
 

Design, Automation and Test for 
Asynchronous Circuits and Systems

 

Information Society Technologies (IST) Programme
Concerted Action Thematic Network Contract

 IST-1999-29119

D. A. Edwards         W. B. Toms

3

 

rd 

 

Edition June 2004



 

Contents of Report

 

Introduction ...................................................................................................................... 1
3D.....................................................................................................................................  3
ACK.................................................................................................................................  6
ATACS (Automated Timed Asynchronous Circuit Synthesis) .......................................  8
Balsa...............................................................................................................................  10
Butler .............................................................................................................................  14
CADP.............................................................................................................................  17
CASCADE.....................................................................................................................  20
CAST (Caltech Asynchronous Synthesis Tools)...........................................................  24
CCS-based specification ................................................................................................  29
Clp..................................................................................................................................  31
ConfRes .........................................................................................................................  33
DESI (DEcomposer SIgnal Transition Graph) ..............................................................  36
di2pn, syndi and diana ...................................................................................................  40
DGC (Digital Gate Compiler)........................................................................................  43
FIREMAPS/Process Spaces ..........................................................................................  45
Handshake Technology Design Flow ............................................................................  50
LARD.............................................................................................................................  53
MINIMALIST ...............................................................................................................  56
Oolong ...........................................................................................................................  59
OptiMist .........................................................................................................................  61
Petrify.............................................................................................................................  64
Phased Logic..................................................................................................................  66
PipeFitter........................................................................................................................  69
Punf................................................................................................................................  71
SIS..................................................................................................................................  73
TAST .............................................................................................................................  75
Theseus NCL Synthesis Flow........................................................................................  78
Transyt ...........................................................................................................................  83
Veraci.............................................................................................................................  85
VeriMap .........................................................................................................................  87
VerySAT........................................................................................................................  91
VSTGL...........................................................................................................................  93
Weaver/Gate Transfer Level (GTL) synthesis...............................................................  94
XDI ................................................................................................................................  97
Testing Asynchronous Circuits ...................................................................................... 99
Identified Tools & Methodologies...............................................................................  103
Original Questionnaire.................................................................................................  119



 

 1Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

 

Introduction

 

This report forms part of the deliverable for workpackage 3 of contract IST-1999-29119. It is
intended to describe the state-of-the-art in methods and tools for the design of asynchronous
digital VLSI systems. This report is intended to be primarily of use to companies, both
members and non-members of the Working Group on Asynchronous Circuit Design (

 

http://
www.bcim.lsbu.ac.uk/ccsv/ACiD-WG/

 

), who are aware of the potential benefits of
asynchronous circuit technology, but who need to know more about available asynchronous
design methods and tools before committing resources. The report aims to highlight
deficiencies in existing approaches and so provide the impetus for further tools development.

 

Notes on the 3

 

rd

 

 Edition:

 

Nine new tools have been described: CAST, DGC, Oolong, Phased Logic, Verimap, VerySAT
and Weaver are described in their own right; syndi and diana are included under the di2pn tool
description. Tangram has been replaced by Haste and is now commerically available. Updated
submissions were received about the tools ATACS, Balsa, Cascade, Clp, ConfRes, Desi, di2pn,
Optimist, Pipefitter, Punf and Theseus NCL Synthesis Flow. No further information has been
received about the tools 3D, ACK, CADP, FIREMAPS, SIS, Transyt, Veraci, VSTGL. It is
assumed they are in the same state as last year and so their previous submissions have been
kept. New references have been added to the Test section.

 

Notes on the 2

 

nd

 

 Edition:

 

Several organisations have updated their descriptions with new features, FIREMAPS, CADP
and di2pn all have new descriptions, ATACS now has a wider availability. It is expected that
there are changes to entries for Minimalist and Tangram, but no information is available as yet.
There are no notable changes for most of the other tools in the first report. No further
information has been received about the tools 3D, ACK, Theseus NCL Flow, Transyt and XDI.
It is assumed that these tools are in the same state as last year, and so their previous
submissions have been kept. The tool VHDL++ has been removed as it is no longer being
maintained. Professor Graham Birtwhistle, who pioneered CCS verification of asynchronous
circuits, has retired from his post at the University of Leeds, UK, but currently has a temporary
post at the Dept of Computer Science, University of Sheffield, UK. Six new tools have been
added: CASCADE, ConfRes, Clp, DESI, Optimist, Punf. New references have been added to
the Test section.

 

Introduction to the 1

 

st

 

 Edition:

 

Scope of the Report

 

The tools in this report have not been assessed by the authors. Rather, they are a self-evaluation
by the creators of the tools in response to an email questionnaire. A search of the published
literature has been used to identify tool developers in areas relevant to asynchronous circuits.



 

 2Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

 

Structure of the Report

 

The main body of the report contains the self evaluations received from various tools
developers. Test methodologies for asynchronous circuits are still in their infancy. The section
“Testing Asynchronous Circuits” details some of the more important papers in this area.
Appendix A, “Identified Tools & Methodologies,” on page 102 of the report identifies tool and
methodology developers who were contacted, The original questionnaire is reproduced in
Appendix B, “Original Questionnaire,” on page 118.

In total, twenty two tools/methodologies are listed in alphabetical order. Four of these, (ACK,
Balsa, Tangram and TAST) are primarily concerned with silicon compilation, and two (LARD
and VHDL++) with simulation. Two (BUTLER and NCL technologies) exploit libraries of
special-purpose components. Five (3D, ATACS, MINIMALIST, Petrify and SIS) perform logic
synthesis, with three more (di2pn, Pipefitter and VSTGL) usable as front ends to Petrify.
Finally, six (CADP, CCS, Firemaps, Transyst, Veraci and XDI) support formal verification.



 

 3Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

 

Tool/Methodology: 3D

 

Developer: Ken Yun

 

Organisation: University of California, San Diego

 

Summary

 

Today's system components typically employ the synchronous paradigm primarily because of
the availability of the rich set of design tools and algorithms and, perhaps, because of the
designers' perception of "ease of design" and the lack of alternatives. Even so, the interfaces
among the system components do not strictly adhere to the synchronous paradigm because of
the cost benefit of mixing modules operating at different clock rates and modules with
asynchronous interfaces. 

In order to tackle this problem, the synthesis system called 3D has been developed. The 3D
system uses a design style called extended burst-mode (XBM). The XBM design style covers a
wide spectrum of sequential circuits ranging from delay-insensitive to synchronous. It can
synthesize multiple-input change asynchronous finite state machines, and many circuits that
fall in the gray area between synchronous and asynchronous which are difficult or impossible
to synthesize automatically using existing methods. This implementation of XBM machines
uses standard combinational logic, generates low-latency outputs and guarantees freedom from
hazards at the gate level.

 

Strengths and Weaknesses

 

Not stated.

 

Application domain

 

Controllers operating in heterogeneous systems – systems with components employing
different synchronization mechanisms.

 

Use of Existing HDLs

 

Currently, the 3D system is integrated with HFMIN, an exact two-level logic minimizer,
implemented by Robert Fuhrer and Steve Nowick at Columbia University. The integrated
technology mapper is adaptable to most commercial CMOS standard cell and mask
programmable gate array libraries. Inputs to the 3D tool are textual descriptions of XBM
controllers, and outputs are technology-independent logic equations and technology- mapped
netlists.

 

Extent of Automation

 

The 3D synthesis system is an implementation of a complete set of automated sequential
synthesis algorithms: hazard-free state assignment, hazard-free state minimization, and
critical-race-free state encoding.



 

 4Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

 

Category

 

Synthesis – Extended Burst Mode asynchronous controllers.

 

Design Flow and Commercial EDA Tool Requirement

 

Not stated.

 

Test Strategy

 

Not stated

 

Current Status of Tool

 

Current Activities

 

The 3D synthesis system is completely functional now. It synthesizes XBM controllers in two-
level AND-OR logic and maps them to a generic CMOS standard cell library or in generalized
C-elements. All known bugs have been fixed. It has been used to synthesize the above
mentioned chips and is actively used by several research groups, including Intel, IBM, and
University of Utah VLSI group.

 

Maintainer

 

Ken Yun, 

 

kyy@ucsd.edu

 

Availability

 

Available from: 

 

http://paradise.ucsd.edu/3D/

 

Future plans

 

There is an on-going research efforts to generate multi-level logic and generalized C-element
based implementations.

 

Demonstrators

 

The effectiveness of the XBM design style and the synthesis tool has been demonstrated by
designing several chips or modules, some of which are are listed below: 

•  a low-control-overhead differential equation solver in 0.5um HP CMOS14TB process;

 

http://paradise.ucsd.edu/3D/examples/diffeq

 

•  a commercial-scale SCSI controller, which is functionally compatible with an existing 
high performance commercial chip and meets the ANSI SCSI-2 standard; 

 

http://paradise.ucsd.edu/3D/examples/scsi

 

•  an infrared communications chip (in collaboration with HP Labs) capable of 
transferring data at 800Kbps only dissipating 200mW at peak data rate. 

 

References

 

See http://paradise.ucsd.edu/controller.html for hyptext links to the following publications:

[1] W.-C. Chou, P. A. Beerel, and K. Y. Yun, “Average-case technology mapping of 
asynchronous burst-mode circuits,” 

 

IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems

 

, vol. 18, no. 10, pp. 1418-1434, Oct. 1999. 



 

 5Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

 

[2] S. Chakraborty, K. Y. Yun, and D. L. Dill, “Timing analysis of asynchronous systems 
using time separation of events,” 

 

IEEE Transactions on Computer-Aided Design of 
Integrated Circuits and Systems

 

, vol. 18, no. 8, pp. 1061-1076, Aug. 1999.
[3] K. Y. Yun and D. L. Dill, “Automatic synthesis of extended burst-mode circuits: part I 

(specification and hazard-free implementations),” 

 

IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems

 

, vol. 18, no. 2, pp. 101-117, Feb. 1999.
[4] K. Y. Yun and D. L. Dill, “Automatic synthesis of extended burst-mode circuits: part II 

(automatic synthesis),” 

 

IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems

 

, vol. 18, no. 2, pp. 118-132, Feb. 1999.
[5] S. Chakraborty, D. L. Dill, and K. Y. Yun, “Min-max timing analysis and an applications 

to asynchronous circuits,” 

 

Proceedings of the IEEE

 

, vol. 87, no. 2, pp. 332-346, Feb. 
1999.

[6] K. Y. Yun, B. Lin, D. L. Dill, and S. Devadas, “BDD-based synthesis of extended burst-
mode controllers,” 

 

IEEE Transactions on Computer-Aided Design of Integrated Circuits 
and Systems

 

, vol. 17, no. 9, pp. 782-792, Sept. 1998.
[7] S. Chakraborty, K. Y. Yun, and D. L. Dill, “Practical timing analysis of asynchronous 

systems using time separation of events,” in 

 

Proceedings of the IEEE 1998 Custom 
Integrated Circuits Conference

 

, Santa Clara, California, May 1998, pp. 455-458.
[8] K. W. James and K. Y. Yun, “Average-case optimized transistor-level technology 

mapping of extended burst-mode circuits,” 

 

in Proceedings of the 1998 International 
Symposium on Advanced Research in Asynchronous Circuits and Systems

 

, San Diego, 
California, Mar. 1998, pp. 70-79.

[9] W. Chou, P. A. Beerel, R. Ginosar, R. Kol, C. J. Myers, S. Rotem, K. Stevens, and K. Y. 
Yun, “Average-case optimized technology mapping of one-hot domino circuits,” in 

 

Proceedings of the 1998 International Symposium on Advanced Research in 
Asynchronous Circuits and Systems

 

, San Diego, California, Mar. 1998, pp. 80-91.
[10] S. Chakraborty, D. L. Dill, K. Y. Yun, and K-Y. Chang, “Timing analysis for extended 

burst-mode circuits,” in 

 

Proceedings of the 1997 International Symposium on Advanced 
Research in Asynchronous Circuits and Systems

 

, Eindhoven, The Netherlands, Apr. 
1997, pp. 101-111.

[11] K. Y. Yun, “Automatic synthesis of extended burst-mode circuits using generalized C-
elements,” in

 

 Proceedings of the 1996 European Design Automation Conference

 

, 
Geneva, Switzerland, Sept. 1996, pp. 290-295.

[12] P. A. Beerel, K. Y. Yun, and W. Chou, “A heuristic covering technique for optimizing 
average-case delay in the technology mapping of asynchronous burst-mode circuits,” in 

 

Proceedings of the 1996 European Design Automation Conference

 

, Geneva, Switzerland, 
Sept. 1996, pp. 284-289.



 

 6Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

 

Tool/Methodology: ACK

 

Developers: Hans Jacobson, Prabhakar Kudva, Ganesh Gopalakrishnan, Erik Brunvand

 

Organisation: University of Utah

 

Summary

 

We define asynchronous systems to be medium to large digital systems whose descriptions
include both datapath and control, that may involve non-trivial interface requirements, and
whose control is too large to be synthesized in one large controller. ACK is a framework for
designing high-performance asynchronous systems of this type. In ACK we advocate an
approach that begins with procedural level descriptions of control and datapath and results in a
hybrid system that mixes a variety of hardware implementation styles including burst-mode
AFSMs, macromodule circuits, and programmable control. Specifically, ACK is a high level
synthesis tool that describes the desired system at a procedural level (including datapath
specification), and automatically compiles that specification into interconnected control and
datapath circuits.

Apart from creating an automated path from high-level specification all the way down to
layout, our work on ACK so far has concentrated on providing what we consider to be three of
the most important features of a successful asynchronous high-level synthesis tool. While
many additional features are needed to form a complete tool these are what we consider to be
the most important basic building blocks of the type of framework for asynchronous system
synthesis we have outlined.

• New efficient control structures for asynchronous hardwired as well as programmable 
control. These structures also support thread-level concurrency and sequential chaining 
of system tasks.

• Provide high-level design optimisation with comprehensible feedback.

• Partitioning and fast and exact synthesis of ASFMs to enable exploration of large 
design spaces.

 

Strengths and Weaknesses

 

See previous bulleted list. Enables high level design by allowing system level descriptions that
include both control and datapath. Weaknesses are that the tools backend isn’t currently
working as we switch back-end tool support from Cascade to Cadence, no fancy interface so
the tool is difficult to drive, some parts of the flow are integrated, others are separate point tools
at the moment.

 

Application domain

 

Medium to large asynchronous digital systems whose descriptions include both datapath and
control, that may involve non-trivial interface requirements, and whose control is too large to
be synthesized in one large controller.



 

 7Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

 

Use of Existing HDLs

 

Front end uses standard Verilog simulation tools (Veriwell, Verilog-XL, etc.), Datapath
synthesis uses Synopsys, complex gate synthesis uses Cadence, back-end assembly worked
using Cascade, which is no longer available. We are switching to Cadence.

 

Category

 

Synthesis – Partitioned Burst Mode or timed async controllers, standard synchronous datapath
synthesis.

 

Design Flow and Commercial EDA Tool Requirement

 

see figure.

 

Current Status of Tool

 

In current development. Entire tool is not ready for wide release.

 

Maintainer

 

Hans Jacobson, hans@cs.utah.edu

 

Future plans

 

Integrate into more usable interface, add back-end support from Cadence, add microengine
controller support, firm up Verilog front end.

 

Figure 1: ACK Tool Flow

CONTROL

DATAPATHVerilog

TechmapSynthesis
   AFSM
     MM
Microeng.

Complex gate
Standard gate

Datapath & Control
         Synthesis

Standard gate Complex gate

Automated Semi.Auto.

Place &
 Route

Optimization
Allocation

Datapath

Control

 Gate-level
Interconnect

Structural Verilog
Timing analysis

Transistor
  Layout

    System
Specification

HOP

Highlevel
Synthesis

   Timing
Verification

Synopsys
VerilogXL

   System
Verification

VerilogXL
  Formal-
  Check

Gate-level
Sim./Emul.

Tektronix

(Synopsys) (Cadence)

Fabrication

Testing

Refinement
Partitioning

SPICE
HPVerilogXLVerilogXL

Structural
Simulation

VerilogXL

Mixed Structural
    Simulation



 

 8Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

 

Tool/Methodology: ATACS (Automated Timed 
Asynchronous Circuit Synthesis)

 

Developers: Chris Myers, Wendy Belluomini, Hans Jacobson, Sung-Tae Jung, Chris Kreiger, 
Scott Little, Eric Mercer, Eric Peskin, Nick Seegmiller, Robert Thacker, David Walter, Hao 

Zheng

 

Organisation: University of Utah, USA

 

Summary

 

ATACS is a synthesis, analysis, and verification tool for timed circuits. Timed circuits are
defined to be any circuits that are optimised using explicit timing information. One example is
the self-resetting and delayed-reset domino circuits used in IBM’s gigahertz research
microprocessor. Much of the improvement in speed in this processor can be attributed to these
aggressive circuit styles. Another example is the asynchronous circuits utilized by Intel’s
RAPPID instruction length decoder. This design was 3 times faster while using only half the
power of the comparable synchronous design. These results were obtained using aggressive
timing assumptions.

The ATACS tool accepts designs given VHDL, handshaking expansions, Petri-nets, burst-mode
state machines, timed event/level structures, and state graphs. VHDL descriptions can model a
system either at a communication channel level or a signal transition level. Simulation at both
levels is supported by VHDL packages developed in our group, and the VHDL code using
these packages can be simulated using any commercial VHDL simulator. In most of the
specification methods, timing annotations can be made to indicate knowledge about the delays
of any given signal transition in the design. This delay information is utilized throughout the
design process to optimise the design which is produced. Each of these input forms is compiled
into an internal graphical representation. At this point, one of numerous timing analysis
methods can be selected to find only those states which are reachable given the provided
timing information. Automatic abstraction and partial order methods are provided to improve
the efficiency of timed state space exploration.

After finding the reachable state space, a timed circuit implementation can be synthesized.
ATACS supports several synthesis algorithms including efficient explicit state methods, BDD
implicit methods, and a direct synthesis method which avoids state space exploration and
simply generates the circuit from a free-choice Petri net representation. Each synthesis method
generates circuits which are hazard-free under a particular technology model. The choices of
technology model are: atomic gate, generalized C-elements, standard C-elements, and burst-
mode.

ATACS also supports analysis and verification. For analysis, a stochastic simulation is
performed utilizing provided delay distributions. The result is a reported average-case
performance as well as detailed information about areas of the design which contribute the
most to the cycle time. For verification, a designer can provide timing constraints that should
be checked during timed state space exploration. If a circuit is provided, the circuit will be also
be checked for hazard-freedom. Finally, several other properties are checked during state space



 

 9Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

 

exploration including net safety and deadlock. When errors are found a graphical error trace is
provided.

 

Strengths and Weaknesses

 

Allows for the systematic design of extremely efficient and aggressive circuits. Application is
limited to moderate size blocks of a design.

 

Application Domain

 

High performance circuits.

 

Use of Existing HDLs

 

Utilizes VHDL as both a front end and back end allowing simulation and integration with
commercial tools.

 

Extent of Automation

 

Fully automated approach.

 

Category

 

Synthesis => timing driven

 

Design Flow and Commercial EDA Tool Requirement

 

A VHDL simulator is useful. Physical design tools are needed to realize the synthesized logic.

 

Test Strategy

 

ATACS supports performance analysis and formal verification. Functional simulation is
performed using a VHDL simulator. There is no support for test generation.

 

Current Status

 

Current Activities

 

ATACS is in continuous development.

 

Maintainer

 

Chris Myers (myers@ee.utah.edu)

 

Availability

 

ATACS is available to download for free for academic institutions, SRC member companies,
and government agencies for non-commercial research purposes from:

http://www.async.ece.utah.edu. 

Others may license ATACS from the University of Utah Technology Transfer Office.

 

Future Plans

 

Improve integration with existing design flows.

 

Demonstrators

 

ATACS was used during the Intel RAPPID project (see JSSC 36(2): 217-228). It was also used
to verify several circuits from GUTS (see TCAD 20(1):129-146).



 

 10Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

 

Tool/Methodology: Balsa

 

Developers: Andrew Bardsley, Doug Edwards, Lilian Janin

 

Organisation: University of Manchester, UK

 

Summary

 

The Balsa System is a Handshake Circuit based, macromodule synthesis tool-set. Design
descriptions are written in the proprietary language Balsa and synthesised into networks of
handshake components in a similar manner to the Philips Tangram compiler. These handshake
circuits are expressed in a format called Breeze. Breeze is used by all the Balsa tools as a
design repository format making the backend tools independent of the frontend Balsa
language. Breeze descriptions can be realised as standard-cell VLSI layout using a
combination of Balsa tools and commercial CAD. The Balsa language is based on the
synchronous channel communicating, fine grain parallel descriptive style of CSP and shares
many features with Tangram and OCCAM. The Balsa system can currently generate circuits
for several backend technologies: Xilinx FPGAs, ARM generic design rules and cell library (as
used to implement AMULET3), two ASIC cell libraries: a 0.35um from Austria Mikro
Systems and the 0.18um HCMOS8D STMicroelectronics. A custom-built cell library using the
ST process is also available. Adding technologies is relatively simple and tools are available to
allow users to target their own cell-libraries. Three choices of data encodings are possible for
each of these technologies: single-rail - based in part on our previous work on the EXACT
project; dual-rail and 1-of-4 - for easier timing validation. Two further backends are also
currently in development: early-single-rail - to allow overlapping of return-to-zero phases of
handshakes, and m-of-n encoded - allowing each channel to adopt arbitrary encodings.

The most recent release (3.4) has greatly improved simulation within the Balsa framework
Lard has been replaced with the much more efficient 

 

breeze-sim

 

 which allows source-level
debugging of Balsa code. The Lard viewer has been replaced by 

 

gtkwave

 

 a signal-viewer
maintained by the University of Manchester - which has been enhanced to display channel
communications. An animated Handshake Circuit visulisation tool allows circut allows circuit
behaviour to be examined at the Breeze level. The Balsa language has also been updated with
new unsynthesisable constructs, such as printing, that aid the construction of test-benches
within the Balsa language itself. The balsa-verilog-sim package provides a VPI/PLI interface
to several commercially and freely available simulators, allowing complete verilog simulation
within the balsa environment.

The Balsa System comprises:

• balsa-c: the Balsa to Breeze compiler. 

• balsa-netlist: Breeze to CAD system netlist expansion. Balsa-netlist processes 
descriptions of the backend technology to produce technology specific netlists. 

• breeze-cost: circuit cost estimation for Breeze. 

• breeze2ps: Breeze handshake circuit pretty printer.



 

 11Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

 

• balsa-mgr, balsa-md: design management tools. Balsa-mgr is a friendly GUI frontend 
for the Balsa system allowing design descriptions to be compiled and simulated more 
easily.

• balsa-make-test: automatically generates test harness for a Balsa description.

• breeze-sim: the preferred simualtor working at the handshake component level.

• breeze-sim-control: a graphical front-end to the simulation and visualisation 
environment

• balsa-verilog-sim: a package which makes Verilog simulation of Balsa descriptions 
easier by providing wrapper scripts for common simulators and by supporting user-
written builtin functions which can be called from Balsa

 

Strengths and Weaknesses

 

Rapid development time, transparent design approach. The design of the Balsa System allows
new backend technologies and data encodings/handshake protocols to be easily added allowing
the designer to choose a point in the speed/area/power design space. 

Possibly not optimally efficient.

 

Application Domain

 

High complexity, medium performance circuits.

 

Use of Existing HDLs

 

Compass, Cadence, Xilinx and Mentor-Graphics commercial tools are used to implement
Balsa designs. Balsa-mgr specifically targets several verilog simulators - Icarus, Cver,
Cadence’s NCVerilog and VerilogXL, Synopsys VCS.

Extent of Automation
Push-button approach from description to layout. Balsa-mgr supports generation and
simulation of within the framework, from Breeze to Verilog. A complete flow to layout exists
for the custom-built Amust018 cell library using the ST process.

Category
Synthesis - Silicon compilers

Design Flow and Commercial EDA Tool Requirement
The current Balsa design flows are shown in Figure 1

Test Strategy
Balsa provides an interface to the Breeze-SIM and several commercial verilog simulators for
functional simulation. There are no test vector generation tools.

Current Status of Tool

Current Activities
In current development. 



 12Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Maintainer
Contact: balsa@cs.man.ac.uk 

Availability
GNU GPL 

available from: http://www.cs.man.ac.uk/apt/projects/balsa

Future plans
Better simulation support, Datapath compilation, More target technologies, Data encoding
choices

Figure 1: Balsa Design Flows

re
us

e

sy
nt

he
si

s

Design refinement

Layout sim.

‘balsa−netlist’
Simulation
results

Behavioural

Functional

Timing

‘breeze−cost’

Object / File Object / File
‘Balsa tool’ / Automated process

Manual process

Key:

Commercial Si

Balsa behavioural

Balsa description

Breeze description
(HC netlist)

Gate−level netlist

‘balsa−c’

simulation system

‘breeze2ps’

Gate−level sim.

Layout / bitstream

or FPGA P&R



 13Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Demonstrators
AMULET3i DMA controller described in “Synthesising an asynchronous DMA controller
with Balsa” Andrew Bardsley, Doug Edwards Journal of Systems Engineering 46 (2000) pp
1309-1319 



 14Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: Butler

Developer: Eric Campbell

Organisation: MBDA

Summary
The Butler Technology provides a general solution to the problem of managing processing and
communication resources in an embedded real-time multiple processor system. It includes
generic designs for special hardware components that work in conjunction with minimal
executive software to provide an efficient execution environment for application functions. The
generic designs are parameterised to obtain project specific versions which are then
incorporated with conventional processing and communications hardware designs to produce
robust, high performance, computing modules.

The generic designs have a modular design structure, being constructed from an assembly of
design tiles. Each tile is a design building block that comprises both logic and structure. The
logic in each tile is expressed in terms of a few interconnected simple gates. Tiles are butted
together to form a two dimensional array that realises overall functionality and in some
implementations can directly form part of an integrated circuit layout.

A clock-free, event driven, design approach has been used within the generic designs. This
reflects the nature of the reactive computational model being supported. Each design is
analysed for correctness by formal mathematical methods. The designs can be easily integrated
with other circuitry and implemented in different fabrication technologies because they are not
dependent on critical timing parameters. The circuitry has non-demanding power supply
requirements.

One of the generic designs is called the butler, a device that can be used with any
microprocessor. It provides efficient support for multi-tasking in a single or multiple processor
system. It holds control variables for each task assigned to run on the microprocessor and at
execution time identifies the next task that should run. The logic for selecting the next task is
programmable. Priority levels can be allocated to individual tasks or groups of tasks. Tasks that
are given the same priority are selected on a round robin basis within their group.
Asynchronous stimuli (e.g. interrupt lines from local peripherals) are handled directly by the
butler, scheduling the relevant task when its turn arrives according to the programmed priority
level selection. Cooperative and pre-emptive scheduling schemes are supported.

Another of the generic designs is called the route-table, a device that can be used with any
physical communication medium. It enables many software routes, each with a range of
different interaction characteristics, to be multiplexed onto the same physical communication
medium. The butler and route-table operate together to manage the communication and
processing resources in a system in a defined way with a minimum of software overhead.

Strengths and Weaknesses
A major advantage of the approach, especially for products with a long in-service life, is that it
does not require the use of any special languages or tools. Designs can be re-implemented,



 15Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

when hardware obsolescence becomes a problem, using the technology and tools in use at the
time.

Application Domain
Our problem domain is the development of dependable, small, harsh-environment, high-
performance, low-power, embedded computing in guided weapon systems.

Use of Existing HDLs

Extent of Automation

Category

Design Flow and Commercial EDA Tool requirement
The butler technology generic designs are integrated with conventional clocked circuitry, often
on the same silicon. We use a conventional synchronous design flow overall but inhibit some
stages on the asynchronous parts. E.g. We do not use synthesis and optimization because the
generic design is already expressed at simple gate level. We do not need to run timing analysers
and insert scan paths because we have no clocked latches.

Test Strategy
We analyse the generic design for correctness by formal mathematical methods (this covers all
aspects for all versions). This confirms both that the generic design satisfies its specification
and that its specification provides for correct system operation.

Knowing that the design for any version is correct means that our production testing need only
confirm that each manufactured item conforms to its design. I.e. that every transistor is present
and correct. The test pattern developed for each tile type is simply repeated for each tile
instance in the array. The clock-free ripple-through design style allows internal states to be
observed externally and we are able to achieve full manufacturing fault coverage

Current Status of Tool

Current Activities
We are applying the butler technology in the design process for a ‘next generation’ computing
module for use in a new missile system

Maintainer
Eric Campbell MSc., CEng., M.I.E.E., Technologist Computing Architectures, PB 77, MBDA
UK, Six Hills Way, Stevenage SG1 2DA.

eric.campbell@mbda.co.uk

Tel:+44(0)1438 755268 Fax:+44(0)1438 756293 

Availability

Future Plans
The butler technology does not require the use of any special asynchronous design tool. The
butler technology generic designs are being developed further to include additional features



 16Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Demonstrators
The Butler Technology is currently used in two of our missile systems: an advanced short
range air-to-air missile called ASRAAM; a ship based anti-missile missile called Seawolf



 17Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: CADP 

Developer: VASY Team

Organisation: INRIA Rhone-Alpes

Summary
CADP (CAESAR/ALDEBARAN Development Package) is a toolbox for protocol
engineering. It offers a wide range of functionalities, from interactive simulation to the most
recent formal verification techniques. CADP is maintained by the VASY project at INRIA
Rhone-Alpes. It is dedicated to the efficient compilation, simulation, formal verification, and
testing of descriptions written in the ISO language LOTOS [ISO standard 8807]. In particular,
the toolbox include state-of-the-art tools to perform (enumerative, on the fly, compositional)
verification using either bisimulation or mu-calculus methodologies.

Strengths and Weaknesses
Clearly, the asynchronous concurrency model of LOTOS, which is based upon interleaving
semantics, is appropriate for describing networks of processes that execute in parallel and
communicate by message passing. This approach is especially suitable for multiprocessor
architectures which are difficult to describe accurately using a synchronous approach.
Examples can be found at the following URLs:

http://www.inrialpes.fr/vasy/cadp/case-studies/00-f-circuits.html

http://www.inrialpes.fr/vasy/cadp/case-studies/98-f-async-circuits.html

On the other hand, languages based on automata communicating by FIFO queues are not well
adapted to hardware systems, as they do not allow to model instantaneous communications
(using electric signals) between hardware components. For instance, the request of a processor
wanting to access a bus is better expressed using a LOTOS rendez-vous than by putting a
message in an infinite FIFO queue.

Compared to other asynchronous process algebras, LOTOS has the merit of being an
established international standard, for which many textbooks and tutorials are available (even
on the Internet).

Finally, the CADP tools are robust and widely disseminated in more than 274 sites around the
world (data: November 2002). They are also available for several platforms including Sun
Solaris, Linux PCs and Windows PCs.

Application Domain
The semantic model of process algebras is general enough not to be tied to a particular kind of
hardware systems. For instance, the LOTOS language and CADP tools have also been used to
model software and telecommunication systems. So far, in the VASY team of INRIA, we have
used LOTOS and the CADP tools to verify bus arbitration and cache coherency protocols for
high-end server multiprocessor architectures developed by Bull, the link layer of the IEEE
1394 bus, the bus arbitration protocol of SCSI-2, etc. See:

http://www.inrialpes.fr/vasy/dyade/vasy.html



 18Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

http://www.inrialpes.fr/vasy/dyade/formalfame.html

http://www.inrialpes.fr/vasy/Press/firewire.html

http://www.inrialpes.fr/vasy/verdon.

Use of Existing HDLs
We operate at system level. At this level, there is no well-established HDL yet, so our industrial
partners are ready to adopt process algebraic formalisms provided that they are supported by
robust tools that bring concrete results

Extent of Automation
The enumerative approach used in the CADP allows a large degree of automation. However, to
make the best use of the tools, it is suitable to use trained professionals with a background in
formal methods and verification tools. 

Category
Formal verifiers/Theorem provers

Design Flow and Commercial EDA Tool Requirement
As far as hardware design is concerned, our methodology consists in establishing a reference
specification of the system under design using a formal description technique such as LOTOS.
We usually start from an informal description of the system, which we turn into a formal one.
So doing, inconsistencies and uncovered issues are often detected. Then, we use the CADP
tools to simulate, validate and verify the formal description. This work allows the informal
description to be refined and corrected. Then, the informal and formal specifications are used
by code writers as a basis to develop Verilog or VHDL code. Additionally, we can use the
formal description to generate or validate test suites (see below).

Test Strategy
The CADP toolbox can be used for generating test suites automatically using the TGV tool
contained in the CADP distribution. The test suites are derived from a reference specification
of the system using a formal description technique (such as LOTOS). They are used to assess
the correctness of the actual implementation.

The CADP toolbox can also be used in conjunction with the TorX architecture, developed
jointly by the University of Twente, the University of Eindhoven, and Philips Research. TorX
is a flexible and open architecture that allows on-the-fly testing, batch test derivation and batch
test execution for different specification formalisms.

The CADP toolbox can also be used to check the correctness of execution traces obtained from
the real system (or from an execution of Verilog or VHDL code). These traces can be produced
using either random testing or “focused” testing. More often, such traces are tedious to verify
by a human. The CADP tools allow to check automatically if these traces are accepted by the
formal specification.



 19Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Current Status of Tool

Current activities
The CADP toolbox is distributed, maintained and improved by the VASY team of INRIA.
Other research groups contribute actively to the development of CADP, and especially the
Verimag laboratory, the PAMPA team of INRIA/IRISA, and the TIOS team at the University of
Twente.

Maintainer
See above.

Availability
Information regarding the CADP toolbox, its availability, its recent changes and improvements
is available from the following URL:

http://www.inrialpes.fr/vasy/cadp.

This Web page contains centralized up to date information regarding CADP

Future Plans

Significant Demonstrators
Two published papers regarding the application of CADP to system-level design of
multiprocessor architectures: 

     http://www.inrialpes.fr/vasy/Publications/Chehaibar-Garavel-et-al-96.html

     http://www.inrialpes.fr/vasy/Publications/Garavel-Viho-Zendri-00.html

References
A list of published case-studies involving CADP is available from

http://www.inrialpes.fr/vasy/cadp/case-studies

A list of third-party software developed using CADP is available from

http://www.inrialpes.fr/vasy/cadp/software



 20Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: CASCADE

Developer: CASCADE-Team (Chair of Digital Technic)

Organisation: Kaiserslautern University of Technology

Summary
CASCADE (Communicating Asynchronous Sequential Circuits: Architecture Development
Environment) is a hardware design tool that supports a comprehensive Petri net based design
method for asynchronous controllers. Currently, a designer wishing to synthesize a controller
consisting of one or several communicating asynchronous circuits is faced with the problem of
first having to choose an appropriate design style and then formulating the design problem in
that style's particular specification scheme (which in general is not a Petri net). A better
approach would be to

1. start from a unified design entry using a specification scheme capable of expressing every
known kind of asynchronous controller behaviour, and

2. then decide upon the appropriate synthesis method.

Asynchronous circuits are event-driven. It would be adequate, therefore, to specify the required
input-output behaviour from a causal point of view. A causal specification scheme already in
use is the signal transition graph (STG) [8]. STGs are interpreted place-transition Petri nets
where the firing of a transition represents the occurrence of a rising(+) or falling(-) edge of the
binary signal with which it is labelled. Black transitions are used for input signals, white ones
for output signals. STGs express causal dependence, independence and exclusion (choice,
conflict) between signal edges. However, conventional STGs are unable to express certain
kinds of asynchronous behaviour such as pseudo-causalities, causal linkage, biased
concurrency, and race causality. These shortcomings have been overcome by the introduction
of the generalized STG (gSTG) [5]. CASCADE supports the full modelling power of the
gSTG. The additional net elements needed, such as unlabelled and tc-labelled read and
inhibitor arcs, have been incorporated into the Petri net editor PED [6] that outputs net data for
further processing by CASCADE. This meets our first demand. To meet the second demand
(choice of design style), the net data can be preprocessed and handed over to existing synthesis
tools (Fig. 1). CASCADE supports speed-independent (SI) synthesis with petrify [3] and
extended-burst-mode (XBM) synthesis with 3D. Support of hazard-tolerant synthesis [7] is
currently being incorporated (shaded in fig 1).

STG data can be directly handed over to petrify (which includes a feasibility checker) using a
format converter. Interfacing to 3D is not possible directly because 3D starts from an XBM
machine (XBMM), an FSM-like specification which, if it exists, guarantees implementability
[2]. However, CASCADE can derive a primitive flow table (PFT) from the gSTG, check it for
XBM feasibility, and, if positive, transform it into an XBMM. Certain forms of output
concurrency, not implementable by a single XBMM [2], are treated by a parallel
decomposition algorithm for PFTs [4] as part of CASCADE's transformation procedure.
Multiple-output-change (MOC) behaviour (in the sense of [1], where a single change of the
input state causes a sequence of output-state changes), which is forbidden in a single XBMM,
but may realized by a set of interacting 3D circuits, can also be handled using CASCADE, as



 21Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

shown in Sect. 3.1. This enables designers to implement systematically a larger class of
behaviour than ever berfore. 

Strengths and Weaknesses
As a standalone tool, CASCADE is very useful in synthesizing asynchronous controllers with
STG as specification. Users can derive either minimum hazard equations or XBMMs from
STG. CASCADE has been used internally until now. We would be very grateful for any
feedback that can improve this tool. 

Application domain
High-speed asynchronous controllers. 

Use of Existing HDLs
The initial STG can be read from g-files (petrify). The Netlist can be generated in Verilog
(early developement ...). Gate libraries are read in genlib format (from SIS). 

Extent of Automation
The graphical user interface provides a 'single button sythesis', as well as access to all synthesis
parameters. 

Category
Synthesis - gSTG/Petri net. 

Design Flow and Commercial EDA Tool Requirement
CASCADE is a standalone synthesis tool. Within CASCADE the graphical Petri net editor
“PED'”is used to create a (g)STG which specifies the system's behavior. CASCADE will

Figure 1: Comprehensive Design Method

Unified design entry:

generalized STG

if convertible

STG

SpG

PFT

STGi

DESI

run petrify

if STG is "correct"

SI circuit

if XBM-feasible
*... ...
if no critical
input race

hazard-tolerant
circuit

g2datSTG

(.g file)

minimum hazard
circuit

XBMM

run 3D

3D circuit

genlib

+

technology

mapping

verilog netlist

CASCADE

(.dat file)

: still under development



 22Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

derive either a single two level AND-OR-circuit, or a combination of two level circuits. If a
gate library is provided, the circuits will be transformed into netlists. 

Test Strategy
We are still working on netlist generation that will enable simulation of the circuit with other
tools.

Current Status of Tool
The minimum hazard and XBM synthesis branch have been used internally for quite a time
and are judged to be reliable. The hazard-tolerating synthesis is hardly tested and still being
worked on. 

Current Activities
We are currently testing the hazard-tolerating synthesis and also the technology mapping part
of the tool. We have done some improvements to CASCADE's graphical user interface. The
STG decomposer tool (DESI) is also being improved. Interfacing with HDL is under
development. 

Maintainer
Karsten Laux: laux@eit.uni-kl.de 

Benedictus Kangsah: kangsah@rhrk.uni-kl.de 

Tool Availability
Available from http://www.eit.uni-kl.de/beister/eng/projects/download.html

Future plans
We will continue to improve CASCADE as described above in current activities. 

Significant Demonstrators
CASCADE has been tested with some controller specification, e.g. Fifo, VMEbus Interrupt,
etc. All of the examples have been included in the CASCADE package in PED format. 

References
[1] Unger, S.H. “Asynchronous Sequential Switching Circuits”. R.E. Krieger, reprint 1983 

(original edition 1969).
[2] Yun, K.Y. “Synthesis of Asynchronous Controllers for Heterogeneous Systems”. PhD 

thesis, Stanford University (1994).
[3] Cortadella, J. “Petrify: A tutorial for the designer of asynchronous circuits”. Available as 

part of the petrify tool package from: http://www.lsi.upc.es/jordic/ petrify.
[4] Beister, J., Eckstein, G., Wollowski, R.. “From STG to Extended-Burst-Mode Machines”. 

In: Proc. of the 5th Int. Symp. on Advanced Research in Asynchronous Circuits and 
Systems, Barcelona (April 1999). IEEE Computer Society Press.

[5] Wollowski, R., Beister, J. “Comprehensive Causal Specification of Asynchronous 
Controller and Arbiter Behaviour”. In: Yakovlev, A., Gomes, L., Lavagno, L. (eds.): 
Hardware Design and Petri Nets. Kluwer Academic Publishers, Boston (2000) 3-32.

[6] Tiedemann, R.: Dokumentation PED Version 4.3 (Benutzerleitfaden). Technical Report, 
Cottbus Technical University (June 1997).



 23Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

[7] Eckstein, G. “Logischer Entwurf hasardtoleranter asynchroner Schaltwerksverbünde 
(Logical design of hazard-tolerant communicating asynchronous circuits)”. Doctoral 
dissertation, University of Kaiserslautern. Fortschritt-Berichte VDI, Reihe 20, Nr.324. 
VDI-Verlag, Düsseldorf (2000).

[8] Kondratyev, A., Kishinevsky, M., Yakovlev, A. “Hazard-free implementation of speed-
independent circuits”. IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems, Volume 17 (September 1998).



 24Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: CAST (Caltech Asynchronous 
Synthesis Tools)

Developers: Alain J. Martin, Mika Nyström

Organisation: California Institute of Technology

General Summary
CAST is the name of the suite of design tools developed to support the Caltech synthesis
method for asynchronous QDI (quasi delay-insensitive) circuits. The method is based on
synthesis by program transformations.  The system to be designed is first described in the high-
level language CHP. This description is refined, manually or automatically, into a more
concurrent version. Once the desired degree of concurrency among the CHP components and
the desired granularity for each CHP process are achieved, the CHP processes are translated
into the HSE (handshaking expansion) notation, in which all communications are replaced
with handshake protocols, and all variables are implemented in terms of booleans. The HSE
representation can also be modified.  HSE processes can be decomposed further, but the most
important transformation at this level is what is called “reshuffling”: handshake protocols on
different channels are made to overlap to some degree in order to improve efficiency or
simplify the implementation. Finally, all explicit sequencing is removed by translating the HSE
representation into a PRS (production-rule set). The PRS representation contains almost the
same information as a traditional SPICE netlist, and it is therefore considered the target of the
logic synthesis.  The CAST toolset consists of:

- high-level synthesis tools including both source-to-source (CHP) decomposition tools 
and logic-synthesis tool. (2) 

- simulation tools at various levels of representation - both logic and performance 
simulation including energy and timing, and electrical simulation, and tools for 
cosimulation of a design mixing different levels of representation

- low-level tools for translation of production-rule sets into layout, as well as placement 
and routing, and tools for checking electrical properties of layout (charge sharing, slew 
rate, etc).  

The CAST toolset provides several alternative paths for designers: the standard CAST solution
(described in more detail below and shown in the figure) is a specialization of the general
method targeting a specific building block called PCHB. Other paths are also possible  starting
from any HSE representation. 

The different programs of the suite are structured so as to make it possible for the designers to
tailor the tools to their styles, needs, and experiences, by carefully designing the interfaces in
such a way that replacing one tool with another should be easy.  The current design procedure
embodied in the CAST tools represent a specialization of the asynchronous design techniques
pioneered at Caltech in the 1980s and used to design the world's first asynchronous
microprocessor rather than a departure from those techniques. The traditional technique
consisted of a series of stepwise refinements starting at the CHP level and ending in finished
PRS, proceeding through the HSE level of description.  The HSE level was important in this



 25Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

design style because this is the level at which all abstract channels are replaced with booleans
and all inter-process sequencing decisions (e.g., channel handshakes) are specified.  The HSE
level has lost of its importance in the current generation of the tools because the current
generation uses very few unique HSE reshufflings, and therefore it is unnecessary to repeat the
work of compiling from HSE to PRS for each and every process that is designed.  Large
systems, such as the MiniMIPS processor and the Lutonium microcontroller, have been
designed using as few as three different HSE “templates” for the vast majority of circuits.  A
small fraction of the circuits still present special design problems, however (in the Lutonium,
six-transistor SRAM memories were an example), and in these cases, hand design using HSE
is still the norm. A tool for synthesizing those designs automatically from HSE to PRS (aptly
named hse2prs) is included in CAST.

Strengths & Weaknesses 
CAST does not yet integrate a testing procedure.

Application Domain
CAST is a general tool suite with emphasis on high-performance microprocessor design.

Figure 1: The CAST Toolset



 26Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Use of Existing HDLs
For high-level description, the CAST tools use the language CHP, which was developed and
refined at Caltech over the last decade, rather than VHDL or Verilog. However, an alternative is
provided in the form of a subset of VHDL that exactly implements the constructs of CHP. This
language is called CHDL. A user designing in CHDL will be in the familiar environment of
VHDL. The resulting code is translated into CHP at little cost. From then on, the design flow is
the same.

Extent of Automation
Our goal is to make the CAST tools entirely automatic, from high-level representation to the
final layout.  Currently, there are only some small gaps in the tool flow that are in the process of
being filled in.  More important than the extent of the automation, however, is the way in which
the automation has been achieved.  The CAST tools are designed in accordance with the idea
of “designer-assisted compilation”: the idea is that the designer can affect any step of the
compilation procedure and insert his own design.  This goes for all levels from the highest
decompositions to the lowest-level layout descriptions.  The CAST tools thus make it easy to
mix high-level automatically decomposed circuits with hand-designed SRAM cells and other
special circuits.  All the different levels of description are presented in one unified
representation to make this easy.

Category  
QDI-Synthesis

Design Flow and Commercial EDA Requirement  
The CAST toolset is built around a way of designing circuits that consists of a sequence of
systematic, provably correct transformations that take the designer from an initial specification
to a final layout geometry.  As we have seen, this sequence of transformations passes through a
number of representations, e.g., CHP, HSE, PRS, transistor netlists, and various
representations of layout geometries. The tools support several transformation paths, and users
are free to add their own, using their own tools or standard commercial tools from other
commercial CAD vendors.

High-Level Synthesis. The first step in the CAST design flow is process decomposition,
which transforms sequential high-level descriptions of circuit behavior into a  system of
communicating modules.  Each module is still expressed in a  high-level language and they are
normally each  synthesized  individually at lower levels.  The goals of process decomposition
are to expose concurrency and facilitate  low-level synthesis while producing a system with an
acceptable throughput but not a surfeit of communications.  (In most QDI systems, the
computation  of values consumes significantly less energy than the communication of these
values.)  Previous approaches to automated process decomposition have been syntax-directed
and unable to produce modules suited for implementation  as the fine-grain pipeline stages
(precharge half-buffers, or PCHB) used in the high-performance MiniMIPS and Lutonium
asynchronous microprocessors.  The CAST tool flow features data-driven decomposition
(DDD), the first decomposition method to target the fast PCHB asynchronous circuit family.
The CAST tool chain gives users the freedom to choose between DDD, syntax-directed
decomposition, and performing the process decomposition by hand. DDD creates a working
concurrent system where every module can be implemented by a PCHB circuit.  DDD starts by



 27Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

converting the original specification into DSA dynamic single-assignment form and
maintaining it in that form; it then proceeds by process decomposition through projection..
The last stage of DDD is to cluster the DSA modules into larger modules to improve energy
(reducing the number of communications in the system) and performance (cutting forward
latency while still running at the desired throughput). The final output is a concurrent system
where communicating modules may implement the computations of one or multiple variables,
or may be simple buffers inserted to improve system performance.  All modules fit the PCHB
circuit template. CAST contains tools that convert deterministic CHP programs into DSA
form, analyze the data dependencies in a DSA program and output a system of CHP modules
equivalent to the original sequential specification. A tool that implements the final clustering
stage of DDD is currently under development. 

Production Rules to Layout.  The CAST toolset takes the Production Rule Set (PRS) as the
boundary between logical and physical design; production rules are the target of the logical
design and the specification for the physical design.However, a production-rule set is a purely
logical specification, and it is not sufficient for driving the physical design tools. In order to
provide a specific enough (but not over-specific) description of the system, the CAST toolset
uses a new representation called the Extended-Production-Rule Set (XPRS).  This
representation specifies transistor-gate ordering and transistor-gate widths, but it does not
specify the complete circuit topology, nor does it specify any other geometry information.  The
XPRS notation is ideal for transistor sizing and it is also ideal for human-produced low-level
descriptions: using XPRS, a designer can specify all relevant details about an asynchronous
circuit implementation without having to edit actual chip layout directly.  The introduction of
XPRS subdivides what was formerly one task (sizing, gate ordering, and specification of the
netlist) into two tasks (sizing and gate ordering on the one hand and specification of the netlist
on the other).  The CAST tools convert the standard PRS into XPRS as the first step in the
physical-design flow.  This conversion is done in one of three ways: i) Automatically through
gate matching. (ii) Automatically through XPRS generation from PRS. (iii) Manually or by
logical-design tools. The three ways are used as follows: the automatic methods are used when
a PRS is given.  First of all, gate matching is performed: the CAST system is able to match a
given PRS against a gate library whose cells are described in XPRS – in this case, the presence
of a cell in the gate library is taken to mean that the transistor-gate ordering is arbitrary, and
logically equivalent cells are matched against the given PRS.  Secondly, remaining PRs are
converted by a special XPRS generator: this generator makes the decisions regarding
transistor-gate ordering and gate sharing; this is the least preferred approach because the XPRS
generator has to be conservative about its designs in order to guarantee that they function
properly.  The final method of generating XPRS is the simplest: the user simply specifies the
gate ordering.  Normally, however, the “user” is a higher-level tool in the CAST logical-design
suite; this tool will have the necessary information to pick a reasonable gate ordering and
sharing.  In the current system, automatic gate matching has not yet been implemented; this is
not a major drawback because most circuits are compiler-generated anyhow, and the compiler
is aware of the structure of the standard-cell library.

Placement and Routing.  The CAST toolchain is extremely flexible with regard to cell
placement. Cells can either be placed manually by the designer by leaving the appropriate
directives in the CAST code, or the placement can be done automatically. If it is done
automatically, special directives can still be used in order to perform datapath placement – the
regularity of a datapath means that extra information is available in order to optimize the



 28Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

routes.  The CAST03 system makes it easy for the designer to specify this extra information.
Routing is performed by a proprietary CAST router.  The CAST router routes nets one at a
time, it supports rip-up-and-reroute for batch mode “hands-off” routing, and it works with all
standard ASIC processes. The router makes it very easy to combine standard cells with hand-
drawn layout, in keeping with the CAST philosophy of designer-assisted compilation. 

Commercial EDA Requirement.  Currently, the CAST tools do not require the use of any
commercial tools. It is our intention to keep the use of commercial tools as small and as
optional as possible in order to enable the entire system to be used for a very small start-up
cost.

Test Strategy 
Currently, CAST does not have any special features devoted to testing.

Current Status  
The status of the CAST tools project can be summarized as follows.  At the logic-synthesis
level, an automatic procedure exists for decomposing any given CHP or CHDL program into a
network of small components.  Also, the core of the logic synthesis – the transformation from
CHP to PRS – has been formalized. At the simulation level, the framework of the CAST toolset
has been defined and the interfaces have been delineated.  A CHP simulator now exists, and a
new method for mixed-level simulation or cosimulation has been defined.  At the physical-
design level, a standard-cell library has been defined and built. The front-end of a cell
generator (stackgen) has been developed, as well as two placers (one constraint-based and one
based on simulated annealing) and a router. An extended version of the PRS language, called
XPRS, has been defined that contains information about transistor ordering and sizing. XPRS
makes it possible to layout a chip without need to edit the layout manually.

Current Activities

Maintainer 
The CAST tools are maintained by the Asynchronous VLSI Group of the Computer Science
Department at the California Institute of Technology, Pasadena, California, U.S.A., and by
Situs Logic, Pasadena, California, U.S.A.

Tool Availability
The CAST tools are currently only available internally at Caltech and Situs Logic, although
earlier versions have slightly wider circulation. Situs Logic is in the process of
commercializing the tools for a wider range of users.

Future Plans
N/A

Significant demonstrators
Previous versions of the CAST tools have been used to design the Caltech Asynchronous
Microprocessor (the world's first asynchronous microprocessor), the MiniMIPS processor (a
two-million-transistor quasi delay-insensitive clone of the MIPS R3000), and various other
chips.  The current version of the CAST tools is being used to design the Lutonium
microcontroller, an Intel-8051 compatible microcontroller.



 29Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: CCS-based specification

Developer: Graham Birtwistle

Organisation: School of Computing, Leeds University, UK

Summary
The work of the Leeds based group is methodological not tool building. We are interested in
finding ways to specify the control signals in large realistic circuits. We specify in the CCS
notation and use its CONCURRENCY WORKBENCH support tool to minimise, equivalence
and property check.

The Leeds work was preceded by work at Calgary, Canada, where we used CCS to specify cell
libraries and then design three variations of a (very) small microprocessor (4-phase (RTZ), 4-
phase with exception handing, and 2-phase pipelined). The last machine was laid out by Tom
Borsodi from our CCS specification in Actel FPGA technology using Erik Brunvand’s thesis as
guideline. One chip was required for the 8-deep register bank; the rest fitted onto another.

With Ying Liu (also at Calgary), we worked with the Amulet group at Manchester University
formalising the design of AMULET1, their 2-phase asynchronous version of ARM6. We put a
lot of work into picking an appropriate notation for extracting the specification from the
Manchester architects in a manner that made them feel comfortable and from which we could
derive the CCS specifications mechanically. We also put a lot of time into coming up with the
right levels of abstraction. We formalised and checked the 5 main floor plan elements. We also
have an instruction level specification which clarifies the links amongst the floorplan elements.
We are now looking at facts and figures on 2- and 4-phase pipelines and working round the
problems encountered with Ying. The latest (Harvard-style) architecture is temporarily called
TK (short for trinket - a cheap amulet, according to Websters). Once this is sorted, then a 4-
phase version will be studied.

Strengths and Weaknesses
CCS is a small language with a fully defined syntax and semantics; with well defined
equivalence rules; and a match with the powerful modal mu calculus for property checking.
CCS is a suitable notation for specifying and reasoning about control signals in 2-phase or 4-
phase asynchronous systems. It has been used to reason about control in circuits from the gate
level and above. Its support tool, the CWB, is public domain. It has been found to be robust and

reliable and has been used to minimise and property check pipelined circuits with 1050 or more
states.

Its weaknesses include:

• it does not handle data values well being best suited to the study of control signals only;

• it is however not a programming language and CCS descriptions cannot be run as 
simulations;

• its notion of time is “before” rather than numerical so it cannot be used for performance 
estimations.



 30Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Application Domain
Modelling of asynchronous 2- and 4-phase pipelines and proving theorems about their state
spaces; the specification and property checking of AMULET like (but simpler) microprocessor
designs.

Use of existing HDLs
CCS is not a HDL

Extent of Automation
CCS specifications are entered into the CWB and syntactically checked. They may then be
minimised to the least equivalent state machine; property checked (deadlock etc.) and checked
for equivalence against other definitions (e.g. an implementation) by built-in procedures.

Categories
Verifier

Design Flow and Commercial EDA Tool Requirement
Stand alone.

Test Strategy
Property checking and equivalence checking.

Current Status of Tool
See Concurrency Workbench, Edinburgh University.

Current Activities

• proving facts about 2- and 4-phase pipelines.

• extending a basic RTL model to include exception handling, register forwarding, etc.

Maintainer
Professor Graham Birtwhistle has now retired from his post at the University of Leeds.

Availability
CCS was designed by Robin Milner while at Edinburgh University. Its public domain CWB
support tool is freely available from CS at Edinburgh.

Future Plans
Continuation of the current program

Demonstrators
Published papers and theses available via: www.comp.leeds.ac.uk/research/asynch/asynch.html



 31Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: Clp

Victor Khomenko

    School of Computing Science, University of Newcastle upon Tyne

Summary
Clp-- a Model Checking Engine Based on Petri Net Unfoldings is an integer programming
based model checker. It can formally verify various safety properties (e.g. deadlock-freeness
and mutex), and detect of coding (CSC and USC) conflicts in STGs. Clp employs finite
complete prefixes of Petri net unfoldings (e.g. those produced by the Punf tool [3].

Strengths and Weaknesses
Memory efficient and quite fast, though the performance on large benchmarks might be not
entirely satisfactory; we deal with this problem in the VerySAT tool (see current status below).

Application domain
verification and synthesis of self-timed circuits.

Use of existing HDLs
none (works on finite prefixes in the `.mci' format).

Extent of automation
fully automatic.

Category
synthesis=>STG/Petri net

Design flow
Clp is intended as a powerful model checking engine to be used by other applications.
Currently, prefixes produced by Punf [3] can be used by Clp for detection of coding (CSC and
USC) conflicts and normalcy violations. Clp, together with Punf and ConfRes tools, comprise
a framework for detection and resolution of coding conflicts in STGs [6,7].

Test strategy
Clp can formally verify many safety properties (e.g. deadlock-freeness and mutex).

Current status of the Tool
Clp is fully operational. It is integrated into the PEP tool [1]. We work on a tool VerySAT
offering similar functionality but employing a SAT solver rather than a specialized integer-
programming one, which is often faster [8].

Maintainer
Victor Khomenko (Victor.Khomenko@ncl.ac.uk).



 32Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Availability
Available for research purposes from

http://www.cs.ncl.ac.uk/people/victor.khomenko/home.formal/tools/tools.html

Future plans
We plan to create a full design cycle for self-timed circuits based on Petri net unfoldings and
not involving building the state space at any stage. VerySAT is to replace Clp in near future as
its performance is much better.

References
[1] E.Best and B.Grahlmann: “PEP: Documentation and User Guide, Version 1.4. Manual” 

(1995).
[2] V.Khomenko: “Model Checking Based on Prefixes of Petri Net Unfoldings”. PhD Thesis, 

Department of Computing Science, University of Newcastle (2002).
[3] V.Khomenko: “Punf: Documentation and User Guide”, Version 6.01. Manual (2002).
[4] V.Khomenko: “Clp: Documentation and User Guide”. Version 3.01beta. Manual (2002).
[5] V.Khomenko and M.Koutny: “LP Deadlock Checking Using Partial Order 

Dependencies”. CONCUR'2000, LNCS 1877 (2000) 410-425.
[6] V.Khomenko, M.Koutny, and A.Yakovlev: “Detecting State Coding Conflicts in STGs 

Using Integer Programming”. DATE'2002, IEEE Comp. Soc. Press (2002) 338-345.
[7] A.Madalinski, A.Bystrov, V.Khomenko, and A.Yakovlev: “Visualization and Resolution 

of Coding Conflicts in Asynchronous Circuit Design”. DATE'2003, IEEE Comp. Soc. 
Press (2003) to appear.

[8] V.Khomenko, M.Koutny, and A.Yakovlev: “Detecting State Coding Conflicts in STG 
Unfoldings Using SAT. ICACSD'2003”, IEEE Comp. Soc. Press (2003) submitted paper.



 33Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: ConfRes

Developer: A.Madalinski

Organisation: University of Newcastle upon Tyne, UK

Summary
The tool supports semi-automated resolution of Complete State Coding (CSC) conflicts in
asynchronous circuit specification given as Signal Transition Graphs (STGs) and display them
as partial orders (finite and complete prefixes of STG unfoldings). Being more efficient than
the automated methods the manual approach requires a significant effort from the designer.
The tool ConfRes assists the designer by visualising the conflicts cores, their superposition and
the constraints on signal insertion.

Cores extend the known concept of complementary sets. Only those complementary sets are
used which are not combinations of others . The advantage of using cores is that only those
parts of STGs are considered, which cause coding conflicts, rather than the complete set of
conflicts. Since the number of cores is usually much smaller than the number of coding
conflicts, this approach saves the designer from analysing large amounts of information.
Moreover, cores are represented at the level of the STG unfolding prefix, which is a convenient
model for understanding the behaviour of the system due to its simple branching structure and
acyclicity. 

Cores are important for resolving coding conflicts. They can be eliminatedby adding auxiliary
signals and by concurrency reduction, respectively.The former introduces additional internal
signals to disambiguate encoding conflicts and the latter reduces the state space in the STG's
reachability graph and thus potential encoding conflicts. The resolution process uses the partial
order model and employs the visualisation concept as follows: (a) shows the superposition of
cores by meansof a 'height map' (b) only those cores are displayed which are relevant to
selected part of the specification, i.e. cores which are extracted from the height map and (c) the
constraints on insertion identify a small part of the specification rather than the entire design.
In addition, heuristics are used to pre-compute solutions, which are suggested to the designer.
These can be used as guidelines, however, the designer is free to intervene at any stage and
choose an alternative solution in order to account the design constraints.

ConfRes takes an STG in the '.g' format supported by Petrify, an STG-based synthesis tool. It
uses Punf, a Petri net unfolder, to produce a finite and complete prefix of the STG, and either
Clp[2], a linear programming model checker or VerySAT [4], a SAT based model checker, to
detect coding conflicts in the STG. Both of these tools are described elsewhere in this report.
After the detection of conflicts, cores are computed and the resolution process is applied. The
tool guides the designer through all the stages. During this process the cores and the
corresponding height map are visualised using Dot [5], a graph drawing software by AT&T ,
and the designer can interactively insert new signals to obtain a customised solution. 

Strengths and Weaknesses
Manual approach requires human participation. For this reason the designer should be familiar
with STG-based design. The tool, however, minimises the efforts of the designer by using a



 34Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

compact model, the concept of cores  and constraints on insertion. In addition, it suggests
solutions, which can be used as a guideline.

Application Domain 
High-speed asynchronous controllers, e.g. interface logic, pipeline controllers

Use of Existing HDLs
none

Extent of Automation
The tool is aimed at facilitating a manual refinement of an STG with coding conflicts. Its
guides the designer through the steps of the resolution process, where the designer is free to
choose a location for the signal insertion.

Category
Synthesis STG/Petri net

Design Flow and  Commercial EDA Tool Requirement
Any STG-based synthesis, where next-state functions are computed, needs solving coding
conflicts. In particular, ConfRes can be employed in combination with STG unfolding based
model checker and synthesis tool VerySAT [4] to solve the CSC problem. Alternatively,
ConfRes can be used in combination with the state-based synthesis tool Petrify [1] to enforce
the CSC condition, and thus to obtain a tailor made solution.

Test Strategy
N/A

Current Status of Tool
ConfRes is at the alpha-stage

Current activities
Extensive testing

Maintainer
A. Madalinski (a.a.madalinski@ncl.ac.uk)

Tool Availability
http://async.org.uk/movie/

Future Plans
Greater extension of automation.

Demonstrators
none



 35Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

References
[1] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev: “Petrify: a 

tool for manipulating concurrent specifications and synthesis of asynchronous 
controllers”. In XI Conference on Design of Integrated Circuits and Systems, (1996).

[2] V. Khomenko: “Clp Documentation and User Guide”.  Department of Computing 
Science, University of Newcastle (2002).

[3] V. Khomenko: “Punf Documentation and User Guide”.  Department of Computing 
Science, University of Newcastle (2002).

[4] V. Khomenko, M. Koutny, and A. Yakovlev: “Logic synthesis avoiding state space 
explosion”. In Int. Conf. on Application of Concurrency to System Design. IEEE 
Computer Society Press, (2004 - to appear).

[5] E. Koutsofios, and S. North: “Dot User's Manual”, AT&T Labs-Research (2002).
[6] A. Madalinski: “ConfRes: Interactive coding conflict resolver based on core 

visualisation”. In Int. Conf. on Application of Concurrency to System Design. IEEE 
Computer Society Press, (2003).

[7] A. Madalinski, V. Khomenko, A. Bystrov, and A. Yakovlev: “Visualisation and 
Resolution of Coding Conflicts in Asynchronous Circuit Design”. IEE Proceedings, 
Computers and Digital Techniques, Special Issue on Best Papers from DATE03, (2003).



 36Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: DESI1 (DEcomposer SIgnal 
Transition Graph)

Developer: B. Kangsah, R.Wollowski, W. Vogler, and J. Beister

Organisation: Kaiserslautern University of Technology

Summary
Signal Transition Graphs (STGs) are a version of Petri nets for the specification of
asynchronous circuit behaviour. As a first step in the indirect synthesis of a circuit
corresponding to a given STG N, one usually constructs the reachability graph (e.g. when
using the tool petrify) or the step graph (e.g. using  CASCADE [2]). A serious problem - state
explosion - may occur when constructing such a graph: the number r of reachable states
(markings) may become too large to be handled due to insufficient storage space or too long
CPU times. To avoid state explosion, one could try to decompose the STG N into components
Ci (and thus, the circuit into modules). The reachability graphs of the Ci, taken together, can be
much smaller than r since r might be the product of their sizes. Even if this is not achieved,
decomposition can reduce design effort and save circuit area. Where N may have to be
synthesized by heuristic methods, its components Ci may even be handled by exact methods
yielding optimal results. Decomposition can also be useful aside from size considerations:
there are examples where N cannot be handled by a certain synthesis method, while its Ci can
(e.g. deriving a set of XBM machines from an STG [1]). It may also be possible to extract
library elements; this is particularly valuable for arbiters, which are difficult to design. 

We have presented a decomposition algorithm [5] that is based on that of Chu [3] but is much
more generally applicable. In particular, there is no restriction to live and safe free-choice nets
or to marked graphs, and labels are not required to occur only once. A formal proof based on a
formal correctness criterion has been given. The algorithm starts with a given partition of the
set of output variables: each Ci is responsible for one block of the partition. The Cis are then
extracted from the STG by transition contraction, care being taken to keep only the relevant
input signals, which may be global inputs or outputs of other components. The kernel of the
algorithm has been implemented in DESI (DEcomposer SIgnal Transition Graph). DESI is
originally design as part of CASCADE, which can also forward results to other synthesis tools
such as petrify and 3D.

Strengths & Weaknesses
With STG decomposition one may be able to:

• avoid state explosion

• reduce design effort 

• save circuit area 

• derive a set of XBM machines from an STG

1. This work was partially supported by the DFG-project ` STG-Dekomposition' Vo615/7-1 / Wo814/1-1. 



 37Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

• extract library elements.

The STGs to be decomposed has to fulfill the following requirements:

• no internal transitions 

• no auto-concurrency

• no structural auto-conflicts

• no i/o conflicts.

For more detail, please refer to [5].

In the current version of DESI one should choose the output partitions manually. The blocks of
the partitions must be written in the DESI configuration file. This will be improved in the
future.

Application Domain
Complex STG specifications for synthesis of asynchronous circuits.

Figure 1: DESI Tool Flow

Overall STG N

(Output set: O)

partitioning

� (o) = {B
1
, ..., B

i
, ..., B

n
}

C
1

RG
1

/ SpG
1

module 1

interconnection

modular circuit

overall

RG / SpG

"en bloc"

circuit

C
i

RG
i
/ SpG

i

module i

C
n

RG
n

/ SpG
n

module n

synthesis

extraction of
component STGs

...

...

...

...

...

...

reachability or
step graphs



 38Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Use of Existing HDLs
None

Extent of Automation
The whole algorithm has been implemented, i.e. decomposition is performed automatically.
One needs only specify the partition and the output file type (dat-file for CASCADE, g-file for
petrify, dot-file for graphical view)

Category
Specification with STG

Design Flow and Commercial EDA Requirement
We propose a modular design by applying STG decomposition:

• decompose the STG N into components Ci 

• for each Ci synthesize a module 

• compose all modules and reach a modular circuit

DESI is designed to be used with academic tools like CASCADE, petrify and 3D. If you are
interested to connect your tool with DESI, we would be happy to help you create the interface
between DESI and yours. 

Test Strategy
Correctness is proven !!! [5]

Current Status of Tool

Current Activities 
DESI is continously being improved, currently by fine tuning and optimization.

Maintainer
Benedictus Kangsah : kangsah@rhrk.uni-kl.de

Tool Availability
DESI is free for academic use. We would be very grateful for any feedback or comment. You
can download DESI from our website: 

http://www.eit.uni-kl.de/beister/eng/projects/download.html

Future Plans
We will try to relax some of the STG requirements (see strengths and weaknesses). We also
want to study quality criteria for decompositions and methods for finding good
decompositions. 

Significant demonstrators
You can view several examples of step by step decomposition at our website: 



 39Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

http://www.eit.uni-kl.de/beister/eng/projects/deco_examples/main_examples.html

You can also observe this step by step decomposition by setting the corresponding output
parameter in the DESI configuration file (see user guide in DESI distribution package). In [4]
you can find DESI result table of some examples. 

References
[1] J. Beister, G. Eckstein, and R. Wollowski. “From STG to Extended-Burst-Mode 

Machines”. Proc. 5th International Symposium on Advanced Research in Asynchronous 
Circuits and Systems. IEEE Computer Society Press, 1999.

[2] J. Beister, G. Eckstein, and R. Wollowski. “Cascade: a tool kernel supporting a 
comprehensive design method for asynchronous controllers”. In M. Nielsen, editor, 
Applications and Theory of Petri Nets 2000, Lect. Notes Comp. Sci. 1825, 445-454. 
Springer, 2000.

[3] T.-A. Chu. “Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifications”. 
PhD thesis, MIT, 1987. 

[4] B. Kangsah, R. Wollowski, W. Vogler, J. Beister. “DESI: a Tool for Decomposing Signal 
Transition Graphs”. Presentation in 3rd ACiD-WG Workshop, Crete, 2003.

[5] W. Vogler, and R. Wollowski. “Decomposition in Asynchronous Circuit Design”. In J. 
Cortadella, A. Yakovlev, G. Rozenberg, editor, Concurrency and Hardware Design, Lect. 
Notes Comp. Sci. 2549, 152-190. Springer, 2002.

This work was partially supported by the DFG-project 'STG-Dekomposition' Vo615/7-1 /
Wo814/1-1.



 40Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: di2pn, syndi and diana

Developers: Dennis Furey, Mark Josephs and Hemangee Kapoor

Organisation: London South Bank University

Summary
A variety of notations for the specification of delay-insensitive modules (such as the handshake
components that are targeted by the Tangram and Balsa silicon compilers) have been proposed.
The input format for the tool di2pn is one such notation, a structured programming language in
which input/output bursts serve as primitive statements.

   The language (Delay-Insensitive Sequential Processes), a variant of Hoare’s Communicating
Sequential Processes and of Josephs and Udding’s DI-Algebra, is aimed at designers of
asynchronous circuits and systems. When modules are to be implemented in digital logic,
inputs and outputs are usually interpreted as signal transitions.

   di2pn automatically translates programs into Petri Nets, the latter being less structured, but
more amenable to operational reasoning. di2pn can thus be used as a front-end to tools that
operate upon Petri Nets, e.g., for the purposes of simulation, analysis and logic synthesis.

   di2pn produces Petri Nets in the same text-file format as used by Petrify, an enhanced verison
of the ASTG format devised for SIS. Auxiliary tools, namely, pn2dot and pn2lola, facilitate
conversion to other formats.

   di2pn is most closely related to Mallon’s digg tool, which translates terms in DI-Algebra into
State-Graphs rather than Petri Nets. The beta version of di2pn adopted the same input format
as digg, but compatibility was abandoned as the language of Delay-Insensitive Sequential
Processes developed.

As an alternative to di2pn, designers may prefer to use the newer tool, syndi. The input format
is different from that of di2pn, supporting many of the language features that make functional
programming so powerful. Besides translation to Petri nets, syndi also supports compilation to
delay-insensitive circuits (DI netlists) or to virtual code executable files.

Finally, an analysis tool, diana, is available. This works with descriptions, either in the form of
Petri nets (generated by di2pn or syndi) or in the form of DI netlists (generated by syndi).
Among other things, it can be used to verify that an implementation meets its specification. 

Strengths and Weaknesses
The language accepted by di2pn offers a concise, structured way of describing module
behaviour. A user-friendly syntax has been adopted. Programs are meaningful without the
designer having to understand the way di2pn translates them into Petri Nets.

   Currently, the language only allows data communication to be expressed for delay-
insensitive code words; data paths are otherwise outside the scope of di2pn.

Whereas it is expected that users of di2pn will rely upon Petrify for the actual synthesis of a
netlist consisting of complex gates or generalised C-elements, syndi incorporates novel



 41Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

strategies and algorithms for automatic decomposition and synthesis of a netlist consisting of
delay-insensitive logic blocks (including arbiters).

Unlike some verification tools, diana can handle non-trivial circuits and will take into
account progress properties, as well as safety properties, when performing analyses and
comparisons.

Application Domain
Asynchronous controllers.

Use of Existing HDLs 
None

Extent of Automation
The process specification has to be written manually, and everything else about di2pn and
syndi is automated. diana takes the output of those tools and its analyses are automated.

Categories:
1. Notation to notation conversion. (di2pn and syndi)

2. Front-end (to simulation, analysis and synthesis tools). (di2pn and syndi)

3. Synthesis of netlists. (syndi)

4. Formal Verification. (diana)

Design Flow and Commercial EDA Tool Requirement
di2pn can be used to produce a “snippet” (open Petri Net) from a structured program capturing
input-output behaviour.

   di2pn can also be used to produce a closed Petri Net from a pair of programs (describing a
module and its environment). The net can then be input into the Petrify tool for logic synthesis
(or for analysis). The user can thus synthesise an asynchronous control circuit from the
programs, ignoring the net.

When refining a DISP specification by hand (e.g. decomposing it into parallel components),
one can use diana to check that this has been done correctly. (One must first translate the
programs into Petri nets using di2pn.)

syndi can be used in place of di2pn.

   pn2dot and pn2lola convert the format of the Petri Net produced by di2pn so that it can be
displayed, simulated and analysed by tools that use a different input format from Petrify.

   Commercial EDA tools are not required.

Test Strategy
Additional circuitry that tests for faults would have to be designed separately.

Current Status of Tools
di2pn was developed under UK Engineering & Physical Sciences Research Council project
GR/M51567. The project report is available at 



 42Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

http://www.bcim.lsbu.ac.uk/ccsv/epsrcM51567.html.

Current activities
Experimentation with their use

Maintainer
Dennis Furey, fureyd@lsbu.ac.uk (syndi and diana; di2pn is not currently maintained)

Tool Availability
Free software with no warranty, General Public License. Download di2pn from 

http://www.bcim.lsbu.ac.uk/ccsv/dac04/di2pn-0.1.1.tar.gz

and download syndi and diana from

http://myweb.lsbu.ac.uk/~fureyd/ditools/.

They require a virtual machine code interpreter available that can be downloaded from

http://myweb.lsbu.ac.uk/~fureyd/avram/.

Demonstrators
A comprehensive description of the DISP language and di2pn tool appears in the chapter "A
programming approach to the design of logic blocks" of the book "Concurrency and Hardware
Design", LNCS 2549, Springer, 2002.

   di2pn has been demonstrated (e.g. at Async 2001) on several small examples, first specifying
delay-insensitive modules (e.g. merges, joins, and latch controllers) as structured programs,
and then using Petrify to synthesise speed-independent circuits that implement them. Slides
were presented at the ACiD-WG workshop in Munich, 2002, and are available at 

http://www.bcim.lsbu.ac.uk/ccsv/ACiD-WG/Workshop2FP5/Programme/JosephsSlides.pdf.

A suite of Burst-Mode benchmarks has been re-expressed in DISP and synthesised with di2pn
and Petrify, http://www.bcim.lsbu.ac.uk/ccsv/dac04/benchmarks.pdf. As reported at DAC,
June 2004, a Fork-decomposition heuristic was successfully applied to each benchmark at the
DISP-level to improve the effectiveness of synthesis.

An article describing the use of di2pn with diana appears in the proceedings of ACSD,
June 2004.

   An article based on the beta version of di2pn was published in the proceedings of DATE
2000. Slides outlining the translation algorithm that underpins di2pn version 0.1.1 were
presented at the ACiD-WG workshop in Grenoble, 2000, and are available at 

http://tima-cmp.imag.fr/tima/cis/acid/slides/josephs.pdf.

Some of the peephole optimisations performed by di2pn before output of a Petri Net were
presented at the AINT workshop in Delft, 2000.



 43Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: DGC (Digital Gate Compiler)

Developer: Oliver Kraus

Organization: University of Erlangen-Nuremberg, Germany

Summary
DGC is a synthesis tool for state machines (asynchronous and synchronous) and boolean
expressions. Usually  DGC generates a physical layout from the input description.  Together
with a description of the available gates (GENLIB format) and a description of the
asynchronous or synchronous system DGC generates an EDIF or VHDL netlist.  This netlist
can be used to generate the layout of an integrated  circuit with any EDA tool.

Parts of DGC are additionaly implemented as separate executables: BMSENCODE solves the
state encoding problem, DGSOP is an exact boolean minimizer (similar to espresso) and
XBM2PLA has the same functionality as 3D or MINIMALIST. 

DGC supports several input formats. Most important for asynchronous circuits: DGC reads
and processes  extended burst mode description as introduced by 3D. Moreover DGC extends
this burst mode description and allows level and edge triggered transitions for the same input
signal. A scripting language allows the connection and synthesis of more than one controller.

Algorithms have been written from scratch. Among others these are state minimization,
asynchronous state encoding, hazard-free minimization, hazard-free technology mapping,
hazard-free technology optimization, detection of essential hazards and  delay chain
generation.

DGC is portable across several platforms. DGC can be installed and used on any many Unix
platforms (Linux, BSD, Solaris),  MAC OS X and Windows (Cygwin environment).   

Strengths and Weaknesses

Strengths:  Single executable that generates a netlist from a  gate library and a description of
one or more controllers. Implements asynchronous state and hazard-free logic optimization,
hazard-free  technology mapping and essential hazard elimination. Also  calculates the
required external delay to ensure fundamental mode operation.

Weaknesses:  Long execution time for large controllers due to the use of exact algorithms.
Only generates Huffman circuits.

Application Domain 
Control circuits and asynchronous systems

Use of Existing HDLs 
DGC can generate technology depended or independed VHDL netlists and a suitable VHDL
test-bench.



 44Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Extent of Automation
Fully automated synthesis of asynchronous controller or system specification to a technology
depended netlist.

Category
Synthesis, Extended Burst Mode

Design Flow and Commercial EDA Tool Requirement
The netlist produced by DGC can be used to generate a layout with usual EDA tools.

Test Strategy
DGC has an integrated formal verification tool (netlist versus boolean  expressions) and an
integrated gate level simulator (technology depended netlist). The tool XBM2PLA is able to
produce a VHDL test bench with glitch detection.

Current Status
Development effort reduced. Bug fixing available via project home-page.

Maintainer
Oliver Kraus (olikraus@yahoo.com)

Availability 
GNU GPL  http://dgc.sourceforge.net

Future Plans
Implement faster algorithms.

Demonstrators
Under development at the University of Erlangen-Nuremberg.

References 
[1] Kraus, Padeffke. “Entwurfsumgebung fuer asynchrone  Burst-Mode Automaten. In 

Methoden und Beschreibungssprachen  zur Modellierung und Verikation von 
Schaltungen und Systemen”,  pages 86-95. Shaker Verlag, 2002. ISBN 3- 8265-9859-8.

[2] Kraus, Padeffke. “Synthese von asynchronen "Burst-Mode" Automaten”.  In Entwurf 
integrierter Schaltungen und Systeme (11. EIS-Workshop),  pages 39-44. VDE Verlag 
GmbH, 2003. ISBN 3-8007-2760-9. 

[3] Kraus, Padeffke. “XBM2PLA: A Flexible Synthesis Tool for  Extended Burst Mode 
Machines”. In Proc. Design, Automation and  Test in Europe (DATE), pages 1092-1093, 
2003.



 45Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: FIREMAPS/Process Spaces

Developers: Radu Negulescu and Robert T. Berks

Organisation: McGill University, Canada and University of Auckland, New Zea-
land

Summary
FIREMAPS is a tool for structured verification, design and test of asynchronous circuits and
mixed synchronous/asynchronous circuits, based on concurrency theory.

Process spaces are a general theory of concurrency and provide a framework for modelling
asynchronous behaviours

FIREMAPS currently supports interface design by verifying protocol compliance and by
recasting an interface to a different protocol without adding circuit overheads [1]. FIREMAPS
currently supports supervisory control (design equation). Burst-mode and STG-based
specifications are in a prototype stage. The AND/IF standard for state-machine specifications
[17] is fully supported.

Models used in formal verification:

• FIREMAPS provides direct constructors for circuit models at the gate level, switch 
level, cycle-accurate level, and relative timing. These constructors permit one to 
describe a netlist.

• Our specifications are in the process spaces formalism, which is related to CSP, Dill, 
etc., but are more general.

• Our timing models are metric-free (relative timing only). This is sufficient for most 
asynchronous circuits, and permits high efficiency and structure in verification

The techniques for manipulation and verification of asynchronous behaviors by FIREMAPS as
described above are applicable early in the design stages of an asynchronous circuit. Examples
include:

• When a block schematic of handshake channels is developed;

• When a cycle-level, gate-level or switch-level netlist is generated, possibly including 
post-synthesis peephole optimisations;

• When a library of components is developed;

• When a list of relative timing constraints is compiled for the purpose of optimal sizing 
of transistors and wires.

Strengths and Weaknesses
FIREMAPS permits formal verification of asynchronous circuits of high diversity (delay-
insensitive, relative timing, and even multiple-clock synchronous) at diverse levels of
abstraction (switch-level, gate-level, cycle-accurate level, system level, and combinations of
these levels). Some of these applications (switch-level, communication refinement, etc.) are
not currently supported in other asynchronous analysis methods (CSP, Dill, etc.).



 46Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

FIREMAPS supports extended hierarchical verification (which can include overlapping
specifications), design of discrete-state control (supervisory control / design equation), and test
pattern generation for faults in asynchronous circuits.

Process spaces and FIREMAPS include new techniques for formal verification of
communication refinement, peephole optimisations in synchronous and asynchronous circuits,
and relative timing constraints before layout extraction and back-annotation.

Our methods provide unique techniques for the design of asynchronous interfaces, such as
interface recasting whereby the interface protocol is changed without using converter circuits
or other overheads [1]) and verification of compliance to asynchronous protocols.

Process spaces are related to most other asynchronous formalisms, but have a more extensive
and cleaner treatment of algebraic properties, and stronger support for structured design and
verification. For example, the absence of connectivity restrictions has so far permitted us to
derive verification techniques for analysis of switch-level circuits, relative timing, and
communication refinement, substantially exceeding the present scope of other concurrency
theories for asynchronous circuits. We expect more such techniques can be derived.

FIREMAPS currently lacks integration with mainstream CAD environments (such as
Cadence) and other asynchronous tools, such as hazard-free logic minimization, Petrify, and
Balsa. The efficiency of FIREMAPS is not top-of-the-line among BDD-based tools, such as
Petrify. Still, empirical evidence generally indicates that BDD-based tools, including
FIREMAPS, are more efficient than non-BDD tools, such as Verdect and Digg, by several
orders of magnitude in typical applications.

Application Domain
Applications have been demonstrated for high-speed asynchronous circuits (e.g. pulse-mode
and GasP circuits), low-power asynchronous circuits (e.g. Peeters’ single-rail handshake
circuits, Nielsen’s self-timed memory), and several other synchronous and asynchronous
designs.

Use of Existing HDLs 
None

Extent of Automation
Verification and diagnosis of asynchronous behaviours, peephole optimisations,
communication refinement, and relative timing are implemented efficiently. - Supervisory
control, interface recasting, protocol compliance, test pattern generation are implemented as
prototypes and need upgrade for higher speed. - All process space operations are fully
automated in FIREMAPS.

Categories
Synthesis

Design Flow and Commercial EDA Tool Requirement
The techniques for manipulation and verification of asynchronous behaviours by FIREMAPS
as described above are applicable early in the design stages of an asynchronous circuit.
Examples include:



 47Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

• when a block schematic of handshake channels is developed;

• when a cycle-level, gate-level or switch-level netlist is generated, possibly including 
post-synthesis peephole optimisations

• when a library of components is developed;

• when a list of relative timing constraints is compiled for the purpose of optimal sizing 
of transistors and wires.

Test Strategy
We are currently developing FIREMAPS to derive test patterns and to manipulate (collapse)
fault models according to the DUDES method of [15], which is extended in our approach to
include arbitrating circuits and non-deterministic specifications. This method is in a
prototyping stage.

Current Status of Tool

Current activities
FIREMAPS and process spaces are currently used in developing and verifying designs
developed in the group led by Prof. Radu Negulescu in the Electrical and Computer
Engineering Department, McGill University. 

Maintainer
The contact persons for FIREMAPS maintenance and licensing are Radu Negulescu at McGill
University (radu@macs.ece.mcgill.ca) or Robert Berks at University of Auckland
(r.berks@cs.auckland.ac.nz). The contributions of Xiaohua Kong, Larry Weidong Ying and
Mark De Clercq in developing related methods and techniques are gratefully acknowledged.

Availability
FIREMAPS can be licensed to industry that contributes funds or other forms of collaboration
to the research programme of the group, and to research collaborators from academia. The
average contribution from industry is approximately 10000$, and the typical licensing
arrangement is a site license with unlimited use. The underlying BDD library has to be
obtained independently from Carnegie-Mellon University, and it is free for academia.

Future Plans
Parts of FIREMAPS will eventually be released in the public domain, but no specific dates or
plans are set at this time for such release.

Significant Demonstrators
Below we indicate several references where FIREMAPS and process spaces are presented.
References [13] and [14] are currently under review, and are available only as technical reports
upon request from the authors. Published references are collected at 

www.macs.ece.mcgill.ca/~radu/frames/publications.html.

FIREMAPS can be tried on-line at

http://www.macs.ece.mcgill.ca/cgi-bin/cgiwrap/fm/demo_in.cgi. 



 48Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

The user interface of FIREMAPS and a sample case study are described in [16]. A
comprehensive reference for process spaces and FIREMAPS is [7], including a study of
enhanced properties of concurrent systems. Parts of the process space theory have been
published in [5] and [13]. Some aspects of implementing FIREMAPS have been described in
[6]; the relevant sections of [6], written by R. Negulescu, have been included in [7]. Support
for interface design (interface recasting and protocol compliance) is presented in [1]; this
reference treats not just asynchronous protocols, but also asynchronous models for edge-
triggered and master-slave specifications. Verification of communication refinement is
presented in [11], and includes mixed synchronous and asynchronous circuits. A technique for
formal verification of peephole optimisations is demonstrated in [12]; this technique takes into
consideration timing constraints as optimization assumptions and permits changes in the
interfaces of the locally epitomized modules. A technique for efficient formal verification of
mixed delay-insensitive and speed-dependent circuits is presented in [2]. Metric-free
verification of relative timing constraints was introduced in [10], then applied in [8] and
adopted in other asynchronous synthesis and verification methods as well. This approach
permits to model constraints of the form that one path in a circuit always takes longer than
another path. Metric-free verification is orders of magnitude more efficient than approaches
based on numeric values of delays, and, in addition, it permits verification before layout, when
wire delays are not yet known. Mixed switch-level, gate-level, and system-level verification for
asynchronous circuits has been demonstrated in [9] and [3]. Support for discrete-state control
and some applications thereof have been demonstrated in [4] and [14]

References: 
[1] R. Negulescu, X. Kong. “Semi-hiding operators and the analysis of active-edge 

specifications for digital circuits”. In Proceedings of the International Conference on 
Application of Concurrency to System Design (ICACSD), 2001. 

[2] R. Berks, R. Negulescu. “Partial-order correctness-preserving properties of delay-
insensitive circuits”. In Proceedings of the Seventh International Symposium for 
Advanced Research in Asynchronous Circuits and Systems (ASYNC), 2001. (Best paper 
award finalist.) 

[3] X.Kong and R. Negulescu. “Verification of pulse-mode asynchronous circuits”. In Asia 
and South Pacific Design Automation Conference (ASP-DAC), 2001.

[4] H. Hallal, R. Negulescu, and A. Petrenko. “Design of divergence-free protocol converters 
using supervisory control techniques”. In Proceedings of the Seventh IEEE International 
Conference on Electronics, Circuits and Systems, 2000. 

[5] R. Negulescu. “Process spaces”. In Proceedings of the Eleventh International Conference 
on Concurrency Theory (CONCUR), 2000. 

[6] J.A. Brzozowski, R. Negulescu. “Automata of asynchronous behaviors”. Theoretical 
Computer Science 231(1):113-128, 2000. 

[7] R. Negulescu. “Process Spaces and Formal Verification of Asynchronous Circuits”. PhD 
Thesis, Department of Computer Science, University of Waterloo, Canada, 1998. 

[8] R. Negulescu, A.M.G. Peeters. “Verification of speed-dependencies in single-rail 
handshake circuits”. In Proceedings of the Fourth International Symposium for 
Advanced Research in Asynchronous Circuits and Systems, 1998. 

[9] R. Negulescu. “Event-driven verification of switch-level correctness concerns”. In 
Proceedings of the International Conference on Application of Concurrency to System 
Design, 1998.



 49Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

[10] R. Negulescu. “A technique for finding and verifying speed-dependencies in gate 
circuits”. In ACM International Workshop on Timing Issues in the Specification and-
Synthesis of Digital Systems, 1997. 

[11] X. Kong, R. Negulescu, L. Ying. “Refinement-based formal verification of asynchronous 
wrappers for independently clocked domains in systems on chip”. In Proceedings of the 
11th Advanced Research Working Conference on Correct Hardware Design and 
Verification Methods (CHARME), 2001.

[12] X. Kong, R. Negulescu. “Formal verification of peephole optimizations in asynchronous 
circuits”. In Proceedings of 21st IFIP International Conference on Formal Techniques for 
Networked and Distributed Systems (FORTE), 2001.

[13] R. Negulescu. “Generic transforms on incomplete specifications of asynchronous 
interfaces”. Technical report, McGill University, 2003.

[14] R. Negulescu and R. T. Berks. “Supervisory control for hierarchical verification of 
asynchronous circuits”. Technical report, McGill University, 2003.

[15] P. Shirvani, S. Mitra, J. Ebergen, M. Roncken. DUDES: “A fault abstraction and 
collapsing framework for asynchronous circuits”. In Proceedings of the Sixth 
Symposium on Advanced Research in Asynchronous Circuits and Systems, 2000. 

[16] R. Negulescu. “A technique for finding and verifying speed-dependencies in gate 
circuits”. Technical report CS-97-28, Dept. of Computer Science, University of 
Waterloo, Canada, 1997.

[17] Jo Ebergen, Charles Molnar, Radu Negulescu, Huub Schols, Bob Sproull (editor), Jan 
Tijmen Udding, Tom Verhoeff. “And/if: a file format for exchanging finite automata 
descriptions”. http://edis.win.tue.nl/and-if



 50Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: Handshake Technology Design 
Flow

Developer: Ad Peeters et al.

Organisation: Handshake Solutions, Philips Technology Incubator, Eindhoven, 
The Netherlands

Summary
The Handshake Technology design flow is based on the proprietary programming language
Haste (formerly known as 'Tangram'), and uses handshake circuits as central representation
format and intermediate architecture. 

The programming language Haste was inspired by CSP and Occam. Haste supports variables
(both latches and flip-flops, with optional reset values), channels (broadcast and narrowcast,
arbitrated and non-arbitrated), register files, embedded memories, etcetera. Program constructs
include assignments and communication, and furthermore all common imperative language
constructs such as various conditional and iteration operators.

In addition, Haste offers language constructs for parallelism, channel communication,
communication through shared variables, and sharing of hardware blocks. Furthermore,
instantiation of RAMs, ROMs, and register files is supported in the language. Several
constructs are implemented to support the design of external interfaces, such as waiting for
edges or conditions, the direct manipulation of external signals, and the reliable sampling of
external signals. A powerful parameter mechanism for both functions and procedures is also
part of the language. 

Haste allows for modular compilation, and supports the inclusion of datapath logic blocks
from other tools, e.g., complex multipliers obtained from module generators from other EDA
vendors.

The handshake circuit format supports both handshake and non-handshake communication.
Components are available that implement language constructs such as sequencing, parallelism,
conditional commands, and loops. Variables (both latches and flip-flop variants), datapath
operators (both handshake and non-handshake) and many other components are supported. 

The third level of abstraction is the internal abstract netlist format, which covers all common
logic functions, a variety of latches and flip-flops, many generalized C-elements, a number of
mutual-exclusion operators, and delay elements. 

Various backends (from handshake circuits to gate-level netlist) have been implemented,
though not all of them are operational today. The four-phase single-rail backend is being used
in combination with a range of standard-cell libraries in various CMOS and other technologies.
Also, a synchronous implementation of handshake circuits is supported to facilitate mapping
onto FPGAs for prototyping.

For the standard-cell libraries, dedicated asynchronous cells (such as C-elements, mutual-
exclusion elements and delay elements) are typically not available as dedicted elements, but



 51Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

rather are mapped onto combinations (networks) of standard gates, such as nands, nors and
complex and-or-inverts.

Application Domain
The Handshake Technology design flow is not limited to a specific domain.

Current applications include several products in the wireless communication area,
smartcards,and in-vehicle networks for automotive.

Typically, applications are those where the benifits apply most, and where performance is less
of an issue than power consumption, electromagnetic emission, and ease of integration. The
complexity of the applications is not limited by the design flow.

Use of Existing HDLS
Many commercial tools are applied in the Handshake Technology design flow, especially in the
backend of the flow. Actually, the drive has been to minimize the development of new
dedicated tools, and to re-use common synchronous tools where-ever possible. Depending on
the customer's wishes, the Handshake Technology flow can be targeted to any specific EDA
flow, whether standard (such as Cadence or Synopsys) or even in-house.

In particular, the Handshake Technology design flow employs standard tools for the following
tasks:

1. Prototyping on synchronous FPGAs 

2. Technology mapping onto standard-cell libraries

3. Static timing analysis of logic blocks to support the delay matching in the control

4. Test-pattern generation for the scan-testable netlists

5. Various backend tasks such as drive-strength fixing and balancing of local clocks and
scan-test clocks

Category
Synthesis, silicon compiler

Test Strategy
The test solution for Handshake Technology circuits is based on synchronous scan-test. During
test, the circuit is operated as a synchronous circuit, and support scan operation and evaluation.
The Handshake Technology test tools transforms the asynchronous sequential elements into
elements that can be controlled using clock signals, and generates remodel files that can be
used to generate test-patterns for the scan-testable circuit thus obtained using standard
synchronous test-pattern generation tools such as Mentor's Fastscan or Synopsys' Tetramax.
The test coverage against stuck-at faults is complete (that is, 100% unless redundant datapath
logic has been used) and results in a test quality that is equivalent to that obtained for
synchronous circuits.

Naturally, full scan-testability comes at some area cost, and an alternative (with higher time to
market) is to use functional testing. In that case, one could program scan-like functions for the
datapath directly in Haste, to support the generation of high-quality functional patterns. Their
coverage can be evaluated using commercial fault-coverage tools.



 52Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Current status of Tool
The Handshake Technology design flow is operational at several sites, and has

been used to design dozens of ICs that are on the market. 

Current Activities
There is a continuous drive to improve the design flow based on customer requirements and on
lessons learned in the field. The main focus is on extending the user base of the tools.

Maintainer
Handshake Solutions, especially its tool and technology development teams.

Availability 
The design flow is available from Handshake Solutions since January 1st 2004. For
information contact: sales@handshakesolutions.com. (Until 2003 it was Philips proprietary.).

Future Plans
It is the goal of Handshake Solutions to make a commercial success of Handshake Technology,
and selling it to the semiconductor industry.

Demonstrators
During the development of Handshake technology, as part of the  project at Philips Research,
several demonstrator ICs have been designed and evaluated since 1986. The initial
demonstrators were toy applications, and were used to streamline the design flow and address
the accuracy of simulation models. Since 1992, all demonstrators have been based on
specifactions from industry, that is, were taken from or geared towards real commercial
products. For instance, several ICs for the DCC (Digital Compact Cassette) system and for a
video-on-demand application have been developed and were successfully tested.

Since 1995, the tool set is operational at Philips Semiconductors, who have since then made all
the silicon, mosty directly as products. Examples include the 80c51 microcontroller, a family
of pager ICs, wireless telphony controller, game consoles, smart cards, and in-vehicle
networking products. (See also the 'Philips Semiconductor' section in the Industry Report.)

References
For more information refer to www.handshakesolutions.com



 53Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: LARD

Developer: P. Endecott

Organisation: University of Manchester

Summary
LARD (Language for Asynchronous Research and Development) is a hardware description
language developed for describing asynchronous systems - though little is specific to that
purpose, so you could use it to describe synchronous systems if you wanted, or even as a
general purpose programming language.

Strengths & Weaknesses
Comparison of LARD with VHDL:

The main problems with VHDL as a language for modelling asynchronous circuits are:

• VHDL lacks channel communication. As a result it is necessary to explicitly model the 
request and acknowledge signals used in inter-block communication.

• While VHDL allows parallel composition of processes, those processes must be 
internally sequential. Asynchronous systems designers often want to have reconverging 
parallelism at the statement level, and getting the effect of this in VHDL is very 
awkward.

• VHDL is a very complex language, so writing tools that do something useful to it in 
finite time would be challenging.

Comparison of LARD with Tangram:

Tangram solves all of the problems of VHDL described above. Unfortunately it does suffer
from some problems of its own: -Tangram lacks some of the high-level programming features
that users normally take for granted; in particular it doesn’t implement records. -Tangram is
proprietary to Philips.

The other problems result from the fact that Tangram is exclusively a synthesis language: -We
might want to model things at a more abstract level than is possible in Tangram. We want to be
able to run simulations with very abstract models that are not synthesisable. -On the other hand
we might want to model things at a lower level than is possible in Tangram, for example with
explicit modelling of signals rather than channels. -Tangram only models time by back-
annotating delays from the synthesised model. We want to be able to give explicit timing
information in our models so that we can get performance estimates out of abstract high-level
models.

Application Domain
LARD is a modelling tool for architectural analysis and comparisons. It is up to the user to
interpret the results to consider effects on performance/power etc.

Use of Existing HDLs
none



 54Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Extent of Automation
Once a model description has been written, the tool flow is automated.

Categories
Simulators/Modelling tools

Design Flow and Commercial EDA Tool Requirement
LARD fits into the design flow in 3 places: 

1. Abstract models can be simulated to determine the basic architecture.

2. The system is then either constructed by hand using Commercial CAD tools or using
Balsa.

3. If the systems is synthesised using Balsa, then LARD is used to perform behavioural
simulations of the Balsa code to verify functionality before the final synthesis stage. Once
a circuit netlist has been obtained, LARD can be used to interface to the Timemill
simulator to apply test stimuli to the circuit.

Test Strategy
LARD is a flexible modelling language and thus can be used to debug designs.

Current Status of Tool

Current activities
The tool is stable and has been used for a number of purposes.

Maintainer
No longer maintained

Tool Availability
freely available from http://www.cs.man.ac.uk/amulet/projects/lard

Future Plans
None

Significant Demonstrators
AMULET3i was modelled using LARD, including the core, DMA controller, MARBLE bus,
RAM and ROM. LARD was used for test vector application to validate the MARBLE design.
An asynchronous cache subsystem for AMULET3 has deen developed using LARD.

References
From Behavioural Models to Silicon: Tools for the AMULET3 Project [P.B.Endecott &
S.B.Furber, unpublished] describing how LARD has been used for AMULET3, focusing on
the test generation problems. ftp://ftp.cs.man.ac.uk/pub/amulet/lard/async98.ps.gz

Modelling and Simulation of Asynchronous Systems using the LARD Hardware Description
Language. [Phil Endecott, ESM98] ftp://ftp.cs.man.ac.uk/pub/amulet/papers/lard_esm98.ps.gz



 55Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Behavioural Modelling of Asynchronous Systems for Power and Performance Analysis.
[P.B.Endecott & S.B.Furber, PATMOS’98]
ftp://ftp.cs.man.ac.uk/pub/amulet/papers/lard_patmos98.ps.gz 

AMULET3i Cache Architecture
http://www.cs.man.ac.uk/amulet/publications/papers/async01_ying.html 



 56Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: MINIMALIST 

Developers: Steven Nowick, Robert Fuhrer, Alexander Shapiro, Michael Theobald  Tiberiu 
Chelcea, Luis Plana 

Organisation: Columbia University, New York, NY, USA

Summary
MINIMALIST is a CAD package for the synthesis, optimization and verification of
asynchronous ‘burst-mode’ controllers. Burst-mode is a commonly-used Mealy-type
asynchronous specification style.

The focus of the tool is on technology-independent synthesis. It includes a number of highly-
optimised algorithms for state minimization, optimal state assignment, two-level hazard-free
logic minimization, synthesis for generalized C-element implementations, and verification. It
also provides a graphic display of specifications and implementations, an interactive shell,
design scripts, help menus, and a tutorial. The synthesized implementations are hazard-free
gate-level circuits, either two-level (AND-OR) or using generalized-C elements. These circuits
can then be technology-mapped using additional tools.

The key goal of the MINIMALIST package is to facilitate design-space exploration: for a
given specification, the designer can synthesize a variety of different implementations,
exploring trade-offs of performance and area. Many synthesis options are provided, to search
for high-quality designs. These include several machine styles (using outputs as fedback state
variables, or not, to reduce number of state bits); logic implementation styles (allowing various
levels of sharing of logic between different outputs); cost functions (such as, optimising for
number of products, literals, critical path, etc.); and algorithmic modes (exact vs. heuristic). As
a result, dozens of different implementations can be synthesized for each specification, guided
by user settings.

The package also includes a number of first-of-a-kind optimization algorithms, including:
CHASM, for optimal state encoding (for example, it can find a critical race-free state encoding
which produces minimum-cost hazard-free logic for outputs); and several different exact
(hfmin, IMPYMIN) and heuristic (espresso-HF) two-level logic minimizers. 

MINIMALIST can handle fairly large controllers efficiently, and has a number of heuristic
switches to speed up synthesis. It provides several back-end formats, including PLA format
and Verilog HDL. It also includes a verifier, which compares the specification to the gate-level
implementation, checking for both functionality and hazard violations.

Strengths and Weaknesses
Strengths: Designs mappable to a variety of commercial standard libraries; Mealy-style
specifications which are comfortable for synchronous designers; handle reasonably large
controllers with good run-time; excellent support for design-space exploration; includes
several exact optimization algorithms (including state assignment and logic minimization).

Weaknesses: currently does not include technology mapping, an HDL front-end, or support for
‘extended burst-mode’. (All of these features are planned for future additions to the tool;
several independent algorithms and design tools exist for burst-mode technology mapping, but



 57Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

are not yet incorporated into MINIMALIST.) Moderate one-sided timing assumptions, which
require verification and possible delay-padding (off of critical paths, usually). 

Application Domain
Medium to high-performance control circuits. Use moderate timing assumptions (one-sided);
neither overly aggressive nor delay-insensitive.

Use of Existing HDLs
Implementations can be written out in several formats, including Verilog HDL, which can then
be handed to external tools for backend (technology-dependent) synthesis.

Extent of Automation
Push-button synthesis, from controller specification to gate-level implementation, using pre-
packaged scripts. 

Category
Synthesis – Burst-mode.

Design Flow and Commercial EDA Tool Requirement
MINIMALIST is used for synthesis and optimization of individual asynchronous controllers.
The designer invokes the MINIMALIST shell, which is an interactive environment for design.
MINIMALIST commands can be invoked from the shell, as well as useful Unix commands
(e.g., ls, cd, etc.).

The input to the tool is a burst-mode specification, in text “bms” file format. The designer has
many options for performing synthesis runs (see below). However, in all cases the basic steps
are as follows:

• state minimization;

• state assignment (i.e., state encoding); 

• two-level logic minimization (or mapping to generalized-C elements);

• verification.

 A number of design options are provided, to search for high-quality designs: machine style
(using outputs as fedback state variables, or not); logic implementation style (various levels of
sharing of logic between different outputs); cost functions (optimizing for number of products,
literals, critical path, etc.); and algorithmic modes (exact, heuristic).

The designer can interact with MINIMALIST in two modes: (a) using prepared ‘design
scripts’, or (b) typing individual ‘commands’ for more detailed control over the synthesis
steps. For (a), there are a variety of scripts: several do a complete prepackaged synthesis run,
oriented either to a basic implementation, or to optimization for speed or area. Others do a set
of 4 runs, so the user can pick the best of the set. For (b), the experienced user can control
settings on each individual step of synthesis, by typing commands directly to the shell. 



 58Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Test Strategy
Synthesis-for-testability methods for MINIMALIST have been developed and published, but
are not currently incorporated into the tool. MINIMALIST does provide several output formats
for gate-level circuit implementations, including Verilog HDL, which can be simulated.

Current Status of Tool

Current Activities
Release 1.2 will be available by end of July 2001, including many new features: mapping to
generalized-C elements, tutorial support, graphical display of specifications and circuit
implementations, design scripts, verification, a Verilog HDL back-end, and several advanced
features. 

Maintainer
The contact person is: Steven Nowick (nowick@cs.columbia.edu). The maintainers are: Steven
Nowick (nowick@cs.columbia.edu) and Robert Fuhrer (rfuhrer@watson.ibm.com).

Availability
Freely available for non-commercial use at: http://www.cs.columbia.edu/async. Available
through license for commercial use; send email to contact person above (Steven Nowick) for
inquiries.

Future Plans
Future releases are expected with extensions to handle “extended burst-mode (XBM)”
specifications. Potential incorporation with Balsa and other tools as a technology-independent
back-end. Addition of simulation and verification tools.

Demonstrators
Portions of the MINIMALIST tool (hazard-free logic minimization tools) have been included
in the 3D package and applied to several experimental designs: (a) Hewlett-Packard “Stetson”
project, for design of infrared communications chip; (Alan Marshall and Bill Coates and Polly
Siegel, “Designing an Asynchronous Communications Chip”, IEEE Design and Test of
Computers, 11:2, pages 8-21, 1994); (b) Intel “RAPPID” instruction-length decoder (S. Rotem
et al., “RAPPID: an asynchronous instruction-length decoder”, Proceedings of the IEEE
International Symposium on Advanced Research in Asynchronous Circuits and Systems, IEEE
Computer Society Press, pages 60-70, April 1999).



 59Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: Oolong

Developer: Will Toms

Organisation: University of Manchester, UK

Summary
Oolong is a technology-independent synthesis tool capable of synthesising arbitrary QDI/SI
combinational logic functions. Oolong employs traditional Multi-level logic synthesis
techniques constrained to uphold the SI requirements of the resulting circuits.

Return-to-Zero DI-encoded combinational functions form an interesting subset of the set of SI
circuits. The excitation-regions of the function outputs overlap and contain many common
signals. For this reason traditional SI decomposition/synthesis techniques[] that generate
candidate divisors from individual functions and then evaluate their cost in the whole network,
can suffer as valid decompositions for individual signals may greatly increase the cost of
decomposing other signals. Oolong uses the matrices of multi-level logic synthesis to
determine sets of signals that may be inserted into an implementation without violating SI/QDI
constraints and how they affect all the output signals of the network. The matrix models may
be used to successfully determine candidate divisors - but the set of divisors must be severly
constrained to maintain the ability of the matrix model to determine all relationships between
signals in a network. This can be reduced by incorrectly selecting divisors that bind sub-terms
to inserted signals and mask common sub-terms.

Oolong has been encorporated into the Balsa synthesis system to allow the synthesis of
arbitrary encoded QDI circuits. The circuits produce contain only Isochronic fork assumptions
and hence are QDI although as synthesised circuits may consist of hundreds of gates a Speed-
Independent moniker may be more suitable.

Strengths and Weaknesses

Strengths. 

- Oolong can synthesise a large-range of DI-encoded QDI circuits, including many that 
were previously unsynthesisable in an implementable form (i.e. without unlimited fan-
in gates).

- All circuits are technology independent (assuming a basis of 2-input C-elements and 
Or-gates) and hence can be mapped to most libraries.

- Circuits are synthesised using existing multi-level logic techniques that allow multi-
cube divisors.

Weaknesses. 

- Oolong implements strongly-indicating functions and so implementations may be 
large particualrly for functions involving m-of-n codes where m is greater than 4. For 
such circuits the synthesis process may never terminate, and so no realistic strongly 
indicating function is possible.



 60Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

- As a proof of concept and to fit in with the existing Balsa framework, Oolong has 
been implemented in Scheme - an interpreted language, the code is fairly inefficient 
and hence for large circuits (> 500 minterms) the synthesis times may be several hours.

Application Domain
Synthesis of DI-encoded QDI/SI Combinational Logic Circuits.

Use of existing HDLs
Oolong has been incorporated into the Balsa system, although is a stand-alone low-level circuit
synthesis tool.

Extent of automation
Descriptions are provided to Oolong using a two-level blif format such as those used in
Espresso. The output is a multi-level blif file. Oolong can also output an internal format
suitable for the balsa system. It is intended to incorporate the technology description and
library declaration system of Balsa to allow oolong to produce technology specific netlists, that
may be simulated.

Category
QDI/SI combinational logic synthesis.

Design Flow and Commercial EDA Tool Requirement
The Oolong stand-alone tool currently just inputs and outputs blif files. As part of the Balsa
synthesis framework Oolong is used to synthesis m-of-n QDI logic circuits into CAD-specific
netlists, see the Balsa submission in this report.

Test strategy
None, although there is a simple SI verifier which may be made available.

Current status

Maintainer
Will Toms (tomsw@cs.man.ac.uk

Availability
Not currently available but will provided on request to maintainer.

Future plans
To implement functions efficiently in e.g. C, to reduce synthesis time. To implement weak-
conditioned logic to reduce circuit size, latency.

Demonstrators

Oolong has been used in the Balsa system to synthesise a m-of-n encoded 32-bit MIPS core.
Further examples using significant balsa circuits are planned.



 61Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: OptiMist

Developer: Danil Sokolov

Organisation: School of Electrical, Electronic and Computer Engineering, Uni-
versity of Newcastle, Newcastle upon Tyne, UK

Summary
OptiMist (Optimise and Map) is a package of tools that optimise Signal Transition Graph
(STG) specifications and map them into asynchronous circuits. The package works in 4 stages:

Output exposure. At this stage the initially closed (with both input and output transitions)
system specification is transferred into an open system specification using the concept of
environment tracking and output exposure [1]. The resultant specification consists of two
blocks: a tracker and a bouncer. The tracker follows the behaviour of the environment and
generates context signals for the bouncer. The bouncer is a set of elementary cycles, each of
which represents an output signal. An elementary cycle consists of two places, corresponding
to low and high levels of the signal, and positive and negative transitions of the signal. The
elementary cycle switches between low and high states using a signal from the tracker.

Detection of redundant places. When outputs are exposed some places in the tracker become
redundant, because an output can be switched by directly preceding input signal without using
intermediate state of the tracker. Many tracker places can thus be removed, provided that the
system behaviour is preserved w.r.t. input-output interface (weak bisimulation). Their
elimination is however restricted by potential coding conflicts (which may cause tracker errors)
and implementation constraints (at least three DCs in every loop). Redundant places are
detected using a set of optimisation heuristics [4]. Initially all places are not tagged. Then
every place is given a tag: redundant (if the place can be removed) or mandatory (if the place is 

necessary). The heuristics define the order in which the places should be checked.

Heuristic A (latency reduction): Places after input but before output transitions are tagged as
redundant.

Heuristic B (size reduction): The chains of places between redundant places detected in the
previous heuristic are considered. The places of each chain are tagged  starting from the
beginning of the chain and going in the direction of consuming arcs. The last place in each
chain is not tagged.

Heuristic C (size reduction): All non-tagged places (the last places in the chains) are tagged
individually.

Elimination of redundant places. At this stage redundant places are removed from the
tracker one by one. After a removal of each place the specification is modified preserving the
behaviour of the system. If a place has only one preceding transition and one succeeding
transition then the modification is trivial (the place is deleted and the conjugate transitions are
replaced by one). In case of more then one preceding or succeeding transitions, more
sophisticated transformation is required for place removal.



 62Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Sometimes the number of context signals (signals from tracker) for an elementary cycle is
increasing after removal of a redundant place. This can be explained by the splitting of a
mandatory place before the deep hierarchy of forks and the recalculation of context signals
from redundant places to the split places. The solution to this problem is to evaluate the
complexity of elements by calculating the maximum number of incoming arcs into a transition
before and after removal of every place. If this number is increasing (or at least is increasing
beyond the maximum implementable value), then the place should be kept in the specification.
This is the element complexity optimisation technique which reduces the size of the circuit by
preventing complication of logic rather than reducing the number of state holding elements.

Mapping of into circuit. Finally, the places of the tracker are mapped into David Cells (DCs)
and the elementary cycles are mapped into set-reset flip-flops (FFs). The netlist of DCs and
FFs is generated in Verilog format.

Strengths and Weaknesses
Strengths:

• Generated circuits have low output latency.

• All optimisation is performed at the specification level as opposed to optimisation of 
logic circuits after the stage of synthesis.

• Tool can process large specifications (which are not computable by logic synthesis 
tools in acceptable time), because optimisation is performed locally and the 
computation time grows almost linear with the size of specification.

• The tools are extremely fast, which allows the designer to try different combinations of 
heuristics and different start points of optimisation.

• The element complexity optimisation facilitates technology mapping by restricting the 
growth of logic element fanin.

Weaknesses:

• For small and medium examples the circuits produced by the proposed technique are 
usually larger than the solutions of logic synthesis tools.

Application Domain
High-speed asynchronous controllers.

Use of Existing HDLs
The tool takes STG in ASTG format and generates a netlist of DCs and FFs in Verilog format.

Extent of Automation
The tools are fully automated. At the same time a designer can significantly influence on the
result at the stage of redundant place detection by choosing one or more of the proposed
heuristics.

Category
Synthesis - STG/Petri net.



 63Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Design Flow and Commercial EDA Tools
OptiMist package can be employed in combination with Cadence to allow simulation and
technology mapping of circuits. A basic library of DCs and FFs has been created for Cadence.
It can be expanded, if necessary, using a tool from the package which generates a Verilog
implementing DCs and FFs at transistor level.

Test Strategy
N/A

Current Status of the Tool

Current Activities
The tool is currently in testing stage.

Maintainer
Danil Sokolov (danil.sokolov@ncl.ac.uk)

Availability
http://async.org.uk/

Future Plans

• To improve the algorithm of redundant place detection to avoid growth of DCs/FFs 
fanins.

• To try several start points in redundant place detection procedure and automatically 
select the best result.

Demonstrators
N/A

References
[1] A.Bystrov and A.Yakovlev, “Asynchronous circuit synthesis by direct mapping: 

Interfacing to environment”, In Proc. International Symposium on Advanced Research in 
Asynchronous Circuits and Systems, pages 127-136, Manchester, UK, April 2002.

[2] D.Sokolov, A.Bystrov and A.Yakovlev, “Automated design of low-latency asynchronous 
circuits by direct mapping”, Postgraduate Research Conference in Electronics, Photonics, 
Communications and Software, Notingham, UK, April 2002.

[3] D.Sokolov, A.Bystrov and A.Yakovlev, “Tools for STG optimisation in the direct 
mapping of asynchronous circuits”, 12th UK Asynchronous Forum, London, UK, June 
2002.

[4] D.Sokolov, A.Bystrov and A.Yakovlev, “STG optimisation in the direct mapping of 
asynchronous circuits”, In Proc. of Design Automation and Test in Europe, Mart 2003.



 64Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: Petrify

Developer: Jordi Cortadella 

Organisation: Universitat Politenica de Catalunya, Spain

Contributors: Michael Kishinevsky (Intel Corporation, USA) Alex Kondratyev (Cadence 
Design Systems, USA)  Luciano Lavagno (Politecnico di Torino, Italy)  Enric Pastor (Universi-
tat Politecnica de Catalunya, Spain)  Alexander Taubin (Boston University, USA)  Alexandre 

Yakovlev (University of Newcastle upon Tyne, UK)

Summary
Petrify is a tool the for synthesis of Petri nets and asynchronous controllers. The tool can read a
Signal Transition Graph (STG) and generate a circuit netlist. An STG is a formal specification
of timing diagrams in which the events correspond to rising and falling transitions of control
signals. Besides expressing causality, STGs can also specify concurrency and choice. During
synthesis, petrify solves several logic synthesis problems required to produce a netlist: state
encoding, logic decomposition and technology mapping.

Petrify can either synthesize speed-independent circuits or timed circuits. In the latter case, the
designer can provide relative timing assumptions under which the correctness of the system
can be guaranteed. Petrify backannotates the required timing constraints that must be verified
after synthesis. Petrify can provide different types of netlists: Boolean equations, generalized
C-elements or gates from a library. Additionally, set/reset points in the circuit are detected and
information about their initialization is given.

As a final step, petrify can also synthesize STGs with the purpose of backannotating the
transformations performed during synthesis. In this way, all the internal signals inserted for
encoding and logic decomposition, can be observed in the same format as the designer has
specified the system.

Petrify also includes a tools to visualize STGs and State Graphs (draw_astg and write_sg).

Strengths and Weaknesses
The tool provides fully automation during synthesis. The used of symbolic techniques to
represent the state space allows to synthesize large controllers (more than 20 signals in case of
regular well-structured behaviours). High-quality circuits are obtained.

Not appropriate for data-path synthesis. Obtaining a circuit netlist cannot always be
guaranteed.

Application Domain
High-speed asynchronous controllers.

Use of existing HDLs 
Netlist can be generated in Verilog, BLIF or EQN. Gate libraries are read in genlib format
(from SIS).



 65Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Extent of automation
Complete automation from STG to circuit netlist.

Category
Synthesis - STG/Petri net

Design Flow and Commercial EDA Tool Requirement
Petrify can be used as a standalone tool for synthesis. The design flow starts from a
specification of the system’s behaviour described by an STG. A textual format is used for such
specification. Additionally, a gate library must be provided in case a mapped netlist is desired
after synthesis. A push-button approach is provided to generate the circuit.

Test Strategy
No test vectors are generated.

Current Status of the Tool

Current Activities
Maintenance for users

Maintainer
Jordi Cortadella (jordic@lsi.upc.es)

Availability
http://www.lsi.upc.es/~jordic/petrify

Future plans
The team is working in a second generation of the tool aiming at the synthesis of large and
well-structured controllers. There are plans to integrate the new tool in a high-level synthesis
framework.

Demonstrators
The tool has been used by different groups for the synthesis of asynchronous controller. Here
are some examples:

• Several circuits from RAPPID (Intel Corp.) have been synthesized. Circuits with 
similar quality to those designed manually have been automatically generated.

• Several controllers for the AMULET microprocessor have been synthesized.

• Theseus Logic is using the tool for the synthesis of controllers.



 66Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: Phased Logic

Developers: Robert B. Reese, Mitch A. Thornton & Cherrice Traver

Organisations: Mississippi State University, Southern Methodist University and Union Col-
lege

Summary
Phased Logic (PL) is a self-timed design methodology that provides an automated translation
of a clocked system in the form of D-flip-flops and combinational gates to a self-timed netlist
of PL gates.  The only global net in the self-timed netlist is a reset signal. The PL netlist is a
micropipelined system with two-phase control. Two distinct implementation technologies are
supported, fine-grain and coarse-grain.  The fine-grain approach uses a one-to-one mapping of
gates in the clocked system to PL gates that use a 4-input Lookup-Table (LUT4) as the logic
element with delay-insensitive dual-rail routing between gates. This technology could form the
basis for the implementation of a self-timed FGPA. Because all routing between gates is delay-
insensitive, there are no timing mechanisms external to a PL gate that can cause a failure due to
timing. The coarse-grain approach maps groups of gates in the clocked netlist to the
combinational compute function of a PL block, with bundled data signaling used between
blocks.  The combinational compute function of a coarse-grain PL block can be implemented
using a traditional standard cell library. The coarse-grain technology is an ASIC approach to
the implementation of PL systems. All timing concerns in a coarse-grain implementation are
block-to-block; there are no global mechanisms that can cause failure due to timing. If desired,
delay insensitive signaling can be used between coarse grain blocks to remove timing
uncertainty due to wire delays.  This will add extra latency in the control path but this latency
can be hidden if the coarse grain block delay is long enough. Both fine-grain and coarse-grain
approaches support a speedup mechanism known as early evaluation (a generalized form of
bypass) that can allow the PL system to outperform the clocked system in some cases.  All
micropipeline approaches suffer a performance penalty compared to clocked systems because
the output latch latency of a micropipeline block is in the critical path. Early evaluation allows
PL systems to recover some of this performance penalty.

Strengths and Weaknesses

Strengths:  Automated flow from clocked gate-level netlist; we use Synopsys Design
Compiler and either VHDL  or Verilog to generate the starting designs. The resulting self-
timed design can outperform the clocked design in some cases when early-evaluation is used
appropriately. Early evaluation identification is automated in the fine-grain flow.

Weaknesses: No silicon demonstrated yet; coarse-grain flow has been demonstrated down to
gate-level Verilog netlists of two commercial standard cell libraries (Artisan, UMC) with pre-
layout SDF timing. The fine-grain flow is only implemented using behavioral models for the
fine-grain gates. There is currently no support for multiple clock domains in the starting
clocked netlist. The coarse-grain flow requires top level partitioning of the design into blocks
by the designer, and the designer must manually identify early evaluation opportunities.



 67Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Application Domain
The coarse-grain flow assumes a static CMOS gate library, so medium performance designs
are targeted.  There is no inherent limit on design size.  

Use of Existing HDLs
The starting point is a gate-level netlist, so any existing HDL /synthesis tool can be used to
produce this netlist. The coarse-grain flow is tied to Synopsys Design Compiler for static
timing analysis. We have used VHDL/Verilog and Design Compiler to produce starting
netlists.

Category
Fine-grain flow:  two-phase micropipeline, Level-encoded Dual Signaling (LEDR) used
between gates for delay-insensitivity;  no distinction between datapath and control in clocked
netlist.

Coarse-grain flow:  two-phase micropipeline, bundled-data signaling used between blocks; no
distinction between datapath and control in clocked netlist.

Design Flow and Commercial EDA Tool Requirement
See figure for coarse-grain flow; this flow is tied to Synopsys Design Compiler which is used
for static path analysis.  The fine-grain flow has only been demonstrated with Synopsys DC,
but could use any front-end synthesis tool to produce the starting netlist that contains DFFs and
4-input lookup tables (LUT4s).

Test Strategy
Clocked scan-paths in the original clocked netlists are preserved in both fine-grain and coarse-
grain PL netlists.

Current Status of Tool
Tools are available, see http://www.ece.msstate.edu/~reese, follow the Phased Logic tool link.
Binaries supplied for both SUNOS/Sparc and Linux/X86 platforms.

Maintainer
Robert B. Reese; reese@ece.msstate.edu

Future Plans
We are currently working on a silicon demonstration for the coarse-grain flow.  A back-end
implementation for the fine-grain flow is under development.

Demonstrations
A tutorial with sample designs for both fine-grain and coarse-grain flows was presented at
ASYNC 2004.  The examples include a 5-stage pipelined CPU for the coarse-grain flow.  The
tutorial and examples are available with the tool distribution.



 68Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

References
[1] Linder, D.H. and Harden J.C. “Phased Logic: Supporting the Synchronous Design 

Paradigm with Delay-insensitive Circuitry”, IEEE Transactions on Computers, Vol. 45, 
No 9, (1996)

[2] Reese. R.B., Thornton, M.A., and Traver, C. “A Coarse-grained Phased Logic CPU”, 
Ninth International Symposium on Advanced Research in Asynchronous Circuits and 
Systems (2003).

[3] M.A. Thornton, K. Fazel, R.B. Reese, and C. Traver, “Generalized Early Evaluation in 
Self-Timed Circuits”, Proceedings of DATE 2002, Paris France, March 4-8, 2002. 

[4] Reese. R.B., Thornton, M.A., and Traver, C.  A Fine-grain Phased Logic CPU. In 
Proceedings of the IEEE Computer Society Annual Symposium on VLSI (2003).

[5] Reese, R.B., Thornton, M.A., and Traver, C. “Arithmetic Logic Circuits using Self-timed 
Bit-Level Dataflow and Early Evaluation”, In Proceedings of the International 
Conference on Computer Design (2001).

Figure 1: Phased-Logic Tool Flow



 69Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: PipeFitter

Developers: I. Blunno, L. Lavagno & V.P. Shah

Organisation: Politecnico di Torino 

Summary
Pipefitter is a tool for the automated synthesis of micro-pipelined asynchronous circuits, with a
4-phase control unit supporting concurrency, sequencing and choice, and a synchronous data
path with matched delays.

Strengths and Weaknesses
The main advantages are that a complete asynchronous design flow is supported and that the
specification language is standard behavioural Verilog. The main disadvantage is that at this
time only a few Verilog statements are supported and the synthesis process is only partially
automated.

Application Domain
Low electro-magnetic emissions ASIC design.

Use of Existing HDLs
The specification language is Verilog HDL, 100% consistent with the simulation semantics

Extent of Automation
This, the first version of the new pipefitter is intended for simulation purposes only and no
guarantee is given on the hazard freedom of any component if synthesis is performed even
though the expert designer can try to properly constrain this process. So far only high-level
synthesis is implemented by pipefitter (i.e., asynchronous verilog to synthesisable verilog for
both data path and control unit). Future versions of pipefitter will support the automated
synthesis through the generation of proper synthesis scripts. Designers can also manually
modify intermediate representations (e.g., the synchronous data path, written in synthesizable
Verilog).

Category
Synthesis

Design Flow and Commercial EDA Tool Requirement
The input is a specification written in an “asynchronous synthesizable subset” of Verilog,
including RTL-like constructs, and based on the Verilog simulation semantics. From this
specification pipefitter automatically derives several Verilog netlists: one for the control unit
and the other for each register and operative unit in the data path. The control unit is directly
implemented, using an approach close to Hollaar’s (also called David cell-based). 

Each data path module is synthesised into standard cells by an appropriate RTL/logic synthesis
tool, such as the Synopsys Design Compiler or Cadence RC or Mentor Leonardo. Timing
analysis must then be performed on the data path, in order to determine the worst case delays.



 70Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Its result can be used to modify the automatically generated matched delay block for each
register and data path block, in order to generate the proper acknowledge signals for the control
unit. This step will be automated by the generation of scripts in the future versions of pipefitter.

Test Strategy
The tool produces a Verilog which describes the whole synthesised system (Control Unit +
Data Path). Synchronous scan chains can be used to test the data path. The controller can also
be tested by a scan-based approach, but no support is currently provided for this step.

Current Status of Tool

Current activities
Pipefitter now is in the process of being completely redesigned and improved with new
features. The first version of the new pipefitter can still be used for simulation purposes and for
logic synthesis as well, even though for the latter the designer will have to manually constrain
the process.

Maintainer
Pipefitter (preferred): pipefitter@gandalf.polito.it

Ivan Blunno: blunno@polito.it

Luciano Lavagno: lavagno@polito.it

Vishal P. Shah: vishal@gandalf.polito.it

Tool Availability
The tool is free. Users are encouraged to download it and provide the maintainers with
feedback. The tool, the manual and more information are available from: 

http://polimage.polito.it/~pipefitter

Future Plans
Extension of the supported verilog and automated generation of the scripts to drive timing
analysis and synthesis.

Significant Demonstrators
The core of an asynchronous DLX has been designed with an older version of pipefitter. The
new version still doesn't support all the Verilog statements supported in the previous versions
and only simple arithmetical units have been designed so far.

References
[1] M.Amde, I.Blunno, C.P.Sotiriou, “Automating the Design of an Asynchronous DLX 

Microprocessor”, Design Automation Conference 2003.
[2] I.Blunno and L.Lavagno, “Designing an asynchronous microcontroller using Pipefitter”, 

IEEE International Conference on Computer Design: VLSI in Computers & Processors, 
September 2002.

[3] I. Blunno & L. Lavagno, “Automated Synthesis of Micro-Pipelines from Behavioural 
Verilog HDL”, IEEE 6th International Symposium on Advanced Research in 
Asynchronous Circuits and Systems, Israel, April 2000.



 71Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: Punf

        Victor Khomenko

    School of Computing Science, University of Newcastle upon Tyne

Summary
Punf [2,3,5,7] is a Petri net unfolder, i.e. it takes a Petri net (e.g. an STG) and produces a finite
complete prefix of its unfolding. Such a prefix is a concise representation of a Petri net's state
space and can be used for efficient model checking and synthesis. For STGs such a
representation is often superior to that based on explicit state graphs or BDDs due to the fact
that STGs usually contain a lot of concurrency but rather few choices. As a result, the memory
requirements of synthesis algorithms based on unfoldings are very moderate.

Strengths and Weaknesses

Strengths. fast and memory efficient., supports STGs, low-level and high-level Petri nets.

Weaknesses. currently only safe nets are supported.

Application domain
Synthesis of self-timed circuits and formal verification.

Use of existing HDLs
none (it uses the standard `.g' STG format) [1].

Extent of automation
fully automatic.

Category
Synthesis and verification => STG/Petri net

Design flow
Punf is intended as a powerful unfolding engine to be used by other applications. Currently,
prefixes produced by Punf can be used by the Clp, VerySAT and ConfRes [4,6,8,9.10] tools
(described in this report) for detection of coding (CSC and USC) conflicts in STGs and for
deriving a complex-gate implementation of a circuit. These tools comprise a complete
framework for complex-gate synthesis of speed-independent circuits from STGs.

Test strategy
prefixes produced by Punf can be used by the Clp, VerySAT and tools within Pep for
verification of various safety properties such as deadlock-freeness, mutex, reachability, etc.

Current status
Punf is fully operational. It is integrated into Pep[1]. Punf can unfold STGs, low-level and
high-level Petri nets. Support for verification of LTL-X properties is to appear soon.



 72Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Maintainer
Victor Khomenko (Victor.Khomenko@ncl.ac.uk).

Availability
available for research purposes from

http://www.cs.ncl.ac.uk/people/victor.khomenko/home.formal/tools/tools.html

Future plans
we plan to create a full design cycle for self-timed circuits based on Petri net unfoldings and
not involving building the state space at any stage.

References
[1] E.Best and B.Grahlmann: “PEP: Documentation and User Guide, Version 1.4. Manual” 

(1995).
[2] K.Heljanko, V.Khomenko, and M.Koutny: “Parallelisation of the Petri Net Unfolding 

Algorithm”. TACAS'2002, LNCS 2280 (2002) 371-385.
[3] V.Khomenko: “Punf: Documentation and User Guide, Version 6.01. Manual” (2002).
[4] V.Khomenko: Clp: “Documentation and User Guide. Version 3.01beta. Manual” (2002).
[5] V.Khomenko and M.Koutny: “Towards An Efficient Algorithm for Unfolding Petri 

Nets”. CONCUR'2001, LNCS 2154 (2001) 366-380.
[6] V.Khomenko, M.Koutny, and A.Yakovlev: “Detecting State Coding Conflicts in STGs 

Using Integer Programming”. DATE'2002, IEEE Comp. Soc. Press (2002) 338-345.
[7] V.Khomenko and M.Koutny: “Branching Processes of High-Level Petri Nets”. 

TACAS'2003, LNCS (2003) 
[8] V.Khomenko, M.Koutny and A.Yakovlev: “Detecting State Coding Conflicts in STG 

Unfoldings Using SAT” Fundamentae Informatica, Sepecial Issue on Best Papers from 
ICACSD'2003 (to appear).

[9] V.Khomenko, M.Koutny and A.Yakovlev: “Logic Synthesis Avoiding State Space 
Explosion” ICACSD ‘04. (2004 to appear).

[10] A.Madalinski, A.Bystrov, V.Khomenko, and A.Yakovlev: “Visualization and Resolution 
of Coding Conflicts in Asynchronous Circuit Design”. IEE Proceedings: Computers & 
Digital Techniques: Special Issue on Best Papers from DATE'2003.(2003)



 73Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: SIS

Developers: L. Lavagno, Choo Moon, Paul Stephan

Organisation: University of California at Berkeley

Summary
SIS in general is a state-of-the-art logic synthesis tools, which includes a number of packages
that are tailored to synthesize asynchronous circuits. Several delay models and synthesis
algorithms, including design-for-testability considerations, are supported. The specification
formalism is that of Signal Transition Graphs, and the output is a gate-level netlist that can be
translated into Verilog and VHDL.

Strength and Weaknesses
The main advantage is the modularity of the tool, that makes it very easy to build on existing
packages to add new algorithms and flows. A full set of algebraic and Boolean optimisations
are already provided, including technology mapping, as well as I/O packages to read and write
popular standard formats (STG, BLIF, Verilog and VHDL gate-level netlists).

The main disadvantage is that development of the asynchronous synthesis algorithms stopped
around 1994 (some of the authors moved to the Petrify team).

Application Domain
Asynchronous control units.

Use of Existing HDLs
A translator from the output netlist into VHDL and Verilog is supported. The input format is
compatible with one of the outputs of Pipefitter.

Extent of Automation
Fully automated logic synthesis from a Signal Transition Graph specification (interpreted Petri
Net). Includes state encoding, logic minimization, design-for-testability (based on partial scan
for sequential elements) and technology mapping.

Category
Synthesis, STG/PetriNet

Design Flow and Commercial EDA Tool Requirement
See above. No links to commercial tools are provided, except for the back-end.

Test Strategy
A translator from the output netlist into VHDL and Verilog is supported. The input format is
compatible with one of the outputs of Pipefitter.



 74Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Current Status of Tool

Current activities
The tool is no longer being actively developed. Some bug fixing may be possible.

Maintainer
The SIS team: sis@ic.eecs.berkeley.edu

Tool Availability
The tool and the user’s manual are available from: ftp://ic.eecs.berkeley.edu/pub/Sis

Future Plans
see above

Significant Demonstrators
Not stated

References
L. Lavagno and A. Sangiovanni-Vincentelli. “Algorithms for synthesis and testing of
asynchronous circuits.” Kluwer Academic Publishers, 1993.

E.M. Sentovich, K.J. Singh, C. Moon, H. Savoj, R.K. Brayton and A.L. Sangiovanni-
Vincentelli. “Sequential Circuit Design Using Synthesis and Optimization”. Proceedings of the
International Conference on Computer Design, October 1992



 75Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: TAST

Developer: CIS group

Organisation: TIMA Laboratory

Summary
TAST (Tool for Asynchronous circuits SynThesis) is a compiler generating different kinds of
asynchronous circuits from a high level description. Circuits are modelled using a CSP-like
language, called CHP (Communicating Hardware Processes), enriched with statements useful
for simulation and synthesis purposes. The compiler is general enough to accept several input
languages (front end) and target several logic styles (back end). Input programs are first
analysed and checked for some properties by the front end, such as concurrent assignments of
variables, channel declarations and communication actions coherency, types compatibility, etc.
When the verification phase do not exhibit errors, the program is transformed into an internal
form based on Petri Nets and Data Flow Graphs.

At this stage, the programmer/designer can choose to generate a functional VHDL description
of the model. This VHDL description can be used to simulate the design. An option also
enables the designer to generate an RTL VHDL description, which can be used to target ASICs
or FPGAs technologies by means of standard CAD tools. The programmer/designer can also
decide to target asynchronous circuits. The compiler then analyses the internal form to check
whether the models can be mapped onto asynchronous digital circuits or not. To be accepted
for synthesis, CHP programs have to respect some programming rules which ensure a correct
mapping of the internal form into asynchronous circuits. If it is the case, micropipeline or QDI
is chosen as a target and a VHDL gate netlist is generated. The produced gate netlist can of
course be simulated using standard CAD tools.

Strengths and Weaknesses

• Data encoding is defined at the language level. General “1 out of N” codes are 
available.

• Handshake protocols can easily be modified.

• QDI and micropipeline (or mixed) circuits are supported as an option for output 
circuits. 

• Co-simulation of functional description, gate level synchronous/asynchronous circuit 
netlists is supported using VHDL.

• Micropipeline control logic and QDI logic could be optimised further.

• Timing analysis/evaluation is not addressed yet

• Testability is not addressed yet.

Application Domain

• High complexity low to high speed asynchronous circuit design, both micropipeline 
and QDI styles.



 76Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

• Mixed synchronous and asynchronous circuits.

Use of Existing HDLs
Any commercial VHDL simulation tool (Synopsys, Mentor...) can be used to simulate the
designs (pre- and post-synthesis). Standard CAD tools can be used for Place and Route.

Extent of Automation

• Easy to set up, Unix/Linux platform supported.

• Produced VHDL models are compatible with commercial CAD tools.

• Command-line approach allows the use of scripts. 

Category
Synthesis, silicon compiler

Design Flow and Commercial EDA Tool Requirement
VHDL translation is an improved version of the previously developed CHP2VHDL tool. In
particular, it now supports the parallel operator without any restriction. The VHDL code
generator brings all the features and facilities of VHDL to the designer: verification of CHP
models, co-simulation of functional and gate-level descriptions, co-simulation of synchronous
and asynchronous circuit models. A new feature enables the generation of a clocked RTL
description for early prototyping.

Some further verifications are performed to ensure that input programs respect the
synthesisable CHP. Two choices of circuit model are supported: QDI and micropipeline. In
case that micropipeline model is selected, two VHDL models are created: a gate netlist
describing the control part of the circuit and a data-flow description for the data-paths of the
circuit. The latter is ready for synthesis using standard commercial synthesis tools.

Test Strategy
The CHP to VHDL translation tool enables the designer to develop a complete test
environment in CHP. The test bench can also be developed in pure VHDL using a package
provided with the tool suite. The package includes different kinds of functions such as send
data to, receive data from channels, probe channels, together with a set of type-conversion
functions.

The same test bench can be used for functional and post-synthesis simulations by means of
VHDL configurations.

Current Status of Tool
TAST currently enables the design of significantly large circuits. However the optimization of
the circuits at the gate level is still being improved in order to reduce the circuit complexity and
area.

Maintainer
CIS team at TIMA. Contact: Marc Renaudin marc.renaudin@imag.fr



 77Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool Availability
Not available yet.

Future Plans
Support other input languages such as VHDL, Verilog or SystemC. Automatic translation of
CHP into C programs to enable very fast functional simulations and generate reference
simulation models of the circuits. Optimization of the produced asynchronous circuits at the
gate level.

Significant Demonstrators
Aspro and Mica processors were designed using preliminary versions of TAST.

Figure 1: TAST Tool Flow

Specification of the circuits :
CHP programs

Checks for synthesis

Hardware Target Choice

Micropipeline

-VHDL Gate Netlist
for the control parts
- VHDL Data-flow
for the Data-Paths

QDI

- VHDL Gate Netlist
for the whole circuit

Compiler

VHDL Generator

Functional
VHDL

Clocked RTL
VHDL Standard

or dedicated
libraries

VHDL based co-simulation Place & Route
Standard commercial
CAD tools



 78Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: Theseus NCL Synthesis Flow

Developer: Theseus Logic

Organisation: Theseus Logic, USA.

Summary
 The NCL Synthesis flow, developed by Theseus Logic, Inc., takes advantage of NULL
Convention Logic (NCL) to develop delay insensitive circuits using off the shelf synthesis
tools. The NULL Convention Logic standard uses a library of threshold gates to implement
multi-rail designs. .  Some typical NCL threshold gates are presented in Figure 1. These cells
have two states, DATA and NULL. The cells go to a DATA state when the number of inputs
that go to DATA equals the threshold level for the gate. Cells in the DATA state remain in that
state until all of the inputs go to NULL.

 NCL designs require multiple rails to represent logic values. Typically, a dual-rail structure is
used, and logical functions can be built from the threshold cells.

 In addition to Boolean Logic constructs, NCL designs can handle sequential structures such as
Finite State Machines. The inherent storage of the threshold gates can be used to provide state
storage. Therefore, a unique element is not needed to store the state.

 The NCL technology, provided by Theseus Logic, Inc., provides the designer with the
following advantages:

• Designs are delay insensitive. This makes them easily portable from one technology to 
another.

Figure 1: NCL Gate Library



 79Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

• Because there is no system clock, the EMI characteristics are considerably cleaner than 
a clocked design.

• If designed carefully, significant power savings can be achieved over synchronous 
designs.

• The hysteresis that exists in the threshold cells provides noise immunity to the circuit.

• Faults are inherently detectable due to the nature of the technology.

 Strengths and Weaknesses
The NCL synthesis flow provides custom libraries and scripts to give commercially available
synthesis tools the capability of mapping a design specified in VHDL to a NCL netlist. In
addition to the advantages available due to the fact that the design is NCL, the synthesis flow
provides the following advantages:

• Designers accustomed to synchronous circuit design can develop asynchronous circuits 
using a known HDL.

• Commercially available simulators can be used to verify the design.

• Simple design constraint specification during synthesis.

 In addition to the synthesis support, Theseus Logic, Inc. also provides a proprietary tool,
“ncl_shell”, that provides the following capabilities to the designer:

• Verification of the delay insensitive nature of the design.

• Merging of simple threshold logic cells to more complex cells.

 The dual rail design methodology and the hysteresis of the NCL gates does cause the obvious
disadvantages to this approach:

• The limitations of using the existing synthesis tools introduce a penalty in design area 
resulting in a typical 2-3X area penalty compared to the area of a Clocked Boolean 
Logic (CBL) design. 

• The design throughput may suffer.

• A straight translation from a CBL design to NCL results in an increase in power 
consumption.

 Some of these issues can be addressed through straightforward means. For example, custom
cells that merge the threshold functions into a single cell can reduce area. Or, pipelining
techniques can be used to improve throughput. Other improvements can be made that are
unique to asynchronous design practices or the NCL approach. For example, using quad-rail
logic instead of dual-rail logic can reduce power consumption.

With more control of the logic synthesis algorithms, results approaching manual (structured)
design will be possible (e.g., Theseus has designed an 8051 microcontroller with 3X power
reduction at a cost of 1.3X the transistor count of a clocked equivalent).

Application Domain
The NCL methodology is primarily a capability for synthesizing high level RTL based
asynchronous designs of low-power, low EMI, medium throughput circuits.  Currently focused
on microcontrollers and Precision Mixed Signal designs. 



 80Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Use Of Existing HDLs
The NCL approach uses existing VHDL language constructs for synthesis. There is some work
underway to extend the VHDL (and Verilog) language to simplify the development of
clockless circuits. 

Extent of Automation
The NCL design flow allows automated synthesis from RTL code into gate-level constructs
using VHDL libraries and packages. Optimal results require some manual intervention and
structural coding.

Category
The NCL methodology is primarily a capability for synthesizing high level RTL based
asynchronous designs of medium performance circuits. Currently focused on SmartCards and
Precision Mixed Signal designs.

Design Flow and Commercial EDA Requirement
The design development flow is shown below. The following steps elaborate this process:

 A. Write VHDL RTL describing design. Instantiate registration elements, and add hysteresis
definitions.

 B. Write pre-synthesis test bench in VHDL or Verilog.

 C. Simulate the pre-synthesis netlist. Theseus Logic currently uses the “ModelTech” simulator
for this; however, other simulators have been used successfully.

 D. Synthesize the netlist using a custom script written for Synopsys “dc_shell”.

 E. Further optimise the design using the ‘merge’ command under the Theseus Logic, Inc. tool
‘ncl_shell’.

 F. Modify the pre-synthesis testbench (or write a whole new testbench) for the post-synthesis
netlist. The I/O changes between the pre-synthesis netlist to the post-synthesis netlist, so the
best way to handle this is to create a wrapper around the Unit Under Test. Again, the
“ModelTech” simulator is used.

 G. Verify that the design is free of delay sensitivities using the ‘orphan_check’ command
under the Theseus Logic, Inc. tool ‘ncl_shell’.

 H. Perform the Place and Route. Theseus Logic uses Silicon Ensemble.

Test Strategy
We are currently working on improved manufacturing tests. The technology is compatible with
Automated Test Pattern Generation tools. In addition, the technology can have the equivalent
of a SCAN register, but potentially with lower overhead than that required for Clocked
Boolean Logic. For past designs, we have relied on post-synthesis functional verification. A
sub-set of the functional simulation vectors were then used for manufacturing tests along with
BIST to exercise memory devices.



 81Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Current Status of Tool
We have used NCL technology to develop small and medium size ASIC designs.  This includes
designs for DES/3DES encryption engines, FFTs, and microcontrollers (and related
peripherals). Our most recent design was a 256 point FFT for an aerospace application. 

Current Activities
Future plans for the tool suite include further development of the methodology to add pre-
structured components for common structures. The support by FTL Systems for the NCL
technology is expected to enable optimizations currently not possible with other commercial
tool flows. In addition, Theseus Logic is currently developing an optimization technique that
results in a significant decrease in area.  This approach, compatible with the existing NCL RTL
code, results in an approximate area reduction of 25%.

Maintainer
Theseus Logic

Figure2: NCL Design Flow



 82Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Availability
 Theseus Logic provides design licenses, tools, training, and demo kits as standard products
available to its customers. NCL technology is licensed by Theseus Logic, Inc. The synthesis
flow and the ‘ncl_shell’ tool are available to licensees of the technology. The ‘ncl_shell’ tool
runs under a ‘flexlm’ license.

Contact marketing@theseus.com for more information about the NCL methodology and
‘ncl_shell’.

Future Plans
 Future plans for the tool include further development of the methodology to add pre-structured
components for common structures. In addition, Theseus Logic is currently developing an
optimization technique that results in a significant decrease in area. This approach, compatible
with the existing NCL RTL code, results in an approximate area reduction of 25%.

Demonstrators
The best demonstrator to date for NCL technology is our NCL08, which is an asynchronous
version of a Motorola HC08 compatible microcontroller. This design has seen insertion in
sensors for containerized shipping.  Theseus Logic, Inc. holds an extensive patent portfolio on
NCL technology.

Contact sales@theseus.com for more information about the NCL methodology and 'ncl_shell'. 

 Theseus Logic, Inc. has submitted various white papers and reports on NCL technology, as
well as the RTL synthesis methodology. These reports can be found at our corporate web site,
www.theseus.com.



 83Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: Transyt

Developer: Enric Pastor, Marco A. Pea 

Organisation: Universitat Politenica de Catalunya, Spain

Contributors: Jordi Cortadella (Universitat Politecnica de Catalunya, Spain)  Alex Kondratyev
(Theseus Logic, USA)  Alex Smirnov (Universitat Politecnica de Catalunya, Spain)

Summary
Transyt is a tool for the verification of timed and untimed systems. The tool can read the
description of a system and a number of safety properties to verify. Symbolic reachability
based on BDDs is used to check the language containment. In case of timed systems the
verification is carried out iteratively. Starting from the underlying untimed system the tool
automatically inserts timing constraints until the verification is satisfied, or a timed
counterexample is found.

The internal models used by Transyt are Timed Transition Systems and Lazy Transition
Systems. The tool can read a Signal Transition Graph (STG) and BLIF format and translate
them to the required formats. An STG is a formal specification of timing diagrams in which the
events correspond to rising and falling transitions of control signals. Besides expressing
causality, STGs can also specify concurrency and choice. BLIF is a format for circuit
description introduced in SIS.

Transyt can be used to verify speed-independent circuits or timed circuits. However, any kind
of system that can be symbolically described with a finite set of states can be analysed.

In case of timed verification Transyt provides back-annotation to the user, indicating the
required timing constraints that the tool has considered during the verification.

Transyt also includes tools to visualize and analyse the set of reachable states (highlight sets of
states, traces, etc.).

Strengths and Weaknesses
The tool provides fully automation during verification. The use of symbolic techniques to
represent the state space allows to manage large systems.

The underlying Transition System formats are somehow cumbersome. A general high-level
description language is needed.

Timed verification is very sensible to the type of system under verification. In some cases the
tool is not able to select the minimum number of timing constraints to guarantee the
verification. More research is needed here.

Application Domain
Verification of high-speed digital systems, both synchronous and asynchronous.

Use of existing HDLs 
Netlist can be read in BLIF. Gate libraries are read in genlib format (from SIS).



 84Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Extent of automation 
Complete automation of the verification process. The properties under verification should be
provided by the user.

 Category
Timed and untimed verification.

Design Flow and Commercial EDA Tool Requirement 
Transyt can be used as a standalone tool for verification. The verification flow starts from a
specification of the system’s behaviour described by a Transition System. A textual format is
used for such specification.

Test Strategy
No test vectors are generated.

Current Status of the Tool

Current Activities
Under development. Currently stabilizing the first public version.

Maintainer
Enric Pastor (enric@ac.upc.es)

Availability
http://research.ac.upc.es/VLSI/transyt

Future plans
Currently preparing the first public version.

Demonstrators
The tool has been used for the verification of some complex systems. In particular:

• The IPCMOS architecture: Asynchronous Interlocked Pipelined CMOS circuit 
architecture.

• Several delayed-reset and self-reset domino circuits.



 85Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: Veraci

Developer: Paul Cunningham

Organisation: University of Cambridge

 Summary 
Veraci is a tool for the formal verification of asynchronous circuits that is aimed specifically at
the hardware engineer unfamiliar with formal methods. Veraci accepts as its input a circuit
described in standard Verilog. Any verilog module in that circuit may also be augmented with a
number of behavioural assertions and timing assumptions expressed using a novel proposition-
oriented notation. Proposition-oriented behaviours extend both Petri-nets and Trace-
expressions in such a way that both levels and events can be reasoned with informally. The
formal semantics behind Veraci adopts a relative-time model of behaviour and its underlying
verification engine is based on Binary Decision Diagrams.

 Strengths and Weaknesses
Ability to reason with unusual circuits. Increased flexibility over Petri-nets and Trace-
expressions. Accepts Verilog file-format directly as input.

 Application Domain
Small to medium sized “hacked”-up control circuits with fragmented specifications and
unusual timing-assumptions.

 Category
Formal verification. Proposition-oriented behaviours.

 Design Flow 
Any design flow where circuits are described in the Verilog HDL.

Current Status of Tool

Current Activities 
Under development.

Maintainer
Paul Cunningham <pac22@cl.cam.ac.uk>.

Future Plans 
Verification of liveness/progress properties. Hierarchical abstraction

 Demonstrators 
There are currently no formal publications relating to Veraci.



 86Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: VeriMap

Developer: Danil Sokolov

Organisation: School of Electrical, Electronic and Computer Engineering, Uni-
versity of Newcastle, Newcastle upon Tyne, UK

Summary
The VeriMap design kit converts single-rail RTL netlists into dual-rail circuits which are
resistant to Differential Power Analysis (DPA) attacks. Verimap design kit successfully
interfaces to the Cadence CAD tools. It takes as input a structural Verilog netlist file, created by
Cadence Ambit (or another logic synthesis tool), and converts it into dual-rail netlist. The
resulting netlist can then be processed by Cadence or other EDA tools. All Design For
Testability (DFT) features incorporated at the logic synthesis stage are preserved.

The structure of our Verimap design kit is displayed in figure 1. The main parts are the tool
itself and two libraries. The library of gate prototypes contains the description of gates used in
the input netlist. It facilitates the structural analysis of the input netlist. The library of
transformation rules defines: complementary gates needed for construction of the dual-rail
logic, the polarity of gate inputs and outputs and specifies if the corresponding dual-rail gate
requires completion signal (for asynchronous design only) and if it inverts the spacer. If a
predefined dual-rail implementation of a gate is found in the library the tool uses it, otherwise
an implementation is built automatically using the rules. 

The main function of the tool is conversion of a single-rail RTL netlist into a dual-rail netlist of
either of two architectures: self-timed and clocked. It is done in four stages. Firstly, a single-
rail circuit is converted into positive logic dual-rail. Secondly, the positive dual-rail gates are
replaced by negative dual-rail gates and the spacer polarity inverters are inserted. This is the
negative gate optimisation [1]. Then, the completion signal is generated (asynchronous design
only). Finally, a wrapper module connecting the dual-rail circuit to the single-rail environment
is added (optional). 

Using the standard dual-rail protocol with a single spacer has certain balancing problems due
to the asymmetry between logic gates within a dual-rail gate. We addressed and solved these
problems in [2,3] by using a new protocol with two spacers alternating in time leading to all
gates switching within every clock cycle. The tool supports the alternating spacer protocol.

Apart from generating netlists, Verimap tool reports statistics for the original and resultant
circuits: estimated area of combinational logic and flip-flops, number of negative gates and
transistors, number of wires.

The tool also generates a behavioural Verilog file assisting the power analysis of the original
and resultant circuits. Being included into simulation testbench these Verilog counts the
number of switching events in each wire of the circuits.

Strengths and Weaknesses

Strengths. 

The tool preserves the industry design flow and interfaces to standard CAD tools (Cadence).



 87Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

- Generated circuits are hazard free and resistant to DPA attacks.

- Support for two architectures: self-timed dual-rail or clocked dual-rail.

- Generated circuits preserve all DFT features incorporated at the logic synthesis stage.

- Support for negative logic optimisation to reduce the size of the circuit and shorten the 
critical path.

- Support for the alternating spacer protocol to resist DPA attacks by making the power 
consumption data-independent.

Weaknesses: 

- For each technology the library of transformation rules has to be created manually.

- Clock gating and data guarding are not implemented yet.

Application Domain
Secure systems resistant to DPA attacks.

Figure 1: Verimap Design Kit

library of

transformation
rules

library of

prototypes
gate

convertion into

positive logic DR

optimisation for

negative logic DR

1−2−1 rail converter

RTL netlist

DR netlist

positive logic

negative logic

DR netlist

completion

construction of

completion

1−2−1 converter

DR netlist with

DR netlist with

generation of



 88Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Use of Existing HDLs
The tool takes as an input a structural Verilog netlist of a single-rail circuit and converts it into
a Verilog netlist of a dual-rail circuit.

Extent of Automation
The tool requires a library of transformation rules, which should be created for each foundries'
technology. It is done once for each technology and can be reused for different circuits. This is
the only part which is not automated yet. The rest of the conversion process if automatic,
though flexible and can be adjusted to the needs of the designer.

Category
Synthesis - Direct mapping

Design Flow and Commercial EDA Requirement
The Verimap design kit maintains the industry design flow. It successfully interfaces to the
Cadence CAD tools. It takes as input a structural Verilog netlist file, created by Cadence Ambit
(or another logic synthesis tool), and converts it into dual-rail netlist. The resulting netlist can
then be processed by Cadence or other EDA tools. Furthermore, all Design For Testability
(DFT) features incorporated at the logic synthesis stage are preserved.

Current Status

Current Activities
The tool is currently in testing stage.

Maintainer
Danil Sokolov (danil.sokolov@ncl.ac.uk)

Availability
http://async.org.uk/

Future Plans 

- To automate (or simplify) the process of transformation rules library generation.

- To implement clock gating and data guarding.

- To fabricate a demonstrator and try an actual DPA attack.

Demonstrators
N/A

References
[1] A.Bystrov, D.Sokolov, A.Yakovlev, A.Koelmans: "Balancing Power Signature in Secure 

Systems". 14th UK Asynchronous Forum, Newcastle, June 2003.
[2] D.Sokolov, J.Murphy, A.Bystrov, A.Yakovlev: "Improving the security of dual-rail 

circuits". Proc. CHES'04, Springer LNCS, Boston, August 2004.
[3] D.Sokolov, J.Murphy, A.Bystrov, A.Yakovlev: "Improving the security of dual-rail 

circuits", Technical report, Microelectronic System Design Group, School of EECE, 



 89Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

University of Newcastle upon Tyne, April 2004, http://www.staff.ncl.ac.uk/i.g.clark/
async/tech-reports/NCL-EECE-MSD-TR-2004-101.pdf



 90Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: VerySAT

Developer: Victor Khomenko

Organisation School of Computing Science, University of Newcastle upon Tyne

Summary
VerySAT is a SAT based model checker. It can formally verify various safety properties
(deadlock-freeness, mutex, reachability, etc.), detect coding (CSC and USC) conflicts in STGs
and derive a complex-gate implementation of a circuit. VerySAT employs finite complete
prefixes of Petri net unfoldings (e.g. those produced by the Punf tool [3]).

Strengths and Weaknesses

Strengths. memory efficient and very fast, derives a very good complex-gate implementation
of a circuit.

Weakness. the tool is at the alpha-stage.

Application domain
Synthesis of self-timed circuits and formal verification.

Use of existing HDLs
None (works on finite prefixes in the `.mci' format, e.g. those generated by Punf from STGs).

Extent of automation
Fully Automated

Category
Synthesis and verification =>STG/Petri net.

Design Flow and Commercial EDA Tool Requirement

VerySAT is intended as a powerful model checking and synthesis engine to be used by other
applications.Currently, prefixes produced by Punf can be used by VerySAT, Clp and
ConfRes[4,6,8,9.10] (described in this Report) for detection and resolution of coding (CSC
and USC) conflicts in STGs and for deriving a complex-gate implementation of a circuit. Thus
these tools comprise a complete framework for complex-gate synthesis of speed-independent
circuits from STGs.

Test strategy
VerySAT can formally verify various safety properties, such as deadlock-freeness, mutex,
reachability, etc.

Current status
VerySAT is at the alpha-stage.



 91Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Maintainer
Victor Khomenko Victor.Khomenko@ncl.ac.uk

Availability
Will eventually be made available for research purposes from.

http://www.cs.ncl.ac.uk/people/victor.khomenko/home.formal/tools/tools.html

Future plans
We plan to create a full design cycle for self-timed circuits based on STG unfoldings and not
involving building the state space at any stage. VerySAT is to replace Clp in near future as its
performance is much better.

References
[1] E.Best and B.Grahlmann: “PEP: Documentation and User Guide, Version 1.4. Manual” 

(1995).
[2] K.Heljanko, V.Khomenko, and M.Koutny: “Parallelisation of the Petri Net Unfolding 

Algorithm”. TACAS'2002, LNCS 2280 (2002) 371-385.
[3] V.Khomenko: “Punf: Documentation and User Guide, Version 6.01. Manual” (2002).
[4] V.Khomenko: Clp: “Documentation and User Guide. Version 3.01beta. Manual” (2002).
[5] V.Khomenko and M.Koutny: “Towards An Efficient Algorithm for Unfolding Petri 

Nets”. CONCUR'2001, LNCS 2154 (2001) 366-380.
[6] V.Khomenko, M.Koutny, and A.Yakovlev: “Detecting State Coding Conflicts in STGs 

Using Integer Programming”. DATE'2002, IEEE Comp. Soc. Press (2002) 338-345.
[7] V.Khomenko and M.Koutny: “Branching Processes of High-Level Petri Nets”. 

TACAS'2003, LNCS (2003) 
[8] V.Khomenko, M.Koutny and A.Yakovlev: “Detecting State Coding Conflicts in STG 

Unfoldings Using SAT” Fundamentae Informatica, Sepecial Issue on Best Papers from 
ICACSD'2003 (to appear).

[9] V.Khomenko, M.Koutny and A.Yakovlev: “Logic Synthesis Avoiding State Space 
Explosion” ICACSD ‘04. (2004 to appear).

[10] A.Madalinski, A.Bystrov, V.Khomenko, and A.Yakovlev: “Visualization and Resolution 
of Coding Conflicts in Asynchronous Circuit Design”. IEE Proceedings: Computers & 
Digital Techniques: Special Issue on Best Papers from DATE'2003.(2003)



 92Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: VSTGL

Developer: Hans P. Palb and Sune Frankild

Organisation: Technical University of Denmark, DTU.  

Summary
Visual STG Lab is a graphics tool for capturing and simulating STGs. Asynchronous control
circuits are often specified using signal Transition Graphs (STG) and synthesized using tools
like Petrify whose input format is a textual description of the STG. Visual STG Lab (VSTGL)
is a graphics editor and test environment for creating STGs, and it can be used as a front-end to
Petrify. Compared with the normal Petrify design flow, VSTGL offers several advantages
resulting in a faster and less error prone design flow:

• VSTGL allows graphical entry of the STG and checking of structural properties.

• VSTGL allows the designer to simulate the STG before synthesis (by placing tokens 
and firing transitions).

• VSTGL outputs the STG for documentation (.eps file) exactly as the designer entered 
it. This sounds trivial, but as the designer normally expresses key ideas about the design 
in the topological structure of the STG this is important. (Petrify uses the program dot, 
and normally it produces drawings that bear little resemblance with what the designer 
had in mind).

• When the designer is satisfied with the STG, an input file for Petrify can be generated, 
or Petrify can be invoked from within STG.

Application Domain

• Synthesis

• STG/Petri net

• Notation to notation conversion

Current Status of Tool

Current Activity
VSTGL was originally developed in a special topic course at the Technical University of
Denmark (DTU). The authors have since continued to improve and extend the tool. Students in
a course on asynchronous circuit design at DTU have used the current version in the fall 1999
and again in the fall 2001 and it proved to be a stable and very useful tool for designing
asynchronous control circuits

Availability
VSTGL is a public domain tool. It runs under Linux, and it may be downloaded from: 
http://sourceforge.net/projects/vstgl/ and http://vstgl.sourceforge.net/ Check which page is
being updated.



 93Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: Weaver/Gate Transfer Level 
(GTL) synthesis

Developers: Alexandre Smirnov, Alexander Taubin

Organisation: Department of Electrical and Computer Engineering, Boston Uni-
versity

Summary

Weaver is an asynchronous EDA flow targeting synthesis of quasi-delay-insensitive (QDI)
fine-grain pipelined circuits from high-level behavioral specification. Weaver is based on
asynchronous Gate Transfer Level (GTL) synthesis methodology assuming that gates (or small
portions of logic) implemented as pipeline stages that interact with each other using handshake
protocols. 

Weaver synthesis flow utilises commercial synthesis engine(s) to

- provide quality support for the behavior specification formats;

- provide a familiar interface (for synchronous RTL designers);

- provide a smooth interface to simulation and post-synthesis tools;

- enable synthesis of large (industry sized) designs in acceptable time;

- reduce the time and resources needed for its development.

Delay insensitivity is ensured by the handshake protocol (various protocols can be used) and
by implementing the whole pipeline stages as library cells so that in-stage timing assumptions
are met by the cell design and no longer depend on placement and routing.

The current version of the tool (still a prerelease 0.81) utilises the Synopsys Design Compiler
(DC-Ultra) as a host synthesis engine.

Strengths and Weaknesses

Strengths:  

- fast (the synthesis time starting from the behavior specification is approximately 2.5x 
the time of Synopsys-DC run for the same design);

- fully supports standard synthesizable subset of Verilog, VHDL as well as other 
languages supported by Synopsys DC-Ultra as input specifications;

- supports standard intermediate and output netlist formats for easy integration with 
simulation and P&R tools;

- fully automated synthesis of fine-grain pipelined implementation;

- support for various pipelining styles;

Weaknesses:  



 94Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

- no dedicated library with optimal area/performance ratio developed yet (PCHB 
library developed at USC can be used if the resetting capability is provided for the cells, 
but that library is optimized for performance only).

Application domain
Synthesis of quasi-delay-insensitive (QDI) fine-grain pipelined [asynchronous] circuits.

Use of existing HDLs
Synthesizable HDL subset.

Extent of automation
Fully automatic; customization possible.

Category
Synthesis: HDL behavior specification to a P&R ready netlist (mapped to a dedicated ASIC
library comprising dual-rail QDI stage-like implementations for the basic logic functions).  

Design flow 
Input: RTL behavioral/structural/mixed possibly hierarchical synchronous style high-level
specification

Step1: RTL synthesis by Synopsys DC-Ultra 

Step2: Weaving: dual-rail expansion and synthesis of handshake circuitry for the RTL
implementation of the specified behavior by the Weaver Engine; 

Step3: mapping the Weaved netlist into a GTL library comprising dual-rail implementation of
logic functions, completion detection and handshake implementation;

Output: netlist of GTL library cells in any format supported by Synopsys DC-Ultra

The flow is shown in figure 1. The srGTL stands for a virtual single-rail library functionally
equivalent to the GTL library. 

Commercial EDA Requirement 
Requires Synopsys DC-Ultra and Synopsys ACS for synthesis, simulation is supported for
Model Technology ModelSim (distributed by Mentor Graphics).

Current status of the Tool
Prerelease. MCNC benchmarks: multilevel combinational benchmarks – no problems,
problems with some of the FSM benchmarks. The first release will be made as soon as the
synthesis produces valid implementations for all MCNC HDL benchmarks including the
HLSynth’95 set. 

Maintainer
Alexandre Smirnov (alexbs@bu.edu).



 95Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Availability
Available for research purposes from http://async.bu.edu/weaver/

Future plans
A full release of the tool. Further plans: dedicated library development, increasing efficiency
(mostly from the performance point of view) of the synthesized circuits, providing support for
FPGA design (using Xilinx FPGAs first).

References
[1] Smirnov A., Taubin A., and Karpovsky M. “Automated Pipelining in ASIC Synthesis 

Methodology: Gate Transfer Level.” in IWLS 2004 Thirteenth International Workshop on 
Logic and Synthesis. June 2-4, 2004. Temecula, California, USA. 

[2] Smirnov A., Taubin A., Karpovsky M. Rozenblyum L. “Gate and Transfer Level 
Synthesis as an Automated Approach to Fine-Grain Pipelining.” Workshop on Token 
Based Computing (ToBaCo). June 22, 2004. Bologna, Italy.

[3] Smirnov A., Taubin A. “Weaver: installation guide.” Distributed at http://async.bu.edu/
weaver/

[4] Smirnov A., Taubin A. “Weaver: user guide”. Distributed at http://async.bu.edu/weaver/
[5] Smirnov A., Taubin A. “Weaver: library developer guide”. Distributed at http://

async.bu.edu/weaver/

Figure 1: Weaver Design Flow

Single-rail (synchronous) netlist synthesis

Weaving

GTL netlist mapping

srGTL lib

Single-rail netlist

GTL netlist

Mapped QDI netlist P&R constraints

H
os

t 
sy

nt
h

es
is

 e
ng

in
e

HDL design specification

P&R, etc tools following synthesis in EDA flow

GTL lib

VHDL 
packages

lib cells,
GTL stages

W
ea

ve
r



 96Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Tool/Methodology: XDI

Developer: Tom. Verhoeff

Organisation: Eindhoven University of Technology

Summary
The XDI Model (eXtended model for Delay-Insensitive systems) is a theoretical framework to
argue about the specification and implementation of delay-insensitive systems. It includes a
refinement (satisfaction) relation and a composition operator. It is state based, where the
extension addresses some form of progress. For details see

There is a tool available with an e-mail interface to have XDI specifications analysed and the
resulting report sent back. The tool uses the AND/IF notation, which a general notational
framework for finite-state specifications. See http://edis.win.tue.nl/and-if/mailproc.html

Design Flow and Commercial EDA Tool Requirement
The theory is used by Willem Mallon to help decompose specifications into synthesizable
blocks through his tools (in particular, Ludwig). The analysis tool is used to get a better
understanding of specifications before an attempt to implement them is being made. No
commercial EDA tools are used

Test Strategy.
Not relevant.

Current Status of Tool

Current Activities

Maintainer
Not maintained

Availability
See http://edis.win.tue.nl/and-if/mailproc.html

Future Plans
All very vague at the moment. 

References
A Theory of Delay-Insensitive Systems, Tom Verhoeff, Dissertation, Eindhoven University of
Technology, Department of Computing Science, 1994.

Analysing Specifications for Delay-Insensitive Circuits, Tom Verhoeff, Appeared in Proc. of
the Fifth International Symposium on Advanced Research in Asynchronous Circuits and
Systems, IEEE Press, 15 pages (incl. abstract, figures, references), Async’98 in San Diego, 30
March - 2 April, 1998.



 97Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Analysis and Applications of the XDI Model. Willem C. Mallon, Jan Tijmen Udding, Tom
Verhoeff. Appeared in Proc. of the Fifth International Symposium on Advanced Research in
Asynchronous Circuits and Systems, April 1999, IEEE Press, pp.231-242. (Async’99, 19-21
April, Barcelona, Spain.)

On the web, there is an Encyclopedia of Delay-Insensitive Systems (EDIS). See http://
edis.win.tue.nl/edis.html



 98Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Testing Asynchronous Circuits

Asynchronous circuits exhibit several properties that make them harder to test for production
faults than their synchronous counterparts:

• The lack of a global synchronisation clock: this decreases the level of controllability 
over the states of the circuit, making single stepping through states difficult, as the 
ability to stop the circuit in a given state becomes more complicated. 

• Large numbers of state holding elements, meaning generating tests is harder, and 
Design For Test techniques require greater overhead.

• Detection of Hazards and races is more critical in an asynchronous environment.

• Logic redundancy is introduced in order to eliminate hazards, this makes stuck at faults 
in redundant parts of the circuit impossible to test.

However, because asynchronous circuits use handshaking techniques, in the presence of faults
handshakes become unfulfilled and the circuit deadlocks, allowing the fault to be detected
easily. This property is known as self-checking or self-diagnostic. By selecting the correct fault
model several classes of asynchronous circuit can be made to exhibit this property. Testing can
also be made easy by several design for testability techniques which allow for more
observability of a finished design.

The following is a selected bibliography of asynchronous testing references. Much of the work
done in this field concerns adapting existing testing techniques to an asynchronous paradigm.
Ref. [16] provides a general introduction to fault models, and design for testability, Self-
diagnostic properties are discussed in [3],[4],[10], design for testability is discussed in [15],
[17], [27],[35], with specific design styles being presented in [19], [46].

[1] S.Banerjee, S.T. Chakradhar, R.L.Roy. “Synchronous test generation model for 
asynchronous circuits”, Proceedings of the International Conference on VLSI Design, 
Bangalore, January 1996.

[2] W.J.Bainbridge, L.A.Plana, S.B.Furber. “The Design and Test of a Smartcard Chip Using 
a CHAIN Self-timed Network-on-Chip. Proceedings of the Design, Automation and Test 
in Europe Conference and Exhibition Designers' Forum, April 2004.

[3] P.A. Beerel, T.H.Y.Meng, “Semi-modularity and testability of speed-independent 
circuits”, Integration, The VLSI Journal, 13(3), Sept., 1992, pp. 301-322.

[4] P.A.Beerel and T.H.Y.Meng, “Testability of asynchronous timed control circuits”, 
Proceedings Design Automation Conference, pp. 446-451, June 1991. 

[5] C.H.Kees van Berkel, R.Burgess, J.Kessels, M.Roncken, F.Schalij, A.Peeters, 
“Asynchronous circuits for low power: A DCC error corrector”, IEEE Design & Test of 
Computers, 11(2), pp.22-32, 1994.

[6] J.A.Brzozowski, K.Raahemifar, “Testing C-elements is not elementary”, Proceedings 
2nd Working Conference on Asynchronous Design Methodologies, South Bank 
University, London, May 30-31, pp. 150-159, 1995.

[7] J.A.Brzozowski, C.-J.Seger, “A Unified Framework for race analysis of asynchronous 
networks”, Journal of the ACM, 36(1), pp. 20-45, 1989.

[8] T.J.Chaney, C.E.Molnar, “Anomalous behavior of synchronizer and arbiter circuits”, 
IEEE Transactions on Computers, C-22(4), pp. 421-422, April 1973.



 99Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

[9] G.R.Carson, G.Borriello, “A testable CMOS asynchronous counter”, IEEE Journal of 
Solid State Circuits 5(4), pp. 952-960, 1990.

[10] I.David, R.Ginosar, M.Yoeli, “Self-timed is self-diagnostic”, Technical Report TR-UT-
84112, Department of Computer Science, University of Utah, 1990.

[11] A. Efthymiou, C. Sotiriou, D.A. Edwards. “Automatic Scan Insertion and Pattern 
Generation for Asynchronous Circuits” Proceedings of the Design, Automation and Test 
in Europe Conference and Exhibition, Feb. 2004.

[12]
[13] F. Gurkaynak, T. Villiger, S. Oetiker, N. Felber, H Kaeslin, W. Fichtner, “A Functional 

Test Methodology for Globally-Asychronous Locally-Synchronous 
Systems”,Proceedings Eighth International Symposium on Asynchronous Circuits and 
Systems, April 2002.

[14] D.S.Ha, S.M.Reddy, “One testable self-timed logic circuits14dings International 
Conference on Computer Design, pp. 296-301, 1984.

[15] P.Hazewindus, “Testing delay-insensitive circuits”, Ph.D.thesis, California Institute of 
Technology, 1992. 

[16] H.Hulgaard, S.M.Burns, G.Borriello, “Testing asynchronous circuits: A survey”, 
Integration, The VLSI Journal, 19(3), pp. 111-13, 1995.

[17] K.Keutzer, L.Lavagno, A.Sangiovanni-Vincentelli, “Synthesis for testability techniques 
for asynchronous circuits”, International Conference on Computer-Aided Designs, pp. 
326-329, 1991

[18] K.Keutzer, L.Lavagno, A.Sangiovanni-Vincentelli, “Synthesis for testability techniques 
for asynchronous circuits”, IEEE Transactions on Computer-Aided Design, 11(1), pp. 87-
101, 1995.

[19] A.Khoche, E.Brunvand, “Testing micropipelines”, Proceedings International Symposium 
on Advanced Research in Asynchronous Circuits and Systems (Async94), Utah, pp. 239-
246, 1994.

[20] A.Khoche, E.Brunvand, “A partial scan methodology for testing self-timed circuits”, 
Proceedings 13th IEEE VLSI Test Symposium, Princeton, New Jersey, USA, pp. 283-289, 
May 1995.

[21] A.Khoche and E.Brunvand. “Testing self-timed circuits using partial scan”, Proceedings 
of the 2nd Working Conference on Asynchronous Design Methodologies, pp. 160-169, 
London, May 1995.

[22] A.Khoche, E.Brunvand, “Critical hazard free test generation for asynchronous circuits”, 
Proceedings IEEE VLSI Test Symposium, pp. 203-208, 1997.

[23] M.Kishinevsky, A.Kondratyev, L.Lavagno, A.Saldanha, A.Taubin, “Partial scan delay 
fault testing of asynchronous circuits”, Proceedings ICCAD, pp. 728-735, 1997.

[24] A. Kondratyev, L. Sorenson, A. Streich, “Testing of Asynchronous Designs by 
“Inappropriate” Means: Synchronous Approach”, Proceedings Eighth International 
Symposium on Asynchronous Circuits and Systems, April 2002.

[25] L.Lavagno, A.Sangiovanni-Vincentelli, “Algorithms for synthesis and testing of 
asynchronous circuits”, Kluwer Academic Publishers, 1993.

[26] L.Lavagno, “Synthesis and testing of Bounded Wire Delay Asynchronous Circuits from 
Signal Transition Graphs”, Phd Thesis, University of California at Berkeley, 1992.

[27] L.Lavagno, M.Kishinevsky, and A.Lioy, “Testing redundant asynchronous circuits”, 
Proceedings European Design Automaton Conference (EURO-DAC), IEEE Computer 
Society Press, 1994.



 100Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

[28] H.K.Lee and D.S.Ha, “On the generation of test patterns for combinational circuits”, 
Technical Report No. 12_93, Dept.of Electrical Eng, Virginia Polytechnic Institute and 
State University, 1993.

[29] T.Li, “Design for VLSI asynchronous circuits for testability”, International Journal of 
Electronics, 64(6), pp. 859-868, 1988.

[30] A.J.Martin, P.J.Hazewindus, “Testing Delay Insensitive Circuits”, Proceedings 
Advanced Research in VLSI, MIT Press, pp. 118-132, 1991.

[31] S.M.Nowick, N.K.Jha, F.C. Cheung, “Synthesis of asynchronous circuits for stuck-at and 
robust path delay fault testability”, IEEE Transactions Computer-Aided Design, vol. 16, 
pp. 1514-1521, Dec. 1997.

[32] R. Negulescu, “General Testers for Asynchronous Circuits”,Proceedings International 
Symposium Advanced Research in Asynchronous Circuits and Systems, 2004.

[33] S.Pagey, G.Venkatesh, S.Sherlekar, “Issues in fault modelling and testing of 
micropipelines”, First Asian Test Symposium, Hiroshima, Japan, Nov. 1992.

[34] O.A.Petlin, “Random testing of asynchronous VLSI circuits”, MSc Thesis, University of 
Manchester, 1994.

[35] O.A.Petlin, “Design for testability of asynchronous VLSI circuits”, Phd Thesis, 
University of Manchester, 1996.

[36] O.A.Petlin, S.B.Furber, “Designing C-elements for testability”, Technical Report UMCS-
95-10-2, Department of Computer Science, University of Manchester, UK, 1995. 

[37] O.A.Petlin, S.B.Furber, A.M.Romankevich, V.V.Groll, “Designing asynchronous 
sequential circuits for random pattern testability”, IEE Proceedings Comput. Digit. Tech., 
142(4), July 1995.

[38] O.A.Petlin, S.B.Furber, “Scan testing of asynchronous sequential circuits”, Proceedings 
5th Great Lakes Symposium on VLSI, New York, pp. 224-229, March 1995.

[39] O.A.Petlin, S.B.Furber, “Scan testing of micropipelines”, Proceedings 13th IEEE VLSI 
Test Symposium, Princeton, New Jersey, USA, pp. 296-301, May 1995.

[40] O.A.Petlin, S.B.Furber, “Built in scan testing of micropipelines”, Proceedings 
International Symposium Advanced Research in Asynchronous Circuits and Systems, 
Eindhoven, pp. 22-29, 1997.

[41] O.A.Petlin, C.Farnsworth, S.B.Furber, “Design for testability of an asynchronous adder”, 
Proceedings of IEE Colloquium on Design and Test of Asynchronous Systems, London, 
UK, pp. 5/1- 5/9, 1996.

[42] G.R.Putzolu, J.P.Roth, “A heuristic algorithm for the testing of asynchronous circuits”, 
IEEE Transactions on Computers, C-20(6), pp. 639-647, June 1971.

[43] O.Roig, J.Cortadella, E.Pastor, “Automatic Generation of synchronous test patterns for 
asynchronous circuits”, Proceedings 3th Design Automaton Conference, June 1997.

[44] O Roig, “Formal Verification and Testing of Asynchronous Circuits, Phd Thesis, 
Universitat Politecnica de Catalunya”, May 1997.

[45] M.Roncken, “Defect-oriented testability for asynchronous ICs”, Proceedings of the 
IEEE, 87(2), pp. 363-375, February 1999.

[46] M.Roncken, “Partial scan test for asynchronous circuits illustrated on a DCC error 
corrector”, Proceedings International Symposium on Advanced Research in 
Asynchronous Circuits and Systems (Async94), pp. 247-256, Nov. 1994. 

[47] M.Roncken, R.Saeijs, “Linear test times for delay-insensitive circuits: a compilation 
strategy”, IFIP WG 10.5 Working Conference on Asynchronous Design Methodologies, 
Editors S.Furber, M.Edwards, Manchester, pp. 13-27, 1993.



 101Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

[48] M.Roncken, K.Stevens, R.Pendurkar, S.Rotem, and P.Chaudhuri, “CA-BIST for 
asynchronous circuits: A case study on the RAPPID asynchronous instruction length 
decoder”, Proceedings International Symposium on Advanced Research in Asynchronous 
Circuits and Systems, pp. 62-72, 2000.

[49] M.Roncken. “Defect-Oriented Testability for Asynchronous ICs”, Proceedings of the 
IEEE, 87(2), pp. 363-375, Feb. 1999.

[50] M.Roncken, E.Bruls. “Test Quality of Asynchronous Circuits: A Defect-Oriented 
Evaluation”, Proceedings International Test Conference, pp. 205-214, 1996.

[51] M.Roncken, E.Aarts, W.Verhaegh, “Optimal Scan for pipelined testing: An 
asynchronous foundation”, Proceedings International Test Conference, pp. 215-224, 
1996. 

[52] J.Saxena, D.K.Pradhan, “Design for testability of asynchronous sequential circuits”, 
Proceedings International Conference on Computer Design, pp. 518-522, 1983.

[53] A.K.Susskind, “A technique for making asynchronous sequential circuits readily 
testable”, Proceedings International Test Conference, pp.842-846, 1984.

[54] V.Schober, T.Kiel, “An asynchronous scan path concept for micropipelines using the 
bundled data convention”, Proceedings International Test Conference, pp.225-231, 1996.

[55] M.D.Shieh, C.L.Wey, P.D.Fisher, “A scan design for asynchronous sequential logic 
circuits using SR-latches”, Proceedings Midwest Symposium Circuits and Systems, 
pp.1300-1303, 1993.

[56] F. te Beest, A Peeters, K. Van Berkel, H. Kerkhoff. Automatic Structural Test Generation 
for Asynchronous Circuits, Proceedings IEEE/ProRISC Symposium on Circuits, Systems 
and Signal Processing, Nov. 2001.

[57] C.L.Wey, M.D.Shieh, P.D.Fisher, “ASCLScan: a scan design for asynchronous 
sequential logic circuits”, Proceedings IEEE International Conference on Computer-
Aided Design, pp.159-162, 1993.

[58] K. van Berkel, A. Peeters, F. te Beest, “Adding Synchronous and LSSD Modes to 
Asynchronous Circuits”, Proceedings Eighth International Symposium on Asynchronous 
Circuits and Systems, April 2002.



 102Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Appendix A: Identified Tools & Methodologies

This appendix lists methodologies, tools and approaches identified which have some bearing
on the design, implementation, verification or testing of asynchronous circuits. Note that the
organisation refers to the institution in which the tool/methodology was originally developed,
not necessarily where development of the tool is current. All developers on this listed were
requested to respond to the email questionnaire.

Methodologies

Name: Burst Mode Machine

Organisation: Columbia University, New York, USA

Contact nowick@cs.columbia.edu

Comment

Name: Communicating Hardware Processes

Organisation: University of Leeds, UK

Contact graham@comp.leeds.ac.uk

Comment

Name: Communicating Hardware Processes

Organisation: Caltech

Contact alain@cs.caltech.edu

Comment

Name: Delay Insensitive Algebra

Organisation: South Bank University

Contact Mark.Josephs@sbu.ac.uk 

Comment

Name: Handshake Circuits Organisation

Organisation: Philips research Laboratories

Contact Ad.Peeters@philips.com

Comment

Name: Micropipelines/GASP

Organisation: Sun microsystems

Contact jo.ebergen@eng.sun.com

Comment



 103Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Burst-mode synthesizers

Name: Null Convention Logic

Organisation: Theseus Logic

Contact dlamb@theseus.com 

Comment

Name: Petri Nets and Signal Transition Graphs

Organisation: University of Newcastle

Contact  Alex.Yakovlev@ncl.ac.uk

Comment

Name: eXtended Delay Insensitive Model

Organisation: TUE

Contact wstomv@win.tue.nl 

Comment

Name: MEAT

Organisation: University of Calgary

Author Ken Stevens 

Contact kstevens@ichips.intel.com

Availability Available – LISP source 

Located ftp://kdstevens.com/pub/stevens/meat.tar.gz

Dated 21/06/00

Maintenance Unknown

Comment Author left Calgary, moved to Intel

Name: MINIMALIST

Organisation: Columbia University, NY

Author Robert Fuhrer

Contact rmf@cs.columbia.edu

Availability Available

Located http://www.cs.columbia.edu/~rmf/MINIMALIST-get.html

Dated 26/08/99

Maintenance Maintained

Comment Contact Steve Nowick for further details



 104Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

STG/Petri-Net Synthesisers

Name: 3D

Organisation: University of California, San Diego

Author Ken Y. Yun

Contact kyy@ucsd.edu

Availability Available – C source & Sun/HP binaries 

Located http://paradise.ucsd.edu/3D/index.htm

Date 13/07/99

Maintenance Maintained

Comment Author resident at UC San Diego 

Name: ASSASSIN

Organisation: IMEC

Author Chantel Ykman

Contact ykman@imec.be 

Availability Available

Located ftp://ftp.imec.be/pub/vsdm/SW-distrib/assassin/

Date 22/08/95

Maintenance Unknown

Comment No recent information can be found. try also: assassin@imec.be

Name: FORCAGE

Organisation: University. of Aizu

Author Michael Kishinevsky

Contact mkishine@ichips.intel.com

Availability Available

Located ftp://ftp.it.dtu.dk/pub/forcage/forcage3.zip

Date 18/01/94

Maintenance Unknown

Comment Kishinevsky, has left Aizu, now at Intel. Old (DOS) version available from DTU.

Name: Petrify

Organisation: Universitat Politenica de Catalunya, Spain

Author Jordi Cortadella

Contact Jordi Cortadella (jordic@lsi.upc.es)

Availability Available

Located http://www.lsi.upc.es/~jordic/petrify

Date

Maintenance Maintained

Comment



 105Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Silicon compilers (& Macromodular Synthesis)

Name: SIS

Organisation: Berkley

Author SIS Team (Luciano Lavagno, Cho Moon, Paul Stephan)

Contact sis@ic.eecs.berkeley.edu

Availability Available

Located ftp://ic.eecs.berkeley.edu/pub/Sis

Date 22/03/00 (Redhat Version)

Maintenance No longer actively maintained

Comment Luciano Lavagno's email: lavagno@polito.it

Name: SYN

Organisation: Stanford

Author Peter Beerel

Contact pabeerel@eiger.usc.edu

Availability Not Available

Located

Date

Maintenance Unknown

Comment Beerel has left Stanford and is now at USC.

Name: Balsa

Organisation: Amulet Group, University of Manchester

Author Andrew Bardsely

Contact balsa@cs.man.ac.uk

Availability Available

Located ftp://ftp.cs.man.ac.uk/pub/amulet/balsa

Date 11/09/00

Maintenance Maintained

Comment

Name: Tangram

Organisation: Philips

Author Tangram team

Contact Ad.Peeters@philips.com

Availability Not Available

Located

Date

Maintenance Maintained

Comment Used internally within Philips – not for general use



 106Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Timing Synthesisers

Logic Minimisers

Name: TAST

Organisation: TIMA-CMP

Author Marc Renaudin

Contact marc.renaudin@imag.fr

Availability Not available yet

Located Tima/CIS

Date

Maintenance Maintained - under development

Comment Tool is planned to be fully operational for the Summer School on Asynchronous Circuit 
Design to be held in Grenoble in July 2002.

Name: ATACS

Organisation: University of Utah

Author Chris J.Myers

Contact myers@ee.utah.edu

Availability Not Available

Located

Date

Maintenance Maintenance unknown

Comment http://www.async.elen.utah.edu/tools.html

Name: HFMIN

Organisation: Columbia University, NY

Author Robert Fuhrer

Contact rmf@cs.columbia.edu

Availability Available

Located http://www.cs.columbia.edu/~rmf/MINIMALIST-get.html

Date 11/06/99

Maintenance Not maintained

Comment Available with Minimalist and 3D, from UCSD



 107Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Design Entry

Name: IMPYMIN

Organisation: Columbia University, NY

Author Michael Theobald

Contact theobald@cs.columbia.edu

Availability Available

Located http://www.cs.columbia.edu/~rmf/MINIMALIST-get.html

Date

Maintenance Not known

Comment Available as part of Minimalist only

Name: ESPRESSO-HF

Organisation: Columbia University, NY

Author Michael Theobald

Contact theobald@cs.columbia.edu

Availability Available

Located http://vstgl.sourceforge.net/download.html

Date 19/01/00

Maintenance Maintained

Comment Available as part of Minimalist only

Name: VSTGL

Organisation: DTU

Author Sune Frankild

Contact sune.frankild@get2net.dk

Availability Available

Located http://vstgl.sourceforge.net/download.html

Date 19/01/00

Maintenance Maintained

Comment



 108Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Extensions to Existing HDLs

Name: VHDL++

Organisation: DTU

Author Sune Frankild

Contact sune.frankild@get2net.dk

Availability Available

Located http://www.it.dtu.dk/~asytools/download.html

Date 01/12/99

Maintenance Maintained?

Comment

Name: NCL-VHDL

Organisation: Theseus Logic

Author Theseus Logic

Contact support.eda@theseus.com

Availability Available

Located http://www.it.dtu.dk/~asytools/download.html

Date 01/12/99

Maintenance Maintained?

Comment Uses Synopsys Design Tools 

Name: PIPEFITTER

Organisation: Politecnico di Torino & Universita di Udine

Author Ivan Blunno

Contact blunno@linus.polito.it

Availability Available

Located http://polimage.polito.it/~blunno/pipefitter/pipefitter.tar.gz

Date 28/05/98

Maintenance Maintained

Comment



 109Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Notation to Notation Conversion

Name: TAST

Organisation: TIMA-CMP

Author Marc Renaudin

Contact marc.renaudin@imag.fr

Availability Not Available

Located

Date

Maintenance Unknown

Comment

Name: DI2PN

Organisation: SBU

Author Dennis Furey

Contact fureyd@sbu.ac.uk

Availability Available

Located http://www.sbu.ac.uk/~fureyd/di2pn/

Date 23/12/00

Maintenance Maintained

Comment

Name: VL2ASTG

Organisation: Politecnico di Torino & Universita di Udine

Author Ivan Blunno

Contact blunno@linus.polito.it

Availability Available

Located http://polimage.polito.it/~blunno/vl2astg/vl2astg.tar.gz

Date 05/06/00

Maintenance No longer maintained

Comment Subsumed by Pipefitter



 110Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

XDI Tools

Name: DIGG

Organisation: RUG

Author Willem Mallon

Contact willem.mallon@philips.com

Availability Unknown

Located

Date

Maintenance Unknown

Comment Tools removed from RUG's ftp server. Willem now at Philips.

Name: LUDWIG

Organisation: RUG

Author Willem Mallon

Contact willem.mallon@philips.com

Availability Unknown

Located

Date

Maintenance Unknown

Comment Tools removed from RUG's ftp server. Willem now at Philips.

Name: STEFFI

Organisation: RUG

Author Willem Mallon

Contact willem.mallon@philips.com

Availability Unknown

Located

Date

Maintenance Unknown

Comment Tools removed from RUG's ftp server. Willem now at Philips.



 111Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Verifiers

Name: ANALYZE

Organisation: University of Calgary

Author Willem Mallon

Contact willem.mallon@philips.com

Availability Unknown

Located

Date

Maintenance Unknown

Comment Tools removed from RUG's ftp server. Willem now at Philips.

Name: AVER

Organisation: Stanford Unversity

Author David Dill

Contact dill@cs.stanford.edu

Availability Unknown

Located

Date

Maintenance Unknown

Comment No information available. Dill currently working on Murphi verifier, may be applicable

Name: BMC, CSML, CV, MCB, SMV

Organisation: CMU

Author Sergey Berezin

Contact Sergey.Berezin@cs.cmu.edu

Availability Unknown

Located http://www.cs.cmu.edu/~modelcheck/[BMC

Date BMC - 16/06/99 CSML/MCB - 29/07/98 SMV - 06/11/00 

Maintenance Maintained

Comment

Name: CONCURRENCY WORKBENCH

Organisation: Edinburgh University

Author Faron Moller

Contact Perdita.Stevens@dcs.ed.ac.uk

Availability Available

Located http://www.dcs.ed.ac.uk/home/cwb/CWBEXPORTDIR/

Date 18/07/99

Maintenance Maintained

Comment CCS based verifier



 112Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Name: CIRCAL SYSTEM

Organisation: Uni.South Aust.

Author Antonio Cerone

Contact cowie@cs.unisa.edu.au 

Availability Available

Located http://www.acrc.unisa.edu.au/~circal/

Date

Maintenance Maintained

Comment Based on Circal process algebra

Name: FIREMAPS

Organisation: McGill University

Author Radu Negulescu

Contact radu@macs.ece.mcgill.ca

Availability Online Demo only

Located http://www.macs.ece.mcgill.ca/cgi-bin/cgiwrap/fm/demo_in.cgi

Date

Maintenance Maintained

Comment

Name: LARCH PROVER

Organisation: MIT

Author Steven Garland?

Contact garland@lcs.mit.edu

Availability Availaible

Located ftp://ftp.sds.lcs.mit.edu/pub/Larch/lp/

Date Dated:06/11/00

Maintenance Unknown

Comment Used by ST

Name: LOTOS/CADP

Organisation: INRIA/VASY

Author CADP team

Contact cadp@inrialpes.fr 

Availability Availaible - Licensed

Located http://www.inrialpes.fr/vasy/cadp.html

Date

Maintenance Maintained

Comment Used by Technion for verificationof Async Circuits.



 113Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Name: RAINBOW

Organisation: Manchester University

Author Barringer,Gough, et al

Contact alanw@cs.man.ac.uk

Availability Available

Located ftp://rainbowu@ftp.cs.man.ac.uk/version3.03/Solaris/rainbow303core-sunos5.tar.gz

Date 12/04/99

Maintenance Maintained

Comment http://www.cs.man.ac.uk/fmethods/projects/AHV-PROJECT/ahv-project.html

Name: SPHINX

Organisation: USC

Author Vida Vakilotojar

Contact vivakil@hala.usc.edu

Availability Available

Located http://jungfrau.usc.edu/SPHINX/SPHINX/

Date 15/09/00

Maintenance Maintained

Comment

Name: VERACI

Organisation: Cambridge University

Author Paul Cunningham

Contact pac22@cl.cam.ac.uk

Availability Not Available

Located

Date

Maintenance Maintained

Comment Incomplete and unavailable, at present. Unsure of intentions

Name: VERDECT

Organisation: University of Waterloo

Author Jo Ebergen

Contact Jo.Ebergen@eng.sun.com

Availability Not Available

Located

Date

Maintenance Unknown

Comment Unable to find any reference to it at Waterloo. Ebergen has moved to Sun



 114Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Handshake/Timing Validators

Name: VERSIFY

Organisation: UPC

Author Oriol Roig

Contact oriol.roig@theseus.com

Availability Available

Located ftp://ftp.ac.upc.es/pub/archives/cad/versify/

Date 06/11/00

Maintenance Unknown

Comment Oriol Roig has moved to Theseus. http://www.ac.upc.es/vlsi/versify/

Name: VIS

Organisation: Berkley

Author Robert Brayton

Contact brayton@eecs.berkley.edu

Availability Available

Located ftp://ic.eecs.berkeley.edu/pub/Vis/

Date 25/09/98

Maintenance Unknown

Comment Works in cooperation with SIS. http://www-cad.eecs.berkeley.edu/~vis

Name: HORN

Organisation: Amulet Group, Manchester University

Author Rhodri Davies

Contact

Availability Available

Located http://www.cs.man.ac.uk/amulet/projects/horn/

Date 23/05/96

Maintenance Not maintained

Comment Collection of tools, but Rhodri has left Amulet

Name: TIMEVER

Organisation: Olso University

Author Per Arne Karlsen

Contact Per Torstein Roine{perr@ifi.uio.no}

Availability Available

Located http://www.ifi.uio.no/~vlsi/async/timver/timver-1.0.tar.gz

Date 04/11/99 ?

Maintenance Unknown

Comment Per Karlsen has left. Suggest contacting his supervisor Per Torstein Roine



 115Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Simulators/Modelling Tools

Name: FSIMAC

Organisation: Isical, Intel

Author Susmita Sur Kolay

Contact ssk@isical.ac.in

Availability Not Available

Located

Date

Maintenance Unknown

Comment Relatively recent. Fault Simulator

Name: LARD

Organisation: AMULET group, University of Manchester

Author Phill Endecott

Contact lard@cs.man.ac.uk

Availability Available

Located ftp://ftp.cs.man.ac.uk/pub/amulet/lard

Date 11/09/00

Maintenance Maintained

Comment

Name: TESTIFY

Organisation: UPC

Author Oriol Roig

Contact lard@cs.man.ac.uk

Availability Available

Located ftp://ftp.ac.upc.es/pub/archives/cad/versify/

Date 11/09/00

Maintenance Maintained

Comment Related to the versify suite



 116Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Interchange Languages 

Descriptive Languages

Name: AND/IF

Organisation: SUN, TUE

Author Bob Sproull

Contact rsproull@east.sun.com

Availability

Located

Date

Maintenance

Comment

Name: Synchronized Transitions

Organisation: DTU

Author Jan Staunstrup

Contact jsp@imm.dtu.dk

Availability Not available

Located

Date

Maintenance Unknown

Comment Staunstrup has left DTU. Suggest contacting Jan Sparso.

Name: HOP

Organisation: University of Utah

Author Ganesh Gopalakrishnan

Contact ganesh@cs.utah.edu

Availability

Located

Date

Maintenance Unknown

Comment Little information



 117Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Miscellaneous

Additional Contacts

Name: AVEMAP

Organisation: USC

Author Wei-Chun Chou

Contact wchou@eng.sun.com

Availability Not Available

Located http://jungfrau.usc.edu/wchou/avemap.html

Date 15/06/99

Maintenance Unknown

Comment Technology Mapper for BMMs and One hot Domino ccts. Chou has left USC.

Name: USC-PET

Organisation: USC

Author Aiguo Xie

Contact pabeerel@eiger.usc.edu

Availa�ˇlity Not Available

Located Located:http://jungfrau.usc.edu/USC-PET/index.html

Date

Maintenance Unknown

Comment Performance Estimator. No address for Xie, try Beerel.

Name: Asynchronous Digital Design

Contact rich@avlsi.com

Name: University of Tokyo

Contact nanya@hal.rcast.u-tokyo.ac.jp

Name: NTT (Network Inovation Laboratories)

Contact rysuke@exa.onlab.ntt.co.jp

Name: Marly Roncken

Contact mroncken@scdt.intel.com



 118Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

Appendix B: Original Questionnaire

 Hello, I am contacting you because you or an associated group has been identified as working
in the area of asynchronous circuit techniques and/or systems. The European Commission,
under the aegis of its ACiD-WG IST programme wishes to promote asynchronous technology
and has commissioned a report “Design, Automation and Test for Asynchronous Circuits and
Systems” which will describe the state-of-the-art in methods and tools for the design of
asynchronous digital VLSI systems. The report is intended to be primarily of use to companies
who are aware of the potential benefits of asynchronous circuit technology, but who need to
know more about available asynchronous design methods and tools before committing
resources.

 It is intended to regularly update the information contained in this report and produce an
annual public overview of the status of asynchronous design in industry.

 If you are involved in the development of more than one tool (or are an originator of more than
one methodology) please reply multiple times to this questionnaire. 

 The published form of the report will be in a form that is easily digestible by the target
audience, ideally a single A4 page per tool/methodology. The report will be delivered in
electronic form via the web. In order to assemble this report, and to evangelise your work to
wider audience, I would be grateful if you would respond to the following questionnaire.
Please reply by email to

 acid-report@cs.man.ac.uk

 - Doug Edwards

---

ASYNCHRONOUS TOOLS QUESTIONNAIRE

1) Please compose a summary of your tool or methodology including, but not limited to: (This
summary should occupy not more than a single A4 page. Please provide easily readable file
formats, plain test preferred, diagrams may be redrawn and should be submitted in common
formats such as JPEG, PNG, EPS. Proprietary wordprocessor formats (e.g. Word,
Framemaker) are unwelcome.)

• the name of the tools and methodologies 

• strengths and weaknesses of the tool/methodology with respect to other asynchronous 
and synchronous tools and methodologies 

• its application domain (high speed, low power embedded systems ...) 

• the use of existing HDLs within your tool/methodology

• the extent of automation used

Separate to your summary we will include details from your answers to the questions given
below:



 119Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG

2) Categorise the problem domain addressed by your tool/methodology from the list given
below. Choose one category or sub-category favouring those at the top of the list (e.g. systems
which can synthesise and simulate should be categorised as synthesisers):

• Synthesis

- Timing driven/layout assisting 

- Burst-mode 

- STG/Petri net

- Silicon compilers 

- Other 

• Formal verifiers/Theorem provers 

- Using existing frameworks (CCS/CSP/CIRCAL/LOTOS...)

- Other 

• Timing validators (post-simulation/static timing analysis)

• Notation to notation conversion

- Simulation front ends

• Simulators/Modelling tools

3) Describe the design flows used with your tool/by your organisation with your methodology.
Highlight those commercial EDA tools used.

4) What is your approach to production testing of designs produced using your tool/
methodology (if appropriate)? Manually performed test engineering should also be described
as well as any locally developed tools and commercially available test tools.

5) What is the current status of the tool and your asynchronous circuit design involvement?
Please include:

• your current activities.

• the identity of the maintainer/developer of the tool or a contact point for more 
information

• tool availability including licensing, approximate cost (if applicable) and a contact 
address/URL for downloads or sales

• your future plans.

6) Detail any significant demonstrators of your approach. References to papers or products
produced with their notable asynchronous advantages would be ideal.



 120Async Tool Survey 3rd Edition - V3.0

19 Jun, 2004IST-1999-29119ACiD-WG


