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1. Introduction 

Simulated Annealing (SA) is a method for ob- 
taining good solutions to difficult optimisation 
problems which has received much attention over 
the last few years. The recent interest began with 
the work of Kirkpatrick et al. (1983), and Cerny 
(1985). They showed how a model for simulating 
the annealing of solids, as proposed by Metropolis 
et al. (1953) could be used for optimisation prob- 
lems, where the objective function to be mini- 
mised corresponds to the energy of the states of 
the solid. 

Since then, SA has been applied to many opti- 
misation problems occurring in areas such as com- 
puter (VLSI) design, image processing, molecular 
physics and chemistry, and job shop scheduling. 
There has also been progress on theoretical results 
from a mathematical analysis of the method, as 
well as many computational experiments compar- 
ing the performance of SA with other methods for 
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a range of problems. The aim of the paper is to 
provide some understanding and guidance for 
those interested in using SA, particularly those 
involved in Operational Research. 

SA is not the only heuristic search method to 
have received attention recently. Glover and 
Greenberg (1989) summarise the approaches 
offered by genetic algorithms, neural networks, 
tabu search, target analysis, as well as SA. Maf- 
fioli (1987) shows how SA can be considered as 
one type of randomized heuristic for combina- 
torial optimisation problems. 

2. Description of SA 

The SA algorithm will be described as applied 
to a combinatorial optimisation problem. Many 
combinatorial optimisation problems have been 
shown to be NP-hard, which means that the run- 
ning time for any algorithms currently known to 
guarantee an optimal solution is an exponential 
function of the size of the problem. Examples 
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include the travelling salesman problem. SA is one 
of many heuristic approaches designed to give a 
good though not necessarily optimal solution, 
within a reasonable computing time. SA has also 
been extended to optimisation problems for con- 
tinuous variables; a summary of these approaches 
is given in van Laarhoven and Aarts (1987). 

Suppose that the solution space S is the finite 
set of all solutions and the cost function, f ,  is a 
real valued function defined on members of S. 
The problem is to find a solution or state, i ~ S, 
which minimises f over S. 

SA is a type of local search algorithm. A simple 
form of local search (a descent algorithm) starts 
with an initial solution perhaps chosen at random. 
A neighbour of this solution is then generated by 
some suitable mechanism and the change in cost is 
calculated. If a reduction in cost is found, the 
current solution is replaced by the generated 
neighbour, otherwise the current solution is re- 
tained. The process is repeated until no further 
improvement can be found in the neighbourhood 
of the current solution and so the descent al- 
gorithm terminates at a local minimum. Table 1 
describes the descent algorithm in pseudo-code. 

Although a descent algorithm is simple and 
quick to execute, the disadvantage of the method 
is that the local minimum found may be far from 
any global minimum. One way of improving the 
solution is to run the de~ent algorithm several 
times starting from different initial solutions, and 
take the best of the local minima found. In SA, 
instead of this strategy, the algorithm attempts to 
avoid becoming trapped in a local optimum by 
sometimes accepting a neighbourhood move which 
increases the value of f. The acceptance or rejec- 
tion of an uphill move is determined by a se- 
quence of random numbers, but with a controlled 
probability. The probability of accepting a move 
which causes an increase 6 in f is called the 
acceptance function and is normally set to 

Table  1 
Descent  a lgor i thm in pseudo-code  

Select an ini t ia l  s ta te  i ~ S; 

Repeat 
Genera te  s ta te  j ,  a ne ighbour  of i; 

Calcula te  8 = f ( j ) -  f ( i )  
I f  ~ <~ 0 then i := j ;  

unt i l f ( j )  >i f ( i )  for al l  j in the ne ighbourhood  of i; 

Table  2 

S imula ted  A n n e a l i n g  a lgor i thm in pseudo-code  

Select an in i t ia l  s ta te  i G S; 

Select an in i t ia l  t empera tu re  T > 0; 

Set t empera tu re  change  coun te r  t = 0; 

Repeat 
Set repet i t ion  coun te r  n = 0; 

Repeat 
Genera t e  s ta te  j ,  a ne ighbour  of i; 

Ca lcu la te  8 = f ( j ) -  f ( i ) ;  
I f  8 < 0 then i := j 

else if random(0,  1) < exp( - 8 / T )  then i := j ;  

n : = n + l ;  

until n = N ( t ) ;  

t : = t + l ;  

T : =  T( t ) ;  

until s topp ing  cr i te r ion  true. 

exp(-  8/T) where T is a control parameter which 
corresponds to temperature in the analogy with 
physical annealing. This acceptance function im- 
plies that small increases in f are more likely to 
be accepted than large increases, and that when T 
is high most moves will be accepted, but as T 
approaches zero most uphill moves will be re- 
jected. So in SA, the algorithm is started with a 
relatively high value of T, to avoid being prema- 
turely trapped in a local optimum. The algorithm 
proceeds by attempting a certain number of 
neighbourhood moves at each temperature, while 
the temperature parameter is gradually dropped. 
The SA algorithm is illustrated in pseudo-code in 
Table 2. The single loop of the descent algorithm 
has been replaced by a double loop: in the outer 
loop the temperature is changed and the inner 
loop determines how many neighbourhood moves 
are to be attempted at each temperature. 

3. The physical analogy 

The motivation for the SA algorithm comes 
from an analogy between the physical annealing 
of solids and combinatorial optimisation prob- 
lems. Physical annealing refers to the process of 
finding low energy states of a solid by initially 
melting the substance, and then lowering the tem- 
perature slowly, spending a long time at tempera- 
tures close to the freezing point. An example 
would be producing a crystal from the molten 
substance. In a liquid, the particles are arranged 
randomly. But the ground state of the solid, which 
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corresponds to the minimum energy configura- 
tion, will have a particular structure, such as seen 
in a crystal. If the cooling is not done slowly, the 
resulting solid will not attain the ground state, but 
will be frozen into a metastable, locally optimal 
structure, such as a glass or a crystal with several 
defects in the structure. 

In the analogy, the different states of the sub- 
stance correspond to the different feasible solu- 
tions to the combinatorial optimisation problem, 
and the energy of the system corresponds to the 
function to be minimised. 

Physical annealing has been successfully mod- 
elled as a Monte Carlo simulation. Back in the 
fifties, Metropolis et al. (1953) introduced a simple 
algorithm to simulate a collection of atoms at a 
given temperature. At each iteration, an atom is 
given a small random displacement and the result- 
ing change, & in the energy of the system is 
calculated. If 6 < 0 then the resulting change is 
accepted, but if 8 > 0, the change is accepted with 
probability e x p ( -  6/kBT ), where T is the temper- 
ature and k B a physical constant called the Boltz- 
mann constant. If a large number of iterations are 
carried out at each temperature, the system attains 
thermal equilibrium at each temperature. At ther- 
mal equilibrium, the probability distribution of 
the system states follows a Boltzmann distribution 
where the probability of the system being in state 
i at temperature T is (1/Z(T)).  exp(-Ei/kBT ) 
where E, is the energy of state i and Z(T) is the 
partition function required for normalisation. The 
acceptance function introduced by Metropolis et 
al. ensures that the system evolves into the re- 
quired Boltzmann distribution. 

So in the analogy, the different states of the 
substance correspond to different feasible solu- 
tions to the combinatorial optimisation problem, 
and the energy of the system corresponds to the 
function to be minimised. The descent algorithm 
corresponds to ' rapid quenching' where the tem- 
perature is reduced quickly, so that only moves 
which result in a reduction of the energy of the 
system are accepted. The determination of the 
initial temperature, the rate at which the tempera- 
ture is reduced, the number of iterations at each 
temperature and the criterion used for stopping is 
known as the annealing or cooling schedule. The 
choice of annealing schedule has an important 
bearing on the performance of the algorithm and 
is discussed in a later section. 

The physical analogy has led to ideas from 
statistical physics being suggested as ways of de- 
termining the annealing schedule. For example, 
specific heat and entropy might be measured and 
used to determine a suitable temperature. 

4. Theoretical results 

The SA algorithm can be modelled using the 
theory of Markov chains. If the temperature 
parameter, T, is kept constant, then the transition 
matrix, P,:, representing the probability of mov- 
ing from state i to state j is independent of the 
iteration number, which corresponds to a homoge- 
neous Markov chain. It may be shown that provid- 
ing it is possible to get from any state i to any 
other state j in a finite number of moves with 
non-zero probability, then the Markov chain cor- 
responding to the SA algorithm has a unique 
stationary distribution q(i), which does not de- 
pend on the initial state. The stationary distribu- 
tion corresponds to the Boltzmann distribution at 
thermal equilibrium in the physical analogy. As a 
corollary of this result, the limit as T---, 0 of this 
stationary distribution is a uniform distribution 
over the set of optimal solutions, i.e. the SA al- 
gorithm converges asymptotically to the set of 
globally optimal solutions. Asymptotic conver- 
gence to the set of globally optimal solutions is an 
encouraging result (which also holds for more 
general acceptance functions and transition mech- 
anisms) but this result does not tell us anything 
about the number of iterations required to achieve 
convergence. Aarts and van Laarhoven (1985) 
show that the stationary distribution is approxi- 
mated arbitarily closely, only if the number of 
iterations is at least quadratic in the size of the 
solution space. Since the size of the solution space 
is usually exponential in the size of the problem 
itself, this means that approximating the sta- 
tionary distribution arbitarily closely results in 
exponential running time for SA. 

However the SA algorithm can also be de- 
scribed as a sequence of homogeneous Markov 
chains of finite length, using decreasing values of 
the temperature parameter T. This can be consid- 
ered as a single inhomogeneous Markov chain, as 
the transition probabilities are now not indepen- 
dent of the number of iterations. Several results 
have been derived giving sufficient conditions for 
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asymptotic convergence to the set of global op- 
tima. Hajek (1988) gives the strongest result in 
that he provides necessary and sufficient condi- 
tions for this result. He shows that if T(k )=  
c/log(1 + k) where k is the number of iterations, 
the condition for asymptotic convergence is that c 
be greater than or equal to the depth of the 
deepest local minimum which is not a global 
minimum. This temperature function represents 
very slow cooling. It has also been shown (e.g. 
Mitra et al., 1986) that attempting to approximate 
arbitarily closely to the uniform distribution on 
the set of optimal solutions, typically leads to a 
number of iterations which is larger than the size 
of the solution space, and so results in exponential 
running time for most problems. Note that the 
theoretical results for the asymptotic convergence 
of SA modelled as an inhomogeneous Markov 
chain do not require the stationary distribution to 
be achieved at any non zero temperature. 

It would be very useful to the user of SA to 
have some theoretical results on the average or 
expected performance of the algorithm. Unfor- 
tunately these are difficult to obtain. Sasaki and 
Hajek (1988) give some results for the maximum 
matching problem, but their proofs are lengthy 
and complex. Jerrum and Sinclair (1988) present 
an alternative proof of their results by analysing 
the Markov chains using the concept of 'rapid 
mixing' and suggest that their approach may lead 
to further theoretical performance measures for 
SA and related algorithms. 

5. Implementing SA 

the objective to be minimised (or its change in 
value)~ An initial solution must also be generated. 

Several researchers (e.g. Cerny, 1985; Matsuo et 
al., 1988) have shown that the efficiency of SA 
depends on the neighbourhood structure that is 
used. This is not surprising given Hajek's result in 
the previous section, which showed that the rate of 
cooling required for asymptotic convergence to 
the set of optimal solutions depends on the depth 
of the local minima, i.e. to the topology that is 
imposed by the neighbourhood structure. In gen- 
eral, a neighbourhood structure which imposes a 
'smooth' topology, where the local optima are 
shallow is preferred to a 'bumpy'  topology where 
there are many deep local minima. 

Connolly (1987) has done some research on a 
general purpose SA algorithm which can be used 
for any problem expressed as a 0-1 integer pro- 
gram. Neighbourhood moves are generated auto- 
matically by changing an individual variable from 
0 to 1 or vice versa, and then restoring feasibility. 
Experiments show that although this procedure is 
less efficient than a neighbourhood designed to 
take advantage of the problem structure, the 
method performed well compared to a commercial 
integer programming package. 

If the problem is constrained, a choice must be 
made between restricting the solution space to 
solutions which conform to the constraints, or 
allowing solutions which break the constraints at 
the expense of a suitably defined penalty function. 
The second option is likely to lead to simpler 
neighbourhood moves, and a smoother topology, 
particularly if the penalty weights can be kept 
small. 

In order to use SA for a particular combina- 
torial optimisation problem, there are a number of 
decisions to be made. These decisions can be 
divided into two groups following Johnson et al. 
(1987): problem specific choices and generic 
choices. 

5.1. Problem specific choices 

The problem must be clearly formulated, so 
that the set of feasible solutions is defined. The 
neighbourhood of any solution must also be de- 
fined as well as a way of determining the value of 

5.2. Generic choices 

These choices must be made for any implemen- 
tation of SA and constitute the annealing or cool- 
ing schedule, viz. 

(i) the initial value of the temperture parame- 
ter T, 

(ii) a temperature function, T(t), to determine 
how the temperature is to be changed, 

(iii) the number of iterations, N(t), to be per- 
formed at each temperature, and 

(iv) a stopping criterion to terminate the al- 
gorithm. 
A great variety of cooling schedules have now 
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been suggested. These have been classified in Col- 
lins et al. (1988), which also indicates which variant 
different authors have tried. 

The earliest proposed cooling schedules were 
based on the analogy with physical annealing. So, 
for example, Kirkpatrick et al. (1983) set their 
initial value of T to be large enough so that 
virtually all transitions are accepted, which corre- 
sponds to heating up a substance until all the 
particles are randomly arranged in a liquid. A 
proportional temperature function is used, i.e. 
T(t + 1 )=  aT(t) where c~ is a constant. Typical 
values of a used in practice lie between 0.8 and 
0.99. Such a function provides smaller decrements 
in T as zero temperature is approached. The num- 
ber of iterations at each value of T, N(t), is 
determined by a sufficient number of transitions 
being accepted subject to a constant upper bound. 
This is an attempt to bring the system to a state 
corresponding to thermal equilibrium in the physi- 
cal analogy. Other simple schemes may keep N(t )  
constant, or make it proportional to the size of the 
problem instance or the size of the neighbourhood 
defined. The SA algorithm is stopped when the 
solution obtained at each temperature change is 
unaltered for a number of consecutive tempera- 
ture changes. The final state is then said to corre- 
spond to the frozen state. 

Other cooling schedules make a more direct 
appeal to the theoretical results on asymptotic 
convergence described in Section 4. The number 
of iterations to carry out at each value of T, N(t), 
is chosen so that the system is 'sufficiently close 
to' the stationary distribution at that value of T. 
Aarts and Korst (1989), and van Laarhoven and 
Aarts (1987) refer to this as 'quasi-equilibrium'. 
Different rules or heuristics for deciding when 
quasi-equilibrium has been reached lead to differ- 
ent cooling schedules. 

However, as Hajek's (1988) result shows, for 
asymptotic convergence to the set of optimal solu- 
tions, the condition is for the cooling to be carried 
out sufficiently slowly, rather than there neces- 
sarily being any requirement to attain a state 
corresponding to thermal equilibrium at a succes- 
sion of reducing temperatures. The result also 
suggests that if T is kept fixed for a number of 
iterations, there is a trade-off between large reduc- 
tions in T and a small number of iterations at 
fixed T. So at one extreme there is, for example, 
the scheme proposed by Lundy and Mees (1986), 

where there is only a single iteration at each 
temperature. They use heuristic arguments to de- 
rive a temperature function of the form 

T(t + 1) = T(t)/(1 + BT(t)) 

where B is a constant, and which is equivalent to 

T(t) = C1/(1 + tC:) 

where C a and C 2 are constants. As the number of 
iterations increases, this will represent slower cool- 
ing than a proportional temperature reduction with 
fixed values of a and N. At the other extreme, 
there is the heuristic scheme based on.SA pro- 
posed by Connolly (1988) which suggests that the 
majority of the iterations should be conducted at a 
suitably fixed temperature. 

One broad distinction which can be made be- 
tween cooling schedules is to contrast those with 
and without feedback for T(t)  and N(t).  Simple 
schedules without feedback determine T(t) and 
N(t) at the start of any run. Other schedules allow 
feedback from the progression of the algorithm to 
affect the current values of T(t) and N(t). The 
schedule described by Kirkpatrick et al. (1983) 
allows the number of accepted transitions to in- 
fluence N(t). Another example is the cooling 
schedule proposed by Aarts and van Laarhoven 
(1985) where N(t) is kept constant, but the tem- 
perature function depends on an estimate of the 
standard deviation of the distribution of objective 
function values at the current temperature, which 
must be monitored during the execution of the 
algorithm. Aarts and van Laarhoven have shown 
that their cooling schedule normally leads to a 
worst case running time which is a polynomial 
function of the size of the problem. Other re- 
searchers have suggested that alternative measure- 
ments, such as monitoring the specific heat of the 
system, may be a useful guide to a suitable rate of 
cooling. 

The relative performance of these cooling 
schedules will be discussed in a later section. 
However, many users of SA have found that im- 
plementing SA in the ways described in this sec- 
tion has led to either very long run times or 
relatively poor solutions when the run time is 
limited. Thus many users have modified the SA 
approach in ways which take the algorithm further 
away from the physical analogy on which it is 
based, but which lead to a more efficient al- 
gorithm. These are described in the next section. 
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6. Modifications to SA 

6.1. Simple modifications 

This section contains some simple suggestions 
which various authors have made to improve the 
effectiveness of the basic algorithm. They can all 
be implemented easily in a computer code. 

6.1.1. Storing best solution so far 
The SA algorithm sometimes accepts solutions 

which are worse than the current solution. It is 
therefore possible in any single SA run for the 
final solution to be worse than the best solution 
found during the run. It is not usually computa- 
tionally expensive to store details of the best solu- 
tion found so far, so better solutions may result 
from run times similar to those for the basic 
algorithm. In addition, Glover and Greenberg 
(1989) argue that with this modification, there is 
less need for the SA algorithm to rely on a strong 
stabilizing effect over time. This idea is supported 
by Connolly's (1988) modification of SA, where 
having found a suitable fixed temperature, all the 
remaining iterations are carried out that tempera- 
ture. In the final phase, a descent algorithm can be 
employed to find the local optimum containing 
the best solution encountered in the earlier phases. 

6.1.2. Sampling the neighbourhood without 
replacement 

When the temperature parameter, T, gets low 
in the latter part of an SA run, the probability of 
accepting worse solutions than the current one 
becomes small. Thus in the region close to a local 
optimum, most of the computer time is spent 
rejecting worse solutions. If there are only one or 
two neighbourhood moves which give improved 
solutions, the basic SA algorithm may take a lot of 
time to find them. Therefore some researchers 
have suggested that neighbourhood moves should 
be generated in such a way that all possible moves 
in the neighbourhood of a solution are attempted 
before repeating a move, unless a new solution is 
accepted. Johnson et al. (1987) implement this 
idea by generating a new set of potential 
neighbourhood moves every n iterations, where n 
is the size of the neighbourhood. Within each 
block, each potential move is considered once and 
in a random order. Experiments with graph par- 
tioning problems showed that this modification 

gave significantly better results than simply choos- 
ing neighbourhood moves at random in a similar 
run time. Connolly (1988) also presents experi- 
mental evidence of the benefit of sampling the 
neighbourhood without replacement, though in 
this case it is implemented by simply searching 
through the neighbourhood in a sequential rather 
than random manner. 

Another advantage of this approach is that 
when the algorithm has been terminated and there 
has been no improvement in the solution for at 
least the last n moves, where n is the size of the 
neighbourhood, then the final solution is guaran- 
teed to be a local optimum. 

6.1.3. Alternative acceptance probabilities 
Some researchers have considered replacing the 

standard function, e x p ( - 8 / T )  for the probability 
of accepting a solution which increases the objec- 
tive by 8, with some alternative function. Indeed 
there has been some theoretical work to show that 
asymptotic convergence holds for more general 
acceptance functions (see e.g. Anily and Federgru- 
en, 1987; Faigle and Schrader, 1988; Romeo and 
Sangiovanni-Vincentelli ,  1985). Romeo and 
Sangiovanni-Vincentelli provide some experimen- 
tal evidence that an alternative acceptance scheme 
does not significantly alter the quality of solutions 
found. Matsuo et al. (1988) find that when their 
algorithm is restricted to a small neighbourhood, 
using an acceptance function which is indepen- 
dent of 8, when 6 is positive, yields results nearly 
as good as use of the standard function. 

In applications of SA where the calculation of 
the value of e x p ( - 8 / T )  is a significant factor in 
the run time, Johnson et al. (1987) propose that 
the exponential function is approximated by a 
simple table lookup scheme. Experiments on graph 
partioning problems saved one third of the run- 
ning time with no apparent effect on the quality of 
the solutions. 

6.2. More complex modifications 

The modifications described in this section re- 
quire rather more work to implement in a com- 
puter algorithm. The nature of some of these 
modifications depends more closely on the prob- 
lem under consideration, and so although these 
ideas may result in a more powerful algorithm for 
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a specific application, they cannot always be easily 
transferred to different applications. 

6.2.1. Combination of SA with another method 
There are two ways in which SA may be com- 

bined with an alternative method; either using the 
alternative method to provide a 'good' initial solu- 
tion which SA attempts to improve, or by using 
SA to provide a 'good' initial solution as a starting 
point for the alternative method. 

The first of these approaches is illustrated by 
Chams et al. (1987) for example, when considering 
graph colouring problems. Johnson et al. (1987) 
also provide some experimental results for the 
graph partitioning problem. They show that both 
quality of solution and running time may be im- 
proved by the use of a good starting solution. 
When a good initial solution is used, the initial 
temperature in the cooling schedule is reduced, 
otherwise the benefits of the good initial solution 
will be lost. They also show that starting solutions 
which take advantage of the special structure of 
the problem instance being considered seem pre- 
ferable to those obtained by general heuristics. 

The second approach is exemplified by using 
SA as a way of obtaining a good initial solution 
for a branch and bound algorithm or integer pro- 
gramming algorithm. 

is to use problem-specific information to identify 
a promising subset of the neighbourhood, and a 
generation mechanism that will give a greater 
probability of attempting moves into the prom- 
ising subset. Although he shows that this can be 
advantageous compared to the basic SA approach, 
it is not clear whether it performs significantly 
better than the schemes suggested for sampling 
from a neighbourhood without replacement. 

Greene and Supowit (1986) propose a rejection- 
less method. This scheme also aims to reduce the 
amount of time spent in the latter part of a SA 
run when the majority of the moves are rejected. 
In this scheme, a probability distribution is con- 
structed over the set of all moves to show the 
relative probability of a move being accepted if it 
is chosen. A move is then selected at random 
according to this distribution and accepted auto- 
matically. It can be shown that the result of this 
procedure is equivalent to the basic SA algorithm. 
For the graph partitioning problem the probabil- 
ity distribution can be updated efficiently leading 
to quicker runs once the proportion of accep- 
tances in the basic algorithm falls below some 
threshold. To apply this approach to other prob- 
lems means finding an efficient way to update the 
probability distribution, and this depends on 
problem-specific information. 

6.2.2. Problem specific modifications 
Many users of SA adapt the basic approach to 

take advantage of special features of the problem 
being considerd. In many applications, the bulk of 
the run time is taken up calculating 6, the change 
in the objective value at each transition. Grover 
(1986) shows that significant speed-ups can be 
obtained by calculating 8 approximately instead 
of exactly. These approximations are shown not to 
affect the quality of the solution significantly, 
provided the errors are less than a function of the 
temperature parameter, T. Tovey (1988) also sug- 
gests that the algorithm may be speeded up by 
using a quicker, approximate method to calculate 
8. However, he incorporates this idea in a scheme 
he calls a 'poor man's swindle'. The faster, ap- 
proximate method of calculating 6 is not used 
every iteration, but only with a certain probability, 
which is updated as the algorithm proceeds so that 
the resulting algorithm will simulate the results of 
the basic SA approach. Tovey also suggests a 
'Neighbourhood Prejudice Swindle'. The idea here 

6.2.3. Parallel versions 
Another approach to speeding up SA is to 

implement a parallel version of the algorithm. A 
good discussion of the issues involved is found in 
the book by Aarts and Korst (1989). 

Two general strategies may first be dis- 
tinguished: single-trial parallelism and multiple- 
trial parallelism. In the first strategy, the calcula- 
tions to evaluate a single trial are divided between 
several processors. The implementation of this 
strategy and the speed-up that can be obtained are 
clearly problem dependent. In multiple-trial paral- 
lelism, however, trials are evaluated in parallel. 
Some approaches reported in the literature make 
use of problem-specific features to carry this out. 
For example, a placement problem may be subdi- 
vided so that different processors deal with local 
changes in different regions. However, Aarts and 
Korst describe three general approaches that use 
multiple-trial parallelism, viz. the division al- 
gorithm, the clustering algorithm and the error 
algorithm. 
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In the division algorithm, the number of itera- 
tions at each temperature is divided equally be- 
tween the processors. After a change in tempera- 
ture, each processor may simply start from the 
final solution obtained by that processor at the 
previous temperature. The best solution from all 
the processors is then taken to be the final solu- 
tion. Another variant of this approach is to com- 
municate the best solution from all the processors 
to each processor every time the temperature 
changes. Aarts and Korst found no significant 
differences in the performance of these two 
variants. 

In the clustering algorithm, two or more 
processors are used to generate one sequence of 
accepted moves. Processors evaluate possible 
moves independently until one is accepted. This is 
then communicated to all the processors in the 
cluster, which abort their current calculations and 
resume with the accepted solution. This strategy is 
likely to be inefficient at the start of a run when 
the temperature parameter is high and many tran- 
sitions are accepted, though it should become pro- 
gressively more efficient as the temperature ap- 
proches zero and few new solutions are accepted. 
A suggested strategy is therefore to start as the 
division algorithm already described, but as soon 
as the estimated efficiency of using two processors 
exceeds 50%, the processors are clustered into 
pairs. The clustering process continues until even- 
tually all the processors form one cluster. 

Finally, there is the error algorithm. Here all 
the processors are used to investigate potential 
neighbourhood moves in parallel. Any accepted 
move updates the current solution, but implemen- 
tation on a computer using a global memory may 
need to be done sequentially. The name 'error 
algorithm' derives from the fact that some calcula- 
tions made by a processor of the change in objec- 
tive value for a potential move may be calculated 
wrongly if another processor has just accepted a 
move of which the processor is unaware. 

Aarts and Korst compared the performances of 
these three parallel versions of SA on a computer 
which allowed up to 8 processors to be used in 
parallel. The algorithms were tested on a 100 city 
travelling salesman problem. The results show that 
both the division algorithm and the clustering 
algorithm could give results of similar quality to 
the sequential SA algorithm and with an efficiency 
close to 1. The results for the error algorithm were, 

on the other hand, quite poor, with no conver- 
gence being achieved with eight processors. This is 
in contrast to other implementations of types of 
error algorithms for placement problems, where 
high efficiencies have been reported (e.g. Casotto, 
Romeo and Sangiovanni-Vincentelli, 1987). The 
discrepancy may be explained by the fact that the 
neighbourhood structure usually employed for 
placement problems only allow local changes 
which seldom lead to errors if two such changes 
are accepted simultaneously. The 2-opt neighbour- 
hood structure used for the travelling salesman 
problem involves reversing the order of several 
cities in the tour and so the chance of errors in 
calculating the change in objective from two 
potential moves which are accepted simulata- 
neously is significant. Although some empirical 
results on convergence of error algorithms is avail- 
able, there is not as yet, any precise analysis of the 
conditions required for convergence. 

In their book, Aarts and Korst go on to de- 
scribe how an efficient massively parallel imple- 
mentation of SA could be carried out in a neural 
network, based on the model of Boltzmann ma- 
chines. Encouraging results are obtained for some 
graph problems (e.g. max cut problem) where 
simulations show that the Boltzmann machine ap- 
proach would give solutions of comparable quality 
to SA in considerably less computation time, when 
implemented on a suitable computer. However the 
Boltzmann machine approach was much less suc- 
cessful than sequential SA for travelling salesman 
problems. This is a growing area of research as 
Boltzmann machines and other neural network 
models are implemented on dedicated hardware. 
For example, a design for a VLSI chip has been 
presented by Alspector and Allen (1987) and pro- 
posed for optical implementations by Farhat 
(1987). 

7. Computational results 

What evidence is there that SA performs well in 
obtaining good solutions within reasonable run 
times? How does it compare with other ap- 
proaches? 

SA is a stochastic algorithm, requiring a neigh- 
bourhood structure to be specified as well as a 
number of parameters to provide a cooling sched- 
ule. Many variants of the basic algorithm have 
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been proposed. It therefore requires considerable 
testing to come up with sound conclusions. Even 
then, the conclusions are likely to depend on the 
type of problem to which SA is applied, and in 
some cases, to the problem instance. Some studies 
making general claims about SA can only be ap- 
plied to particular implementation schemes. How- 
ever, some general remarks can be made. 

7.1. Comparison with repeated descent algorithm 

Studies of a number of different problems have 
shown that SA can give significantly better results 
than repeating a descent algorithm using different 
random starting positions (and the same neigh- 
bourhood structure) and taking the best solution 
in the same amount of computing time. This is 
shown very clearly for a graph partitioning prob- 
lem by Johnson et al. (1987), and for a travelling 
salesman problem by van Laarhoven (1988). 
Lundy and Mees (1986) construct an exaple where 
the expected time for SA to find the optimum is 
linear, but where for the repeated descent al- 
gorithm the time is quadratic in the size of the 
problem. 

Even though the superior performance of SA 
has been observed for several different problems, 
this result does depend on the problem and 
neighbourhood structure used. This is clear be- 
cause if there are no local optima, but only a 
global optimum, a single run of the descent al- 
gorithm will find it more quickly than using SA. 

gorithm decides dynamically on the value of k. It 
is perhaps not surprising that an algorithm like SA 
which is very generally applicable does not always 
compete with algorithms specially designed to ex- 
ploit features of the problem under consideration. 

7. 3. Comparison of different cooling schedules 

Some computational experiments have been 
done to compare the performance of SA using 
different cooling schedules, particularly by John- 
son et al. (1987) and van Laarhoven (1988). Simi- 
lar performances were obtained from different 
types of cooling schedule, once the parameters 
had been chosen to produce good quality results. 

On the problems tested, these researchers did 
not find that cooling schedules with feedback per- 
formed any better than those without. It seems 
likely that the advantages of cooling schedules 
with feedback are most evident when the problem 
has a structure which gives rise to 'phase transi- 
tions' as described by Kirkpatrick et al. (1983). 

Whatever cooling schedule is chosen, it is im- 
portant not to spend too long at high tempera- 
tures, where most neighbourhood moves are 
accepted, as this can waste running time. It is also 
important not to spend too long at very low 
temperatures, where most neighbourhood moves 
are rejected. At the end of the algorithm it may be 
worth checking that at least a local optimum has 
been obtained. 

7.2. Comparison with problem specific algorithms 

There are many combinatorial problems for 
which special algorithms have already been devel- 
oped. The performance of SA in comparison with 
these algorithms seems to depend on the problem 
under consideration. Some of the most thorough 
testing has been carried out by Johnson et al. 
(1987, 1988) who find that for the graph partition- 
ing problem, SA outperforms the classicial 
Kernighan and Lin algorithms in both quality and 
speed for certain types of random graphs. For 
graph colouring problems, SA can find very good 
quality solutions, though at the expense of very 
large run times. For the travelling salesman prob- 
lem, SA is outperformed in both quality and speed 
by the Lin-Kernighan algorithm which is based 
on k-opt neighbourhood moves, where the al- 

7.4. Comparison with other general heuristic 
methods 

Some results have been published which com- 
pare SA with another general heuristic for specific 
problems. For example, Hertz and de Werra (1987) 
show that their tabu search technique for graph 
colouring problems gives better results than their 
implementation of SA. On the other hand, Bland 
and Dawson (1989) obtained better results with 
their implementation of SA for layout optimisa- 
tion problems than an intitial version of tabu 
search. At this stage it is perhaps premature to 
make relative judgements about these and other 
general heuristics, since SA and other methods are 
relatively recent ideas, and research is still con- 
tinuing to find the best way of implementing them 
for different types of problem. 
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7.5. Practical and scientific problems 

SA has been applied to many problems where 
no problem-specific algorithms were available. 
These include problems of VLSI design and 
molecular structure. SA has in general been able 
to provide good quality solutions, in some cases 
improving the best known solutions (e.g. for the 
football pool problem, see Wille, 1987; van 
Laarhoven, Aarts, van Lint and Wille, 1988). 
However for some problems the reported running 
time is very long, which is why some of the 
variants of SA described in the last section may be 
needed in practice. 

8. Conclusions 

Considering SA as a heuristic algorithm for 
obtaining good, though not necessarily optimal 
solutions, to optimisation problems, it has several 
attractive features. First of all, it is very easy to 
implement. Once a neighbourhood structure has 
been devised, the SA algorithm only occupies a 
few lines of code. Secondly it can be generally 
applied to a wide range of problems. In principle 
any combinatorial optimisation problem can be 
tackled using SA provided a relevant neighbour- 
hood structure is proposed. Thirdly SA can pro- 
vide high quality solutions to many problems. 
However this may be at the expense of high run 
times, particularly when compared to a problem 
specific algorithm. This means that SA must not 
be regarded as a panacea, capable of simply solv- 
ing any optimisation problem. Care is needed to 
devise an appropriate neighbourhood structure and 
cooling schedule to obtain an efficient algorithm. 

For the OR practitioner, most models derived 
from real situations have special features which 
make it less likely that a problem specific al- 
gorithm will be available. Extra constraints can 
often be handled satisfactorily by the use of 
penalty functions; indeed the penalty function 
approach may be preferred if the constraints are 
soft rather than hard. In many  practical contexts 
it is also acceptable to obtain several good solu- 
tions to an to an optimisation problem, rather 
than an optimal solution where that would require 
a much greater programming or computing effort. 
Eglese and Rand (1987), and Wright (1989) are 
examples of case-orientated papers involving SA. 

Thus the features of SA which have been de- 
scribed make SA a very useful tool for the OR 
practitioner. 
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