
European Journal of Operational Research 46 (1990) 271-281 271

North-Holland

Invited Review

Simulated Annealing:
A tool for Operational Research

R.W. EGLESE
Department of Operational Research and Operations Management, The Management School,
Lancaster University, Lancaster LA1 4YX, UK

Abstract: This paper describes the Simulated Annealing algorithm and the physical analogy on which it is
based. Some significant theoretical results are presented before describing how the algorithm may be
implemented and some of the choices facing the user of this method. An overview is given of the
experience of experimenters with SA and some suggestions are made for ways to improve the performance
of the algorithm by modifying the 'pure' SA approach.

Keywords: Simulated annealing, heuristics, optimisation

1. Introduction

Simulated Annealing (SA) is a method for ob-
taining good solutions to difficult optimisation
problems which has received much attention over
the last few years. The recent interest began with
the work of Kirkpatrick et al. (1983), and Cerny
(1985). They showed how a model for simulating
the annealing of solids, as proposed by Metropolis
et al. (1953) could be used for optimisation prob-
lems, where the objective function to be mini-
mised corresponds to the energy of the states of
the solid.

Since then, SA has been applied to many opti-
misation problems occurring in areas such as com-
puter (VLSI) design, image processing, molecular
physics and chemistry, and job shop scheduling.
There has also been progress on theoretical results
from a mathematical analysis of the method, as
well as many computational experiments compar-
ing the performance of SA with other methods for

Received November 1989

a range of problems. The aim of the paper is to
provide some understanding and guidance for
those interested in using SA, particularly those
involved in Operational Research.

SA is not the only heuristic search method to
have received attention recently. Glover and
Greenberg (1989) summarise the approaches
offered by genetic algorithms, neural networks,
tabu search, target analysis, as well as SA. Maf-
fioli (1987) shows how SA can be considered as
one type of randomized heuristic for combina-
torial optimisation problems.

2. Description of SA

The SA algorithm will be described as applied
to a combinatorial optimisation problem. Many
combinatorial optimisation problems have been
shown to be NP-hard, which means that the run-
ning time for any algorithms currently known to
guarantee an optimal solution is an exponential
function of the size of the problem. Examples

037%2217/90/$3.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)

272 R. W. Eglese / Simulated Annealing: A tool for OR

include the travelling salesman problem. SA is one
of many heuristic approaches designed to give a
good though not necessarily optimal solution,
within a reasonable computing time. SA has also
been extended to optimisation problems for con-
tinuous variables; a summary of these approaches
is given in van Laarhoven and Aarts (1987).

Suppose that the solution space S is the finite
set of all solutions and the cost function, f , is a
real valued function defined on members of S.
The problem is to find a solution or state, i ~ S,
which minimises f over S.

SA is a type of local search algorithm. A simple
form of local search (a descent algorithm) starts
with an initial solution perhaps chosen at random.
A neighbour of this solution is then generated by
some suitable mechanism and the change in cost is
calculated. If a reduction in cost is found, the
current solution is replaced by the generated
neighbour, otherwise the current solution is re-
tained. The process is repeated until no further
improvement can be found in the neighbourhood
of the current solution and so the descent al-
gorithm terminates at a local minimum. Table 1
describes the descent algorithm in pseudo-code.

Although a descent algorithm is simple and
quick to execute, the disadvantage of the method
is that the local minimum found may be far from
any global minimum. One way of improving the
solution is to run the de~ent algorithm several
times starting from different initial solutions, and
take the best of the local minima found. In SA,
instead of this strategy, the algorithm attempts to
avoid becoming trapped in a local optimum by
sometimes accepting a neighbourhood move which
increases the value of f. The acceptance or rejec-
tion of an uphill move is determined by a se-
quence of random numbers, but with a controlled
probability. The probability of accepting a move
which causes an increase 6 in f is called the
acceptance function and is normally set to

Table 1
Descent a lgor i thm in pseudo-code

Select an ini t ia l s ta te i ~ S;

Repeat
Genera te s ta te j , a ne ighbour of i;

Calcula te 8 = f (j) - f (i)
I f ~ <~ 0 then i := j ;

unt i l f (j) >i f (i) for al l j in the ne ighbourhood of i;

Table 2

S imula ted A n n e a l i n g a lgor i thm in pseudo-code

Select an in i t ia l s ta te i G S;

Select an in i t ia l t empera tu re T > 0;

Set t empera tu re change coun te r t = 0;

Repeat
Set repet i t ion coun te r n = 0;

Repeat
Genera t e s ta te j , a ne ighbour of i;

Ca lcu la te 8 = f (j) - f (i) ;
I f 8 < 0 then i := j

else if random(0, 1) < exp(- 8 / T) then i := j ;

n : = n + l ;

until n = N (t) ;

t : = t + l ;

T : = T(t) ;

until s topp ing cr i te r ion true.

exp(- 8/T) where T is a control parameter which
corresponds to temperature in the analogy with
physical annealing. This acceptance function im-
plies that small increases in f are more likely to
be accepted than large increases, and that when T
is high most moves will be accepted, but as T
approaches zero most uphill moves will be re-
jected. So in SA, the algorithm is started with a
relatively high value of T, to avoid being prema-
turely trapped in a local optimum. The algorithm
proceeds by attempting a certain number of
neighbourhood moves at each temperature, while
the temperature parameter is gradually dropped.
The SA algorithm is illustrated in pseudo-code in
Table 2. The single loop of the descent algorithm
has been replaced by a double loop: in the outer
loop the temperature is changed and the inner
loop determines how many neighbourhood moves
are to be attempted at each temperature.

3. The physical analogy

The motivation for the SA algorithm comes
from an analogy between the physical annealing
of solids and combinatorial optimisation prob-
lems. Physical annealing refers to the process of
finding low energy states of a solid by initially
melting the substance, and then lowering the tem-
perature slowly, spending a long time at tempera-
tures close to the freezing point. An example
would be producing a crystal from the molten
substance. In a liquid, the particles are arranged
randomly. But the ground state of the solid, which

R. W. Eglese / Simulated Annealing. A tool for OR 273

corresponds to the minimum energy configura-
tion, will have a particular structure, such as seen
in a crystal. If the cooling is not done slowly, the
resulting solid will not attain the ground state, but
will be frozen into a metastable, locally optimal
structure, such as a glass or a crystal with several
defects in the structure.

In the analogy, the different states of the sub-
stance correspond to the different feasible solu-
tions to the combinatorial optimisation problem,
and the energy of the system corresponds to the
function to be minimised.

Physical annealing has been successfully mod-
elled as a Monte Carlo simulation. Back in the
fifties, Metropolis et al. (1953) introduced a simple
algorithm to simulate a collection of atoms at a
given temperature. At each iteration, an atom is
given a small random displacement and the result-
ing change, & in the energy of the system is
calculated. If 6 < 0 then the resulting change is
accepted, but if 8 > 0, the change is accepted with
probability e x p (- 6/kBT), where T is the temper-
ature and k B a physical constant called the Boltz-
mann constant. If a large number of iterations are
carried out at each temperature, the system attains
thermal equilibrium at each temperature. At ther-
mal equilibrium, the probability distribution of
the system states follows a Boltzmann distribution
where the probability of the system being in state
i at temperature T is (1/Z(T)). exp(-Ei/kBT)
where E, is the energy of state i and Z(T) is the
partition function required for normalisation. The
acceptance function introduced by Metropolis et
al. ensures that the system evolves into the re-
quired Boltzmann distribution.

So in the analogy, the different states of the
substance correspond to different feasible solu-
tions to the combinatorial optimisation problem,
and the energy of the system corresponds to the
function to be minimised. The descent algorithm
corresponds to ' rapid quenching' where the tem-
perature is reduced quickly, so that only moves
which result in a reduction of the energy of the
system are accepted. The determination of the
initial temperature, the rate at which the tempera-
ture is reduced, the number of iterations at each
temperature and the criterion used for stopping is
known as the annealing or cooling schedule. The
choice of annealing schedule has an important
bearing on the performance of the algorithm and
is discussed in a later section.

The physical analogy has led to ideas from
statistical physics being suggested as ways of de-
termining the annealing schedule. For example,
specific heat and entropy might be measured and
used to determine a suitable temperature.

4. Theoretical results

The SA algorithm can be modelled using the
theory of Markov chains. If the temperature
parameter, T, is kept constant, then the transition
matrix, P,:, representing the probability of mov-
ing from state i to state j is independent of the
iteration number, which corresponds to a homoge-
neous Markov chain. It may be shown that provid-
ing it is possible to get from any state i to any
other state j in a finite number of moves with
non-zero probability, then the Markov chain cor-
responding to the SA algorithm has a unique
stationary distribution q(i), which does not de-
pend on the initial state. The stationary distribu-
tion corresponds to the Boltzmann distribution at
thermal equilibrium in the physical analogy. As a
corollary of this result, the limit as T---, 0 of this
stationary distribution is a uniform distribution
over the set of optimal solutions, i.e. the SA al-
gorithm converges asymptotically to the set of
globally optimal solutions. Asymptotic conver-
gence to the set of globally optimal solutions is an
encouraging result (which also holds for more
general acceptance functions and transition mech-
anisms) but this result does not tell us anything
about the number of iterations required to achieve
convergence. Aarts and van Laarhoven (1985)
show that the stationary distribution is approxi-
mated arbitarily closely, only if the number of
iterations is at least quadratic in the size of the
solution space. Since the size of the solution space
is usually exponential in the size of the problem
itself, this means that approximating the sta-
tionary distribution arbitarily closely results in
exponential running time for SA.

However the SA algorithm can also be de-
scribed as a sequence of homogeneous Markov
chains of finite length, using decreasing values of
the temperature parameter T. This can be consid-
ered as a single inhomogeneous Markov chain, as
the transition probabilities are now not indepen-
dent of the number of iterations. Several results
have been derived giving sufficient conditions for

274 R. W. Eglese / Simulated Annealing: A tool for OR

asymptotic convergence to the set of global op-
tima. Hajek (1988) gives the strongest result in
that he provides necessary and sufficient condi-
tions for this result. He shows that if T(k)=
c/log(1 + k) where k is the number of iterations,
the condition for asymptotic convergence is that c
be greater than or equal to the depth of the
deepest local minimum which is not a global
minimum. This temperature function represents
very slow cooling. It has also been shown (e.g.
Mitra et al., 1986) that attempting to approximate
arbitarily closely to the uniform distribution on
the set of optimal solutions, typically leads to a
number of iterations which is larger than the size
of the solution space, and so results in exponential
running time for most problems. Note that the
theoretical results for the asymptotic convergence
of SA modelled as an inhomogeneous Markov
chain do not require the stationary distribution to
be achieved at any non zero temperature.

It would be very useful to the user of SA to
have some theoretical results on the average or
expected performance of the algorithm. Unfor-
tunately these are difficult to obtain. Sasaki and
Hajek (1988) give some results for the maximum
matching problem, but their proofs are lengthy
and complex. Jerrum and Sinclair (1988) present
an alternative proof of their results by analysing
the Markov chains using the concept of 'rapid
mixing' and suggest that their approach may lead
to further theoretical performance measures for
SA and related algorithms.

5. Implementing SA

the objective to be minimised (or its change in
value)~ An initial solution must also be generated.

Several researchers (e.g. Cerny, 1985; Matsuo et
al., 1988) have shown that the efficiency of SA
depends on the neighbourhood structure that is
used. This is not surprising given Hajek's result in
the previous section, which showed that the rate of
cooling required for asymptotic convergence to
the set of optimal solutions depends on the depth
of the local minima, i.e. to the topology that is
imposed by the neighbourhood structure. In gen-
eral, a neighbourhood structure which imposes a
'smooth' topology, where the local optima are
shallow is preferred to a 'bumpy' topology where
there are many deep local minima.

Connolly (1987) has done some research on a
general purpose SA algorithm which can be used
for any problem expressed as a 0-1 integer pro-
gram. Neighbourhood moves are generated auto-
matically by changing an individual variable from
0 to 1 or vice versa, and then restoring feasibility.
Experiments show that although this procedure is
less efficient than a neighbourhood designed to
take advantage of the problem structure, the
method performed well compared to a commercial
integer programming package.

If the problem is constrained, a choice must be
made between restricting the solution space to
solutions which conform to the constraints, or
allowing solutions which break the constraints at
the expense of a suitably defined penalty function.
The second option is likely to lead to simpler
neighbourhood moves, and a smoother topology,
particularly if the penalty weights can be kept
small.

In order to use SA for a particular combina-
torial optimisation problem, there are a number of
decisions to be made. These decisions can be
divided into two groups following Johnson et al.
(1987): problem specific choices and generic
choices.

5.1. Problem specific choices

The problem must be clearly formulated, so
that the set of feasible solutions is defined. The
neighbourhood of any solution must also be de-
fined as well as a way of determining the value of

5.2. Generic choices

These choices must be made for any implemen-
tation of SA and constitute the annealing or cool-
ing schedule, viz.

(i) the initial value of the temperture parame-
ter T,

(ii) a temperature function, T(t), to determine
how the temperature is to be changed,

(iii) the number of iterations, N(t), to be per-
formed at each temperature, and

(iv) a stopping criterion to terminate the al-
gorithm.
A great variety of cooling schedules have now

R.W. Eglese / Simulated Annealing: A tool for OR 275

been suggested. These have been classified in Col-
lins et al. (1988), which also indicates which variant
different authors have tried.

The earliest proposed cooling schedules were
based on the analogy with physical annealing. So,
for example, Kirkpatrick et al. (1983) set their
initial value of T to be large enough so that
virtually all transitions are accepted, which corre-
sponds to heating up a substance until all the
particles are randomly arranged in a liquid. A
proportional temperature function is used, i.e.
T(t + 1)= aT(t) where c~ is a constant. Typical
values of a used in practice lie between 0.8 and
0.99. Such a function provides smaller decrements
in T as zero temperature is approached. The num-
ber of iterations at each value of T, N(t), is
determined by a sufficient number of transitions
being accepted subject to a constant upper bound.
This is an attempt to bring the system to a state
corresponding to thermal equilibrium in the physi-
cal analogy. Other simple schemes may keep N(t)
constant, or make it proportional to the size of the
problem instance or the size of the neighbourhood
defined. The SA algorithm is stopped when the
solution obtained at each temperature change is
unaltered for a number of consecutive tempera-
ture changes. The final state is then said to corre-
spond to the frozen state.

Other cooling schedules make a more direct
appeal to the theoretical results on asymptotic
convergence described in Section 4. The number
of iterations to carry out at each value of T, N(t),
is chosen so that the system is 'sufficiently close
to' the stationary distribution at that value of T.
Aarts and Korst (1989), and van Laarhoven and
Aarts (1987) refer to this as 'quasi-equilibrium'.
Different rules or heuristics for deciding when
quasi-equilibrium has been reached lead to differ-
ent cooling schedules.

However, as Hajek's (1988) result shows, for
asymptotic convergence to the set of optimal solu-
tions, the condition is for the cooling to be carried
out sufficiently slowly, rather than there neces-
sarily being any requirement to attain a state
corresponding to thermal equilibrium at a succes-
sion of reducing temperatures. The result also
suggests that if T is kept fixed for a number of
iterations, there is a trade-off between large reduc-
tions in T and a small number of iterations at
fixed T. So at one extreme there is, for example,
the scheme proposed by Lundy and Mees (1986),

where there is only a single iteration at each
temperature. They use heuristic arguments to de-
rive a temperature function of the form

T(t + 1) = T(t)/(1 + BT(t))

where B is a constant, and which is equivalent to

T(t) = C1/(1 + tC:)

where C a and C 2 are constants. As the number of
iterations increases, this will represent slower cool-
ing than a proportional temperature reduction with
fixed values of a and N. At the other extreme,
there is the heuristic scheme based on.SA pro-
posed by Connolly (1988) which suggests that the
majority of the iterations should be conducted at a
suitably fixed temperature.

One broad distinction which can be made be-
tween cooling schedules is to contrast those with
and without feedback for T(t) and N(t). Simple
schedules without feedback determine T(t) and
N(t) at the start of any run. Other schedules allow
feedback from the progression of the algorithm to
affect the current values of T(t) and N(t). The
schedule described by Kirkpatrick et al. (1983)
allows the number of accepted transitions to in-
fluence N(t). Another example is the cooling
schedule proposed by Aarts and van Laarhoven
(1985) where N(t) is kept constant, but the tem-
perature function depends on an estimate of the
standard deviation of the distribution of objective
function values at the current temperature, which
must be monitored during the execution of the
algorithm. Aarts and van Laarhoven have shown
that their cooling schedule normally leads to a
worst case running time which is a polynomial
function of the size of the problem. Other re-
searchers have suggested that alternative measure-
ments, such as monitoring the specific heat of the
system, may be a useful guide to a suitable rate of
cooling.

The relative performance of these cooling
schedules will be discussed in a later section.
However, many users of SA have found that im-
plementing SA in the ways described in this sec-
tion has led to either very long run times or
relatively poor solutions when the run time is
limited. Thus many users have modified the SA
approach in ways which take the algorithm further
away from the physical analogy on which it is
based, but which lead to a more efficient al-
gorithm. These are described in the next section.

276 R. W. Eglese / Simulated Annealing: A tool for OR

6. Modifications to SA

6.1. Simple modifications

This section contains some simple suggestions
which various authors have made to improve the
effectiveness of the basic algorithm. They can all
be implemented easily in a computer code.

6.1.1. Storing best solution so far
The SA algorithm sometimes accepts solutions

which are worse than the current solution. It is
therefore possible in any single SA run for the
final solution to be worse than the best solution
found during the run. It is not usually computa-
tionally expensive to store details of the best solu-
tion found so far, so better solutions may result
from run times similar to those for the basic
algorithm. In addition, Glover and Greenberg
(1989) argue that with this modification, there is
less need for the SA algorithm to rely on a strong
stabilizing effect over time. This idea is supported
by Connolly's (1988) modification of SA, where
having found a suitable fixed temperature, all the
remaining iterations are carried out that tempera-
ture. In the final phase, a descent algorithm can be
employed to find the local optimum containing
the best solution encountered in the earlier phases.

6.1.2. Sampling the neighbourhood without
replacement

When the temperature parameter, T, gets low
in the latter part of an SA run, the probability of
accepting worse solutions than the current one
becomes small. Thus in the region close to a local
optimum, most of the computer time is spent
rejecting worse solutions. If there are only one or
two neighbourhood moves which give improved
solutions, the basic SA algorithm may take a lot of
time to find them. Therefore some researchers
have suggested that neighbourhood moves should
be generated in such a way that all possible moves
in the neighbourhood of a solution are attempted
before repeating a move, unless a new solution is
accepted. Johnson et al. (1987) implement this
idea by generating a new set of potential
neighbourhood moves every n iterations, where n
is the size of the neighbourhood. Within each
block, each potential move is considered once and
in a random order. Experiments with graph par-
tioning problems showed that this modification

gave significantly better results than simply choos-
ing neighbourhood moves at random in a similar
run time. Connolly (1988) also presents experi-
mental evidence of the benefit of sampling the
neighbourhood without replacement, though in
this case it is implemented by simply searching
through the neighbourhood in a sequential rather
than random manner.

Another advantage of this approach is that
when the algorithm has been terminated and there
has been no improvement in the solution for at
least the last n moves, where n is the size of the
neighbourhood, then the final solution is guaran-
teed to be a local optimum.

6.1.3. Alternative acceptance probabilities
Some researchers have considered replacing the

standard function, e x p (- 8 / T) for the probability
of accepting a solution which increases the objec-
tive by 8, with some alternative function. Indeed
there has been some theoretical work to show that
asymptotic convergence holds for more general
acceptance functions (see e.g. Anily and Federgru-
en, 1987; Faigle and Schrader, 1988; Romeo and
Sangiovanni-Vincentelli , 1985). Romeo and
Sangiovanni-Vincentelli provide some experimen-
tal evidence that an alternative acceptance scheme
does not significantly alter the quality of solutions
found. Matsuo et al. (1988) find that when their
algorithm is restricted to a small neighbourhood,
using an acceptance function which is indepen-
dent of 8, when 6 is positive, yields results nearly
as good as use of the standard function.

In applications of SA where the calculation of
the value of e x p (- 8 / T) is a significant factor in
the run time, Johnson et al. (1987) propose that
the exponential function is approximated by a
simple table lookup scheme. Experiments on graph
partioning problems saved one third of the run-
ning time with no apparent effect on the quality of
the solutions.

6.2. More complex modifications

The modifications described in this section re-
quire rather more work to implement in a com-
puter algorithm. The nature of some of these
modifications depends more closely on the prob-
lem under consideration, and so although these
ideas may result in a more powerful algorithm for

R. W. Eglese / Simulated Annealing: A tool for OR 277

a specific application, they cannot always be easily
transferred to different applications.

6.2.1. Combination of SA with another method
There are two ways in which SA may be com-

bined with an alternative method; either using the
alternative method to provide a 'good' initial solu-
tion which SA attempts to improve, or by using
SA to provide a 'good' initial solution as a starting
point for the alternative method.

The first of these approaches is illustrated by
Chams et al. (1987) for example, when considering
graph colouring problems. Johnson et al. (1987)
also provide some experimental results for the
graph partitioning problem. They show that both
quality of solution and running time may be im-
proved by the use of a good starting solution.
When a good initial solution is used, the initial
temperature in the cooling schedule is reduced,
otherwise the benefits of the good initial solution
will be lost. They also show that starting solutions
which take advantage of the special structure of
the problem instance being considered seem pre-
ferable to those obtained by general heuristics.

The second approach is exemplified by using
SA as a way of obtaining a good initial solution
for a branch and bound algorithm or integer pro-
gramming algorithm.

is to use problem-specific information to identify
a promising subset of the neighbourhood, and a
generation mechanism that will give a greater
probability of attempting moves into the prom-
ising subset. Although he shows that this can be
advantageous compared to the basic SA approach,
it is not clear whether it performs significantly
better than the schemes suggested for sampling
from a neighbourhood without replacement.

Greene and Supowit (1986) propose a rejection-
less method. This scheme also aims to reduce the
amount of time spent in the latter part of a SA
run when the majority of the moves are rejected.
In this scheme, a probability distribution is con-
structed over the set of all moves to show the
relative probability of a move being accepted if it
is chosen. A move is then selected at random
according to this distribution and accepted auto-
matically. It can be shown that the result of this
procedure is equivalent to the basic SA algorithm.
For the graph partitioning problem the probabil-
ity distribution can be updated efficiently leading
to quicker runs once the proportion of accep-
tances in the basic algorithm falls below some
threshold. To apply this approach to other prob-
lems means finding an efficient way to update the
probability distribution, and this depends on
problem-specific information.

6.2.2. Problem specific modifications
Many users of SA adapt the basic approach to

take advantage of special features of the problem
being considerd. In many applications, the bulk of
the run time is taken up calculating 6, the change
in the objective value at each transition. Grover
(1986) shows that significant speed-ups can be
obtained by calculating 8 approximately instead
of exactly. These approximations are shown not to
affect the quality of the solution significantly,
provided the errors are less than a function of the
temperature parameter, T. Tovey (1988) also sug-
gests that the algorithm may be speeded up by
using a quicker, approximate method to calculate
8. However, he incorporates this idea in a scheme
he calls a 'poor man's swindle'. The faster, ap-
proximate method of calculating 6 is not used
every iteration, but only with a certain probability,
which is updated as the algorithm proceeds so that
the resulting algorithm will simulate the results of
the basic SA approach. Tovey also suggests a
'Neighbourhood Prejudice Swindle'. The idea here

6.2.3. Parallel versions
Another approach to speeding up SA is to

implement a parallel version of the algorithm. A
good discussion of the issues involved is found in
the book by Aarts and Korst (1989).

Two general strategies may first be dis-
tinguished: single-trial parallelism and multiple-
trial parallelism. In the first strategy, the calcula-
tions to evaluate a single trial are divided between
several processors. The implementation of this
strategy and the speed-up that can be obtained are
clearly problem dependent. In multiple-trial paral-
lelism, however, trials are evaluated in parallel.
Some approaches reported in the literature make
use of problem-specific features to carry this out.
For example, a placement problem may be subdi-
vided so that different processors deal with local
changes in different regions. However, Aarts and
Korst describe three general approaches that use
multiple-trial parallelism, viz. the division al-
gorithm, the clustering algorithm and the error
algorithm.

278 R.W. Eglese / Simulated Annealing: A tool for OR

In the division algorithm, the number of itera-
tions at each temperature is divided equally be-
tween the processors. After a change in tempera-
ture, each processor may simply start from the
final solution obtained by that processor at the
previous temperature. The best solution from all
the processors is then taken to be the final solu-
tion. Another variant of this approach is to com-
municate the best solution from all the processors
to each processor every time the temperature
changes. Aarts and Korst found no significant
differences in the performance of these two
variants.

In the clustering algorithm, two or more
processors are used to generate one sequence of
accepted moves. Processors evaluate possible
moves independently until one is accepted. This is
then communicated to all the processors in the
cluster, which abort their current calculations and
resume with the accepted solution. This strategy is
likely to be inefficient at the start of a run when
the temperature parameter is high and many tran-
sitions are accepted, though it should become pro-
gressively more efficient as the temperature ap-
proches zero and few new solutions are accepted.
A suggested strategy is therefore to start as the
division algorithm already described, but as soon
as the estimated efficiency of using two processors
exceeds 50%, the processors are clustered into
pairs. The clustering process continues until even-
tually all the processors form one cluster.

Finally, there is the error algorithm. Here all
the processors are used to investigate potential
neighbourhood moves in parallel. Any accepted
move updates the current solution, but implemen-
tation on a computer using a global memory may
need to be done sequentially. The name 'error
algorithm' derives from the fact that some calcula-
tions made by a processor of the change in objec-
tive value for a potential move may be calculated
wrongly if another processor has just accepted a
move of which the processor is unaware.

Aarts and Korst compared the performances of
these three parallel versions of SA on a computer
which allowed up to 8 processors to be used in
parallel. The algorithms were tested on a 100 city
travelling salesman problem. The results show that
both the division algorithm and the clustering
algorithm could give results of similar quality to
the sequential SA algorithm and with an efficiency
close to 1. The results for the error algorithm were,

on the other hand, quite poor, with no conver-
gence being achieved with eight processors. This is
in contrast to other implementations of types of
error algorithms for placement problems, where
high efficiencies have been reported (e.g. Casotto,
Romeo and Sangiovanni-Vincentelli, 1987). The
discrepancy may be explained by the fact that the
neighbourhood structure usually employed for
placement problems only allow local changes
which seldom lead to errors if two such changes
are accepted simultaneously. The 2-opt neighbour-
hood structure used for the travelling salesman
problem involves reversing the order of several
cities in the tour and so the chance of errors in
calculating the change in objective from two
potential moves which are accepted simulata-
neously is significant. Although some empirical
results on convergence of error algorithms is avail-
able, there is not as yet, any precise analysis of the
conditions required for convergence.

In their book, Aarts and Korst go on to de-
scribe how an efficient massively parallel imple-
mentation of SA could be carried out in a neural
network, based on the model of Boltzmann ma-
chines. Encouraging results are obtained for some
graph problems (e.g. max cut problem) where
simulations show that the Boltzmann machine ap-
proach would give solutions of comparable quality
to SA in considerably less computation time, when
implemented on a suitable computer. However the
Boltzmann machine approach was much less suc-
cessful than sequential SA for travelling salesman
problems. This is a growing area of research as
Boltzmann machines and other neural network
models are implemented on dedicated hardware.
For example, a design for a VLSI chip has been
presented by Alspector and Allen (1987) and pro-
posed for optical implementations by Farhat
(1987).

7. Computational results

What evidence is there that SA performs well in
obtaining good solutions within reasonable run
times? How does it compare with other ap-
proaches?

SA is a stochastic algorithm, requiring a neigh-
bourhood structure to be specified as well as a
number of parameters to provide a cooling sched-
ule. Many variants of the basic algorithm have

R. W. Eglese / Simulated Annealing: A tool for OR 279

been proposed. It therefore requires considerable
testing to come up with sound conclusions. Even
then, the conclusions are likely to depend on the
type of problem to which SA is applied, and in
some cases, to the problem instance. Some studies
making general claims about SA can only be ap-
plied to particular implementation schemes. How-
ever, some general remarks can be made.

7.1. Comparison with repeated descent algorithm

Studies of a number of different problems have
shown that SA can give significantly better results
than repeating a descent algorithm using different
random starting positions (and the same neigh-
bourhood structure) and taking the best solution
in the same amount of computing time. This is
shown very clearly for a graph partitioning prob-
lem by Johnson et al. (1987), and for a travelling
salesman problem by van Laarhoven (1988).
Lundy and Mees (1986) construct an exaple where
the expected time for SA to find the optimum is
linear, but where for the repeated descent al-
gorithm the time is quadratic in the size of the
problem.

Even though the superior performance of SA
has been observed for several different problems,
this result does depend on the problem and
neighbourhood structure used. This is clear be-
cause if there are no local optima, but only a
global optimum, a single run of the descent al-
gorithm will find it more quickly than using SA.

gorithm decides dynamically on the value of k. It
is perhaps not surprising that an algorithm like SA
which is very generally applicable does not always
compete with algorithms specially designed to ex-
ploit features of the problem under consideration.

7. 3. Comparison of different cooling schedules

Some computational experiments have been
done to compare the performance of SA using
different cooling schedules, particularly by John-
son et al. (1987) and van Laarhoven (1988). Simi-
lar performances were obtained from different
types of cooling schedule, once the parameters
had been chosen to produce good quality results.

On the problems tested, these researchers did
not find that cooling schedules with feedback per-
formed any better than those without. It seems
likely that the advantages of cooling schedules
with feedback are most evident when the problem
has a structure which gives rise to 'phase transi-
tions' as described by Kirkpatrick et al. (1983).

Whatever cooling schedule is chosen, it is im-
portant not to spend too long at high tempera-
tures, where most neighbourhood moves are
accepted, as this can waste running time. It is also
important not to spend too long at very low
temperatures, where most neighbourhood moves
are rejected. At the end of the algorithm it may be
worth checking that at least a local optimum has
been obtained.

7.2. Comparison with problem specific algorithms

There are many combinatorial problems for
which special algorithms have already been devel-
oped. The performance of SA in comparison with
these algorithms seems to depend on the problem
under consideration. Some of the most thorough
testing has been carried out by Johnson et al.
(1987, 1988) who find that for the graph partition-
ing problem, SA outperforms the classicial
Kernighan and Lin algorithms in both quality and
speed for certain types of random graphs. For
graph colouring problems, SA can find very good
quality solutions, though at the expense of very
large run times. For the travelling salesman prob-
lem, SA is outperformed in both quality and speed
by the Lin-Kernighan algorithm which is based
on k-opt neighbourhood moves, where the al-

7.4. Comparison with other general heuristic
methods

Some results have been published which com-
pare SA with another general heuristic for specific
problems. For example, Hertz and de Werra (1987)
show that their tabu search technique for graph
colouring problems gives better results than their
implementation of SA. On the other hand, Bland
and Dawson (1989) obtained better results with
their implementation of SA for layout optimisa-
tion problems than an intitial version of tabu
search. At this stage it is perhaps premature to
make relative judgements about these and other
general heuristics, since SA and other methods are
relatively recent ideas, and research is still con-
tinuing to find the best way of implementing them
for different types of problem.

280 R. W. Eglese / Simulated Annealing: A tool for OR

7.5. Practical and scientific problems

SA has been applied to many problems where
no problem-specific algorithms were available.
These include problems of VLSI design and
molecular structure. SA has in general been able
to provide good quality solutions, in some cases
improving the best known solutions (e.g. for the
football pool problem, see Wille, 1987; van
Laarhoven, Aarts, van Lint and Wille, 1988).
However for some problems the reported running
time is very long, which is why some of the
variants of SA described in the last section may be
needed in practice.

8. Conclusions

Considering SA as a heuristic algorithm for
obtaining good, though not necessarily optimal
solutions, to optimisation problems, it has several
attractive features. First of all, it is very easy to
implement. Once a neighbourhood structure has
been devised, the SA algorithm only occupies a
few lines of code. Secondly it can be generally
applied to a wide range of problems. In principle
any combinatorial optimisation problem can be
tackled using SA provided a relevant neighbour-
hood structure is proposed. Thirdly SA can pro-
vide high quality solutions to many problems.
However this may be at the expense of high run
times, particularly when compared to a problem
specific algorithm. This means that SA must not
be regarded as a panacea, capable of simply solv-
ing any optimisation problem. Care is needed to
devise an appropriate neighbourhood structure and
cooling schedule to obtain an efficient algorithm.

For the OR practitioner, most models derived
from real situations have special features which
make it less likely that a problem specific al-
gorithm will be available. Extra constraints can
often be handled satisfactorily by the use of
penalty functions; indeed the penalty function
approach may be preferred if the constraints are
soft rather than hard. In many practical contexts
it is also acceptable to obtain several good solu-
tions to an to an optimisation problem, rather
than an optimal solution where that would require
a much greater programming or computing effort.
Eglese and Rand (1987), and Wright (1989) are
examples of case-orientated papers involving SA.

Thus the features of SA which have been de-
scribed make SA a very useful tool for the OR
practitioner.

References

Aarts, E.H.L., and Korst, J.H.M. (1989), Simulated Annealing
and Boltzmann Machines, Wiley, Chichester.

Aarts, E.H.L., and Laarhoven, P.J.M. van (1985), "Statistical
cooling: A general approach to combinatorial optimization
problems", Philips Journal of Research 40, 193-226.

Alspector, J., and Allen, R.B. (1987), "A neuromorphic VLSI
learning system", in: P. Losleben (ed.), Advanced Research
in VLSI, MIT Press, Cambridge, MA, 313-349.

Anily, S., and Federgruen, A. (1987), "Simulated annealing
methods with general acceptance probabilities", Journal of
Applied Probability 24, 657-667.

Bland, J.A., and Dawson, G.P. (1989), "Tabu search applied to
layout optimisation", Report, Department of Matlis, Stats
and O.R, Trent Polytechnic, UK, presented at CO89, Leeds,
July 1989.

Casotto, A., Romeo, F., and Sangiovanni-Vincentelli, A.L.
(1987), "A parallel simulated annealing algorithm for the
placement of macro-cells", IEEE Transactions on Com-
puter-Aided Design 6, 838-847.

Cemy, V. (1985), "Thermodynamical approach to the traveling
salesman problem: An efficient simulation algorithm",
Journal of Optimisation Theory and Applications 45, 41-51.

Chains, M., Hertz, A., and de Werra, D. (1987), "Some experi-
ments with simulated annealing for colouring graphs",
European Journal of Operational Research 32, 260-266.

Collins, N.E., Eglese, R.W., and Golden, B.L. (1988), "Simu-
lated annealing--An annotated bibliography", American
Journal of Mathematical and Management Sciences 8, 209-
307.

Connolly, D.T. (1987). "Combinatorial optimization using
simulated annealing", Report, London School of Eco-
nomics, London, WC2A 2AE, presented at the Martin
Beale Memorial Symposium, London, July 1987.

Connolly, D.T. (1988), "An improved annealing scheme for the
QAP", European Journal of Operational Research 46, 93-
100.

Eglese, R.W., and Rand, G.K. (1987), "Conference seminar
timetabling", Journal of the Operational Research Society
38, 591-598.

Falgle, U., and Sehrader, R. (1988), "On the convergence of
stationary distributions in simulated annealing algorithms",
Information Processing Letters 27, 189-194.

Farhat, N.H. (1987), "Optoelectric analogs of self-program-
ming neural nets: Architecture and methodologies for im-
plementing fast stochastic learning by simulated annealing",
Applied Optics 26, 5093-5103.

Glover, F., and Greenberg, H.J. (1989), "New approaches for
heuristic search: A bilateral linkage with artificial intelli-
gence", European Journal of Operational Research 39, 119-
130.

Greene, J.W., and Supowit, K.J. (1986), "Simulated annealing

R. W. Eglese /SimulatedAnnealing: A tool for OR 281

without rejected moves", IEEE Transactions on Computer-
Aided Design 5, 221-228.

Grover, L.K. (1986), "A new simulated annealing algorithm
for standard cell placement", Proc. IEEE International
Conference on Computer-Aided Design, Santa Clara, 378-
380.

Hajek, B. (1988), "Cooling schedules for optimal annealing",
Mathematics of Operations Research 13, 311-329.

Hertz, A., and de Werra, D. (1987), "Using tabu search tech-
niques for graph colouring", Computing 39, 345-351.

Jerrum, M., and Sinclair, A. (1988), "Approximating the per-
manent", Internal report CSR-275-88, Department of Com-
puter Science, University of Edinburgh.

Johnson, D.S., Aragon, C.R., McGeogh, L.A., and Schevon, C.
(1987), "Optimization by simulated annealing: An experi-
mental evaluation, Part I". AT&T Bell Laboratories, Mur-
ray Hill, N J, preprint.

Johnson, D.S, Aragon, C.R., McGeogh, L.A, and Schevon, C.
(1988), "Optimization by simulated annealing: An experi-
mental evaluation, Part II", AT&T Bell Laboratories, Mur-
ray Hill, N J, preprint.

Kirkpatrick, S., Gelatt, Jr., C.D, and Vecchi, M.P. (1983),
"Optimization by simulated annealing", Science 220, 671-
680.

Laarhoven, P.J.M. van (1988), "Theoretical and computational
aspects of simulated annealing", PhD thesis, Erasmus Uni-
versity, Rotterdam.

Laarhoven, P.J.M. van, and Aarts, E.H.L. (1987), Simulated
Annealing: Theory and Applications, Reidel, Dordrecht.

Laarhoven, P.J.M. van, Aarts, E.H.L., Lint, J.H. van, and
Wille, L.T. (1988), "New upper bounds for the football
pool problem for 6, 7 and 8 matches", Journal of Combina-
torial Theory A, in press.

Lundy, M., and Mees, A. (1986), "Convergence of an anneal-
ing algorithm", Mathematical Programming 34, 111-124.

Maffioli, F. (1987), "Randomized heuristics for NP-hard prob-
lems", in: Andreatta, G., Mason, F., and Serafini, P. (eds.),
Advanced School on Stochastics in Combinatorial Optimis-
ation, World Scientific, Singapore, 76-93.

Matsuo, H., Suh, C.J., and Sullivan, R.S. (1988), "A controlled
search simulated annealing method for the general jobshop
scheduling problem", Working paper ~:03-04-88, Depart-
ment of Management, The University of Texas at Austin,
Austin.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.,
and Teller, E. (1953), "Equation of state calculations by
fast computing machines", Journal of Chemical Physics 21,
1087-1092.

Mitra, D., Romeo, F., and Sangiovanni-Vincentelli, A.L. (1986),
"Convergence of finite-time behaviour of simulated anneal-
ing", Advances in Applied Probability 18, 747-771.

Romeo, F., and Sangiovanni-Vincentelli, A.L. (1985), "Prob-
abilistic hill climbing algorithms: Properties and applica-
tions", Proc. Chapel Hill Conference on VLSI, Chapel Hill,
NC, 393-417.

Sasaki, G.H., and Hajek, B. (1988), "The time complexity of
maximum matching by simulated annealing", Journal of
the ACM 35, 387-403.

Tovey, C.A. (1988), "Simulated simulated annealing", Ameri-
can Journal of Mathematical and Management Sciences 8,
389-407.

Wille, L.T. (1987), "The football pool problem for 6 matches:
A new upper bound obtained by simulated annealing",
Journal of Combinatorial Theory A 45, 171-177.

Wright, M.B. (1989), "Applying stochastic algorithms to a
locomotive scheduling problem", Journal of the Operational
Research Society 40, 187-192.

