
Haddock, A Haskell Documentation Tool

Simon Marlow
Microsoft Research Ltd., Cambridge, U.K.

Abstract

This paper describes Haddock, a tool for automatically generating
documentation from Haskell source code. Haddock’s unique ap-
proach to source code annotations provides a useful separation be-
tween the implementation of a library and the interface (and hence
also the documentation) of that library, so that as far as possible
the documentation annotations in the source code do not affect the
programmer’s freedom over the structure of the implementation.
The internal structure and implementation of Haddock is also dis-
cussed.

Categories and Subject Descriptors

I.7.2 [Document and text processing]: Document Preparation—
Languages and systems, Markup languages

General Terms

Design, Languages, Algorithms

Keywords

Haskell, Documentation tool, Documentation generation, Source-
code documentation, API documentation, Module system

1 Introduction

Generating documentation directly from source code has recently
become fashionable, due in no small part to the popularity of Sun’s
JavaDoc tool[9]. Nowadays most languages have at least one tool
for generating documentation from source code [11, 5, 3, 2], and if
you program in C or C++ you are in the fortunate position of having
a multitude of tools to choose from.

This paper describes Haddock, a documentation tool for Haskell.
Figures 1 and 2 give examples of an annotated Haskell module and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Haskell’02, October 3, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-605-6/02/0010 ...$5.00

the corresponding HTML output produced by Haddock, respec-
tively. Haddock improves on other documentation tools in some
important ways, as we shall describe later in this section.

Firstly let us be clear about the problem domain: we are pri-
marily interested in generating documentation for a library, or
API (application programming interface), rather than generating
nicely-formatted source code. In particular literate programming
systems[6] do not fall into this category; they are concerned with
writing well-documented source code, to be later formatted in its
entirety. A consumer of an API or library is not interested in the
implementation details of the library; indeed, we would rather im-
plementation details were omitted from the documentation wher-
ever possible, for obvious modularity reasons.

There are several compelling reasons to combine library documen-
tation and source code:

� There is less chance that the documentation will stray out of
sync with the reality of the implementation, since the docu-
mentation is right next to the implementation.

� In most cases there is already documentation in the source
code in the form of comments, and there may well be dupli-
cation between the comments in the source code and the doc-
umentation. Clearly, if the comments can also be interpreted
as the documentation itself, then we can eliminate the dupli-
cation and furthermore make it easier for the programmer to
keep the documentation up to date (and give the programmer
an incentive to keep the comments up to date!).

� There is a great deal of documentation that can be extracted
automatically from the source code: APIs, types, data struc-
tures, class hierarchies, dependency graphs, and so on. Hav-
ing a tool to extract this information from the actual imple-
mentation is more desirable than trying to duplicate it in sep-
arate documentation, and even better is a tool that can include
programmer-written documentation along with the extracted
information.

� Having interpreted the API from the source code, a documen-
tation tool can automatically cross-reference the documen-
tation it produces. If a function type mentions a particular
type constructor, for example, it can be hyperlinked or cross-
referenced to the definition of that type constructor. The tool
can also generate an index from names to definitions, and even
an index from names to uses, without intervention from the
programmer.

Our documentation tool, Haddock, provides all of these benefits
for Haskell source code. In addition, we believe that the following

78

principles are important:

� The form of the documentation annotations we choose to add
to the source code should not be restricted to one particular
rendering format. For example, it wouldn’t do to force the
programmer to write documentation annotations in HTML,
since that would prevent us rendering the documentation in a
medium with less rich formatting facilities. Because we want
our annotations to be renderer-independent, we are forced to
use a markup format that provides no more that the lowest
common denominator of our target rendering formats.

� The programmer spends far more time looking at and edit-
ing the source code that he or she does looking at the docu-
mentation. Therefore, the source code annotations should be
easy to read and write in a plain ASCII editor, without heavy-
weight markup for common features. Recent discussions on
the haskelldoc mailing list[1] highlighted this as an impor-
tant principle for a Haskell documentation system.

So Haddock chooses a lightweight markup format based on that
originally used by IDoc[3]. Where possible, documentation markup
is simple and mnemonic: for example, we use single-quotes to sur-
round an identifier that should be hyperlinked to its definition.

So far so good. But what makes Haddock different? Well, another
good principle for a library-documentation system is this:

� As far as possible, the structure of the implementation of a
library should not affect its documentation. Conversely, the
desired structure of the documentation should not affect the
programmers freedom over the structure of the implementa-
tion.

Some concrete examples of this, in the context of Haskell, are:

� A module might define internal functionality which isn’t ex-
ported to the library consumer; this should not be visible in
the documentation either.

� Haskell’s module system is flexible in that it allows the inter-
nal module structure of a library to be hidden from the library
consumer1 . In Haskell a module may re-export a definition
that it has imported from elsewhere; to a consumer of this
module this is indistinguishable from a definition which was
defined in the module itself.

Therefore, if the programmer wants to implement his library
in multiple modules, but provide a single module which re-
exports the external API of the library, then the documentation
should mention only the external API.

We will describe how Haddock reconciles these requirements in
Section 5.

The final principle that Haddock addresses is this:

� Library documentation often has a structure that is richer than
simply a flat list of the functions, types, and classes exported
by a module. We often want to separate entities into groups,
or further into sections and sub-sections. We might also want

1With one small exception: internal modules still pollute the
module namespace in Haskell 98, because this namespace is flat.
There is a proposed extension to hierarchical modules to remedy
this.

to include documentation that is not attached to any particular
source-code entity.

This, in conjunction with the requirement that the documentation
annotations should not impact the structure of the implementation,
suggests that the structure of the documentation should not simply
follow the order of the definitions in the file, and should be specified
independently.

Haddock’s primary contribution is that it addresses all of the issues
given above, whereas other tools do well on the early principles
but tend to fall down on the last two (we compare Haddock with
other tools in Section 7). Furthermore, where there is an apparent
conflict of interest—the desire for documentation annotations to be
next to the source code, and yet to have a separation between the im-
plementation structure and the documentation structure—Haddock
finds a useful compromise (see Section 5).

2 Overview

Haddock takes a collection of Haskell source modules and produces
documentation in one or more output formats. Currently the only
fully supported output format is HTML, although there is a partial
implementation of a DocBook (SGML) back-end.

The HTML back-end generates the following:

� A root document, which lists all the modules in the documen-
tation (this may be a subset of the modules actually processed,
as some of the modules may be hidden; see Section 5.3). If a
hierarchical module structure is being used, then indentation
is used to show the module structure.

� An HTML page for each module, giving the definitions of
each of the entities exported by that module. See Figure 2 for
an example.

� A full index for the set of modules, which links each type,
class, and function name to each of the modules that exports
it.

Haddock understands certain documentation annotations in the
Haskell source. Annotations can be used for documenting func-
tions, types or classes, and for adding section headings and other
structural cues. The next two sections describe the form of the an-
notations that Haddock understands.

3 Documenting definitions

In this section we describe how Haskell source code can be anno-
tated with documentation for processing by Haddock. Our form of
documentation annotations is heavily inspired by IDoc[3].

Documentation annotations should of course be ignored by a
Haskell compiler, without having to modify each compiler. The
traditional way to add annotations to a Haskell source file, in such a
way that they will be ignored by a compiler which does not recog-
nise that form of annotation, is to use a pragma; indeed, pragmas
are even defined by the Haskell 98 standard. If we chose to use a
pragma, an annotation might look something like this:

{-# DOC This is the documentation for ’f’ #-}
f :: Int -> Int
f x = x * x

But according to one of the principles given in the introduction, our

79

{- |
Implementation of fixed-size hash tables, with a type
class for constructing hash values for structured types.

-}
module Hash (
-- * The @HashTable@ type
HashTable,

-- ** Operations on @HashTable@s
new, insert, lookup,

-- * The @Hash@ class
Hash(..),
) where

import Array

-- | A hash table with keys of type @key@ and values of type @val@.
-- The type @key@ should be an instance of ’Eq’.
data HashTable key val = HashTable Int (Array Int [(key,val)])

-- | Builds a new hash table with a given size
new :: (Eq key, Hash key) => Int -> IO (HashTable key val)

-- | Inserts a new element into the hash table
insert :: (Eq key, Hash key) => key -> val -> IO ()

-- | Looks up a key in the hash table, returns @’Just’ val@ if the key
-- was found, or ’Nothing’ otherwise.
lookup :: Hash key => key -> IO (Maybe val)

-- | A class of types which can be hashed.
class Hash a where

-- | hashes the value of type @a@ into an ’Int’
hash :: a -> Int

instance Hash Int where
hash = id

instance Hash Float where
hash = trunc

instance (Hash a, Hash b) => Hash (a,b) where
hash (a,b) = hash a ‘xor‘ hash b

Figure 1. Hash.hs (implementations of functions omitted)

80

Haddock Example Module Contents Index

Hash

Contents
The HashTable type

Operations on HashTables
The Hash class

Description
Implementation of fixed-size hash tables, with a type class for constructing hash values for structured
types.

Synopsis
data HashTable key val

new :: (Eq key, Hash key) => Int -> IO (HashTable key val)

insert :: (Eq key, Hash key) => key -> val -> IO ()

lookup :: (Hash key) => key -> IO (Maybe val)

class Hash a where

hash :: a -> Int

The HashTable type

data HashTable key val

A hash table with keys of type key and values of type val. The type key should be an instance of Eq.

Operations on HashTables

new :: (Eq key, Hash key) => Int -> IO (HashTable key val)

Builds a new hash table with a given size

insert :: (Eq key, Hash key) => key -> val -> IO ()

Inserts a new element into the hash table

lookup :: (Hash key) => key -> IO (Maybe val)

Looks up a key in the hash table, returns Just val if the key was found, or Nothing otherwise.

The Hash class

class Hash a where

A class of types which can be hashed.
Methods

hash :: a -> Int

hashes the value of type a into an Int
Instances

Hash Int

Hash Float

(Hash a, Hash b) => Hash (a, b)

Produced by Haddock version 0.3

Figure 2. Example HTML Output from Haddock (processing Hash.hs)

81

annotations should be as lightweight as possible, so as to be as easy
to read and write as a normal comment. The pragma style is simply
too verbose to use for documentation comments.

Instead, we choose to add a single character to the beginning of a
comment to indicate a documentation annotation:

-- | This is the documentation for ’f’
f :: Int -> Int
f x = x * x

The comment form “-- |” indicates that what follows is documen-
tation that applies to the following definition2, which in this case
is the type signature for the function f. The documentation contin-
ues until the first non-comment source line, which is useful if the
documentation spans several lines:

-- | This is the documentation for ’f’,
-- which continues over two lines.
f :: Int -> Int
f x = x * x

although in such cases it is sometimes more readable to use the
nested form of Haskell comments:

{- |
This is the documentation for ’f’,
which continues over two lines

-}
f :: Int -> Int
f x = x * x

If the comment herald is instead “-- ˆ”, then it applies to the pre-
vious definition rather than the following one. Some programmers
prefer this style for commenting top-level definitions, but it is also
important to be able to document a preceding item when we com-
ment parts of a declaration.

Note that the type signature must be present in the source file in
order for Haddock to include it in the documentation. Haddock
doesn’t contain a full Haskell type system (although it does contain
a Haskell parser and certain other elements found in a compiler
front-end), so it cannot reconstruct omitted type signatures.

3.1 Documenting parts of a declaration

Often we want to document not only the declaration as a whole, but
also individual parts of it, such as the constructors of a datatype or
the arguments of a function.

Haddock allows documentation annotations on parts of a declara-
tion in certain cases. Here is an example of annotations on the con-
structors of a datatype definition:

data T
= A Int -- ˆ The ’A’ constructor
| B Float -- ˆ The ’B’ constructor

Note that we use the “-- ˆ” syntax, following the convention that
a “-- ˆ” comment documents a preceding item. Fields of a record
definition can be annotated in a similar way.

2The Haskell 98 definition specifies that “--|” is a valid token
rather than a comment, hence we use the form with the space for
Haddock annotations

Annotating methods in a class declaration is just like annotating
top-level bindings:

class C a where
-- | A class method ’f’
f :: a -> Int

Finally, function arguments and return values can be documented
individually:

-- | ’all’ tests whether all the elements
-- of a list satisfy a given predicate.
all
:: (a -> Bool) -- ˆ the predicate
-> [a] -- ˆ the list of elements
-> Bool -- ˆ returns: ’True’, if all the

-- elements of the list satisfy the
-- predicate, and ’False’ otherwise.

4 Markup

Documentation annotations may include simple formatting and ren-
dering instructions (“markup”). The syntax for the various markup
elements is designed to be easy to read and write, and not look
overly cluttered when editing the source text in an ASCII editor.

The markup elements understood by Haddock are:

� A Haskell identifier surrounded by single quotes, eg. ’map’,
is rendered in a monospaced font and hyperlinked to its defi-
nition, if available.

� A Haskell module name surrounded by double quotes, eg.
"List" is hyperlinked to the documentation for that module.

� Paragraphs are separated by a blank line.
� Text surrounded by “@” symbols is rendered in a monospaced

(typewriter) font.
� A string surrounded by angle brackets is interpreted as a URL,

and will be hyperlinked if the output format supports it (eg.
“<http://www.haskell.org>”).”

� A paragraph preceded by “*” or “-” is interpreted as a bulleted
paragraph; multiple consecutive bulleted paragraphs become
a bulleted list.

� A paragraph preceded by “(n)” or “n.” where n is a number
is an numbered paragraph; consecutive numbered paragraphs
become an enumerated list (the actual values of n are ignored,
and paragraphs are numbered starting at 1).

� A paragraph where all the lines begin with “>” is interpreted
as a block of code, and rendered in a monospaced font with
the “>” symbols removed (but whitespace left intact). This
markup style was chosen for consistency with Haskell’s exist-
ing literate comment style.

5 Structuring documentation

One of our goals is to have a rich structure for the documentation
generated by Haddock; we would like to be able to structure our
documentation into sections, sub-sections and so on, and also in-
clude snippets of documentation that are not associated with any
particular Haskell entity (a section introduction, for example).

One possible approach which has been adopted by other tools is to

82

include section headings in the source code[3], and to use the order
of definitions in the source file as the order in which the entities
should be listed in the documentation. However, this isn’t ideal for
two reasons:

� It links the structure of the documentation with the structure
of the implementation, which violates one of the principles
we identified in the introduction.

� We don’t have a way to group entities that are not defined
in the current module, i.e. those that are re-exported from
another module. Should these be placed in a section of their
own?

Instead, Haddock opts to specify the structure of the documenta-
tion independently of the implementation. Fortunately each Haskell
module already has a specification of its exports, in the form of an
export list; the export list mentions not only the entities defined in
the current module but also those that are re-exported, and makes
no distinction between the two, which is exactly the property we
wish to preserve in the documentation. Furthermore, programmers
often use the export list as a way to summarise the exports of a mod-
ule, by grouping entities into sections and giving type signatures in
comments.

Here is an example of a typical export list, which we will annotate:

module M (
-- The type T
T(..), -- instance of Eq, Ord, Show

-- Operations over T
f, g,

-- A class C
C(..),

-- Operations over C
j, k
) where

The exports of the module already fall naturally into sections, all
that is needed is to convert the comments into Haddock-specific
section annotations:

module M (
-- * The type T
T(..), -- instance of Eq, Ord, Show

-- ** Operations over T
f, g,

-- * A class C
C(..),

-- ** Operations over C
j, k
) where

The comment herald “-- *” begins a section heading, where the
number of asterisks indicates the section depth: one asterisk is a
top-level section, two asterisks is a sub-section, and so on. Haddock
will structure the documentation according to the export list, with
appropriate section and sub-section headings, and will even provide
a contents list at the top of the page (depending on the rendering
format).

5.1 Named documentation blocks

It is often necessary to include chunks of documentation that don’t
naturally belong to any particular entity in the module, and don’t
belong in the module description (the documentation comment at
the top of the file). For these situations, Haddock provides two
mechanisms:

� A documentation comment can be included inline in the ex-
port list, and it will be rendered at the appropriate point in the
generated documentation.

� If the documentation is too large to include in the export list
without obscuring the structure, it can be given a name, placed
in the body of the module, and referred to by name from the
export list.

A named block of documentation is introduced using the
“-- $name” form, and referred to using the same form in the export
list. For example:

module M (
-- * A section heading
-- $foo
)

-- $foo
-- This is a chunk of documentation
-- named $foo.

5.2 Attributes

Certain attributes can be applied to a module to affect how Had-
dock produces documentation. The only one we will mention here
is the “hide” attribute, which specifies that a module should not be
included in the generated documentation (more about hidden mod-
ules in the next section). Attributes are supplied using the “-- #”
comment form at the top of the module:

-- #hide
module A where
...

5.3 Re-exports and hiding modules

The Haskell module system provides a way to structure the imple-
mentation of a library into multiple modules without exposing that
structure to the consumer of the library; this is a powerful abstrac-
tion facility. We have seen in the previous section how the structure
of the documentation for a module is given by the export list in
that module, which means we can include re-exported entities in
the structure of our documentation.

Here is a small example of a re-exported datatype. Suppose we
have two modules: an implementation-specific module Internal,
and the module which is to be exposed to the library consumer,
External:

module Internal (T(..)) where
-- | This is the documentation for the ’T’ type
data T a = C a

module External (T) where
import Internal

83

Note that even though we are re-exporting T from External, we
still annotate it at the definition site. Haddock will use this docu-
mentation, as well as the definition of T, when generating the doc-
umentation for External. The resulting documentation is exactly
the same as if we had defined T in External itself.

What happens when a re-exported entity refers to something from
the original defining module? Let’s expand the example slightly:

module Internal (T(..), f) where
-- | This is the documentation for the ’T’ type
data T a = C a
-- | ’f’ is a function that operates on an
-- object of type ’T’
f :: T Int -> Int
f (C i) = i * 2

module External (T(..),f) where
import Internal

Now the type of f refers to T. When generating the documentation
for External, our tool needs to render f’s type and documentation,
including hyperlinks to the definition of T. We have a choice of
destination for these hyperlinks: they might point to the definition
of T exported by Internal, or they might point to T as exported
by External. The latter is clearly better, because the implementer
of External wants to avoid exposing the existence of Internal
in the documentation altogether. So our implementation has to be
careful to re-target hyperlinks when re-exporting entities.

The programmer will probably use the hide attribute to declare that
Internal should not form part of the final documentation (how-
ever we still want to process it, because it contains definitions and
documentation that we want to propagate to the modules that re-
export them). One interesting question is whether in general we
can promise not to expose a module such as Internal in the doc-
umentation. If we stick to strict separate compilation, then it might
not always be possible to do so; suppose that we modify the pre-
vious example so that the library has two external modules, one
which exports the types (ExtTypes) and another which exports the
operations (ExtOps):

module ExtTypes (T) where
import Internal

module ExtOps (f) where
import Internal

What is interesting about this example is that the module ExtOps
does not depend, directly or indirectly, on ExtTypes. Yet, we want
to hyperlink the reference to T in the type of f to the definition of T
in the ExtTypes interface. If we stick to a policy of strict separate
compilation, where each module is processed only after processing
its dependents, then this hyperlink is not possible (because the tool
will not be aware of the existence of ExtTypes when processing
ExtOps).

Haddock’s approach to this problem is to require that ExtTypes.T
is in scope when processing ExtOps, like so:

module ExtOps (f) where
import ExtTypes (T)
import Internal

This raises another interesting issue: when an entity is in scope via

several routes, and we need to hyperlink to it, which instance do we
choose? Some instances are better than others:

� We want to avoid linking to entities in hidden modules, if pos-
sible, so pick a visible instance if there is one.

� If module A is a dependent of module B (i.e. B is further up
the module tree), then picking module B is usually better on
the grounds that A is more likely to be an “implementation”
module.

In our example above, T is available via two routes, ExtTypes and
Internal, but we would choose to link to the version in ExtTypes
on the grounds both that Interal is hidden, and that ExtTypes is
higher up the dependency tree than Internal.

For a given reference, if the only entities available to link the refer-
ence to are from hidden modules, then Haddock will emit a warning
to the user suggesting that the imports be restructured.

6 Implementation

The current implementation of Haddock processes multiple mod-
ules simultaneously, and can generate documentation which hyper-
links between the available modules. Referring to entities from
modules outside the set of modules being processed is also pos-
sible, but for simplicity’s sake we will leave that until Section 6.6.

The implementation can be broadly described as following these
stages:

� Parse each of the input modules
� Topologically sort the modules into dependency order
� For each module, generate its interface (see below)
� Render the set of interfaces in the chosen output format

The first three steps are independent of the last; that is, regardless
of which output format we select, the first three stages are identi-
cal. Generating output in a different format is a matter of replacing
the implementation of the final step. Haddock’s current implemen-
tation contains two back-ends: HTML, and DocBook3 (an SGML
format designed for technical documentation).

6.1 The Doc type

Haddock uses a structured data type, Doc, to represent user-supplied
documentation annotations. Its definition is:

data Doc
= DocEmpty
| DocAppend Doc Doc
| DocString String
| DocParagraph Doc
| DocIdentifier [HsQName]
| DocModule String
| DocEmphasis Doc
| DocMonospaced Doc
| DocUnorderedList [Doc]
| DocOrderedList [Doc]
| DocCodeBlock Doc
| DocURL String

3The DocBook currently back-end lags behind the HTML im-
plementation somewhat in terms of functionality

84

The syntax is straightforward lightly-marked-up text, with one im-
portant addition: it contains embedded identifiers (HsQName is a
qualified Haskell name), which will be hyperlinked to their defini-
tions in the generated documentation. The DocIdentifier con-
structor contains a list of HsQName because of overlap in the names-
pace of Haskell names: a name beginning with an upper-case char-
acter can refer to both a class and a constructor, or a type and a con-
structor. In Haskell source code, the context disambiguates between
the two (constructors only occur in expressions, and types/classes
occur only in types). In documentation there is no context to tell us
which one is meant, so we keep a list of the possible names in the
syntax.

There are two important transformations which we will need to per-
form on a Doc:

� renaming, which is applying a mapping from HsQName to
HsQName to all the names embedded in the documentation.
Recall the design decisions discussed in Section 5.3 which re-
quire us to retarget hyperlinks when an entity is re-exported -
this is why we need to be able to rename documentation.

� rendering, which is mapping Doc into the final output format
(whatever type that might be).

We facilitate both transformations on Doc with a generic mapping
function:

data DocMap a = DocMap {
docEmpty :: a,
docString :: String -> a,
docParagraph :: a -> a,
docAppend :: a -> a -> a,
docIdentifier :: [HsQName] -> a,
docModule :: String -> a,
docEmphasis :: a -> a,
docMonospaced :: a -> a,
docUnorderedList :: [a] -> a,
docOrderedList :: [a] -> a,
docCodeBlock :: a -> a,
docURL :: String -> a
}

mapDoc :: DocMap a -> Doc -> a
mapDoc m DocEmpty
= docEmpty m

mapDoc m (DocAppend d1 d2)
= docAppend m (mapDoc m d1) (mapDoc m d2)

...

Now we can implement renaming as an instance of DocMap:

type NameEnv = FiniteMap HsQName HsQName

mapIdent :: NameEnv -> DocMap Doc
mapIdent fm = DocMap {
docEmpty = DocEmpty,
docAppend = DocAppend,
docIdentifier = lookupId fm
...
}

lookupId :: NameEnv -> [HsQName] -> Doc
lookupId fm ns =
case (catMaybes (map lookupFM ns)) of
[] -> DocString (show (head ns))

ns’ -> DocIdentifier ns’

Note that when we apply the renaming mapping, if none of the
required names are present in the mapping then we leave a String
representing the original name in place in the documentation.

Haddock contains a small lexer and parser to convert Strings into
Doc during parsing; as each documentation comment is read, it is
parsed into Doc (which can elicit a parse error - mismatched quotes,
for example). The parser is implemented using Happy[7].

6.2 Parsing

Haddock’s implementation is based on a freely available generic
Haskell parser distributed with GHC[10], which is implemented in
Happy. Unfortunately we couldn’t make use of the parser as is,
since we needed to augment the grammar with extra productions
to handle documentation, and extend the abstract syntax to include
documentation annotations. The Haddock implementation there-
fore contains a modified version of the original generic parser.

The modifications we made are described in the following three
sections.

6.2.1 Lexical analyser

The Token datatype used by the lexical analyser was extended with
new tokens for documentation annotations, five in all: documen-
tation annotations (-- |, -- ˆ), section headings (-- *), named
documentation (-- $), and options (-- #). The lexical analyser
was modified to interpret these types of comments (and their nested
equivalents) and return the appropriate tokens.

The documentation inside the annotation is parsed into Doc as it
is read by the lexer; this was done to avoid having to store both
String and Doc in the abstract syntax which would require either
abstracting the abstract syntax over the type of documentation, or
using an ugly Either type.

6.2.2 Abstract syntax

The Haskell abstract syntax datatype was augmented in several
places to include documentation annotations. Two new declarations
were added (for -- | and -- ˆ), and extra fields for documentation
were added to constructor declarations, record field declarations,
types (to support annotating type arguments), and modules. Also,
documentation annotations were added to the export list syntax.

One other change was made to the abstract syntax, which wasn’t
strictly necessary but simplified the implementation of Haddock.
Names in the syntax were previously represented by Strings4, but
in Haskell a name can have separate meanings depending on the
namespace: a name beginning with an upper-case character can be
both a data constructor and a type constructor. Since the implemen-
tation of Haddock makes extensive use of mappings whose domain
is names (e.g. during renaming of source code), the overlapping
namespaces would require us to maintain two separate mappings.
However, if a name contains its namespace (trivial to add during
parsing because we know from the context which namespace a
name belongs to), then we can keep a single mapping. This sim-
plifies the higher-level implementation at the expense of an extra

4more or less

85

level of constructor inside a name, but we found the change to be
worthwhile. Our definition of HsQName is the following:

data HsQName = Qual Module HsName
| UnQual HsName

data HsName = HsTyClsName HsIdentifier
| HsVarName HsIdentifier

An HsIdentifer can be thought of as a String. The HsName type
separates the two namespaces: an HsTyClsName is a type or class
name, and an HsVarName is a variable or constructor name.

6.2.3 Grammar

The Haskell grammar was extended to include documentation an-
notations. One interesting thing to note here is that Haddock uses
layout to disambiguate annotations; for example

class C a where
f :: a -> a
-- ˆ documentation for ’f’

without the layout cues, there’s no telling whether the annotation
belongs to the function f or the class C. So Haddock uses layout in
the same way as a Haskell compiler; a documentation annotation
in a declaration list is treated as an individual declaration, and must
be separated from other declarations by a semi-colon. The layout
system in the parser does this automatically when implicit layout is
being used, but if the programmer uses explicit layout, there will be
some extra semi-colons to add:

class C a where {
-- | documentation for ’f’
;
f :: a -> a
}

Note the semi-colon is on a separate line so it doesn’t get swal-
lowed up by the comment! (Using a nested-style comment would
avoid that problem). The extra semi-colon won’t confuse a com-
piler, because empty declarations are allowed in Haskell 98.

6.3 Interfaces

Our intention is eventually to resolve names in type signatures and
other types of declarations to point to the definitions of the entities
they refer to, so that we can construct a hyperlinked rendering of
the type in the documentation where each type name is linked to its
definition.

Firstly, let’s introduce some terminology:

Name A name is an unqualified name, of type HsName.

Source name A source name is a qualified or unqualified name as
it appears in a Haskell source file. In the abstract syntax, it
has type HsQName. A source name only has meaning within
the scope of a particular module.

Export name An export name is represented by an HsQName
which must be qualified. The export name M.x refers to the
x exported by module M (however M might not be the mod-
ule that actually defines x). An export name has a meaning
independent of any particular module.

Original name An original name is a qualified name, which points
to the original defining module of the declaration with that
name. We also represent original names using HsQName (to
avoid having to parameterise the abstract syntax), but there is
a convention that they must be instances of the Qual construc-
tor.

Every entity (function, type, class, constructor, etc.) has a unique
original name. It may have several export names, depending on
which module(s) export it. Within a given module, it may have
zero or more source names. Most qualified source names are also
export names, the exceptions being those names imported using the
syntax import A as B. Here’s an example:

module A (x) where
x :: Int

module B (C.x) where
import A
import A as C

So the entity with original name A.x has export names A.x and
B.x. Within module A it has the source name x and A.x, and within
module B it has the source names x, A.x and C.x.

Most Haskell front ends are concerned with only source names and
original names, and the act of resolution consists of mapping one to
the other. However, in Haddock, we don’t always want our hyper-
links to point to the original defining module of an entity (because
that module might be internal or hidden), so we introduce the con-
cept of an export name. To state our goal more precisely then: we
want to resolve all names in the source code to one of the possible
export names for the entity that the name refers to.

In order to resolve names, we must be able to build a mapping from
source names to export names. We therefore have to know what
names are in scope at the top level of a given module, and which
entities they refer to. To do this, we have to know what names and
entities are exported by each of the modules imported into the cur-
rent module. Therefore, we have to process modules in topological
order, starting with the modules which have no dependents. The
next stage therefore is to topologically sort the modules into depen-
dency order, using a directed graph constructed from the imports of
each module.

Next, for each module we construct an interface, which collects
together all the information we need to know about the module in
order to (a) render the documentation for that module, and (b) to
build the interfaces for any modules which depend on it.

An Interface is a record type:

data Interface = Interface {
iface_env :: FiniteMap HsName HsQName,
iface_sub :: FiniteMap HsName [HsName],
iface_decls :: FiniteMap HsName HsDecl,
iface_insts :: [HsDecl],
iface_orig_exports :: [ExportItem],

iface_doc :: Maybe Doc,
iface_options :: [DocOption],
iface_exports :: [ExportItem]

}

The first five fields, iface_env, iface_sub, iface_decls,

86

iface_insts, and iface_orig_exports, are used when con-
structing the interfaces for modules that depend on the current
module. The other three fields, iface_doc, iface_options, and
iface_exports, are used to render the documentation for this
module (more about these later).

The first field, iface_env, is a mapping from names to original
names which expresses the names exported by this module and the
original entities they refer to. This mapping contains all the names
exported by the module, regardless of whether they were explicitly
named in the export list or not, including constructors, record field
names, class methods, and so on.

Why do we bother with original names, instead of providing a map-
ping from source names to export names? Well, when trying to
determine which is the “best” export name to use for a particular
source name, we must be able to compare different imported names
to determine whether they refer to the same entity. An original
name has the useful property that it is unique; if we want to com-
pare two names to determine whether they refer to the same entity,
we can first find their original names and then compare those.

The second field, iface_sub, maps each name defined in this mod-
ule to its list of subordinates, where a name a is a subordinate of
a name b if a can be placed in parenthesis after b in an export list.
The subordinate name mapping is used to give meaning to import
specifiers such as T(..).

The iface_decls and iface_insts field of an interface give the
declarations and instances defined in this module respectively. The
iface_decls field is restricted to those declarations which are ac-
tually exported.

6.4 Export Items

The iface_exports field of an interface gives the documentation
for a module, expressed in terms of ExportItems, which are de-
fined as follows:

data ExportItem
= ExportDecl HsDecl
| ExportSection Int Doc
| ExportDoc Doc
| ExportModule Module

A module’s documentation is a list of ExportItems. Each item
represents something that should be placed in the documentation:

ExportDecl This is a declaration that should be rendered in the
documentation. It has been trimmed to remove any parts that
are not visible in the exported interface (eg. constructors are
removed from an abstract datatype). The declaration is one of
the following: a type signature, or a type, data, newtype, or
class declaration. That is, we don’t render any expressions in
the documentation, only types.

ExportSection A section heading, including its level (section, sub-
section, etc.),and a Doc representing the text of the heading
itself.

ExportDoc Some unattached documentation, perhaps included di-
rectly from the export list, or maybe included as a result of a
reference to a named documentation object.

ExportModule A reference to another module. These arise as the
result of a complete re-export of a module (i.e. using the form

module M in the export list), where the module in question is
exported in its entirety and isn’t hidden.

For the list of ExportItems in the iface_exports field of an in-
terface, any names embedded in the declarations are export names.
In the list of ExportItems in the iface_orig_exports field of an
interface, the names are all original names. The reason for having
two different versions of the ExportItem list will become apparent
in the next section.

6.5 Algorithm for constructing the interface

The high-level algorithm for constructing an Interface from the
parsed Haskell source module is as follows:

1. iface_doc and iface_options can be extracted directly
from the abstract syntax.

2. Traverse the top-level declarations, attaching documentation
annotations to the declarations they refer to.

3. Build a mapping from source names to original names for the
current module, using the interfaces for any imported mod-
ules. The subset of this mapping that maps the names ex-
ported by this module to original names becomes the value
of iface_env for this module. Note: doing this properly re-
quires implementing all the dark corners of the Haskell mod-
ule system[4].

4. Rename the source code of the module so that each source
name is replaced by an original name. The resulting declara-
tions can be used to construct the values of iface_decls and
iface_insts for this module’s interface.

5. Build a list of ExportItems by traversing the export list:
� Each entity exported is replaced by an ExportDecl

containing the declaration it refers to. The declaration
contains original names, and is pruned so that any parts
of the declaration which are not visible according to the
export are removed.

If there is no declaration for the entity (perhaps because
it is a function without a type signature), then ignore the
export and emit a warning to the user.

� Each export of the form module M is replaced by ei-
ther ExportModule M, if M is visible and re-exported in
its entirety, or the appropriate subset of the contents of
iface_orig_exports from M’s interface, otherwise.

� Each section heading is replaced by an
ExportSection.

� Documentation annotations and named documentation
in the export list give rise to an ExportDoc.

The result of this step is the value of iface_orig_exports
for the current module.

6. Build a mapping from original names to preferred export
names. As we described in Section 5.3, an export name is
to be preferred if it

� refers to a visible module, and
� occurs later in the topological sort of the module depen-

dency graph.

7. Rename the ExportItems constructed in step 5 using the
mapping constructed in step 6, to yield the value of
iface_exports for this module.

87

Having constructed an Interface for each module, we can now
render the documentation in the format of our choice.

6.6 Persistent interfaces

It is important that documentation for a new library can refer to (or
hyperlink to) the documentation for the libraries on which it de-
pends. This is especially important when we consider that one of
the libraries on which virtually everything depends is the Haskell
Prelude. The documentation for these existing libraries may be ei-
ther in local storage or on the web somewhere; either way we would
like to be able to generate documentation which links to it correctly.

The approach we take is to create a persistent interface whenever
Haddock generates documentation for a set of modules. The persis-
tent interface contains, for each module, a cut-down representation
of the Interface type described in Section 6.3; essentially we just
store the iface_env and iface_sub components.

When generating documentation for a new set of modules, the user
can specify a list of persistent interfaces to read. For each interface,
the location of the documentation for that interface is specified (the
documentation is assumed to be in the same format as the documen-
tation being generated). Haddock then has available the list of orig-
inal names exported by each module described by those interfaces,
and can generate accurate hyperlinks from the documentation being
generated to the existing documentation for other modules referred
to.

The idea is that when a library is installed on a user’s machine,
it should come with a Haddock persistent interface which can be
used to generate documentation for modules which use the library.
The actual documentation may or may not be local; the same in-
terface file works for both. The process can be made even easier
using GHC’s package system: in GHC, libraries are grouped into
packages, where each package has a set of characteristics defined
in a configuration file. The characteristics for a package consist of
things like directory locations for the interface files for that library,
the location of the binary library to be linked in, extra include files
and compiler options to use when using that library, and so on. Our
plan is to also store the location of the Haddock interface and local
documentation (if installed) in the package description, and have
Haddock understand packages in the same way as GHC.

Note that because the persistent interface only contains the exported
names, and not the full export items, it isn’t possible to re-export an
entity from a module in another library. This decision was made
for purely practical reasons: if we stored full type signatures and
documentation in the persistent interface, these files would become
huge and slow to read.

6.7 Implementation notes

In this section we collect meta-information about the implementa-
tion which might be of interest.

The following additional libraries were used in the construction of
Haddock:

HsParser The generic Haskell parsing library; as previously men-
tioned this library had to be modified for Haddock.

HTML An HTML combinator library (almost a domain-specific
language, in fact) for generating HTML. Again, we didn’t use

the stock version, but modified it slightly to fix bugs and bring
it up to date with the latest version of HTML.

FiniteMap (distributed with GHC) A rather good balanced-
binary-tree implementation of finite maps.

Regex (distributed with GHC) An interface to the C regular ex-
pression library, used for various small parsing jobs in Had-
dock.

Digraph (from the GHC sources) A good implementation of di-
rected graphs, including linear-time implementations of topo-
logical sort and strongly-connected components.

The whole implementation of Haddock, excluding comments and
the above libraries, is roughly 2200 lines of Haskell. Broken down
into the various parts:

� Types & Miscellaneous: 350 lines
� Front-end

– Parser & lexer for documentation strings: 180 lines

– Renaming: 180 lines

– Computing interfaces: 450 lines
� Back-end

– HTML renderer: 900 lines

– DocBook renderer: 130 lines

Interestingly, the back-end renderer for HTML contains almost as
much code as the entire front-end. Although there is nothing par-
ticularly interesting about the implementation of the back end, it
consumed more than its fair share of development time.

7 Comparison with other systems

In this section we compare Haddock to the competition. The com-
parison is by no means complete; there are a plethora of documen-
tation generation systems out there, particularly for C and C++, but
since they all have similar functionality we choose a few represen-
tative candidates to compare against.

JavaDoc[9] is Sun Microsystems’ Tool for documenting Java code,
designed specifically for generating HTML. JavaDoc is the forerun-
ner of many of the other documentation-generation tools for other
languages; it is a mature tool in widespread use by the Java com-
munity. It allows documentation to be included in comments in the
Java source code, where the form of the documentation is a mixture
of text marked up in HTML and JavaDoc-specific tags. Compared
to Haddock, it doesn’t allow free-form structuring of the documen-
tation, and the markup syntax is rather verbose.

Java does not allow transparent re-exporting in the same way as the
Haskell module system, but it does have inheritance and overriding.
JavaDoc handles inheritance and overriding by propagating docu-
mentation from the original method to the overriding method where
necessary.

HDoc[5] is JavaDoc for Haskell — the comment form is similar,
as is the generated documentation. Compared to Haddock, it has
fixed-form document structuring, and re-exports are not transparent
(they are listed in a separate section in the generated documenta-
tion).

IDoc[3] is described as a “no frills” Haskell documentation system;
it also generates documentation from Haskell source, but without

88

parsing the source. Hence it has a simpler implementation than
Haddock and HDoc, but some of the work has to be done by the pro-
grammer: for example the programmer must specify which func-
tions are exported (by annotating them), and which datatypes are
to be exported abstractly. IDoc doesn’t cope with re-exports, and it
doesn’t add hyperlinks to the documentation.

OCamldoc[2] is JavaDoc for O’Caml. The comment form is again
similar to JavaDoc, although the markup syntax is specific to the
OCamldoc tool rather than being plain HTML.

Doxygen[11] is a well-established documentation tool originally
for C and C++, but also with support for Java and IDL. Because
C and C++ have weak module systems, Doxygen contains its own
support for grouping definitions into “modules” and “groups”, us-
ing special directives in the documentation annotations. In this way,
Doxygen supports a separation between the documentation struc-
ture and the implementation structure, but the notation is rather
more clumsy than Haddock’s structured export lists. Doxygen also
avoids the problem of having to figure out which copy of a defi-
nition to link to, by restricting definitions to reside within a single
group only.

8 Conclusion and further work

Haddock fulfills the design criteria outlined in the introduction: it
generates documentation from source code, with documentation an-
notations that are easy to read and write, doesn’t restrict or expose
the implementation details of the library, and it allows a free-form
structuring of the final documentation.

Some avenues for further work are outlined in the following sec-
tions.

8.1 Documentation in the interpreter

Two places which would benefit from automatically-generated doc-
umentation is an interpreter or development environment - having
documentation for an identifier available from a single mouse click
or a single command at the interpreter’s prompt would be extremely
useful.

If the package system were extended to include information about
Haddock documentation as suggested in Section 6.6, then the GHCi
interpreter would have immediate access to the documentation for
every library available to it, and could pop up the documentation
for any type, class, or function on demand.

8.2 Type Searching

Haddock has access to a wealth of information about the source
code it is processing, and there are a number of useful analyses that
can be performed given this information. One idea is to answer
questions such as “tell me all the functions that mention type T”.
This can be taken a step further, for instance allowing functions
to be searched based on a type pattern (“tell me all the functions
that take an A and return a B, regardless of what other arguments
they take”). Rittri’s work[8] shows that matching types modulo
isomorphism is a useful idiom for library searching.

9 References

[1] The HaskellDoc mailing list.
http://www.haskell.org/mailman/listinfo/
haskelldoc/.

[2] OCamldoc. http://caml.inria.fr/devtools/
ocamldoc/ocamldoc.html.

[3] M. Chakravarty. IDoc - a no frills
haskell interface documentation system.
http://www.cse.unsw.edu.au/˜chak/haskell/idoc/.

[4] I. S. Diatchki, M. P. Jones, and T. Hallgren. A formal specifi-
cation of the Haskell 98 module system. In Haskell Workshop,
Pittsburgh, Pennsylvania, October 2002. ACM.

[5] A. Groesslinger. HDoc. http://www.fmi.uni-passau.de/
˜groessli/hdoc/.

[6] D. E. Knuth. Literate programming. Technical Report STAN-
CS-83-981, Department of Computer Science, Stanford Uni-
versity, 1983.

[7] S. Marlow. Happy, a parser-generator for haskell.
http://www.haskell.org/happy/.

[8] M. Rittri. Using types as search keys in function libraries.
Journal of Functional Programming, 1(1):71–89, 1991.

[9] Sun Microsoystems. Javadoc.
http://java.sun.com/j2se/javadoc/.

[10] The GHC Team. The Glasgow Haskell Compiler (GHC).
http://www.haskell.org/ghc/.

[11] D. van Heesch. Doxygen. http://www.doxygen.org/.

89

