
1

Hybrid Runtime Management of Space-Time
Heterogeneity for Parallel Structured Adaptive

Applications
Xiaolin Li, Member, IEEEand Manish Parashar,Senior Member, IEEE

Abstract— Structured adaptive mesh refinement (SAMR) tech-
niques provide an effective means for dynamically concentrating
computational effort and resources to appropriate regions in
the application domain. However, due to their dynamism and
space-time heterogeneity, scalable parallel implementation of
SAMR applications remains a challenge. This paper investigates
hybrid runtime management strategies and presents an adap-
tive hierarchical multi-partitioner (AHMP) framework. AHMP
dynamically applies multiple partitioners to different regions
of the domain, in a hierarchical manner, to match the local
requirements of the regions. Key components of the AHMP
framework include a segmentation-based clustering algorithm
(SBC) that can efficiently identify regions in the domain with
relatively homogeneous partitioning requirements, mechanisms
for characterizing the partitioning requirements of these regions,
and a runtime system for selecting, configuring and applying
the most appropriate partitioner to each region. Further, to
address dynamic resource situations for long running applica-
tions, AHMP provides a hybrid partitioning strategy (HPS),
which involves application-level pipelining, trading space for
time when resources are sufficiently large and under-utilized,
and an application-level out-of-core strategy (ALOC), trading
time for space when resources are scarce in order to enhance
the survivability of applications. The AHMP framework has
been implemented and experimentally evaluated on up to 1280
processors of the IBM SP4 cluster at San Diego Supercomputer
Center.

Index Terms— Parallel Computing, Structured Adaptive Mesh
Refinement, Dynamic Load Balancing, Hierarchical Multi-
Partitioner, High Performance Computing

I. I NTRODUCTION

Simulations of complex physical phenomena, modeled by
systems of partial differential equations (PDE), are playing
an increasingly important role in science and engineering.
Furthermore, dynamically adaptive techniques, such as the
dynamic structured adaptive mesh refinement (SAMR) tech-
nique [1], [2], are emerging as attractive formulations of these
simulations. Compared to numerical techniques based on static
uniform discretization, SAMR can yield highly advantageous
ratios for cost/accuracy by concentrating computational effort
and resources to appropriate regions adaptively at runtime.
SAMR is based on block-structured refinements overlaid on a
structured coarse grid, and provide an alternative to the gen-
eral, unstructured AMR approach [3], [4]. SAMR techniques

X. Li is with the Scalable Software Systems Laboratory, Department of
Computer Science, Oklahoma State University, Stillwater, OK 74078. Email:
xiaolin@cs.okstate.edu.

M. Parashar is with The Applied Software Systems Laboratory, Department
of Electrical & Computer Engineering, Rutgers University, Piscataway, NJ
08854. Email: parashar@caip.rutgers.edu.

have been used to solve complex systems of PDEs that exhibit
localized features in varied domains including computational
fluid dynamics, numerical relativity, combustion simulations,
subsurface modeling and oil reservoir simulation [5]–[7].

Large-scale parallel implementations of SAMR-based ap-
plications have the potential to accurately model complex
physical phenomena and provide dramatic insights. However,
while there have been some large-scale implementations [8]–
[13], these implementations are typically based on application-
specific customizations, and general scalable implementations
of SAMR applications continue to present significant chal-
lenges. This is primarily due to the dynamism and space-
time heterogeneity exhibited by these applications. SAMR-
based applications are inherently dynamic because the physical
phenomena being modeled and the corresponding adaptive
computational domain change as the simulation evolves. Fur-
ther, adaptation naturally leads to a computational domain
that is spatially heterogeneous, i.e., different regions in the
computational domain and different levels of refinements have
different computational and communication requirements. Fi-
nally, the SAMR algorithm periodically regrids the compu-
tational domain causing regions of refinement to be cre-
ated/deleted/moved to match the physics being modeled, i.e.,
it exhibits temporal heterogeneity.

The dynamism and heterogeneity of SAMR applications
have been traditionally addressed using dynamic partitioning
and load-balancing algorithms, e.g., the mechanisms pre-
sented in [10] and [13], which partition and load-balance
the SAMR domain when it changes. More recently, it was
observed in [14], that, for parallel SAMR applications, the
appropriate choice and configuration of the partitioning/load-
balancing algorithm depends on the application, its runtime
state and its execution context. This lead to the development
of meta-partitioners [14], [15], which select and configure
partitioners (from a pool of partitioners) at runtime to match
the application’s current requirements. However, due to the
spatial heterogeneity of the SAMR domain, computation and
communication requirements can vary significantly across the
domain, and as a result, using a single partitioner for the entire
domain can lead to decompositions that are locally inefficient.
This is especially true for large-scale simulations that run on
over a thousand processors.

The objective of the research presented in this paper is
to address this issue. Specifically, this paper builds on our
earlier research on meta-partitioning [14], adaptive hierar-
chical partitioning [16], and adaptive clustering [17], and

2

investigates hybrid runtime management strategies and an
adaptive hierarchical multi-partitioner (AHMP) framework.
AHMP dynamically applies multiple partitioners to different
regions of the domain, in a hierarchical manner, to match local
requirements. This paper first presents a segmentation-based
clustering algorithm (SBC) that can efficiently identify regions
in the domain (calledclusters) at runtime that have relatively
homogeneous requirements. The partitioning requirements of
these cluster regions are determined and the most appropriate
partitioner from the set of available partitioners is selected,
configured and applied to each cluster.

Further, this paper also presents two strategies to cope
with different resource situations in the case of long running
applications: (1) the hybrid partitioning algorithm, which
involves application-level pipelining, trading space for time
when resources are sufficiently large and under-utilized, and
(2) the application-level out-of-core strategy (ALOC), which
trades time for space when resources are scarce in order to
improve the performance and enhance the survivability of
applications. The AHMP framework and its components are
implemented and experimentally evaluated using the RM3D
application on up to 1280 processors of the IBM SP4 cluster
at San Diego Supercomputer Center.

The rest of the paper is organized as follows. Section II
presents an overview of the SAMR technique and describes
the computation and communication behaviors of its parallel
implementation. Section III reviews related work. Section IV
describes the AHMP framework and hybrid runtime manage-
ment strategies for parallel SAMR applications. Section V
presents an experimental evaluation for the framework using
SAMR application kernels. Section VI presents a conclusion.

II. PROBLEM DESCRIPTION

A. Structured Adaptive Mesh Refinement

G

1

0

G

1

1

G

1

2

G

k

3

G

1

0

G

1

1
 G

2

1

G

n

1

G

1

2
 G

2

2

G

i

2
 G

j

2

G

k

3

Fig. 1. Adaptive Grid Hierarchy for 2D Berger-Oliger SAMR [1]. The left
figure shows a 2-D physical domain with localized multiple refinement levels.
The right figure represents the refined domain as a grid hierarchy.

Structured Adaptive Mesh Refinement (SAMR) formula-
tions for adaptive solutions to PDE systems track regions in the
computational domain with high solution errors that require
additional resolution and dynamically overlay finer grids over
these regions. SAMR methods start with a base coarse grid
with minimum acceptable resolution that covers the entire
computational domain. As the solution progresses, regions in
the domain requiring additional resolution are tagged and finer

grids are overlaid on these tagged regions of the coarse grid.
Refinement proceeds recursively so that regions on the finer
grid requiring more resolution are similarly tagged and even
finer grids are overlaid on these regions. The resulting SAMR
grid structure is a dynamic adaptive grid hierarchy as shown
in Figure 1.

B. Computation and Communication Requirements of Parallel
SAMR

Parallel implementations of SAMR applications typically
partition the adaptive grid hierarchy across available proces-
sors, and each processor operates on its local portions of
this domain in parallel. The overall performance of parallel
SAMR applications is thus limited by the ability to partition
the underlying grid hierarchies at runtime to expose all inher-
ent parallelism, minimize communication and synchronization
overheads, and balance load.

Communication overheads of parallel SAMR applications
primarily consist of four components: (1)Inter-level commu-
nications, defined between component grids at different levels
of the grid hierarchy and consist of prolongations (coarse to
fine transfer and interpolation) and restrictions (fine to coarse
transfer and interpolation); (2)Intra-level communications,
required to update the grid-elements along the boundaries
of local portions of a distributed component grid, consisting
of near-neighbor exchanges; (3)Synchronization cost, which
occurs when the load is not balanced among processors;
(4) Data migration cost, which occurs between two successive
regridding and re-mapping steps.

Partitioning schemes for SAMR grid hierarchies can be
classified as patch-based, domain-based, and hybrid [14]. A
patch, associated with one refinement level, is a rectangular
region that is created by clustering adjacent computational
grids/cells at that level [18]. In patch-based schemes, par-
titioning decisions are made independently for each patch
at each level. Domain-based schemes partition the physical
domain and result in partitions or subdomains that con-
tain computational grids/cells at multiple refinement levels.
Hybrid schemes generally follow two steps. The first step
uses domain-based schemes to create partitions, which are
mapped to a group of processors. The second step uses
patch-based or combined schemes to further distribute the
partition within its processor group. Domain-based partitioning
schemes have been studied in [13], [14], [19]. Three hybrid
schemes are presented in [13]. In general, pure patch-based
schemes outperform domain-based schemes when balancing
the workload is the only consideration. However, patch-based
schemes incur considerable overheads for communications
between refinement levels, e.g., prolongation and restriction
operations. Typically boundary information is much smaller
than the information in the entire patch. Further, if the patch-
based method completely ignores locality, it might cause
severe communication bottleneck between refinement levels.
In contrast, domain-based schemes distribute subdomains that
contain all refinement levels to processors and hence eliminate
the inter-level communications. However, for applications with
strongly localized and deeply refined regions, domain-based

3

schemes are inadequate to well balance workloads. More
detailed description and comparisons of these partitioning
schemes can be found in [13], [14], [18]. This paper mainly
focuses on domain-based schemes and also presents a new
hybrid scheme.

��
�

�

�

�

�

�

�

� � �

�

�

�

�

�

� �

�
����	
�
��

����	
���
��

���

�

�

�

�

�

�

�

� � �

�

�

�

�

�

� �

�
����	
�
��

����	
���
��

���
��

�����

�����

������
	������
�
���
�������
�������
�
���
�������
���

����������
��������	
������������
�

���
�
����������
���
	������������
���

��������������
��
�������
���

����
��������

����������	
���
��
�
������
���
�����
�����
 ������

��!��������

��!�������
���
����
�"�
��
����

���

��!�����

���

��!�����

���
� ���
�����

��!�����

����	
�
��

����	
���
��

���

����	
�
��

����	
���
��

���

�������

��

�

����� �

���
�����

��!�����

#
�������$�
���������
����

���

��!�����

���

��!�����

���
�

������

������

Fig. 2. Timing Diagram for Parallel SAMR

The timing diagram (note that the figure is not to scale)
in Figure 2 illustrates the operation of the SAMR algorithm
using a 3 level grid hierarchy. The process shown in the figure
shows a typical parallel SAMR application using a domain-
based partitioning scheme. For simplicity, the computation and
communication behaviors of only two processors,P1 andP2,
are shown. The communication overheads are illustrated in the
magnified portion of the time line. This figure illustrates the
exact computation and communication patterns for a parallel
SAMR implementation. The timing diagram shows that there
is one time step on the coarsest level (level 0) of the grid
hierarchy followed by two time steps on the first refinement
level and four time steps on the second level, before the second
time step on level 0 can start. Further, the computation and
communication steps for each refinement level are interleaved.
This behavior makes partitioning the dynamic SAMR grid
hierarchy to both balance load and minimize communication
overheads a significant challenge.

C. Spatial and Temporal Heterogeneity of SAMR Applications

The space-time heterogeneity of SAMR applications is
illustrated using the 3-D compressible turbulence simulation
kernel solving the Richtmyer-Meshkov (RM3D) instability [5]
in Figure 3. The figure shows a selection of snapshots of the
RM3D adaptive grid hierarchy as well as a plot of its load
dynamics at different regrid steps. Since the adaptive grid
hierarchy remains unchanged between two regrid steps, the
workload dynamics and other features of SAMR applications
are hence measured with respect to regrid steps. The workload
in this figure represents the computational/storage requirement,
which is computed based on the number of grid points in
the grid hierarchy. Application variables are typically defined
at these grid points and are updated at each iteration of
the simulation, and consequently, the computational/storage
requirements are proportional to the number of grid points.
The snapshots in this figure clearly demonstrate the dynamics

and space-time heterogeneity of SAMR applications - differ-
ent subregions in the computational domain have different
computational and communication requirements and regions
of refinement are created, deleted, relocated, and grow/shrink
at runtime.

III. R ELATED WORK

Parallel SAMR implementations presented in [10], [12],
[13] use dynamic partitioning and load-balancing algorithms.
These approaches view the system as a flat pool of processors.
They are based on a global knowledge of the state of the
adaptive grid hierarchy, and partition the grid hierarchy across
the set of processors. Global synchronization and communi-
cation is required to maintain this global knowledge and can
lead to significant overheads on large systems. Furthermore,
these approaches do not exploit the hierarchical nature of
the grid structure and the distribution of communications and
synchronization in this structure.

Dynamic load balancing schemes proposed in [20] involve
two phases:moving-grid phaseand splitting-grid phase. The
first phase is intended to move load from overloaded proces-
sors to underloaded processors. The second phase is triggered
when the direct grid movement cannot balance the load
among processors. These schemes improve the performance
by focusing load balance and are suited for coarse-grained load
balancing without considering the locality of patches. Dynamic
load balancing schemes have been further extended to support
distributed SAMR applications [21] using two phases: global
load balancing and local load balancing. These load balancing
in these schemes does not explicitly address the spatial and
temporal heterogeneity exhibited by SAMR applications. In
the SAMRAI library [10], [18], after the construction of
computational patches, patches are assigned to processors
using a greedy bin-packing procedure. SAMRAI uses the
Morton space-filling curve technique to maintain spatial lo-
cality for patch distribution. To further enhance scalability of
SAMR applications using the SAMRAI framework, Wissink
et. al. proposed aRecursive Binary Box Treealgorithm to
improve communication schedule construction [18]. A sim-
plified point-clustering algorithm based on Berger-Regoutsos
algorithm [22] has also been presented. The reduction of run-
time complexity using these algorithms substantially improves
the scalability of parallel SAMR applications on up to 1024
processors. As mentioned above, the SAMRAI framework
uses patch-based partitioning schemes, which result in good
load balance but might cause considerable inter-level commu-
nication and synchronization overheads. SAMR applications
have been scaled on up to 6420 processors using FLASH and
PARAMESH packages [8], [12]. The scalability is achieved
using large domain dimensions ranging from 128x128x2560
to 1024x1024x20480. Further, a Morton space-filling curve
technique has been applied to maintain spatial locality in
PARAMESH. However, the space-time heterogeneity issues
are not addressed explicitly.

A recent paper [23] presents a hierarchical partitioning and
dynamic load balancing scheme using the Zoltan toolkit [3].
The proposed scheme first uses the multilevel graph partitioner

4

regrid step 114

regrid step 5

regrid step 96

RM3D (200 regrid steps, size=256*64*64)

0

10

20

30

40

50

60

70

80

0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

Regrid Steps

T
o

ta
l

L
o

a
d

 (
1
0

0
k
)

regrid step 200
regrid step 160

Fig. 3. Spatial and Temporal Heterogeneity and Load Dynamics for a 3D Richtmyer-Meshkov Simulation using SAMR.

in ParMetis [11] for across node partitioning in order to
minimize communication across nodes. It then applies the
recursive inertial bisection (RIB) method within each node.
The approach was evaluated in small systems with eight
processors in the paper. The characterization of SAMR ap-
plications presented in [14] is based on the entire physical
domain. The research in this paper goes a step further by
considering the characteristics of individual subregions. The
concept of natural regions is presented in [24]. Two kinds
of natural regions are defined: unrefined/homogeneous and
refined/complex. The framework proposed then uses a bi-
level domain-based partitioning scheme to partition the refined
subregions. This approach is one of the first attempts to
apply multiple partitioners concurrently to the SAMR domain.
However, this approach restricts itself to applying only two
partitioning schemes, one to the refined region and the other
to the unrefined region.

IV. H YBRID RUNTIME MANAGEMENT STRATEGIES

A. Adaptive Hierarchical Multi-Partitioner Framework

Figure 4 shows the basic operation of the AHMP frame-
work. A critical task is to dynamically and efficiently iden-
tify regions that have similar requirements, calledclusters.
A cluster is a region of connected component grids that
has relatively homogeneous computation and communication
requirements. The input of AHMP is the structure of the
current grid hierarchy (an example is illustrated in Figure 1),
represented as a list of regions, which defines the runtime state
of the SAMR application. AHMP operation consists of the
following steps. First, a clustering algorithm is used to identify
cluster hierarchies. Second, each cluster is characterized and
its partitioning requirements identified. Available resources are
also partitioned into corresponding resource groups based on
the relative requirements of the clusters. A resource group is a
set of possibly phyically proximal processors that are assigned

�����

�����	�
��
��
��
���

��
�

�
	������

�����	�

�
	������

�	�	��
�
����
�
��	�

�	����
�	��

���
	���
�����	�

���

�������	�
�	
�����	�

����
�
��
�����	�

����
�
��	�

�	���
����

�	�	��
��

���
�
	�

�	����
�
��
��

Fig. 4. A Flowchart for the AHMP Framework

a coarse-grained partition of the computational workload. A
resource group is dynamically constructed based on the load
assignment and distribution. Third, these requirements are
used to select and configure an appropriate partitioner for
each cluster. The partitioner is selected from a partitioner
repository using selection policies. Finally, each cluster is
partitioned and mapped to processors in its corresponding
resource group. The strategy is triggered locally when the
application state changes. State changes are determined us-
ing the load-imbalance metric described below. Partitioning
proceeds hierarchically and incrementally. The identification
and isolation of clusters uses a segmentation-based clustering
(SBC) scheme. Partitioning schemes in the partitioner repos-
itory include Greedy Partitioning Algorithm (GPA), Level-

5

based Partitioning Algorithm (LPA), and others presented
in Section IV-C. Partitioner selection policies consider clus-
ter partitioning requirements, communication/computation re-
quirements, scattered adaptation, and activity dynamics [14].
This paper specifically focuses on developing partitioning
policies based on cluster requirements defined in terms of
refinement homogeneity, which is defined in Section V-A.

AHMP extends our previous work on the Hierarchical
Partitioning Algorithm (HPA) [16], which hierarchically ap-
plies a single partitioner, reducing global communication over-
heads and enabling incremental repartitioning and reschedul-
ing. AHMP additionally addresses spatial heterogeneity by
applying the most appropriate partitioner to each cluster based
on its characteristics and requirements. As a result, multiple
partitioners may concurrently operate on different subregions
of the computational domain.

The load imbalance factor (LIF) metric is used as the criteria
for triggering repartitioning and rescheduling within a local
resource group, and is defined as follows,

LIFA =
maxAn

i=1 Ti −minAn
i=1 Ti∑An

i=1 Ti/An

(1)

whereAn is the total number of processors in resource group
A, and Ti is the estimated relative execution time between
two consecutive regrid steps for the processori, which is
proportional to its load. In the numerator of the right-hand
side of the above equation, we use the difference between
maximum and minimum execution times to better reflect the
impact of synchronization overheads. The local load imbalance
threshold isγA. When LIFA > γA, the repartitioning is
triggered inside the local group. Note that the imbalance factor
can be recursively calculated for larger groups as well.

B. Clustering Algorithms for Cluster Region Identification

The objective of clustering is to identify well-structured sub-
regions in the SAMR grid hierarchy, called clusters. As defined
above, a cluster is a region of connected component grids
with relatively homogeneous partitioning requirements. This
section describes the segmentation-based clustering (SBC)
algorithm, which is based on space-filling curves (SFC) [25].
The algorithm is motivated by the locality-preserving property
of SFCs and the localized nature of physical features in SAMR
applications. Further, SFCs are widely used for domain-based
partitioning for SAMR applications [13], [24]–[26]. Note that
clusters are similar in concept to natural regions proposed
in [24]. However, unlike natural regions, clusters are not
restricted to strict geometric shapes, but are more flexible and
take advantage of the locality-preserving property of SFCs.

Typical SAMR applications exhibit localized features, and
thus result in localized refinements. Moveover, refinement
levels and the resulting adaptive grid hierarchy reflect the
application runtime state. Therefore, clustering subregions
with similar refinement levels is desired.

The segmentation-based clustering algorithm is based on
ideas in image segmentation [27]. The algorithm first defines
load density factor (LDF) as follows:

LDF (rlev) = (associated workload of patches with
levels >= rlev on the subregion) / (volume of the subregion
at rlev)

whererlev denotes the refinement level and the volume is
for the subregion of interest in a 3-D domain (it will be area
and length in case of 2-D and 1-D domains, respectively).

�����

��������	
����
�	
����

�	����
���������

����

��	������

�����	�

��	������

��������

�
�
������

����	���
�
�
��
�����	��

���������
��
����

�	
����

�
�

��
�
�
���	�����

�
��	�	
�
��	�

����
���
	���
�����	�

��	�

�	�����	

���	

�
�	�
��

�����	��

Fig. 5. Segmentation-based Clustering Algorithm

The SBC algorithm is illustrated in Figure 5. SBC aims
to cluster domains with similar load density together to
form cluster regions. The algorithm first smoothes out sub-
regions that are smaller than a predefined threshold, which
is referred to as the template size. Template size is deter-
mined by the stencil size of the finite difference method and
the granularity constraint, maintaining appropriate computa-
tion/communication ratios to maximize performance and min-
imize communication overheads. A subregion is defined by a
bounding box with lower-bound and upper-bound coordinates
and the strides/steps along each dimension. The subregion list
input to the SBC algorithm is created by applying the SFC
indexing mechanism on the entire domain that consists of
patches of different refinement levels. SBC follows the SFC
index to extract subregions (defined by rectangular bounding
boxes) from the subregion list until the size of the accumulated
subregion set is over the template size. It then calculates
the load density for this set of subregions and computes a
histogram of its load density. SBC continues to scan through
the entire subregion list, and repeats the above process, cal-
culating the load density and computing histograms. Based
on the histogram of the load density obtained, it then finds
a clustering thresholdθ. A simplified intermeans thresholding
algorithm by iterative selection [27], [28] is used as shown
below.

The goal of the thresholding algorithm is to partition the
SFC-indexed subregion list into two classesC0 andC1 (which
may not necessarily be two clusters as shown in Figure 7)
using an “optimal” thresholdT with respect toLDF , so that
the LDF of all subregions inC0 ≤ T and theLDF of all
subregions inC1 > T . Let µ0 andµ1 be the meanLDF of

6

C0 and C1, respectively. Initially, a thresholdT is selected,
for example, the mean of the entire list as a starting point.
Then, for the two classes generated based onT , µ′0 and µ′1
are calculated, and a new threshold is computed asT ′ = (µ′0+
µ′1)/2. This process is repeated until the value ofT converges.

Using the threshold obtained, subregions are further parti-
tioned into several cluster regions. As a result, a hierarchical
structure of cluster regions is created by recursively calling
the SBC algorithm for finer refinement levels. The maximum
number of clusters created can be adjusted to the number of
processors available. Note that this algorithm has similarities
to the point clustering algorithms proposed by Berger and
Regoutsos in [22]. However, the SBC scheme differs from this
scheme in two aspects. Unlike the Berger-Regoutsos scheme,
which creates fine-grained clusters, the SBC scheme targets
coarser granularity clusters. SBC also takes advantage of
the locality-preserving properties of SFCs to potentially re-
duce data movement costs between consecutive repartitioning
phases.

��������	 ��������
 ���������

�� ��

��

����

�� ��

��

� �

��

� 	

Fig. 6. Clustering Results for the SBC Scheme

The SBC algorithm is illustrated using a simple 2-D exam-
ple in Figure 6. In this figure, SBC results in three clusters,
which are shaded in the figure. Figure 7 shows the load density
distribution and histogram for an SFC-indexed subdomain list.
For this example, the SBC algorithm creates three clusters
defined by the regions separated by the vertical lines in the
figure on the left. The template size in this example is two
boxes on the base level. The right figure shows a histogram of
the load density. For efficiency and simplicity, this histogram
is used to identify the appropriate threshold. For this example,
the threshold is identified in between 1 and 9 using the
intermeans thresholding algorithm. While there are many more
sophisticated approaches for identifying good thresholds for
segmentation and edge detection in image processing [27],
[29], this approach is sufficient for our purpose. Note that a
predefined minimum size for a cluster region is assumed. In
this example, the subregion with index 14 in Figure 6 does
not form a cluster as its size is less than the template size. It
is instead clustered with another subregion in its proximity.

C. Partitioning Schemes and Partitioner Selection

For completeness, several partitioning algorithms within
the GrACE package [30] are briefly described. The greedy
partitioning algorithm (GPA) [13] is the default partitioning
algorithm in GrACE. First, GPA partitions the entire domain
into sub-domains such that each sub-domain keeps all refine-
ment levels as a single composite grid unit. Thus all inter-level
communications are local to a sub-domain and the inter-level
communication time is eliminated. Second, GPA rapidly scans
this list only once attempting to equally distribute load among
all processors. It helps in reducing partitioning costs and
works quite well for a relatively homogeneous computational
domain.

For applications with localized features and deep grid hi-
erarchies, GPA can result in load imbalances and hence lead
to synchronization overheads at higher levels of refinement.
To overcome this problem, the level-based partitioning al-
gorithm (LPA) [16] attempts to simultaneously balance load
and minimize synchronization cost. LPA essentially aims
to balance workload at each refinement level among all
processors in addition to balancing overall load. To further
improve the runtime performance, the hierarchical partition-
ing algorithm (HPA) enables the load distribution to reflect
the state of the adaptive grid hierarchy and exploit it to
reduce synchronization requirements, improve load-balance,
and enable concurrent communications and incremental redis-
tribution [31]. HPA partitions the computational domain into
subdomains and assigns them to hierarchical processor groups.
Other partitioners in the partitioner repository include the bin-
packing partitioner (BPA), the geometric multilevel + sequence
partitioner (G-MISP+SP), andp-way binary dissection parti-
tioner (pBD-ISP) [14], [16].

The characterization of clusters is based on their computa-
tion and communication requirements, runtime states, and the
refinement homogeneity defined in Section V-A. Anoctant
approachis proposed in [14] to classify the runtime states of
a SAMR application with respect to (a) the adaptation pattern
(scattered or localized); (b) whether runtime is dominated
by computations or communications; and (c) the activity
dynamics in the solution. A meta-partitioner is then proposed
to enable the selection/mapping of partitioners according to
the current state of an application in the octant. The mapping
is based on an experimental characterization of partitioning
techniques and application states using 5 partitioning schemes
and 7 applications. The evaluation of partitioner quality is
based on a five-component metric, including load imbalance,
communication requirements, data migration, partitioning-
introduced overheads, and partitioning time. In addition to
these characterization and selection policies, we also consider
refinement homogeneity. The overall goal of these new policies
is to obtain better load balance for less refined clusters, and
to reduce communication and synchronization costs for highly
refined clusters. For example, the policy dictates that the GPA
and G-MISP+SP partitioning algorithms be used for clusters
with refinement homogeneity greater than some threshold and
partitioning algorithms LPA and pBD-ISP be used for clusters
with refinement homogeneity greater below the threshold.

7

threshold

0

10

20

30

40

50

60

70

80

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

SFC Index on the Base-level

L
o

a
d

 D
e
n

s
it

y

0

2

4

6

8

10

12

0
 10
 20
 30
 40
 50
 60
 70

Load Density

N
u

m
b

e
r

o
f

S
u

b
re

g
io

n
s

partition

points

Fig. 7. Load Density Distribution and Histogram for SBC

����������	

�����	�
����	
����

�
�
�
�

�
� ���

��
����������	

����
�����	�
����	

��
����������	

����
�����	�
����	

����

����

�
�

�

����������	

�����	�
����	
����

�
�
�
� �

��
�

��
����������	

����
�����	�
����	

��
����������	

����
�����	�
����	

�
�

�
�

�
�

�
�

�

�

�
�

�
�

�
�

�
�

����������	

�����	�
����	
����

�
�
�
� �

��
�

��
����������	

����
�����	�
����	

��
����������	

����
�����	�
����	

�
�

�
�

�
�

�
�

�

�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

	
��
��

	����������
��

	���
������������������

Fig. 8. Hybrid Partitioning Strategy

D. Hybrid Partitioning Strategy (HPS)

The parallelism that can be exploited by domain-based parti-
tioning schemes is typically limited by granularity constraints.
In cases where a very narrow region has deep refinements,
domain-based partitioning schemes will inevitably result in
significant load imbalances, especially when using a large-
scale system. For example, assume that the predefined min-
imum dimension of a 3D block/grid on the base level is 4
grid points. In this case, the minimum workload (minimum
partition granularity δ) of a composite grid unit with 3

refinement levels is43 +2×83 +2×2×163 = 17472, i.e., the
granularity constraint isδ ≥ 17472 units. Such a composite
block can result in significant load imbalance if domain-based
partitioning is used exclusively. To expose more parallelism
in these cases, a patch-based partitioning approach must be
used. HPS combines domain-based and patch-based schemes.
To reduce communication overheads, the application of HPS
is restricted to a cluster region that is allocated to a single
resource group. Further, HPS is only applied when certain
conditions are met. These conditions include: (1) resources are
sufficient, (2) resources are under-utilized, and (3) the gain by

8

using HPS outweighs the extra communication cost incurred.
For simplicity, the communication and computation process of
HPS is illustrated using three processors in a resource group in
Figure 8. The cluster has two refinement levels in this example.

HPS has two variants: one is pure hybrid partitioning with
pipelining (pure HPS) and the other is hybrid partitioning with
redundant computation and pipelining (HPS with redundancy).
HPS splits the smallest domain-based partitions into patches at
different refinement levels, partitions the finer patches inton
partitions and assigns each partition to a different processor in
the group ofn processors. When this process extends to many
refinement levels, it is analogous to the pipelining process,
where the operation at each refinement level represents each
pipelining stage. Since the smallest load unit on the base-level
(level 0) can not be further partitioned, the pure HPS scheme
maps the level 0 patch to a single processor, while the HPS
with redundancy scheme redundantly computes the level 0
patch at all processors in the group. Although pure HPS saves
redundant computation, it needs inter-level communication
from the level 0 patch to the other patches, which can be
expensive. In contrast, HPS with redundancy trades computing
resource for less inter-level communication overheads. To
avoid significant overheads, HPS schemes are applied only in
a small resource group, e.g., an SMP node with 8 processors.

To specify the criteria for choosing HPS, the resource
sufficiency factor (RSF) is defined by,

RSF =
Nrg

Lq/Lδ
(2)

where Lq denotes the total load for a cluster region,Nrg

denotes the total number of processors in a resource group,
andLδ, the granularity, denotes the load on the smallest base-
level subregion with the maximum refinement level. In the case
of deep refinements,Lδ can be quite large. WhenRSF > ρ,
whereρ is the threshold, and resources are under-utilized, HPS
can be applied to explore additional parallelism. The threshold
is determined statistically through sensitivities analysis for a
set of applications.

The basic operations of HPS consist of pairing two refine-
ment levels, duplicating the computation on the coarser patch
and partitioning the finer patch across the resource group.
The operation of HPS is as follows: (1) AHMP generates a
set of clusters, and assigns each cluster to a resource group;
(2) Within each resource group, the algorithm checks whether
or not to trigger HPS, and if the criteria defined above are
met, AHMP selects HPS for the cluster and the corresponding
resource group; (3) HPS splits the cluster into patches at
different refinement levels, assigns the patches to individual
processors within the resource group, and coordinates the
communication and computation as illustrated in Figure 8.
Note that HPS can be recursively applied to patches of deeper
refinement hierarchies.

E. Application-Level Out-of-Core (ALOC) Strategy

When available physical memory is not sufficient for the
application, one option is to rely on the virtual memory
mechanism of the operating system (OS). OS handles page

faults and replaces less frequently used pages with the required
pages from disks. OS however has little knowledge of the
characteristics of an application and its memory access pattern.
Consequently, it will result in many unnecessary swap-in and
swap-out operations, which are very expensive. Data rates
from disks are approximately two orders of magnitude lower
than those from memory [32]. In many systems, OS sets
a default maximum limit on physical and virtual memory
allocation. When an application uses up this quota, it cannot
proceed and crashes. Experiments show that system perfor-
mance degrades during excessive memory allocation due to
high page fault rates causing memory thrashing [33]–[35]. As a
result, the amount of allocated memory and the memory usage
pattern play a critical role in overall system performance.

To address these issues, an application-level out-of-core
scheme (ALOC) is designed that exploits the application
memory access patterns and explicitly keeps the working-set
of application patches while swapping out other patches.

The ALOC mechanism proactively manages application-
level pages, i.e., the computational domain patches. It attempts
to not only improve performance, but also enhance survivabil-
ity when available memory is insufficient. For instance, as
shown in Figure 3, the RM3D application requires 4 times
more memory during the peak requirements than the average
requirements, while the peak time lasts for less than 10% of
the total execution time.

As illustrated in Figure 9, the ALOC scheme incremen-
tally partitions the local grid hierarchy into temporal virtual
computational units (T-VCU) according to refinement levels
and runtime iterations. In the figure, the notationT-VCUa

b,c

denotes the temporal VCU, wherea denotes the time step at
the base level,b denotes the current refinement level, andc is
the time step at the current level. To avoid undesired page-
swapping, ALOC releases the memory allocated by lower-
level patches and explicitly swaps them out to the disk. The
ALOC mechanism is triggered when the ratio between the
amount of memory allocated and the size of the physical
memory is above a predefined threshold or the number of page
faults increases above a threshold. The appropriate thresholds
are selected based on experiments. Specifically, each process
periodically monitors its memory usage and the page faults
incurred. Memory usage information is obtained by tracking
memory allocations and de-allocations, while page fault infor-
mation is obtained using thegetrusage()system call.

V. EXPERIMENTAL EVALUATION

A. Evaluating the Effectiveness of the SBC Clustering Algo-
rithm

To aid the evaluation of the effectiveness of the SBC
clustering scheme, a clustering quality metric is defined. The
metric consists of two components: (1) the static quality
and (2) the dynamic quality of the cluster regions generated.
The static quality of a cluster is measured in terms of its
refinement homogeneity and the efficiency of the clustering
algorithm. The dynamic quality of a cluster is measured in
terms of its communication costs (intra-level, inter-level, and
data migration). These criteria are defined as follows.

9

P1

swap out lower level patches

swap in higher level patches

swap out higher level patches

swap in lower level patches

Computation

Communication

Time
. . .

T-VCU
 1

0,1

0

0

1

1

0

0

1

1

T-VCU
 2

1,2

2

2

2

2

T-VCU
 2

2,1

T-VCU
 2

2,2

1

1

1

T-VCU
 2

1,1

. . .
3

3

T-VCU
 2

3,1

. . .

0

0

1

1

T-VCU
 3

0,3

1

1

Computation

Communication

Time
. . .

T-VCU
 1

0,1

0

0

1

1

0

0

1

1

T-VCU
 2

1,2

2

2

2

2

T-VCU
 2

2,1

T-VCU
 2

2,2

1

1

1

T-VCU
 2

1,1

. . .
3

3

T-VCU
 2

3,1

. . .

0

0

1

1

T-VCU
 3

0,3

1

1

P2

Fig. 9. Application-Level Out-of-core Strategy

(1) Refinement Homogeneity: This measures the quality of
the structure of a cluster. Let|Rtotal

i (l)| denote the total
workload of a subregion or a cluster at refinement levell,
which is composed of|Rref

i (l)|, the workload of refined
regions, and|Runref

i (l)|, the workload of un-refined
regions at refinement levell. Refinement homogeneity
is recursively defined between two refinement levels as
follows:

Hi(l) =
|Rref

i (l)|
|Rtotal

i (l)| (3)

Hall(l) =
1
n

n∑

i=1

Hi(l), if |Rref
i (l)| 6= 0 (4)

where n is the total number of subregions that have
refinement levell + 1. A goal of AHMP is to maximize
the refinement homogeneity of a cluster as partitioners
work well on relatively homogeneous regions.

(2) Communication Cost: This measures the communica-
tion overheads of a cluster and includes inter-level com-
munication, intra-level communication, synchronization
cost, and data migration cost as described in Section II-
B. A goal of AHMP is to minimize the communication
overheads of a cluster.

(3) Clustering Cost: This measures the cost of the clustering
algorithm itself. As mentioned above, SAMR applications
require regular re-partitioning and re-balancing, and as
a result clustering cost becomes important. A goal of
AHMP is to minimize the clustering cost.

Partitioning algorithms typically work well on highly ho-
mogeneous grid structures and can generate scalable parti-
tions with desired load balance. Hence, it is important to
have a quantitative measurement to specify the homogeneity.
Intuitively, the refinement homogeneity metric attempts to
isolate refined clusters that are potentially heterogeneous and
are difficult to partition. In contrast, unrefined or completely
refined clusters are homogeneous at that refinement level.

The effectiveness of SBC-based clustering is evaluated
using the metrics defined above. The evaluation compares
the refinement homogeneity of the 6 SAMR application ker-
nels with and without clustering. These application kernels

span multiple domains, including computational fluid dynam-
ics (compressible turbulence: RM2D and RM3D, supersonic
flows: ENO2D), oil reservoir simulations (oil-water flow:
BL2D and BL3D), and the transport equation (TP2D). The
applications are summarized in Table I.

Refined Homogeneity for TP2D

0

0.2

0.4

0.6

0.8

1

1.2

0
 20
 40
 60
 80
 100
 120
 140
 160
 180

Regridding Steps

H
(l

)

Level0

Level1

Level2

Level3

Fig. 10. Refinement Homogeneity for the Transport2D Application Kernel
(4 levels of refinement)

Figure 10 shows the refinement homogeneity for the TP2D
application with 4 refinement levels without any clustering.
The refinement homogeneity is smooth for level 0 and very
dynamic and irregular for levels 1, 2 and 3.

TABLE II

AVERAGE REFINEMENT HOMOGENEITY H(l) FOR 6 SAMR

APPLICATIONS

Application Level0 Level1 Level2 Level3

TP2D 0.067 0.498 0.598 0.6680
RM2D 0.220 0.680 0.830 0.901
RM3D 0.427 0.618
ENO2D 0.137 0.597 0.649 0.761
BL3D 0.044 0.267
BL2D 0.020 0.438 0.406 0.316

The average refinement homogeneity of the 6 SAMR ap-
plications without clustering is presented in Table II. The
refinement homogeneity is calculated for the entire domain
and averaged among 100 regridding steps. The table shows that
the refinement homogeneityH(l) increases as the refinement

10

TABLE I

SAMR APPLICATION KERNELS

Apps Dim Description Characteristics

TP 2D A benchmark kernel for solving transport equation, included
in the GrACE toolkit [30].

Intense activity in very
narrowly concentrated regions.
Key partitioning requirement:
minimize partitioning overheads.

RM 2D/3D A compressible turbulence application solving the Richtmyer-
Meshkov (RM) instability. RM is a fingering instability
which occurs at a material interface accelerated by a shock
wave. This instability plays an important role in studies of
supernova and inertial confinement fusion. It is a part of the
virtual shock physics test facility (VTF) developed by the
ASCI/ASAP Center at Caltech [5].

Intense activity in relatively
larger and scattered regions.
Key partitioning requirement:
minimize communication and
balance load at each refinement
level.

ENO 2D A computational fluid dynamics application for studying su-
personic flows. The application has several features including
bow shock, Mach stem, contact discontinuity, and a numerical
boundary. ENO2D is also a part of the VTF, a suite of
computational applications [5].

Intense activity in larger regions.
Key partitioning requirement: min-
imize load imbalance.

BL 2D/3D An application for studying oil-water flow simulation
(OWFS) following the Buckley-Leverette model. It is used
for simulation of hydrocarbon pollution in aquifers. This
kernel is a part of the IPARS reservoir simulation toolkit
(Integrated Parallel Accurate Reservoir Simulator) developed
by the University of Texas at Austin [36].

Intense activity in very
narrow and sparse regions,
which are highly scattered.
Key partitioning requirement:
minimize communication and data
migration overheads.

level l increases. This observation well reflects the physical
properties of SAMR applications, i.e., refined regions tend
to be further refined. Moreover, these applications typically
exhibit intensive activities in narrow regions. Typical ranges of
H(l) are: H(0) ∈ [0.02, 0.22], H(1) ∈ [0.26, 0.68], H(2) ∈
[0.59, 0.83] and H(3) ∈ [0.66, 0.9]. Several outliers require
some explanation. In case of the BL2D application, average
H(2) = 0.4. However, the individual values ofH(2) are
in the range[0.6, 0.9] with many scattered zeros. Since the
refinement homogeneity on level 3 and above is typically over
0.6 and refined subregions at higher refinement levels tend
to be more scattered, the clustering scheme focuses efforts
on clustering level 0, 1 and 2. Furthermore, based on these
statistics, we select the thresholdsθ for switching between
different lower-level partitioners as follows:θ0 = 0.4, θ1 =
0.6, andθ2 = 0.8, where the subscripts denote the refinement
level.

Figure 11 and Table III demonstrate the improvements in
refinement homogeneityusing the SBC algorithm. Figure 11
shows the effects of using SBC on level 0 for the Transport2D
application. The original homogeneityH(0) is in the range [0,
0.15], while the improved homogeneity using SBC is in the
range [0.5, 0.8].

The effects of clustering using SBC for the 6 SAMR
applications are presented in Table III. In the table, the
gain is defined as the ratio of the improved homogeneity
over the original homogeneity at each level. The gains for
TP2D, ENO2D, BL3D, and BL2D on level 0 are quite large.
The gains for RM3D and RM2D applications are smaller
because these applications already exhibit high refinement

Clustering Effects for TP2D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160 180

Regridding Steps

H
(0

)

SBC Clustered
Original

Fig. 11. Homogeneity Improvements using SBC for TP2D

homogeneity starting from level 0 as shown in Table II.
These results demonstrate the effectiveness of the clustering
scheme. Moreover, clustering increases the effectiveness of
partitioners and improves overall performance as shown in the
next section.

Communication Costs: The evaluation of communication
cost uses a trace-driven simulation. The simulations are con-
ducted as follows. First, a trace of the refinement behavior of
the application at each regrid step was obtained by running
the application on a single processor. Second, this trace is fed
into the partitioners to partition and produce a new partitioned
trace for multiple processors. Third, the partitioned trace is
then fed into the SAMR simulator, which was developed at
Rutgers University [37], to obtain the runtime performance
measurements on multiple processors. Figure 12 shows the

11

TABLE III

HOMOGENEITY IMPROVEMENTS USINGSBC FOR 6 SAMR APPLICATIONS

Application Level0 Level1 Gain on Level0 Gain on Level1

TP2D 0.565 0.989 8.433 1.986
RM2D 0.671 0.996 3.050 1.465
RM3D 0.802 0.980 1.878 1.586
ENO2D 0.851 0.995 6.212 1.667
BL3D 0.450 0.583 10.227 2.184
BL2D 0.563 0.794 28.150 1.813

Maximum Total Communication Cost (RM3D on 64 Processors)

0

500

1000

1500

2000

2500

1
 21
 41
 61
 81
 101
 121
 141
 161
 181
 201

Regridding Steps

C
o

m
m

u
n

ic
a
ti

o
n

 M
e
s
s
a
g

e
 S

iz
e

SBC+AHMP

GPA

Fig. 12. Maximum Total Communication for RM3D on 64 Processors

total communication cost for the RM3D application on 64
processors for GPA and AHMP (using SBC) schemes. The
figure shows that the overall communication cost is lower
for SBC+AHMP. However, in the interval between regrid
steps 60 and 100, SBC+AHMP exhibits higher communication
costs. This is because the application is highly dynamic
with scattered refinements during this period. The snapshot
at the regrid step 96 in Figure 3 illustrates the scattered
refinements. This in turn causes significant cluster movement
during re-clustering. Note that the exiting simulator does not
measure synchronization costs and thus does not reflect full
performance benefits that can be achieved using AHMP. The
actual performance gains due to AHMP are seen in Figure 15
based on actual runs.

Clustering Time for SBC

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

rm3d
 rm2d
 bl3d
 tp2d
 bl2d
 eno2d

SAMR Applications

T
im

e
 (

m
ic

ro
s
e
c
o

n
d

)

Fig. 13. Clustering Costs for the 6 SAMR Application Kernels

Clustering Costs:The cost of the SBC clustering algorithm
is experimentally evaluated using the 6 different SAMR appli-

cation kernels on a Beowulf cluster (Frea) at Rutgers Univer-
sity. The cluster consists of 64 processors and each processor
has a 1.7 GHz Pentium IV CPU. The costs are plotted in
Figure 13. As seen in this figure, the overall clustering time on
average is less than 0.01 second. Note that the computational
time between successive repartitioning/rescheduling phases is
typically in the order of 10’s of seconds, and as a result, the
clustering costs are not significant.

B. Performance Evaluation

This section presents the experimental evaluation of AHMP.
The overall performance benefit is evaluated on DataStar,
the IBM SP4 cluster at San Diego Supercomputer Center.
DataStar has 176 (8-way) P655+ nodes (SP4). Each node
has 8 (1.5 GHz) processors, 16 GB memory, and CPU peak
performance is 6.0 GFlops. The evaluation uses the RM3D
application kernel with a base grid of size 256x64x64, up to 3
refinement levels, and 1000 base level time steps. The number
of processors used was between 64 and 1280.

4000

4500

5000

5500

6000

6500

7000

7500

5%
 10%
 20%
 30%
 40%
 50%
 60%

Load Imbalance Threshold

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

min_groupsize=4

min_groupsize=6

min_groupsize=8

Fig. 14. Impact of Load Imbalance Threshold for RM3D on 128 Processors

Impact of Load Imbalance Threshold and Resource
Group Size: As mentioned in Section 3, the load imbalance
thresholdγ is used to trigger repartitioning and redistribution
within a resource group, wheremin group sizeis the minimum
number of processors allowed in a resource group when the
resource is partitioned hierarchically. This threshold plays an
important role because it affects the frequency of redistribu-
tion and hence the overall performance. The impact of this
threshold for different sizes of resource groups for the RM3D
application on 128 processors is plotted in Figure 14. Whenγ
increases from 5% to around 20% to 30%, the execution time

12

decreases. On the other hand, whenγ increases from 30%
to 60%, the execution time increases significantly. Smaller
values of γ result in more frequent repartitioning within a
resource group, while larger thresholds may lead to increased
load imbalance. The best performance is obtained forγ =
20% and min group size = 4. Due to the increased load
imbalance, larger group sizes do not enhance performance.
The overall performance evaluation below usesγ = 20% and
min group size = 4.

Execution Time for RM3D Application

(1000 time steps, size=256x64x64)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

64
 128
 256
 512
 1024
 1280

Number of Processors

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
e

c
)

GPA

LPA

SBC+AHMP

Fig. 15. Overall Performance for RM3D

Overall Performance: The overall execution time is plotted
in Figure 15. The figure plots execution times for GPA,
LPA and AHMP. The plot shows that SBC+AHMP delivers
the best performance. Compared to GPA, the performance
improvement is between 30% to 42%. These improvements
can be attributed to the following factors: (1) AHMP takes
advantage of the strength of different partitioning schemes
matching them to the requirements of each cluster; (2) the
SBC scheme creates well-structured clusters that reduce the
communication traffic between clusters; (3) AHMP enables
incremental repartitioning/redistribution and concurrent com-
munication between resource groups, which extends the ad-
vantages of HPA [16].

Execution Time for RM3D Application
(1000 time steps, size=128x32x32)

0

1000

2000

3000

4000

5000

6000

16 32 48 64 96 128 256 384 512

Number of Processors

E
xe

cu
ti

o
n

 T
im

e
(s

ec
)

GPA

AHMP w ithout HPS

AHMP w ith HPS

Fig. 16. Experimental Results: AHMP with and without HPS

Impact of Hybrid Partitioning: To show the impact of
the hybrid partitioning strategy, we conduct the experiment
using RM3D with a smaller domain, 128x32x32. All the other
parameters are same as in the previous experiment. Due to
the smaller computational domain, without HPS, the overall
performance degrades when the application is deployed on a
cluster with over 256 processors. The main reason is that,
without HPS, the granularity constraint and the increasing

communication overheads overshadow the increased comput-
ing resources. In contrast, with HPS, AHMP can further
scale up to 512 processors with performance gains up to
40% compared to the scheme without HPS. Note that the
maximum performance gain (40%) is achieved when using
512 processors, where the scheme without HPS results in the
degraded performance.

Impact of Out-of-Core: The ALOC scheme has been
implemented using the HDF5 library [38], which is widely
used to store scientific data. The effect of the out-of-core
scheme is evaluated using RM3D on the Frea Beowulf cluster.
The configuration of RM3D consists of a base grid of size
128 × 32 × 32, 4 refinement levels, and 100 base-level time
steps (totally 99 regridding steps). The number of processors
used is 64. Without ALOC, it took about 13507 seconds to
complete 63 regridding steps at which point the application
crashed. With ALOC, the application successfully completed
the execution of 99 regridding steps. The execution time for the
same 63 regridding steps was 9573 seconds, which includes
938 seconds for explicit out-of-core I/O operations. Figure 17
shows the page faults distribution and the execution time for
experiments using NonALOC and ALOC schemes. As seen
in the figure, without ALOC, the application incurs significant
page faults. With ALOC, the number of page faults is reduced.
As a result, the ALOC scheme improves the performance and
enhances the survivability.

VI. CONCLUSION

This paper presented hybrid runtime management strate-
gies and the adaptive hierarchical multi-partitioner (AHMP)
framework to address space-time heterogeneity in dynamic
SAMR applications. A segmentation-based clustering algo-
rithm (SBC) was used to identify cluster regions with rela-
tively homogeneous partitioning requirements in the adaptive
computational domain. The partitioning requirements of each
cluster were identified and used to select the most appropri-
ate partitioning algorithm for the cluster. Further, this paper
presented hybrid partitioning strategy (HPS), which involves
pipelining process and improves the system scalability by
trading space for time, and the application-level out-of-core
scheme (ALOC), which addresses insufficient memory re-
sources and improves overall performance and survivability
of SAMR applications. Overall, the AHMP framework and
its components have been implemented and experimentally
evaluated on up to 1280 processors. The experimental eval-
uation demonstrated both, the effectiveness of the clustering
as well as the performance improvements using AHMP. Future
work will consider adaptive tuning of control parameters
and will extend the proposed strategies to support workload
heterogeneity in multi-physics applications.

REFERENCES

[1] M. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic
partial differential equations,”Journal of Computational Physics, vol. 53,
pp. 484–512, 1984.

[2] M. Berger and P. Colella, “Local adaptive mesh refinement for shock
hydrodynamics,”Journal of Computational Physics, vol. 82, pp. 64–84,
1989.

13

Number of Page Faults for RM3D Application

(100 time steps, size=128x32x32, 4 refinement levels)

0

1000

2000

3000

4000

5000

6000

1
 11
 21
 31
 41
 51
 61
 71
 81
 91

Regridding Steps

N
u

m
b

e
r

o
f

P
a
g

e
 F

a
u

lt
s

NonALOC

ALOC

crash point

Execution Time for RM3D Application

(100 time steps, size=128x32x32, 4 refinement levels)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1
 11
 21
 31
 41
 51
 61
 71
 81
 91

Regridding Steps

E
x
e
c
u

ti
o

n
 T

im
e

NonALOC

ALOC

crash point

Fig. 17. Number of Page Faults: NonALOC versus ALOC

[3] K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan,
“Zoltan data management services for parallel dynamic applications,”
Computing in Science and Engineering, vol. 4, no. 2, pp. 90–97, 2002.

[4] S. Das, D. Harvey, and R. Biswas, “Parallel processing of adaptive
meshes with load balancing,”IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 12, no. 12, pp. 1269–1280, 2001.

[5] J. Cummings, M. Aivazis, R. Samtaney, R. Radovitzky, S. Mauch, and
D. Meiron, “A virtual test facility for the simulation of dynamic response
in materials,”Journal of Supercomputing, vol. 23, pp. 39–50, 2002.

[6] S. Hawley and M. Choptuik, “Boson stars driven to the brink of black
hole formation,”Physical Review D, vol. 62:10, no. 104024, 2000.

[7] J. Ray, H. N. Najm, R. B. Milne, K. D. Devine, and S. Kempka, “Triple
flame structure and dynamics at the stabilization point of an unsteady
lifted jet diffusion flame,”Proceedings of Combust. Inst. 2000, vol. 25,
no. 1, pp. 219–226, 2000.

[8] A. Calder, H. Tufo, J. Turan, M. Zingale, G. Henry, B. Curtis, L. Dursi,
B. Fryxell, P. MacNeice, K. Olson, P. Ricker, R. Rosner, and F. Timmes,
“High performance reactive fluid flow simulations using adaptive mesh
refinement on thousands of processors,” inProceedings of the 2000
ACM/IEEE conference on Supercomputing (CDROM), 2000.

[9] L. V. Kale, “Charm,” uRL: http://charm.cs.uiuc.edu/research/charm/.
[10] R. D. Hornung and S. R. Kohn, “Managing application complexity in the

SAMRAI object-oriented framework,”Concurrency and Computation -
Practice & Experience, vol. 14, no. 5, pp. 347–368, 2002.

[11] G. Karypis and V. Kumar, “Parmetis,” 2003, http://www-users.cs.umn.
edu/∼karypis/metis/parmetis/index.html.

[12] P. MacNeice, “Paramesh,” http://esdcd.gsfc.nasa.gov/ESS/macneice/
paramesh/paramesh.html.

[13] M. Parashar and J. Browne, “On partitioning dynamic adaptive grid
hierarchies,” in29th Annual Hawaii International Conference on System
Sciences, 1996, pp. 604–613.

[14] J. Steensland, S. Chandra, and M. Parashar, “An application-centric
characterization of domain-based SFC partitioners for parallel SAMR,”
Ieee Transactions on Parallel and Distributed Systems, vol. 13, no. 12,
pp. 1275–1289, 2002.

[15] P. E. Crandall and M. J. Quinn, “A partitioning advisory system
for networked data-parallel programming,”Concurrency: Practice and
Experience, vol. 7, no. 5, pp. 479–495, 1995.

[16] X. Li and M. Parashar, “Dynamic load partitioning strategies for manag-
ing data of space and time heterogeneity in parallel SAMR applications,”
in The 9th International Euro-Par Conference (Euro-Par 2003), Lecture
Notes in Computer Science, vol. 2790. Springer-Verlag, 2003, pp. 181–
188.

[17] ——, “Using clustering to address the heterogeneity and dynamism in
parallel SAMR application,” inThe 12th Annual IEEE International
Conference on High Performance Computing (HiPC05), 2005.

[18] A. Wissink, D. Hysom, and R. Hornung, “Enhancing scalability of
parallel structured AMR calculations,” inThe 17th ACM International
Conference on Supercomputing (ICS03), 2003, pp. 336–347.

[19] M. Thune, “Partitioning strategies for composite grids,”Parallel Algo-
rithms and Applications, vol. 11, pp. 325–348, 1997.

[20] Z. Lan, V. Taylor, and G. Bryan, “Dynamic load balancing for adaptive
mesh refinement applications: Improvements and sensitivity analysis,” in
The 13th IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS2001), 2001.

[21] ——, “Dynamic load balancing of SAMR applications on distributed

systems,”Journal of Scientic Programming, vol. 10:4, pp. 319–328,
2002.

[22] M. Berger and I. Regoutsos, “An algorithm for point clustering and
grid generation,”IEEE Transactions on Systems, Man and Cybernetics,
vol. 21, no. 5, pp. 1278–1286, 1991.

[23] J. D. Teresco, J. Faik, and J. E. Flaherty, “Hierarchical partitioning and
dynamic load balancing for scientific computation,” Williams College
Department of Computer Science, Tech. Rep. CS-04-04, 2004, (also in
Proceedings of PARA ’04).

[24] J. Steensland, “Efficient partitioning of structured dynamic grid hierar-
chies,” Ph.D. dissertation, Uppsala University, 2002.

[25] H. Sagan,Space Filling Curves. Springer-Verlag, 1994.
[26] J. Pilkington and S. Baden, “Dynamic partitioning of non-uniform

structured workloads with spacefilling curves,”IEEE Transactions on
Parallel and Distributed Systems, vol. 7, no. 3, 1996.

[27] R. C. Gonzalez and R. E. Woods,Digital Image Processing, 2nd ed.
Upper Saddle River, NJ: Prentice Hall, 2002.

[28] T. Ridler and S. Calvard, “Picture thresholding using an iterative
selection method,”IEEE Transactions on Systems, Man and Cybernetics,
vol. 8, no. 630-632, 1978.

[29] N. Otsu, “A threshold selection method from gray-level histogram,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 6, no. 1,
pp. 62–66, 1979.

[30] M. Parashar, “Grace,” http://www.caip.rutgers.edu/∼parashar/TASSL/.
[31] X. Li and M. Parashar, “Hierarchical partitioning techniques for struc-

tured adaptive mesh refinement applications,”Journal of Supercomput-
ing, vol. 28, no. 3, pp. 265 – 278, 2004.

[32] J. L. Hennessy, D. A. Patterson, and D. Goldberg,Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann, 2002.

[33] M. S. Potnuru, “Automatic out-of-core execution support for
CHARM++,” Master thesis, University of Illinois at Urbana-Champaign,
Tech. Rep., 2003.

[34] N. Saboo and L. V. Kale, “Improving paging performance with object
prefetching,” in International Conference on High Performance Com-
puting (HiPC01), 2001.

[35] J. Tang, B. Fang, M. Hu, and H. Zhang, “Developing a user-level
middleware for out-of-core computation on grids,” inIEEE International
Symposium on Cluster Computing and the Grid, 2004, pp. 686–690.

[36] “IPARS,” http://www.cpge.utexas.edu/newgeneration/.
[37] S. Chandra and M. Parashar, “A simulation framework for evaluating the

runtime characteristics of structured adaptive mesh refinement applica-
tions,” Center for Advanced Information Processing, Rutgers University,
Tech. Rep. TR-275, Sep. 2004.

[38] “Hdf5,” http://hdf.ncsa.uiuc.edu/HDF5/.

APPENDIX

GLOSSARY

• AHMP: Adaptive Hierarchical Multi-Partitioner Strategy
• ALOC: Application-Level Out-of-core Strategy
• BPA: Bin-packing Partitioning Algorithm
• G-MISP+SP: Geometric Multilevel Inverse SFC Parti-

tioning + Sequence Partitioning
• GPA: Greedy Partitioning Algorithm
• LDF: Load Density Factor

14

• HPA: Hierarchical Partitioning Algorithm
• HPS: Hybrid Partitioning Strategy
• LIF: Load Imbalance Factor
• LPA: Level-based Partitioning Algorithm
• pBD-ISP: p-way Binary Dissection-Inverse SFC Parti-

tioning
• RSF: Resource Sufficiency Factor
• SAMR: Structured Adaptive Mesh Refinement Technique
• SBC: Segmentation-Based Clustering Algorithm
• SFC: Space-Filling Curve Technique

ACKNOWLEDGMENT

The authors would like to thank Sumir Chandra and Jo-
han Steensland for many insightful research discussions. The
authors would also like to thank the editors and referees for
their suggestions, which have helped improve the quality and
presentation of this paper. The research presented in this paper
is supported in part by National Science Foundation via grants
numbers ACI 9984357, EIA 0103674, EIA 0120934, ANI
0335244, CNS 0305495, CNS 0426354 and IIS 0430826, and
by Department of Energy via the grant number DE-FG02-
06ER54857.

Xiaolin Li is Assistant Professor of Computer Sci-
ence at Oklahoma State University. He received the
BE degree from Qingdao University, China, the ME
degree from Zhejiang University, China, and the
PhD degrees from National University of Singapore
and Rutgers University, USA. His research inter-
ests include distributed systems, sensor networks,
and software engineering. He is directing the Scal-
able Software Systems Laboratory (http://www.
cs.okstate.edu/ ∼xiaolin/S3Lab). He is a
member of IEEE.

Manish Parashar is Professor of Electrical and
Computer Engineering at Rutgers University, where
he also is director of the Applied Software Systems
Laboratory. He received a BE degree in Electronics
and Telecommunications from Bombay University,
India and MS and Ph.D. degrees in Computer Engi-
neering from Syracuse University. He has received
the Rutgers Board of Trustees Award for Excellence
in Research (2004-2005), NSF CAREER Award
(1999) and the Enrico Fermi Scholarship from Ar-
gonne National Laboratory (1996). His research in-

terests include autonomic computing, parallel & distributed computing (in-
cluding peer-to-peer and Grid computing), scientific computing, and software
engineering.

Manish is a senior member of IEEE, member of the executive committee
of the IEEE Computer Society Technical Committee on Parallel Processing
(TCPP), part of the IEEE Computer Society Distinguished Visitor Program
(2004-2006), and a member of ACM. He is the co-founder of the IEEE Inter-
national Conference on Autonomic Computing (ICAC), serves on the editorial
boards of several journals, and on the steering and program committees of
several international workshops and conferences. For more information please
visit http://www.caip.rutgers.edu/ ∼parashar/ .

