; this allowed the computer to keep
track of which rows resulted in an increase in the rank of B. The output
consisted of a list of 273 row indices corresponding to a basis of the row

w xspace of E , thereby verifying that the kernel has dimension 7. These row
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Žindices are listed in Table III. This calculation took 54,700.57 s to get to
.row 2161 and 131,015.17 s to get to row 5040.
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