
Futexes Are Tricky

Ulrich Drepper
Red Hat, Inc.

drepper@redhat.com

December 11, 2005

Abstract
Starting with early version of the 2.5 series, the Linux kernel contains a light-weight method
for process synchronization. It is used in the modern thread library implementation but is also
useful when used directly. This article introduces the concept and user level code to use them.

1 Preface

The base reference for futexes has been “Fuss, Futexes
and Furwocks: Fast User Level Locking in Linux” writ-
ten by Franke, Russell, and Kirkwood, released in the
proceedings of the 2002 OLS [1]. This document is still
mostly valid. But the kernel functionality got extended
and generally improved. The biggest weakness, though,
is the lack of instruction on how to use futexes correctly.
Rusty Russell distributes a package containing user level
code (ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/)
but unfortunately this code is not very well documented
and worse, as of this writing the code is actually incor-
rect.

This exemplifies that using futexes is really tricky since
they provide problems even to their inventors. This docu-
ment will hopefully provide correct and detailed instruc-
tions on how to use futexes. First an understanding of the
kernel interface and its semantic is needed.

The following text assumes the reader is familiar with the
purpose and semantics of synchronization primitives like
mutex and barriers. Any book on threads will provide the
necessary knowledge.

2 The Kernel Interface

The kernel interface consists mainly of one multiplexing
system call:

long sys_futex (void *addr1, int op,
int val1, struct timespec *timeout,
void *addr2, int val3)

This prototype is actually a bit misleading, as we will
later see, but it is sufficient for now. The futex itself is
a variable of type int at the user level, pointed to by

addr1. It has a size of 4 bytes on all platforms, 32-bit and
64-bit. The value of the variable is fully under the control
of the application. No value has a specific meaning.1

Any memory address in regular memory (excluding some-
thing like DMA areas etc) can be used for the futex. The
only requirement is that the variable is aligned at a mul-
tiple of sizeof(int).

It is not obvious from the prototype, but the kernel han-
dles the actual physical addresses of the futexes. I.e., if
two processes reference a futex in a memory region they
share, they will reference the same futex object. This al-
lows the implementation of inter-process synchronization
primitives.

The various actions which can be performed on a futex
can be selected with the op parameter which can have
the following values:

FUTEX WAIT This operation causes the thread to be sus-
pended in the kernel until notified. The system call
returns with the value zero in this case. Before the
thread is suspended the value of the futex variable
is checked. If it does not have the same value as
the val1 parameter the system call immediately
returns with the error EWOULDBLOCK.

In case the timeout parameter is not NULL, the
thread is suspended only for a limited time. The
struct timespec value specifies the number of
seconds the calling thread is suspended. If the time
runs out without a notification being sent, the sys-
tem call returns with the error ETIMEDOUT.

Finally the system call can return if the thread re-
ceived a signal. In this case the error is EINTR.

The addr2 parameter is not used for this opera-
tion and no specific values have to be passed to the
kernel.

1With the exception of the futex used for notification of thread ter-
mination. This is not discussed here.

1


No disrespect for Rusty et.al. intended, I got it wrong the first time as well.

mailto:drepper@redhat.com
ftp://ftp.kernel.org/pub/linux/kernel/people/rusty/


FUTEX WAKE To wake up one or more threads waiting on
a futex this operation can be used. Only the addr1,
op, and val1 parameters are used. The value of the
val1 parameter is the number of threads the caller
wants to wake. The type is int, so to wake up all
waiting threads it is best to pass INT MAX.

Usually the only values which are used are 1 and
INT MAX. Everything else makes little sense given
that the list of waiters will depend on the relative
execution time each thread gets and therefore can-
not be foreseen in general. This means it cannot be
determined from user level which threads get wo-
ken. And even if it would be possible for one situ-
ation, this is an implementation detail which might
change.. Values smaller or equal to zero are in-
valid.

The kernel does not look through the list of wait-
ers to find the highest priority thread. The normal
futexes are not realtime-safe. There might be ex-
tensions in future which are, though.

Whether the woken thread gets executed right away
or the thread waking up the others continues to run
is an implementation detail and cannot be relied
on. Especially on multi-processor systems a woken
thread might return to user level before the waking
thread. This is something we will investigate later
a bit more.

The return value of the system call is the number
of threads which have been queued and have been
woken up.

FUTEX WAKE OP Some operations implemented using fu-
texes require handling of more than one futex at the
same time. One such example is the conditional
variable implementation which needs to have an
internal lock and a separate wait queue. The inter-
nal lock has to be obtained before every operation.
But this can lead then to heavy context switching
due to contention. Image thread A wakes up thread
B which is waiting for a futex. Whenever the fu-
tex is handled an internal lock must be acquired.
If thread B is scheduled before thread A released
the internal lock it immediately has to go back to
sleep, just now on the wait queue of the internal
list (and no, in this case it is not possible to use
FUTEX CMP REQUEUE as described below.

To avoid this and similar problems the FUTEX WAKE OP

operation was developed. It works like FUTEX WAKE

but whether the wakeup actually happens depends
on the result of a conditional expression involving
a memory location, preceded on an operation of the
same memory location. In C the operation can be
expressed like this:

int oldval = *(int *)addr2;

*(int *)addr2 = oldval OP OPARG;
futex_wake(addr1, val1);

if (oldval CMP CMPARG)
futex_wake(addr2, val2);

where OP, OPARG, CMP, and CMPARG are encoded
in the val3 parameter using

#define FUTEX_OP(op,oparg,cmp,cmparg)\
(((op & 0xf) << 28) \
| ((cmp & 0xf) << 24) \
| ((oparg & 0xfff) << 12) \
| (cmparg & 0xfff))

This might seem like a strange operation but it han-
dles the case neither of the other wake up opera-
tions (FUTEX WAKE and FUTEX CMP REQUEUE) can
handle efficiently. The encoding for the operations
is as follows:

Name Value Operation
FUTEX OP SET 0 *addr2=OPARG

FUTEX OP ADD 1 *addr2+=OPARG

FUTEX OP OR 2 *addr2|=OPARG

FUTEX OP ANDN 3 *addr2&=OPARG

FUTEX OP XOR 4 *addr2ˆ=OPARG

The comparison operations are encoded like this:

Name Value Operation
FUTEX OP CMP EQ 0 oldval==CMPARG

FUTEX OP CMP NE 1 oldval!=CMPARG

FUTEX OP CMP LT 2 oldval<CMPARG

FUTEX OP CMP LE 3 oldval<=CMPARG

FUTEX OP CMP GT 4 oldval>CMPARG

FUTEX OP CMP GE 5 oldval>=CMPARG

FUTEX CMP REQUEUE This operation implements a su-
perset of the FUTEX WAKE operation. It allows to
wake up a given number of waiters. The additional
functionality is that if there are more threads wait-
ing than woken, they are removed from the wait
queue of the futex pointer to by addr1 and added
to the wait queue of the futex pointed to by addr2.
The number of threads treated this way can also
be capped: the timeout parameter is misused for
that. The numeric value of the pointer argument is
converted to an int and used. We call this value
here val2. The whole operation is only started if
val3 is still the value of the futex pointed to by
addr1. If this is not the case anymore the system
call returns with the error EAGAIN.

The threads moved to the second futex’s wait queue
can then be handled just like any other threads wait-
ing on that futex. They can be woken individually
or in batches. When the requeued thread returns
there is no indication whatsoever that this requeue
operation happened.

2 Version 1.3 Futexes Are Tricky


The FUTEX_REQUEUE was introduced late in the 2.5 development cycle, long after the rest of the futex operations. It was developed by Ingo Molnar and myself after benchmarking NPTL applications. Later we found it to be broken-by-design. We needed the additional test FUTEX_CMP_REQUEUE implements. This new version was written by Jakub Jelinek and introduced in the 2.6.7 kernel.



Useful values for the val1 parameter for this op-
eration are zero and one. INT MAX is not useful
since this would mean this operation behaves just
like FUTEX WAKE. The val2 value is usually ei-
ther one or INT MAX. Using Zero makes no sense
since, again, this operation would degenerate to
FUTEX WAIT.

The return value of the system call specifies how
many threads have been woken or queued at the
second futex’s wait queue. The caller can deter-
mine wheter any thread has been requeued; this is
the case only if the value is greater than val1.

FUTEX REQUEUE This operation is the now obsolete pre-
decessor of FUTEX CMP REQUEUE. It proved to be
broken and unusable. No new code should use this
operation, it is only kept for compatibility reasons.
The difference is that FUTEX REQUEUE does not
support the val3 parameter and therefore changes
to the futex corresponding to the destination wait
queue are not detected. This can lead to deadlocks.

FUTEX FD The semantics of this operation is different
from the others. No operation is performed on the
futex. Instead, the kernel generates a file descrip-
tor which can then be used to refer to the futex.
In addition it is possible to request asynchronous
notification.

This operation requires only the addr1 and val1

parameter to be passed to the kernel. If the val1

parameter is zero, the system call return value is
a new file descriptor, created for the futex addr1.
This file descriptor then can be used in select,
poll, or epoll calls. Whenever the thread got
woken or signalled the select/poll/epoll op-
eration can return. The revents field for the file
descriptor is filled with POLLIN|POLLRDNORM if
some woke waiters of the futex. The wakeup is
edge-triggered.

In case the val1 parameter is not zero it must be
the value for a valid signal. The kernel associates
this signal with the returned file descriptor so that
it is sent in case the thread is woken while waiting
on the futex.

From these descriptions it is apparent that a fundamental
detail of the futex is the wait queue in the kernel which
is associated with it. Waiters are enqueued, wakers de-
queue threads. These operations have to be performed
atomically and more, the test of the futex value in the
FUTEX WAIT calls must be atomic, too. This means that
the operation to wait on a futex is composed of getting
the lock for the futex, checking the current value, if nec-
essary adding the thread to the wait queue, and releasing
the lock. Waking threads get the lock, then wake or re-
queue threads, before releasing the lock. It is important
that the steps are executed in this order to guarantee that
threads which go to sleep because the futex value is un-
changed are going to be woken if once the futex value

is changed and threads are woken. The internal locks of
the futex implementation guarantee this atomicity. The
following sections show how all this together allows im-
plementing synchronization primitives.

In the remainder of the text we use the interfaces listed
in appendix A. The implementation of these interfaces
is architecture dependent. None of the interfaces is part
of the standard runtime. Programs wishing to use them
probably have to provide their own implementation.

3 Why Do Futexes Work?

As an introduction we are going to examine one of the
simplest possible uses of futexes. It is not really a syn-
chronization primitive but still can be perceived as us-
able. We build an object that allows a thread to be no-
tified of the arrival of a new event. The implementation
could look like this.

class event
{
public:
event () : val (0) { }
void ev_signal ()
{ ++val;
futex_wake (&val, INT_MAX); }

void ev_wait ()
{ futex_wait (&val, val); }

private:
int val;

};

Objects of this type can be used to synchronize arbitrar-
ily many threads inside a process. All threads interested
in synchronizing with each other need to use the same
object. There can be multiple objects inside a process,
which would allow synchronizing in separate clusters of
threads.

futex_wait
return from

futex_wait

read val

ttt

futex_wake
++val

futex_wait
read val

return from
futex_wait

Thread 1 Thread 2 Thread 3

Ulrich Drepper Version 1.3 3



This diagram represents the execution of a program with
three threads. Each thread’s execution is represented by a
vertical line, progressing with time downward. The blue
parts are those at which the thread actually has a CPU. If
two or more blue lines overlap vertically the threads are
executed concurrently.

In this specific example thread 2 calls ev wait which
reads the value of val and passes it to the kernel in the
futex wait call. This is where the thread is suspended.
The value of val passed down is still the current value
and therefore there is no need to return with EWOULDBLOCK.
The third thread also reads the value, but is then inter-
rupted. The value is stored in a register or in some tem-
porary memory.

Now thread 1 calls ev signal to wake up all waiters.
First it increments the val and then calls into the kernel
to wake the waiter (all of them since the parameter with
the count is INT MAX. At the same time as thread 1 makes
the system call thread 3 also enters the kernel, to wait.
After the futex wake call is finished both thread 2 and 3
can resume. It is noteworthy, though, that the reason why
both threads continue is different.

Thread 2 returns since it is woken by thread 1. The re-
turn value of the system call is zero. Thread 3 on the
other hand did not even go to sleep. The value of val
passed to the kernel in the third parameter is different
from the value val has when the kernel processes the fu-
tex system call in thread 3: in the meantime thread 1 in-
cremented val. Therefore thread 3 returns immediately
with EWOULDBLOCK, independent of thread 1’s wakeup
call.

The experienced programmer of parallel programs will
certainly have noticed a problem in the code. The use of
++val in a multi-threaded program is not safe. This does
not guarantee that all threads see consistent values. In
this first example there is no real problem since the events
‘increment’, ‘wake’, and ‘wait’ are so weakly ordered,
that using an atomic increment instruction or not does
not make much of a difference.

The second simplest operation is probably mutual exclu-
sion. The mutex implementation is essential for almost
all the other mechanisms we will look into. It also ex-
plains the nuances of the futex system call we have not
touched yet so we will devote some time and lines to ex-
plaining the mechanism is detail.

4 Mutex, Take 1

Be warned ahead of time that the implementation we de-
velop in this section is not 100% kosher. We will discuss
the shortfalls at the end of this section and show a pos-
sible solution in the next. This two-step process helps to
further exemplify the use of futexes. Readers can try to
spot the problem before it is explained.

For a mutex, it is critical that at most one thread at any
time can own the mutex and that, if the mutex is free, ei-
ther one or more threads are trying to lock the mutex, or
the list of waiters for the mutex is empty. These require-
ments add quite a bit more complexity to the code. One
possible implementation can look like this:

class mutex
{
public:
mutex () : val (0) { }
void lock () {
int c;
while ((c = atomic_inc (val)) != 0)
futex_wait (&val, c + 1); }

void unlock () {
val = 0; futex_wake (&val, 1); }

private:
int val;

};

To understand the implementation we first look at the
value the member val can have. Its initial value is zero,
which means the mutex is not taken; all other values
mean the mutex is taken. In the lock member func-
tion we see a call to atomic inc which atomically in-
crements the member val and then returns the old value.
If the old value is zero the function returns. If the old
value is not zero the function futex wait is called. Two
things are important about this: first, the call happens in
a loop. We cannot guarantee that if the futex wait call
returns the thread will get the mutex. Instead the thread
has to try locking the mutex again. Second, the value
passed as the current value of the futex is the value of
val before the atomic inc plus one. The “plus one”
part is important since otherwise the call would probably
return right away with an EWOULDBLOCK error value.

Unlike in the last example code this time we did use an
atomic instruction. If we would have used a simple incre-
ment like ++val instead of the call to atomic inc and
two threads would execute the lock member function at
the same time on different processors of one system, then
both threads might get zero as the old value back. This
can happen if the memory access is not synchronized be-
tween the CPUs and the result would be a violation of
the mutex definition: more than one thread successfully
called lock before either one called unlock and there-
fore two threads entered the critical region.

The unlock function is very simple. It first stores the
value representing an unlock mutex. The new value must
be stored atomically. We do not use a special instruc-
tion since simple load and store instructions are usually
atomic. The call to futex wake wakes one thread. This
is different from how we used this function before when
we woke up all waiters. This would be possible here as

4 Version 1.3 Futexes Are Tricky



well, but it would be a waste of resources. Imagine a mu-
tex with 100 waiters, perhaps on a multi-processor ma-
chine. Even if we would wake up all threads only one
thread can lock the mutex. That means 99 threads would
probably go back to sleep right away. And what is worse:
since the 100 threads are distributed over all processors
and all threads have to access the same val member, the
cache line containing this value is passed from on CPU
to the other and back. This is a very expensive operation.
Therefore calling futex wakewith one as the second pa-
rameter is a significant optimization.

Now that we understand how the code works it is neces-
sary to verify that the requirements on the mutex func-
tionality are fulfilled. It is guaranteed that at most one
thread can hold the mutex. If this would not be the case
the atomic inc function must return zero for more than
one thread. This in turn is only possible when between
the two atomic inc calls val has been reset to zero,
which finally means the mutex has been unlocked. There-
fore this requirement is fulfilled.

The second requirement is that either the wait queue is
empty, the mutex is locked, or at least one thread tries
to lock the mutex. The wait queue is maintained by the
kernel as part of the futex implementation. It cannot be
directly observed, we have to deduce the status from the
operations which have been performed. If the mutex is
locked the wait queue does not matter, so we can ignore
this case. This means we have to show it is not possi-
ble that if the mutex is unlocked, the wait queue is not
empty, and no thread tries to lock the mutex. The at-
tempts to lock the mutex happen in the loop in the lock
member function. Any thread that ever tried to lock the
mutex either returned from lock successfully (and since
the mutex is unlocked, later called unlock) or is still in
the loop. Therefore what remains to be shown is that even
though a mutex got unlocked after one or more threads
found it locked, at least one thread left the wait queue
after the unlock call is finished.

futex_wait
return from

futex_wait

atomic_inc

futex_wait

atomic_inc

return from
futex_wait

futex_wake
val = 0

Thread 3Thread 2Thread 1

ttt

The preceding diagram shows the cases we have to con-
sider. Thread 1 holds initially the mutex. Thread 2 tries
to lock it, the atomic inc call returns a value other than
zero, and the thread goes to sleep. There could be al-
ready other threads waiting. But once thread 1 has stored
the zero value in val and called futex wake, one of
the threads on the wait queue is woken and will return
to compete for the mutex. The requirement is fulfilled.
The only other possibility for a thread entering the loop
is that it behaves like thread 3. The atomic inc call
returned a nonzero value, but before the thread can be
added to the wait queue thread 1 resets val to zero. This
means thread 3 will return right away with error value
EWOULDBLOCK. If both thread 2 and 3 are executed as in-
dicated in this diagram it means that they both will com-
pete for the mutex when they return from the futex wait

call. So in theory it would not have been necessary for
thread 1 to wake thread 2 with a call to futex wait since
with thread 3 never being added to the wait queue the mu-
tex requirements would still have been met. But the code
in unlock is not clever enough to avoid unnecessary calls
and in this specific case it would not be possible to avoid
the wakeup since whether thread 3 is added to the wait
queue or not depends on the race between thread 1 reset-
ting val and thread 3 being added to the wait queue. The
result need not always be the same and every time when
writing synchronization primitives one must plan for the
worst case.

As mentioned at the beginning of this section, the sim-
ple mutex code shown above has problems. One perfor-
mance problem, and even two correctness problem.

• Imagine the mutex is uncontested at all times. The
unlock member function will still in the end al-
ways call futex wake which in turn will make a
system call. This can be quite costly and is in this
case avoidable.

The problem stems from the fact that the state the
mutex code keeps is very coarse grained. If val
is zero, the mutex is unlocked. Otherwise it is
locked. What we would need to do is to recog-
nize one more state: locked and no waiters. If
unlock is called with the futex in this state the call
to futex wake could be skipped.

• The first bug is quite serious in some situations
but very hard to spot.2 The loop in lock has the
problem that between the memory read (part of the
atomic inc call) and the thread being added to
the wait queue after the value was found to be still
valid there is a sufficiently large window for caus-
ing problems.

Consider the following diagram. After thread 1 in-
cremented val it tries to put itself to sleep. But at

2This bug was present in some form for many months in the NPTL
[2] implementation. It showed mainly up as mysterious slowdowns and
occasional bursts of CPU usage.

Ulrich Drepper Version 1.3 5



the same time thread 2 tries to do the same, also
incrementing val. The futex wait call thread 1
does now fails with EWOULDBLOCK. When the sys-
tem call returns val is incremented again. If now
thread 2 calls futex wait it is in the same situa-
tion: it returns with EWOULDBLOCK and increments
val. This process can be continued ad infinitum.

futex_wait

atomic_inc

futex_wait

atomic_inc
atomic_inc

futex_wait

atomic_inc

Thread 1 Thread 2

tt

It might seem that such a behavior is rare and could
be discounted. But this is not the case. First, the
futex implementation in the kernel is serializing
uses of a specific futex. Since in our example the
threads all use the same futex this means all the
futex calls are serialized. On single processor sys-
tems the possibility that a thread gets interrupted
right after the atomic inc call is pretty low, but
it is still possible. On multi processor system the
threads running on other processors can make the
critical atomic inc calls anytime. The more pro-
cessors are involved trying to lock the same mu-
tex the higher the possibility, especially if locking
the mutex is a big part of the work. In one case a
real world application running on a four processor
machine got sped up eight to ten times by fixing
this problem. The extremely expensive cache line
transfer necessary for the atomic accesses make
this bug very costly.

• The second bug has to do with the nature of record-
ing waiters. New waiters unconditionally incre-
ment the val. But this variable has a finite size.
On all the interesting systems this means after 232

increments we are back to zero and magically the
variable is free. This is not as esoteric as it seems
since it does not require 232 threads. Every time
the futex wait call returns but the mutex has not
been unlocked the variable is incremented. I.e., it
is in theory possible for one single thread to over-
flow the counter. The remaining question is: when
can futex wait return erroneously? One exam-
ple is the first bug above. But there is also a way
which cannot be avoided. In the introduction it was

explained that the FUTEX WAIT operation is inter-
rupted if the thread received a signal. This cer-
tainly can happen in any program and it can happen
a lot.

For this reason it is in most cases necessary to avoid
boundless increments. This usually comes at a price
so one might want to examine whether this bug is
for real in the given specific situation one wants to
use the futex in or not.

5 Mutex, Take 2

A generally usable mutex implementation must at least
fix the two bugs identified in the last section. Ideally it
should also address the first point of critique. To summa-
rize:

• the livelocks caused by the unconditional change
of the futex variable must be avoided;

• the futex value must not overflow;

• in case it is known no threads wait on the mutex
the futex wake call should be avoided.

To represent the states we need at least three distinct val-
ues and since we don’t want to overflow the variable we
keep it at that. The following code uses therefore the fol-
lowing convention:

0 unlocked
1 locked, no waiters
2 locked, one or more waiters

Restricting the mutex variable to three values while still
supporting multi processor machines means we cannot
use the atomic inc function anymore. Instead we use a
function which is available on many platforms with one
single instruction: a compare-and-exchange instruction
cmpxchg (see appendix A for more details). Architec-
tures which do not provide such an instruction can be
supported by emulating it (e.g., with load lock/store con-
ditional). The resulting code looks like this:

class mutex2
{
public:
mutex () : val (0) { }
void lock () {
int c;
if ((c = cmpxchg (val, 0, 1)) != 0)
do {
if (c == 2

|| cmpxchg (val, 1, 2) != 0)
futex_wait (&val, 2);

6 Version 1.3 Futexes Are Tricky


The actual value which are used should depend on the architecture and the atomic operations the CPU supports. Sometimes it might be better to use 1, 0, and -1 respectively.



} while ((c = cmpxchg (val, 0, 2))
!= 0);

}
void unlock () {
if (atomic_dec (val) != 1) {
val = 0;
futex_wake (&val, 1);

}
}
private:
int val;

};

This code is certainly all but obvious at first sight. We
will dissect it in a minute. First let us take a look at the
performance. The fast path used if no thread contention
exists is very important and needs to be optimized for.

mutex mutex2

atomic op 1 1
lock futex syscall 0 0

atomic op 0 1
unlock futex syscall 1 0

We can see that there is no difference for lock which
needs in any case one atomic operation. It might be, that
this still translates to a slowdown since the atomic incre-
ment operation is sometimes faster than a compare-and-
exchange operation. This depends on the CPU details.
The important case here is the cost for the unlock func-
tion. We traded one system call for an atomic operation.
This is almost always a good choice, especially here since
the futex system call needs atomic instructions itself. The
benefits of this change is substantial. What about the cost
for the contended case?

mutex mutex2

atomic op 1 + 1 2
3 + 1

2
lock futex syscall 1 + 1 1 + 1

atomic op 0 1
unlock futex syscall 1 1

These results look worse for the new code and in fact,
mutex2 is indeed slower than the mutex code for con-
tended mutexes. But this is the price we have to pay for
correctness. The shortcut in the conditional inside the
loop in lock makes computing the cost a bit more diffi-
cult. If there are already waiters for the mutex the code
avoids the expensive cmpxchg instruction. In the cost
table the two stacked numbers represent these different
costs. In case there are already waiters use the upper
number, otherwise the lower number. The +N part in
the fields represents the additional cost for the function
call which has to be paid if the futex wait system call

returns but the thread cannot get the mutex and is going
back to sleep.

We see significantly higher costs for the lock function
and slightly higher costs for unlock. We make the same
number of system calls in all cases,but the lock function
makes 2 to 3 times as many atomic operations; unlock
has one more atomic operation to make. All of lock’s
additional cost are attributed to correcting the bug. The
additional unlock cost is a consequence of optimizing
the case of an uncontested mutex. It has been found
useful to do this since mutexes are also used in single
threaded applications and even in multi-threaded appli-
cations many mutex operations find the mutex unlocked.
If this code is found to be correct the additional cost is
therefore well spent. We will now go into details of the
code to show how it works and why it is correct.

First we will look at unlock. Not only because it is sim-
pler, also because the lock code depends on its imple-
mentation. When discussing the costs we already men-
tioned that the atomic dec call is used to optimize the
code path in case the mutex is uncontested, i.e., there are
no waiters. According to the table with the state values
this state is represented by 1. Therefore the return value
of atomic dec in case there is no waiter is 1. We skip
the futex wake system call in this case which would be
unnecessary since the wait queue for the futex is empty.
In case the state value is 2 we make the system call to
wake a thread if there is any. We wake only one thread;
as with the mutex code there is no need to wake more
than one since all but one thread probably would have to
go back to sleep.

Now on to lock. The intent for the first cmpxchg call is
to distinguish the uncontested case from the more com-
plicated and slower cases. If the mutex is unlocked (sta-
tus value 0) it is marked as locked with no waiters by
changing the value to 1. This is all done by this one in-
struction. Success can be tested for by comparing the old
value, returned by cmpxchg with 0. In case of a match
we are done.

It gets complicated only if the mutex is already locked.
We have two cases to distinguish: there is no waiter and
there is (perhaps) one or more waiters. The “perhaps”
might be irritating, it will become clearer later. If there
is no waiter so far we have to indicate that now there is
one. The state value for this is 2. This means we have to
change the value from 1 to 2 which is exactly what the
second cmpxchg does. We know that this function call
will do nothing in case we already have waiters which is
why we have the shortcut for c == 2.3 Then it is time to
suspend the thread. There is only one more case to han-
dle: in case the second cmpxchg failed since the mutex
is freed we should not make the system call. Instead we
can try to get the mutex right away. In all other cases the

3Remember: the || operator in C/C++ will avoid evaluating the
right-hand side expression if the left-hand size expression is true.

Ulrich Drepper Version 1.3 7



futex wait call will suspend the thread. Note that the
expected value for the futex is unconditionally 2.

Once the futex wait call returns or we did not make the
call, another attempt to take the mutex has to be made.
This is now the most non-obvious operation: we try to
change the state from unlocked (i.e., 0) to locked. But we
must use the ‘locked with possible waiters’ state 2 and
not the simple ‘locked’ state 1. Why? The answer is: be-
cause we do not know any better. When we come to this
point we cannot say with 100% certainty that there is not
already a waiter. Since being wrong in guessing sooner
or later means running into a deadlock we have to err on
the safe side. Here this means we have to mark the mutex
as possibly locked multiple times. The “perhaps” in the
initial description should have become clear. The conse-
quence is a possible unnecessary call to futex wake in
unlock.

Showing that the code is correct more formally is possi-
ble but a lot of work. We just outline the key points here.
First, the lock function only ever returns after success-
fully locking the mutex. The locking thread itself sets the
futex value to 1. Other threads, while waiting, might set
it to 2. But only the unlock function resets the value to
0. This ensure the actual locking. Waking up possible
lockers is guaranteed by them setting the futex value to 2
which causes the unlock function to wake one caller. All
threads which are “in flight”, attempting to lock the mu-
tex, when it is unlocked, do not block in the kernel since
the futex value is changed to 0 during unlock and lock

always passes 2 as the second parameter to futex wait.

But what about the livelock situation mentioned in the
last section? Can this happen here? The answer is no.
If the mutex is locked, there is at most one more change
of the futex value: the first thread calling lock changes
it from 1 to 2. All other threads calling lock recognize
that the value is set to 2 and will not change it. This is the
important difference. The cmpxchg operation might be a
bit more expensive than the atomic inc but it is neces-
sary. It might be possible in some situations to avoid the
initial cmpxchg but this is not the case the code should
be optimized for.

6 Mutex, Take 3

We are not yet done optimizing the code, at least not for
some architectures. The repeated cmpxchg operations in
the locking code are necessary to ensure the value 2 is
really written into the memory location before the sys-
tem call. For many architectures this is as good as it gets.
But the IA-32 and AMD64/IA-32e architectures have one
more ace in their sleeves: they have an atomic xchg op-
eration (without the cmp). This comes in handy in our
situations.

class mutex3
{
public:
mutex () : val (0) { }
void lock () {
int c;
if ((c = cmpxchg (val, 0, 1)) != 0) {
if (c != 2)
c = xchg (val, 2);

while (c != 0) {
futex_wait (&val, 2);
c = xchg (val, 2);

}
}

}
void unlock () {
if (atomic_dec (val) != 1) {
val = 0;
futex_wake (&val, 1);

}
}
private:
int val;

};

From the description in the last section it should be clear
that the code does exactly the same. The unlock code
is unchanged, and so is the fast path of the lock func-
tion. The slow path of the lock function is now using
xchg. The two cmpxchg instructions in the old code
were needed because the value of the variable might change
at the same time and we had to make sure we wrote the
value 2 in the memory location. Now we do it uncondi-
tionally. By using the result of the cmpxchg operation
we can save a xchg call in the first round. This brings us
to the following costs for the contended case:

mutex2 mutex3

atomic op 2
3 + 1

2
1
2 + 1

lock futex syscall 1 + 1 1 + 1
atomic op 1 1

unlock futex syscall 1 1

The new code has only advantages and in case of con-
tended mutexes it can make a big difference. The differ-
ence between executing one or two atomic operations on
the same memory location on multiple processors at the
same time is big. The actual runtime of the application
might not be directly improved but the system load goes
down and the memory performance improves.

The drawback of this new code is that it is not universally
implementable in this form. If the architecture requires
an atomic xchg operation to be implemented in terms
of cmpxchg the benefits is zero, or less. Many modern
architectures fall into this category. Beside the already

8 Version 1.3 Futexes Are Tricky



mentioned IA-32, AMD64, and IA-32e architectures it is
possible to efficiently implement xchg on architectures
which use load lock/store conditional.

7 Inter-Process

The POSIX thread interface defines synchronization in-
terfaces not only for the user inside processes. They can
also be used between processes and futexes make this
possible to implement.

One requirement of an inter-process synchronization prim-
itive is that it is a) position independent and b) has no
references/pointers to any object in any of the virtual ad-
dress space. This means wait queues have to be kept
somewhere else, in the case of futexes this happens in
the kernel. Looking at the mutex2 definition we see that
the only state necessary for the mutex implementation is
the private member val. This means to use the a mutex2
object for inter-process synchronization we only have to
create some shared memory segment and use the place-
ment syntax when creating the mutex object.

int fd = shm_open ("/global-mutex",
O_RDWR, 0);

void *p = mmap (NULL, sizeof (mutex2),
PROT_READ|PROT_WRITE,
MAP_SHARED, fd, 0);

mutex2 *m = new (p) mutex2 ();

This code segment can be used in arbitrarily many pro-
cesses on the same machine and they all will use the same
mutex; the kernel knows that all the virtual addresses are
mapped to the same physical memory address and futexes
are identified by their physical address. Inter-process mu-
texes of this kind are a very much better synchronization
than filesystem-based approaches like lock files. Lock
files have the advantage, though, that they can synchro-
nize on different machines. Pick your poison wisely.

8 Optimizing Wakeup

One of the most damaging effects of running a multi-
threaded application on a multi-processor machine is re-
peated transfer of memory cache lines from one proces-
sor to the other (a.k.a. cache line ping-pong). This hap-
pens when threads running on different processors try to
access the same memory address. This is a natural oc-
currence when implementing synchronization primitives;
if only one thread would ever try to access the mutex it
would not be needed at all.

One particularly bad case with respect to cache line ping-
pong is the pthread cond broadcast function of the
POSIX thread library. It has the potential to wake up

large numbers of threads. But the threads cannot right
away return from the calls to pthread cond wait or
pthread cond timedwait. Instead the API requires
that the POSIX mutex associated with the conditional
variable is locked first. All waiting threads must use
the same mutex. If we start all threads with a call to
futex wake and a sufficiently high number as the sec-
ond parameter, the threads might be spread out to all
available processors and they hammer on the memory
used for the mutex.4 This means the cache line(s) used
for the representation of the mutex are copied from one
processor cache to the other. All this sending of notifi-
cation and copying is very expensive. And usually all
but one thread have to go back to sleep anyway since the
mutex can belong to only one of the woken threads.

The Linux kernel futex implementation provides a spe-
cial interface for this situation. Instead of waking all
threads we wake only one. But we cannot leave the other
threads on the wait queue they were on before since this
would defeat the purpose of waking up all threads. In-
stead we can move the content (or part of it) of one wait
queue to another wait queue where the threads then can
be woken one by one.

In the example of the pthread cond broadcast func-
tion the implementation can move all the threads to the
wait queue of the futex belonging to the mutex used with
the conditional variable. The pthread unlock call the
user code has to issue after the return of the function call
which caused the thread to be added to the wait queue
of the conditional variable already wakes waiters one by
one. Therefore the pthread cond broadcast code can
move all woken waiters to the wait queue of the mutex.
Result: one by one wakeup, no cache line ping-pong, and
no more going back to sleep immediately for all but one
thread.

The wakeup code in the pthread cond broadcast func-
tion would look something like this:

futex_requeue (cond_futex, 1, MAX_INT,
mutex_futex, cond_val)

This call would move all but one of the waiters in the
wait queue of the conditional variable to the wait queue
of the mutex. The cond val parameter helps to detect
whether the conditional variable has changed since the
initiation of the requeue operation. In this case nothing is
done and the caller has to handle the new situation appro-
priately. It is important to ensure th that the implementa-
tion of pthread mutex unlock really tries to wake up a
thread from the waitqueue once the directly woken thread

4This is a simplification. In any implementation all threads would
first hammer on the memory of the conditional variable. But the result
is the same.

Ulrich Drepper Version 1.3 9



calls this function. This might be a problem since there
have been no previous pthread mutex lock calls. Im-
plementing all this requires a lot of tricky code.

The FUTEX CMP REQUEUE operation used to implement
futex requeue is only useful in special cases. Its use-
fulness might not become apparent on uni-processor ma-
chines and maybe even small multi-processor machines.
But as soon as the threads are running on more than four
processors5 the negative effects of the cache line ping-
pong are so huge that using this operation shows measur-
able and sometimes dramatic effects.

9 Waiting on Multiple Events

In some situations it is useful to wait on more than one
event at once. For instance, a thread could perform two
different tasks, both need protection by a mutex, depend-
ing on the availability on the mutex. Whichever task’s
mutex becomes available first is started. There is no such
interface in the standard POSIX thread library. So this is
a good example for an extension made by the users. The
futex authors had this in mind when they introduced the
FUTEX FD operation.

A user program would call futex fd to get one or more
file descriptors for futexes. Then this file descriptor, to-
gether with possibly many others representing real files
or sockets or the like, gets passed to select, poll, or
epoll. This seem to help a great deal.

There is one problem with this approach. The futex wait

interface’s second parameter is used to detect races. If
a second thread changes the state of the synchroniza-
tion object between the time of the last test before the
futex wait call and the time the kernel adds the thread
to the wait queue, this is detected. The futex wait call
returns with the error EWOULDBLOCK. But no such pro-
vision exists for the interface to the futex using the file
descriptor. None of the three interfaces, select, poll,
and epoll, supports passing such information down.

This limitation dramatically reduces the usefulness of the
FUTEX FD operation. No synchronization interface which
depends on exact wakeup can be used with this interface.
For instance, the mutex2 code falls into this category.
Only if a wakeup event can safely be missed is FUTEX FD

useful.

10 Other Synchronization Primitives

Most non-trivial programs using threads or multiple pro-
cesses need some more complicated synchronization prim-
itives than just mutexes. Those part of the standard POSIX
thread library (and therefore deemed generally useful)
are:

5This is an experience value for IA-32.

• barriers

• conditional variables

• read/write mutexes

• semaphores

All primitives but the simple semaphore have in common
that they need some internal variables to represent the
state. Modifying the state must happen as part of a critical
region so each of the synchronization objects also has a
mutex in it. The actual waiting for the barrier/conditional
variable/RW lock does happen with the help of a different
futex, also part of the synchronization object. In some
cases there can even be more than these two futexes, the
system does not impose a limit. When designing such a
solution it is important, though, to keep the limitations
imposed by cache lines in mind.

As a simple example consider the barrier. The object
needs an internal counter which keeps track of the num-
ber of still needed waiters. This state is protected by a fu-
tex and those threads, which arrived before the last one,
will need to go to sleep. So the interface for a barrier
could look like this:

class barrier
{
public:
barrier (unsigned int needed)
: mutex (), event (0),
still_needed (needed),
initial_needed (needed) { }

wait () {
lock.lock ();
if (still_needed-- > 1) {
unsigned int ev = event;
lock.unlock ();
do
futex_wait (event, ev);

while (event == ev);
} else {
++event;
still_needed = initial_needed;
futex_wake (event, INT_MAX);
lock.unlock ();

}
}
private:
mutex2 lock;
unsigned int event;
unsigned int still_needed;
unsigned int initial_needed;

};

The first member variable lock is the mutex, as defined
before. The second data member event is the second
futex. Its value changes whenever the last waiter arrives

10 Version 1.3 Futexes Are Tricky



and a new round begins. The other two values are the
current and initial count of waiters needed. The imple-
mentation for this class is straight-forward with the tricky
mutex implementation already in place. Note that we can
simply use futex wake to wake all the threads. Even
though this might mean we start many threads and pos-
sibly spread them to many processors, this is different
from the situation discussed in the last section. The cru-
cial difference is that upon return from the system call the
threads do not have to get another lock. This is at least
not the case in the code related to barriers.

Not all code is simple, though. The conditional variable
implementation is very complicated and way beyond the
scope of this little introduction.

In section 7 we said that the synchronization object should
not contain any memory references/pointers to make them
usable for inter-process synchronization. This is no hard
requirement for the use of futexes. If it is known that an
object is never used inter-process and the use of point-
ers provides an advantage in the implementation, by all
means, use pointers.

Ulrich Drepper Version 1.3 11



A Library Functions

atomic dec(var) The variable var will be atomically decremented and the old value is returned.

atomic inc(var) The variable var will be atomically incremented and the old value is returned.

cmpxchg(var, old, new) The content of the variable var will be replaced with new if the current value is old.
Regardless, the current value of var before the operation is returned.

futex fd(futex, signal) Create a file descriptor for futex which can be used in select, poll, and epoll

calls. If signal is not zero and the value for a valid signal, the kernel will send this signal in case the thread
gets woken while waiting.

futex requeue(from, nwake, nrequeue, to, fromval) The call wakes up at most nwake threads from the
wait queue of from. If there are more threads left after that, up to nrequeue threads are moved to the wait queue
of to. An error is returned and no wait queue is modified if thee value of the futex from is not fromval.

futex wait(futex, val) If the value of the int variable futex is still val, wait until woken by a signal or a call
to futex wake.

futex wake(futex, nwake) Wake up at most nwake threads from the wait queue of futex.

B Glossary

Nomenclature

cache line The smallest unit of memory than can be transferred between the main memory and the cache. Source:
Hyperdictionary.com ,

livelock When two or more processes continuously change their state in response to changes in the other process(es)
without doing any useful work. This is similar to deadlock in that no progress is made but differs in that neither
process is blocked or waiting for anything. Source: Hyperdictionary.com,

mutex A mutual exclusion object that allows multiple threads to synchronise access to a shared resource. A mutex has
two states: locked and unlocked. Once a mutex has been locked by a thread, other threads attempting to lock
it will block. When the locking thread unlocks (releases) the mutex, one of the blocked threads will acquire
(lock) it and proceed. Source: Hyperdictionary.com,

C References

[1] Hubertus Franke, Rusty Russell, and Matthew Kirkwood, Fuss, Futexes and Furwocks: Fast Userlevel Locking in
Linux, Proceedings of the 2002 Ottawa Linux Summit, 2002.

[2] Ulrich Drepper, Ingo Molnar, The Native POSIX Thread Library for Linux, Red Hat, Inc., 2003.

D Revision History

2003-10-12 First draft.

2003-10-17 Typos. Version 0.3.

2003-10-29 Better English. Patches by Todd Lewis todd.lewis@gs.com and Alexandre Oliva aoliva@redhat.com.
Version 0.4.

2004-02-22 Add mutex3 description. Version 0.6.

2004-04-21 Typo fix. Version 0.7.

2004-06-21 More typo fixes. Version 0.8.

2004-06-27 Describe FUTEX CMP REQUEUE. Version 1.0.

2004-12-13 Fix little mistake in cmpxchg description (reported by Neil Conway). Version 1.2.

2005-12-11 Describe FUTEX WAKE OP. Version 1.3.

12 Version 1.3 Futexes Are Tricky

mailto:todd.lewis@gs.com
mailto:aoliva@redhat.com

	1 Preface
	2 The Kernel Interface
	3 Why Do Futexes Work?
	4 Mutex, Take 1
	5 Mutex, Take 2
	6 Mutex, Take 3
	7 Inter-Process
	8 Optimizing Wakeup
	9 Waiting on Multiple Events
	10 Other Synchronization Primitives
	A Library Functions
	B Glossary
	C References
	D Revision History

