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Abstract

It is known that a group is finitely presented as a group if and only if it is finitely
presented as a monoid, and that a monoid is finitely presented as a monoid if and
only if it is finitely presented as a semigroup.

A similar result does not hold for all inverse semigroups; the free inverse
semigroup is an example of that. After describing the free inverse semigroup and
see why it cannot be finitely presented as a semigroup, we look at two “classes”
of inverse semigroups that are finitely presented as inverse semigroups if and only
if they are finitely presented as semigroups, namely inverse monoids with finitely
many left and right ideals and Bruck-Reilly extensions of groups.

In the last part of this dissertation we study Bruck-Reilly extensions of Clifford
monoids and prove that they are finitely presented as inverse semigroups if and
only if they are finitely presented as semigroups. We also show that in some
specific cases the Bruck-Reilly extensions of a Clifford monoid, like the Clifford

semigroups, are finitely presented if and only if its D-classes are finitely presented.
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Chapter 1

Free Inverse Semigroup

The free inverse semigroups “represent one of the most interesting and important
classes of inverse semigroups” [9, p.355]. In this chapter we give a description of
the free inverse semigroup, with the idea of understanding better an important

example we will find latter in this dissertation.

1 Inverse Semigroups and Free Algebras

Let S be a semigroup. An element a € S is said to be reqular if there exists x € S

such that a = axa. The element z is an inverse of a if @ = axza and x = zrax.

Note: If z is an inverse of a, then the elements ax and xza are idempotents

in S, i.e. ax = araxr and xa = raza.
We say that the semigroup S is inverse if a unary operation x +— ! is defined
on S, with the properties:

Ve,ye S (DN '=a, zzlvr=x azzlyy ' =yy toax .

Note that 27! is the inverse of x and vice-versa. The following two results contain

some properties of inverse semigroups that simplify our work with them, they can



be found in [6, Section 5.1].

Proposition 1.1 Let S be a semigroup. The following statements are equivalent:
(1) S is an inverse semigroup;
(1) S is regular, and its idempotents commute;
(1ii) every L — class and every R — class contain exactly one idempotent;
)

(iv) every element of S has a unique inverse.

Proposition 1.2 Let S be an znverse semigroup. Then:
(1) (aras...an) ' =a;t...aytayt, for all ai,ay,...,a, €S,
(it) alb < a‘ta=0b" 1b, a,b e s,
(it1) aRb & aa '=0bb"', a,be€S,
(iv) if e is an idempotent in S, then for any a in S, aca™* and a'ea are
idempotents in S.

Let C be a class of algebras, A an element of C, X a non-empty set and ¢ a
map from X into A. The pair (A, ¢) is a free C-algebra if for any C' in C and any
mapping 1) : X — C there exists a unique homomorphism ¢’ : A — C making

the following diagram commutative:

XO 0 A

v ,

cd

It is clear, from the definition, that when such a structure exists it is unique.

Some very well known free algebras, on a non-empty set X, are the free

semigroup, that is the set of all non-empty words with letters in X under the



operation of concatenation, we denote it by X*. Adjoining an identity, 1, to X+
we obtain the free monoid on X, that we denote by X*. The free group is the set
of all reduced words in the alphabet X U X~! where X! ={z7':2 € X} isa
set in one-one correspondence with X and disjoint from it, we denote it by FGx.
We say that a word is reduced if, for each z € X, it contains no occurrences of
xo~ ! or x7 .

We can think of inverse semigroups as a class of (2,1)-algebras, so it makes
sense to try to define the free inverse semigroup and that is what we will do in the
next sections. First we will follow a construction given in [6, Section 5.10] that
defines it as a quotient of a semigroup by a congruence. Then we will define it
by means of a P-semigroup, this construction can be found in [9, Section VIII.1]
and [6, Section 5.10]. Finally we will define it in terms of birooted word trees,

following [9, Section VIIL.3].

2 Construction of the Free Inverse Semigroup

Let X be a non-empty set and X~! = {27! : 2 € X} be a set in one-one
correspondence with X and disjoint from it. Let Y = X U X! and consider Y,

the free semigroup on Y. Define inverses for the elements of Y+ by the rules:

-1 re X
( ;
(iye - y) P =yt yr YL Y2, Un €Y,

note that for any w € Y+ (w™')™! = w. Let 7 be the congruence generated by

the set

T ={(ww w,w):we Y} u{(ww 2z zz7lww™) tw, 2 € YT},

Yt /7 is a semigroup under the multiplication (wt)(27) = (wz)7, w,z € YT, see

for example [6, Section 1.5]. By the definition of 7, for any w € Y, we have

(www)r = wr(w ) wr = wr, and w 't = (wT)wr(w'T),



so w~'7 is an inverse of w7 in Y /7. Hence any element of Y /7 has at least one

inverse, so this semigroup is regular. Similarly we can prove that the idempotents
of Y* /7 commute, using the definition of 7 and the fact that if a7 € Y /7 is
an idempotent there exists and idempotent e € Yt such that ar = er, see [6,

Lemma 2.4.3]. Thus Y /7 is an inverse semigroup.

The map ¢ : X — Y1 /7, x+— z7, is obviously well-defined and is the
map that we associate to Y /7 to prove that this inverse semigroup is in fact the

free inverse semigroup.

Let S be any inverse semigroup and v any map from X into S. We can extend
1 to Y by defining:
= (@)™, reX,

where (z1))~! is the inverse of 1) in S. Since Y is the free semigroup on Y, we

can define a semigroup morphism IL : YT — S by the rule:

(thya - - )w =YY . Y Y1, Y2, Yn €Y.

Since S is inverse we know that for all w) € S there exists (wi)) ™! € S such that
wip = wip(w) twy and (w) ! = (wi) twih(wp) . Let w, z € YT arbitrary,
say W =11Y2..-Yn, 2= T1T2...Tk, With y;,x; €Y, i=1,... k, j=1,...n
We have

~

wyp = &(w P)~ (S inverse)
= 1/1((91?/2 )@D)flwtb A )
= w(ylwygw Ynt)) ) (def. 1)
= ¢((yn2/1) (Z/zd’) M) b (S inverse)
= wi(y, Yo wyl "p)wy) (def. ¢))
= ((yn vy )i (def. 1))
= ((ylyQ Yn)~ 1¢)w¢ (def. of inverses in Y)
— i A
= (ww™lw)ip, (1 morphism)

~

from this we can see that w™1¢) = (w1))~!, since the inverses in S are unique. We



also have

(ww™lzz" M) = wih(w ) zp(z7)0)) (1) morphism)
= wiﬁ(w@&)ilzi’(ﬂ;)*l (by above)
= 21 (1)) Twid(wih) ! (S inverse)
= (zz lww 1), (1) morphism)

We know that the kernel of the homomorphism 1& is the congruence
Ker) = {(a,d) e Y* x Y :at) = )},

see [6, Theorem 1.5.2], and by what we have just seen , T C K em@, so we must
have 7 C K er@/;, since 7 is the smallest congruence containing 7". This implies,
by [6, Theorem 1.5.3], that there exists a unique morphism ¢’ : Y*/7 — S such
that 7% = 1, where 7°: Y+ — Y*/7, y > y7r, y € Y*. Thus, we may
conclude that there is a map ¢ : Y /7 — S such that ¢y’ = 1, since

ol = (z7)Y = 1) = 2, Yz € X.
Suppose that there exists a morphism « : Y1 /7 — S such that pa = 1), then
rpa=ay & (zT)a=x9p, Ve X
but « is a morphism so
(z7')a = (27)ta = (z70) ™t = (zy) P =27, Vre X.

Hence, given w € YT arbitrary, say w = y1ys . .. y,, for some y;,y2,...,y, €Y,
we have
(wr)ar = (1192 - - yn)7)a = (17) (Y27 ... (ynT)ex

~ ~

= 1yt Y = (Y2 - - Yn) Y = W,

so TPa = 1&, this implies that « = v’, and we can conclude that v’ is the unique

morphism from Y* /7 into S such that oy’ = .

Thus Yt /7 is the free inverse semigroup on X. We will denote it by F1x.



3 P-Semigroups
3.1 Definitions

Given a non-empty set X with a partial order <, a non-empty subset Y of X is

called an ideal of X if
VbeY Yae X a<b = a€y,
and is called a subsemilattice of X if
Va,be€Y daNb and aAbeY,

where a A b represents the meet of a and b, i.e. aAb < a, aANb < b and
forall ¢ €Y suchthat ¢ <a and ¢ < b we have ¢ < aAb. Given a
group G, we say that G acts on X if for any element g € GG there exists an order
preserving automorphism ¢, : X — X, a +— ga, such that, given g,h € G we
have @01 = @gn.

By saying that the bijection ¢, : X — X is an order preserving automor-

phism we mean that

Va,be X a<b & ap, <bp, & ga<gb.

Proposition 1.3 Given a group G, with identity element 15, and a poset X, G
acts on X if and only if

Va,be X, Vg,he G a<b =ga<gb, (gh)a=g(ha), lga=a.

PROOF. Suppose that the group G acts on the poset X, then we clearly have
Va,be X Vg heG a<b = ga < gb, (gh)a = g(ha).

For any g € G the map ¢, is a bijection, with inverse map ¢,-1, then for any

a € X we have
APgPg—1 = Pgg—1 = a1, = lga,
apgpe— = aidg = a,

6



so 1,a = a. Conversely suppose that
Va,be X, Vghe G a<b =ga<gb  (gh)a=g(ha), lga=oa.
Then, for all g € G and a,b € X, we have
ga<gb = glga<glgh & lga<lgb & a<b,

so, the map ¢, : X — X, a +— ga is an order preserving automorphism. By

the hypothesis, we know that for all g,h € G we have ¢, = @gn. |

Given a group G acting on a poset X, a subsemilattice and ideal Y of X,
such that GY =X andforallge G ¢gY NY # (), we say that (G, X,Y) is a
McAlister triple.

Proposition 1.4 Given a McAlister triple (G, X,Y’), the set
P(G,X,Y)={(a,9) €Y xG:g laeY},
under the multiplication (a,g)(b,h) = (a A gb,gh), a,b €Y, g,h € G, is an

muerse Semigroup.

For a proof see for example [6, Theorem 5.9.2]. The inverse semigroups defined

in this proposition are called P-semigroups.

3.2 Construction of F'Ix

We will see that the free inverse monoid can be described as a P-semigroup
P(FGx,X,FE), where FGx is the free group on the non-empty set X, E is a

semilattice and X is a poset, both obtained from FGx.

Note: Given two words v,w in Y, Y = X U X!, we will denote by vw their

product in the semigroup Y and by v - w their product in FGx.

7



For any word w = x1%s...2,, ; € X, i = 1,...,n, we define w! to be
the set of all left factors of w, {1, x1, x1x9, x1203, ..., T1T2...2,}, Where 1

represents the empty word. Let
E={AcP(FGx):0<|Al <00, weA = w'C A},

and define a partial order on E by therule A < B < B C A, AB¢€FE.
Since C is a partial order we can see that < is also a partial order. Clearly, given
A, B € E we have AUB < A and AU B < B. Considering a set T" € F such
that T < Aand T < B we have AC T and BC T so AUB C T, and we can
conclude that AA B = AU B. Considering a word w € AU B we have

weA = wCA, (AeE)

weB = w CB, (B eFE)
sow! C AUB. We know that 0 < |A|, |B| < oo and |AUB| = |A|+|B|—|ANB|
so0 < |JAUB| < oo. Hence for all A, B € E AAB € E, thus E is a subsemilattice
of Px.

Given A € F we say that an element w € A is maximal if it is not a proper
left factor of any element of A. Since all elements of E are finite we know that

every element of E has at least one maximal element.

Lemma 1.5 Ifw,ws,...,w, are all maximal elements of A, where A € E, then

A:w%Uwﬁu---Uw}L.

PROOF. Since wq,ws,...,w, € Aand A € E we clearly have w{Uw%U- ~Uwl C

A. Now consider z € A arbitrary, z is a left factor of some maximal ele-
|

ment of A, w;, for some ¢ = 1,...,n, so z € w; and we can conclude that

A=wlUwsU-- Uwl. [

For any g € FGx and A € E we define g- A to be theset {g-w:w e A},
and
X={g-A:ge FGx, Aec E}.

8



Define a partial order in X by the rule F) < Fy & F, C Fy, F,F, € X. Let
Fl,FQ € X and g,h € FGX be arbitrary. We have Fl = 3J1 - A17 F2 = g2 - AQ
for some g1,9, € FGx and Ay, Ay € E, then

FI<F & g-A<gp A & ¢p-ACqg- A
= g-(g2-A2) Cg-(n-A1) & g-F1<g-F,

(g-h)-Fr=(g9-h)-(1-A1)=(g-h)-q1)- Ar=g-(h-(g1- A1) =g-(h-F),
1-Fi=1-(g1-A)=(1-q1)- Ay =q1- Ay = F,

where 1 is the identity in F'Gx, the empty word. So, by Proposition 1.3, FGx
acts on the poset X.

Now we want to check that F is an ideal of X. For any A € X we have
A=1-Aand 1-Abelongs to X, so E C X. Consider A € E, F' € X arbitrary,
say F'=g¢g- B with g € FGx, B € FE, and suppose that F' < A i.e. AC g-B.
For any w € F, w = g - w' for some w' € B. Suppose that ¢ = ¢g19>...¢, and

w = wywy ... w, with g, w; €Y, i=1,...,r, j=1,...,n, then

wl - {1a gi, 9192, ---, 9, gwi? gwllwé7 R gw/ :U}}

We know that for all v € A v! C A, in particular 1 € A, but A C g- B by
hypothesis, so there exists z € B such that 1 = ¢ - z, then

l=g-2z2 = gilzl-z:z = gileB,

this implies that (¢7')! C B, for B € E.

Lemma 1.6 h='-h! = (h™Y)! for any h € FGx.

PROOF. Let h = hihs...hs, forsome hy, hs,...,hs €Y, then h™' = hJ!. .. h;lhfl

S

and we have

h' = {1, hi, hiha, ..., hihe... B},
(R ={1, R, ..., Rt kgt AT Ry TR



Let v € h=!-h! arbitrary, v = (h;'...hy'hy')-(hihy ... ) for some 0 <k < s,
but
(h' o hy'hi') - (haha o i) = hit oo il

S T

so v € (h™1)}. Conversely, let v € (h™1)! be arbitrary, then v = h;*...h ! for

some 1 < k < s, but we can write v in the form v = h™' - (hyhy ... hi_1), hence

veh™-hl. Thus =t ht = (A7) [

From (¢g~!)! C B, we obtain ¢g~'-g' C B, thisimplies g-g7'-¢g' Cg-B <
g" C F. Clearly, by the definitions of these sets, we have w! C gtUg- (w')} and

weB = (W}YCB = g-(W)Cg-B & g- (W) CF,

hence ¢! Ug- (w')! C F, and we conclude that w' C F. Since F =g¢g-B and
B € E we know that F € Px and 0 < |F| < co. By what we have just seen
for allw € F w! C F, so F € E and we conclude that

VAe E VFeX F<A = Feck,

thus F is an ideal of X.

By definition of X we have FGyx - FE = X so, to prove that (FGx, X, F)
is a McAlister triple we just need to check that for any ¢ € FGx we have
g-ENE # (. Let g be an arbitrary element of FGy, the set g! belongs to E
since for any v € g' we clearly have v! C ¢g' and, by Lemma 1.6, g! = g-(¢~1)".
Similarly (¢71)! € E,s0 gt € g- E, thus ¢g'! € g- ENE and it follows that
g-ENE #(. Hence (FGx, X, E) is a McAlister triple.

The P-semigroup originated by this McAlister triple is the set
P(FGx,X,E)={(A,g) € ExFGx :g"'-Ac E}

with the multiplication defined by:
(A, 9)(B,h)=(ANg-B, g-h)=(AUg-B, g-h).

10



Lemma 1.7 P(FGx,X,E) ={(A,9) € Ex FGx : g € A}.

PrROOF. Let My = {(A4,9) € E x FGx : g € A}. For an arbitrary element
(A,g)in P(FGx,X,E)wehave Ac £, g€ FGx and g7 A€ E. From A€ E
we know that 1 € A then ¢! € g7 - A and we have

glteg' A = (g")YcCg't-A (9" A€ E)

& glgtCgt-A (Claim 1)
= g'CA (1-A=A)
= gcA (9 €9

hence (4, g) € Mx. Conversely, let (A, g) € My arbitrary, we know that g €
FGxand Aec Eso g'-AePx and 0<|g ! A <oco. Letweg?t-A

L. w' for some w' € A, by the definitions of w!, (¢~!)} and

be arbitrary, w = g~
gt (W) we can see, like we did above, that w' C (g7l U g™ - (w')}, and by
Lemma 1.6 we have

wtCgtgtugT - ()

From A € E and w' € A we know that (w')} C A so g7'-(w)t C g7 A,
similarly, since g € A, we have ¢g7'-g' C g '- A, then w! C g '-A and we
conclude that ¢!+ A € E. Thus (A, g) € P(FGx,X,E) and it follows that
My = P(FGx, X, E). m

From Proposition 1.4 we know that P(FGx, X, E) is an inverse semigroup
and we can easily check that (1!,1) is the identity of P(FGx, X, F). The next

result gives us a generating set for this inverse monoid.

Lemma 1.8 P(FGx, X, E) is generated by the elements (', x) with v € X

PROOF. Let Tx be the inverse submonoid of P(FGx, X, E) generated by the
set {(z!, x): 2z € X}. For any z € X we have
(z!, 2)((@™), a7 (@h, 2) = (@' V- (7)), 2 a7 (2!, x)

=@'Ux-(zHlul-zh 1-2)=(xlUx- 27t 2t Uzh 2)
=(z'ul-ztuzt 2) = (2}, 2),

11



note that x - (x™1)! =2 - 27! 2!, by Lemma 1.6. Similarly we can check that

(@™t 2@, 2) (@) 27 = (@) 27,

so ((x7H, z71) is the inverse of (z!, x) in P(FGx, X, E) and it belongs to T.
This implies that

(a!, 2)((@™) 27 = (2!, 1) € Tx
and ((z7H)}, 1) = (x!, 1)~! also belongs to T since T is an inverse submonoid
of P(FGx, X, E) .

Let w be any reduced word in Y, if |w| = 1 then (w!, 1) € T by what we
have just seen. Now suppose that for any reduced word, w, in Yt with |w| < k
we have (w!, 1) € Tx, and let z € Y+ be a reduced word with |z| = k + 1, say
2z =yz for some y € Y and 2/ € Y. We have

(z 1) =@ »(E)Y DYy

and by hypothesis ((z'), 1) € Tx, then (2}, 1) € Tx. Note that (y!, y) and
((yHt,y7!) belong to Tx by its definition and by what we have seen above.
Then, by induction, we conclude that for any reduced word w € Y+ (w', 1) € Tx.
Consider, w, a reduced word in Y* and let u be a left factor of w, say w =
Yiye ... Yp and u = Y1y ...y; for some y1,ys,...,y; €Y, and some 0 < j <
n—1. If j =0, then
(wt, uv) = (w', 1) € Tx.

Now suppose that for any j < k (w', u) € Ty, we have

(wl> Y1y2 - YkYky1) = (wl» ylyz...yk)(yiﬂ, Yk+1)-

By hypothesis (w!, y192...yx) € Tx, and (y,ﬁﬂ, Yr+1) € Tx since yp11 € Y, then,
by induction, (w', u) € Tx for any left factor u of w.

Now, let (A, g) be an arbitrary element of P(FGx,X,E). By Lemma 1.5
we know that A = w{ U w§ U---wl, where wp,w,,...,w, are the maximal
elements of A. Since g € A, g is a left factor of w; for some 1 < ¢ < n, we can

rewrite A in the form

lUw-l

n 77

A=wlU - -Uwl Uw, U - Uw

12



it follows that

(A,9) = (wr, 1)... (wi_y, Dlwiy, 1) (wh, D(w;, g),

so (A4, g) is a product of elements of T’y by what we have just seen. Thus (4, g) €
Tx and we conclude that P(FGx, X, E) is generated by the set {(z!, ) : 2 € X}.
|

Finally we will prove that P(FGx, X, E) is the free inverse monoid on X.
Note that to obtain the free inverse semigroup we just need to remove the identity

element (1!, 1), see [9, Proposition 8.1.8].

We define a map ¢ : X — P(FGx,X,FE), z +— (z', ). This map is
obviously well-defined so now we need to check that for every inverse monoid S
and every map ¢ : X — S there is a unique morphism ¢’ : P(FGx, X, E) —
S such that ¢’ =1. Let S be an inverse monoid and ¢ any map from X into

S. We can extend ¥ to Y by defining:
(@) =(zy)!, zeX
(VY2 Y)Y = yath . ynyy, w €Y, i=1,...,n

For any finite subset Z of Y, with maximal elements wy, wo, . .., w, we define

ez = ((wiwy ") (wowy ) . .. (wpw, "))eb,

ez is an element of the inverse monoid S and we have
Claim 1 Let Z be a finite subset of Y then ez is an idempotent of S.

PROOF.

ezez = (wiwy wowy . wuw; Y (wiw M wawy L wpw
= w1¢(w1¢)_1 s wn¢(wnw)_1wl¢(wlw)_l s wnw(wn¢)_1
= wlw(wlw cee wnw(wnw)_lwnw(wn¢)_l cee wﬂﬁ(wﬁﬁ)_l

)l
(wip(wap)™t, i=1,...,n, are idempotents in S so commute)
)1

= wip(wr)) (WP (wn 1) ) (with) T () T
= wlw(wlq/})_l s wnw(wnw)_l = <w1w1_1 B wnwgl)w

13



Claim 2 Let A, B € I/, then eqeg = €auB.-

ProOF. By Lemma 1.5 we know that A = w% U w% U---Uw. and B =
zll U z% U---Uzl . where wy,...,w, and 2, ..., z, are the maximal elements of

A and B respectively. Then

eaep = ((wwy') .. (waw, NY((z1270) - - (2w, )W
= ((wywyt). .. (wpw, (2127 h... (Zmz )0
= €AUB,

note that AU B :w%Uw%U---Uw}LUz%Uz%U---z}n and if w; is a left factor
of zj, forsome i =1,...,n, j =1,...,m, then wil U z]l = z]l and writing w; and
zj as a product of elements of Y , from definition of ¢ and from the fact that

y(yy)~! is an idempotent of S for all y € Y, we obtain

wih (winh) " zh(z0) T =z (z0) 7

Claim 3 Let A € E and g € FGx arbitrary, then (gi)ea = e,.4(g¢).

PROOF. Let A=w!UwiU---Uw! like on Claim 2. We have

gea = g((wiwi") ... (wpw, 1))
g - wiwy NY(wewy ') . . (wpwy )Y
g-wiwy - DY((wawy ') . (waw, 1))
g-wiwy g7t g (wawy ) . (wnw”))w
= (g-wiwi - g (gY) (wowy ) ... (wnw, )Y
(- wi)(g-w) () ((w w51) (’wnwn Y)Y
g-wi(g-w1) (g - walg - wa) Y(gY) ((wswy ') . .. (wpwy )

— (g wn(g - w))blg - walg - ws) ). (g wnlg - wa))lgw)
= ((g-wi(g-w1) (g wag-w2)™) ... (g wulg - wn)"))b(gy)
= eg-A(Q?ﬁ),

14



note that, by the definition of g - A, w; is a maximal element of A if and only if

g - w; is a maximal element of g - A. [ |

Defining a map ¢’ : P(FGx,X,E) — S, (A,g9) — ea(gy), for any
(A,g) € P(FGx,X,E) we clearly have ea(gy) € YT so (A, g)¢' € S. Thus
¢’ is obviously well-defined. Given (4,g), (B,h) € P(FGx, X, E) arbitrary we

have
(A, 9)(B,h))Y" =(AUg-B, g-h){

= eaug-8((9 - W)Y)
= eaeg.5(gY)(hy) (Claim 2)
= ea(gv)es(hy) (Claim 3)

(A, 9)¢' (B, h)y',
hence ¢ is a morphism. Let z € X be arbitrary, we know that e, = (zx=!)y

and

vl = (2, D) = e (ae) = (w2 ) (09) = wob(a) " awr = 2,

so o1 = 1p. Now suppose that there exists a morphism « : (FGx, X, E) — S
such that pa = 1. Then for any 2 € X zpa = 29, ie. (z', x)a = 29, so for
all x € X

this tell us that a coincides with ¢’ in the generators of P(FGx, X, E), then a =
¥ in this semigroup, hence o = v'. We conclude that v’ is the unique morphism
from P(FGx, X, FE) into S such that p¢' = 1. It follows that P(FGx, X, E) is

the free inverse monoid on X.

Remark 1 The free inverse semigroup is unique, so P(FGx, X, E)\{(1}, 1)}
must be isomorphic to Y+ /7, a proof of this appears in [6, Section 5.10]. The
given isomorphism maps P(FGx, X, E)\{(1}, 1)} onto Y /7 in the following
way':

(w% U wé U---u w}l, g) — ((wlwfl) o (wnwgl)g)r
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4 Birooted Word Trees

4.1 Definitions

A graph is a finite non-empty set of elements, that are called vertices, together

with a set of unordered pairs of distinct vertices called edges.
The set of all vertices of a graph I" is denoted by V(I).
If two vertices, vy, v9, form an edge of the graph we say that they are adjacent.

A graph I is a subgraph of the graph I' if all vertices and all edges of I are

also vertices and edges of T'.
A vertex is extreme if it belongs to exactly one edge.

A walk in the graph T is a sequence (Yo, y1, - .., yn) of vertices of I" such that

Yi—1,Y; are adjacent for all = 0, ..., n. This is a walk of length n, and we call it

a (Yo, yn)-walk.
A path is a walk in which all vertices are distinct.
The graph I' is connected if every pair of vertices of I is joined by a path.
An (o, a)-walk is said to be closed.

A cycle is a closed walk all of whose vertices are distinct and with at least

three vertices.
A tree is a connected graph without cycles.

Note: In a tree T, for any a,3 € V(T), there is a unique (a, 3)-path, we
denote it by I(«, ).
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A tree in which a vertex is distinguished is called a rooted tree.

We say that a walk w spans the graph I', or is a spanning walk if all vertices

of I' occur among vertices of w.

An edge with vertices a and (3 is oriented if we consider the edge together
with («a, 3) as an oriented pair. In this case we write « — 3 and denote the

edge by af.
An edge is labeled if a symbol is associated to it.

A word tree, T', on a non-empty set X is a tree with at least one edge, where
each edge is oriented and labeled by an element of X and with no subgraph of

the form:
X X X X
o—— > 0=<— 0 oO=<—— @ >0

Note: We can extend the set of labels from X to Y = X U X!, making a

convention that

o——— o means the same as L

Let T and T" be word trees on X. An isomorphism of T onto T” is a bijection
of V(T') onto V(T") which preserves adjacency, orientation and labeling of edges.
If such a bijection exists we say that T' is isomorphic to T', and write T = T".
Note that isomorphism is an equivalence relation on the class of all word trees

on X.

4.2 Composition of word trees

Let 7x be a cross section of the isomorphism classes of word trees on X, i.e. a

set intersecting each equivalence class (where the equivalence relation is isomor-
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phism) in a single element.

Let T,7T" € Tx and a € V(T'), o € V(T") be arbitrary. Let v be an extreme
vertex in 7" and consider the path II(a/,v) = (¢/ = 0,71,y = 7) in T".
There exists 0, € V(T'), such that the path II(a,d,,) = (a = o, d1,...,0m) in
T, is isomorphic to (&' = 9,71, --,Vm), and m is the greatest integer with this

property (m < n).
Note that II(«, d,,) is obviously unique since we are working in trees.

To do the composition of T with 7" we identify ~; with é;, for ¢ =0, ..., m. If
m < n we attach the graph (Ym, Yms1, - - -,7a) to the vertex 7, = d,,. Repeating
this process for all extreme vertices in V(7”), we obtain a word tree on X that
is the composition of T' with T”. We represent by T'(a, o/)T" its representative in
Tx. It is convenient to identify the vertices of T and T with the corresponding

vertices of T'(a, /)T".
A triple (o, T, 3) is a birooted word tree on X if T' € Tx and «, 5 € V(7).

Considering the set of all birooted word trees on X we can define a multipli-

cation in it by the rule:
(@, 7,8)(a, T, 3') = (a, T(B,a")T", ).

We denote this set, together with this multiplication, by Bx. Intuitively, given
two birooted word trees we obtain their product by identifying the “second” root
of the first tree with the “first” root of the second, making all the common edges
coincide and attach to the common vertices all the other vertices of both trees,

as we can see in the next two examples.

Example 1.1 Given the birooted word trees
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. and

Qe

Y

o —=<—0

X VA
o x—— 00— >0 — >0 — >0

=

<

e [ ]

y ’Z
[ ] z [ ] X [ ] y [ ]
[ ]
B LX
X
oe—e o X .o ¥ °
y z
and
[ ] [ )

is the birooted word tree

[ [ ] .l"t
y [Z ‘y
z X y zZ X
o x—— @— > —— Q0 — Q90— 9
X
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4.3 FlIx as the set of birooted word trees

Consider the free inverse semigroup on the non-empty set X as the P-semigroup

P (FGx,X,E) = P(FGx,X,E)\{(1}, 1)}. Define a map
¢: P(FGx,X,E) — Bx

such that, for (A,g) € P'(FGx,X,E), (A,g)p is the birooted word tree

(e, T, 3), constructed in the following way:

Consider a word of length one, z, in A. Form an edge («, ) labeled by .
Fixing «, repeat the process obtaining edges of the form (a,d). Assuming that
we have assigned a path to each word in A, of length less then k, consider the
word mzy ...z, € A. There exists a unique path (o = 9,71, ..,V—1) labeled
x1,%a,...,TE_1 in the graph already constructed, so we can attach to it an edge
(vk—1,7%) labeled . Doing this for all words of length k& we have inductively
constructed a word tree. Let T" be its representative in 7x and (3 be the vertex of T’
for which the («, 3)-path is the one labeled by x1, zs, ..., x,, where x1, 29, ..., 2,

are such that g = x125 ... x,, in the reduced form.

By this construction we can see that (o, T, 3) is the unique birooted word tree
associated to (A, g), so the map ¢ is well-defined. Using an inverse construction

we can check that ¢ is onto:

Let (, T, ) be an arbitrary element of By and let A be the set of words
which label the (a,~)-paths of T, for all v € V(T). Let g be the word that
labels the path II(«, 3). Clearly g belongs to A so we just need to check that
A is in the semilattice . Let w € A arbitrary, then w labels a (a,~x)-path,
(a, ) = (@ = 0,71, ---,7), so for any word z in w', we know that z labels
a (a,;)-path, for some 0 < i < k. Hence z € A and we may conclude that
wh C A. Tt follows that (A,g) € P(FGx,X,E). We know that (A, g)¢ is the
unique birooted word tree on X whose set of all («,7)-paths bears the labels of

words in A and the (a, 3)-path is labeled by the letters in the word g, so we must
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have (4, g)¢ = (a, T, 3). Thus ¢ is onto.

Let (A,g),(B,h) € P(FGx, X, E) and suppose that (A4, g)p = (B, h)p. The
construction of the birooted word tree from (A, g) is unique, so if it is the same
as the one constructed from (B, h), we must have A = B and g = h, thus ¢ is

one-one.

Let (A, g),(B,h) be arbitrary elements of P'(FGx,X,E). Let (4,9)p =

(o, T, 8) and (B, h)p = («/, T, 3'), then
((4,9)(B, h))p = (AU g- B,gh)e,
(A, 9)p(B,h)e = (o, T, B) (o, T", f') = (a, T(B, /) T", ).

We know that (AU g - B, gh)p is the birooted word tree constructed with the
words of AUg- B. If we do the composition of 7" and 7", identifying 5 with o/ we
obtain a tree “reading” the words of AUg- B, and this composition is T'(3, a/)T".
The path II(«, ') is obtained by following II(«a, 3) by II(c/, 3’), so the word gh
labels the path II(«, 3’). Hence, we must have

(A U g- B,gh)g@ = (Oé,T(ﬁ, O/)T,7B/)7

so ¢ is a morphism. We conclude that P'(F Gy, X, E) is isomorphic to By, this
tells us that we can define the free inverse semigroup on a non-empty set X as

the set of all birooted word trees Bx.
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Chapter 2

Presentations

Let C be a class of algebras and C' an algebra in C. A presentation for C' defines
it as a homomorphic image of the free C-algebra. In this chapter we will focus on
semigroup and inverse semigroup presentations. The definitions, examples and
methods described in this chapter can be found, when not stated otherwise, in

[8] and [10].

1 Writing Presentations

Let A be an alphabet. A semigroup presentation is a pair < A | ;B >, where
M C AT x AT, The elements of A are called generating symbols or simply
generators, and the elements of R are called defining relations. A pair (u,v) € R
is usually represented by u = v. The semigroup defined by the presentation
< A | R > is the semigroup A" /p, where p is the smallest congruence on A"

containing ‘R.

For wi,wy € AT we write w; = wy if w; and wy are identical words in AT,
and w, = wy if they represent the same element of S, i.e. (wy,wz) € p. In this

last case, we say that S satisfies the relation wy = ws.
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Let T be a semigroup generated by a set B, and ¢ : A — B an onto
mapping. We can extend ¢ in a unique way to an epimorphism ¢’ : AT — T,
see for example [10, Proposition 1.1]. We say that T' satisfies relations R if for
each relation w = v in R we have u¢p = vgp. We can now state the following

result:

Proposition 2.1 Let < A | R > be a presentation, S the semigroup defined by

it and T a semigroup satisfying R. Then T is a homomorphic image of S.

PROOF. We know that S = A1 /p, where p is the smallest congruence containing
R. Since T satisfies R we know that there exists an epimorphism ¢ : AT — T,
such that for any (v = v) € B we have u¢ = vp. Hence, R C Ker¢ and
Ker¢ is a congruence, so we must have p C Ker¢. Then, by [6, Theorem 1.5.4],

AT [Kerd = (A" /p)/(Ker¢/p)

and by the Homomorphism Theorem [6, Theorem 1.5.2], we have A™/Ker¢p =T,
so T = (A" /p)/(Ker¢/p). Hence T is a homomorphic image of S. |

Given wy, ws € A', we say that wy is obtained from w; by one application of
one relation from R if there exists o, § in A* and a relation v = v in R such that
w; = auf and we = av. We say that wy can be deduced from wy if there exists
a sequence

Wy =y, Q... A1, Q) = W2

of words from A™ such that a;,; is obtained from «; by one application of one

relation from R. We also say that w; = wy is a consequence of R.

Proposition 2.2 Let S be a semigroup generated by a set A and R a subset of

AT x AT. Then < A | R > is a presentation for S if and only if
(1) S satisfies all relations from *R,
(1) if u,v are any two words in AT such that S satisfies w = v then u=v
is a consequence of fR.
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For a proof see [10, Proposition 2.3]. Now we will look at some examples of

semigroup presentations.

Example 2.1 The presentation < A | > defines the free semigroup A%, for

the smallest congruence on A" containing the empty set is the diagonal relation
A ={(w,w) :we AT} and AT/A = AT,

Example 2.2 Consider the subset R = {(a,a?)} of {a}* x {a}" and let p be

the smallest congruence on {a}" containing 2R, then

apa® = a’pa’

2 2,3 3
apa” N a“pa’ = apa
apa® = a’pa’

2

apa“ N azpa4 = a,oa4
apa* N a’pa™ = apa™l, Vn €N
so we have ap = {a}", hence {a}"/p is trivial. We may conclude that the

presentation

<ala=a*>

defines the trivial semigroup.

Example 2.3 The presentation < a | a"*" = a” > defines the monogenic semi-
group of order n + r — 1 and period n. For definitions related with monogenic

semigroup see for example [6, Section 1.1]

PROOF. Let M = {a,a? ...,a", ...,a"" 1} be the monogenic semigroup of
order n+r —1 and period n, generated by a. We know that r is the least positive
integer, k, such that a* is repeated, and n 4 r is the power of the first repetition
of a”, so M satisfies the relation a” = a™™". Suppose that M satisfies the relation
aP' = aP?, we can assume that a”? is the first repetition of a”*. We want to show
that this relation is a consequence of a” = a™™". If p; = p, then a?* = a?? and

the result follows, so we can suppose without loss of generality that ps > p;.
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Claim 4 If p1,p2 > r and p1 = pa (mod n) then a?* = aP?> can be deduced from

an—l—r — ar

PROOF. In this case we can write ps — p; = kn for some k € N, then

aPl = ak‘n—l—pg = akn—l—rapz—r = a(k—l)nan—l—rapg—r — a(k—l)narapQ—r
= a(k—2)nan+rap2—r — a(k—2)narap2—r = =qgP2 " = P2
so we can conclude that a?* = a”? can be deduced from a"™" = a’. [ |

Since r is the least power of a to be repeated in M we must have p; > r, thus
p1,p2 > 7. Suppose that n [ ps — p1, then ps — p; = kn + g for some k € N and

some 0 < ¢ < n, and we have

AP =aP T = aP VT = L = aP M = gt = P

then o' = a7 and p, — q¢ < po, this contradicts the fact of a”? being the
first repetition of a”*. So we must have ps = p; (mod n) and we conclude that
aP* = aP? is a consequence of a” = a"*". Thus, by Proposition 2.2, the presenta-

tion < a | a"™" = a" > defines M. |

The following result shows that we can always obtain a presentation for a

semigroup by means of its multiplication table.

Proposition 2.3 Any semigroup can be defined by a presentation.

PROOF. Let S be any semigroup and define an alphabet A = {as:s € S}. Ais

obviously in one-one correspondence with S. The set
R ={a,ay, =az :x,y €S}

is contained in AT x AT so we can consider the presentation < A | R >. Let

T be the semigroup defined by this presentation. S satisfies all the relations of
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R (by the definition of semigroup) so, by Proposition 2.1, S is an homomorphic
image of T, i.e. there exists an epimorphism ¢ : T — S, as — s.
Let u,v € A" be such that u¢ = v¢, then there exists x,y € S such that

u=a, and v =a, hold in T and we have

Ue = Ay & T =Y,

this obviously implies a, = a,, so u = v in T. Thus ¢ is one-one and we
can conclude that S is isomorphic to T', thus S is defined by the presentation
<A|R>. |

Let A be an alphabet. We define a monoid presentation just like a semigroup
presentation, replacing A" by A*. An inverse semigroup presentation is a pair
< B | Q > where B is an alphabet, B~! = {b~! : b € B} is another alphabet
disjoint from B and in one-one correspondence with it, and @) is a subset of
(BUB™)* x (BUB™!)". Similarly we can define a group presentation and an

tmverse monoid presentation.

Remark 2 If S is a monoid defined by a monoid presentation < A | R > then
S is defined by the semigroup presentation < A, e | R, ae =ea =a (a € A) >.

Let S be the monoid defined by the semigroup presentation < A | R >.
There exists a word w in AT representing the identity of S and S is defined by

the monoid presentation < A | R, w =1 >.

Remark 3 The inverse semigroup defined by the (inverse semigroup) presenta-

tion < B | ) > is the semigroup defined by the presentation

<B, BYQ, wwltlw=w, wwlzz! =2z 'ww™, (w,z€ (BUBHT) > .

Remark 4 The group defined by the group presentation < B | ) > is defined
by the monoid presentation < B, B~ @, bb™* =b"'b=1 (b€ B) > .
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Given a semigroup S, one way of obtaining a presentation for it consists in

the following stn:

find a generating set A for S;

find a set R of relations which are satisfied by the generators A, and which

seem to be sufficient to define S;

find a set W C A", such that each word from A" can be transformed to a

word from W by applying relations from *R;

prove that distinct words from W represent distinct elements in S.

The set W described above is called a set of canonical or normal forms for S.
This method for finding a presentation is described in [10], and the next result
shows that the presentation < A | /& > that we obtain is in fact a presentation

for S.

Proposition 2.4 Let S be a semigroup, A a generating set for S, R C AT x A"

a set of relations and W a subset of AT. Assume that:
(1) the generators A of S satisfy all the relations from fR;
(11)  for each word w € A" there exists a word w' € W such that w = w'
is a consequence of R;
(13i) if u,v € W are such that u #Z v then u # v in S;
then < A | R > defines S in terms of generators A.

PROOF. The set A generates the semigroup S and R holds in S, so we just need
to show that any relation in S is a consequence of R. Let wy,ws be arbitrary
elements of S, such that w; = wy holds in S. Then there exists w}, w) € W, such
that the relations w; = w), wy = w) are a consequence of R. From w; = wy we

have, by (i), w] = wh. So

g
I
Hg\
I1l
wg\
|
§



is a consequence of . Thus S is defined by the presentation < A | R >. [ |

Note: When S is a finite semigroup the condition (éi7) in Proposition 2.4 can

be substituted by the condition |W| < |S|, see [10, Proposition 2.2].

A way of relating two different presentations for the same semigroup (inverse
semigroup, monoid, group, etc.) is by Tietze Transformations. These are four op-
erations that applied to a presentation allow us to obtain a different presentation

defining the same structure. Given a presentation < A | R > we can:

e T1) add a relation;
Given u,v € A" such that u = v is not in R, but it is a consequence of the

relations in R, the presentation
<A|R u=v>
defines the same structure as < A | R >.

e T2) remove a relation;
If w = v is a relation in R that is a consequence of the relations in
R\{(u,v)}, then the structure defined by < A | R > can be defined by
the presentation

<A|R\{u=v}>.

e T3) add a generator;
Given a symbol b not in A and a word w in A" we can define a relation

b = w, and the presentations
<A b|R b=w>
and < A | R > define the same structure.

e T4) remove a generator;

Givena € A, u € (A\{a})" such that a = u is in R, we can replace a by u in
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all the relations of R where a appears, remove a from the set of generators

and remove the relation a = u from 9R. We obtain the presentation
< Ao} [ R'\{a = u} >,

defining the same structure as < A | R >, where R’ is R with all occurrences

of a replaced by u.

Proposition 2.5 Two finite presentations define the same semigroup if and only
if one can be obtained from the other by a finite number of applications of Tietze

Transformations.

For a proof see for example [10, Proposition 2.5]. One example where we can use
Tietze Transformations is the following:
Example 2.4 The bicyclic monoid is defined by the monoid presentation
<a,blab=1>,
and as a semigroup it admits the presentation
<a,b | aba = a*b = a, bab=ab® =b > .

Proor. Let B be the bicyclic monoid, it is defined as a transformation monoid

in Ny by the following graph

/\/\ ./‘\.

/\.
y

so B is generated by x and y, where x is the transformation defined by
nr=mn+1, Vn € Ny,
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and y is the transformation defined by
Oy=0, ny=n—1, YneN.

The transformation zy is the identity transformation in Ny since Ozy = (0z)y =
ly =0 and nzxy = (n+ 1)y = n. Next, for all j, k € Ny we have
7k. . .
ki JyTr it >k
vy {a:k_J if k> 4,
hence any element of B can be written in the form y™x™, for some m and n in
Ny. It follows that a relation holding in B that is not a consequence of xy = 1

k

can always be taken to be of the form y™z" = y/a*, for some m,n,j, k € Ny.

Now
Oy™a™ = 02" = n,
0y/ak = 0z% =k,

so k = n, and considering an integer ¢ such that i > max(m, j) we have

iy™z™ = (i —m)z" =i—m+n,
iya™ = (i —j)a" =1i—j+n,

this implies that m = 7, thus

= m=jand n==k.

So all the relations satisfied by B are consequences of xy = 1. Considering an
alphabet A = {a,b} and making a correspondence between a,b and z,y respec-
tively we may conclude that B admits the monoid presentation < a,b | ab =1 >.

Let M be the semigroup defined by the presentation
<a,b | aba = a*h = a, bab=ab®> =b > .
From the defining relations of M we have
(ab)a = a, a(ab) =a, b(ab)=10, (ab)b=01,

so ab acts like an identity in the generators of M, hence M is defined by the

monoid presentation
<a,b|aba =a*bh=a, bab=ab®> =b, ab=1 > .
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From the relation ab = 1 we can obtain the other four relations in this presenta-

tion so, applying Tietze Transformations (T2) we obtain
M=<a,b|ab=1>,

thus M is the bicyclic monoid. [ |

2 Rewriting Presentations

2.1 Subsemigroups of semigroups

Let S be a semigroup defined by the presentation < A | R >, T a subsemigroup
of S generated by the set
X={&,:iel}

where &;, are words from A'. A natural question to put is how to obtain a
presentation for 7" from the presentation of S. We are going to describe a method,

given in [4], that answers this question.

Let B = {b; : i € I} be a set in one-one correspondence with X, define a
map from B into AT, mapping b; to &, and let ¢ : Bt — A% be the natural
homomorphism defined by it. Clearly the image of ¢ is T so we can think of
as interpreting each word in B* as an element of T'. We call v the interpretation

map.

We denote by L(A,T) the set of words in A" representing elements of T
Any word in L£(A,T) is associated to a word in BT, so there exists a map ¢ :
L(A,T) — BT with the property that (w¢)y) = w in S, for any w € L(A,T).
The map ¢ rewrites the elements of T" as a product of the given generators for T,
we call it a rewriting map. The next result give us a presentation for 7" in terms

of generators B.
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Theorem 2.6 With the notation above, T is defined by the generators B subject

to the relations:

(wiwa)p = wipweo, wy,wy € L(A,T), (2.2)
(wsuwy)p = (wsvwy)o, u=uv€R, w3 wyc A", (2.3)

where wz and wy are any words such that wsuwy € L(A,T).

PRrROOF. First we check that the relations (2.1), (2.2) and (2.3) hold in T". Note
that if ()Y = (6)% holds in S, with «, 3 € L(A,T) , then, since 1 interprets
each word in BT as an element of T, the relation o = 8 holds in 7. We have

(b)Y = & and ((§)9)Y = &, then (b)Y = ((&)9)Y so

holds in T'. Given wy,ws € L(A,T) we have

(w1w2)P)Y = wiwy (def. ¢)
= (019)Y((wap)y  (def. ¢)
= ((w19)(w29)), (¢ morphism)

so relation (2.2) holds in 7. Given an arbitrary relation v = v in 8 and words

ws, wy € A* such that wsuw, € L(A,T), we have

((wzuwy)P) = wauwy, and ((wzvwy)e)y = wyvws,

but (u = v) € R, so the relation wzuws = wsvw, is a consequence of R, i.e. it
holds in S, then (wsuw,)¢ = (wsvw,)é holds in T. Now, we need to show that
any relation in T is a consequence of (2.1), (2.2) and (2.3). Let a,3 € BT be
such that « =  holds in T, then the relation (a)y = (£)1» holds in S so it
can be deduced from the relations R, and by (2.3) we have ((a)v)¢ = ((5)v)¢.
We can write

o= a;1a592...0451, ﬁ = bi,lbi,Q ce bi,ka

where a;,,b;;m € B, m=1,...,k, n=1,...,l. Then

B)Y =&aio- Sk, ()Y =E1E2...8y,
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and we obtain

6 Ebzlbz2 bzk
= (§1)0(&i2)9 - (§ip)o (2.1)
= () E)o(Bi2))6 - (b)e)o  (def. 1)
— (B (bia)t . (b)) (2.2)
? EE 2)1b1>2 1k)w>¢ (w HlOI‘phiSm)

similarly o = ((a)¥)¢. So a = (3 is a consequence of (2.1),(2.2) and (2.3). We
conclude that 7" is defined by the presentation < B | (2.1), (2.2), (2.3)>. N

In the case where S is an inverse semigroup, defined by the (inverse semigroup)

presentation < A | R >, the presentation < C | Q > where C' = AU A™! and
Q=RU{(w,www) :w e CTYU{(ww 2zt zz7lww™) tw, 2z € CTY,
defines S as a semigroup. If T is an (inverse) subsemigroup generated by a set
X ={, i€},

where &;, are words from CT, then applying the result above we obtain the pre-

sentation

(w1w9)d = (w1)P(wa)d, (w1, ws € L(C,T))
(wauwy)d = (wzvwy)e, ((u=v) € Q) >

where w3, w4 are any words in C* such that wsuw, € L(C,T), that defines T as
a semigroup, in terms of generators B, where, like above, B is a set in one-one

correspondence with X. We can decompose the last relation in the presentation
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to obtain relations for T obtained from fR, the presentation becomes

< B | bi=(&)¢, (i€l)
U)11,U2) ( 1)¢(w2)¢7 (w17w2 G‘C(O’T))

wiuwy)d = (wsvwy)p, ((u=1v € R)

W5U Uy U1w6)¢ = (w5U1w6)¢,

(
(
(
(wrurui  uguy fws)d = (wruguy tuguy M wg) g, (ug,up € CT) >

where w3, wy, ws, wg, wy, wg € C* are such that wsuw,, wsujwg, and

wr(uru] M ugus Hws belong to L(C,T).

2.2 Subgroups of inverse monoids

A subgroup T of a semigroup S is clearly a subsemigroup of S, so the results
in the last section clearly hold in this case. But T being a group, it makes
sense to look for a simpler method to obtain a presentation for it. In [11], the
Reidemeister-Schreier Theorem, giving a presentation for a subgroup of a group,
was generalized to subgroups of monoids. We will look at these results, for

subgroups of inverse monoids, that also appear in [11].

Let S be an inverse monoid, X a non-empty subset of S. The cosets of X
in S are the sets of the form Xs, s € S such that there exists t € S such that
Xst = X. We represent by C = {C; : i € I} the collection of all cosets of X
in S. The number of elements of C is called the index of X and we denote it by

(S X].

Lemma 2.7 S acts on {Xs:s €S} by multiplication on the right. This action
induces an action of S on CU{Cy}, 0 € I, defining Cos = Cy and C;s = Cy if
and only if Cis¢C, s€S.
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Proor. Given Xs ¢ C, s € S, suppose that there exists t € S such that
Xst € C, then there must exist v € S such that Xstv = X. But tv € S and
Xs(tv) = X, this contradicts the fact that Xs ¢ C, hence

Xs¢(C = Xst¢g(C VteS.

The action of S on CU{Cy} is equivalent to the action of S on I U {0} given
by C;s = Cis, i € I, s € S. We now look at the case where X = G is a subgroup
of S. We will denote the identity of S by 1 and the identity of the group G by
e. Note that e is an idempotent of S not necessarily equal to 1. The following

results hold:

Proposition 2.8 Ifi,j € I withi# j, then C;NC; = 0.

PrRooF. Since ¢ # j we know that C; # Cj, by definition of C. We have
Ci = Gs and C; = Gt for some s,t € S, suppose that C;NC; # () and
let x be an element in this intersection, we can write x = g5 = got for some
g1,92 € G. Let y be an arbitrary element of C;, then y = g3s for some g3 € G,
it follows that

y = gss = (gse)s = (93(g1 '91))s = (9391 ") (915) = (g3g1 ") (g2t) = (9397 'g2)t,

so y € Gt = ()}, this implies that C; C C;. Similarly we can show that C; C C,
and we obtain C; = C}, but this contradicts our assumption, so we conclude that

Proposition 2.9 For each i € I there exists r;,r; € S such that Gr; = C; and
griri =g for all g € G.
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Proor. Let i € I arbitrary, C; = Gr; for some r; € S and, since C; is a coset,
there exists ¢; € S such that C;q; = Gr;q; = G. Let us fix an h € GG and let
h' € G be such that h' = hryq. Let r, = ¢;#'~'h, then for any g € G we have

grir = grigh’~*h = g(h~*h)rig;h/~'h
= ghil(hriqi)h/flh _ ghilh/h/flh _ ghilh — g,

hence, there exist r;, 7} € S such that Gr; = C; and grir, =g Vg € G. [ |

A collection of elements r;, 7 is a system of coset representatives if

CgriTi =g,

=1y =1, Viel, Vgeaq.

Given any system of coset representatives r;,r., i € I, we have er;r; = e, then

e = (er;)ri, er,=(e)r; = eRer;

but S is inverse so
eRer; < ee b= (ery)(er))™ & e=err;le & e=erg;?
and for any g € G we have

g=ge=gleriry") = (ge)riry " = grory ',

so we can take 7} to be 77 '. Note that 7; belongs to S not necessarily to G so

r; !'is the inverse of r; in the sense of inverse semigroup inverse, i.e
ri =1y 'y, and vyt =t t

Clearly, for an element g € G, the inverse of g in the group coincides with its

inverse in S, since the inverses in S are unique and gg~' =e = gg g =g.

Lemma 2.10 The elements of a coset are R related to the elements of G.
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Proor. Let C; = Gr; be any coset of G in S. Consider x an arbitrary element
of C;, we know that x = mr; for some m € G. For any y € G we have
x=mr; = (em)r; = ((yy~")m)r; = y(y~'mr;),

=ey=mmly = (mriri_l)mfly = (mri)(ri_l

m~ty) = z(r;'m™ty),

so rRy. [ |

Lemma 2.11 The map ¢,, : G — C;, m — mr;, 1s a bijection with inverse

—-1.
P,

PROOF. ¢, is obviously well-defined, and considering m,n € G arbitrary, we
have

1 1

MYy, = NY,, << Mry =nr; = Mr;r, =nrr, < m=mn

SO ¢, is one-one. C; = G7; so ¢, is clearly onto. Defining ¢ -1 : C; — G,
m — mr; ', we clearly have ¢, -1 = idg and ¢, -1, = idc,, where idg and

td¢; represent the identity map in G' and C; respectively. [ |

From this last lemma we can see that for any x in C;, ¢ € I, we have

1 .
xr; T =1x.

Lemma 2.12 For any coset of G , C;, and s € S such that is # 0, we have
Ciss™ = C,.

PROOF. C; = Gr; so for any s € S, such that is # 0 and for any g € G, gr;ss™?
belongs to Griss™! = C;ss7! = Cj4-1. Since is # 0 we know that iss™! # 0,
then Cj,5-1 is a coset of G so , by Lemma 2.10, gr;ss~' R g, but S is inverse so

99~ =grisstssTiri g™t & g =grissTlri gl
S g= g(nssflr;l)e S g= ge(rissflri_l)
< g= griss*1r71 !

1

71 —_
Vi = gr;=gri(ss™)r;r;
- —1 —1
& gy =grir; Ti(ssT!) & gry = grissT!,
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hence, for any g € G gr; = gryss™ !, thus C; = Cjss™! = Cjge-1. [ |

This result shows that when we have a coset of G with index iss™!, for some
s € S and i € I, we can replace this index by the index 7, and vice-versa. It is
also clear that for any element g in GG, the index 1g can be replaced by the index

1 and vice-versa, for C) = G = Gg = Cig = Cy,.

Proposition 2.13 If G is a mazimal subgroup of S the index of G in S equals
the number of H-classes in the R-class of G.

Proor. Let C; = Gr; be any coset of G in .S. We have seen that eRer; so, by
Green’s Lemma [6, Lemma 2.2.1 and 2.2.2], the map ¢,, : He — Her;, x +— xr;,
where He represents the H-class of e, is a bijection with inverse map Pyt Since
e is an idempotent its H-class, He, is a group, see [6, Theorem 2.2.5]. Given

m € G arbitrary
mm'=e, m=em, and m'm=-e, m=me,

so mHe. Hence G C He, but G is maximal so G = He. Then ¢,, : G — Her;
is a bijection, and we know that ¢,, : G — G'r; is a bijection, so we must have
Gr; = Her;. Hence the cosets of G are H-classes that are in the R-class of G.
Conversely, let H be any H-class in the R-class of GG, and a € H be arbitrary.
The element a is R related with e so there exist s,t € S such that as = e and
et = a. By Green’s Lemma the map ¢; : He — Ha, x +— xt is a bijec-
tion with inverse map ¢,. So the map ¢ : G — H, g — gt, is a bijection
and Gts = G. This tell us that Gt is a coset of G, hence H(= Gt) is a coset of
G. We conclude that [S : G] equals the number of H-classes in the R-class of G R

Now we give a generating set for G using a system of coset representatives.

Proposition 2.14 Let S be generated, as an inverse monoid, by the set A. Then,
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the set
Y = {erjar;) :i €1, a€ AUA™ ia+#0}

generates G as a monoid.

PrROOF. We note that since S is generated as an inverse monoid by A the set

AU A7! generates S as a monoid. Let
M = {erisri,t i€ l, s€8, is# 0},
for any s € S we have er;sr;; € Grysr;,' and
Gmsr;sl = C’isr;sl = C'Z-srz-z,l =G,
so M C . Consider the set
{erigry) 19 € G}

noting that G C 5, we can see that this set is a subset of M. Let g be an arbitrary
element of G

Olgzclg:Gg:G:GlzGT’1201

1

sori =7, = 1. then r; :r_lzlandwehave
1 1g ) 1 1lg

g=-eg=-c¢elgl = erlgrfgl,
hence G C {erlgrfgl :g € G} € M. We conclude that
G={ersr;;:i€l, s€S8, is#0}.

Now let s be any element of S, we can write s = aqas . . . a, for some ay, as, ..., a, €
AUA! and some n € N. If n = 1 we have s = a; and erisrgl €Y. Assume
that for n < k the element er;sr;,' belongs to the monoid generated by Y, and
let s = ajas...ary 1. We can write s = a1t where t = as ... a1, and it follows

that

-1 -1 -1
; = er;a1r; ialt

a1t a1 erial t?”

emsr{sl = er;aitr
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since er;ay € Gria; = Ciaq = Cyyy, S0 erialr;ﬁ € C’mlr;ﬁ = (G, hence

-1

(ersarr;t)e = erian Ty,

-1 o
i and  (er;a1)ry, Tia, = €riai.

We know that 67’1'@17”;1 belongs to the monoid generated by Y, for a; € AUA™L.
And ery, tr;,!, belongs to the monoid generated by Y by hypothesis. Then,

a1t

er;sr;,' belongs to the monoid generated by Y. By induction, we conclude that
er;sr;,' belongs to the monoid generated by Y for all s € S. It follows that G is
contained in the monoid generated by Y, but Y is clearly contained in G, so Y

generates G as a monoid. [ |

Let < A | R > be an inverse monoid presentation defining S, we know that

the presentation

< A AR w=ww v, w2z = 2z lww ™, (w,z € (AUATHY) >
defines S as a monoid. We denote by Q the union of SR with the sets
{(w,www) :w e (AUAY YU {(ww 2z 2z lww ™) tw,z € (AUAT)*)

We already have a generating set for the subgroup G, given by Proposition 2.14,

so we need a set of defining relations for it. We define an alphabet
B' ={[i,al:i€l, a€ AUA™, ia # 0},

and amap ¢ : {({,w):i€l, we (AUA)* iw#0} — (B)* by the rules
(i, 1)¢" =1, (i, aw)¢’ = [i,al((ia, w)¢'),

foranyi €I, a€ AUA™ we (AUA™)* such that iaw # 0. Note that the

definition of ¢’ can be extended to

(i, wlwg)d)’ = (Z, wl)qﬁl(iwl, w2)¢,

for any i € I, wy,wy € (AU A™N)* with dwywy # 0, since writing w; as a
product of elements of AU A™!, say w; = aqas . .. a,, we obtain

[ia al](iﬁh, as . .. anw2)¢’ = ...
iy an]li as] . [i, @] (G, w2 = (6, w0) (i, w2)

(i, w1w2)¢’
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Lemma 2.15 Let wy,wy € (AU A™Y* be such that wy = wy holds in S, and
let i € I be such that iwy; # 0. Then the relation (i,w1)¢’ = (i,wq)¢" s a

consequence of the relations

(i,u)p' = (i,v)¢, i€l, (u=v)€eN, iu#0.

Proor. The relation wy; = wy holds in S, so we can obtain ws from w; by
applying relations from £. Suppose, without loss of generality, that we only
need to apply one relation from £, then w; = auf and ws = awvf for some
a,3 € (AU A™H* and some relation v = v in Q. Tt follows that

(1,w)¢" = (i,)¢ (i, w)@' (iau, 3)

= (i,)¢ (i, v) ¢ (icww, ) (by hypothesis)
= (ia w2>¢,

note that iau # 0, since jw; # 0. |

We can now give a presentation for G.

Theorem 2.16 The presentation

< B | (i,u)¢ =(@,v)¢ (el (u=v)eR, iu0), (2.4)
(i, a0 ta)¢' = (i,a)¢ (2.5)

(Giel, ac(AUA™Y* ia#0),
(i,aa 15871 ¢" = (i, 86 aa™")¢f (2.6)

(iel, a,fe(AUATY), iaa™ 867 #0),
(1,ersar; )¢ =[i,a]  (i€l, a€c AUA™Y, da#0), (2.7)
(Le)d =1 > (2.8)

defines G as a monoid.

PROOF. Define a map ¢ : B — G, [i,a] — ersar;,;’. This map can be

extended to a homomorphism ¢ : (B')* — G, by the rule:

([t w))o = ({4, ax)([d, az]) e - . ({4, an]) ),
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where w = ajas ... a,, withay,as,...,a, € B'. We can think of ¢ as interpreting
the elements of (B')* as elements of G, so we say that the relation v = § holds
in G if (y)Y = ()¢ holdsin S.

Let u = v be any relation in R and ¢ € I be such that iu # 0, we can write

U= Uy . .. Uy, fOr some uj, us,...,u, € AU AL and we have

((i,w) ) = ([i, uﬂ[hih us] . .. [iu11u2 U1, U] )Y 1
= (erjurry, ) (€T, Usy ) - - - (eriuln_unfllunri; )

—1 - - -1
= eriulrwlriulmrmlw e erwl_._un_lunrw (eriulrml & G)
= erUIUDT 1y yy - - ET ity oty UnT g (eriuy € Ciyy)
_ -1
= er;ury, ,

similarly we obtain ((i,v)¢')¢ = er;ur;,'. The relation u = v holds in S so the

relation

eriury, = erry! & ((1,u)¢)y = ((4,0)¢")y
holds in S, thus (i,u)¢’ = (i,v)¢" holds in G. Similarly we can check that the
relations (2.5) and (2.6) hold in G. Now

((l,eriari;l)gb’)w :erleriari_alr_l . (by above)

L ler;ar,, .
= er;ar;, (er;ar;, € G)

and ([i,a])y = er;ary,!, so relation (2.7) holds in G. We have ((1,e)¢')¢ = e
and, since v is a morphism, (1)¢» = e hence ((1,e)¢')yy = (1)1 holds in S, it
follows that (2.8) holds in G.
Note that ¢’ can be seen as a rewriting mapping, since for any w € L(A U
A1 GQ), with w = wyw, . . . w, for some wy,wy, ..., w, € AU AL, we have
(Lw)g" ) = ([1,w][wy, we][wiwe, ws] ... [wy ... wp_1,wy])Y

= ([Lwn])d([wr, wo ). ([wr - wny, wa] )9

= (er1wir7y, ) (eru Wariy,w,) - - (€T w,y WarLy)

= €T1w17”1_$17“w1w27"1_w1w2 (€T o, WRT 1)

= erlwlwgrﬂim €Ty W)

= erjwiwsy . .. wnrl’qj
= w’

then themap ¢ : L(AUA™!, G) — (B')*, w+ (1,w)¢ satisfies ((w)¢' )y = w,
so it is a rewriting mapping. In this case L(A U A~ G) is the set of all words
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in (AU A™Y* representing elements of G. Applying Theorem 2.6 we obtain the

presentation
< B | (1,wiuws)¢' = (1, wvws)d’, (2.9)
(wi,wy € (AUA™Y*, (u=0) €N, wuw, € LIAUA™, Q)
(1, wsww,) ¢’ = (1, wsww ™ wwy) ¢, (2.10)
(1, wyww ™ 22" we)¢' = (1, wszz ™ ww ™ we) ¢, (2.11)

(w3, wy, ws, ws € (AUAD* w,z€ (AUAH,
wswwy, wsww Tzz lws € LIAU AL G))
(1,eriar;,; )¢’ =[i,a], (G €l, a€c AUA™', ia+#0) (2.12)
(1, ugug)d’ = (1,u1)¢' (1, u2)¢',  (ur,up € LAUAT G)) > (2.13)
that defines G as a semigroup. Adding to this presentation the relation (2.8) we
obtain a presentation defining G as a monoid. Now we will see that the relations

(2.4) to (2.8) imply relations (2.8) to (2.13). By Lemma 2.15, we know that the

relation
(i,2)¢ = (i,y)¢, i€l, (x=y)eQ, ix#0
implies
(i,a)¢' = (i,8)¢, i€,
if o = [ 1is a relation in S. But for any relation x = y in Q and w;,ws €
(AU A™H)*  the relation wjzws = wiywy holds in S, so the relations (2.9)

to (2.11) are a consequence of relations (2.4) to (2.6). Let uy,us be arbitrary

elements of L(AU A~ G), by definition of ¢/ we have

(Luuz)g" = (1, u1)@ (Tur, ug)d" = (1,u1)¢' (1, u2)¢,
so relation (2.13) is redundant and can be removed from the presentation. Rela-

tion (2.12) is the same relation as (2.7), so we conclude that the set B’ subject

to the relations (2.4) to (2.8) defines G' as a monoid. |

Now we define a new alphabet

B =A{li,a]:i €1, a€ A, ia # 0},
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and a map ¢ : {(i,w) :i €I, we (AUAN*, iw+#0} — (BUB™')* by the
rules (i,1)¢ =1 and

o fhd@aw)e  ifacA
(i, aw)p = { lia,a " (ia,w)p if a€ A7,

we can check, like we did to ¢', that ¢ is a rewriting mapping and using it we

can obtain a simpler presentation for the group G.

Theorem 2.17 The presentation

< B | (i,u)p=_(i,v)p, (iel, (u=v)eR, iu#0)
(1,eriar ;N =[i,a], (i€l, a€ A, ia#0) >

defines G as a group.

PRrROOF. The presentation for G given in Theorem 2.16 defines it as a monoid
so it also defines G as a group. Let i € [ and a € AU A~! arbitrary, be such that

1a # 0, we have

([i, allia, ™))y = ([i, )t ([ia, a™'])¢)

(erz‘ari_al) (eriaailriaafl )
(ersar;,t)(erua™'ry). (Lemma 2.12)

We know that er;a belongs to the coset Cj,, so, by Lemma 2.10, we have eRer;a,

and since S is inverse we obtain

ee”t =erjaa”lr el & e =e(raa'r; e
1

& e=ce(raa”tr;') & e=erjaalr;
it follows that
([#, allia, a™"])¢

(ersar;,Heriqa™tr;
(eria)r;llrma_lri (eriari_al €q)
= er;aa”'r; (Lemma 2.11)

e. (by above)

We know that (1)) = e and we have just seen that ([z,a][ia,a™])1) = e, so the
relation ([, a|[ia,a )y = (1)1 holds in S. Tt follows that

[i,a][ia,a '] =1, (€I, ac AUA™ ia#0) (2.14)
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holds in G so we can add it to the presentation given in Theorem 2.16. Let

« be an arbitrary element of (A U A7')* such that ia # 0, i € I, and let

ai,as,...,a, € AUA™! be such that « = ajas...a,. Supposing, without loss of
generality, that aq,as,...,a, € A, we obtain
(i,a)p(ic,a™ ) = (i,a1as...a,)0(ic, a;'a,’ afl)qﬁ
= [i, ar]((ia1, as ... 4,)6) [ma a,) " (e oty o art))

[i, a1][iar, as) ... [iaras . . . an_1, an)[ica;t, a,) ™"
lica;tat ), an 1] Mica b .. ayt, aq]
[i,a1][iaq, as] ... [iaray . .. an_1,ay)
[iay ...an_1,a,)7 .. [i,a1] 7,

-1

then

(i, a)¢(io,a™M)d)y = ((4, @) )¥((icv, ™))y
([Z, al])w . ([?:(llag e Qp_1, an])w
([ia1 . .. an_1,a,] )0 ... ([ica;t .. ayt, a7 D)

([i,a1 ). .. ([iaras . . . an_1, ap])®
(([iay ... an_1,a)0) " .. (([ica b ayt, a)) ™!

e,
so the relation ((i,@)¢(ia, a™1)p)p = (1) holds in S, hence

(i, a)plic,aNp=1, (€l ac(AUAY), ia#0) (2.15)
holds in GG. Adding this relation, we obtain the following presentation for G-

< B'| (24), (2.5), (2.6), (2.7), (2.8), (2.14), (2.15) >
From [i,a]lia,a™] =1 we obtain [ia,a™!] = [i,a]™! and [i,a] = [ia,a™!]7!, so
ta Tt =li,a'], Yac AUAT', i€, ia#0,
and we can write the set B™' = {[i,a| ™' : 1 € I, a € A, ia # 0} in the form

Bt ={lia,a”':i €1, a € A, ia#0}

and the set B’ becomes

B" =BU{[i,a i€, a€ A, ia #0}
=BU{fia a] i€, a€ A, ia# 0},
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then B C BUB™!. Forae€ A7, we (AU A™Y)* with daw #0, i € I, we
have

(i, aw)¢' = [i,a](ia,w)¢' = [ia,a '] (ia,w)¢’,

hence, relation (2.14) allow us to replace ¢’ by ¢, substituting the generating set
B’ by B. Note that we substitute B’ by B following the rule

-1

“ta Tt =Ti,al], Yaec AUAT! i€, ia#0.

Relation (2.15) is equivalent to (i, aa™')¢ = 1, and from this relation we obtain

relation (2.6), since

(i,007)¢ = (i,a0™")glica™, B371)¢
= 1(taa™t, 887 1)¢ (2.15)
= (i, 887 1)¢ (Lemma 2.12)
~1 (2.15)

and, similarly, (i, 887 'aa™')¢ = 1. Thus, we can remove relation (2.6) from the

presentation of G. For i € [ and a € (AU A™1)* with ia # 0 we have

= 1(ica™, )¢ (2.15)

= (i,a)0, (Lemma 2.12)
hence relation (2.5) can be deduced from relation (2.15). By the definition of ¢
we can deduce relation (2.14) from relation (2.15), so we have

G =< B|(24), (2.7), (2.8), (2.15) > .

The element (1,¢e)¢ of (BU B™1)* is an idempotent in G, since

(1,ee)o
=(1,e)p (Lemma 2.15)

so, considering our presentation for G as a group presentation, the relation (2.8)
is redundant. Since we changed the generators B’ to B, the relation [i,a]™ =

lia,a™ '], a € A, holds naturally in G, and we have

(i, ) Pic, ™)

= [i,a1][iar, as] ... [iay ... an_1,an][iay ... an,a;t] .. Jiay,a;] =1

46



hence, we can remove relation (2.15). We conclude that the presentation

< B | (hu)p=_(>i,v)e, @GFel, (u=v)eR, ius0)
(1,eriar;;No =li,a]l, (€I, ac€ A, ia#0) >

defines G as a group.
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Chapter 3

Finite Presentability

Finite presentations facilitate the study of infinite semigroups when they are
finitely presented, but this not always happen, as we will see in section 2. Our
main purpose in this chapter is to study some necessary and (or) sufficient con-
ditions for a semigroup to be finitely presented, we will continue this topic in
chapter 4 with Bruck-Reilly extensions. We also try to relate, in the ‘finite pre-

sentability’ sense, inverse semigroup and semigroup presentations.

1 Definition and Examples

A semigroup is said to be finitely presented if it can be defined by a presentation
< A | R > where A and R are finite. Note that the property of being finitely
presented is invariant of generating set, see for example [10, Proposition 3.1].
This definition can be extended to inverse semigroups (monoids, groups, etc.),
and we say, for example, that the group G is finitely presented as a monoid if it

is defined by a monoid presentation < B | ¥ >, where B and ¥ are finite.

Example 3.1 The semigroups defined in Examples 2.1 to 2.4 are examples of

finitely presented semigroups.
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More generally we have:

Example 3.2 Every finite semigroup is finitely presented.
We just need to notice that when a semigroup is finite we can always choose
a finite generating set and a finite set of defining relations when constructing the

presentation given by Proposition 2.3.

By the definition of semigroup, monoid and group presentation, and by Re-

marks 2 and 4 we can see that the following holds:

Proposition 3.1 A monoid is finitely presented as a monoid if and only if it is

finitely presented as a semigroup.

Proposition 3.2 A group is finitely presented as a group if and only if it is

finitely presented as a monoid.

In the next section we will see that in the case of inverse semigroups a similar

result may not hold.

2 Free Inverse Semigroup

We have seen that the free inverse semigroup, F'lx, on the non-empty set X, is
the semigroup Y /7, where Y = X U X! and 7 is the congruence generated by
the set

{(www,w) :w e YU {(ww 2z 2zl ww ™) tw, 2 € YT,
so F'Ix is defined by the semigroup presentation
<X, X' ww v =w, wwtzz7 = 2z lww ™, (w,zeYTH) >
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From this presentation we can see that F'Ix, as an inverse semigroup, is defined
by the presentation < X | >. So it is clear that when X is finite, F'Iy is finitely
presented as an inverse semigroup. The question that arises from this is if in this
case F'Ix is finitely presented as a semigroup. We will now answer this question,

following the work of Schein [12], that also appears in [9, Section IX.4].

Lemma 3.3 Let S be the semigroup generated by the set {u,v}, subject to the

relations
uou = u, v = vuv,
App) w0 = "y ™, Vm,n € N.

S is the free monogenic inverse semigroup.

PrROOF. The free monogenic inverse semigroup is the free inverse semigroup on
the set with one element, {x}, we denote it by FI,. Let p be the congruence
generated by the set

{(uwvu,u), (vuv,v)} U{Amn,:m,n e N},

then S = {u,v}*/p. We define a map ¢ : {u,v}* — FI, by the rules

up = w, v =1z,

(w1ws . .. w,) o = Wi1pWrp . . . Wyp,
for wy,ws, ..., w, € {u,v}. Clearly ¢ is a morphism and its kernel
Kerg = {(a,b) € {u,v}* x {u,0}" : ap = bp)

is a congruence in {u,v}", see [6, Theorem 1.5.2]. In FI, we have zz 'z = x

and z7 'z~ = 27! so

vp = (vuv)p and  wup = (uvu)ep,

for any m,n € N, since ¢ is a morphism. For any k& € N the word z*(z71)* =

2F(2*)~! is an idempotent in FI,, then



since the idempotents in F'I, commute, it follows that

m(2m) N ”) = (z ) G
m(x—l)m( ) ( )n n+m<x 1)m
m(l, >m+n n _ ( ) n+m( )m

()™ (ve) ™ (u)™ = (vip)" (up)" ™ (vep)™
(um m—+m n)SO (Unun—i-mvm)so_

T
= T
~ T
<~
<~

Thus (u,uvu), (v,vuv) and (w0 u™ V"u" ™) belong to Kere for any

m,n € N. So p C kere.

Claim 5 Let m,n,p € Ny be arbitrary. The following holds:

(umP=™)p  ifn<m, n<p

(W™ P)p ifm>n>p

("uP)p i m<n<p
(V""" P)p it n>m, n>p.

(u™v"uP)p =

PrROOF. First suppose that m > n,

(™" uP)p = (um " (" o u)uP ™) p
(um n+1) (Uunvn 1)p(up—1)p — (um—n—i—lvunvn 1Up_1)p
(u™ Muvuu™ o P p = (U™ p(uvu) p(u o uP ) p
— (’LL )pup( n—1 o 1up 1)p _ ( mfnJrlJrnflvnflupfl)p
= (

My up l)p _ (umvn 2up—2)p — ...

n—

IS

if n > p we obtain

— (WP p = (),
and, if p > n we obtain

= (@) p = (W)

Secondly, suppose that p > n > m, then

() = (et twu )

wm ) plun ) pe = )p = () p(urtur)p(u ) p
um ot p(uvp(er "o = (W Lot u(e )
— um up>p _ — (um—mvn—mup—m)p

NN N N

Finally, suppose that n > m and n > p, then
(u™v"uP)p = (W™ TP p,
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if p > n —m we obtain
(umvmvn un—mup—n—i-m)p _ (umvmvn—mun—m)p(up—n—i-m)p
( n— munvm) (up n+m)p _ ( n— m)p<un,vmup—n+m)p

IOU,U pn+m)p:(nmunvn p)p

3
3

(x - we have n > m and n > m, this impliesp—n <0 = m+p—n <m, so
n >m > p—n+m and we apply what we proved above),
if p < n —m, defining m" = n —m and p’ = n — p we have p’ > n —m/, and

applying the last case backwards we obtain

n—m', n, n—p’ n—m, n, n—p

(W ) p = (V™ umoP ) p = (0P p.

Dually we can show that

(V™) ifn<m, n<p

(VU P)p ifm>n>p

(u=m™vP)p  ifm<n<p
(W™ P)p if n>m, n>p.

(v"u"oP)p =

Claim 6 Fvery element of {u,v}"/p can be written in the form (u™v™uP)p for

some m,p € Ng, n € N, with m,p < n.

PROOF. Let w € {u,v}*/p arbitrary. If w = (u™)p for some n € N we have

n,n,n

T = (u™u™)p,  (Claim 5)

w = (u

if w= (v")p for some n € N, then

0,n,0

w= ("""p = (uv"u’)p,  (Claim 5)

suppose now that w = (u™v™)p for some m,n € Ny not both zero, if m > n

then 0 < m —n <m and m > 0, and by Claim 5, we obtain

w = (umvmf(mfn))p _ (umvmum n)p’

if n > m then

w = (u"v"u’)p
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where 0 < m < n and n > 0. Suppose that w = (v"u")p for some m,n € Ny not

both zero, if m > n then

0, m, n

w= (vv™u")p, with0<n<m, 0<m,

if n >mthen 0 <n—m <n, 0<n and by Claim 5 we have

n—-m,mn,n

men—ng 0y 5 (Un—(n—m)un)p = (u""™"u")p.

w = (v

Suppose that w = (u"v"u?)p, if 0 < m,p < n then w is already in the form we
want, if p <n <mthen 0 <m-—n+p<m, 0<m and using the first cases

we considered, we obtain

m,.m, m—n m, m, m—n-+p

w = (WM)p(u)p = (WM )p(uP)p = (u ),

ifm<n<pthen0<m-—-n+p<p, p>0and by what we have seen above

w = (u™)p(v"u’)p = (u")p(u""" v ul)p = (u™ TP,
if n <m, n <p, by Claim 5 we obtain
w = (um—i-p—n)p — (um—i—p—nvm—&-p—num—&-p—n)p‘

Suppose that w = (v™u"vP)p, then using the dual of Claim 5 we can show, like
we did above, that w can be written in the form (u®v?uY)p for some 0 < o,y <
B, 0 < . Suppose that w = (u%™u"vP)p for some p,q,n,m € Ny not all zero,
then

vPu)p, (for some 0 < o,y < 3, by above)

similarly we can write w in the same form if w = (v u"vPu?)p. This shows that
we can reduce any element of {u,v}"/p to an element of the form (u™v"uP)p

where 0 < m,p <n and n > 0. [ |
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Conversely, we will see that Kerp C p. Let b, € {u,v}" be such that
(b,b') € Kerg, ie. bp = b¢. By Claim 6 we know that bp = (u™v"u?)p and
Vp = (uvPu?)p, for some 0 < m,p <n, 0 <nand 0 < a,7 < 3, 0 < 3. Since
p C Kery we have

bo = (u™"™uP)p and Vo = (u*vPu)e,

but by = b/¢ by hypothesis, so

(um™v"uP)p = (u*vPu)p
= (up)™(vp)" (up)? = (up)*(vp)” (up)
= a™(x )"a? = (27 )P

We can consider the free inverse semigroup as the P-semigroup
P(FGX7 X: E)\{<1la 1>}

and using the isomorphism described in Remark 1, we rewrite the equality above

in the following way:
(xl, :v)m((x_l)l, x_l)”(a:l, )P = (xl, :E)O‘((x_l)l, x_l)ﬁ(xl, x)7.

We have
(' v, v) =W vy, v?),
(yh, )2 v) = WUy -yt uy? -yl v,

so we can write (y', y)* = (U'gy’ - ot y*), forany k € Nand y € {x,27'}. Tt
follows that

at, )™ (=) a7 (@), a)

U’.ﬁale.xl ™) (U 01< Vi () (2 ) )(U];:_olxi‘wla xp)
UnileZ cxtug™ (U ( ) (gj 1) ) . (Z'_ ) )(Upflxz X .Z'l, Q?p)
UTZleZ Lt U (Uz 0 1.m—i (LL‘ )i) Ugm . (UP Tt ZL’l) xm—n+p)
Uﬁalxi . .Ti U (Uz 0 xm i, (37 )i) (Up 1 m n+z xl) $m_n+p)
U”iolxl ot U (U? lem i-1 ) U (Up 1 pm—nti IL), a:m—n-i-p)
(Lemma 1.6).

We know that z! = {1, 2}, so
Utet - 2 U (Uidam - (1)) U (UEgam - ) =
={lL,z}U{z,2*} U---U{a™ 2™} U {a™ 2™} U {z™ 2 2™ U

U {xm—n’ xm—n—&—l} U {xm—n7 $m—n+1} U {mm—n—o—l, xm—n+2} U---
U {xm—n—l-p-l—l’ xm—n—l—p}
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if m + p < n this set becomes

{ammn gmontl o gmendr gpmendtetl L a™
and if m 4+ p > n we obtain
{pm=n g™t L, P gL )
From
(ah, o)™ (27D 27 (@t )P = (af, 2)*((@™H) 2710 (2t @)
we get P = 2°T=F from the decomposition above. This implies that

m+p—nmn=a+v—/73,s0if m+p<nwemust have a+~v < Fandif m+p>n
then o + v > (. Suppose without loss of generality that m + p > n, then

{gm=n gmmr L, P ™)
— a— a—pF+1 a+y— «
= {2 B o P, B a0),

so ™ = x* and m —n = « — 3, this implies « = m and [ = n, then from
m+p—n=a-+vy— [ we obtain p = v, hence v™v"u? = u®v’u” . Thus, since p

is reflexive, we have
bp = (u™v"uP)p = (uv’u)p = b'p,

ie. (b,0) € p, then Kery C p and we can conclude that Kerg = p. From the

Homomorphism Theorem, see for example [6, Theorem 1.5.2], we know that
{u,v}"/Kerp = (FI)p,
but ¢ is onto and Kerp = p, so
{u,v}t/p = FI,,
this shows that F'I, is defined by the semigroup presentation

<u,v | u=uvu, v=uovuv, Ap,, (mneN)>.
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Lemma 3.4 Consider the free monogenic inverse semigroup, F1., defined by the

presentation
<u,v | u=wuvu, v=ovuv, Ay, (Mm,neN)>,

giwen i Lemma 3.3. The set of defining relations in this presentation is not

equivalent to any finite subset of these defining relations.

Proor. Let A = {0,1,2,...,n} be a finite set and consider the two partial

transformations of A:
(012 ... n—-2 n-1 8= 012 ... n—1 n
“*“\123 . .. n-1 =n “\oo01 ... n-2mn-1

these transformations satisfy the defining relations of F'I,:

01 2 n—2 n—1 n

afa = 1 2 3 n—1 n — — 5
01 2 n—2 n—1 — ’
1 2 3 n—1 n —

where « is the transformation from the first row to the second, 3 is the trans-
formation from the second row to the third, the second « is the transformation
from the third row to the fourth, their composition, afa, is the transformation

from the first row to the fourth and we can see that it is equal to «,

01 2 . n—2 n—1 n
00 1. n—3 n—2 n—1
baf=11 192 . n-2n-1 o |9
00 1. n—3 n—2 n—1
and
012 ... n-2 n-1 01 2 n—2 n—1
A=1123 ... n=1 n ab=1234 ... n — ,
2 3 4 n — 3 45 — —
if we keep doing powers of a we see that
0 1 2 ... n—k
k_ <
@ (k E+1 k+2 ... n )’lf’“—”
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and o is the null transformation if & > n, we will denote it by @. Similarly we

can see that

N LI ROt
‘3_<0 0 0 ”.0)‘”’ﬁk>”

Let A;; = {u'v"™u! = viw/ty'}, 4,5 € N, be a subset of the defining relations

of FI,. For i,j > n we have
alftigd = @, and Fa/Tip = 000 = 0.

If 7,5 <n then

0 1 2 n—1
=i i+1 i+2 n , and
0 1 2 n—1
o 01 2 J Jj+1 n—1 n
ol =10 0 0 1 n—j—1 n—j5 |,
J 7 7 J g+1 n—1 n
so if n — ¢ < j we obtain
01 ... n—i Do =
o ”joﬂz( . . ), and a3 =0,
B P p 5

if n —4 > j then

o 01 ... j j+1 ... n—i o
1+ ] A AITL QT
o' <j J ... 7 Jj+1 ... n—z') o™ p

We can resume this in the following way:

0 if i,7 >n
0 1 n—1 . S
aiﬁiﬂaj: <] jo ] ) 1fn<l+j, ,1<n
01 ....5 7+1 ... n—1 e
<
(jj jj+1”.n—i)1“+]—n
] iti+7>n
VPV R .. o
A N L A W TRy P
7 .. 3 J+1 ... n—1
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so u and v satisfy A;; if and only if ool = fladt " if and only if
j+i<mnorij>n. Let S, be the semigroup of partial transformations of A

generated by a and (8 and suppose that the set of defining relations

OZﬁOé = Q, ﬁ&ﬁzﬁ, Ai,ja (27] € N)

is equivalent to a finite subset B of these relations. Define n in the following way:
n—{ max{i+j:Ai; €B} if {i+j:A;€B}#0

any natural number  otherwise,

note that, since B is finite, if {i+j : A;; € B} # 0 this set must have a maximal
element. If A;; € B then

’L+] Smaaf;{z—i-jAz,J € %},

i.e. i+ j < n then, by what we have seen above, A, ; holds in S,,. It follows that

all relations in 28 hold in S,,. Since B is equivalent to the relations

aﬁa = «, ﬂaﬁ - ﬁv Ai,j? (Z>] € N)a

all the relations in this set must hold in S, but we know that for example A, ,,
does not hold in S,,, so we have a contradiction. We may conclude that the set

of defining relations of F'I, is not equivalent to any finite subset of itself. |

We can now prove the following result:

Proposition 3.5 The free monogenic inverse semigroup is not finitely presented

as a Semigroup.

Proor. By Lemma 3.3, we know that F'I, is defined by the semigroup presen-
tation

<u,v | u=uvu, v=ovuv, Ap,, (mneN)>.

Suppose that F'I, is finitely presented, then FI, < X | R >, where X and R

are finite. Since the presentations < X | B > and
<u,v | u=uvu, v=ovuv, Apnp, (Mmn€N) >
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define the same semigroup, every element of X is equivalent to an expression of
products of u and v, so we can replace X by {u,v} and the elements of X in the
relations R by their expression as products of u and v. Let ® be this new set of
relations, © is obviously finite, and the presentation < u,v | © > defines the

same semigroup as
<u,v | u=uvu, v=uovuv, Ap,, (mneN) >,
so @ is a finite set that can be deduced from the relations
u=uwvu, v=vuw, Ampn, (m,neN),

and vice-versa. To obtain © from this set of relations we can only use a finite
number of relations from it , let ¥ be the finite set of relations used. Then
<u,v|®> and <wu,v|T > define the same semigroup. This implies that T
is a subset of

u=uvu, v=vuww, Apn (m,neN),

equivalent to it, but this contradicts Lemma 3.4. We conclude that F'I, cannot

be finitely presented. [ |

Finally, we generalize this result to any free inverse semigroup.

Proposition 3.6 No free inverse semigroup s finitely presented as a semigroup.

ProOOF. Let X be a non-empty set and assume that FIx is defined by the
semigroup presentation < Y | R >, where Y and R are finite. If X is infinite
then some elements of X do not occur in the relations from R since this set is
finite. Let x be an element of X not occurring in the relations of R, then the
relation z = 7'z does not hold in FIy, this is a contradiction, so X must be
finite. We may express each element in Y as a product of elements in X, so we

can assume that Y = X. Let us add to R the finite set of relations
{vi=a; 2,15 € X, i # j},
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we are identifying all the elements of X as a unique element so we obviously
obtain the free monogenic inverse semigroup, but we have already seen that this
semigroup is not finitely presented so we can conclude that F'Ix is not finitely

presented. [ |

3 Some Finite Presentability Conditions

We start by giving sufficient conditions for a subgroup of a monoid to be finitely
presented. These first two results follow from results in chapter 2 and can be

found in [11].

Proposition 3.7 A subgroup of finite index in a finitely generated inverse monoid

15 itself finitely generated.

PRrROOF. Proposition 2.14 give us the generating set
Y ={erar;) :i€l, a€ AUA™, ia # 0}

for a subgroup G, of an inverse monoid S, where the set A U A~! generates S
as a monoid, and the cardinality of I equals the number of cosets of G in S. It
follows that if S is finitely generated and the index of G in S is finite, G is finitely
generated. |

Note that in this result, as in Proposition 2.14, the condition of being inverse
is not necessary. The results also hold for semigroups, with an appropriate system

of coset representatives, see [11].

Theorem 3.8 A subgroup of finite index in a finitely presented inverse monoid

is also finitely presented.
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PRrROOF. Let S be a finitely presented inverse monoid, defined by the presentation
< AR >, and G a subgroup of S, such that [S : G] = ¢, for some ¢ € N. By
theorem 2.17, we know that G is defined by the group presentation

< B | (i,u)p=_(i,v)p, (Gel, (u=v)eR, ius#0)
(1,eriar;, o =[i,a], (€I, a€ A, ia#0) >.

Since A and fR are finite and |I| = ¢ we conclude that G is finitely presented. B

A semigroup without zero is called simple if it has no proper ideals. A semi-
group, S, with zero is called 0-simple if {0} and S are its only ideals and S? # {0}.
A 0-simple (simple) semigroup is said to be completely 0-simple ( completely sim-

ple) if it contains a minimal idempotent within the set of non-zero idempotents.

We will give a necessary and sufficient condition for a completely O-simple
semigroup to be finitely presented. The properties of these semigroups appear in

[6, Chapter 3|, but the only result we need about them is the following:

Proposition 3.9 Let G° (G) be a 0-group (group). Let I, A be non-empty sets,
and let P = (px;) be a I x A matriz with entries in G° (G ). Suppose that no row or
column of P consists entirely of zeros. Let S = (I x GxA)U{0} (S = (IxGxA))
and define a multiplication on S in the following way:
: : (i, gpajh,p) if py; #0
(nga)‘)(jvha”) - 0 lf p)\j :0’
0(i, 9, \) = (1,9, )0 = 00 = 0.
( (4,9, \)(J, h, 1) = (i,9prjh, 1) ). Then S is a completely 0-simple (simple)
semigroup. We denote it by M°|G,I,\; P] ( M|G,I,A; P] ).
Conversely, every completely 0-simple (simple) semigroup is isomorphic to a

semaigroup constructed in this way.

For a proof see [6, Theorem 3.2.3 (3.3.1)].
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Proposition 3.10 A completely 0-simple semigroup S = MG, I, A; P] is finitely
presented if and only if G is finitely presented and both I and A are finite.

PROOF. S is the semigroup (I x G x A) U {0} subject to the multiplication

: i gpxjh p) if pa; # 0
(i, 9, M), s 1) { if pa — 0
0(i,9,A) = (i,9,A)0 = 0 = 0.

Suppose that S is finitely presented, then S is finitely generated, let

{(ila g1, )\1), (ig, ga, )\2), cee (Zk, 9k, )\k)} U {O}

be a generating set for it. By the multiplication defined on S we can see that [

and A are the sets
]:{il,ig,...,ik} and A:{)\l,)\g,...,)\k},

so they are finite. Let us fix a non-zero element p,,, in P, note that p,,, € G.
Claim 7 (iy, G, \o) is a mazimal subgroup of S.

PROOF. The map ¢ : (ig, G, \o) — G, (i0, 9, No)p = p/(oliogpioio, is obviously
well-defined. Let (i, g, Ao), (i0,h, Ao) € (io, G, \g) be arbitrary. Since py,i, 7 0

we have

((iOa g, )\0)(7:07 h‘7 )\0)) (ZOa gpkoloh )\0)90 p)\ozogp)\olohp)\ozoa
(i0, g, X0)@ (i, Py M) = Ditio IP30ioProic MP30ic = Paio IPAoio PPy

so  is a morphism. Supposing that (ig, g, Ao) = (ig, h, A\o) we obtain

p)\ozogp{\ozo = p}\@l% p>\010
= pAOZOp/\Ozogp)\ozop)\olo pAOzOp)\olohpAOlop)\OZO
= g=h (G group)

= (7;07 g, AO) - (7:07 ha )‘0)
so ¢ is one-one. For any g € G we have

9 = (PrioProig) 9P Phoic)
= p)\oio (pkoiogp,\oio )p)\ozo - ( 20, pkozogp)\ol(ﬂ /\0)(;0
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and (ig, Pagio gp;fio, o) belongs to (ig, G, A\g), so ¢ is onto. Hence G is isomorphic
to (ip, G, \o), so (ig, G, \g) is a subgroup of S. Let T be a subgroup of S and
suppose that (i, G, A\g) € T, then T is of the form (I',G,A’), with iy € I’ and
Ao € N. Let (i,e, A) be the identity of T', we have

(G0, 9, M) (4, €, A) = (@0, 9, Ao) & (f0, gprgi€; A) = (f0, 9, Xo) = A= Ao,
and
IPri€ =0 < g ' gPrice =99 S DPrs, =6
similarly, from (7, e, \)(Z9, g, Ao) = (%0, 9, Ao), we obtain i = ig, so (io,pgolio,)\g) is
the identity of T'. For any (i, g, ) in 7" we have
(ia g, )\) (i07p)_\01i0a AO) = (7'7 g, A) ~ (Z7 gp)\’iopxolioy A0) - (l7 g, A)a

so A = \g, and similarly we obtain i = iy, so T = (ig, G, \). Hence (ig, G, o) is

a maximal subgroup of S. |

Claim 8 (ig, G, \o) has a finite number of cosets.

PROOF. Let (i,9,A) € S be such that py,; # 0. Considering an element (j, h, \o)

in S, we have

<i07 G7/\0>(iuga A)(]? h7/\0> - (7:07G7 A)(]a h7 )‘0) - <i07 Ga)‘(])

so, for any (i,g,\) € S such that p,,; # 0, the set (ig, G, \o)(i, g, A) is a coset
of (ig, G, \g) in S. By the multiplication defined on S we know that if py,; = 0
then (ig, G, \o)(7, 9, A) cannot be a coset , so the cosets of (iy, G, \g) are the sets
(19, G, \) for any A € A. Since A is finite we conclude that (ig, G, Ag) has only

finitely many cosets in S. [ |

We know that (ig, G, o) is a subgroup of S with finite index, then, adapting
Theorem 3.8 to semigroups, see [11, Corollary 2.11], we know that (i, G, o) is

63



finitely presented. Since G is isomorphic to this group we conclude that G is
finitely presented.

Conversely, suppose that I and A are finite and that G is finitely presented.
By Propositions 3.1 and 3.2 we know that G is finitely presented as a group
if and only if is finitely presented as a semigroup, so let < A | & > be finite
presentation, defining G as a semigroup. We can rearrange the elements of P so
that py; is the identity of G. Let e € AT be a word representing the identity of
G and define a set

Y=AU{y;:ie I\{1}} U{zn: A € A\{1}}.
By [7, Theorem 6.2], we know that a presentation for S is

<Y | R, ye=vy, eyi=Dpu, Ze=Dr, €z =2,

Z2\Yi = DPais (i e I\N{1}, AeA\{1}) >

and, since A, R, I and A are finite, we conclude that S is finitely presented. W

Let S and T be disjoint semigroups, 7" having a zero. A semigroup M will be
called an ideal extension of S by T if it contains S as an ideal and if M/S = T.
Note that if I is an ideal of a semigroup S, then S is an ideal extension of I by
S/I. The following result was proved in [11], and gives us a sufficient condition

for an ideal extension of a semigroup, by another, to be finitely presented.

Proposition 3.11 An ideal extension of a finitely presented semigroup by an-

other finitely presented semigroup s finitely presented.

Proor. Let T and U be semigroups defined by the finite presentations <
A | > and < B | Q > respectively. Let S be an ideal extension of 7" by U,
i.e. T is (isomorphic to) an ideal of S and S/T = U. Let By be the set of all
generators from B representing the zero of U. We can look at S/T as the set

S\T U {0}, where all products not falling in S\T" are zero, this way B generates
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S\T U {0}, so B\ By generates S\T, then B\By U A generates S. Define 9, as

the set of relations
{u=v € Q : urepresents the zero of U}.

For all u € (B\By)" representing the zero of U fix a word p(u) € A" such
that v = p(u) holds in S. For all pair of letters a € A, b € B\B, fix words
o(a,b), 7(b,a) € AT such that

ab=o(a,b) and ba=71(b,a)
hold in S. We will see that S is defined by the presentation

<A, B\By | R, 9Q\Qo, (3.1)
u=pu), (u=v)eQ, ue(B\By") (3.2)
ab=o(a,b), ba=r7(ba), (a€A, be B\By) >.(3.3)

Since T is an ideal of S we know that S satisfies R, and since U can be seen as
S\T U {0} we know that S must satisfy Q\Qy. S obviously satisfies (3.2) and
(3.3). Now let w; = wq be any relation holding in S. If w; represents a non-zero
element of U then wy represents a non-zero element of U and w; = w, holds in
U, with wy,wy € (B\By)*, so this relation can be deduced from Q\Qy. If wy
(and then ws) represents an element of T', we can write w; = ajas...a, with
ai,as,...,ar € AU B\By. If any product of ay, as, ..., a; represents the zero of
U we use relation (3.2) to transform the product in a word from A™, then we use
relation (3.3) to obtain from w; a word wy in A*, such that w; = wy holds in S.

Similarly we obtain a word w5 in A', and we have
Wy =Wy, Wi, Wz € AT

holding in .S, so this relation holds in 7', then it can be deduced from R. We

conclude that the presentation

<A, B\By | (3.1), (3.2), (3.3) >
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defines S, and since A, B, R and Q are finite we know that S is finitely pre-
sented. u

Let I, J be ideals of a semigroup S, such that I # J and J is a maximal ideal
in /. For any a in I\ J define

I(a) = {zx € S*aS* : S'xS' C S'aS'}.

The principal factors of S are its subsemigroups S'aS'/I(a), and the minimal
ideal of S, if it exists, that we represent by K (.S). We can now prove the following

results, that can be found in [11].

Theorem 3.12 Let S be a regular monoid with finitely many left and right ideals.
Then S s finitely presented if and only if all maximal subgroups of S are finitely

presented.

PROOF. Saying that S has finitely many left and right ideals is equivalent to
say that S has finitely many R and L-classes. This implies that S contains
finitely many H-classes, then, by Proposition 2.13, every maximal subgroup of S
has a finite number of cosets, i.e. it has finite index. Suppose that S is finitely
presented, then, by Theorem 3.8, we know that all maximal subgroups of S are
finitely presented.

Conversely, suppose that all maximal subgroups of S are finitely presented.
The principal factors of a semigroup are null, O-simple or simple semigroups,
see for example [8, Proposition 1.13]. In this case S cannot have null principal
factors since it is regular, the principal factors are subsemigroups of S and the

null semigroup is not regular.

Claim 9 FEvery 0-simple (simple) subsemigroup of S is completely 0-simple (sim-
ple).
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PROOF. Suppose that S has an infinite descending chain of idempotents

fi>fo>fy>>fp>---

we recall that f; < f; & fi = fif; = f;fi, then the ideal Sf; equals the ideal
S fif; that is contained in the ideal Sf;, and we obtain a descending chain of left
ideals

SH2825/2- 2852

Suppose that Sf; = Sf;y1, for some i € N, we know that f; € Sf;, since S is
regular, so there exists a € S such that f; = af;,1, then
fi=afixr = fifirr =afiifin
& fifimn=afin & fifin=Ff & [i < fin,
this implies f; = f;11, but this contradicts f; > f;11, so we must have an infinite

descending chain of left ideals
SfLroSfaDSfsD---DSf D+

that contradicts our assumption. We conclude that S cannot have an infinite de-
scending chain of idempotents, so it must contain a minimal idempotent within
the set of non-zero idempotents, hence, every 0-simple (simple) subsemigroup of

S is completely 0-simple (simple). [ |

This result implies that all principal factors of S are completely O-simple
or completely simple semigroups. Let T' be any principal factor of S that is a

completely O-simple semigroup, then, by Proposition 3.9,
T = M°[G,1,A; P]

where G is a group isomorphic to any maximal subgroup of S, [ is a set in one-
one correspondence with the set of all O-minimal right ideals of S and A is a set
in one-one correspondence with the set of all 0-minimal left ideals, see [6, Proof
of Theorem 3.2.3]. From the fact that S contains only finitely many left and
right ideals we know that [ and A are finite. The group G is finitely presented
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by hypothesis, so, by Proposition 3.10, T is finitely presented. We may conclude
that all principal factors of S are finitely presented, since we can clearly adapt
Proposition 3.10 to show that K(S), the principal factor of S that is completely
simple, see [6, Proposition 3.1.4], is finitely presented. Considering a principal
series of S

S1=5D25D D2 8,=K(S5)

the factors

51/527 52/337 ceey Sm—l/Sm

are isomorphic, in some order, to the principal factors of S, see [6, Exc.4,Chap.
3]. We have seen that S, is finitely presented, and S,,_1/S,, is isomorphic to a
principal factor of S, so S,,_1 is an ideal extension of K (S) by a principal factor
of S, that we have seen to be finitely presented, it follows, from Proposition 3.11,
that S,,_; is finitely presented. S, o is an ideal extension of S,,_; by a principal
factor of S, so S,,_s is finitely presented, by Proposition 3.11. We keep repeat-
ing this argument until the beginning of the principal series and we obtain that

S; = S is finitely presented. [

Finally, we will show that a similar result to Propositions 3.1 and 3.2 holds

for inverse monoids, when they contain only finitely many left and right ideals.

Theorem 3.13 Let S be an inverse monoid with finitely many left and right
tdeals. Then S 1is finitely presented as an inverse monoid if and only if it is

finitely presented as a monoid.

PROOF. Suppose that S is finitely presented as an inverse monoid. From the
fact that S contains only finitely many left and right ideals we know that any
maximal subgroup of S has finite index, using the same argument as in the last
result. Then, by Theorem 3.8, every maximal subgroup of S is finitely presented.
Since S is inverse we know that S is regular then, by Theorem 3.12, S is finitely

presented.
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Conversely, suppose that the finite presentation < A | 8 > defines S as a
monoid. Then this presentation also defines S as an inverse monoid, so S is

finitely presented as an inverse monoid. [
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Chapter 4

Bruck-Reilly Extensions

Our main aim in this chapter is to present necessary and (or) sufficient conditions
for a Bruck-Reilly extension, of certain classes of monoids, to be finitely presented.
We also relate the finite presentability of a Bruck-Reilly extension, of this classes
of monoids, as an inverse monoid with its finite presentability when defined by a
monoid presentation.

We look at Bruck-Reilly extensions of groups, following the work done in [2],
and generalize some of this results for Bruck-Reilly extensions of monoids, stating
some results from [1].

We will study the Bruck-Reilly extension of a Clifford monoid that is a union
of two groups, considering two different cases. First we consider two copies of the
same group, and the morphism linking them is similar to the identity map. In
the second case we consider two arbitrary groups, linked by the morphism that
maps all the elements of one group to the identity of the other.

Finally, we look at a Bruck-Reilly extension, BR(S, 6), of an arbitrary Clifford
semigroup, S, determined by the morphism #, that maps all elements of S to its

identity.
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1 Introduction - Bruck-Reilly Extensions of
Monoids

Let S be a monoid, z € S is said to be a unit in S if there exist p,q € S such
that xp = 1 and gz = 1, where 1 is the identity of S.

The set of all units of S is a subgroup of S, we will call it the group of units
of S and represent it by U(S). Note that every subgroup of S containing its
identity, 1, is contained in U(S), see [5, Theorem 1.10].

Let 6 a morphism from S into U(S). We define a multiplication on Ny x .S x Ny

in the following way:
(ma a, TL) (pa b7 Q) = (m —n+t, (aetfn)(betfp)’ q—p+ t)

where t = mazx(n,p) and ° is interpreted as the identity map in S. We de-
note Ny x S x Ny together with this multiplication by BR(S,6) and call it the
Bruck-Reilly extension of S determined by 6. The following results help us to
characterize BR(S, 6):

Proposition 4.1

. BR(S,0) is a semigroup with identity (0,1,0).

. (m,a,n) Rprese (0,0,q) & m=panda Rg b.
. (m,a,n) Lprsg (p,0,9) & n=gqandaLgbd.

(
(
(m,a,n) Hprese (p,0,q) © m=p, n=gqandaHgb.
(m,a,n) Dprese) (p,0,q) < a Dgb.

T

1
2
3
4
5
6. The set of idempotents of BR(S,0) is:

E(BR(S,0)) = {(m,a,n) € BR(S,0) :m =mn, a € E(5)}.

L is one inverse

7.BR(S,0) is reqular if and only if S is reqular, in particular if a~
of a in S then (n,a',m) is one inverse of (m,a,n) in BR(S,0).

8.BR(S,0) is inverse if and only if S is inverse.
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For a proof see [6, Proposition 5.6.6]. Let < A | R > be a presentation for the
monoid S, we can define BR(S,0) by means of a presentation containing the

generators and defining relations of S.

Proposition 4.2 The monoid BR(S,0) is defined by the presentation

<A, b, c| R, bc=1, ba = (ab)b, ac = c(ab), (a € A) > .

This result appears in [7], where we can find a proof for it. The following result

is a consequence of the presentation obtained for BR(S,#).

Proposition 4.3 If S is finitely presented then BR(S,0) is finitely presented.

The converse does not always hold. We can find an example of a Bruck-Reilly
extension of a, not finitely presented, group, that is finitely presented in [11,

Proposition 3.3].

Considering the presentation given in Proposition 4.2 as the definition of a
Bruck-Reilly extension, we will rewrite some known properties of these monoids,

using the elements of the presentation.

Lemma 4.4 For all i,§,k,l € Ny and a, 3 € A*, the relation cab’ = cFpb
holds in BR(S,0) if and only if i =4k, j=1 and o= [ holds in S.

PrROOF. Let ¢: (AU{b,c})* — BR(S,0) be the monoid morphism extending
the mapping
b¢ = (07 157 1)7 C¢ = (17 1570)7 (1¢ = (07(170)’ a € A7

where 15 is the identity of S. The map ¢ is an epimorphism, see [7, Lemma 4.1].
So, if cabl = F3b' holds in BR(S, 0) we have (c'ab?)p = (c*Bb')e, then

()p(e)p (V)¢ = ()o(B)o(V)¢ & (i a,5) = (k,B,1),
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it follows that ¢ =k, j=[1land a = in S. |

Lemma 4.5 In BR(S,0) we have:
(1) bw = (wh)b, for all we A*;
) we = c(wh), for all w e A*,
) b"a = (af0™)b™, for all n € N, and all a € A,
) ac” = c"(ad"), for all n €N, and all a € A.

PrROOF. Let w € A* be arbitrary, say w = aqas . ..a,, wherea; € A;i=1,... r.
Then
)bag

bw =blajas...a.) = (bay)as = (ay = (a
== (a10)(az0)(ash) .. ( ) = ((a10z .. ) )b

similarly we can see that wc = c¢(w#). Let a be an arbitrary element in A, for

ay )(a29)ba3...ar
= (wh)b,

any n € N we have

b"a

Ll

b1 (ba) = b""1(ah)b = b"2b(ab)b
b"2((ad)0)b? = b 2(ab?)b? = - - - = (ab™)b

( % - af belongs to A* so we can use (i)), similarly we can see that ac™ = ¢"(ad").
|

Lemma 4.6 Every word w € (AU {b,c})* is equal, in BR(S,0), to a word of
the form c'ab’, where o € A* and i,j € Ny.

PROOF. Let w € (AU{b,c})*. If w = b'¢ for some 4,5 € N, using the relation
bc = 1, holding in BR(S, #), we obtain

. i i >
w=po =407 Hi2J
a7t ifi<yg.

If w = ac’ for some o € A* and i € Ny, by Lemma 4.5 (ii) and (iv) we can write
w in the form ¢’(af?), and (af?) belongs to A*. If w = b'a for some o € A* and

i € Ny, using Lemma 4.5 (i) and (i74) we can write w in the form (af?)b’ where
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(af?) belongs to A*. We conclude that in BR(S, #) every word can be written in
the form clab’ for some o € A* and i, j € Ny. |

Proposition 4.7 For any clal?, *3b' € BR(S,0) we have:
(1) ot Rprspo ph < i=kand a Rg f;
(1) b Lprse) By = j=1land a Lg B
(iii) abl Hpprese OV < i=k, j=1 and o Hg 3.

PROOF. Suppose that clab’ and ¢*3b! are any two elements in BR(S, ) that are
R related. By Lemma 4.6, we know that we can define the Green’s equivalence
R, in BR(S,0), in the following way:
cdabl R Fph <
< I Mab™2, ™™ € BR(S,0)
dablc™ab™ = kst and  FBB B anb™ = calb’.

If 5 > m; we have

dablc™a b2 = ckpY
& dabl ™Mo b™ = Bl
& daa@fmm)pimmitme = ok gyl
= i=k, ala@™)=03, j—my+my=I,

if my > j we obtain
cdablc™ab™? = kb
& dad™ o b™ = kB0

& ddmTI(af™ ) a b2 = k31
= m=k—14+j5 = 1>k

Suppose that i > k, from
B ™ apb™ = b/,

if [ > ms we obtain

ckBb T ™ = clab’
B (apfl=ma)pimmatma = cigp
i=k

43¢
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this contradicts our assumption, so we must have [ < mg, and in this case we

obtain o
B o™ = clab’
& Fmatl(ggmaTh g™ = cab?
= 1=k+m3—1I,

but ¢ > k, so we must have mg3 > [, that is a contradiction. Hence ¢ must be
equal to k, and looking at the cases where we did not obtain a contradiction we

see that we must have 7 > m, and similarly [ > mg, this implies that
a(a17™) =3 and  B(apf ™) = q,

so we can obtain « by multiplying § by an element of A* on the right and vice-
versa, this is equivalent to say that o and # must be R related in S.

Conversely, consider the elements ¢/a;b', claxb! € BR(S, ), where ai,ay €
A* are such that aa; = 6 and Sas = a. Then

cdablddab = daab = B,
bl dast? = ¢ Basb’ = clab,

so ¢'Bbl is R related with c'ab’ in BR(S,#). We conclude that
cal’ RBR(s,0) P < i=kand a Rg .

Similarly we can see that (ii) holds, and since H = R N L we conclude that (i)
holds. [

2 Bruck-Reilly Extensions of GGroups

Let GG be a group and # an endomorphism in G. Considering the Bruck-Reilly ex-
tension, BR(G, 6), we can simplify some results of section 4.1 using the properties
of the groups. Note that, since G is a group, BR(G, ) is an inverse semigroup.
We represent by 1 the identity of BR(G,6) and by 1g the identity of G. Let

< A | R > be a presentation defining G' as a monoid.
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Lemma 4.8 In BR(G,0), for all i, j, k,l € Ny and o, f € A* we have:
(i) dabd R Fph < i=k;
(ii) cabl L FpY < j=1I;

(iii) cabd H FBh = i=k, j=I.

ProoF. It follows from Lemma 4.7 and from the fact that in (a group) G we
have R = L =H = G x G, see [6, Section 2.1] |

Lemma 4.9 There is a (unique) epimorphism, 7, from BR(G,60) onto the bi-
cyclic monoid B, such that br = b, ¢t = ¢ and ar = 1, a € A, where 1p

represents the identity of B.

ProOOF. In Example 2.4 we saw that the presentation
< byclbe=1 >
defines B as a monoid. Define a map 7 : AU {b,c} — B by the rules:
br=0b, cr=c¢ and am = 1p,

for any a € A. The map 7 is obviously well-defined and we can extend it to a

morphism from BR(G,0) into B by the rule
(T1Z9 ... )T = T1TTLT ... T, T, r; € AU{b,c}, i=1,...,r

Let w € B be arbitrary, noticing that the bicyclic monoid can be seen as the
Bruck-Reilly extension of the trivial group, we can write w = o' for some

k,l € Ng. Then
w = b = (en)*(br) = (F)r (7w = (P71 = (Fb)r

and c*b' belongs to BR(G, ), hence 7 is onto. Since we defined 7 over the gen-
erators of BR(G,0), we can conclude that 7 is the unique epimorphism from

BR(G,0) onto the bicyclic monoid. |
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Lemma 4.10 G is isomorphic to the group of units of BR(G,0). A word w in
(AUA{b, c})* represents an element of the group of units of BR(G, 0) if and only if
it is equal to some word from A*, i.e. if and only if wr = 1g, where 7 is defined

above.

PROOF. Let clab! be a unit in BR(G, ), there exists ¢/3b* € BR(G, ) such
that cablc? BbF = 1. If [ > j this implies

dabTIp =1 & da(B00)p I =1
= i=0, o) =1q, j=1+k,

if 7 > [ we obtain
dad gt =1 & AN abTHpY =1 = i+ =1,

so in this case we have a contradiction. Hence ¢ = 0 and 57 = [ + k, then

cdabldptF =1 & abldtFpht =1
& adpth=1 & Fadh)pr=1 = k=0

Thus w is a unit if and only if w is of the form ®ab® with o € A*, ie. if
and only if w belongs to A*. Since A generates G we conclude that the map

U(BR(G,0)) — G, a~— «, is an isomorphism. |

To the words in (AU {b, c})* which represent elements of G' we will call group

words. We are now able to follow the proof of the next result, given in [2].

Proposition 4.11 BR(G,0) is finitely generated if and only if there exists a
finite subset, Ay, of G such that G is generated, as a monoid, by the set Uizo A

PROOF. Let Aj be a finite subset of G such that the presentation

< [JAw | R >

>0
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defines G as a monoid. By Proposition 4.2, we know that BR(G, 0) is defined by

the monoid presentation

< [JAb', b, ¢ | R, be=1, ba=(ad)d,

i>0
ac = c(ad), (a€ U Agd") > .
i>0
Let a € Ay be arbitrary, note that a = af°, so a € Uizo Apft. For any i € Ny we

have o A
(a0")b" = b'a (Lemma 4.5)
= (ab)b'c" = bac
& af' =bac (be =1)
it follows that (J;- Apb" C (Ag U {b,c})*. Thus Ay U {b,c} generates BR(G,0),
so this monoid is finitely generated.

Conversely, suppose that BR(G, ) is finitely generated. We know that if A
generates G, then AU {b, ¢} generates BR(G,#), so there exists a finite subset
Ay of A such that Ay U {b, c} generates BR(G,0) . Let U be the group of units
of BR(G, 0), clearly the identity of U is the identity of BR(G, 6). Suppose that

T is a subgroup of BR(G, ) that contains U, then 1 € T' and we obviously have

lg =g =41,

for all g € T, so 1 is the identity of 7. Then all elements of 7" are units of BR(G, 6)
and we must have U = T'. Hence U is maximal. By Lemma 4.10, we know that
G 2 U so G is a maximal subgroup of BR(G, #), then, by Proposition 2.13, the
cosets of G in BR(G, 0) are the H-classes in the R-class of G. By Lemma 4.8,
we can see that the R-class of G is the set Gb* = {ab’:i >0, a € G} and that
the H-classes in this R-class are the sets H; = Gb'~!, i > 1. Proposition 2.14

give us the following generating set for G:
Y = {lgriar;} ;i €1, a € AgU{b,c}, ia € I}

where 7;, r7', i € I, is a system of coset representatives. We have

7

He ' =abldl =@, i>1,
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so we can take r; = o', 77! = ¢~ to be a system of coset representatives. For

(2

any a € Ay we have
Gba = G(ah)b = Gb, (abd € G)

SO 1iq = 1; for a € Ag, and

Gbb=Gb = ry=rb = r;l=b"lr7 =,
Gbe=Gb"™' = 1 =1y,

then our generating set becomes
{1gblar;t i >0, a € AgU{b,c}}
= {1gb'ac’, 1gb'bec’, 1gblebt @ >0, a € Ao}
= {1g(b'ac’), 1gl : i >0, a € Ay}
={bac® : 1 >0, a€ A} U{lg},
note that blac’ = af?, i > 0, so bac’ € G for any ¢ > 0. Thus, the set
{tac : i>0, a€ A} ={ab : i >0, ac Ay} =|]Ab
i>0

generates G. |

Proposition 4.12 If BR(G,0) is finitely presented then G is finitely generated.

Theorem 4.13 BR(G,0) is finitely presented if and only if G can be defined by

a presentation < A | | >, where A is finite and

%:US_‘{Qk:{ué’kZUQk:kEO, (u =v) € R}

k>0

for some finite set of relations | C A* x A*,

The proofs of these last two results can be found in [2]. Except for Proposition
4.12; these results were generalized for monoids in [1], we will now state these

results.
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Proposition 4.14 Let M be a monoid, o : M — U(M) a morphism. The
Bruck-Reilly extension BR(M, o) is finitely generated if and only if there exists
a finite subset Ay of M, such that M is generated by the set A = Ukzo Ago*.

Proposition 4.15 Let M be a monoid and o : M — U(M) a morphism. If
BR(M, o) is finitely presented and M is generated by a set A, then M is defined
by the presentation < A | B > where R = Ukzoi)_%ak, for some finite set of

relations R.

Proposition 4.16 Let M be a finitely generated monoid defined by a presenta-
tion < A | R > where A is finite and R = Ukzoﬁak, for some finite set of
relations R. Then BR(M, o) is finitely presented.

Finally, we relate finite presentability as an inverse monoid with finite presentabil-
ity as a monoid, in Bruck-Reilly extensions of groups. We will follow the proof

given in [2].

Theorem 4.17 Let S = BR(G,0) be a Bruck-Reilly extension of a group G.
Then S s finitely presented as an inverse monoid if and only if S s finitely

presented as a monoid.

Proor. S = BR(G,0) is an inverse monoid, then a monoid presentation for S
also defines it when considered as an inverse monoid presentation. Hence, if S is
finitely presented as a monoid it is also finitely presented as an inverse monoid.

Conversely, suppose that S is finitely presented as an inverse monoid. Let

< A’ | R > be a monoid presentation for G, by Proposition 4.2, we have
S< A b, ¢ | R, be=1, ba= (ab)b, ac = c(ah), (a € A") > .
So S admits an inverse monoid presentation
<A b c|T >,
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for some finite set A C A’ and some finite set of defining relations ¥’. The relation
bc = 1 holds in S so ¢ is the inverse of b in S. Since our presentation for S is an
inverse monoid presentation, applying Tietze Transformations (T4) (removing
the generator ¢, substituting all occurrences of ¢ in T’ by b~!), we obtain the

inverse monoid presentation for S
<A b|T>

where, obviously, ¥ is a finite set. We know that the following relations hold in

S:
=1, aa'=ata=1, ba=(ad)b, ab' =b"(ah), (ac€ A),

so, applying Tietze Transformations (T1), we obtain the inverse monoid presen-
tation for S

<A b| % aat=ata=1, b1 =1,
ba = (ab)b, ab™' =b"'(ah), (a € A) >,

and, by Remark 3, we know that a monoid presentation for S is

<A AL b b ] T oaat=ala=1, bb7 =1, ba = (ad)b,
ab™! =b71(ah), wwlw =w, wwtzz7t = zz7lww ™,
(a€ A, w,z€ (AUATTUL{b, b1 H)*) > .

V=g ta=1, forall a € A, we can deduced

Note that from the relations aa™
the relations aa™' = ata =1, forall @ € (AU A™')*. We have seen that for
any w in (AUATU{b,b71})*, we have w = (b7')'ab/, for some i,7 > 0, and o €

(AU A™H*, as a consequence of the relations
b l=1, ba=(ab)b, ab'=b""(ah), (ac A).
Then

ww™t ="l (b o)t
=btab Tt

=b"'aa” b (bb~' =1)
= b7, (aa™' =a"ta=1, Va € A)
it follows that
wwlw = b7 al’
= b laly (bb~' =1)
= w.
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Similarly, for z € (AU A7L U {b,b1)*, we have zz~! = b=*b* for some k > 0, so

we obtain

bR = bR = b i > k

—-1_.-1 _ j3—irir—kik __
ww zzT T =bT"0"h = { poip—ktipk — picktipk — pkpk if 5 < k

o bTEb TR = p kiR = it f >
1, 1 p—kpkp—ipi _ _
zzmww =0T = { bRpR—ipl = pRphi = prRpE i G < ),

1 1

hence ww 1zz7! = zz7hww™!. This shows that the relations

ww tlw =w, wwlzzTt =z lww™t, (w,z€ (AUATTU{D, b)),
can be deduced from the relations
aa ' =ata=1, bb'=1, ba=(ab)b, ab'=b"1(ah), (acA),

so, applying Tietze Transformations (T2), we know that the presentation

<A AL b b ] T oaat=ata=1, bb =1, ba = (ad)b,
ab™! =b71(ah), (a € A) >

defines S as a monoid. Since A and ¥ are finite, we conclude that S is finitely

presented as a monoid. [ |

3 Some Results on Clifford Semigroups

Let Y be a semilattice, i.e. a commutative semigroup of idempotents, and {G,, :
a € Y} a set of groups indexed by Y, such that G, N Gg = 0 for o # 5. We will
represent by 1, the identity of the group G,, a € Y. Suppose that for all a > 3

in Y, where
a>f < [(=pa=ap,
there exists a morphism ¢, 3: G4 — G such that
VaeyY Ga,a = tda,,,
Va,ﬁ,fy € Ya o> ﬁ > e Qba,ﬁ(bﬁ;y = (ba,va
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where idg, is the identity map in G,. Define a multiplication in S = (J, oy Ga

by the rule
Y = <x¢a,aﬁ)(y¢ﬁ,aﬁ)v LS GCM ye Gﬁ?

for any «, € Y. This multiplication is associative, see [6, Section 4.1]. We will
denote this semigroup by S(Y, G, ¢a3) and say that it is a strong semilattice of

groups.

A semigroup S is called a Clifford Semigroup if there exists a unary operation
x+— 271 on S, with the properties:
Ve,ye S () l=z azxlz=z  oz!=z1z
(22~ (yy ™) = (yy )z ™).

Proposition 4.18 Let S be a semigroup. The following statements are equiva-

(1) Sisa Clif ford semigroup;
(1) S is a strong semilattice of groups;
(i13) S is regular and its idempotents commute with all elements in S,
) S is regular and each D — class of S contains exactly one idempotent.

For a proof see for example [6, Theorem 4.2.1]. From (i77) we know that a Clifford

semigroup is an inverse semigroup.

Proposition 4.19 Let S = S(Y,Gq, ¢u ) be a Clifford monoid. The group of
units of S is G, where e is the identity of the semilattice Y .

PROOF. Let a be a unit of S, there exists b € S such that ab = 1. We know
that a € G, and b € G, for some «, 3 € Y, then ab € G, by the multiplication
defined in S, so 1 € Gup, hence 1 must be the identity of the group Gog. Let vy
be an arbitrary element of Y and z € G, arbitrary. We know that z1 = z, but
G,Gop € Grap, SO

t€Gy, 2E€EGy s = G,NGyup#l < y=~v(apf),
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similarly we obtain («3)y = 7, so (af) is the identity of Y. It follows that
alaf)=a & (ax)f=a < af=a,
so a belongs to G, hence the group of units is contained in G,3, and
Vy € Gop Jyte Gag - yy t =yl = log =1,

so all elements of G4 are units of S. We conclude that G 3 is the group of units

of S, where af is the identity of Y. [ |

Proposition 4.20 Let S = S(Y, Gy, ¢ap) be a Clifford semigroup. In S we have
H =L =R =D. Moreover the D-classes of S are the groups G,, a €Y.

PROOF. Let D, represent the D-class of x in S. By Proposition 4.18 (iv), we
know that the D-classes of S are the sets D., with e = ee € S. Let D, be any
D-class in S and x an arbitrary element of D,. There exists z € S such that

xR z L e, then

TRz & xzxt=z221 (S inverse)
& zxt=z"1z (S Clifford)
zLe & zlz=ele
& zlz=ee !,

so xRe and, similarly, xLe, it follows that xHe. Then D, C H., where H,

represents the H-class of e, and we may conclude that
D=R=L=H
in S. Let o € Y arbitrary, and z,y € G,. We have
r=ulo=ua(yy™), wzy=ua(y),

so xyRzr and similarly we can see that xyLy, then xDy. It follows, by what
we have just seen, that z’Hy. Thus, for any z € G, we have G, C H,. Now
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consider z,y € S such that 2’Hy, and suppose that x € G and y € G, for some
B,7 € Y with # # v. From H = R we obtain

tHy & zv'=yy

then
(@y)(xy)™ = (@y)(y~'a™") =a(yy o™ = w(zz” )™
=z(x tr)r™! = (za ) (xz™!) =z
so xyRax, this is equivalent to xyHz. We know that zy € G, and, by what we
have seen above, we have Gy, C H,, and Gg C H,. From H,, = H,, we obtain

Ggsy,Gg C H, = D,, but each D-class contains exactly one idempotent, so
157:1g = GQVF‘IGQ%@ & Py =p0.

Similarly we can see that $+v = 7, hence v = (3, that contradicts our assumption.

We conclude that the groups G,, a €Y, are the D-classes of S. [ |

We can obtain a presentation for the Clifford semigroup S = S(Y, Gu; ¢ap)

in terms of the presentations for the groups G, @ € Y, in the following way:

Proposition 4.21 Suppose that the group G,, o € Y, is defined by the semi-
group presentation < A, | Ra >, with Ay N Az =10 for a # 3. Let

A=J 4., %R=[JR,

acY acY

and 1, € A} be a word representing the identity of G,. Then

< A | R 1lJdg=141,, lya=al,=ap,,

(a,B,v,0€Y, a#p, c>v, a€A,) >
1s a presentation for the Clifford semigroup S.

For a proof see [7, Theorem 5.1]. If S is a Clifford monoid, then 1 = 1 for some

& €Y. So, to obtain a monoid presentation for S, in terms of the presentations of
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the groups G, o € Y, we just need to add the relation 1¢ = 1 to the presentation

given in this last result.

Note: From the presentation given above, we can see that if Y is finite
and, for all & € Y, the group G, is finitely presented (generated) then S is
finitely presented (generated). The next result shows that this is a necessary and

sufficient condition.

Theorem 4.22 If the Clifford monoid S is finitely presented (generated), then
every group G,, o €Y, is finitely presented (generated).

PROOF. Suppose that S is finitely presented (generated). Since S = |J, oy Ga
and G, NGz =0 for a # (3, the group G, is a maximal subgroup of S for all
a € Y. Then, by Proposition 2.13, the index of G, in S equals the number of
‘H-classes in the R-class of G, a € Y. But, in Proposition 4.19, we have seen
that GG, is a D-class and an H-class of S, so there is exactly one H-class in the
R-class of G, then GG, has index one, for all a € Y. It follows, from Theorem

3.8 (3.7), that G, is finitely presented (generated), for all « € Y. [ |

An alternative proof of this result can be found in [3, Theorem 6.1]. Note

that if S is finitely generated then Y must be finite, see [6, Theorem 4.5.3].

4 Bruck-Reilly Extensions of Clifford Monoids

4.1 Properties

Given a Clifford monoid S = S(Y, G,, ¢a,3), let e be the identity of the semilattice
Y, and 6 a morphism from S into G.. Considering the Bruck-Reilly extension

BR(S,0), since S is inverse, we know that BR(S,0) is an inverse monoid. Let
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(m,a,n),(p,b,q) € Ny x S x Ny arbitrary, by Proposition 4.1, we know that
(m7 a, n) DBR(S,@) (pa b> q) < a DS b7

and we have seen that a is D related to b in S if and only if they belong to
the same group G, for some o € Y. So, the D-classes of BR(S,0) are the sets
Ng x G, x Ny with o € Y.

Note that these D-classes are not groups, since, given x = zx € S and
m,n € Ny with m # n, the triples (m,z,m) and (n,x,n) are two, different,
idempotents in BR(S, #) that belong to the same D-class.

We will now see that the result in Theorem 4.17, also holds for Bruck-Reilly

extensions of Clifford monoids.

Theorem 4.23 Let S be a Clifford monoid, 6 a morphism from S into U(S) and
BR(S,0) the Bruck-Reilly extension of S. Then BR(S, 6) is finitely presented as

an inverse monoid if and only if it is finitely presented as a monoid.

PROOF. A monoid presentation for BR(S, ) also defines it when considered as
an inverse monoid presentation, so, if BR(.S, @) is finitely presented as a monoid
it is finitely presented as an inverse monoid.

Conversely, suppose that BR(S, 0) is finitely presented as an inverse monoid.
Given a monoid presentation, < @ | R >, for S, by Theorem 4.2, BR(S,0) is

defined by the monoid presentation
<Q, b, c|R, bc=1, ba=(ab)b, ac=c(ah), (a € Q) > .

Since BR(S, ) is finitely presented as an inverse monoid it admits an inverse
monoid presentation

<A b c|T>

for some finite set A C S and some finite set of defining relations €. We know
that bc = 1 in BR(S, ) (by the presentation given above), so bcb = b and cbe = ¢,
i.e. cis the inverse of b in BR(S, 0), hence, applying Tietze Transformations (T4)
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we know that the presentation
<A DT >

where T’ is the set T with the occurrences of ¢ substituted by b=, defines BR(S, 6)
as an inverse monoid. By the first presentation given for BR(S, 0), we know that

the following relations hold in BR(S, 6):
b l=1, ba=(ab)b, ab”' =b"1ah), (a€ A),

so we can add them to the presentation of BR(S,0). A C S and S is a Clifford

semigroup so for any a,as € A we have
—1y _ —1 -1 _ 1 _ -1
ai(agay ) = (agay )ay, aiay =aj a;, a =aa; ag,

adding these relations to the presentation of BR(S,6) we obtain the following

presentation for it:

<A b| T, 07 =1, aa”t =a"ta, ba= (ah)b, ab~' = b~ (ab),
a=aata, a(aa;’) = (a1a7")a, (a,a; € A) > .

We have been applying Tietze Transformations (T1) and these operations do not
change the type of structure defined by the presentation, so this presentation
still defines BR(.S,0) as an inverse monoid. Now, by Remark 3, we know that a

monoid presentation for BR(S,0) is

<A ANb bt | TR =1, (4.1)
ba = (af)b, ab~t =0b"'(ab), (4.2)
aa”' =ata, (4.3)
a=aa'a, (4.4)
alara;t) = (apa;a, (4.5)
w=ww w, ww lzz'=zzlww !, (4.6)

(a,a1 € A), w,z€ (AUATTU{b b1} >.

Note that, for any a,a; € A
a b=t = (ba)™! (BR(S,0) inverse)
((ad)b)~! (4.2)
=b"1(ad)~' (BR(S,0) inverse)
b1 (a™10), (0 morphism)



bat=(ab™)7t = (bHad)) = (7O,
(4.2)

aHaay') = (ma; a)™t = (aamay ')t = (aray)a,
(4.5)
this last relation implies, from (4.3), that a=*(a;'a;) = (a1a;")a™!, we also have
a = (aa'a)"' =ataa™t.
(4.4)

So, the relations

b=t =07 (2h), bx = (z0)b,
vlyy™) =y e, z=z2'z,  (r,ye AUATY),

are a consequence of (4.2), (4.5), (4.3), (4.4) and (4.6). Then, like in Theorem
4.17, given w € (AU A7 U {b,b7'})*, the relations (4.1) and (4.2) imply that

w = b~ajas ... aib’, for some i,j > 0 and some a;,as,...,a, € AUA™! and we
get
ww™l =b"laay ... apb/ (b aras . . apb?) !
= b*falag .. .akb]blﬁa,;l 5 .alz_l'al_lb’
=b"'wmas. . apay .. ay ap b’ ‘ (4.1)
= b‘z(akagl)alag . ak_la;_ll oaytarty (4.5)

=b"(aga;") ... (ara; )b’

then
ww lw = b"ara ') ... (ara; )b ara;y . . . apl?
=b"(ara, ) ... a1a7 ' aray . . . axh? (4.1)
= b (ara; ). .. (agayajay . .. axh? (4.4)
= b*’:al(akalzl) o AagazVag . . agh? ' (4.5)
=b"la;(ara;, ") . . . (azaz V)agas . .. aph? (4.4)

= b_i(llag ce akbj

I
g

Thus, the relation w = wwlw, w e (AUATU{b,b '})* is a consequence of
the relations (4.1) to (4.5), so we can remove it from the presentation. Given
z€ (AUATTU{b,b71})*, we have 2 = bPa)d) ... a.b" for some p,l > 0 and some
ay,ay,...,a. € AU A then writing 227! in the same form we wrote ww™!, we

obtain
ww 2zt =07 (agart) . (apay DO P(dhal ) L (aldl TP,
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if 7+ > p this becomes

ww tzz7l = bﬂ:(akak ) .. (arayHYP(alal 7Y L (a'la’l_l)bp '
= b (aga; ). .. (ara;t)( ala Y (dhal )0 PR (4.2)
= b (aray, ") .- (aray )(a;a;_l)m_p (dhay o
since ¢ > p and aja; ! is an idempotent for any ¢ = 1,...,s, the morphism 67

maps this element to the identity of .S, so

ww 2zt =0 ((agayt) - (@aT DY = b agaY) - (e Y = ww T

similarly we have

2z lww™t = bP(dlal ) (a’la’l_l)b”bfi(aka;l) . (alal_l)bi'
= lf]”(a’sa’s_1 e (a’la'l_l)b*”k(aka,;l) . (aray MY
= b Pb*P((ala, 7). (dhal )0 P (aga ) - (arar Y (4.2)

ww lzz T = 227 = 2z lww ™!
If © = p then
ww tzamt =0 (agag!) (a0 (@al ) (o Y
= b (") . (aray ') (afa, ) - (dhay Y (4.1)
=b" a;aéil) (alafl)(akak ). (aa Y (4.5)
= zz tww™!. (4.1)

Hence, the relation ww™'zz71 = 227 lww™! for any w,z € (AUATU{b, b1 })* is
a consequence of relations (4.1) to (4.5) so we can remove it from the presentation.
We obtain the following monoid presentation for BR(S, 0):
<A, A7Nb, 07| F, kb, ba = (ab)b,
ab™' =0b7"1(ah), aa'=a"ta, a=aala,
a(mar’) = (mayt)a, (a,a1 € A) >
since A and ¥’ are finite we conclude that BR(S,0) is finitely presented as a

monoid. [ |
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4.2 Clifford monoid that is the union of two copies of the
same group

Let Y be the semilattice

p—

and G be a group. Let Go = {go: g € G} and G1 ={g1: g € G} be two copies
of G and define a map ¢ : Gi — Go, g1 — go, that maps an element of Gy
to its copy in Gy, @1 is clearly an isomorphism. Let S be the Clifford monoid
S(Y;{Go,G1},¢10), and € a homomorphism from S into G;. Note that 1 is the
identity of Y, so GG is the group of units of S.

Claim 10 For all g € G the morphism 6 maps gy and g, to the same element in
Gy.

PrOOF. For any g € G we have

(9091)0 = (90(g101,0))0 (multiplication in S)

= (9090)0 (def. 1)
= (90)0(90)0 (0 morphism)
then
(9091)6 = (90)0(g1)0 (6 morphism)
< (90)0(90)0 = (90)0(91)0 (by above)
< ((90)0)(90)0(90)0 = ((90)0) (90)0(91)0  (G1 group)
< (90)0 = (91)0. (G group)

Consider the Bruck-Reilly extension BR(S, #) of S. The D-classes of BR(S, 0)
are the sets Dy =Ny x Gg x Ny and D; = Ny x G x Np.
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Theorem 4.24 The D-classes Dy and Dy are Bruck-Reilly extensions of groups,

in particular BR(S, 0) is a disjoint union of two Bruck-Reilly extensions of groups.

PROOF. Let 6; be the restriction of 6 to G;. For any (m, g1,n), (p, h1,q) € Dy

we have

(m, g1,n)(p, h1,q) = (m —n+t,(q1)0" " (M)0" P, q+p—1),

where t = maz(n,p), but (g1)0%, (h1)0* € Gy, for all k € Ny, hence
(m, g1,n)(p, b, @) = (m —n+t,(g1)0; " ()0 ", q +p — 1),
so Dj is the Bruck-Reilly extension BR(G1,0;). Define a map
0o : Go — Go,  go — ((90)0)o,

where ((go)f)o is the copy of (go)f in Go. We can think of 6, as a composition
of 6 with ¢y, so #y is a morphism. Let (m, go,n), (p, ho,n) € Dy be arbitrary
and suppose, without loss of generality, that n > p. Then

(m, go, )(p, ho, 1) , 9o(hot"P), ¢ —p+n)

, 9o((ho™ P)10), ¢ —p+n)

, 90(hot" )0, ¢ —p+n)

, 9o((hot"P71)0)0, ¢ —p+n)

: gogg(hoen_p_l)o)@o, q—p+n)  (Claim 10)

» 9o (hoenipil)O)QO)y q—Dp + n) (def 90)

333333

= (
= (
=
=
=
= (

= (m, go(hoty "), ¢ —p+mn),

so Dy is the Bruck-Reilly extension BR(Gy,8y). Since Dy and D; are the D-
classes of BR(S,#), we clearly have BR(S,0) = DyUD; and DonND;=0. W

Define amap ¢ : Dy — Dy, (m,g1,n) — (m,go,n). It is clear that ¢ is well-
defined, one-one and onto. Let (m, gi,n), (p, h1,q) € Dy be arbitrary, suppose,
without loss of generality, that n > p, then

((m, g1,1)(p, h1,q))¢ = (M, g1(h0"7P), g—p+n)C = (m, (g1(710"""))o, g—p+n)
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and

(m7 glan)C(pa hl,Q)C = (m7g07n)(p7 hOaQ) = (m7 gO(hoegiiD)? q—p + n)?

but we have

(91(h10"7P))o = (91(R10"7P)) 10 = (91)P1,0(Ra 0" )10
= go((hot"?)¢1,0) = go(ho0™ )0 = go(hotly "),

0 ((m, g1,7) (0, b, @))C = (m, g1, )C(p, ha, q)C, e, € is a morphism. Tt follows
that Dy is isomorphic to D;.

Now we define a map n: BR(S,0) — Dy, (m,g;,n) — (m,g1,n), where
i € {0,1}. This map is obviously onto. Let (m,g;,n), (p,hj,q) € BR(S,8) be
arbitrary, where 4,j € {0,1}. Suppose, without loss of generality, that n > p,
then

((magia n)(p7 hj7 Q))TI = (m7 gi<hj6n_p)7 q—0>p + n)Tl
= (m, gi(h0" "), ¢ —p+n)n=(m, (g:(h0"7P))1, ¢ —p+n),

if 2 = 1 we obtain

(m, (g1(h0"P))1, ¢ —p+n)=(m, g1(h0"?), ¢ —p+n),

and, if ¢ = 0 we obtain
(m, (go(M0" )1, ¢—p+n) =(m, (go((M8"P)d10))1, ¢ —p+n)
= (m, (go((l0"P)p10))¢10, ¢ — P+ 1)
= (m7 <90)¢i(1)((hlen_p)¢l,0)¢ié7 q—p+ n)
(m7 gl<h19n_p)7 q—p + n)7

so n is an epimorphism, since

(m7gi7n)n(pa h]?Q)n = (m7gl7n)<p7 h17Q) = (magl(hlen_p)7q —Pp + ’I’L)

Note that n restricted to D, is the identity map, i.e. np, = idp,, and 7p, is an

isomorphism, the inverse of (. We have just proved the following:

Theorem 4.25 The D-classes of BR(S,0) are isomorphic, and the D-class D
is a homomorphic image of BR(S,0).
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In section 4.2 we gave necessary and sufficient conditions for a Bruck-Reilly
extension of a group to be finitely presented. Since the D-classes of BR(S,6)
are Bruck-Reilly extensions of groups, if we relate the finite presentability of
BR(S,0) with the finite presentability of its D-classes, we can apply the results
in section 4.2 to know when BR(S,#) is finitely presented. We will then look
for connections between the presentation of BR(S, ) and the presentations of its

D-classes.

Theorem 4.26 BR(S,0) is finitely generated if and only if Dy and Dy are
finitely generated.

PROOF. Suppose that BR(S,0) is finitely generated. By Proposition 4.14 we
know that there exists a finite set M C Gy U G such that Gy U GGy is generated
by Ukzo MGO*. 1f we multiply two elements of S, the only way of obtaining an
element of GGy is if those two elements belong to G, so Gy is generated by the set

(Mo NGy = nG)u (| me*).

k>0 k>0
Let M’ = M NG, and M° = M N Gy, the generating set of G| becomes
MU (| moFyu (| Mmoe%) = Mo (| mref) u (| M),
k>0 k>0 k>0 k>0

denote this set by A. By Proposition 4.2, we know that D; is defined by the

presentation
<A b clbec=1, ba=(aby)b, ac=c(aby), (a € A) >.

Let a be an arbitrary element of M’, by the defining relations of Dy, we know
that for any k > 0 the relation af¥ = b*ac® holds in D; (proof of Proposition
4.11). So we can write any element from (J,.,M'0} as a product of elements

in M'U{b,c}, thus M’ U{b,c} U (Uoo M°0*) generates D;. We have

| m0%% = ] (01°9)6% = | ) (11°6)65

k>0 k>0 k>0
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and again we can write the elements (af)6%, with a € M° and k > 0, in the form
V¥ (ah)c* | so

J @16y < (M°6 U {b, c})”

k>0
hence, D; is generated by M’ U (M%) U {b,c}, where M’ and M° (hence M°0)
are finite, thus D; is finitely generated. It follows, from Theorem 4.25, that D
is finitely generated.

Conversely, suppose that D; and D, are finitely generated. Then, since
BR(S,6) is the disjoint union of Dy and Dy, we know that BR(S,0) is finitely
generated, see [3, Proposition 3.1]. [ |

Theorem 4.27 If BR(S,0) is finitely presented then Dy and D are finitely pre-

sented.

PROOF. Suppose that BR(S, 0) is defined by the monoid presentation < A | R >,
where A and R are finite. In particular, BR(S, 6) is finitely generated, hence, by
Theorem 4.26, D, is finitely generated. Let B be a finite generating set for D;.

D, is a subsemigroup of BR(S, 6) so for every word b € B there exists a word
wy € AT such that b = w, holds in BR(S,0). Also, for every b € B, b((= b7]|_D10)
belongs to Dy, so there exists a word wy € A' such that b( = w, holds in
BR(S,0).

Claim 11 For every word x in Dy there exists u, € {wy : b € B}" such that
r=u, i BR(S,0).

PrRoOOF. Let x € D; be arbitrary, D; is generated by B so x = b1by...b, for
some b; € B, i1 =1,...,r. Then

T =biby...b, = wy, Wy, ... Wy

r
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holds in BR(S, 0), so there exists w, = wy, wp, ... wp, € {wy : b € B}* such that
xr =u, in BR(S,0). [ ]

Claim 12 For every word v € Dy there exists u, € {wy : b € B}T such that the
relation v = u, holds in BR(S,0).

Proor. Let v € Dy arbitrary, then vn € Dy, then, by Claim 11, there exists
Uy € {wy : b€ B} such that vn = u,, in BR(S,6). It follows that

V1) = Uy = Wpy, Why - - - Wp,, = b1ba ... by,

for some wy, , Wpy, ..., wy,, € {w, : b € B}, s0 vn = biby...b, holdsin BR(S,0).

But v € Dy and 7,p, is an isomorphism, so we obtain

vn =vnp, = biby... by,
= (vaO)n‘_Dlo = (byby. .. bm)nl_DlO
=~ U= (blbgbm)c
& v =(b1)C(b2)C ... (bn)C.

Hence v = (bl)g(bg)c e (bm)c = w(bl)gw(@)g e w(bm)c. .

Claim 13 An generates D;.

PROOF. Let w € D; be arbitrary. Since D; is a homomorphic image of BR(S, ),
there exists u € BR(S,0) such that w = un. Since BR(S,0) is generated by A

we can write w = ajas. . .a,, for some ay,as, ..., a, € A. Hence

w=un = (ar1ay...a,)n = (a1)n(az)n ... (an)n € (An)*,

so An generates Dj. [ |

Given a relation u =wv in BR(S,#), saying that this relation holds in D; is

equivalent to say that wun = vn, since D; is a homomorphic image of BR(S,0)
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by the map 7.
We will see that D, is defined by the monoid presentation

<A|SR, Wy = Wi (bEB)>,

where a € A represents the generator an of Dj.

Let uw=wv be any relation in R, v = v holds in BR(S, ), then, since 7 is a
morphism, we have un = vn, hence w = v holds in D;, and we conclude that
R holds in D;.

Let b € B be arbitrary, wy = b{ holds in BR(S,0), so (ww)n = (bQ)n.
Then

(wee)n = (bO)n = (0C)mpy = (b, )nip, = b = wy, = (wy)idp, = (ws)n,

so (wyc)n = (wp)n holds in BR(S, ), hence wye = wy, holds in Dy, for all b € B.
Now let o = y be an arbitrary relation holding in Dy, we have z,y € BR(S, 6)
and zn = yn. Suppose that x,y € Dy, then

xn =yn <& widp, =yidp, & T =1y,

so x = y holds in BR(S, ), hence xn = yn is a consequence of R. Suppose that
x,y € Dy, then

rn=yn < INp, =YNp, < T =Y
since 7p, is one-one, so xn = yn is a consequence of R. Finally, suppose
that x € Dy and y € D;. By Claim 12, there exists wu, € {wy : b € B}
such that x = w, holds in BR(S,0) (hence, is a consequence of R) . Let
Uy = Wo )¢ W(bo)¢ - - - Wp, ), for some by, by, ... b, € B, we have

xn=yn < (ug)n=yn

(W) Wb)C - - - Wb = Y1)
& (wp, Wy, - .. wp )N = YN, (wpe = wy, Vb€ B)

and the elements y and wp, wy, ... wp, belong to Dy, so we are back in the first
case. Thus any relation in D; is a consequence of R and of the relations w, = wyc,
for all b € B, hence

<A|R, wy=wy (beB)>
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defines Dy. The sets A, R and B are finite so D is finitely presented. Since D

is isomorphic to D; we conclude that Dy is finitely presented. |

This result can be generalized for semigroups, that are not Bruck-Reilly ex-

tensions, in the following way:

Theorem 4.28 Let S be a semigroup, Ty and T be isomorphic semigroups such
that S =Ty UT, and Ty NTy = 0. Suppose that T =T, is a homomorphic image
of S. If S is finitely presented then T is finitely presented.

PrROOF. We can rewrite T} and T3 in the following way:
T,={t;:teT}, i=12.

T is an homomorphic image of S, so there exists a morphism n: S — T, t; — t.
Let < A|2R > be a presentation for S, where A and R are finite. Let x € T be
arbitrary, since T is a homomorphic image of S, there exists y € AT, such that

x = yn. Writing y as a product of letters from A, say y = ajas ... a,, we obtain

T = (a1az . ..an)n = (a1)n(a2)n ... (an)n,

so An generates T'. Thus T is finitely generated. For any generator x of S there
exists ay,as € A*, with ay € Ty, as € Ty, and a € An such that

xn = ain = asn = a.
We will see that the presentation
<A|m7 a; = Qg, (aeAn) >,

where x € A represents the generator element xn of T, defines the semigroup
T. Note that saying that a relation £ = y holds in T is equivalent to say that
xn =yn. Let u = v be an arbitrary relation in R, n is a morphism so wun = vn,

hence u = v holds in T'. For all a € An we have
amn =a, an=a = ain = as",
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so a; = ay holds in 7', for all a € An. Let x = y be an arbitrary relation holding
in T, z,y € A*. Suppose that z,y € T;, for some i € {1,2}, then

m=yn < INn=Ynrn < T=Y,

since 77, is a bijection, i € {1,2}. Hence, the relation = y holds in S, so it

is a consequence of R. Suppose that x € T} and y € T,. The word = belongs

(1) (r)
a

to S so we can write it as a product of generators of S, say r = a;q;," ... q; ",
i1,19,...,1 € {1,2}, and we know that for every generator a; of S, a is a generator
of T. So, applying the relation a; = a3, a € An to all elements in the

decomposition of x that belong to T}, we obtain

(1)

’L’2"

(r) ORG

T =aa La; = agay ... Ay,

and, since agagl) . .ag) and y belong to 75, we are back in the first case. Hence

x =y in T is a consequence of the relations R and a; = as, a € An. We
conclude that T is defined by the presentation above, and since A and R are

finite it follows that T is finitely presented. [ |

Note: In general, a subsemigroup of a finitely presented semigroup need not

be finitely presented.
Returning to the Bruck-Reilly extension BR(S,0), we will see that the con-
verse of Theorem 4.27 holds.

Theorem 4.29 If D, is finitely presented then BR(S,0) is finitely presented.

PROOF. Suppose that D; is finitely presented, then Dy is also finitely pre-
sented. Let By and Bj; be finite generating sets for Dy and D;, respectively.
Since BR(S,0) is the disjoint union of Dy and D;, the set By U By generates
BR(S,0), see [3, Proposition 3.1], so this monoid is finitely generated. D; is a
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finitely presented Bruck-Reilly extension of the group G, so, by Theorem 4.13,
G can be defined by a presentation < A; | Ry > where A; is finite and

D‘il:Uﬁ@]f:{uH’f:v@]f:kzO, (u=v) € Ry}

k>0

with 9, C A% x AY finite. Dy is a finitely presented Bruck-Reilly extension of
the group Gy, isomorphic to Dy, so we can consider a presentation for it that is
a copy of the presentation of Dy, let it be < Ay | Ro >. From Proposition 4.21

we obtain the following presentation for the Clifford monoid S:
< Ao, A1 |Ro, Ri, loar = a1l =ap, loli =11lp, 11 =1, (a1 € A1) >,
then, by Proposition 4.2, we have

BR(S,0) = < Ay, A1, b, ¢ | Ro, R, Loli =111y, 11 =1,
bc =1, loxg = x0lg =1, ba = (ah)b,

ac = c(ab), (a € AgUAy, z1 € Ay) >.
Let u = v be an arbitrary relation in %, and k& > 0, then
ubdt =vd¥ = ubt = o

since 6, coincides with € in Gy and P, is a set of relations in G;. We know that

for all u € A; the relation uf* = b*uck is a consequence of the relations
ba = (ah)b, ac = c(ah), bc=1, (a € AgU Ay),
hence, uf* = v0* is a consequence of

R, ba= (ab)b, ac=c(ah), bc=1, (a € AgUA,),
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so the set R, can be replaced by 9R; in the presentation of BR(S,#). Consider

now an arbitrary relation u=1v in R, and k > 0 arbitrary. Then

uff = v0f <

& (u e’f—l)eo Ca

& (uF1)0)o = ((vOE1)0)0 (def. 6y)
& ((utg=)0)0)0)o = (((v052)0)0)0)o  (def. o)
& (((udg)0)0)o = (((vh57*)8)0)o  (Claim 10)
& ((uﬁ’c 2)6%)0 = ((v5)8%)0

& (qu)o = (v0*),
=

this last step is a consequence of the relations
ba = (al)b, ac=c(af), bc=1, (a € AgU A;).

If k = 0 the words b*uct and b*vc® belong to Dy, so the relation (b*uc®)y =
(bPvck)y is equivalent to u = v. If k > 0 then b*uc® and b*vc* belong to D; and

we have

(bkuck)o = (bkvck)o <~ (bkuck)¢1,0 = (bkvck)¢1,0,

since ¢ is a morphism this is a consequence of b*uc® = b*vc*. Hence ufli = v

is a consequence of the relations
Ro, ba = (ab)b, ac=c(ab), bc=1, (a € AgUA).
So BR(S,0) is defined by the presentation

< Ap, A1, b, ¢ | R, R, Loy =11, 1,=1,
bc =1, lox =xly, ba = (ad)b,

ac =c(al), (a € AgUA;, z€A) >,

and, since Ay, A;, Ry and M, are finite, it follows that BR(S,0) is finitely
presented. [

In conclusion, we have:
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Theorem 4.30 Let G be a group, G; = {g; : g € G}, i = 0,1, two copies
of G and S the Clifford monoid S({0,1};{Go,G1},¢10), where ¢19: G —
Go, g1 — go- Let BR(S,0) be a Bruck-Reilly extension of S. Then, the D-classes
of BR(S,0) are Bruck-Reilly extensions of the groups Gy and Gy and BR(S,0)
is finitely presented if and only if its D-classes are finitely presented.

4.3 Clifford monoid that is the union of two groups linked
by the morphism ¢;y: 2~ 1

Let Y be the semilattice

—

and Go, G be any two groups. Define a map ¢, : Gi — Gy, z+— 1y where

1y is the identity of Gy. For any z,y € GG; we have

(xy)p10 = 1o, TP1,0YP10 = lolo = 1o,

S0 ¢10 is a morphism. Let S be the Clifford monoid S(Y;{Go, G1},¢10) and 6
any homomorphism from S into its group of units, G;. Consider the Bruck-Reilly
extension of S, BR(S,0).

Like in section 4.2, we can see that the D-class, Ny x G x Ny, of BR(S,6),
is the Bruck-Reilly extension BR(G1,60;), where 6; is the restriction of 6 to G;.
We will denote this Bruck-Reilly extension by D;. Define a map in G

o : Go — Go, x> 1o,

like we did to ¢y o, we can see that 6, is a morphism. Let D, be the Bruck-Reilly
extension BR(Gy, 0y). Given any two elements (m, g, n), (p, h,q) in Ny x Gg x Ny,
and supposing, without loss of generality, that n > p, their multiplication in
BR(S,0) is
(m,g,n)(p, h,q) = (m, g(h6""), q—p+n)
= (m, g((h0"P)¢10), ¢ —p+n)=(m, glo, ¢ —p+n),
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and multiplying these two elements in D, we obtain
(m, g,1)(p, h q) = (m, g(hb™"), ¢ = p+n)
=(m, g(Loby "), ¢ —p+n)=(m, glo, ¢—p+n),

so we can think in the D-class of BR(S,0), Ny x Gy x Ny, as the Bruck-Reilly

extension Dy. We have proved the following:

Theorem 4.31 BR(S,0) is the disjoint union of its D-classes, Dy and Dy, and

these are Bruck-Reilly extensions of groups.

Now we will, as in section 4.2, relate the finite presentability of BR(S, §) with
the finite presentability of its D-classes.

Theorem 4.32 BR(S,0) is finitely generated if and only if its D-classes, Dy
and Dy, are finitely generated.

PROOF. Suppose that BR(S, ) is finitely generated, then, repeating the argu-
ments we have used in the proof of Theorem 4.26, we can see that D, is finitely
generated. Suppose that BR(S, 0) is generated by the finite set M, since BR(S, 0)
is the disjoint union of Dy and Dy, M is the disjoint union of M, and M;, where
M; = M ND;, ié€{0,1}. Let (m,g,n) be an arbitrary element of Dy, we can
write it as a product of elements in My U M;, and in this product we must have
at least one element of M, since a product of elements of D; clearly belongs to

D;. Define a set

M] ={(m,1g,n) : 3z € Gy such that (m,z,n) € M;}.

Claim 14 M, U M| generates Dy.

PROOF. Let (m,g,n) be an arbitrary element of Dy, since My U M; generates

BR(S,0), we can write (m, g,n) as a product of k elements in this set, for some
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k € N. We will show, by induction on k, that (m,g,n) can be written as a
product of elements in My U M.
If £ =1 the element (m, g,n) must belong to My, since M; C Djy.
Suppose that for all £ <[, (m,g,n) can be written as a product of elements
from My U Mj. Let k =1+ 1, we have
(m7 g, n) = (mla g1, nl) s (mlu gi, nl)(ml-i—la gi+1, nl+1)7
for some (mq, g1,m1), ..., (M1, Gra1, 1) € MoUM;. Let (p, h, q) be the product

of the first [ elements in this decomposition, i.e.

(p7 haQ) = (mlaglanl) cee (mlaglanl)'

If (p,h,q) € Dy then, by the hypothesis of induction, it can be written as a
product of elements from My U M. If (my1, gv1, mus1) € My, all the elements

of our product belong to My U M. If (my1, git1, mis1) € My we have

(p, hy @) (M1, Givrs musa) = (p— g+t (079 (g0 ™), nupr — myyr + t),

where t = maz(q, m.1), if ¢ = myy; we obtain

(p, hg,niv1) = (p, R(gP1,0)s us1) = (0, hlo, niv1) = (P, b, @) (Muga, Lo, nugr),

that is in the form we wanted, if ¢ > m;,; we obtain

(p, h(g0% ™), N — mygr +q) = (p, (907741 )b10)), M1 — Mg + q)
= (p, hlo, g1 — mug1 +q) = (P, h, @) (M1, Lo, nyqa),

if ¢ < myy1 the product becomes

(p — q+mip1, (g0™ " N)h,ni4q)

but this belongs to Dy, so this case cannot happen.
If (p,h,q) € D; then (myy1, giv1, m41) must belong to M. Suppose that
(my, gi, n;) is the first element, counting from the right, in the product

<p7 h7 q) = (m17g17n1) e (ml7gl7nl)
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that belongs to M;, and define

(p’, hl? q’) = (mbgl, nl) ce (miflygiflanifl)-

The elements

(mi—i-h Ji+1, ni+1>7 RS (ml7 gi, nl)a (ml+17 gi+1, nl+1)

belong to My, so their product is in Dy. Since (p,h,q) € D;, and we removed
from this product only elements of My, the product (p’, R, q")(m;, g;, n;) must be

in D;. The element (m;, g;,n;) is in M7, so we have

Claim 15 The product

(mm gi, nz) ce (ml, ai, nl)(ml-i-la gi+1, nl+1)

belongs to Dy.

PROOF. Let (o, u, ) € BR(S,0), (v,v,t) € Dy and (§,r,9) € Dy be such that
(o, u, B)(6,r, ), (0,7,9)(v,v,t) € Dy, and (a,u,B)(0,7r,9)(y,v,t) € Dy.
We have
(0,7,9)(y,v,0) € Dy & U >7,

then, if 6 > 3 we have

(o, u, B)(0,7,9) (7, 0,0) = (@ =B +0, (udP)r, 9)(v,v,1)
=(a—B+6, (udP)r@wd’"), 1 —y+9) € Dy,

if 6 = [ then

(a> u, 3) ((5’ r,9)(y,v,1) = (av ur, 19) (7,v,0)
= (a, ur(vf’"), ¢t —y+9) € Dy,

finally, if 0 < 3, we must have u € G7, and we know that ¥ —§ + (5 > v, it
follows that

(a,u, B)(0, 7, 9) (7, 0,0) = (e, u(r®?=), ¥ =6+ B)(y,v,1)
= (a, w(r6P=2)(v0=N=7) L — v+ 9 — 6+ B) € Dy,
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so, in all cases we have a contradiction. We conclude that, since

(p/7hlvq/) e-DOU-Dh (m’wgwnz) EDI:
(Mig1s Gi1, Mig1) - - - (s, g, ) (Mag, Gigr, ugr) € Do

and
(pla hla q/)(mi7 i, nz) € D17
(p/7 h,7 q,)(miu i, ni)(mi-‘rh Ji+1, ni+1) s (ml7 ai, nl)(ml-l—lu gi+1, nl-‘rl) S D07

we must have

(mivgia ni)(mi-i-lagi-‘rl)ni-‘rl) s (mlagla nl)<ml+1vgl+1’ nl+1) € DO‘

By the induction hypothesis, the product

(mi, gi, nz) ce (ml, g, nl)(ml—l-la gi+1, nl+1>

can be written as a product of elements in My U M]. Note that if i = 1 the case
is equivalent to the case “(p,h,q) € Dy” since we can read the multiplication
from right to left, so this product contains at most [ elements. If (p', k', ¢") € Dy
then, by the induction hypothesis, it can be written as a product of elements in
Mo U M. If (p/,h',q") € Dy we repeat the process we used for (p, h,q), with the
product

(mm gi, nz) ce (ml+1; gi+1, nl+1)

written as a product of elements in My U M.

We conclude that My U M| generates Dy [ |

Since M; and M are finite we know that MyUMj is finite, hence Dy is finitely
generated.

Conversely, suppose that Dy and D; are finitely generated. Then BR(S,0) is
finitely generated, by [3, Proposition 3.1]. [
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Theorem 4.33 If Dy and Dy are finitely presented then BR(S,0) is finitely pre-

sented.

PROOF. Suppose that D; and Dy are finitely presented. Like in Theorem 4.29,
we obtain the following presentation for BR(S,0) :
< Ay, A1, b, ¢ | Ro, Ry, Lol =111y, 13 =1,
be=1, lox =zly, ba = (ab)b,
ac=c(ah), (a € AgU Ay, x € A)) >,

where Ay and A; are finite sets generating Gy and G respectively,

Ro = | Robl = {ubf =005 : k>0, (u=0v)eRe}

k>0

where R, is a finite subset of A% x Aj, and

9‘{1:U%9f:{u9’f:vﬁf:k20, (u=v) € Ry},

k>0
where R, is a finite subset of A* x A*. Since 6, is the restriction of  to G| we
can see, like on Theorem 4.29, that the relations in R; are a consequence of the

relations
R, bec=1, ba=(abd)b, ac=c(ah), (a€ AyUA,).

Let wff = v05 be an arbitrary relation in Ry. If k¥ = 0 the relation u = v

belongs to My, and if k > 0 we obtain
qug = U@g & 1g =1,

by definition of 6. So, for k > 0, the sets of relations PR0* and R,10* are
redundant. It follows that BR(S,#) is defined by the presentation

< Ao, A, b,c | R, Ry, loli=14l, 11 =1,
bc=1, lox =xly, ba = (ad)b,
ac = c(ab), (a € AgUA;, z€A) >,

hence, it is finitely presented. [ |
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Theorem 4.34 If BR(S,0) is finitely presented then its D-classes are finitely

presented.

PROOF. Suppose that BR(S,#) is finitely presented. By Propositions 4.14 and
4.15 we know that S is defined by the presentation < A | R > where
A= UZQ'“ and R= Uﬁé’k,
k>0 k>0

for a finite subset A of S and some finite set of relations R C A* x A*. A can

be written in the form AgU A; where A; C G;, i =1, 2.

Claim 16 G, is generated by Aq, subject to the set of relations

(Ui)_‘wk)u{u:v:(u:v)eﬁ, u,v € AT}

k>0

PROOF. Since the only way of obtaining an element of G, is as a product of
elements of Gy, the set A; generates G;. For all u € A* and k > 0, uf* belongs
to G, and this group is generated by A;, so uf* is a product of elements in
Ai. Let uf® = v6* be any relation in |J,.,R6*, this relation holds in S and
uf®, vo* belong to A%, so ub* = vh* must hold in G;. Similarly,

{fu=v:(u=v)€R, uve A}

holds in GG;. Consider now z =y an arbitrary relation in GG, this relation holds
in S, since (G; is a subgroup of S, so it is a consequence of R. The words z,y

belong to A}, so x =y must be a consequence of
(Uﬁ@k)u{u:v c(u=v) €R, u,ve A},
k>0

since if we have a relation « = 3 where the word a contains a letter from
Ay, then a € Gy, and we cannot obtain a relation involving elements of G

as a consequence of this relation. It follows that G, is defined by the monoid
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presentation

<A | u=v, (u=veRm, uveA
v0F =yo*,  (k>0, (r=y)ER) >.

From Theorem 4.32 we know that BR(G1,6,) is finitely generated, then,
applying Proposition 4.2, there exists a finite subset of A;, say A}, such that
BR(G4,0,) is defined by the presentation

<AL, bc | u=v, (u=v)eR, uveA)
20" =y, (>0, (x=y)€R)
be=1, ba=(ab1)b, ac=c(ab;), (a€ A} >.

The relations z6* = y6*, with k > 0 and (v = y) € ;& can be rewritten as

follows:
o0F =y o (20)0" ' = (y0)oF ' = (20)0F = (yo)or
and we know that (y)0%' = b~ (yf)c*~! is a consequence of the relations
be=1, ba=(ab1)b, ac=c(ab), (a€ A))
so x0F = y0* is a consequence of these relations and of the relations
0 =yl, (r=1y)€nR,
hence

Di2<A,bc | u=v, ((u=v)eR, uvecAd
20 =y, ((z=y) €R)
bc=1, ba= (ab))b, ac=c(ab), (a€A}) >.

Thus D; is finitely presented.
Let <@ | T > be a finite presentation defining BR(S, §). By Theorem 4.32,
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we know that Dy is generated by Qo U @), where Q; =QND;, i=1,2 and
Q1 ={d g€},

where ¢ represents the element (m,g,n) generating D; and ¢’ represents the

element (m, 1g,n) in Dy. Define a map

’ qg if ¢ € Qo
QOUQ1—>QOUQ17 QH{q/ lfqul

We know that if g9 € Qo, ¢1 € @1 and qoq1 € Dy, then ¢oq1 = qoq;. Let
¢ (QoUQ1)* — (QoUQ))* be the natural homomorphism defined by the map
above. Note that ¢ is a bijection, so ¢! exists and is an isomorphism. For any
q¢ € Q}, ¢ belongs to BR(S,0), and this semigroup is generated by Qo U @1, so

we can write ¢’ as a product of elements from Qg U @1, i.e.
Vde®, 3¢dve QU : ¢ =q¢v¥ in BR(S,0).

We note that, since ¢ € Dy, the word ¢'¢) must contain at least one letter from
Qo. Let ¢ = qoq1...qn, where ¢; € Qo U @y, and suppose, without loss of
generality, that ¢g € Qq, then

(@) = (qoq1---Gn)d = QWONP - .. GO
=qoq) - @ = Q1 - - - Gn = ¢V,

so the relations ¢’ = ¢'vb = (¢¢)¢ hold in BR(S,0), and ¢, (¢'¢)¢ € Dy, hence,
the relation ¢ = ((¢'¢))¢ holds in Dy. Now we will see that the presentation

<Qo Qy | up=vp, ((u=v)€T, uve D (4.7)

q=(qv)o, (d€qQ) > (4.8)

defines Dy. We have already seen that the relation (4.8) holds in Dy, so let u = v

be an arbitrary relation in ¥, with u,v € Dg. Then w = v holds in Dy and ¢ is

a morphism, so u¢ = v¢ holds in Dj.

Claim 17 Let wy,wy € Dy. If we can be obtained from wy by using relations

from T, then wy¢ can be obtained from wy¢p by using relations (4.7).
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PrROOF. Suppose that the relation w; = wy is a consequence of T, with
wy,ws € Dy. Without loss of generality suppose that ws is obtained from w; by
using one relation from ¥. Then there exists «, € (Qo U @Q1)* and a relation
(u=wv) €%, with u,v € Dy, such that w; = aufl, ws = avf, it follows that
w1¢ = (auf)o = adudBe,
w2 = (awf)o = agudfe,
where ¢, B¢ € (QoUQ})* and ugp = v¢ is a relation in (4.7), so wq¢ can
be obtained from w;¢ by using one relation from (4.7). We conclude that if
wy; = wq 18 a relation in Dy that is a consequence of T, then wi;¢ = wy¢ is a

consequence of (4.7). |

Let & =y be any relation in Dy, z,y € (Qo U Q})*. First suppose that x
and y are a product of letters in Qo and )}, say z =z122... 20, Y =Y1Y2- .- Yr,

then
r=21T2...Ty = (1'11‘2 cee xn)gbil)

Y=y Y= Wiyz- Yo
it follows that (z17a...7,)0" " = (y192...9,)¢~ " holds in BR(S,0), so it is a

consequence of ¥, then, by Claim 17, the relation

(2122 .. 2)0 Do = ((N1y2. .. y)d ) & z=y

is a consequence of (4.7). If z,y are a product of letters from @, we know that
x =ux1p and y = yb, then the relation z1) = yip holds in BR(S,0), so it is a
consequence of ¥. By Claim 17 the relation (z1)¢ = (y¥)¢ is a consequence of
(4.7), and by relations (4.8), we have

= (29)p = (y¥)p =y,

so x =1y is a consequence of (4.7) and (4.8). Thus

< Qo @1 | (47), (48) >

defines Dy, and we conclude that Dy is finitely presented. [ |
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4.4 Bruck-Reilly extension determined by the morphism
that maps all elements to the identity

Let S be a Clifford monoid S(Y;Ga, ¢ap), and € the morphism that maps all
elements of S to its identity, 1. Let 7" be the Bruck-Reilly extension of S defined
by 6. We will represent by e the identity of the semilattice Y.

As in the last two sections, we will investigate the D-classes of this Bruck-

Reilly extension, and look for conditions for its finite presentability.

Theorem 4.35 The D-classes of the Bruck-Reilly extension T = BR(S,0) are

Bruck-Reilly extensions of groups.

PROOF. We have seen that the D-classes of BR(S, 0) are the sets Ny x G, x Ny
with a € Y. Let 6, be the morphism that maps all elements of G, to its
identity, 1,, a € Y. Define a multiplication in Ny x G, X Ny, a € Y, by the

rule
(m, g,n)(p,h,q) = (m —n+t, (g05™)(h05P), ¢ —p+1),

where t = mazx(n,p). Let a €Y, and (m,g,n), (p,h,q) € Ny x G, x Ny, be
arbitrary. Suppose, without loss of generality, that p > n, then multiplying these

elements, using the multiplication defined above, we obtain
(m—n-+p, (905")h, ¢) = (m—n+p, luh, q) =(m—n+p, h, q),

and multiplying this elements in BR(S, 6), we obtain

(m—n-+p, (90"")h, ¢) = (m —n+p, 1h, q)
=(m—n+p, (1dea)h, ¢) = (m—n+p, 1loh, q) = (m—n+ph.q),
note that the identity of S, 1, belongs to G, since e is the identity of Y, and ¢, o
is a morphism so it must map the identity of G, to the identity of GG,. Since the
multiplications above coincide we can conclude that the D-classes of BR(S,6)

are the Bruck-Reilly extensions, BR(G,, 0, ), of the groups G,, a €Y. [ |
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Theorem 4.36 IfY is finite and BR(G, 0.) is finitely generated, for alla € Y,
then T is finitely generated.

PROOF. Suppose that for all « € Y, BR(G,,0,) is generated by the finite set
By, then, by [3, Proposition 3.1], T" is generated by the set |J .y Ba, since Y is
finite we conclude that T is finitely generated. [ |

Theorem 4.37 If Y is finite and its D-classes, BR(Gg,0.), are finitely pre-
sented, then T is finitely presented.

PROOF. Suppose that BR(G,, 0,) is finitely presented, a € Y, then by Theorem
4.13, we know that G, is defined by the presentation
< A, | RO >
k>0
where A, is finite and R, is a finite set of relations in A} x A*. Then, using
the presentations given in Propositions 4.2 and 4.21, we obtain the following
presentation for T

< Jda b | YRl 1dp=151e, L=zl =1d,,,

ey k>0

(Oé,g,ﬁ,’)/,O'EY, g#ﬁv O->77 xeAO’)
bc=1, ba=(ab)b, ac=c(ad), (a€ UAa) > .

acY
For k > 0, the set of relations

R OF = {ub® =v0* . (u=v) € R,}

is reduced to the relation 1, = 1,, so these relations are redundant and we can

remove them from the presentation. Then

T< | JAa b e | Ra Lelg=1ple, L=zl =ad.,,
acY

(0575757770-63/7 5#67 O->77 QZEAU)
bce=1, ba=b, ac=c¢, (a€ UAa) >,
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with A,, R, finite for all @ € Y, and Y finite, so T is finitely presented. [ |

The converse of this results does not follow directly like in the other cases,
since now we have an arbitrary number of groups. Another way of finding con-
ditions for T" to be finitely presented is to relate the presentation of T" with the

presentation of S, and in fact we have:

Theorem 4.38 T is finitely presented (generated) if and only if S is finitely
presented (generated).

PROOF. Suppose that T is finitely presented. By Propositions 4.14 and 4.15,
we know that there exists a finite subset, A, of S such that S is generated by
Uskso A0, subject to the relations |J,-, 90", where

R C ([ A% x ([ 46"

k>0 k>0
is finite. For k > 0, we have A#* = 1 and the defining relations become
ROF = {ubdk =vd* : (u=v) € R} =
={l1=1": (u=v) € R}
So S is generated by the set A, and the relations 9R6* are redundant for k& > 0.
Hence S is defined by the presentation < A | R >, thus it is finitely presented.

The converse follows from Proposition 4.3. |

We did not use the fact that S is a Clifford semigroup, so this result holds
for the Bruck-Reilly extension of any monoid, determined by the morphism that

maps all elements of the monoid to its identity.

Now we are able to prove the converse of Theorems 4.37 and 4.38, and we
conclude that BR(S, 6) is finitely presented if and only if its D-classes are finitely
presented if and only if S is finitely presented.
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Theorem 4.39 IfT is finitely presented (generated) then its D-classes are finitely
presented (generated).

PROOF.  Suppose that T is finitely presented (generated), by Theorem 4.38
we know that S is finitely presented (generated), then, by Theorem 4.22, G, is
finitely presented (generated) for all a € Y. It follows, by Proposition 4.3 (4.2),
that BR(G4, 0,) is finitely presented (generated) for all v € Y. [ |

4.5 Open Problems

These three particular cases of Bruck-Reilly extensions of Clifford monoids are

the first steps in the attempt to answer the question:

Question Is a Bruck-Reilly extension of a Clifford monoid always finitely

presented if and only if its D-classes are finitely presented?

Some more particular cases that we intend to study, before considering the

general case, are:

Question Can the case studied in section 4.2 be generalized for an arbitrary
number of copies of the same group? Are these results still true if we consider an

arbitrary morphism linking the groups?

Question Considering the Clifford monoid that is the union of an arbitrary

number of groups, linked by the morphism
¢a,B:Go¢—>Gﬁ7 l’*—>15, Ck>ﬂ,
can we generalize the results in section 4.37

Another question that arises from this dissertation is:
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Question Is a Bruck-Reilly extension of an inverse monoid finitely presented

as an inverse semigroup if and only if it is finitely presented as a semigroup?

In an attempt to answer this question we can start by considering the Bruck-
Reilly extension of an inverse semigroup that is finitely presented as a semigroup,
since the existence of an inverse semigroup that is finitely presented as an inverse
semigroup and not as a semigroup might have some influence in the solution of

this problem.
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Appendix A

Ideals and Green’s Relations

Let S be a semigroup. A non-empty subset A of S is called a left ideal of S if
SA C A. We call A a right ideal of S if AS C A. We say that A is an ideal of S
if it is both a left and a right ideal.

Let I be a proper ideal of the semigroup S. We define a congruence on S, py,
by the rule
xpry & wx=y or x,y€El.

The quotient semigroup of .S by this congruence is the set

S/pr = {I}U {{z} :x € S\I}.

Since the element I of S/p; is the zero in this semigroup, we can think of S/p;
as (S\/) U {0} where all product not falling in S\I are zero. This quotient is
sometimes called a Rees quotient, and is denoted by S/I.

If a € S, the smallest left ideal of S containing a is the set Sa U {a} = Sa,

where
gl — { S if S has an identity

SU{1} if S does not have identity,

we call it the principal left ideal generated by a. Similarly we can define principal
right ideal and principal ideal generated by a.

We define five equivalence relations in S, called Green’s Equivalences, in terms
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of principal ideals in S. We have, for a,b € S:

alb & Slta=S',

aRb & aS'=>bSt,

aJb < SaS'=S"Ss",
aDb & dceS : aRcLlb,
aHb < aLbandaRDb.

These equivalences are related in the following way
HC L RCDCJ.

When we are working with Green’s relations in more than one semigroup, instead
of saying that a is £ related with b in the semigroup S, we can write a Lg b. We
use a similar notation for all the other Green’s relations.

Some properties of the Green’s relations are resumed in the following remark,
and can be found in [6, Section 2.1].

Remark :

1. Let a,b € S. Then alb if and only if there exists z,y € S' such that
xa = b, yb = a. Also, aRb if and only if there exists u,v € S* such that
au=">0, bv = a.

2. L is a right congruence and R is a left congruence.

3. The relations £ and R commute.

4. If S is regular, then S! can be replaced by S in the definition of R, £ and J.

Given an element a € S, we usually represent the R-class of a, i.e. the set of
all elements = in S such that xRa, by R,. For all a,b € S we have

R,NR,#0 < aRb.

We use a similar notation for the other relations, and a similar result holds.
Finally, we note that :

- each D-class is a union of L-classes and also a union of R-classes;
- the intersection of an L-class with an R-class is either empty or is an H-class.
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