Hybrid Runtime Management of Space-Time
Heterogeneity for Parallel Structured Adaptive
Applications

Xiaolin Li, Member, IEEEand Manish Parashagenior Member, IEEE

Abstract— Structured adaptive mesh refinement (SAMR) tech- have been used to solve complex systems of PDEs that exhibit
niques provide an effective means for dynamically concentrating |ocalized features in varied domains including computational
computational effort and resources to appropriate regions in fiq dynamics, numerical relativity, combustion simulations,

the application domain. However, due to their dynamism and bsurf deli d oil ir simulati 51_[7
space-time heterogeneity, scalable parallel implementation of Subsurface modeling and oil reservoir simulation [5]-{7].

SAMR applications remains a challenge. This paper investigates Large-scale parallel implementations of SAMR-based ap-
hybrid runtime management strategies and presents an adap- plications have the potential to accurately model complex
tive hierarchical multi-partitioner (AHMP) framework. AHMP physical phenomena and provide dramatic insights. However,
dynamically applies multiple partitioners to different regions while there have been some large-scale implementations [8]—
of the domain, in a hierarchical manner, to match the local . - . .
requirements of the regions. Key components of the AHMP [13]’_these mplgmgntaﬂons are typically based_ on appllcatlpn-
framework include a segmentation-based clustering algorithm SPecific customizations, and general scalable implementations
(SBC) that can efficiently identify regions in the domain with of SAMR applications continue to present significant chal-
relatively homogeneous partitioning requirements, mechanisms |enges. This is primarily due to the dynamism and space-
for characterizing the partitioning requirements of these regions, time heterogeneity exhibited by these applications. SAMR-

and a runtime system for selecting, configuring and applying 0 . . .
the most appropriate partitioner to each region. Further, to based applications are inherently dynamic because the physical

address dynamic resource situations for long running applica- Phenomena being modeled and the corresponding adaptive
tions, AHMP provides a hybrid partitioning strategy (HPS), computational domain change as the simulation evolves. Fur-
which involves application-level pipelining, trading space for ther, adaptation naturally leads to a computational domain
time when resources are sufficiently large and under-utilized, that is spatially heterogeneous, i.e., different regions in the

and an application-level out-of-core strategy (ALOC), trading - .) .
time for space when resources are scarce in order to enhance COMputational domain and different levels of refinements have

the survivability of applications. The AHMP framework has different computational and communication requirements. Fi-
been implemented and experimentally evaluated on up to 1280 nally, the SAMR algorithm periodically regrids the compu-

processors of the IBM SP4 cluster at San Diego Supercomputer tational domain causing regions of refinement to be cre-

Center. ated/deleted/moved to match the physics being modeled, i.e.,
Index Terms— Parallel Computing, Structured Adaptive Mesh it exhibits temporal heterogeneity.
Refinement, Dynamic Load Balancing, Hierarchical Multi- The dynamism and heterogeneity of SAMR applications

Partitioner, High Performance Computing have been traditionally addressed using dynamic partitioning

| INTRODUCTION and Ioa_d-balancing algorithms, e.g., _the mechanisms pre-
’ sented in [10] and [13], which partition and load-balance
Simulations of complex physical phenomena, modeled kye SAMR domain when it changes. More recently, it was
systems of partial differential equations (PDE), are playinghserved in [14], that, for parallel SAMR applications, the
an increasingly important role in science and engineeringspropriate choice and configuration of the partitioning/load-
Furthermore, dynamically adaptive techniques, such as thgancing algorithm depends on the application, its runtime
dynamic structured adaptive mesh refinement (SAMR) techte and its execution context. This lead to the development
nique [1], [2], are emerging as attractive formulations of thest meta-partitioners [14], [15], which select and configure
simulations. Compared to numerical techniques based on st@figtitioners (from a pool of partitioners) at runtime to match
uniform discretization, SAMR can yield highly advantageoughe application’s current requirements. However, due to the
ratios for cost/accuracy by concentrating computational effafpatial heterogeneity of the SAMR domain, computation and
and resources to appropriate regions adaptively at runtig@mmunication requirements can vary significantly across the
SAMR is based on block-structured refinements overlaid ong@main, and as a result, using a single partitioner for the entire
structured coarse grid, and provide an alternative to the g@ymain can lead to decompositions that are locally inefficient.
eral, unstructured AMR approach [3], [4]. SAMR techniqueshis is especially true for large-scale simulations that run on
X. Li is with the Scalable Software Systems Laboratory, Department GVET @ thousand processors.
Computer Science, Oklahoma State University, Stillwater, OK 74078. Email: The objective of the research presented in this paper is

xiaolin@cs.okstate.edu. . to address this issue. Specifically, this paper builds on our
M. Parashar is with The Applied Software Systems Laboratory, Department l h L 14 danti hi
of Electrical & Computer Engineering, Rutgers University, Piscataway, ngarlier research on meta-partitioning []' adaptive hierar-

08854. Email: parashar@caip.rutgers.edu. chical partitioning [16], and adaptive clustering [17], and

investigates hybrid runtime management strategies and grids are overlaid on these tagged regions of the coarse grid.
adaptive hierarchical multi-partitioner (AHMP) frameworkRefinement proceeds recursively so that regions on the finer
AHMP dynamically applies multiple partitioners to differengrid requiring more resolution are similarly tagged and even
regions of the domain, in a hierarchical manner, to match lodaler grids are overlaid on these regions. The resulting SAMR
requirements. This paper first presents a segmentation-baged structure is a dynamic adaptive grid hierarchy as shown
clustering algorithm (SBC) that can efficiently identify regionén Figure 1.
in the domain (callectlusterg at runtime that have relatively
homogeneous requirements. The partitioning requirements_of . N .
these cluster regions are determined and the most approprglﬁ\cl‘iomputatlon and Communication Requirements of Parallel
partitioner from the set of available partitioners is selected,
configured and applied to each cluster. Parallel implementations of SAMR applications typically
Further, this paper also presents two strategies to copatition the adaptive grid hierarchy across available proces-
with different resource situations in the case of long runnirgprs, and each processor operates on its local portions of
applications: (1) the hybrid partitioning algorithm, whicrthis domain in parallel. The overall performance of parallel
involves application-level pipelining, trading space for tim&AMR applications is thus limited by the ability to partition
when resources are sufficiently large and under-utilized, atie underlying grid hierarchies at runtime to expose all inher-
(2) the application-level out-of-core strategy (ALOC), whictent parallelism, minimize communication and synchronization
trades time for space when resources are scarce in ordepterheads, and balance load.
improve the performance and enhance the survivability of Communication overheads of parallel SAMR applications
applications. The AHMP framework and its components aggimarily consist of four components: (Ijter-level commu-
implemented and experimentally evaluated using the RM3iications defined between component grids at different levels
application on up to 1280 processors of the IBM SP4 clustef the grid hierarchy and consist of prolongations (coarse to
at San Diego Supercomputer Center. fine transfer and interpolation) and restrictions (fine to coarse
The rest of the paper is organized as follows. Section thansfer and interpolation); (2)ntra-level communications
presents an overview of the SAMR technique and describesjuired to update the grid-elements along the boundaries
the computation and communication behaviors of its parallef local portions of a distributed component grid, consisting
implementation. Section Il reviews related work. Section 1\0f near-neighbor exchanges; (Synchronization costwvhich
describes the AHMP framework and hybrid runtime manageecurs when the load is not balanced among processors;
ment strategies for parallel SAMR applications. Section {4) Data migration costwhich occurs between two successive
presents an experimental evaluation for the framework usiregridding and re-mapping steps.
SAMR application kernels. Section VI presents a conclusion. Partitioning schemes for SAMR grid hierarchies can be
classified as patch-based, domain-based, and hybrid [14]. A
patch, associated with one refinement level, is a rectangular
region that is created by clustering adjacent computational

Il. PROBLEM DESCRIPTION

A. Structured Adaptive Mesh Refinement grids/cells at that level [18]. In patch-based schemes, par-
titioning decisions are made independently for each patch
G, at each level. Domain-based schemes partition the physical

domain and result in partitions or subdomains that con-
tain computational grids/cells at multiple refinement levels.
Hybrid schemes generally follow two steps. The first step
uses domain-based schemes to create partitions, which are
mapped to a group of processors. The second step uses
patch-based or combined schemes to further distribute the
partition within its processor group. Domain-based partitioning
schemes have been studied in [13], [14], [19]. Three hybrid
schemes are presented in [13]. In general, pure patch-based
Fig. 1. Adaptive Grid Hierarchy for 2D Berger-Oliger SAMR [1]. The Ieftschemes OUtPerform domamjbaseq schemes when balancing
figure shows a 2-D physical domain with localized multiple refinement leveld1€ Workload is the only consideration. However, patch-based
The right figure represents the refined domain as a grid hierarchy. schemes incur considerable overheads for communications
between refinement levels, e.g., prolongation and restriction
Structured Adaptive Mesh Refinement (SAMR) formulaeperations. Typically boundary information is much smaller
tions for adaptive solutions to PDE systems track regions in ttiean the information in the entire patch. Further, if the patch-
computational domain with high solution errors that requireased method completely ignores locality, it might cause
additional resolution and dynamically overlay finer grids ovesevere communication bottleneck between refinement levels.
these regions. SAMR methods start with a base coarse dridcontrast, domain-based schemes distribute subdomains that
with minimum acceptable resolution that covers the entimntain all refinement levels to processors and hence eliminate
computational domain. As the solution progresses, regionstire inter-level communications. However, for applications with
the domain requiring additional resolution are tagged and firgrongly localized and deeply refined regions, domain-based

schemes are inadequate to well balance workloads. Maed space-time heterogeneity of SAMR applications - differ-

detailed description and comparisons of these partitionimegt subregions in the computational domain have different
schemes can be found in [13], [14], [18]. This paper mainlgomputational and communication requirements and regions
focuses on domain-based schemes and also presents a ofesefinement are created, deleted, relocated, and grow/shrink
hybrid scheme. at runtime.

/_ - N communication
[1] oo time IIl. RELATED WORK

P1

I oy Parallel SAMR implementations presented in [10], [12],
commuiation | 13] USE dynamic partitioning and load-balancing algorithms.
lel;lm - | - l| 2 |jf_||/lﬁ-l - m — 211 °M~~~ »m These approaches view the system as a flat pool of processors.
L] l—I,E?”gedwnhmedm“s : They are based on a global knowledge of the state of the
o T oo Tre o] eat adaptive grid hierarchy, and partition the grid hierarchy across
| T < I EE— the set of processors. Global synchronization and communi-
cation is required to maintain this global knowledge and can
lead to significant overheads on large systems. Furthermore,

I

I 2 intra-level I 2 and 1 inter-level I 1 intra-levell time

2 |1_ °* computation . A .
' these approaches do not exploit the hierarchical nature of
* The number in the time slot box denotes the refinement level of the load under processing the g r|d Structure and the d |Str|but|0n Of commu n|Cat|OnS and
* In this case, the number of refinement levels is 3 and the refinement factor is 2. . i | .
* The communication time consists of three types, intra-level, inter-level and synchronization cost Synch ron |Zat| onin th IS Stru Ctu re.

Dynamic load balancing schemes proposed in [20] involve
two phasesmoving-grid phasend splitting-grid phase The

The timing diagram (note that the figure is not to scalé. st phase is intended to move load from overloade_d proces-
in Figure 2 illustrates the operation of the SAMR algorith ors to underloaded processors. The second phase is triggered

using a 3 level grid hierarchy. The process shown in the figu‘(“@en the direct grid movement Ca_””°t balance the load
shows a typical parallel SAMR application using a domai among processors. These schemes improve the performance

based partitioning scheme. For simplicity, the computation a o focgsing !oad balange and are suiteq for coarse-grained Igad
communication behaviors of only two processdpd, and P2, alancing wlthout considering the locality of patches. Dynamic
are shown. The communication overheads are illustrated in {Rgd_kt))alacr;cgag\; schemtla_s hgve been f“Tther exteEded t.o slugplort
magnified portion of the time line. This figure illustrates thf'Std”bu:e) MRdalpp |(ie|1t|ogsb[2|1] using tr\]NO pI as;z;. ?O a
exact computation and communication patterns for a paral gfd balancing and local load balancing. These loa aancing
SAMR implementation. The timing diagram shows that ther8 these schemes dqes not_ e_pr|C|tIy address th? SF’a“a' and
is one time step on the coarsest level (level 0) of the gﬁgmporal heterpgenelty exhibited by SAMR appllcat'lons. In
hierarchy followed by two time steps on the first refinemert® SAM_RAI | Ilbrar)r/] [10], [1ﬁ], after the_ condstructlon of
level and four time steps on the second level, before the Sec&%nputatlonad pat;f: es, lf_atc es a:je assigned to proceshsors
time step on level O can start. Further, the computation algng a gree Y"_ In-packing 'f]“?ce ure. SAMRAI usgsl It €
communication steps for each refinement level are interleav%o,rtOn space-fi Ing curve technique to maintain spatial lo-
This behavior makes partitioning the dynamic SAMR gri&ahty for patch distribution. To further enhance scalability of

hierarchy to both balance load and minimize communicatitﬁf“vIR applications using_ the _SAMRAI framework_, Wissink
overheads a significant challenge. et. al. proposed &ecursive Binary Box Trealgorithm to

improve communication schedule construction [18]. A sim-
plified point-clustering algorithm based on Berger-Regoutsos
C. Spatial and Temporal Heterogeneity of SAMR Applicationgyorithm [22] has also been presented. The reduction of run-
The space-time heterogeneity of SAMR applications i#me complexity using these algorithms substantially improves
illustrated using the 3-D compressible turbulence simulatidghe scalability of parallel SAMR applications on up to 1024
kernel solving the Richtmyer-Meshkov (RM3D) instability [5]processors. As mentioned above, the SAMRAI framework
in Figure 3. The figure shows a selection of snapshots of thees patch-based partitioning schemes, which result in good
RM3D adaptive grid hierarchy as well as a plot of its loatbad balance but might cause considerable inter-level commu-
dynamics at different regrid steps. Since the adaptive gmication and synchronization overheads. SAMR applications
hierarchy remains unchanged between two regrid steps, tiave been scaled on up to 6420 processors using FLASH and
workload dynamics and other features of SAMR applicatio®ARAMESH packages [8], [12]. The scalability is achieved
are hence measured with respect to regrid steps. The worklosihg large domain dimensions ranging from 128x128x2560
in this figure represents the computational/storage requirement,1024x1024x20480. Further, a Morton space-filling curve
which is computed based on the number of grid points technique has been applied to maintain spatial locality in
the grid hierarchy. Application variables are typically definefBARAMESH. However, the space-time heterogeneity issues
at these grid points and are updated at each iteration asf not addressed explicitly.
the simulation, and consequently, the computational/storageA recent paper [23] presents a hierarchical partitioning and
requirements are proportional to the number of grid pointdynamic load balancing scheme using the Zoltan toolkit [3].
The snapshots in this figure clearly demonstrate the dynamidse proposed scheme first uses the multilevel graph partitioner

Fig. 2. Timing Diagram for Parallel SAMR

Total Load (100k)

—T T T T
100 120 140 160 180 20Q
Regrid Steps

T
80

T
60

S
0 20 40

Fig. 3. Spatial and Temporal Heterogeneity and Load Dynamics for a 3D Richtmyer-Meshkov Simulation using SAMR.

in ParMetis [11] for across node partitioning in order to < Start >
minimize communication across nodes. It then applies the

~at

recursive inertial bisection (RIB) method within each node. _Grid i

The approach was evaluated in small systems with eight Hierarchy _ _
processors in the paper. The characterization of SAMR ap- i etering Using SER
plications presented in [14] is based on the entire physical Cluster Recursively
domain. The research in this paper goes a step further by Hierarchy y for each cluster
considering the characteristics of individual subregions. The B recterize Clustl
concept of natural regions is presented in [24]. Two kinds £

of natural regions are defined: unrefined/homogeneous and Partitioner v
refined/complex. The framework proposed then uses a bi- Repository Select a Partitioner
level domain-based partitioning scheme to partition the refined >

subregions. This approach is one of the first attempts to E s iccion v

apply multiple partitioners concurrently to the SAMR domain. Policies Partition Cluster
However, this approach restricts itself to applying only two

partitioning schemes, one to the refined region and the other
to the unrefined region.

Repartitioning

IV. HYBRID RUNTIME MANAGEMENT STRATEGIES
A. Adaptive Hierarchical Multi-Partitioner Framework

Figure 4 shows the basic operation of the AHMP frame-

work. A critical task is to dynamically and efficiently iden-a coarse-grained partition of the computational workload. A
tify regions that have similar requirements, calleldisters resource group is dynamically constructed based on the load
A cluster is a region of connected component grids thassignment and distribution. Third, these requirements are
has relatively homogeneous computation and communicatiosed to select and configure an appropriate partitioner for
requirements. The input of AHMP is the structure of theach cluster. The partitioner is selected from a partitioner
current grid hierarchy (an example is illustrated in Figure ljepository using selection policies. Finally, each cluster is
represented as a list of regions, which defines the runtime stpéatitioned and mapped to processors in its corresponding
of the SAMR application. AHMP operation consists of theesource group. The strategy is triggered locally when the
following steps. First, a clustering algorithm is used to identifgpplication state changes. State changes are determined us-
cluster hierarchies. Second, each cluster is characterized argd the load-imbalance metric described below. Partitioning
its partitioning requirements identified. Available resources apeoceeds hierarchically and incrementally. The identification
also partitioned into corresponding resource groups basedam isolation of clusters uses a segmentation-based clustering
the relative requirements of the clusters. A resource group i$2BC) scheme. Partitioning schemes in the partitioner repos-
set of possibly phyically proximal processors that are assignitoky include Greedy Partitioning Algorithm (GPA), Level-

Fig. 4. A Flowchart for the AHMP Framework

based Partitioning Algorithm (LPA), and others presented LDF(rlev) = (associated workload of patches with
in Section IV-C. Partitioner selection policies consider clugevels >= rlev on the subregion) / (volume of the subregion
ter partitioning requirements, communication/computation rat rlev)
quirements, scattered adaptation, and activity dynamics [14]whererlev denotes the refinement level and the volume is
This paper specifically focuses on developing partitioninigr the subregion of interest in a 3-D domain (it will be area
policies based on cluster requirements defined in terms aid length in case of 2-D and 1-D domains, respectively).
refinement homogeneity, which is defined in Section V-A.
AHMP extends our previous work on the Hierarchical

T Start
Partitioning Algorithm (HPA) [16], which hierarchically ap- -
plies a single partitioner, reducing global communication over-
heads and enabling incremental repartitioning and reschedul- Calculate load density
ing. AHMP additionally addresses spatial heterogeneity by — Record histogram
applying the most appropriate partitioner to each cluster based template l histogram of load
on its characteristics and requirements. As a result, multiple size density
partitioners may concurrently operate on different subregions Find e
of the computational domain. v
The load imbalance factor (LIF) metric is used as the criteria asetof Partition and groups
for triggering repartitioning and rescheduling within a local clusters subregions into clusters
resource group, and is defined as follows, v
. i trl
max ;4_"1 T, _ min 24_n1 Tz increment rlev
LIF, = —a — 1) i—’
Zi:nl Tz/An Loop for each cluster
cluster End
where A, is the total number of processors in resource group hicrarchy

A, and T; is the estimated relative execution time between
two consecutive regrid steps for the processomhich is Fig. 5. Segmentation-based Clustering Algorithm
proportional to its load. In the numerator of the right-hand
side of the above equation, we use the difference betweenrne sBcC algorithm is illustrated in Figure 5. SBC aims
maximum and minimum execution times to better reflect thg cluster domains with similar load density together to
impact of synchronization overheads. The local load imbalanggm cluster regions. The algorithm first smoothes out sub-
threshold isy4. When LIF4 > va, the repartitioning is regions that are smaller than a predefined threshold, which
triggered inside the local group. Note that the imbalance factgr referred to as the template size. Template size is deter-
can be recursively calculated for larger groups as well. mined by the stencil size of the finite difference method and
the granularity constraint, maintaining appropriate computa-
tion/communication ratios to maximize performance and min-
imize communication overheads. A subregion is defined by a
The objective of clustering is to identify well-structured subbounding box with lower-bound and upper-bound coordinates
regions in the SAMR grid hierarchy, called clusters. As defineshd the strides/steps along each dimension. The subregion list
above, a cluster is a region of connected component gridput to the SBC algorithm is created by applying the SFC
with relatively homogeneous partitioning requirements. Thiadexing mechanism on the entire domain that consists of
section describes the segmentation-based clustering (SB@)ches of different refinement levels. SBC follows the SFC
algorithm, which is based on space-filling curves (SFC) [25hdex to extract subregions (defined by rectangular bounding
The algorithm is motivated by the locality-preserving propertyoxes) from the subregion list until the size of the accumulated
of SFCs and the localized nature of physical features in SAMfibregion set is over the template size. It then calculates
applications. Further, SFCs are widely used for domain-basi load density for this set of subregions and computes a
partitioning for SAMR applications [13], [24]-[26]. Note thathistogram of its load density. SBC continues to scan through
clusters are similar in concept to natural regions propos#tk entire subregion list, and repeats the above process, cal-
in [24]. However, unlike natural regions, clusters are naulating the load density and computing histograms. Based
restricted to strict geometric shapes, but are more flexible aoi the histogram of the load density obtained, it then finds
take advantage of the locality-preserving property of SFCsa clustering threshold. A simplified intermeans thresholding
Typical SAMR applications exhibit localized features, andlgorithm by iterative selection [27], [28] is used as shown
thus result in localized refinements. Moveover, refinemehéelow.
levels and the resulting adaptive grid hierarchy reflect the The goal of the thresholding algorithm is to partition the
application runtime state. Therefore, clustering subregio8$C-indexed subregion list into two classgsandC; (which
with similar refinement levels is desired. may not necessarily be two clusters as shown in Figure 7)
The segmentation-based clustering algorithm is based asing an “optimal” threshold™ with respect toLDF’, so that
ideas in image segmentation [27]. The algorithm first defindse LDF of all subregions inCy < T and theLDF of all
load density factor [DF) as follows: subregions inC; > T'. Let ug and i, be the mean.DF of

B. Clustering Algorithms for Cluster Region Identification

Cp and (1, respectively. Initially, a threshold is selected, C. Partitioning Schemes and Partitioner Selection

for example, the mean of the entire list as a starting point. o _ o
Then, for the two classes generated based’'om, and //, For completeness, several pgrﬂﬂonmg glgorlthms within
are calculated, and a new threshold is computetas (1), + the GrACE package [30] are briefly described. The greedy

1£})/2. This process is repeated until the valufofonverges. Partitioning algorithm (GPA) [13] is the default partitioning
algorithm in GrACE. First, GPA partitions the entire domain

_ Using the threshold obtained, subregions are further paffitg sub-domains such that each sub-domain keeps all refine-
tioned into several cluster regions. As a result, a hierarchiGgbnt jevels as a single composite grid unit. Thus all inter-level
structure of cluster regions is created by recursively callingmmunications are local to a sub-domain and the inter-level
the SBC algorithm for finer refinement levels. The maximurgommunication time is eliminated. Second, GPA rapidly scans
number of clusters created can be adjusted to the numberQk |ist only once attempting to equally distribute load among
processors available. Note that this algorithm has similaritigg nrocessors. It helps in reducing partitioning costs and
to the point clustering algorithms proposed by Berger angls quite well for a relatively homogeneous computational
Regoutsos in [22]. However, the SBC scheme differs from thig,main.

scheme in two aspects. Unlike the Berger-Regoutsos scheme, . oo gications with localized features and deep grid hi-

which creates fiqe-grained clusters, the SBC scheme t""rg@%ﬁ‘rchies, GPA can result in load imbalances and hence lead
coarser _granularlty_ clusters. .SBC also takes adva_ntagetg synchronization overheads at higher levels of refinement.
the locality-preserving properties of SFCs to_potentlall_y_ "®fo _overcome this problem, the level-based partitioning al-
duce data movement costs between consecutive repartition ithm (LPA) [16] attempts to simultaneously balance load

phases. and minimize synchronization cost. LPA essentially aims
to balance workload at each refinement level among all
processors in addition to balancing overall load. To further
improve the runtime performance, the hierarchical partition-
A 15 4-=-16 ing algorithm (HPA) enables the load distribution to reflect
\ } the state of the adaptive grid hierarchy and exploit it to
Y | |/ reduce synchronization requirements, improve load-balance,
NN 13 and enable concurrent communications and incremental redis-
N tribution [31]. HPA partitions the computational domain into
P2 I I i subdomains and assigns them to hierarchical processor groups.
Other partitioners in the partitioner repository include the bin-
packing partitioner (BPA), the geometric multilevel + sequence
partitioner (G-MISP+SP), ang-way binary dissection parti-
10 1/ tioner (pBD-ISP) [14], [16].
SIS R S The characterization of clusters is based on their computa-
tion and communication requirements, runtime states, and the
refinement homogeneity defined in Section V-A. Anotant
Fig. 6. Clustering Results for the SBC Scheme approachis proposed in [14] to classify the runtime states of
a SAMR application with respect to (a) the adaptation pattern
(scattered or localized); (b) whether runtime is dominated
The SBC algorithm is illustrated using a simple 2-D exanby computations or communications; and (c) the activity
ple in Figure 6. In this figure, SBC results in three clusterglynamics in the solution. A meta-partitioner is then proposed
which are shaded in the figure. Figure 7 shows the load dengityenable the selection/mapping of partitioners according to
distribution and histogram for an SFC-indexed subdomain lishe current state of an application in the octant. The mapping
For this example, the SBC algorithm creates three clustéssbased on an experimental characterization of partitioning
defined by the regions separated by the vertical lines in ttechniques and application states using 5 partitioning schemes
figure on the left. The template size in this example is twand 7 applications. The evaluation of partitioner quality is
boxes on the base level. The right figure shows a histogrambafsed on a five-component metric, including load imbalance,
the load density. For efficiency and simplicity, this histograrmommunication requirements, data migration, partitioning-
is used to identify the appropriate threshold. For this examplairoduced overheads, and partitioning time. In addition to
the threshold is identified in between 1 and 9 using thlthese characterization and selection policies, we also consider
intermeans thresholding algorithm. While there are many mamfinement homogeneity. The overall goal of these new policies
sophisticated approaches for identifying good thresholds fierto obtain better load balance for less refined clusters, and
segmentation and edge detection in image processing [28]yeduce communication and synchronization costs for highly
[29], this approach is sufficient for our purpose. Note that r@fined clusters. For example, the policy dictates that the GPA
predefined minimum size for a cluster region is assumed. dand G-MISP+SP partitioning algorithms be used for clusters
this example, the subregion with index 14 in Figure 6 doesith refinement homogeneity greater than some threshold and
not form a cluster as its size is less than the template sizepértitioning algorithms LPA and pBD-ISP be used for clusters
is instead clustered with another subregion in its proximity.with refinement homogeneity greater below the threshold.

N

B

J===9=21
~
I

\

[J Cluster1 [Cluster2 [Cluster3

Load Density

partition

points

/

/

P

4 5 6 7 8 99 10 11 12 13 14 15 16

SFC Index on the Base-level

threshold

Number of Subregions
(o))

U RRRRRRRRRRE} T T T T T
0 10 20 30 40

Load Density

T T T T
50 60 70

Fig. 7.

PO

P1

P2

PO

P1

P2

PO

P1

P2

Load Density Distribution and Histogram for SBC

o T

[T o]

Communication
Time
-

| | 1]

idle

| I S

0

Cbhlputation

Communication
Time

idle

Computation

Communication
ime

(a) domain-based strategy when resource is excessive

[0 1]

]

Computation

Communication
Time
|

0]

(==

]

1
1

Computation

Communication
Time
-

-

]

Computation

Communication
Time
-

|
1
Vgﬂ
L1

(b) HPS

=

0

=

Computation

Communication
Time
-

-

=]
—

Computation

Communication
Time

-

Computation

Communication
Jime

1 1

(c) HPS with redundancy

Fig. 8. Hybrid Partitioning Strategy

D. Hybrid Partitioning Strategy (HPS)

;

ComputatTon

refinement levels i43 +2 x 83 +2x 2 x 163 = 17472, i.e., the
granularity constraint i$ > 17472 units. Such a composite
The parallelism that can be exploited by domain-based paiiock can result in significant load imbalance if domain-based
tioning schemes is typically limited by granularity constraintgartitioning is used exclusively. To expose more parallelism
In cases where a very narrow region has deep refinemefitsthese cases, a patch-based partitioning approach must be
domain-based partitioning schemes will inevitably result i#sed. HPS combines domain-based and patch-based schemes
significant load imbalances, especially when using a largko reduce communication overheads, the application of HPS
scale System_ For examp|e, assume that the predefined niﬁnrestricted to a cluster region that is allocated to a Single
imum dimension of a 3D block/grid on the base level is gesource group. Further, HPS is only applied when certain
grid points. In this case, the minimum workload (minimung¢onditions are met. These conditions include: (1) resources are
partition granularity §) of a composite grid unit with 3 sufficient, (2) resources are under-utilized, and (3) the gain by

using HPS outweighs the extra communication cost incurrddults and replaces less frequently used pages with the required
For simplicity, the communication and computation process pages from disks. OS however has little knowledge of the
HPS is illustrated using three processors in a resource grougiraracteristics of an application and its memory access pattern.
Figure 8. The cluster has two refinement levels in this exampft@onsequently, it will result in many unnecessary swap-in and

HPS has two variants: one is pure hybrid partitioning witewap-out operations, which are very expensive. Data rates
pipelining (pure HPS) and the other is hybrid partitioning witfrom disks are approximately two orders of magnitude lower
redundant computation and pipelining (HPS with redundancyhan those from memory [32]. In many systems, OS sets
HPS splits the smallest domain-based partitions into patchesiatlefault maximum limit on physical and virtual memory
different refinement levels, partitions the finer patches into allocation. When an application uses up this quota, it cannot
partitions and assigns each partition to a different processomiroceed and crashes. Experiments show that system perfor-
the group ofn processors. When this process extends to mamance degrades during excessive memory allocation due to
refinement levels, it is analogous to the pipelining procedsigh page fault rates causing memory thrashing [33]-[35]. As a
where the operation at each refinement level represents egesult, the amount of allocated memory and the memory usage
pipelining stage. Since the smallest load unit on the base-lepaltern play a critical role in overall system performance.
(level 0) can not be further partitioned, the pure HPS schemeTo address these issues, an application-level out-of-core
maps the level O patch to a single processor, while the HB&heme (ALOC) is designed that exploits the application
with redundancy scheme redundantly computes the levelm@mory access patterns and explicitly keeps the working-set
patch at all processors in the group. Although pure HPS sawdsapplication patches while swapping out other patches.
redundant computation, it needs inter-level communicationThe ALOC mechanism proactively manages application-
from the level O patch to the other patches, which can level pagesi.e., the computational domain patches. It attempts
expensive. In contrast, HPS with redundancy trades computiiagnot only improve performance, but also enhance survivabil-
resource for less inter-level communication overheads. g when available memory is insufficient. For instance, as
avoid significant overheads, HPS schemes are applied onlyshown in Figure 3, the RM3D application requires 4 times
a small resource group, e.g., an SMP node with 8 processonare memory during the peak requirements than the average

To specify the criteria for choosing HPS, the resouraequirements, while the peak time lasts for less than 10% of
sufficiency factor (RSF) is defined by, the total execution time.

N As illustrated in Figure 9, the ALOC scheme incremen-
7 /Tz (2) tally partitions the local grid hierarchy into temporal virtual

al =6 computational unitsT-VCU) according to refinement levels
where L, denotes the total load for a cluster regiaN,, and runtime iterations. In the figure, the notati®VCUj .
denotes the total number of processors in a resource grodenotes the temporal VCU, whetedenotes the time step at
and Ls, the granularity, denotes the load on the smallest bagke base levelh denotes the current refinement level, and
level subregion with the maximum refinement level. In the catlee time step at the current level. To avoid undesired page-
of deep refinementd,s can be quite large. WheRSF > p, swapping, ALOC releases the memory allocated by lower-
wherep is the threshold, and resources are under-utilized, HRyel patches and explicitly swaps them out to the disk. The
can be applied to explore additional parallelism. The threshodd OC mechanism is triggered when the ratio between the
is determined statistically through sensitivities analysis foramount of memory allocated and the size of the physical
set of applications. memory is above a predefined threshold or the number of page

The basic operations of HPS consist of pairing two refindaults increases above a threshold. The appropriate thresholds
ment levels, duplicating the computation on the coarser patete selected based on experiments. Specifically, each process
and partitioning the finer patch across the resource grogeriodically monitors its memory usage and the page faults
The operation of HPS is as follows: (1) AHMP generates iacurred. Memory usage information is obtained by tracking
set of clusters, and assigns each cluster to a resource graupnory allocations and de-allocations, while page fault infor-
(2) Within each resource group, the algorithm checks wheth@ation is obtained using thgetrusage(system call.
or not to trigger HPS, and if the criteria defined above are
met, AHMP selects HPS for the cluster and the corresponding V. EXPERIMENTAL EVALUATION
resource group; (3) HPS splits the cluster into patches
different refinement levels, assigns the patches to individ
processors within the resource group, and coordinates
communication and computation as illustrated in Figure 8.To aid the evaluation of the effectiveness of the SBC

Note that HPS can be recursively applied to patches of deeghistering scheme, a clustering quality metric is defined. The
refinement hierarchies. metric consists of two components: (1) the static quality

and (2) the dynamic quality of the cluster regions generated.

L The static quality of a cluster is measured in terms of its

E. Application-Level Out-of-Core (ALOC) Strategy refinement homogeneity and the efficiency of the clustering

When available physical memory is not sufficient for thalgorithm. The dynamic quality of a cluster is measured in

application, one option is to rely on the virtual memoryerms of its communication costs (intra-level, inter-level, and
mechanism of the operating system (OS). OS handles patga migration). These criteria are defined as follows.

RSF =

dgt Evaluating the Effectiveness of the SBC Clustering Algo-
flm

swap out lower level patches swap out higher level patches
swap in higher level patches swap in lower level patches

W LB G0 [[[[l [E [B [T
ol (o) [(2] [BEN N T N

Computation

> <« YV vvY_ v v v wa L
T-vCU 10’1 T-VvCU 21’2 T-VCU 22Y1 T-VCU 23‘1 T-VvCU 22‘2 T-VvCU 21,1 03
Communication
P2 M m m m ’T 7‘ T‘ eee 211 m W T‘ e Eme
O] e [T e L -

Computation

> 4
| X | “ 4995 _vV Vv _ ¥V v_ v \ &) T-VCU 303
T-veu ', T-VCU 2, T.veu 2,, T-VCU 2, T-VeU 2,, T-VCU 2, ’

2,1

Fig. 9. Application-Level Out-of-core Strategy

(1) Refinement Homogeneity This measures the quality of span multiple domains, including computational fluid dynam-
the structure of a cluster. LéR!°*e!(])| denote the total ics (compressible turbulence: RM2D and RM3D, supersonic
workload of a subregion or a cluster at refinement léyel flows: ENO2D), oil reservoir simulations (oil-water flow:
which is composed olfR{ef(l)L the workload of refined BL2D and BL3D), and the transport equation (TP2D). The
regions, and|R"""*/(1)|, the workload of un-refined applications are summarized in Table I.
regions at refinement levél Refinement homogeneity
is recursively defined between two refinement levels as

Refined Homogeneity for TP2D

follows:
1.2
R (1)]
Hi(l) = 5@ 3)
‘R}Z(’t(ll (l) ‘ « Level0
1 n f = e Levell
— _ X i re T a Level
Ha(l) = - Z;Hz(l),nf [RiTDI#0 (8)
where n is the total number of subregions that have
refinement level + 1. A goal of AHMP is to maximize 0 20 40 60 80 100 120 140 160 180
the refinement homogeneity of a cluster as partitioners Regridding Steps

work well on relatively homogeneous regions.
(2) Communication Cost This measures the Communica'I:ig. 10. Refinement Homogeneity for the Transport2D Application Kernel

tion overheads of a cluster and includes inter-level corg levels of refinement)

munication, intra-level communication, synchronization

cost, and data migration cost as described in Section Il-Figure 10 shows the refinement homogeneity for the TP2D

B. A goal of AHMP is to minimize the communicationapplication with 4 refinement levels without any clustering.

overheads of a cluster. The refinement homogeneity is smooth for level 0 and very
(3) Clustering Cost This measures the cost of the clusteringynamic and irregular for levels 1, 2 and 3.

algorithm itself. As mentioned above, SAMR applications

require regular re-partitioning and re-balancing, and as TABLE Il
a result clustering cost becomes important. A goal of =~ AVERAGE REFINEMENT HOMOGENEITY H () FOR6 SAMR
AHMP is to minimize the clustering cost. APPLICATIONS
. . . Applicati Level0 | Levell | Level? [Level3
Partitioning algorithms typically work well on highly ho- | ngga fon | Oe(;'; [06:58 [Oesvgeg [oeggsol
mogeneous gr_|d structures and can generate §calable parti- RV2D 0520 T 0680 | 0830 | 0.001
tions with desired load balance. Hence, it is important to RM3D 0.427 | 0.618
have a quantitative measurement to specify the homogeneity. ENO2D 0.137 | 0.597 | 0.649 | 0.761
o ; . : BL3D 0.044 | 0.267
Intuitively, the refinement homogeneity metric attempts to 55D 0.020 0438 1 04061 0315

isolate refined clusters that are potentially heterogeneous and
are difficult to partition. In contrast, unrefined or completely
refined clusters are homogeneous at that refinement level. The average refinement homogeneity of the 6 SAMR ap-
The effectiveness of SBC-based clustering is evaluatptications without clustering is presented in Table Il. The
using the metrics defined above. The evaluation compare§inement homogeneity is calculated for the entire domain
the refinement homogeneity of the 6 SAMR application keand averaged among 100 regridding steps. The table shows that
nels with and without clustering. These application kernethe refinement homogenei§/ (/) increases as the refinement

10

TABLE |
SAMR APPLICATION KERNELS

[Apps| Dim | Description \ Characteristics \
TP 2D A benchmark kernel for solving transport equation, includedtense activity in very|
in the GrACE toolkit [30]. narrowly concentrated regions.

Key partitioning requirement
minimize partitioning overheads.
RM | 2D/3D | A compressible turbulence application solving the Richtmyelntense activity in relatively
Meshkov (RM) instability. RM is a fingering instability larger and scattered regions.
which occurs at a material interface accelerated by a shd€¢ky partitioning requirement
wave. This instability plays an important role in studies|ahinimize communication and
supernova and inertial confinement fusion. It is a part of thmlance load at each refinement
virtual shock physics test facility (VTF) developed by théevel.
ASCI/ASAP Center at Caltech [5].
ENO 2D A computational fluid dynamics application for studying suitense activity in larger regions.
personic flows. The application has several features includikgy partitioning requirement: mint
bow shock, Mach stem, contact discontinuity, and a numerigalize load imbalance.
boundary. ENO2D is also a part of the VTF, a suite |of

computational applications [5].
BL | 2D/3D | An application for studying oil-water flow simulationIntense activity in very|
(OWFS) following the Buckley-Leverette model. It is usedarrow and sparse regions
for simulation of hydrocarbon pollution in aquifers. Thiswhich are highly scattered.
kernel is a part of the IPARS reservoir simulation toolkiKey partitioning requirement
(Integrated Parallel Accurate Reservoir Simulator) developednimize communication and data
by the University of Texas at Austin [36]. migration overheads.

level | increases. This observation well reflects the physical Clustering Effects for TP2D
properties of SAMR applications, i.e., refined regions tend !
to be further refined. Moreover, these applications typically Mt
exhibit intensive activities in narrow regions. Typical ranges of o

H(l) are: H(0) € [0.02,0.22], H(1) € [0.26,0.68], H(2) € 0s
[0.59,0.83] and H(3) € [0.66,0.9]. Several outliers require Sos
some explanation. In case of the BL2D application, average ot r
H(2) = 0.4. However, the individual values off (2) are °
in the range|0.6,0.9] with many scattered zeros. Since the N -
refinement homogeneity on level 3 and above is typically over ‘ ot o —
0.6 and refined subregions at higher refinement levels tend cooRo e e e e
to be more scattered, the clustering scheme focuses efforts
on clustering level 0, 1 and 2. Furthermore, based on th@sg 11. Homogeneity Improvements using SBC for TP2D
statistics, we select the thresholésfor switching between

different lower-level partitioners as follow#y, = 0.4, 6; =

0.6, andd, = 0.8, where the subscripts denote the ref'nemeﬂbmogeneity starting from level 0 as shown in Table II.

level. These results demonstrate the effectiveness of the clustering
Figure 11 and Table Ill demonstrate the improvements gtheme. Moreover, clustering increases the effectiveness of

refinement homogeneitysing the SBC algorithm. Figure 11partitioners and improves overall performance as shown in the

shows the effects of using SBC on level O for the Transport2fext section.

application. The original homogeneity(0) is in the range [0, communication Costs: The evaluation of communication

0.15], while the improved homogeneity using SBC is in thggst uses a trace-driven simulation. The simulations are con-

0.2

Regridding Steps

range [0.5, 0.8]. ducted as follows. First, a trace of the refinement behavior of
The effects of clustering using SBC for the 6 SAMRhe application at each regrid step was obtained by running
applications are presented in Table Ill. In the table, thbe application on a single processor. Second, this trace is fed

gain is defined as the ratio of the improved homogeneiiyto the partitioners to partition and produce a new partitioned
over the original homogeneity at each level. The gains ftnrace for multiple processors. Third, the partitioned trace is
TP2D, ENO2D, BL3D, and BL2D on level 0 are quite largethen fed into the SAMR simulator, which was developed at
The gains for RM3D and RM2D applications are smalldRutgers University [37], to obtain the runtime performance
because these applications already exhibit high refinememtasurements on multiple processors. Figure 12 shows the

TABLE Il
HOMOGENEITY IMPROVEMENTS USINGSBCFOR6 SAMR APPLICATIONS

Application | LevelO | Levell | Gain on Level0] Gain on Levell]

TP2D 0.565 | 0.989 | 8.433 1.986
RM2D 0.671 | 0.996 | 3.050 1.465
RM3D 0.802 | 0.980 | 1.878 1.586
ENO2D 0.851 | 0.995 | 6.212 1.667
BL3D 0.450 | 0.583 | 10.227 2.184
BL2D 0.563 | 0.794 | 28.150 1.813

2500

2000

1500

1000

Communication Message Size

500

0

Maximum Total Communication Cost (RM3D on 64 Processors)

—+—SBC+AHMP
—+GPA

-

I

F—

e

A

I

g

1

21

a

61 81 101 121 141

Regridding Steps

Fig. 12.

Maximum Total Communication for RM3D on 64 Processors

11

cation kernels on a Beowulf cluster (Frea) at Rutgers Univer-
sity. The cluster consists of 64 processors and each processor
has a 1.7 GHz Pentium IV CPU. The costs are plotted in
Figure 13. As seen in this figure, the overall clustering time on
average is less than 0.01 second. Note that the computational
time between successive repartitioning/rescheduling phases is
typically in the order of 10’s of seconds, and as a result, the
clustering costs are not significant.

B. Performance Evaluation

This section presents the experimental evaluation of AHMP.
The overall performance benefit is evaluated on DataStar,
the IBM SP4 cluster at San Diego Supercomputer Center.
DataStar has 176 (8-way) P655+ nodes (SP4). Each node

total communication cost for the RM3D application on 6455 8 (1.5 GHz) processors, 16 GB memory, and CPU peak
processors for GPA and AHMP (using SBC) schemes. Th@rformance is 6.0 GFlops. The evaluation uses the RM3D
figure shows that the overall communication cost is lowefpplication kernel with a base grid of size 256x64x64, up to 3

for SBC+AHMP. However, in the interval between regridefinement levels, and 1000 base level time steps. The number
steps 60 and 100, SBC+AHMP exhibits higher communicatigy} processors used was between 64 and 1280.

costs. This is because the application is highly dynamic
with scattered refinements during this period. The snapshot
at the regrid step 96 in Figure 3 illustrates the scattered
refinements. This in turn causes significant cluster movement
during re-clustering. Note that the exiting simulator does not
measure synchronization costs and thus does not reflect full
performance benefits that can be achieved using AHMP. The
actual performance gains due to AHMP are seen in Figure 15
based on actual runs.

Clustering Time for SBC

10000

9000

8000

7000 +

6000 +

5000

4000 +

Time (microsecond)

3000

2000

1000

rm3d rm2d bi3d tp2d bl2d eno2d

SAMR Applications

Execution Time (sec)

7500

7000

6500

—e— min_groupsize=4

—&—min_g|

—n— Mmin_groupsize=8

i

N

/4

6000

5500

NN

V4

5000

4500

e

4000

5% 10%

30% 40%

Load Imbalance Threshold

20%

50%

60%

Fig. 14.

Impact of Load Imbalance Threshold for RM3D on 128 Processors

Impact of Load Imbalance Threshold and Resource
Group Size: As mentioned in Section 3, the load imbalance
thresholdy is used to trigger repartitioning and redistribution
within a resource group, whemin_group_sizeis the minimum
number of processors allowed in a resource group when the

Fig. 13.

Clustering Costs for the 6 SAMR Application Kernels

resource is partitioned hierarchically. This threshold plays an
important role because it affects the frequency of redistribu-
tion and hence the overall performance. The impact of this
threshold for different sizes of resource groups for the RM3D

Clustering Costs: The cost of the SBC clustering algorithmapplication on 128 processors is plotted in Figure 14. WHhen
is experimentally evaluated using the 6 different SAMR applincreases from 5% to around 20% to 30%, the execution time

12

decreases. On the other hand, wherincreases from 30% communication overheads overshadow the increased comput-
to 60%, the execution time increases significantly. Smallerg resources. In contrast, with HPS, AHMP can further
values of~ result in more frequent repartitioning within ascale up to 512 processors with performance gains up to
resource group, while larger thresholds may lead to increasta® compared to the scheme without HPS. Note that the
load imbalance. The best performance is obtained+for maximum performance gaint({%) is achieved when using
20% and min_group_size = 4. Due to the increased load512 processors, where the scheme without HPS results in the
imbalance, larger group sizes do not enhance performandegraded performance.
The overall performance evaluation below uses 20% and Impact of Out-of-Core: The ALOC scheme has been
min_group_size = 4. implemented using the HDF5 library [38], which is widely
used to store scientific data. The effect of the out-of-core
T for FTaD Ao scheme is evaluated using RM3D on the Frea Beowulf cluster.
(1000 tme sieps, Sz0=206:64:64) The configuration of RM3D consists of a base grid of size
o000 {17 128 x 32 x 32, 4 refinement levels, and 100 base-level time
= steps (totally 99 regridding steps). The number of processors

i used is 64. Without ALOC, it took about 13507 seconds to
£ w8 S complete 63 regridding steps at which point the application
Pl] crashed. With ALOC, the application successfully completed
2000 1 ﬁ the execution of 99 regridding steps. The execution time for the

1 same 63 regridding steps was 9573 seconds, which includes
R 938 seconds for explicit out-of-core I/O operations. Figure 17

shows the page faults distribution and the execution time for
experiments using NonALOC and ALOC schemes. As seen
in the figure, without ALOC, the application incurs significant
Overall Performance: The overall execution time is plotted page faults. With ALOC, the nur_nber of page faults is reduced,
. As a result, the ALOC scheme improves the performance and
in Figure 15. The figure plots execution times for GPAenhances the survivability
LPA and AHMP. The plot shows that SBC+AHMP delivers '
the best performance. Compared to GPA, the performance
improvement is between 30% to 42%. These improvements VI. CONCLUSION
can be attributed to the following factors: (1) AHMP takes This paper presented hybrid runtime management strate-
advantage of the strength of different partitioning schemeges and the adaptive hierarchical multi-partitioner (AHMP)
matching them to the requirements of each cluster; (2) th@mework to address space-time heterogeneity in dynamic
SBC scheme creates well-structured clusters that reduce $2MR applications. A segmentation-based clustering algo-
communication traffic between clusters; (3) AHMP enablagthm (SBC) was used to identify cluster regions with rela-
incremental repartitioning/redistribution and concurrent confively homogeneous partitioning requirements in the adaptive
munication between resource groups, which extends the @dmputational domain. The partitioning requirements of each
vantages of HPA [16]. cluster were identified and used to select the most appropri-
ate partitioning algorithm for the cluster. Further, this paper
Exeruton Time fr NED Appbcation presented hybrid partitioning strategy (HPS), which involves
pipelining process and improves the system scalability by

Fig. 15. Overall Performance for RM3D

———y

« N trading space for time, and the application-level out-of-core

|[=e=—AHMP with HPS

- scheme (ALOC), which addresses insufficient memory re-
H \ sources and improves overall performance and survivability
m of SAMR applications. Overall, the AHMP framework and
mm \v\"_'\’\\?\i——’—-r:.*_' its components have been implemented and experimentally
evaluated on up to 1280 processors. The experimental eval-
wom e e e mmm e uation demonstrated both, the effectiveness of the clustering
as well as the performance improvements using AHMP. Future
Fig. 16. Experimental Results: AHMP with and without HPS work will consider adaptive tuning of control parameters
and will extend the proposed strategies to support workload
f heterogeneity in multi-physics applications.

Impact of Hybrid Partitioning: To show the impact o
the hybrid partitioning strategy, we conduct the experiment
using RM3D with a smaller domain, 128x32x32. All the other REFERENCES
parameters are Same_ as in the_prev_lous experiment. Due[ﬁ) M. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic
the smaller computational domain, without HPS, the overall partial differential equationsJournal of Computational Physicgol. 53,
erformance degrades when the application is deployed on_a Pp- 484-512, 1984.
pl ith 9 256 p'l[)h . P y. héﬁ M. Berger and P. Colella, “Local adaptive mesh refinement for shock
Cluster with over processors. € main reason Is t ' hydrodynamics,'Journal of Computational Physicsol. 82, pp. 64-84,

without HPS, the granularity constraint and the increasing 1989.

Fig. 17.

(3]

(4]

(5]

(6]

(7]

(8]

El

[20]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

(28]

[19]

[20]

[21]

13

Number of Page Faults for RM3D Application
(100 time steps, size=128x32x32, 4 refinement levels)

6000 |

w crash point

5000

4000

—e—NonALOC
—=—ALOC

3000

2000

Number of Page Faults
Execution Time

1000

-

M 51 61 7 81 91
Regridding Steps

'
Q

18000
16000
14000
12000
10000
8000
6000
4000
2000

Execution Time for RM3D Application
(100 time steps, size=128x32x32, 4 refinement levels)

rash point

-

b
~

=7
rd -
Fa

1 1" 21 31 M 51 61 ! 81 91
Regridding Steps

Number of Page Faults: NonALOC versus ALOC

K. Devine, E. Boman, R. Heaphy, B. Hendrickson, and C. Vaughan,
“Zoltan data management services for parallel dynamic applications,”
Computing in Science and Engineeringl. 4, no. 2, pp. 90-97, 2002. [22]
S. Das, D. Harvey, and R. Biswas, “Parallel processing of adaptive
meshes with load balancinglEEE Transactions on Parallel and Dis-
tributed Systemsvol. 12, no. 12, pp. 1269-1280, 2001. [23]
J. Cummings, M. Aivazis, R. Samtaney, R. Radovitzky, S. Mauch, and
D. Meiron, “A virtual test facility for the simulation of dynamic response

in materials,”Journal of Supercomputingol. 23, pp. 39-50, 2002.

S. Hawley and M. Choptuik, “Boson stars driven to the brink of black24]
hole formation,”Physical Review Dvol. 62:10, no. 104024, 2000.

J. Ray, H. N. Najm, R. B. Milne, K. D. Devine, and S. Kempka, “Triple[25]
flame structure and dynamics at the stabilization point of an unsteal
lifted jet diffusion flame,”Proceedings of Combust. Inst. 200@I. 25,
no. 1, pp. 219-226, 2000.

A. Calder, H. Tufo, J. Turan, M. Zingale, G. Henry, B. Curtis, L. Dursi,[27]
B. Fryxell, P. MacNeice, K. Olson, P. Ricker, R. Rosner, and F. Timme,

“High performance reactive fluid flow simulations using adaptive me 8]
refinement on thousands of processors,’Aroceedings of the 2000
ACM/IEEE conference on Supercomputing (CDROROOO0. [29]

L. V. Kale, “Charm,” uRL: http://charm.cs.uiuc.edu/research/charm/.
R. D. Hornung and S. R. Kohn, “Managing application complexity in the
SAMRAI object-oriented framework,Concurrency and Computation - [30]
Practice & Experiencgvol. 14, no. 5, pp. 347-368, 2002. 31]
G. Karypis and V. Kumar, “Parmetis,” 2003, http://www—users.cs.umrg.
edu/~karypis/metis/parmetis/index.html.

P. MacNeice, “Paramesh,” http://esdcd.gsfc.nasa.gov/ESS/macne'[gg‘J
paramesh/paramesh.html.

M. Parashar and J. Browne, “On partitioning dynamic adaptive grig3]
hierarchies,” i29th Annual Hawaii International Conference on System
Sciences1996, pp. 604-613.

J. Steensland, S. Chandra, and M. Parashar, "An application-cen{da]
characterization of domain-based SFC partitioners for parallel SAMR,”
leee Transactions on Parallel and Distributed Systewas. 13, no. 12,

pp. 1275-1289, 2002. [35]
P. E. Crandall and M. J. Quinn, “A partitioning advisory system
for networked data-parallel programmingZoncurrency: Practice and
Experiencevol. 7, no. 5, pp. 479-495, 1995. [36]
X. Li and M. Parashar, “Dynamic load partitioning strategies for manad37]
ing data of space and time heterogeneity in parallel SAMR applications,”
in The 9th International Euro-Par Conference (Euro-Par 2003), Lecture
Notes in Computer Scienceol. 2790. Springer-Verlag, 2003, pp. 181—
188. [38]
——, “Using clustering to address the heterogeneity and dynamism in
parallel SAMR application,” inThe 12th Annual IEEE International
Conference on High Performance Computing (HiPC@H)05.

A. Wissink, D. Hysom, and R. Hornung, “Enhancing scalability of
parallel structured AMR calculations,” ifihe 17th ACM International
Conference on Supercomputing (ICS03)03, pp. 336-347.

M. Thune, “Partitioning strategies for composite gridBdrallel Algo-
rithms and Applicationsvol. 11, pp. 325-348, 1997. .
Z. Lan, V. Taylor, and G. Bryan, “Dynamic load balancing for adaptive e
mesh refinement applications: Improvements and sensitivity analysis,” in
The 13th IASTED International Conference on Parallel and Distributed
Computing and Systems (PDCS2Q02Q01. *
——, “Dynamic load balancing of SAMR applications on distributed e

systems,”Journal of Scientic Programmingvol. 10:4, pp. 319-328,
2002.

M. Berger and |. Regoutsos, “An algorithm for point clustering and
grid generation,'EEE Transactions on Systems, Man and Cyberngetics
vol. 21, no. 5, pp. 1278-1286, 1991.

J. D. Teresco, J. Faik, and J. E. Flaherty, “Hierarchical partitioning and
dynamic load balancing for scientific computation,” Williams College
Department of Computer Science, Tech. Rep. CS-04-04, 2004, (also in
Proceedings of PARA '04).

J. Steensland, “Efficient partitioning of structured dynamic grid hierar-
chies,” Ph.D. dissertation, Uppsala University, 2002.

H. SaganSpace Filling Curves Springer-Verlag, 1994.

] J. Pilkington and S. Baden, “Dynamic partitioning of non-uniform

structured workloads with spacefilling curve$EE Transactions on
Parallel and Distributed Systemsol. 7, no. 3, 1996.

R. C. Gonzalez and R. E. WoodBjgital Image Processing2nd ed.
Upper Saddle River, NJ: Prentice Hall, 2002.

T. Ridler and S. Calvard, “Picture thresholding using an iterative
selection method JEEE Transactions on Systems, Man and Cybernetics
vol. 8, no. 630-632, 1978.

N. Otsu, “A threshold selection method from gray-level histogram,”
IEEE Transactions on Systems, Man and Cybernetio 6, no. 1,
pp. 62—66, 1979.

M. Parashar, “Grace,” http://www.caip.rutgers.edpérashar/TASSL/.

X. Li and M. Parashar, “Hierarchical partitioning techniques for struc-
tured adaptive mesh refinement applicatiodstirnal of Supercomput-
ing, vol. 28, no. 3, pp. 265 — 278, 2004.

J. L. Hennessy, D. A. Patterson, and D. Goldb&gmputer Architec-
ture: A Quantitative Approach Morgan Kaufmann, 2002.

M. S. Potnuru, “Automatic out-of-core execution support for
CHARM++," Master thesis, University of lllinois at Urbana-Champaign,
Tech. Rep., 2003.

N. Saboo and L. V. Kale, “Improving paging performance with object
prefetching,” inInternational Conference on High Performance Com-
puting (HIiPCO01) 2001.

J. Tang, B. Fang, M. Hu, and H. Zhang, “Developing a user-level
middleware for out-of-core computation on grids,"|EEE International
Symposium on Cluster Computing and the G#604, pp. 686—690.
“IPARS,” http://www.cpge.utexas.edu/negeneration/.

S. Chandra and M. Parashar, “A simulation framework for evaluating the
runtime characteristics of structured adaptive mesh refinement applica-
tions,” Center for Advanced Information Processing, Rutgers University,
Tech. Rep. TR-275, Sep. 2004.

“Hdf5,” http://hdf.ncsa.uiuc.edu/HDF5/.

APPENDIX
GLOSSARY

AHMP: Adaptive Hierarchical Multi-Partitioner Strategy
ALOC: Application-Level Out-of-core Strategy

BPA: Bin-packing Partitioning Algorithm

G-MISP+SP: Geometric Multilevel Inverse SFC Parti-
tioning + Sequence Patrtitioning

GPA: Greedy Partitioning Algorithm

LDF: Load Density Factor

« HPA: Hierarchical Partitioning Algorithm

o HPS: Hybrid Partitioning Strategy

o LIF: Load Imbalance Factor

o LPA: Level-based Partitioning Algorithm

« pBD-ISP: p-way Binary Dissection-Inverse SFC Parti-
tioning

o RSF: Resource Sufficiency Factor

o SAMR: Structured Adaptive Mesh Refinement Technique

« SBC: Segmentation-Based Clustering Algorithm

« SFC: Space-Filling Curve Technique

ACKNOWLEDGMENT

The authors would like to thank Sumir Chandra and Jo-
han Steensland for many insightful research discussions. The
authors would also like to thank the editors and referees for
their suggestions, which have helped improve the quality and
presentation of this paper. The research presented in this paper
is supported in part by National Science Foundation via grants
numbers ACI 9984357, EIA 0103674, EIA 0120934, ANI
0335244, CNS 0305495, CNS 0426354 and 1S 0430826, and
by Department of Energy via the grant number DE-FGO02-
06ER54857.

Xiaolin Li is Assistant Professor of Computer Sci-
ence at Oklahoma State University. He received the
BE degree from Qingdao University, China, the ME
degree from Zhejiang University, China, and the
PhD degrees from National University of Singapore
and Rutgers University, USA. His research inter-
ests include distributed systems, sensor networks,
and software engineering. He is directing the Scal-
able Software Systems Laboratohttp://www.
cs.okstate.edu/ ~xiaolin/S3Lab). Heis a
member of IEEE.

Manish Parashar is Professor of Electrical and
Computer Engineering at Rutgers University, where
he also is director of the Applied Software Systems
Laboratory. He received a BE degree in Electronics
and Telecommunications from Bombay University,
India and MS and Ph.D. degrees in Computer Engi-
neering from Syracuse University. He has received
the Rutgers Board of Trustees Award for Excellence
in Research (2004-2005), NSF CAREER Award
(1999) and the Enrico Fermi Scholarship from Ar-
gonne National Laboratory (1996). His research in-
terests include autonomic computing, parallel & distributed computing (in-
cluding peer-to-peer and Grid computing), scientific computing, and software
engineering.

Manish is a senior member of IEEE, member of the executive committee
of the IEEE Computer Society Technical Committee on Parallel Processing
(TCPP), part of the IEEE Computer Society Distinguished Visitor Program
(2004-2006), and a member of ACM. He is the co-founder of the IEEE Inter-
national Conference on Autonomic Computing (ICAC), serves on the editorial
boards of several journals, and on the steering and program committees of
several international workshops and conferences. For more information please
visit http://www.caip.rutgers.edu/ ~parashar/

14

