
A Comparative Study of Web Language Support for
Mobile Web Browsers

Katie A. Siek, Ashraf Khalil, Yong Liu, Nick Edmonds, Kay H. Connelly
Indiana University

Security for Ubiquitous Resources Group

{ksiek, akhalil, yonliu, ngedmond, connelly}@cs.indiana.edu

ABSTRACT
The surg of ubiquitous devices and WiFi in the last few years have
given the general public access to information via the world wide
web from anywhere at anytime. Mobile web access challenges de-
velopers to create web pages that are usable and familiar to the user
without unduly burdening the information appliance’s limited sy-
stem resources. The best way to achieve these goals is to follow the
readily available standards geared towards effective presentation of
information in a wide variety of information appliances. This paper
reports on a comprehensive comparison of six popular mobile web
browsers and the language functionality they support.

1. INTRODUCTION
Advances in network connectivity have provided us with a wide
range of ubiquitous devices designed to allow users to access con-
tent anytime from anywhere. These information appliances (PDAs,
cellular phones, etc.) utilize the world wide web to provide their
users with up-to-date information at their convenience. Because of
the limited system resources and minimal interface capabilities of
these systems, it is imperative that content be formatted such that
it places little burden on the system and retains information and
usability.

The best way to achieve these goals is to establish and follow stan-
dards geared towards effective presentation of information in a wi-
de variety of information appliances. Fortunately standards alrea-
dy exist which describe how to format the most common types of
content. The problem is that standards compliance varies among
mobile web browser vendors.

Standards compliance is particularly important in mobile devi-
ces because (1) users of these devices want to access information
quickly and with a minimal amount of interpretation and (2) users
should be presented with a manageable amount of information gi-
ven the interface constraints of their device.

In this paper, we tested and compared six popular web browsers and
the language functionality they support. We evaluated web brow-

sers on the Palm OS and Pocket PC platforms. AvantGo, Eudora-
Web (Eudora), and WebToGo are freely available while Web Pro
and Pocket Internet Explorer (Explorer) are provided with Palm
OS and Pocket PC respectively. ThunderHawk has a free 30 day
evaluation period. Specification compliance was tested by created
web pages with HTML 4.0 strict as specified in the W3C’s mobi-
le access guidelines with emphasis on CSS support, forms, frames,
image maps, tables, objects and images, and scripts.

This paper begins by reviewing the browsers and functionality we
test. We summarize our results next. We end the paper with a dis-
cussion about our results and future research directions.

2. BROWSERS
In this section we discuss how we obtained, installed, and received
web page data on the browsers.

2.1 WebPro
Our Tungsten T3 came with WebPro 3.0 preinstalled. WebPro is
not typically installed on every kind of Palm PDA. For those who
do not have WebPro on their PDA, they can easily download the
browser from [4] for $35. Since WebPro came preinstalled on our
device, we do not know how easy installation of the software is
on other devices. WebPro can view web pages by uploading them
from a memory card or the Internet via Bluetooth or WiFi access
points depending on the device’s capabilities. For our experiments,
we viewed webpages online via our Bluetooth access point and off-
line using a secure memory card.

2.2 AvantGo
AvantGo is a freely available browser available from [15]. We in-
stalled the AvantGo 5.5 Build 95 browser on our Palm PDA and
AvantGo conduit software on our desktop computer. The Avant-
Go website provides only Microsoft Window’s conduit software,
however conduit software is available for other operating system
platforms from third parties. Users log on to the AvantGo website
and identify channels (websites) they would like to download on
their PDA. The website allows users to identify how many links
should be downloaded, how often to update the webpage, and if
images should be downloaded as well. The next time the PDA is
hot synced, the channels are downloaded to the PDA for viewing.
We logged into the AvantGo website, created a custom channel
(our test suite website [13]), downloaded our test suite during a hot
sync operation, and used online and offline testing. AvantGo allows
users to view websites offline or online if the PDA is equipped with
WiFi capabilities.

1

2.3 Eudora
The EudoraWeb 2.1 browser can be downloaded for free from [1].
Installing Eudora was an easy process. The browser did not require
any special configurations before accessing the Internet. We view-
ed webpages online via our Bluetooth network. Eudora only offers
online browsing.

2.4 Pocket Internet Explorer
Explorer 4.01 was preinstalled on our iPAQ 4155. It is the default
web browser of all Pocket PC systems. There are no monthly or
annual charges. Since Explorer was preinstalled on iPAQ series de-
vices, we do know how easy installation is on other devices. Explo-
rer can view HTML files by loading them from built-in memory or
some external memory cards. Explorer can view online web pages
via Bluetooth or WiFi connections. In our experiments, we used
Explorer to browse our online test suite web pages on our WiFi
network.

2.5 ThunderHawk
ThunderHawk version 1.1 is a third party mobile web browser for
Pocket PC systems. It can be easily downloaded from [11]. The tri-
al version of this software is fully functional, but expires in 30 days.
The standard version costs $49.95 per year or $5.95 per month.
The browser is easy to install - an automatic installation program
takes care of all the file copying and registry updating tasks. Thun-
derHawk can only view web pages online. In our experiments, we
used ThunderHawk to browse our online test suite web pages via
our WiFi network.

2.6 WebToGo
WebToGo 4.1.1 can be obtained from [5] or many online shareware
sites. WebToGo is free to try, while a full version costs $33. Instal-
lation was simple and straightforward on both the Palm and Pocket
PC platforms. Configuration was likewise trivial once connectivi-
ty via WiFi was established. For our experiments we downloaded
content to local storage.WebToGo is capable of browsing both local
and remote content.

3. FUNCTIONALITY
Functionality was tested by exploring each browser’s compliance
with HTML 4.0 strict as specified in the W3C’s mobile access gui-
delines with emphasis on CSS support, forms, frames, image maps,
tables, objects and images, and scripts. Unless otherwise noted, we
used the W3C’s HTML 4.01 strict specification as our reference
when coding our test suite [7]. Our test suite is available from
[13].In this section, we describe how we coded our web pages and
explain anything we decided not to test from the specification.

3.1 CSS Support
We used a modified version of the W3C’s CSS Mobile Test Suite
for our CSS support part of the test suite [9]. The CSS Mobile Test
Suite assists web developers decide how much of the W3C’s Mo-
bile Profile a web browser supports. The test suite covers twelve
areas: CSS2 syntax and basic data types, Selectors, Assigning Pro-
perty Values, Cascading and Inheritance, Media Types, Box Model,
Visual Formatting Model, Visual Formatting Model Details, Visual
Effects, Lists, Colors and Backgrounds, Fonts, and Text.

We modified the test suite by combining some of these areas into
one area and cutting down on the number of examples they tested.
For example, if text appeared on the left side of an image, we as-
sumed text would appear on the right side of an image too if we

changed the alignment attribute. In addition to the test suite, we
used a page from CSS1’s test suite to see how much CSS1 and
CSS2 each browser supported [2].

As we stated previously, we modified W3C’s CSS Mobile Test sui-
te. Thus, our coding consisted of copying the code base over to our
server, taking out redundant examples, and modifying some of the
CSS to ensure the examples we grouped together would not inter-
fere with each other. We felt that in the time allotted, we could not
create a better test suite than the W3C had provided us.

3.2 Forms
The form part of our test suite focused on various types of con-
trols. The target control types we tested includedlabel, text
field, text area, radio button, checkbox, menu,
submit button, file select, and image. Attributes related to each type
of control were also tested. For example we tested attributes such as
border, name, src, width, height, vspace, hspace
for image control. We assign numbers and descriptions to each con-
trol on our form test to assist in finding the weaknesses of our brow-
sers. If any malfunctions were detected on a browser, the number
and description told us what part of the form failed.

3.3 Frames
We tested four frame elements in our test suite - frameset, fra-
me, target, and iframe. In the frameset element part, we tested
two attributesrows and cols . For the frame element,src ,
noresize , scrolling , and frameborder were tested. We
testedtarget and base attributes for the target element. On-
ly width andheight attributes were tested for the inline frame
element.For the inline frame, the width and height attributes are
tested. The elements and attributes we selected assisted us in un-
derstanding how well specific mobile browsers supports frames.

3.4 Image Maps
For the image map portion of our test suite, we were only intere-
sted in the client-side image map and thus only covered client-side
HTML specifications. We were not able to fully test the client-side
image map specifications because most of the specification is not
applicable to mobile browsers. Access keys, tab order, and tag in-
formation are not supported on mobile browsers that use a stylus as
opposed to a mouse or traditional keyboard for navigation.

3.5 Tables
Our test suite tested for all elements in HTML table specifications.
We did not test inherited attributes and non-visual user agents. In-
herited attributes such as document-wide identifiers and inline style
were not tested because these elements are tested elsewhere in our
test suite.

3.6 Images
When coding the images and objects part of our test suite we used
older and newer tags. HTML 4 introduced theobject tag as a way
for web developers to inserts current (images, applets, movies, etc.)
and future media types into their web pages. We decided to test the
older, non-deprecated element (img) as well as theobject tag.

As discussed before we decided not to use deprecated elements (for
instanceapplet) because the elements will not be used in the fu-
ture and are not beneficial to future web developers if the browsers
eventually do not support them. We opted to use theobject tag

2

for embedded web pages instead of theiframe tag because we
testediframe in our frames part of the test suite.

<OBJECT data="./code/pics/mark.png" type="image/png">
Object tag with png image
</OBJECT>

<OBJECT data="./code/pics/mark.gif" type="image/gif">
Object tag with gif image
</OBJECT>

Figure 1: Example ofobject tag with various image types.

The first part of our images test suit tested the use of theobject
tag with various image types (png, gif, jpeg, tiff) as shown in Figu-
re 1. The second part of our image test suite tested the use of the
img tag with different attribute parameters for the short description
(alt , long description (longdesc), height and width. The third
part of our image test suite tested how theobject tag handled
multimedia (video, flash, etc.). Finally, we finished the test suite by
embedding a web page using anobject tag.

3.7 Scripts
Initially our examination of scripting support was aimed at evalua-
ting how completely and correctly each browser implemented Ja-
vaScript. Since we were evaluating standards compliance we elec-
ted to use the ECMAScript ECMA-262 3rd edition standard [8].

Despite the large amount of Java/ECMAScript in use on the web,
very little of the content is strictly standards compliant. Because
of the liberties taken by browser developers in implementing EC-
MAScript, many web developers have developed a library of tips,
tricks, and kludges to allow their scripts to work on a variety of
browsers. Because we were evaluating standards compliance as op-
posed to trying to write portable code, many excellent sites were of
little use in testing our browsers.

In the absence of a good ECMAScript test suite, we elected to test
compliance with the underlying Document Object Model (DOM)
in the hopes that compliance at this level would provide a good in-
dication of scripting support. Additionally, the W3C has a DOM
test suite available which is accessible via the web and runs in a
browser, as opposed to via an external Java framework [6] [3]. The
W3C’s test suite also conveniently provides a list of each failed test
which would make it very easy to compare the browsers. Unfortu-
nately while the DOM test suite ran well on several conventional
browsers, none of the mobile browsers were able to successfully
load the testing harness, which prevented them from being able to
run the test suite. Reasons ranged from difficulties with frames to
an inability to load some or all of the test harness code. These diffi-
culties elucidate the need for a lightweight test suite that has fewer
built-in assumptions about browser capabilities.

Having been frustrated by the inability of our browsers to run
the full featured test suite available, we settled for coding some
basic JavaScript tests and borrowing others from sources on the
web [12] [16]. These tests include simple tests of core functionali-
ty and basic event handling.

4. RESULTS
In this section we will compare and contrast how each functionality
was handled by mobile web browsers. For each functionality, we
will discuss specifically what was tested and how we created ratings
for each browser’s performance.

4.1 CSS
Before testing for specific CSS functionality, we used the W3C’s
CSS1 versus CSS2test. We found that most of our browsers fully
supported basic CSS1 functionality, however few supported CSS2
functionality as shown in Table 1.Once we had our results,we deci-
ded to test more CSS1 specific functionality than CSS2.

For thesyntax and basic type test, we saw if browsers could inter-
pret comments correctly, follow margin sizes, font sizes, and side
bar coloring. Explorer was the only browser that could interpret
all of the CSS code correctly. WebToGo rendered the comment,
length, and font test correctly. WebPro and ThunderHawk were ab-
le to read the comments correctly, but nothing else. Thus, WebPro
and ThunderHawk do not fully support syntax and basic types.

The color of words, sentences, and headings were tested in these-
lectors and universal selectors tests. We found that the browsers
either supported selectors and universal selectors or did not, with
WebToGo being the only exception. WebToGo mistakenly read a
selector that started with a digit, thus failing one of our selector
tests.

For theimportance testwe checked to see if the CSS rule deemed
important! could override other conflicting rules. Only Explo-
rer, ThunderHawk, and WebToGo interpretedimportant! rules
correctly.

The inheritance testworks similar to any other programming lan-
guage. If a CSS rule says the web page has a yellow background
and black text and another rule says that a specific selector,P has
green text, then whenP is used the green text will appear on a yel-
low background inherited from the first rule. Inheritance was fully
supported by Explorer, ThunderHawk, and WebToGo. WebPro had
difficulty using inheritance withimportant! rules and thus only
partially supported inheritance.

Thecascading order testensured various bullet points could have
different colors. Explorer, ThunderHawk and WebPro fully suppor-
ted bullet points in various colors. WebToGo partially supported the
cascading order test because the browser only used the first casca-
ding order rule (LI), even when we used two unordered lists and
had a rule for the embedded list (LI LI).

The import testinsured the browsers could read an imported CSS
file and use the rules. Similar to our other tests, Explorer, Thunder-
Hawk, WebPro, and WebToGo fully supported the import test.

Themedia dependent testensured the browsers could interpret CSS
rules specific to handheld computers. Only WebPro, ThunderHawk,
and Explorer successfully interpreted the handheld specific CSS
rules.

We created colorful boxes around words and sentences totest bor-
der support. Explorer was the only browser that rendered the color-
ful boxes around the words and sentences. WebPro and AvantGo
created light grey boxes around the specific words and sentences.

In themargin test, we looked for specific colors in the margin and
margin sizes. WebPro, ThunderHawk, and Explorer successfully
completed the test. AvantGo was only able to show the correct co-
lors, but no the margin sizes.

3

WebPro AvantGo Eudora Explorer ThunderHawk WebToGo
CSS1 Support

IH

 # #
CSS2 Support # # #

IH IH IH

Syntax and Basic Types # # # #

IH

Selectors # #

IH
Universal Selectors # # #
Importance # # #
Inheritance

IH

Cascading Order Test # #

IH

Import # #
Media Dependence # # #
Border Test # # # # #
Margin Test

IH

#
Padding Test # # #
Background Test

IH

IH

#
Display Test # # #

IH IH

List Test # # #

IH IH IH

Font Test # # #

IH IH

#

Table 1: CSS Results

For thepadding test, we created text blocks with specific sized spa-
cing around the text.Only Explorer, ThunderHawk, and WebToGo
supports CSS padding. Even though AvantGo and WebPro did not
support padding, the text was easier to read when compared with
the hard coded padding supported in the Explorer text blocks.

Thebackground testused color backgrounds, image backgrounds,
and attached image backgrounds. Attached image backgrounds en-
sures an image stays where it is independent of scrolling. AvantGo
did not support color or image backgrounds. WebPro and Thunder-
Hawk supported color backgrounds, but not image backgrounds.
Explorer supported all backgrounds except attached image back-
grounds.

We testeddisplay functionalityby allowing text to overflow out
of text boxes, float beside images, float between images, and under
images. In addition, we tested if text could be indented properly via
rules and made invisible in our display test. Explorer was the only
browser to support all of our display tests with the exception of text
overflow. ThunderHawk supported text overflow, and text floating,
but not indentation. The browser did not let the text overflow from
the text box. AvantGo could not handle text overflow or indentati-
on rules, however the browser was able to float text correctly with
images - but only images boxes were present - no images. Web-
ToGo could only rendered indentation rules and floating text with
images correctly. WebPro did not support any of our display tests.

Listswith various bullet points were tested - letters, Roman nume-
rals, images, dots, squares, etc. Explorer supported dots, circles,
Roman numerals, letters, numbers, no bullets - everything except
images. ThunderHawk supported Roman numerals, letters, num-
bers, no bullets, images, and all kinds of bullet shapes except circles
and dots. WebToGo supported Roman numerals, letters, and num-
bers, but only rendered squares when characters were not used as
bullets. AvantGo and WebPro only supported dots or counting num-
bers as lists - no Roman numerals, letters, or images for lists.

Different font sizes, width, style, and families were tested in our
font test. Explorer could control font size, width, and style, but

could only support a small subset of font families (sans-serif and
monospace). ThunderHawk supported small cap fonts and sans-
serif fonts. WebPro and WebToGo could only support font weight.
AvantGo used the same font throughout the test with no variation.

We can see from Table 1, Explorer supports CSS the best. Current
web developers should stick with using CSS1 commands and not
expect anything but sans-serif fonts and basic listing elements.

4.2 Forms
When we compared the performance of our browsers on our form
test, we found AvantGo, Explorer, ThunderHawk, and WebToGo
had the same performance as shown in Table 2. All four brow-
sers passed tests onlabel, text field, text area,
radio button, checkbox, menu, andimage controls ..
The only element the browsers had difficulty rendering was the file
select control. In other words, the browser did not allow users to
brow the local files system to upload files. WebPro and Eudora had
slightly worse performance than the other browsers because they
failed the image control - the browsers could not render the images
properly.

4.3 Frames
Explorer and ThunderHawk outperformed the rest of the browsers,
shown in Table 3, in the frame test because they supported the
frame tag and all the associated attributes. None of the browsers
were able to render theframeborder attribute because they did
not support frames. ThunderHawk was the only browser that sup-
ported inline frame, but it could not render thenoresize attribute
properly.

Compared to Explorer and ThunderHawk, the other browsers did
not do nearly as well. WebPro only partially supported frame at-
tributes because the browser simply concatenated all the pages in
different frames into one large page. WebToGo and Eudora didn’t
support frames either. In our test, the browsers only showed links
in the position where the web contents was supposed to be. Howe-
ver, by clicking these links, users could still visit the corresponding

4

WebPro AvantGo Eudora Explorer ThunderHawk WebToGo
label control
text field control
text area control
radio button control
checkbox control
menu control
Submit button control
File select control # # # # # #
Image control # #

Table 2: Forms Results

WebPro AvantGo Eudora Explorer ThunderHawk WebToGo
rows attribute

IH

IH

cols attribute

IH

IH

src attribute

IH

#

IH

IH

noresize attribute # # # # #
scrolling attribute

IH

#
frameborder # # # # # #
target attribute

IH

#
IH

IH

base attribute

IH

#
IH

IH

Inline frame # # # # #

Table 3: Frames Results

frame web pages. AvantGo failed to open any HTML pages with
frame tags.

4.4 Image Maps
Our image map test determined if the browsers could render the
image and if users could navigate with the image map. As Table 4
shows, only Explorer fully supported image maps. ThunderHawk
partially supports image maps because the browser allowed the map
to be navigated despite not showing an image. All other browsers
failed to support the image map.

4.5 Tables
From Table 5, we can see that all of the browsers we tested with the
exception of ThunderHawk supported the border attribute which
controls the width of the frame around the table. The rules attribu-
te, which specifies which rules will appear between cells within a
table, was not supported by any of the browsers. The frame attri-
bute, that specifies which side of the frame surrounding the table
will be visible, is supported by all browsers except WebPro. Co-
lumn groups, which includecolgroup andcol elements, were
not supported by any of the browsers. Column groups allow structu-
ral division within a table and thus columns with the same structure
can be combined in one group. Raw groups are only supported by
Explorer and ThunderHawk browsers. Raw groups which include
thead , tfoot , and tbody elements allow rows to be combi-
ned into table head, body or table foot sections. Eudora does not
support any of the table attributes and it only supports the basic
table elements (tr, td, and th). Mobile browsers that only
support basic table elements are difficult to read because a browser
that supports only the basic table elements shows the text within
the table without any formatting. This may lead the text of different

cells to merge together and appear in the wrong place and thus lead
to poor readability.

It is worth mentioning that, even though some browsers do not sup-
port many table elements and attributes, the degree of clarity and
readability they offer vary significantly from one to another. We
found that Explorer and ThunderHawk were the easiest to read fol-
lowed by WebPro, AvantGo, WebToGo, and Eudora.

4.6 Images
ThunderHawk and AvantGo were clearly the best browsers for
images as shown in Table 6. They were the only two browsers who
could handleobject tags correctly. AvantGo differed from Thun-
derHawk in that it could not display tif images. ThunderHawk and
Explorer were the only browsers that printed thealt tag when it
could not render theobject tag. WebToGo and Eudora did not
display images or tags.

ThunderHawk and Explorer were the only two browsers who could
completely renderimg tags and width or height changes. AvantGo,
WebPro, and WebToGo rendered theimg tags, but did not render
the height or width changes correctly. Eudora could not render the
images, but did print the alt tags.

None of the mobile browsers tested supported other media such
as various video formats, however they did fully support embed-
ded HTML documents.ThunderHawk and Explorer were the on-
ly browsers that printed thealt tag when it could not render the
multimedia video. Currently, if web developers want to create web
pages for mobile devices, we recommend they useimg tags and
embedded HTML documents to ensure the widest variety of brow-
sers are supported.

5

WebPro AvantGo Eudora Explorer ThunderHawk WebToGo
ImageMap support # # #

IH

#

Table 4: Image Map Results

WebPro AvantGo Eudora Explorer ThunderHawk WebToGo
Border attribute # # #
Rules attribute # # # #
cellpadding attribute #

IH

cellspacing attribute #
Width attribute # #
frame attribute # #
valign attribute # #
colspan, rowspan attribute #
Caption element
col andcolgroup elements # # # # # #
tfoot, thead, andtbody elements # # # #
tr, td, andth element

Table 5: Table Results

4.7 Scripts
Initially, we attempted to test compliance with the W3C’s Docu-
ment Object Model using the supplied test suite [3]. Unfortunately,
none of the browsers were able to successfully load the testing har-
ness, which prevented them from being able to run the tests. Thus,
as shown in Table 7, all browsers failed this test.

Our next goal was to see if the browsers supported basic core func-
tionality such as alerts and simple methods on basic data types (i.e.
type conversion, numerical calculations, logical tests, etc.). Some
of these tests utilized simple scripts we wrote, while others were
borrowed from [16]. As shown in Table 7, WebPro, AvantGo, Ex-
plorer, WebToGo, and ThunderHawk were all able to successfully
complete these tests with only minimal errors if any. It should be
noted that many desktop web browsers failed some individual ele-
ments of these tests. Eudora was unable to complete the tests as it
does not support JavaScript.

Finally, some basic event handling was tested using [12]. Sever-
al event types were tested:onClick, onBlur, onChange,
onSubmit , andonMouseOver . Once again referencing Table 7,
it can be seen that WebPro, AvantGo, Explorer, and ThunderHawk
were all able to successfully complete these tests. WebToGo was
unable to complete these tests as it only supports server side JavaS-
cript. Once again, Eudora was unable to complete the tests due to a
lack of JavaScript support.

From these tests it is evident that JavaScript support varies widely
from browser to browser, and that no single browser has a complete
implementation. These tests also reveal the need for a DOM test
suite for mobile web browsers that makes fewer assumptions about
the capabilities available, or at least a lightweight testing harness
around the current test suite.

5. DISCUSSION
Some mobile web browsers have guidelines for web developers to
follow in order to create optimal web pages for their browsers. In
this section we will compare what the browser specific documenta-
tion says the browser supports with our results.

5.1 WebPro
According to [17], WebPro supports CSS, Frames, Forms, Tables,
JavaScript 1.5, and various image formats for HTML 4.01. Our test
results showed that WebPro supports most table and form features,
but it poorly supports CSS and Frames. We also found that image
maps are not supported.

According to Palm, the newest release of WebPro version 3.0.1 has
Frame support. We used WebPro 3.0 for our tests because the brow-
ser came with our Tungsten T3.

5.2 AvantGo
The AvantGo channel developer guide claims to support a major
portion of HTML 4, CSS 1.0 style attributes, DOM level 1, a small
bit of DOM level 2, and some JavaScript [10]. The developer guide
has detailed tables of all the elements and attributes it supports.

AvantGo did pass our overview CSS1 test with flying colors, ho-
wever it did not pass our tests specifically dealing with borders,
padding, display, lists, background, or fonts as the guide says it sup-
ports. However, the guide says AvantGo can handle tablerules
element,tfoot , andthead even though we found it cannot. The
most surprising difference we found was the guide’s claim of DOM
level 1 support, even though the browser failed our DOM tests. The
guide does not mention image maps. AvantGo performed just as
the guide said it would for forms, frames, and JavaScript.

6

WebPro AvantGo Eudora Explorer ThunderHawk WebToGo
object tag support # # # #
img tag support

IH IH IH

IH

Other media support # # # # # #
Embedded HTML support

Table 6: Images Results

WebPro AvantGo Eudora Explorer ThunderHawk WebToGo
W3C DOM Test Suite # # # # # #
ECMAScript Methods (Static Content) #
ECMAScript Events # #

Table 7: Scripting Results

5.3 Eudora
Eudora browser specifications state that the browser supports stan-
dard HTML mark-up and forms, but not frames. CSS, tables, and
image map support are not discussed in [19]. We found that Eudo-
ra supports most form features and minimally supports tables, but
it does not support CSS, frames, and image maps.

5.4 Explorer
We could not find a detailed specification of the version of Pocket
Internet Explorer used in our test. According to some technical sup-
port articles [14] posted on Microsoft’s website, the newest version
of Explorer is supposed to support CSS, JavaScript, and basic fea-
tures of HTML 4.0. Our test result show Explorer had very good
support for CSS1 and part of CSS2 specification. The browser did
pretty well in the form, table, frame and image map tests, with ex-
ception of theiframe test. It missed someobject tags in image
support test, but could correctly rendered allimg tags.

5.5 ThunderHawk
The supported features documented in ThunderHawk’s specifica-
tion include CSS1, most important features of CSS2 (like positio-
ning), various image formats (GIF, JPEG, PNG, PJPEG), JavaS-
cript 1.5, and HTML 4.0 [11]. Our test result showed Thunder-
Hawk performed as the specification promised. The browser passed
the CSS1 test, part of the CSS 2 test, image test (even on the image
formats which was not mentioned in its specification, such as TIF),
and most of the HTML 4.01 specified features. Surprisingly, Thun-
derHawk even supportsinline frames. It was the only browser
in our test which passed theinline frame test.

5.6 WebToGo
The WebToGo 4.1.1 specification claims to support HTML 4.1,
CSS, two image formats (GIF and JPEG), and JavaScript [18].
While it does support some portion of all of these features, the sup-
port is by no means complete. WebToGo failed the CSS1 test com-
pletely and only partially supported CSS2. Like the other browsers,
it did have excellent form support, but left much to be desired in the
frame tests. Difficulties continued with image maps, which it failed
completely, and tables, where those that it did display were unclear
and difficult to read. Finally it only supports server-side JavaScript,
though in all fairness, the developer states this in the specifications.

WebToGo claims to support many important web standards, but
fails to note which version (as in the case of CSS), or does not
provide complete support (as in the case of CSS and HTML 4.1).
WebToGo is inappropriate for browsing interactive content, and is
a non-optimal choice for browsing static content.

6. CONCLUSION
The W3C acknowledged mobile devices offer a different user ex-
perience than traditional desktop browsers in 1998 and has since
developed guidelines and standards for developers. However, the
guidelines, standards, and groups creating the guidelines are always
changing names and reorganizing forcing developers to look at in-
dividual browser specifications or program for the largest common
denominator. As our paper has shown, browser specification claims
do not always mean the browser necessarily supports the functio-
nality.

Until we have a way to validate mobile browser code from a uni-
fied mobile browser standard, we suggest mobile web developers
use CSS1 attributes - basic listing elements and sans-serif fonts.
Programmers should use tags until<object > tags be-
come more widely used and supported. Avoid image maps and fra-
mes for readability and easy navigation. Forms, tables, and EC-
MA/JavaScripting are okay to use on most mobile browsers.

7. ACKNOWLEDGMENTS
Katie A. Siek is supported in part by a National Physical Science
Consortium Fellowship and by a stipend from Sandia National La-
boratories/CA. Kay H. Connelly is partially supported by a grant
from the Lilly Endowment.

8. REFERENCES
[1] Eudora. http://www.eudora.com/products/.

[2] W3C’s CSS1 Test Suite: CSS1 vs. CSS2.
http://www.w3.org/Style/CSS/Test/CSS1/current/sec03.htm.

[3] W3C’s DOM test suite. http://www.w3.org/DOM/Test/.

[4] Web browser pro.
http://www.palmone.com/us/software/webbrowserpro/.

[5] WebToGo. http://www.webtogo.de/uk/.

7

[6] World Wide Web Consortium. http://www.w3c.org.

[7] HTML 4.01 Specification. http://www.w3.org/TR/html4/,
December 1999. D. Raggett, A. Le Hors, and I. Jacobs, eds.

[8] Standard ECMA-262, ECMAScript Language Specification
3rd. ed.
http://www.ecma-international.org/publications/files/ECMA-
ST/Ecma-262.pdf, December
1999.

[9] W3C’s CSS Mobile Test suite.
http://www.w3.org/Style/CSS/Test/Mobile/1.0/current/,
March 2002.

[10] AvantGo. AvantGo Channel Development Guide: Version
2.0. Technical report, iAnywhere, 2003.
http://www.ianywhere.com/avantgo/developer/channeldeveloper.

[11] Bitstream. Thunderhawk.
http://www.bitstream.com/wireless/getthnow.html.

[12] CA Explorit Science Center, Davis. Explorit’s JavaScript
Test Page.
http://www.dcn.davis.ca.us/GO/EXPLORIT/java/JavaScript.html.

[13] Security for Ubiquitous Resources Group. SURG Test Suite.
http://www.cs.indiana.edu/cgi-pub/surg/www@10/, 2004.

[14] HPC. Overview of Pocket Internet Explorer.
http://www.hpcfactor.com/support/cesd/s/0001.asp. Product
introduction.

[15] Inc. iAnywhere Solutions. Avantgo.
http://www.avantgo.com, November 2003.

[16] Brian J. McCloud. MauveCloud’s Core JavaScript Test
Suite. http://www.mauvecloud.net/jscore/.

[17] palmOne.White Paper: The palmOne Web Pro Browser:
Unleashing the Potential of Wireless Information Access,
2003.

[18] palmsource. Webtogo mobile internet, 2004.
http://palmsource.palmgear.com.

[19] Qualcomm.Eudora Internet Suite 2.1: EudoraWeb Browser,
2004.
http://www.eudora.com/products/unsupported/internetsuite/eudoraweb.html.

8

