
Linear Algebra and its Applications 414 (2006) 1–18
www.elsevier.com/locate/laa

Ternary analogues of Lie and Malcev algebras

Murray R. Bremner a,∗, Luiz A. Peresi b

aResearch Unit in Algebra and Logic, Department of Mathematics and Statistics,
University of Saskatchewan, 106 Wiggins Road, Saskatoon, SK, Canada S7N 5E6
bInstituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão,

1010-Cidade Universitária, CEP 05508-090 São Paulo, Brazil

Received 30 March 2005; accepted 11 September 2005
Available online 27 October 2005

Submitted by H. Schneider

Abstract

We consider two analogues of associativity for ternary algebras: total and partial associa-
tivity. Using the corresponding ternary associators, we define ternary analogues of alternative
and assosymmetric algebras. On any ternary algebra the alternating sum [a, b, c] = abc −
acb − bac + bca + cab − cba (the ternary analogue of the Lie bracket) defines a structure
of an anticommutative ternary algebra. We determine the polynomial identities of degree �7
satisfied by this operation in totally and partially associative, alternative, and assosymmetric
ternary algebras. These identities define varieties of ternary algebras which can be regarded
as ternary analogues of Lie and Malcev algebras. Our methods involve computational linear
algebra based on the representation theory of the symmetric group.
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1. Preliminaries

1.1. Binary algebras

An algebra (not necessarily associative) consists of a vector space A over a field
F together with a bilinear product

A × A → A

denoted by juxtaposition ab. The associator is the trilinear function

(a, b, c) = (ab)c − a(bc).

We call A associative if it satisfies the polynomial identity

(a, b, c) = 0

for all a, b, c ∈ A. We call A alternative if it satisfies the polynomial identities

(a, a, b) = 0 and (b, a, a) = 0

for all a, b ∈ A. If char F /= 2 then these identities are equivalent to the identities

(aσ(1), aσ(2), aσ(3)) = ε(σ )(a1, a2, a3)

for all a1, a2, a3 ∈ A, where σ ∈ S3 (symmetric group) and ε : S3 → {±1} is the sign
homomorphism. We call A assosymmetric if it satisfies the polynomial identities

(aσ(1), aσ(2), aσ(3)) = (a1, a2, a3)

for all a1, a2, a3 ∈ A. General references on the theory of nonassociative algebras are
Schafer [19] and Zhevlakov et al. [23].

The Lie bracket (or commutator) is the bilinear function

[a, b] = ab − ba.

In any associative algebra the Lie bracket satisfies anticommutativity and the Jacobi
identity

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0

for all a, b, c ∈ A. This is the minimal identity (non-trivial identity of lowest degree)
in the sense that every identity of degree � 3 satisfied by the commutator in every
associative algebra is a consequence of anticommutativity and the Jacobi identity.
These two identities define the variety of Lie algebras. (By the theorem of Poincaré,
Birkhoff and Witt, it is known that every identity satisfied by the commutator in every
associative algebra is a consequence of anticommutativity and the Jacobi identity.)
In any alternative algebra the Lie bracket satisfies anticommutativity and the Malcev
identity

[[a, c], [b, d]] = [[[a, b], c], d] + [[[b, c], d], a]
+[[[c, d], a], b] + [[[d, a], b], c]
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for all a, b, c, d ∈ A. This is the minimal identity in the sense that every identity of
degree � 4 satisfied by the commutator in every alternative algebra is a consequence
of anticommutativity and the Malcev identity. These two identities define the variety
of Malcev algebras. (It is still an open problem whether every identity satisfied by the
commutator in every alternative algebra is a consequence of anticommutativity and
the Malcev identity.) Every assosymmetric algebra is Lie-admissible: the Lie bracket
satisfies anticommutativity and the Jacobi identity. Every Lie algebra is a Malcev alge-
bra. Malcev algebras were introduced by Malcev [14] (as “Moufang–Lie algebras”)
and were given their present name by Sagle [18]. For recent developments in the theory
of Malcev algebras see Pérez-Izquierdo and Shestakov [15] and Shestakov [20].

1.2. n-Ary algebras

An n-ary algebra consists of a vector space A over a field F together with a
multilinear map

n factors︷ ︸︸ ︷
A × · · · × A → A

denoted by concatenation a1a2 · · · an.
On A we define n − 1 multilinear (2n − 1)-ary operations, called the total asso-

ciators, by

ti (a1, a2, . . . , a2n−1)

= a1 · · · (ai · · · ai+n−1) · · · a2n−1 − a1 · · · (ai+1 · · · ai+n) · · · a2n−1

for 1 � i � n − 1. We call A totally associative if it satisfies the polynomial identities

ti (a1, a2, . . . , a2n−1) = 0

for 1 � i � n − 1. We define another multilinear (2n − 1)-ary operation, called the
partial associator, by

p(a1, a2, . . . , a2n−1)

=
n∑

i=1

(−1)(n−1)ia1 · · · ai−1(ai · · · ai+n−1)ai+n · · · a2n−1.

(These definitions come from the theory of duality for quadratic operads; see Gned-
baye [6].) We call A partially associative if it satisfies the polynomial identity

p(a1, a2, . . . , a2n−1) = 0.

(In the case n = 2 both total and partial associativity reduce to binary associativity.)
We use these associators to define n-ary analogues of certain varieties of nonassoci-
ative algebras.

We call A totally alternative if it satisfies the polynomial identities

ti (a1, a2, . . . , a2n−1) = 0 whenever aj = ak for some j /= k
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for 1 � i � n. Equivalently (char F /= 2) each total associator ti is an alternating
function of its 2n − 1 arguments. We call A partially alternative if it satisfies the
polynomial identities

p(a1, a2, . . . , a2n−1) = 0 whenever aj = ak for some j /= k.

Equivalently (char F /= 2) the partial associator p is an alternating function of its
2n − 1 arguments.

We call A totally assosymmetric if each total associator ti is invariant under all
permutations of its 2n − 1 arguments. We call A partially assosymmetric if the partial
associator p is invariant under all permutations of its 2n − 1 arguments.

The alternating sum (or n-ary commutator) is the multilinear operation

[a1, a2, . . . , an] =
∑

σ∈Sn

ε(σ )aσ(1)aσ(2) · · · aσ(n).

(In the case n = 2 this reduces to the familiar Lie bracket.) We write A− for the
n-ary algebra which has the same underlying vector space as A but where the original
operation is replaced by the alternating sum. Then A− is an anticommutative n-ary
algebra in the sense that

[aσ(1), aσ(2), . . . , aσ(n)] = ε(σ )[a1, a2, . . . , an]
for every permutation σ ∈ Sn.

One way to generalize the concept of Lie algebra to the n-ary case is to consider
the minimal identities satisfied by the alternating sum in every totally or partially
associative n-ary algebra. Other n-ary analogues of Lie algebras have been introduced
by Filippov [5], Gnedbaye [6] and Hanlon and Wachs [7].

Similarly, we can generalize the concept of Malcev algebra to the n-ary case by
considering the minimal identities satisfied by the alternating sum in every totally or
partially alternative n-ary algebra. Another n-ary analogue of Malcev algebras has
been introduced by Pozhidaev [16].

1.3. Ternary algebras

In this paper we study the case n = 3. The minimal identity in the totally associative
case, which has degree 7, was found by Bremner [1]. The minimal identity in the
partially associative case, which has degree 5, was found by Gnedbaye [6].

We use computational linear algebra based on the representation theory of the
symmetric group to classify all identities of degree �7 satisfied by the alternating
sum in every totally or partially associative, alternative, or assosymmetric algebra.
With respect to the total associators we have the following results:

1. In the totally associative case, we recover the identity of Bremner [1] in degree 7;
this identity is equivalent to two irreducible identities.
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2. In the totally alternative case, we show that in degree 7 the alternating sum sat-
isfies only one of the two irreducible identities obtained in the totally associative
case.

3. In the totally assosymmetric case, we show that the identities are the same as in
the totally associative case.

With respect to the partial associator we have the following results:

1. In the partially associative case, we recover the identity of Gnedbaye [6] in degree
5, and show that it implies all the identities in degree 7.

2. In the partially alternative case, we show that there are no identities in degree �7:
the minimal identity for the alternating sum has degree �9.

3. In the partially assosymmetric case, we show that the identities are the same as in
the partially associative case.

We now specialize the definitions in the n-ary case to n = 3. We have a ternary
algebra A with product denoted abc. The alternating sum is

[a, b, c] = abc − acb − bac + bca + cab − cba.

The first and second total associators are

(abc)de − a(bcd)e, a(bcd)e − ab(cde).

Since the symmetric group S5 is generated by the two permutations (12) and (12345),
we see that total alternativity is equivalent (char F /= 2) to the multilinear identities

(abc)de − a(bcd)e + (bac)de − b(acd)e,

a(bcd)e − ab(cde) + b(acd)e − ba(cde),

(abc)de − a(bcd)e − (bcd)ea + b(cde)a,

a(bcd)e − ab(cde) − b(cde)a + bc(dea).

Total assosymmetry is equivalent to the multilinear identities

(abc)de − a(bcd)e − (bac)de + b(acd)e,

a(bcd)e − ab(cde) − b(acd)e + ba(cde),

(abc)de − a(bcd)e − (bcd)ea + b(cde)a,

a(bcd)e − ab(cde) − b(cde)a + bc(dea).

The partial associator is

(abc)de + a(bcd)e + ab(cde).

Partial alternativity is equivalent (char F /= 2) to the multilinear identities

(abc)de + a(bcd)e + ab(cde) + (bac)de + b(acd)e + ba(cde),

(abc)de + a(bcd)e + ab(cde) − (bcd)ea − b(cde)a − bc(dea).
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Partial assosymmetry is equivalent to the multilinear identities

(abc)de + a(bcd)e + ab(cde) − (bac)de − b(acd)e − ba(cde),

(abc)de + a(bcd)e + ab(cde) − (bcd)ea − b(cde)a − bc(dea).

2. Representations of the symmetric group

The first papers which used the representation theory of the symmetric group to
classify polynomial identities of algebras were Malcev [13] and Specht [21]. In the
present paper, our methods are based on Hentzel’s idea to use a computer program
to implement the structure of the group ring of the symmetric group in order to
decompose polynomial identities into components which are irreducible (in the sense
of group representations), thereby reducing the identities to the smallest possible
pieces and permitting the study of identities of higher degree than would otherwise be
possible. The original references for these computational methods are Hentzel [8,9].
Some more recent papers which discuss computational methods in the application of
representation theory to the study of polynomial identities are Bremner and Hentzel
[2,3] and Hentzel and Peresi [10,11].

2.1. The group ring FSn

We recall in outline Young’s structure theory for FSn where F has characteristic
zero. General references on the representation theory of the symmetric group are
Rutherford [17] and James and Kerber [12]. Young’s original papers are collected in
[22].

Let λ be a partition of n, and let dλ be the number of standard tableaux associated
to λ. Then FSn is isomorphic to the direct sum over all partitions λ of full matrix
subalgebras of size dλ × dλ:

FSn
∼=

⊕

λ

Mdλ(F).

In the natural representation of Sn a basis Eij (1 � i, j � dλ) of the full matrix
subalgebra corresponding to λ is given by the following construction. Enumerate the
standard tableaux corresponding to λ as T1, T2, . . . , Td where d = dλ. For tableau Ti

let Ri be the sum over the row permutations and let Ci be the alternating sum over
the column permutations. Let sij be the permutation which interchanges tableaux Ti

and Tj . Define elements Eij in FSn by

Eii = d

n!CiRi, Eij = Eiisij (i /= j).

Then we have the multiplication formula

EijEk� = εjkEi�,
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where the scalars εij take the values {−1, 0, 1}. Clifton [4] gives a rule for computing
the εij and a simple modification of the Eij which provides a basis satisfying the
usual matrix unit relations.

2.2. Polynomial identities

Let I = I (a1, . . . , an) be a multilinear nonassociative polynomial of degree n. We
think of I as an identity satisfied by some nonassociative algebra A. Suppose that
there are t distinct inequivalent association types in degree n. Then we can write

I =
t∑

i=1

I (i),

where I (i) consists of the terms of I having association type i. Since all the terms
in I (i) have the same association type, we can regard I (i) as a linear combination of
permutations of the n variables a1, . . . , an; that is, I (i) is an element of the group ring
FSn. Since there are t association types, we can regard the complete identity I as an
element of the direct sum of t copies of the group ring:

I ∈
t⊕

i=1

FSn
(i).

Each of the t copies of the group ring is the direct sum of full matrix rings corre-
sponding to the partitions of n:

I ∈
t⊕

i=1

⊕

λ

M
(i)
dλ

(F).

For each partition λ we extract the t components of I in the matrix rings corresponding
to λ, and regard I as a sum of components indexed by λ:

I =
∑

λ

I (λ), I (λ) ∈
t⊕

i=1

M
(i)
dλ

(F).

Since the matrix rings are orthogonal summands of the group ring, we can pro-
cess the components I (λ) one partition λ at a time, thereby reducing the size of the
computations very substantially.

Each component I (λ) is represented by a matrix R(I, λ) of size dλ × tdλ. Left
multiplications in the group ring are equivalent to row operations in the matrix rings.
Therefore, the reduced row-echelon form of R(I, λ) gives a canonical form for the
component of I in the irreducible representation of Sn labelled by λ. The nonzero
rows of this row canonical form are generators for the irreducible components of the
representation generated by I . The rank of this matrix (the number of independent
generators) is called the rank of the identity I in representation λ.

This construction extends in a straightforward manner to any finite set of identities
S = {I1, . . . , Ik}. For each identity Ij we obtain a matrix of size dλ × tdλ. We stack
the k matrices and obtain a matrix R(S, λ) of size kdλ × tdλ. In R(S, λ) the vertical
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blocks of size kdλ × dλ represent the component in each association type of the
representation labelled by λ generated by the k identities. As before, we consider the
row canonical form of the matrix R(S, λ) and call the rank of this matrix the rank of
the set S of identities in representation λ.

2.3. Ternary operations

2.3.1. Degree 5
We have a total of four association types: three for a nonassociative ternary oper-

ation

1: (abc)de, 2: a(bcd)e, 3: ab(cde),

and one more for an anticommutative ternary operation

4: [[abc]de].
(From now on we omit the commas in this symbol.) We consider a partition λ of 5
with corresponding irreducible representation of dimension d. For the totally asso-
ciative case we have k = 2 identities represented by a matrix of size 2d × 4d with
a zero submatrix of size 2d × d for association type 4. For the totally alternative
and assosymmetric cases we have k = 4 identities represented by a matrix of size
4d × 4d with a zero submatrix of size 4d × d for association type 4. For the partially
associative case we have k = 1 identity represented by a matrix of size d × 4d with
a zero submatrix of size d × d for association type 4. For the partially alternative
and assosymmetric cases we have k = 2 identities represented by a matrix of size
2d × 4d with a zero submatrix of size 2d × d for association type 4.

There are k = 3 trivial identities for an anticommutative ternary operation:

[[abc]de] + [[bac]de], [[abc]de] + [[acb]de], [[abc]de] + [[abc]ed].
These identities are represented by a matrix of size 3d × 4d with a zero submatrix of
size 3d × 3d for association types 1, 2, 3.

There is k = 1 identity expressing the expansion of the anticommutative type
[[abc]de] in terms of the nonassociative types. This expansion has 62 = 36 terms in
the first three association types, and one term in the fourth type, namely −[[abc]de].
It is represented by a matrix of size d × 4d .

2.3.2. Degree 7
We have a total of 14 association types: 12 for a nonassociative ternary operation

1: ((abc)de)fg, 2: (a(bcd)e)fg, 3: (ab(cde))fg,

4: a((bcd)ef )g, 5: a(b(cde)f )g, 6: a(bc(def ))g,

7: ab((cde)fg), 8: ab(c(def )g), 9: ab(cd(efg)),

10: (abc)(def )g, 11: (abc)d(efg), 12: a(bcd)(efg)

and two more for an anticommutative ternary operation:

13: [[[abc]de]fg], 14: [[abc][def ]g].
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We consider a partition λ of 7 with corresponding irreducible representation of dimen-
sion d. For a multilinear identity I = I (a, b, c, d, e) of degree 5 in a ternary operation,
we have eight distinct ways to lift I to degree 7:

I (afg, b, c, d, e), I (a, bfg, c, d, e), I (a, b, cfg, d, e),

I (a, b, c, dfg, e), I (a, b, c, d, efg), fgI (a, b, c, d, e),

f I (a, b, c, d, e)g, I (a, b, c, d, e)fg.

For the totally associative case this gives k = 16 identities in degree 7 represented by
a matrix of size 16d × 14d with a zero submatrix of size 16d × 2d for association
types 13 and 14. For the totally alternative and assosymmetric cases we have k = 32
identities represented by a matrix of size 32d × 14d with a zero submatrix of size
32d × 2d for association types 13 and 14. For the partially associative case we have
k = 8 identities represented by a matrix of size 8d × 14d with a zero submatrix of
size 8d × 2d for association types 13 and 14. For the partially alternative and asso-
symmetric cases we have k = 16 identities represented by a matrix of size 16d × 14d

with a zero submatrix of size 16d × 2d for association types 13 and 14.
There are k = 7 trivial identities for an anticommutative ternary operation:

[[[abc]de]fg] + [[[bac]de]fg], [[[abc]de]fg] + [[[acb]de]fg],
[[[abc]de]fg] + [[[abc]ed]fg], [[[abc]de]fg] + [[[abc]de]gf ],
[[abc][def ]g] + [[bac][def ]g], [[abc][def ]g] + [[acb][def ]g],
[[abc][def ]g] + [[def ][abc]g].

They are represented by a matrix of size 7d × 14d with a zero submatrix of size
7d × 12d for association types 1–12.

There are k = 2 identities expressing the expansion of the anticommutative types
[[[abc]de]fg] and [[abc][def ]g] in terms of the nonassociative types. These expan-
sions have 63 = 216 terms in the first 12 association types, and one term in types 13
and 14, namely −[[[abc]de]fg] (for the first expansion) and −[[abc][def ]g] (for
the second expansion). They are represented by a matrix of size 2d × 14d.

2.4. Computer implementation

We performed all our computations using two independent computer programs.
The first program was written in Maple by Bremner. The second program uses proce-
dures written in C by Hentzel. Both programs perform the following computations:

1. Initialization of identities stored as lists of terms of the form [p, t, c] where p is a
permutation of the variables, t is an association type, and c is a coefficient.

2. Procedures to expand the anticommutative association types as sums of terms in
the nonassociative association types.
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3. Procedures to implement the group ring of the symmetric group:
(a) generating the partitions;
(b) computing the dimension of an irreducible representation using the hook

formula;
(c) generating the standard tableaux for a given partition;
(d) computing the matrix representing a given permutation in the natural repre-

sentation for a given partition.
4. The main loop which for each partition computes and reduces the matrices of

(a) trivial identities;
(b) totally (or partially) associative (or alternative or assosymmetric) identities;
(c) expansion identities.

Both programs use arithmetic in characteristic p to control memory allocation during
the row-reduction of large matrices. The Maple program uses p = 101 and the C pro-
gram uses p = 103. Since both primes are much larger than the degree of the identities
being studied, the group ring will be semisimple, and we can expect that the ranks we
obtain will be the same as in the characteristic 0 case. This assumption is corroborated
by the fact that we obtain the same ranks in all cases using two different primes.

3. The totally associative case

The totally associative case was studied by Bremner [1] using computational linear
algebra but without the representation theory of the symmetric group. In this section
we present equivalent results expressed in terms of group representations.

3.1. Degree 5

The ranks of the identities are displayed in Table 1.
Column 2 gives the partitions of 5 corresponding to the irreducible representations

of the symmetric group S5, and column 3 gives the dimensions of the representations.

Table 1
Totally associative case, degree 5

i λ dλ Totally Associative Type 4 Trivial New
associative + expansion

1 5 1 2 3 1 1 0
2 41 4 8 12 4 4 0
3 32 5 10 15 5 5 0
4 311 6 12 18 6 6 0
5 221 5 10 15 4 4 0
6 2111 4 8 12 3 3 0
7 11111 1 2 3 0 0 0
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Column 4 gives the rank of the totally associative identities in each representation,
and column 5 gives the rank for the stacked matrix containing the totally associative
identities and the expansion identity.

Column 6 gives the rank in the last association type of the matrix from column 5:
that is, we compute the row canonical form of the stacked matrix from column 5, delete
all the rows which have a nonzero entry in the first three association types, and compute
the rank of the resulting matrix. This tells us how many distinct irreducible identities
are satisfied by the alternating sum in this representation; however, some of these
identities will be trivial identities which are consequences of the anticommutativity
of the alternating sum.

Column 7 gives the rank of the trivial identities, and column 8 gives the difference
between columns 6 and 7: this is the number of new non-trivial identities satisfied
by the alternating sum. From the last column of Table 1 we see that every identity in
degree 5 is a consequence of the trivial identities.

3.2. Degree 7

The ranks of the identities are displayed in Table 2.
Column 2 gives the partitions of 7 and column 3 gives the dimensions of the

representations.
Column 4 gives the rank of the totally associative identities (lifted to degree 7) in

each representation, and column 5 gives the rank for the stacked matrix containing
the totally associative identities and the expansion identities.

Column 6 gives the rank in the last two association types of the matrix from
column 5.

Table 2
Totally associative case, degree 7

i λ dλ Totally Associative Types 13, 14 Trivial New
associative + expansion

1 7 1 11 13 2 2 0
2 61 6 66 78 12 12 0
3 52 14 154 182 28 28 0
4 511 15 165 195 30 30 0
5 43 14 154 182 28 28 0
6 421 35 385 455 70 70 0
7 4111 20 220 260 40 40 0
8 331 21 231 273 41 41 0
9 322 21 231 273 41 41 0
10 3211 35 385 455 67 67 0
11 31111 15 165 195 29 29 0
12 2221 14 154 182 25 25 0
13 22111 14 154 182 24 24 0
14 211111 6 66 78 10 9 1
15 1111111 1 11 13 1 0 1
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Column 7 gives the rank of the trivial identities, and column 8 gives the difference
between columns 6 and 7: this is the number of new non-trivial identities satisfied
by the alternating sum. From the last column of Table 2 we see that there is one new
identity in each of the last two representations. This confirms the following result
from Bremner [1].

Theorem 1. Every identity of degree �7 satisfied by the alternating sum in every
totally associative ternary algebra is a consequence of anticommutativity in degree
3 and the following two identities in degree 7. The identity for partition 211111 is the
linearization of

∑

alt(c,d,e,f,g)

(3[[[acd]ae]fg] + 2[[[cde]af ]ag] − [[acd][efg]a])

and the identity for partition 1111111 is
∑

alt(a,b,c,d,e,f,g)

([[[abc]de]fg] − [[abc][def ]g]).

(In both cases the sum is an alternating sum over the indicated variables.)

Remark. In Bremner [1] it is shown that the two identities in Theorem 1 are together
equivalent to the single identity

∑

alt(b,c,d,e,f,g)

([[[bcd]ae]fg] + [[abc][def ]g]).

4. The totally alternative case

Every totally associative ternary algebra is totally alternative, and since there are
no identities in degree 5 for the totally associative case, it follows that there are no
identities in degree 5 for the totally alternative case.

For the same reason, in degree 7, the only representations in which the alternating
sum can satisfy an identity in the totally alternative case are the representations for
which an identity holds in the totally associative case: the last two representations.
The ranks for these two representations are displayed in Table 3.

The columns of Table 3 have the same meaning as in the totally associative case,
except that here we are using the liftings of the totally alternative identities to degree
7. These computations together with Theorem 1 establish the following result.

Theorem 2. Every identity of degree �7 satisfied by the alternating sum in every
totally alternative ternary algebra is a consequence of anticommutativity and the
first identity of Theorem 1.
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Table 3
Totally alternative case, degree 7

i λ dλ Totally Alternative Types 13, 14 Trivial New
alternative + expansion

14 211111 6 66 78 10 9 1
15 1111111 1 8 10 0 0 0

In the binary case, the commutator in an associative algebra satisfies the Jacobi
identity in degree 3, and the commutator in an alternative algebra satisfies the Malcev
identity in degree 4. The results in the ternary case are quite different: the alternating
sum in a totally associative algebra satisfies two identities in degree 7, and the alter-
nating sum in a totally alternative algebra satisfies exactly one of these identities (in
the same degree).

5. The totally assosymmetric case

Every totally associative algebra is totally assosymmetric, and since there are no
identities in degree 5 for the totally associative case, it follows that there are no
identities in degree 5 for the totally assosymmetric case.

For the same reason, in degree 7, the only representations in which the alternating
sum can satisfy an identity in the totally assosymmetric case are the representations
for which an identity holds in the totally associative case: the last two representations.
The ranks for these two representations are displayed in Table 4.

These computations together with Theorem 1 give the following result.

Theorem 3. The alternating sum satisfies the same identities of degree �7 in a totally
assosymmetric algebra as it does in a totally associative algebra.

This is not surprising in view of the fact that for binary algebras every assosym-
metric algebra is Lie-admissible.

Table 4
Totally assosymmetric case, degree 7

i λ dλ Totally Assosymm Types 13, 14 Trivial New
assosymm + expansion

14 211111 6 66 78 10 9 1
15 1111111 1 11 13 1 0 1
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6. The partially associative case

6.1. Degree 5

The ranks of the various identities are displayed in Table 5. From these ranks
we see that there is a new identity in degree 5 which is not a consequence of the
anticommutativity of the alternating sum.

Since this new identity lies in the last representation, and there is only one asso-
ciation type, the new identity must be a (nonzero) scalar multiple of the alternating
sum

∑

alt(a,b,c,d,e)

[[abc]de].

If we use the anticommutativity of the alternating sum to collect terms then we obtain
(12 times) the alternating sum over all (3, 2)-shuffles:

[[abc]de] − [[abd]ce] + [[abe]cd] + [[acd]be] − [[ace]bd]
+[[ade]bc] − [[bcd]ae] + [[bce]ad] − [[bde]ac] + [[cde]ab].

This identity (and its n-ary generalization) appears in Gnedbaye [6] and Hanlon and
Wachs [7].

6.2. Degree 7

The ranks of the identities are displayed in Table 6.
In this case we have a known identity in degree 5 which we lift to degree 7. If we

stack together the matrices representing the trivial identities and the lifted identities,
and compute the row canonical form of the stacked matrix, we obtain the same ranks as
column 6 (the last two association types). This implies that all of the new identities in
degree 7, although they are not consequences of the trivial identities for the alternating

Table 5
Partially associative case, degree 5

i λ dλ Partially Associative Type 4 Trivial New
associative + expansion

1 5 1 1 2 1 1 0
2 41 4 4 8 4 4 0
3 32 5 5 10 5 5 0
4 311 6 6 12 6 6 0
5 221 5 5 10 4 4 0
6 2111 4 4 8 3 3 0
7 11111 1 1 2 1 0 1
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Table 6
Partially associative case, degree 7

i λ dλ Partially Associative Types 13, 14 Trivial New
associative + expansion

1 7 1 8 10 2 2 0
2 61 6 48 60 12 12 0
3 52 14 112 140 28 28 0
4 511 15 120 150 30 30 0
5 43 14 112 140 28 28 0
6 421 35 280 350 70 70 0
7 4111 20 160 200 40 40 0
8 331 21 168 210 41 41 0
9 322 21 168 210 41 41 0
10 3211 35 280 350 67 67 0
11 31111 15 120 150 29 29 0
12 2221 14 112 140 26 25 1
13 22111 14 112 140 26 24 2
14 211111 6 48 60 11 9 2
15 1111111 1 8 10 2 0 2

sum, are in fact consequences of the known identity in degree 5. We therefore have
the following result.

Theorem 4. Every identity of degree �7 satisfied by the alternating sum in every
partially associative ternary algebra is a consequence of anticommutativity and the
shuffle identity in degree 5.

7. The partially alternative case

Every partially associative algebra is partially alternative, and therefore, in degree
5, the only representation in which the alternating sum can satisfy an identity in
the partially alternative case is the representation for which an identity holds in the
partially associative case: the last representation. The ranks for this representation are
displayed in Table 7.

From these computations we see that the alternating sum identity in degree 5 from
the partially associative case is not satisfied in the partially alternative case.

Table 7
Partially alternative case, degree 5

i λ dλ Partially Alternative Type 4 Trivial New
alternative + expansion

7 11111 1 0 1 0 0 0
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Table 8
Partially alternative case, degree 7

i λ dλ Partially Alternative Types 13, 14 Trivial New
alternative + expansion

12 2221 14 111 139 25 25 0
13 22111 14 106 134 24 24 0
14 211111 6 39 51 9 9 0
15 1111111 1 4 6 0 0 0

Similarly, in degree 7, the only representations in which the alternating sum can
satisfy an identity in the partially alternative case are the representations for which
an identity holds in the partially associative case: the last four representations. The
ranks for these representations are displayed in Table 8.

Since the ranks in column 8 are all zero, we have the following result.

Theorem 5. Every identity of degree �7 satisfied by the alternating sum in every
partially alternative ternary algebra is a consequence of anticommutativity. Hence
the minimal identity in this case has degree �9.

8. The partially assosymmetric case

Every partially associative algebra is partially assosymmetric, and therefore in
degree 5 the alternating sum can satisfy an identity in the partially assosymmetric
case only in the last representation. The ranks for this representation are displayed in
Table 9.

From this we see that the shuffle identity in degree 5 from the partially associative
case is also satisfied in the partially assosymmetric case.

Similarly, in degree 7 the alternating sum can satisfy an identity in the partially
assosymmetric case only in the last four representations. The ranks for these repre-
sentations are displayed in Table 10.

These computations give the following result.

Theorem 6. The alternating sum satisfies the same identities of degree �7 in a par-
tially assosymmetric algebra as it does in a partially associative algebra.

Table 9
Partially assosymmetric case, degree 5

i λ dλ Partially Assosym Type 4 Trivial New
assosym + expansion

7 11111 1 1 2 1 0 1
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Table 10
Partially assosymmetric case, degree 7

i λ dλ Partially Assosymm Types 13, 14 Trivial New
assosymm + expansion

12 2221 14 112 140 26 25 1
13 22111 14 112 140 26 24 2
14 211111 6 48 60 11 9 2
15 1111111 1 8 10 2 0 2

9. Conclusions

Our results suggest two possible directions for the definition of Lie and Malcev
algebras in the ternary case, corresponding to total and partial associativity.

In the totally associative case, we may define a ternary Lie algebra to be an algebra
with an anticommutative product satisfying the two identities of Theorem 1. Similarly,
we may define a ternary Malcev algebra to be an algebra with an anticommutative
product satisfying the identity of Theorem 2 (the first identity of Theorem 1).

In the partially associative case, we may define a ternary Lie algebra to be an
algebra with an anticommutative product satisfying the shuffle identity in degree
5 (see Theorem 4). Similarly, a ternary Malcev algebra will be an algebra with an
anticommutative product satisfying the minimal identity for the alternating sum; by
Theorem 5 we know this identity will have degree at least 9.
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