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quero dedicar esta tese às pessoas que contribuiram, de uma maneira ou de outra,

para a minha vinda e estadia em St. Andrews, a minha mãe, o Prof. Lopes Pinto
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Abstract

It is known that a group is finitely presented as a group if and only if it is finitely

presented as a monoid, and that a monoid is finitely presented as a monoid if and

only if it is finitely presented as a semigroup.

A similar result does not hold for all inverse semigroups; the free inverse

semigroup is an example of that. After describing the free inverse semigroup and

see why it cannot be finitely presented as a semigroup, we look at two “classes”

of inverse semigroups that are finitely presented as inverse semigroups if and only

if they are finitely presented as semigroups, namely inverse monoids with finitely

many left and right ideals and Bruck-Reilly extensions of groups.

In the last part of this dissertation we study Bruck-Reilly extensions of Clifford

monoids and prove that they are finitely presented as inverse semigroups if and

only if they are finitely presented as semigroups. We also show that in some

specific cases the Bruck-Reilly extensions of a Clifford monoid, like the Clifford

semigroups, are finitely presented if and only if its D-classes are finitely presented.
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Chapter 1

Free Inverse Semigroup

The free inverse semigroups “represent one of the most interesting and important

classes of inverse semigroups” [9, p.355]. In this chapter we give a description of

the free inverse semigroup, with the idea of understanding better an important

example we will find latter in this dissertation.

1 Inverse Semigroups and Free Algebras

Let S be a semigroup. An element a ∈ S is said to be regular if there exists x ∈ S
such that a = axa. The element x is an inverse of a if a = axa and x = xax.

Note: If x is an inverse of a, then the elements ax and xa are idempotents

in S, i.e. ax = axax and xa = xaxa.

We say that the semigroup S is inverse if a unary operation x 7→ x−1 is defined

on S, with the properties:

∀x, y ∈ S (x−1)−1 = x, xx−1x = x, xx−1yy−1 = yy−1xx−1.

Note that x−1 is the inverse of x and vice-versa. The following two results contain

some properties of inverse semigroups that simplify our work with them, they can
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be found in [6, Section 5.1].

Proposition 1.1 Let S be a semigroup. The following statements are equivalent:
(i) S is an inverse semigroup;

(ii) S is regular, and its idempotents commute;
(iii) every L − class and every R− class contain exactly one idempotent;
(iv) every element of S has a unique inverse.

Proposition 1.2 Let S be an inverse semigroup. Then:
(i) (a1a2 . . . an)−1 = a−1

n . . . a−1
2 a−1

1 , for all a1, a2, . . . , an ∈ S,
(ii) aLb ⇔ a−1a = b−1b, a, b ∈ S,

(iii) aRb ⇔ aa−1 = bb−1, a, b ∈ S,
(iv) if e is an idempotent in S, then for any a in S, aea−1 and a−1ea are

idempotents in S.

Let C be a class of algebras, A an element of C, X a non-empty set and ϕ a

map from X into A. The pair (A,ϕ) is a free C-algebra if for any C in C and any

mapping ψ : X −→ C there exists a unique homomorphism ψ′ : A −→ C making

the following diagram commutative:

X A

C

ϕ

ψ ψ ’

It is clear, from the definition, that when such a structure exists it is unique.

Some very well known free algebras, on a non-empty set X, are the free

semigroup, that is the set of all non-empty words with letters in X under the
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operation of concatenation, we denote it by X+. Adjoining an identity, 1, to X+

we obtain the free monoid on X, that we denote by X∗. The free group is the set

of all reduced words in the alphabet X ∪X−1, where X−1 = {x−1 : x ∈ X} is a

set in one-one correspondence with X and disjoint from it, we denote it by FGX .

We say that a word is reduced if, for each x ∈ X, it contains no occurrences of

xx−1 or x−1x.

We can think of inverse semigroups as a class of (2,1)-algebras, so it makes

sense to try to define the free inverse semigroup and that is what we will do in the

next sections. First we will follow a construction given in [6, Section 5.10] that

defines it as a quotient of a semigroup by a congruence. Then we will define it

by means of a P-semigroup, this construction can be found in [9, Section VIII.1]

and [6, Section 5.10]. Finally we will define it in terms of birooted word trees,

following [9, Section VIII.3].

2 Construction of the Free Inverse Semigroup

Let X be a non-empty set and X−1 = {x−1 : x ∈ X} be a set in one-one

correspondence with X and disjoint from it. Let Y = X ∪X−1 and consider Y +,

the free semigroup on Y . Define inverses for the elements of Y + by the rules:

(x−1)−1, x ∈ X
(y1y2 . . . yn)−1 = y−1

n . . . y−1
1 , y1, y2, . . . , yn ∈ Y,

note that for any w ∈ Y + (w−1)−1 = w. Let τ be the congruence generated by

the set

T = {(ww−1w,w) : w ∈ Y +} ∪ {(ww−1zz−1, zz−1ww−1) : w, z ∈ Y +},

Y +/τ is a semigroup under the multiplication (wτ)(zτ) = (wz)τ , w, z ∈ Y +, see

for example [6, Section 1.5]. By the definition of τ , for any w ∈ Y +, we have

(ww−1w)τ = wτ(w−1τ)wτ = wτ, and w−1τ = (w−1τ)wτ(w−1τ),
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so w−1τ is an inverse of wτ in Y +/τ . Hence any element of Y +/τ has at least one

inverse, so this semigroup is regular. Similarly we can prove that the idempotents

of Y +/τ commute, using the definition of τ and the fact that if aτ ∈ Y +/τ is

an idempotent there exists and idempotent e ∈ Y + such that aτ = eτ , see [6,

Lemma 2.4.3]. Thus Y +/τ is an inverse semigroup.

The map ϕ : X −→ Y +/τ , x 7→ xτ , is obviously well-defined and is the

map that we associate to Y +/τ to prove that this inverse semigroup is in fact the

free inverse semigroup.

Let S be any inverse semigroup and ψ any map from X into S. We can extend

ψ to Y by defining:

x−1ψ = (xψ)−1, x ∈ X,

where (xψ)−1 is the inverse of xψ in S. Since Y + is the free semigroup on Y , we

can define a semigroup morphism ψ̂ : Y + −→ S by the rule:

(y1y2 . . . yn)ψ̂ = y1ψy2ψ . . . ynψ, y1, y2, . . . , yn ∈ Y.

Since S is inverse we know that for all wψ̂ ∈ S there exists (wψ̂)−1 ∈ S such that

wψ̂ = wψ̂(wψ̂)−1wψ̂ and (wψ̂)−1 = (wψ̂)−1wψ̂(wψ̂)−1. Let w, z ∈ Y + arbitrary,

say w = y1y2 . . . yn, z = x1x2 . . . xk, with yj, xi ∈ Y , i = 1, . . . , k, j = 1, . . . n.

We have

wψ̂ = wψ̂(wψ̂)−1wψ̂ (S inverse)

= wψ̂((y1y2 . . . yn)ψ̂)−1wψ̂

= wψ̂(y1ψy2ψ . . . ynψ)−1wψ̂ (def. ψ̂)

= wψ̂((ynψ)−1 . . . (y2ψ)−1(y1ψ)−1)wψ̂ (S inverse)

= wψ̂(y−1
n ψ . . . y−1

2 ψy−1
1 ψ)wψ̂ (def. ψ)

= wψ̂((y−1
n . . . y−1

2 y−1
1 )ψ̂)wψ̂ (def. ψ̂)

= wψ̂((y1y2 . . . yn)−1ψ̂)wψ̂ (def. of inverses in Y +)

= wψ̂(w−1ψ̂)wψ̂

= (ww−1w)ψ̂, (ψ̂ morphism)

from this we can see that w−1ψ̂ = (wψ̂)−1, since the inverses in S are unique. We
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also have

(ww−1zz−1)ψ̂ = wψ̂(w−1ψ̂)zψ̂(z−1)ψ̂) (ψ̂ morphism)

= wψ̂(wψ̂)−1zψ̂(zψ̂)−1 (by above)

= zψ̂(zψ̂)−1wψ̂(wψ̂)−1 (S inverse)

= (zz−1ww−1)ψ̂. (ψ̂ morphism)

We know that the kernel of the homomorphism ψ̂ is the congruence

Kerψ̂ = {(a, b) ∈ Y + × Y + : aψ̂ = bψ̂},

see [6, Theorem 1.5.2], and by what we have just seen , T ⊆ Kerψ̂, so we must

have τ ⊆ Kerψ̂, since τ is the smallest congruence containing T . This implies,

by [6, Theorem 1.5.3], that there exists a unique morphism ψ′ : Y +/τ −→ S such

that τ bψ′ = ψ̂, where τ b : Y + −→ Y +/τ , y 7→ yτ , y ∈ Y +. Thus, we may

conclude that there is a map ψ′ : Y +/τ −→ S such that ϕψ′ = ψ, since

xϕψ′ = (xτ)ψ′ = xψ̂ = xψ, ∀x ∈ X.

Suppose that there exists a morphism α : Y +/τ −→ S such that ϕα = ψ, then

xϕα = xψ ⇔ (xτ)α = xψ, ∀x ∈ X

but α is a morphism so

(x−1τ)α = (xτ)−1α = (xτα)−1 = (xψ)−1 = x−1ψ, ∀x ∈ X.

Hence, given w ∈ Y + arbitrary, say w = y1y2 . . . yn, for some y1, y2, . . . , yn ∈ Y ,

we have
(wτ)α = ((y1y2 . . . yn)τ)α = (y1τ)α(y2τ)α . . . (ynτ)α

= y1ψy2ψ . . . ynψ = (y1y2 . . . yn)ψ̂ = wψ̂,

so τ bα = ψ̂, this implies that α = ψ′, and we can conclude that ψ′ is the unique

morphism from Y +/τ into S such that ϕψ′ = ψ.

Thus Y +/τ is the free inverse semigroup on X. We will denote it by FIX .
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3 P-Semigroups

3.1 Definitions

Given a non-empty set X with a partial order ≤, a non-empty subset Y of X is

called an ideal of X if

∀b ∈ Y ∀a ∈ X a ≤ b ⇒ a ∈ Y,

and is called a subsemilattice of X if

∀a, b ∈ Y ∃a ∧ b and a ∧ b ∈ Y,

where a ∧ b represents the meet of a and b, i.e. a ∧ b ≤ a, a ∧ b ≤ b and

for all c ∈ Y such that c ≤ a and c ≤ b we have c ≤ a ∧ b. Given a

group G, we say that G acts on X if for any element g ∈ G there exists an order

preserving automorphism ϕg : X −→ X, a 7→ ga, such that, given g, h ∈ G we

have ϕgϕh = ϕgh.

By saying that the bijection ϕg : X −→ X is an order preserving automor-

phism we mean that

∀ a, b ∈ X a ≤ b ⇔ aϕg ≤ bϕg ⇔ ga ≤ gb.

Proposition 1.3 Given a group G, with identity element 1G, and a poset X, G

acts on X if and only if

∀a, b ∈ X, ∀g, h ∈ G a ≤ b ⇒ ga ≤ gb, (gh)a = g(ha), 1Ga = a.

Proof. Suppose that the group G acts on the poset X, then we clearly have

∀ a, b ∈ X ∀g, h ∈ G a ≤ b ⇒ ga ≤ gb, (gh)a = g(ha).

For any g ∈ G the map ϕg is a bijection, with inverse map ϕg−1 , then for any

a ∈ X we have
aϕgϕg−1 = aϕgg−1 = aϕ1G

= 1Ga,
aϕgϕg−1 = aidG = a,
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so 1ga = a. Conversely suppose that

∀a, b ∈ X, ∀g, h ∈ G a ≤ b ⇒ ga ≤ gb, (gh)a = g(ha), 1Ga = a.

Then, for all g ∈ G and a, b ∈ X, we have

ga ≤ gb ⇒ g−1ga ≤ g−1gb ⇔ 1Ga ≤ 1Gb ⇔ a ≤ b,

so, the map ϕg : X −→ X, a 7→ ga is an order preserving automorphism. By

the hypothesis, we know that for all g, h ∈ G we have ϕgϕh = ϕgh. �

Given a group G acting on a poset X, a subsemilattice and ideal Y of X,

such that GY = X and for all g ∈ G gY ∩ Y 6= ∅, we say that (G,X, Y ) is a

McAlister triple.

Proposition 1.4 Given a McAlister triple (G,X, Y ), the set

P (G,X, Y ) = {(a, g) ∈ Y ×G : g−1a ∈ Y },

under the multiplication (a, g)(b, h) = (a ∧ gb, gh), a, b ∈ Y, g, h ∈ G, is an

inverse semigroup.

For a proof see for example [6, Theorem 5.9.2]. The inverse semigroups defined

in this proposition are called P-semigroups.

3.2 Construction of FIX

We will see that the free inverse monoid can be described as a P-semigroup

P (FGX ,X , E), where FGX is the free group on the non-empty set X, E is a

semilattice and X is a poset, both obtained from FGX .

Note: Given two words v, w in Y +, Y = X ∪X−1, we will denote by vw their

product in the semigroup Y + and by v · w their product in FGX .
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For any word w = x1x2 . . . xn, xi ∈ X, i = 1, . . . , n, we define w↓ to be

the set of all left factors of w, {1, x1, x1x2, x1x2x3, . . . , x1x2 . . . xn}, where 1

represents the empty word. Let

E = {A ∈ P(FGX) : 0 < |A| <∞, w ∈ A ⇒ w↓ ⊆ A},

and define a partial order on E by the rule A ≤ B ⇔ B ⊆ A, A,B ∈ E.

Since ⊆ is a partial order we can see that ≤ is also a partial order. Clearly, given

A,B ∈ E we have A ∪ B ≤ A and A ∪ B ≤ B. Considering a set T ∈ E such

that T ≤ A and T ≤ B we have A ⊆ T and B ⊆ T so A ∪ B ⊆ T , and we can

conclude that A ∧B = A ∪B. Considering a word w ∈ A ∪B we have

w ∈ A ⇒ w↓ ⊆ A, (A ∈ E)
w ∈ B ⇒ w↓ ⊆ B, (B ∈ E)

so w↓ ⊆ A∪B. We know that 0 < |A|, |B| <∞ and |A∪B| = |A|+ |B|−|A∩B|
so 0 < |A∪B| <∞. Hence for all A,B ∈ E A∧B ∈ E, thus E is a subsemilattice

of PX .

Given A ∈ E we say that an element w ∈ A is maximal if it is not a proper

left factor of any element of A. Since all elements of E are finite we know that

every element of E has at least one maximal element.

Lemma 1.5 If w1, w2, . . . , wn are all maximal elements of A, where A ∈ E, then

A = w↓
1 ∪ w

↓
2 ∪ · · · ∪ w↓

n.

Proof. Since w1, w2, . . . , wn ∈ A and A ∈ E we clearly have w↓
1∪w

↓
2∪· · ·∪w↓

n ⊆
A. Now consider z ∈ A arbitrary, z is a left factor of some maximal ele-

ment of A, wi, for some i = 1, . . . , n, so z ∈ w↓
i and we can conclude that

A = w↓
1 ∪ w

↓
2 ∪ · · · ∪ w↓

n. �

For any g ∈ FGX and A ∈ E we define g · A to be the set {g · w : w ∈ A},
and

X = {g · A : g ∈ FGX , A ∈ E}.
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Define a partial order in X by the rule F1 ≤ F2 ⇔ F2 ⊆ F1, F1, F2 ∈ X . Let

F1, F2 ∈ X and g, h ∈ FGX be arbitrary. We have F1 = g1 · A1, F2 = g2 · A2

for some g1, g2 ∈ FGX and A1, A2 ∈ E, then

F1 ≤ F2 ⇔ g1 · A1 ≤ g2 · A2 ⇔ g2 · A2 ⊆ g1 · A1

⇒ g · (g2 · A2) ⊆ g · (g1 · A1) ⇔ g · F1 ≤ g · F2,

(g · h) · F1 = (g · h) · (g1 · A1) = (g · h) · g1) · A1 = g · (h · (g1 · A1) = g · (h · F1),

1 · F1 = 1 · (g1 · A1) = (1 · g1) · A1 = g1 · A1 = F1,

where 1 is the identity in FGX , the empty word. So, by Proposition 1.3, FGX

acts on the poset X .

Now we want to check that E is an ideal of X . For any A ∈ X we have

A = 1 ·A and 1 ·A belongs to X , so E ⊆ X . Consider A ∈ E, F ∈ X arbitrary,

say F = g · B with g ∈ FGX , B ∈ E, and suppose that F ≤ A, i.e. A ⊆ g · B.

For any w ∈ F , w = g · w′ for some w′ ∈ B. Suppose that g = g1g2 . . . gr and

w′ = w′
1w

′
2 . . . w

′
n with gi, w

′
j ∈ Y , i = 1, . . . , r, j = 1, . . . , n, then

w↓ = {1, g1, g1g2, . . . , g, gw
′
1, gw

′
1w

′
2, . . . , gw

′ = w}.

We know that for all v ∈ A v↓ ⊆ A, in particular 1 ∈ A, but A ⊆ g · B by

hypothesis, so there exists z ∈ B such that 1 = g · z, then

1 = g · z ⇒ g−1 = 1 · z = z ⇒ g−1 ∈ B,

this implies that (g−1)↓ ⊆ B, for B ∈ E.

Lemma 1.6 h−1 · h↓ = (h−1)↓ for any h ∈ FGX .

Proof. Let h = h1h2 . . . hs, for some h1, h2, . . . , hs ∈ Y , then h−1 = h−1
s . . . h−1

2 h−1
1

and we have

h↓ = {1, h1, h1h2, . . . , h1h2 . . . hs},
(h−1)↓ = {1, h−1

s , . . . , h−1
s . . . h−1

2 , h−1
s . . . h−1

2 h−1
1 }.
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Let v ∈ h−1 ·h↓ arbitrary, v = (h−1
s . . . h−1

2 h−1
1 ) ·(h1h2 . . . hk) for some 0 ≤ k ≤ s,

but

(h−1
s . . . h−1

2 h−1
1 ) · (h1h2 . . . hk) = h−1

r . . . h−1
k+1

so v ∈ (h−1)↓. Conversely, let v ∈ (h−1)↓ be arbitrary, then v = h−1
s . . . h−1

k for

some 1 ≤ k ≤ s, but we can write v in the form v = h−1 · (h1h2 . . . hk−1), hence

v ∈ h−1 · h↓. Thus h−1 · h↓ = (h−1)↓. �

From (g−1)↓ ⊆ B, we obtain g−1 · g↓ ⊆ B, this implies g · g−1 · g↓ ⊆ g ·B ⇔
g↓ ⊆ F. Clearly, by the definitions of these sets, we have w↓ ⊆ g↓ ∪ g · (w′)↓ and

w′ ∈ B ⇒ (w′)↓ ⊆ B ⇒ g · (w′)↓ ⊆ g ·B ⇔ g · (w′)↓ ⊆ F,

hence g↓ ∪ g · (w′)↓ ⊆ F , and we conclude that w↓ ⊆ F . Since F = g · B and

B ∈ E we know that F ∈ PX and 0 < |F | < ∞. By what we have just seen

for all w ∈ F w↓ ⊆ F , so F ∈ E and we conclude that

∀A ∈ E ∀F ∈ X F ≤ A ⇒ F ∈ E,

thus E is an ideal of X .

By definition of X we have FGX · E = X so, to prove that (FGX ,X , E)

is a McAlister triple we just need to check that for any g ∈ FGX we have

g · E ∩ E 6= ∅. Let g be an arbitrary element of FGX , the set g↓ belongs to E

since for any v ∈ g↓ we clearly have v↓ ⊆ g↓ and, by Lemma 1.6, g↓ = g ·(g−1)↓.

Similarly (g−1)↓ ∈ E, so g↓ ∈ g · E, thus g↓ ∈ g · E ∩ E and it follows that

g · E ∩ E 6= ∅. Hence (FGX ,X , E) is a McAlister triple.

The P-semigroup originated by this McAlister triple is the set

P (FGX ,X , E) = {(A, g) ∈ E × FGX : g−1 · A ∈ E}

with the multiplication defined by:

(A, g)(B, h) = (A ∧ g ·B, g · h) = (A ∪ g ·B, g · h).

10



Lemma 1.7 P (FGX ,X , E) = {(A, g) ∈ E × FGX : g ∈ A}.

Proof. Let MX = {(A, g) ∈ E × FGX : g ∈ A}. For an arbitrary element

(A, g) in P (FGX ,X , E) we have A ∈ E, g ∈ FGX and g−1 ·A ∈ E. From A ∈ E
we know that 1 ∈ A then g−1 ∈ g−1 · A and we have

g−1 ∈ g−1 · A ⇒ (g−1)↓ ⊆ g−1 · A (g−1 · A ∈ E)
⇔ g−1g↓ ⊆ g−1 · A (Claim 1)
⇒ g↓ ⊆ A (1 · A = A)
⇒ g ∈ A (g ∈ g↓)

hence (A, g) ∈ MX . Conversely, let (A, g) ∈ MX arbitrary, we know that g ∈
FGX and A ∈ E so g−1 · A ∈ PX and 0 < |g−1 · A| < ∞. Let w ∈ g−1 · A
be arbitrary, w = g−1 · w′ for some w′ ∈ A, by the definitions of w↓, (g−1)↓ and

g−1 · (w′)↓ we can see, like we did above, that w↓ ⊆ (g−1)↓ ∪ g−1 · (w′)↓, and by

Lemma 1.6 we have

w↓ ⊆ g−1 · g↓ ∪ g−1 · (w′)↓.

From A ∈ E and w′ ∈ A we know that (w′)↓ ⊆ A so g−1 · (w′)↓ ⊆ g−1 · A,

similarly, since g ∈ A, we have g−1 · g↓ ⊆ g−1 · A, then w↓ ⊆ g−1 · A and we

conclude that g−1 · A ∈ E. Thus (A, g) ∈ P (FGX ,X , E) and it follows that

MX = P (FGX ,X , E). �

From Proposition 1.4 we know that P (FGX ,X , E) is an inverse semigroup

and we can easily check that (1↓, 1) is the identity of P (FGX ,X , E). The next

result gives us a generating set for this inverse monoid.

Lemma 1.8 P (FGX ,X , E) is generated by the elements (x↓, x) with x ∈ X.

Proof. Let TX be the inverse submonoid of P (FGX ,X , E) generated by the

set {(x↓, x) : x ∈ X}. For any x ∈ X we have

(x↓, x)((x−1)↓, x−1)(x↓, x) = (x↓ ∪ x · (x−1)↓, x · x−1)(x↓, x)
= (x↓ ∪ x · (x−1)↓ ∪ 1 · x↓, 1 · x) = (x↓ ∪ x · x−1 · x↓ ∪ x↓, x)
= (x↓ ∪ 1 · x↓ ∪ x↓, x) = (x↓, x),

11



note that x · (x−1)↓ = x · x−1 · x↓, by Lemma 1.6. Similarly we can check that

((x−1)↓, x−1)(x↓, x)((x−1)↓, x−1) = ((x−1)↓, x−1),

so ((x−1)↓, x−1) is the inverse of (x↓, x) in P (FGX ,X , E) and it belongs to TX .

This implies that

(x↓, x)((x−1)↓, x−1) = (x↓, 1) ∈ TX

and ((x−1)↓, 1) = (x↓, 1)−1 also belongs to TX since TX is an inverse submonoid

of P (FGX ,X , E) .

Let w be any reduced word in Y +, if |w| = 1 then (w↓, 1) ∈ TX by what we

have just seen. Now suppose that for any reduced word, w, in Y + with |w| ≤ k

we have (w↓, 1) ∈ TX , and let z ∈ Y + be a reduced word with |z| = k + 1, say

z = yz′ for some y ∈ Y and z′ ∈ Y +. We have

(z↓, 1) = (y↓, y)((z′)↓, 1)((y−1)↓, y−1)

and by hypothesis ((z′)↓, 1) ∈ TX , then (z↓, 1) ∈ TX . Note that (y↓, y) and

((y−1)↓, y−1) belong to TX by its definition and by what we have seen above.

Then, by induction, we conclude that for any reduced word w ∈ Y + (w↓, 1) ∈ TX .

Consider, w, a reduced word in Y + and let u be a left factor of w, say w =

y1y2 . . . yn and u = y1y2 . . . yj for some y1, y2, . . . , yj ∈ Y , and some 0 ≤ j ≤
n− 1. If j = 0, then

(w↓, u) = (w↓, 1) ∈ TX .

Now suppose that for any j ≤ k (w↓, u) ∈ TX , we have

(w↓, y1y2 . . . ykyk+1) = (w↓, y1y2 . . . yk)(y
↓
k+1, yk+1).

By hypothesis (w↓, y1y2 . . . yk) ∈ TX , and (y↓k+1, yk+1) ∈ TX since yk+1 ∈ Y , then,

by induction, (w↓, u) ∈ TX for any left factor u of w.

Now, let (A, g) be an arbitrary element of P (FGX ,X , E). By Lemma 1.5

we know that A = w↓
1 ∪ w

↓
2 ∪ · · ·w↓

n, where w1, w2, . . . , wn are the maximal

elements of A. Since g ∈ A, g is a left factor of wi for some 1 ≤ i ≤ n, we can

rewrite A in the form

A = w↓
1 ∪ · · · ∪ w

↓
i−1 ∪ w

↓
i+1 ∪ · · · ∪ w↓

n ∪ w
↓
i ,

12



it follows that

(A, g) = (w↓
1, 1) . . . (w↓

i−1, 1)(w↓
i+1, 1) . . . (w↓

n, 1)(w↓
i , g),

so (A, g) is a product of elements of TX by what we have just seen. Thus (A, g) ∈
TX and we conclude that P (FGX ,X , E) is generated by the set {(x↓, x) : x ∈ X}.

�

Finally we will prove that P (FGX ,X , E) is the free inverse monoid on X.

Note that to obtain the free inverse semigroup we just need to remove the identity

element (1↓, 1), see [9, Proposition 8.1.8].

We define a map ϕ : X −→ P (FGX ,X , E), x 7→ (x↓, x). This map is

obviously well-defined so now we need to check that for every inverse monoid S

and every map ψ : X −→ S there is a unique morphism ψ′ : P (FGX ,X , E) −→
S such that ϕψ′ = ψ. Let S be an inverse monoid and ψ any map from X into

S. We can extend ψ to Y + by defining:

(x−1)ψ = (xψ)−1, x ∈ X
(y1y2 . . . yn)ψ = y1ψy2ψ . . . ynψ, yi ∈ Y, i = 1, . . . , n.

For any finite subset Z of Y +, with maximal elements w1, w2, . . . , wn we define

eZ = ((w1w
−1
1 )(w2w

−1
2 ) . . . (wnw

−1
n ))ψ,

eZ is an element of the inverse monoid S and we have

Claim 1 Let Z be a finite subset of Y + then eZ is an idempotent of S.

Proof.

eZeZ = (w1w
−1
1 w2w

−1
2 . . . wnw

−1
n )ψ(w1w

−1
1 w2w

−1
2 . . . wnw

−1
n )ψ

= w1ψ(w1ψ)−1 . . . wnψ(wnψ)−1w1ψ(w1ψ)−1 . . . wnψ(wnψ)−1

= w1ψ(w1ψ)−1 . . . wnψ(wnψ)−1wnψ(wnψ)−1 . . . w1ψ(w1ψ)−1

( wiψ(wiψ)−1, i = 1, . . . , n, are idempotents in S so commute)
= w1ψ(w1ψ)−1 . . . (wn−1ψ(wn−1ψ)−1)2 . . . w1ψ(w1ψ)−1wnψ(wnψ)−1

· · ·
= w1ψ(w1ψ)−1 . . . wnψ(wnψ)−1 = (w1w

−1
1 . . . wnw

−1
n )ψ

= eZ

13



�

Claim 2 Let A,B ∈ E, then eAeB = eA∪B.

Proof. By Lemma 1.5 we know that A = w↓
1 ∪ w

↓
2 ∪ · · · ∪ w↓

n and B =

z↓1 ∪ z
↓
2 ∪ · · · ∪ z↓m, where w1, . . . , wn and z1, . . . , zm are the maximal elements of

A and B respectively. Then

eAeB = ((w1w
−1
1 ) . . . (wnw

−1
n ))ψ((z1z

−1
1 ) . . . (zmz

−1
m ))ψ

= ((w1w
−1
1 ) . . . (wnw

−1
n )(z1z

−1
1 ) . . . (zmz

−1
m ))ψ

= eA∪B,

note that A∪B = w↓
1 ∪w

↓
2 ∪ · · · ∪w↓

n ∪ z
↓
1 ∪ z

↓
2 ∪ · · · z↓m and if wi is a left factor

of zj, for some i = 1, . . . , n, j = 1, . . . ,m, then w↓
i ∪ z

↓
j = z↓j and writing wi and

zj as a product of elements of Y , from definition of ψ and from the fact that

yψ(yψ)−1 is an idempotent of S for all y ∈ Y , we obtain

wiψ(wiψ)−1zjψ(zjψ)−1 = zjψ(zjψ)−1.

�

Claim 3 Let A ∈ E and g ∈ FGX arbitrary, then (gψ)eA = eg·A(gψ).

Proof. Let A = w↓
1 ∪ w

↓
2 ∪ · · · ∪ w↓

n like on Claim 2. We have

gψeA = gψ((w1w
−1
1 ) . . . (wnw

−1
n ))ψ

= (g · w1w
−1
1 )ψ((w2w

−1
2 ) . . . (wnw

−1
n ))ψ

= (g · w1w
−1
1 · 1)ψ((w2w

−1
2 ) . . . (wnw

−1
n ))ψ

= (g · w1w
−1
1 · g−1 · g)ψ((w2w

−1
2 ) . . . (wnw

−1
n ))ψ

= (g · w1w
−1
1 · g−1)ψ(gψ)((w2w

−1
2 ) . . . (wnw

−1
n ))ψ

= ((g · w1)(g · w1)
−1)ψ(gψ)((w2w

−1
2 ) . . . (wnwn

−1))ψ
= (g · w1(g · w1)

−1)ψ(g · w2(g · w2)
−1)ψ(gψ)((w3w

−1
3 ) . . . (wnw

−1
n ))ψ

· · ·
= (g · w1(g · w1)

−1)ψ(g · w2(g · w2)
−1)ψ . . . (g · wn(g · wn)−1)ψ(gψ)

= ((g · w1(g · w1)
−1)(g · w2(g · w2)

−1) . . . (g · wn(g · wn)−1))ψ(gψ)
= eg·A(gψ),
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note that, by the definition of g ·A, wi is a maximal element of A if and only if

g · wi is a maximal element of g · A. �

Defining a map ψ′ : P (FGX ,X , E) −→ S, (A, g) 7→ eA(gψ), for any

(A, g) ∈ P (FGX ,X , E) we clearly have eA(gψ) ∈ Y +ψ so (A, g)ψ′ ∈ S. Thus

ψ′ is obviously well-defined. Given (A, g), (B, h) ∈ P (FGX ,X , E) arbitrary we

have
((A, g)(B, h))ψ′ = (A ∪ g ·B, g · h)ψ′

= eA∪g·B((g · h)ψ)
= eAeg·B(gψ)(hψ) (Claim 2)
= eA(gψ)eB(hψ) (Claim 3)
= (A, g)ψ′(B, h)ψ′,

hence ψ′ is a morphism. Let x ∈ X be arbitrary, we know that ex↓ = (xx−1)ψ

and

xϕψ′ = (x↓, x)ψ′ = ex↓(xψ) = ((xx−1)ψ)(xψ) = xψ(xψ)−1xψ = xψ,

so ϕψ′ = ψ. Now suppose that there exists a morphism α : (FGX ,X , E) −→ S

such that ϕα = ψ. Then for any x ∈ X xϕα = xψ, i.e. (x↓, x)α = xψ, so for

all x ∈ X
(x↓, x)α = (x↓, x)ψ,

this tell us that α coincides with ψ′ in the generators of P (FGX ,X , E), then α =

ψ′ in this semigroup, hence α = ψ′. We conclude that ψ′ is the unique morphism

from P (FGX ,X , E) into S such that ϕψ′ = ψ. It follows that P (FGX ,X , E) is

the free inverse monoid on X.

Remark 1 The free inverse semigroup is unique, so P (FGX ,X , E)\{(1↓, 1)}
must be isomorphic to Y +/τ , a proof of this appears in [6, Section 5.10]. The

given isomorphism maps P (FGX ,X , E)\{(1↓, 1)} onto Y +/τ in the following

way:

(w↓
1 ∪ w

↓
2 ∪ · · · ∪ w↓

n, g) 7→ ((w1w
−1
1 ) . . . (wnw

−1
n )g)τ.
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4 Birooted Word Trees

4.1 Definitions

A graph is a finite non-empty set of elements, that are called vertices, together

with a set of unordered pairs of distinct vertices called edges.

The set of all vertices of a graph Γ is denoted by V (Γ).

If two vertices, v1, v2, form an edge of the graph we say that they are adjacent.

A graph Γ′ is a subgraph of the graph Γ if all vertices and all edges of Γ′ are

also vertices and edges of Γ.

A vertex is extreme if it belongs to exactly one edge.

A walk in the graph Γ is a sequence (y0, y1, . . . , yn) of vertices of Γ such that

yi−1, yi are adjacent for all i = 0, . . . , n. This is a walk of length n, and we call it

a (y0, yn)-walk.

A path is a walk in which all vertices are distinct.

The graph Γ is connected if every pair of vertices of Γ is joined by a path.

An (α, α)-walk is said to be closed.

A cycle is a closed walk all of whose vertices are distinct and with at least

three vertices.

A tree is a connected graph without cycles.

Note: In a tree T , for any α, β ∈ V (T ), there is a unique (α, β)-path, we

denote it by Π(α, β).
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A tree in which a vertex is distinguished is called a rooted tree.

We say that a walk w spans the graph Γ, or is a spanning walk if all vertices

of Γ occur among vertices of w.

An edge with vertices α and β is oriented if we consider the edge together

with (α, β) as an oriented pair. In this case we write α −→ β and denote the

edge by αβ.

An edge is labeled if a symbol is associated to it.

A word tree, T , on a non-empty set X is a tree with at least one edge, where

each edge is oriented and labeled by an element of X and with no subgraph of

the form:

x  x  x x

Note: We can extend the set of labels from X to Y = X ∪ X−1, making a

convention that

α β

x
 −1 means the same as

α β
x

Let T and T ′ be word trees on X. An isomorphism of T onto T ′ is a bijection

of V (T ) onto V (T ′) which preserves adjacency, orientation and labeling of edges.

If such a bijection exists we say that T is isomorphic to T ′, and write T ∼= T ′.

Note that isomorphism is an equivalence relation on the class of all word trees

on X.

4.2 Composition of word trees

Let TX be a cross section of the isomorphism classes of word trees on X, i.e. a

set intersecting each equivalence class (where the equivalence relation is isomor-
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phism) in a single element.

Let T, T ′ ∈ TX and α ∈ V (T ), α′ ∈ V (T ′) be arbitrary. Let γ be an extreme

vertex in T ′ and consider the path Π(α′, γ) = (α′ = γ0, γ1, . . . , γn = γ) in T ′.

There exists δm ∈ V (T ), such that the path Π(α, δm) = (α = δ0, δ1, . . . , δm) in

T , is isomorphic to (α′ = γ0, γ1, . . . , γm), and m is the greatest integer with this

property (m ≤ n).

Note that Π(α, δm) is obviously unique since we are working in trees.

To do the composition of T with T ′ we identify γi with δi, for i = 0, . . . ,m. If

m < n we attach the graph (γm, γm+1, . . . , γn) to the vertex γm = δm. Repeating

this process for all extreme vertices in V (T ′), we obtain a word tree on X that

is the composition of T with T ′. We represent by T (α, α′)T ′ its representative in

TX . It is convenient to identify the vertices of T and T ′ with the corresponding

vertices of T (α, α′)T ′.

A triple (α, T, β) is a birooted word tree on X if T ∈ TX and α, β ∈ V (T ).

Considering the set of all birooted word trees on X we can define a multipli-

cation in it by the rule:

(α, T, β)(α′, T ′, β′) = (α, T (β, α′)T ′, β′).

We denote this set, together with this multiplication, by BX . Intuitively, given

two birooted word trees we obtain their product by identifying the “second” root

of the first tree with the “first” root of the second, making all the common edges

coincide and attach to the common vertices all the other vertices of both trees,

as we can see in the next two examples.

Example 1.1 Given the birooted word trees
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x y

y

z
α β

and
x y

y

z z

γ λ

their composition is the birooted word tree

x y

y

z z

α λ

Example 1.2 The composition of the birooted word trees

y

z

x
z

y

x y
z

α

β

and

x

x y

z

z
y

x

φ

µ

is the birooted word tree

z

z

y

x y z x

x
z

y

α

y

µ
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4.3 FIX as the set of birooted word trees

Consider the free inverse semigroup on the non-empty set X as the P-semigroup

P ′(FGX ,X , E) = P (FGX ,X , E)\{(1↓, 1)}. Define a map

ϕ : P ′(FGX ,X , E) −→ BX

such that, for (A, g) ∈ P ′(FGX ,X , E), (A, g)ϕ is the birooted word tree

(α, T, β), constructed in the following way:

Consider a word of length one, x, in A. Form an edge (α, γ) labeled by x.

Fixing α, repeat the process obtaining edges of the form (α, δ). Assuming that

we have assigned a path to each word in A, of length less then k, consider the

word x1x2 . . . xk ∈ A. There exists a unique path (α = γ0, γ1, . . . , γk−1) labeled

x1, x2, . . . , xk−1 in the graph already constructed, so we can attach to it an edge

(γk−1, γk) labeled xk. Doing this for all words of length k we have inductively

constructed a word tree. Let T be its representative in TX and β be the vertex of T

for which the (α, β)-path is the one labeled by x1, x2, . . . , xn, where x1, x2, . . . , xn

are such that g = x1x2 . . . xn, in the reduced form.

By this construction we can see that (α, T, β) is the unique birooted word tree

associated to (A, g), so the map ϕ is well-defined. Using an inverse construction

we can check that ϕ is onto:

Let (α, T, β) be an arbitrary element of BX and let A be the set of words

which label the (α, γ)-paths of T , for all γ ∈ V (T ). Let g be the word that

labels the path Π(α, β). Clearly g belongs to A so we just need to check that

A is in the semilattice E. Let w ∈ A arbitrary, then w labels a (α, γk)-path,

(α, γk) = (α = γ0, γ1, . . . , γk), so for any word z in w↓, we know that z labels

a (α, γi)-path, for some 0 ≤ i ≤ k. Hence z ∈ A and we may conclude that

w↓ ⊆ A. It follows that (A, g) ∈ P ′(FGX ,X , E). We know that (A, g)ϕ is the

unique birooted word tree on X whose set of all (α, γ)-paths bears the labels of

words in A and the (α, β)-path is labeled by the letters in the word g, so we must
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have (A, g)ϕ = (α, T, β). Thus ϕ is onto.

Let (A, g), (B, h) ∈ P ′(FGX ,X , E) and suppose that (A, g)ϕ = (B, h)ϕ. The

construction of the birooted word tree from (A, g) is unique, so if it is the same

as the one constructed from (B, h), we must have A = B and g = h, thus ϕ is

one-one.

Let (A, g), (B, h) be arbitrary elements of P ′(FGX ,X , E). Let (A, g)ϕ =

(α, T, β) and (B, h)ϕ = (α′, T ′, β′), then

((A, g)(B, h))ϕ = (A ∪ g ·B, gh)ϕ,
(A, g)ϕ(B, h)ϕ = (α, T, β)(α′, T ′, β′) = (α, T (β, α′)T ′, β′).

We know that (A ∪ g · B, gh)ϕ is the birooted word tree constructed with the

words of A∪g ·B. If we do the composition of T and T ′, identifying β with α′ we

obtain a tree “reading” the words of A∪g ·B, and this composition is T (β, α′)T ′.

The path Π(α, β′) is obtained by following Π(α, β) by Π(α′, β′), so the word gh

labels the path Π(α, β′). Hence, we must have

(A ∪ g ·B, gh)ϕ = (α, T (β, α′)T ′, β′),

so ϕ is a morphism. We conclude that P ′(FGX ,X , E) is isomorphic to BX , this

tells us that we can define the free inverse semigroup on a non-empty set X as

the set of all birooted word trees BX .
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Chapter 2

Presentations

Let C be a class of algebras and C an algebra in C. A presentation for C defines

it as a homomorphic image of the free C-algebra. In this chapter we will focus on

semigroup and inverse semigroup presentations. The definitions, examples and

methods described in this chapter can be found, when not stated otherwise, in

[8] and [10].

1 Writing Presentations

Let A be an alphabet. A semigroup presentation is a pair < A | R >, where

R ⊆ A+ × A+. The elements of A are called generating symbols or simply

generators, and the elements of R are called defining relations. A pair (u, v) ∈ R

is usually represented by u = v. The semigroup defined by the presentation

< A | R > is the semigroup A+/ρ, where ρ is the smallest congruence on A+

containing R.

For w1, w2 ∈ A+ we write w1 ≡ w2 if w1 and w2 are identical words in A+,

and w1 = w2 if they represent the same element of S, i.e. (w1, w2) ∈ ρ. In this

last case, we say that S satisfies the relation w1 = w2.
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Let T be a semigroup generated by a set B, and φ : A −→ B an onto

mapping. We can extend φ in a unique way to an epimorphism φ′ : A+ −→ T ,

see for example [10, Proposition 1.1]. We say that T satisfies relations R if for

each relation u = v in R we have uφ = vφ. We can now state the following

result:

Proposition 2.1 Let < A | R > be a presentation, S the semigroup defined by

it and T a semigroup satisfying R. Then T is a homomorphic image of S.

Proof. We know that S = A+/ρ, where ρ is the smallest congruence containing

R. Since T satisfies R we know that there exists an epimorphism φ : A+ −→ T ,

such that for any (u = v) ∈ R we have uφ = vφ. Hence, R ⊆ Kerφ and

Kerφ is a congruence, so we must have ρ ⊆ Kerφ. Then, by [6, Theorem 1.5.4],

A+/Kerφ ∼= (A+/ρ)/(Kerφ/ρ)

and by the Homomorphism Theorem [6, Theorem 1.5.2], we have A+/Kerφ ∼= T ,

so T ∼= (A+/ρ)/(Kerφ/ρ). Hence T is a homomorphic image of S. �

Given w1, w2 ∈ A+, we say that w2 is obtained from w1 by one application of

one relation from R if there exists α, β in A∗ and a relation u = v in R such that

w1 ≡ αuβ and w2 ≡ αvβ. We say that w2 can be deduced from w1 if there exists

a sequence

w1 ≡ α1, α2, . . . , αk−1, αk ≡ w2

of words from A+ such that αi+1 is obtained from αi by one application of one

relation from R. We also say that w1 = w2 is a consequence of R.

Proposition 2.2 Let S be a semigroup generated by a set A and R a subset of

A+ × A+. Then < A | R > is a presentation for S if and only if
(i) S satisfies all relations from R,

(ii) if u, v are any two words in A+ such that S satisfies u = v then u = v
is a consequence of R.
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For a proof see [10, Proposition 2.3]. Now we will look at some examples of

semigroup presentations.

Example 2.1 The presentation < A | > defines the free semigroup A+, for

the smallest congruence on A+ containing the empty set is the diagonal relation

4 = {(w,w) : w ∈ A+}, and A+/4 ∼= A+.

Example 2.2 Consider the subset R = {(a, a2)} of {a}+ × {a}+ and let ρ be

the smallest congruence on {a}+ containing R, then

aρa2 ⇒ a2ρa3

aρa2 ∧ a2ρa3 ⇒ aρa3

aρa3 ⇒ a2ρa4

aρa2 ∧ a2ρa4 ⇒ aρa4

. . .
aρa2 ∧ a2ρan ⇒ aρan+1, ∀n ∈ N

so we have aρ = {a}+, hence {a}+/ρ is trivial. We may conclude that the

presentation

< a | a = a2 >

defines the trivial semigroup.

Example 2.3 The presentation < a | an+r = ar > defines the monogenic semi-

group of order n + r − 1 and period n. For definitions related with monogenic

semigroup see for example [6, Section 1.1]

Proof. Let M = {a, a2, . . . , an, . . . , an+r−1} be the monogenic semigroup of

order n+r−1 and period n, generated by a. We know that r is the least positive

integer, k, such that ak is repeated, and n+ r is the power of the first repetition

of ar, so M satisfies the relation ar = an+r. Suppose that M satisfies the relation

ap1 = ap2 , we can assume that ap2 is the first repetition of ap1 . We want to show

that this relation is a consequence of ar = an+r. If p1 = p2 then ap1 ≡ ap2 and

the result follows, so we can suppose without loss of generality that p2 > p1.
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Claim 4 If p1, p2 ≥ r and p1 ≡ p2 (mod n) then ap1 = ap2 can be deduced from

an+r = ar.

Proof. In this case we can write p2 − p1 = kn for some k ∈ N, then

ap1 ≡ akn+p2 ≡ akn+rap2−r ≡ a(k−1)nan+rap2−r = a(k−1)narap2−r

≡ a(k−2)nan+rap2−r = a(k−2)narap2−r = . . . = arap2−r ≡ ap2

so we can conclude that ap1 = ap2 can be deduced from an+r = ar. �

Since r is the least power of a to be repeated in M we must have p1 ≥ r, thus

p1, p2 ≥ r. Suppose that n 6 | p2 − p1, then p2 − p1 = kn + q for some k ∈ N and

some 0 < q < n, and we have

ap1 ≡ ap1−rar = ap1−ran+r = . . . = ap1−rakn+r ≡ ap1+kn ≡ ap2−q,

then ap1 = ap2−q and p2 − q < p2, this contradicts the fact of ap2 being the

first repetition of ap1 . So we must have p2 ≡ p1 (mod n) and we conclude that

ap1 = ap2 is a consequence of ar = an+r. Thus, by Proposition 2.2, the presenta-

tion < a | an+r = ar > defines M . �

The following result shows that we can always obtain a presentation for a

semigroup by means of its multiplication table.

Proposition 2.3 Any semigroup can be defined by a presentation.

Proof. Let S be any semigroup and define an alphabet A = {as : s ∈ S}. A is

obviously in one-one correspondence with S. The set

R = {axay = axy : x, y ∈ S}

is contained in A+ × A+ so we can consider the presentation < A | R >. Let

T be the semigroup defined by this presentation. S satisfies all the relations of
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R (by the definition of semigroup) so, by Proposition 2.1, S is an homomorphic

image of T , i.e. there exists an epimorphism φ : T −→ S, as 7→ s.

Let u, v ∈ A+ be such that uφ = vφ, then there exists x, y ∈ S such that

u = ax and v = ay hold in T and we have

axφ = ayφ ⇔ x = y,

this obviously implies ax = ay, so u = v in T . Thus φ is one-one and we

can conclude that S is isomorphic to T , thus S is defined by the presentation

< A | R >. �

Let A be an alphabet. We define a monoid presentation just like a semigroup

presentation, replacing A+ by A∗. An inverse semigroup presentation is a pair

< B | Q > where B is an alphabet, B−1 = {b−1 : b ∈ B} is another alphabet

disjoint from B and in one-one correspondence with it, and Q is a subset of

(B ∪ B−1)+ × (B ∪ B−1)+. Similarly we can define a group presentation and an

inverse monoid presentation.

Remark 2 If S is a monoid defined by a monoid presentation < A | R > then

S is defined by the semigroup presentation < A, e | R, ae = ea = a (a ∈ A) >.

Let S be the monoid defined by the semigroup presentation < A | R >.

There exists a word w in A+ representing the identity of S and S is defined by

the monoid presentation < A | R, w = 1 >.

Remark 3 The inverse semigroup defined by the (inverse semigroup) presenta-

tion < B | Q > is the semigroup defined by the presentation

< B, B−1| Q, ww−1w = w, ww−1zz−1 = zz−1ww−1, (w, z ∈ (B ∪B−1)+) > .

Remark 4 The group defined by the group presentation < B | Q > is defined

by the monoid presentation < B, B−1| Q, bb−1 = b−1b = 1 (b ∈ B) > .
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Given a semigroup S, one way of obtaining a presentation for it consists in

the following stn:

• find a generating set A for S;

• find a set R of relations which are satisfied by the generators A, and which

seem to be sufficient to define S;

• find a set W ⊆ A+, such that each word from A+ can be transformed to a

word from W by applying relations from R;

• prove that distinct words from W represent distinct elements in S.

The set W described above is called a set of canonical or normal forms for S.

This method for finding a presentation is described in [10], and the next result

shows that the presentation < A | R > that we obtain is in fact a presentation

for S.

Proposition 2.4 Let S be a semigroup, A a generating set for S, R ⊆ A+×A+

a set of relations and W a subset of A+. Assume that:
(i) the generators A of S satisfy all the relations from R;

(ii) for each word w ∈ A+ there exists a word w′ ∈ W such that w = w′

is a consequence of R;
(iii) if u, v ∈ W are such that u 6≡ v then u 6= v in S;

then < A | R > defines S in terms of generators A.

Proof. The set A generates the semigroup S and R holds in S, so we just need

to show that any relation in S is a consequence of R. Let w1, w2 be arbitrary

elements of S, such that w1 = w2 holds in S. Then there exists w′
1, w

′
2 ∈ W , such

that the relations w1 = w′
1, w2 = w′

2 are a consequence of R. From w1 = w2 we

have, by (iii), w′
1 ≡ w′

2. So

w1 = w′
1 ≡ w′

2 = w2
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is a consequence of R. Thus S is defined by the presentation < A | R >. �

Note: When S is a finite semigroup the condition (iii) in Proposition 2.4 can

be substituted by the condition |W | ≤ |S|, see [10, Proposition 2.2].

A way of relating two different presentations for the same semigroup (inverse

semigroup, monoid, group, etc.) is by Tietze Transformations. These are four op-

erations that applied to a presentation allow us to obtain a different presentation

defining the same structure. Given a presentation < A | R > we can:

• T1) add a relation;

Given u, v ∈ A+ such that u = v is not in R, but it is a consequence of the

relations in R, the presentation

< A | R, u = v >

defines the same structure as < A | R >.

• T2) remove a relation;

If u = v is a relation in R that is a consequence of the relations in

R\{(u, v)}, then the structure defined by < A | R > can be defined by

the presentation

< A | R\{u = v} > .

• T3) add a generator;

Given a symbol b not in A and a word w in A+ we can define a relation

b = w, and the presentations

< A, b | R, b = w >

and < A | R > define the same structure.

• T4) remove a generator;

Given a ∈ A, u ∈ (A\{a})+ such that a = u is in R, we can replace a by u in
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all the relations of R where a appears, remove a from the set of generators

and remove the relation a = u from R. We obtain the presentation

< A\{b} | R′\{a = u} >,

defining the same structure as< A |R >, where R′ is R with all occurrences

of a replaced by u.

Proposition 2.5 Two finite presentations define the same semigroup if and only

if one can be obtained from the other by a finite number of applications of Tietze

Transformations.

For a proof see for example [10, Proposition 2.5]. One example where we can use

Tietze Transformations is the following:

Example 2.4 The bicyclic monoid is defined by the monoid presentation

< a, b | ab = 1 >,

and as a semigroup it admits the presentation

< a, b | aba = a2b = a, bab = ab2 = b > .

Proof. Let B be the bicyclic monoid, it is defined as a transformation monoid

in N0 by the following graph

y

x x x

yyyy

x

... ...... ...     ...

so B is generated by x and y, where x is the transformation defined by

nx = n+ 1, ∀n ∈ N0,
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and y is the transformation defined by

0y = 0, ny = n− 1, ∀n ∈ N.

The transformation xy is the identity transformation in N0 since 0xy = (0x)y =

1y = 0 and nxy = (n+ 1)y = n. Next, for all j, k ∈ N0 we have

xkyj =

{
yj−k if j ≥ k
xk−j if k > j,

hence any element of B can be written in the form ymxn, for some m and n in

N0. It follows that a relation holding in B that is not a consequence of xy = 1

can always be taken to be of the form ymxn = yjxk, for some m,n, j, k ∈ N0.

Now
0ymxn = 0xn = n,
0yjxk = 0xk = k,

so k = n, and considering an integer i such that i > max(m, j) we have

iymxn = (i−m)xn = i−m+ n,
iyjxn = (i− j)xn = i− j + n,

this implies that m = j, thus

ymxn = yjxk ⇒ m = j and n = k.

So all the relations satisfied by B are consequences of xy = 1. Considering an

alphabet A = {a, b} and making a correspondence between a, b and x, y respec-

tively we may conclude that B admits the monoid presentation < a, b | ab = 1 >.

Let M be the semigroup defined by the presentation

< a, b | aba = a2b = a, bab = ab2 = b > .

From the defining relations of M we have

(ab)a = a, a(ab) = a, b(ab) = b, (ab)b = b,

so ab acts like an identity in the generators of M , hence M is defined by the

monoid presentation

< a, b | aba = a2b = a, bab = ab2 = b, ab = 1 > .
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From the relation ab = 1 we can obtain the other four relations in this presenta-

tion so, applying Tietze Transformations (T2) we obtain

M ∼=< a, b | ab = 1 >,

thus M is the bicyclic monoid. �

2 Rewriting Presentations

2.1 Subsemigroups of semigroups

Let S be a semigroup defined by the presentation < A | R >, T a subsemigroup

of S generated by the set

X = {ξi : i ∈ I}

where ξi, are words from A+. A natural question to put is how to obtain a

presentation for T from the presentation of S. We are going to describe a method,

given in [4], that answers this question.

Let B = {bi : i ∈ I} be a set in one-one correspondence with X, define a

map from B into A+, mapping bi to ξi, and let ψ : B+ −→ A+ be the natural

homomorphism defined by it. Clearly the image of ψ is T so we can think of ψ

as interpreting each word in B+ as an element of T . We call ψ the interpretation

map.

We denote by L(A, T ) the set of words in A+ representing elements of T .

Any word in L(A, T ) is associated to a word in B+, so there exists a map φ :

L(A, T ) −→ B+ with the property that (wφ)ψ = w in S, for any w ∈ L(A, T ).

The map φ rewrites the elements of T as a product of the given generators for T ,

we call it a rewriting map. The next result give us a presentation for T in terms

of generators B.
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Theorem 2.6 With the notation above, T is defined by the generators B subject

to the relations:

bi = ξiφ, i ∈ I, (2.1)

(w1w2)φ = w1φw2φ, w1, w2 ∈ L(A, T ), (2.2)

(w3uw4)φ = (w3vw4)φ, u = v ∈ R, w3, w4 ∈ A∗, (2.3)

where w3 and w4 are any words such that w3uw4 ∈ L(A, T ).

Proof. First we check that the relations (2.1), (2.2) and (2.3) hold in T . Note

that if (α)ψ = (β)ψ holds in S, with α, β ∈ L(A, T ) , then, since ψ interprets

each word in B+ as an element of T , the relation α = β holds in T . We have

(bi)ψ = ξi and ((ξi)φ)ψ = ξi, then (bi)ψ = ((ξi)φ)ψ so

bi = ξiφ, i ∈ I,

holds in T . Given w1, w2 ∈ L(A, T ) we have

((w1w2)φ)ψ = w1w2 (def. φ)
= ((w1φ)ψ((w2φ)ψ (def. φ)
= ((w1φ)(w2φ))ψ, (ψ morphism)

so relation (2.2) holds in T . Given an arbitrary relation u = v in R and words

w3, w4 ∈ A∗ such that w3uw4 ∈ L(A, T ), we have

((w3uw4)φ)ψ = w3uw4, and ((w3vw4)φ)ψ = w3vw4,

but (u = v) ∈ R, so the relation w3uw4 = w3vw4 is a consequence of R, i.e. it

holds in S, then (w3uw4)φ = (w3vw4)φ holds in T . Now, we need to show that

any relation in T is a consequence of (2.1), (2.2) and (2.3). Let α, β ∈ B+ be

such that α = β holds in T , then the relation (α)ψ = (β)ψ holds in S so it

can be deduced from the relations R, and by (2.3) we have ((α)ψ)φ = ((β)ψ)φ.

We can write

α ≡ aj,1aj,2 . . . aj,l, β ≡ bi,1bi,2 . . . bi,k,

where aj,n, bi,m ∈ B, m = 1, . . . , k, n = 1, . . . , l. Then

(β)ψ ≡ ξi,1ξi,2 . . . ξi,k, (α)ψ ≡ ξj,1ξj,2 . . . ξj,l,
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and we obtain

β ≡ bi,1bi,2 . . . bi,k
= (ξi,1)φ(ξi,2)φ . . . (ξi,k)φ (2.1)
≡ ((bi,1)ψ)φ((bi,2)ψ)φ . . . ((bi,k)ψ)φ (def. ψ)
= ((bi,1)ψ(bi,2)ψ . . . (bi,k)ψ)φ (2.2)
≡ ((bi,1bi,2 . . . bi,k)ψ)φ (ψ morphism)
≡ ((β)ψ)φ,

similarly α = ((α)ψ)φ. So α = β is a consequence of (2.1), (2.2) and (2.3). We

conclude that T is defined by the presentation < B | (2.1), (2.2), (2.3) >. �

In the case where S is an inverse semigroup, defined by the (inverse semigroup)

presentation < A | R >, the presentation < C | Q > where C = A ∪ A−1 and

Q = R ∪ {(w,ww−1w) : w ∈ C+} ∪ {(ww−1zz−1, zz−1ww−1) : w, z ∈ C+},

defines S as a semigroup. If T is an (inverse) subsemigroup generated by a set

X = {ξi : i ∈ I},

where ξi, are words from C+, then applying the result above we obtain the pre-

sentation

< B | bi = (ξi)φ, (i ∈ I)

(w1w2)φ = (w1)φ(w2)φ, (w1, w2 ∈ L(C, T ))

(w3uw4)φ = (w3vw4)φ, ((u = v) ∈ Q) >,

where w3, w4 are any words in C∗ such that w3uw4 ∈ L(C, T ), that defines T as

a semigroup, in terms of generators B, where, like above, B is a set in one-one

correspondence with X. We can decompose the last relation in the presentation
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to obtain relations for T obtained from R, the presentation becomes

< B | bi = (ξi)φ, (i ∈ I)

(w1w2)φ = (w1)φ(w2)φ, (w1, w2 ∈ L(C, T ))

(w3uw4)φ = (w3vw4)φ, ((u = v ∈ R)

(w5u1u
−1
1 u1w6)φ = (w5u1w6)φ,

(w7u1u
−1
1 u2u

−1
2 w8)φ = (w7u2u

−1
2 u1u

−1
1 w8)φ, (u1, u2 ∈ C+) >

where w3, w4, w5, w6, w7, w8 ∈ C∗ are such that w3uw4, w5u1w6, and

w7(u1u
−1
1 u2u

−1
2 )w8 belong to L(C, T ).

2.2 Subgroups of inverse monoids

A subgroup T of a semigroup S is clearly a subsemigroup of S, so the results

in the last section clearly hold in this case. But T being a group, it makes

sense to look for a simpler method to obtain a presentation for it. In [11], the

Reidemeister-Schreier Theorem, giving a presentation for a subgroup of a group,

was generalized to subgroups of monoids. We will look at these results, for

subgroups of inverse monoids, that also appear in [11].

Let S be an inverse monoid, X a non-empty subset of S. The cosets of X

in S are the sets of the form Xs, s ∈ S such that there exists t ∈ S such that

Xst = X. We represent by C = {Ci : i ∈ I} the collection of all cosets of X

in S. The number of elements of C is called the index of X and we denote it by

[S : X].

Lemma 2.7 S acts on {Xs : s ∈ S} by multiplication on the right. This action

induces an action of S on C ∪ {C0}, 0 6∈ I, defining C0s = C0 and Cis = C0 if

and only if Cis 6∈ C, s ∈ S.
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Proof. Given Xs 6∈ C, s ∈ S, suppose that there exists t ∈ S such that

Xst ∈ C, then there must exist v ∈ S such that Xstv = X. But tv ∈ S and

Xs(tv) = X, this contradicts the fact that Xs 6∈ C, hence

Xs 6∈ C ⇒ Xst 6∈ C ∀t ∈ S.

�

The action of S on C ∪ {C0} is equivalent to the action of S on I ∪ {0} given

by Cis = Cis, i ∈ I, s ∈ S. We now look at the case where X = G is a subgroup

of S. We will denote the identity of S by 1 and the identity of the group G by

e. Note that e is an idempotent of S not necessarily equal to 1. The following

results hold:

Proposition 2.8 If i, j ∈ I with i 6= j, then Ci ∩ Cj = ∅.

Proof. Since i 6= j we know that Ci 6= Cj, by definition of C. We have

Ci = Gs and Cj = Gt for some s, t ∈ S, suppose that Ci ∩ Cj 6= ∅ and

let x be an element in this intersection, we can write x = g1s = g2t for some

g1, g2 ∈ G. Let y be an arbitrary element of Ci, then y = g3s for some g3 ∈ G,

it follows that

y = g3s = (g3e)s = (g3(g
−1
1 g1))s = (g3g

−1
1 )(g1s) = (g3g

−1
1 )(g2t) = (g3g

−1
1 g2)t,

so y ∈ Gt = Cj, this implies that Ci ⊆ Cj. Similarly we can show that Cj ⊆ Ci,

and we obtain Ci = Cj, but this contradicts our assumption, so we conclude that

Ci ∩ Cj = ∅. �

Proposition 2.9 For each i ∈ I there exists ri, r
′
i ∈ S such that Gri = Ci and

grir
′
i = g for all g ∈ G.
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Proof. Let i ∈ I arbitrary, Ci = Gri for some ri ∈ S and, since Ci is a coset,

there exists qi ∈ S such that Ciqi = Griqi = G. Let us fix an h ∈ G and let

h′ ∈ G be such that h′ = hriqi. Let r′i = qih
′−1h, then for any g ∈ G we have

grir
′
i = griqih

′−1h = g(h−1h)riqih
′−1h

= gh−1(hriqi)h
′−1h = gh−1h′h′−1h = gh−1h = g,

hence, there exist ri, r
′
i ∈ S such that Gri = Ci and grir

′
i = g ∀g ∈ G. �

A collection of elements ri, r
′
i is a system of coset representatives if

· Gri = Ci,
· grir

′
i = g,

· r1 = r′1 = 1, ∀i ∈ I, ∀g ∈ G.

Given any system of coset representatives ri, r
′
i, i ∈ I, we have erir

′
i = e, then

e = (eri)r
′
i, eri = (e)ri ⇒ eReri

but S is inverse so

eReri ⇔ ee−1 = (eri)(eri)
−1 ⇔ e = erir

−1
i e ⇔ e = erir

−1
i

and for any g ∈ G we have

g = ge = g(erir
−1
i ) = (ge)rir

−1
i = grir

−1
i ,

so we can take r′i to be r−1
i . Note that ri belongs to S not necessarily to G so

r−1
i is the inverse of ri in the sense of inverse semigroup inverse, i.e

ri = rir
−1
i ri, and r−1

i = r−1
i rir

−1
i .

Clearly, for an element g ∈ G, the inverse of g in the group coincides with its

inverse in S, since the inverses in S are unique and gg−1 = e ⇒ gg−1g = g.

Lemma 2.10 The elements of a coset are R related to the elements of G.
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Proof. Let Ci = Gri be any coset of G in S. Consider x an arbitrary element

of Ci, we know that x = mri for some m ∈ G. For any y ∈ G we have

x = mri = (em)ri = ((yy−1)m)ri = y(y−1mri),
y = ey = mm−1y = (mrir

−1
i )m−1y = (mri)(r

−1
i m−1y) = x(r−1

i m−1y),

so xRy. �

Lemma 2.11 The map ϕri
: G −→ Ci, m 7→ mri, is a bijection with inverse

ϕr−1
i

.

Proof. ϕri
is obviously well-defined, and considering m,n ∈ G arbitrary, we

have

mϕri
= nϕri

⇔ mri = nri ⇒ mrir
−1
i = nrir

−1
i ⇔ m = n

so ϕri
is one-one. Ci = Gri so ϕri

is clearly onto. Defining ϕr−1
i

: Ci −→ G,

m 7→ mr−1
i , we clearly have ϕri

ϕr−1
i

= idG and ϕr−1
i
ϕri

= idCi
, where idG and

idCi
represent the identity map in G and Ci respectively. �

From this last lemma we can see that for any x in Ci, i ∈ I, we have

xr−1
i ri = x.

Lemma 2.12 For any coset of G , Ci, and s ∈ S such that is 6= 0, we have

Ciss
−1 = Ci.

Proof. Ci = Gri so for any s ∈ S, such that is 6= 0 and for any g ∈ G, griss
−1

belongs to Griss
−1 = Ciss

−1 = Ciss−1 . Since is 6= 0 we know that iss−1 6= 0,

then Ciss−1 is a coset of G so , by Lemma 2.10, griss
−1 R g, but S is inverse so

gg−1 = griss
−1ss−1r−1

i g−1 ⇔ g = griss
−1r−1

i g−1g
⇔ g = g(riss

−1r−1
i )e ⇔ g = ge(riss

−1r−1
i )

⇔ g = griss
−1r−1

i ⇒ gri = gri(ss
−1)r−1

i ri

⇔ gri = grir
−1
i ri(ss

−1) ⇔ gri = griss
−1,
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hence, for any g ∈ G gri = griss
−1, thus Ci = Ciss

−1 = Ciss−1 . �

This result shows that when we have a coset of G with index iss−1, for some

s ∈ S and i ∈ I, we can replace this index by the index i, and vice-versa. It is

also clear that for any element g in G, the index 1g can be replaced by the index

1 and vice-versa, for C1 = G = Gg = C1g = C1g.

Proposition 2.13 If G is a maximal subgroup of S the index of G in S equals

the number of H-classes in the R-class of G.

Proof. Let Ci = Gri be any coset of G in S. We have seen that eReri so, by

Green’s Lemma [6, Lemma 2.2.1 and 2.2.2], the map ϕri
: He −→ Heri, x 7→ xri,

where He represents the H-class of e, is a bijection with inverse map ϕr−1
i

. Since

e is an idempotent its H-class, He, is a group, see [6, Theorem 2.2.5]. Given

m ∈ G arbitrary

mm−1 = e, m = em, and m−1m = e, m = me,

so mHe. Hence G ⊆ He, but G is maximal so G = He. Then ϕri
: G −→ Heri

is a bijection, and we know that ϕri
: G −→ Gri is a bijection, so we must have

Gri = Heri. Hence the cosets of G are H-classes that are in the R-class of G.

Conversely, let H be any H-class in the R-class of G, and a ∈ H be arbitrary.

The element a is R related with e so there exist s, t ∈ S such that as = e and

et = a. By Green’s Lemma the map ϕt : He −→ Ha, x 7→ xt is a bijec-

tion with inverse map ϕs. So the map ϕ : G −→ H, g 7→ gt, is a bijection

and Gts = G. This tell us that Gt is a coset of G, hence H(= Gt) is a coset of

G. We conclude that [S : G] equals the number of H-classes in theR-class of G �

Now we give a generating set for G using a system of coset representatives.

Proposition 2.14 Let S be generated, as an inverse monoid, by the set A. Then,
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the set

Y = {eriar
−1
ia : i ∈ I, a ∈ A ∪ A−1, ia 6= 0}

generates G as a monoid.

Proof. We note that since S is generated as an inverse monoid by A the set

A ∪ A−1 generates S as a monoid. Let

M = {erisr
−1
is : i ∈ I, s ∈ S, is 6= 0},

for any s ∈ S we have erisr
−1
is ∈ Grisr

−1
is and

Grisr
−1
is = Cisr

−1
is = Cisr

−1
is = G,

so M ⊆ G. Consider the set

{er1gr−1
1g : g ∈ G}

noting that G ⊆ S, we can see that this set is a subset of M . Let g be an arbitrary

element of G

C1g = C1g = Gg = G = G1 = Gr1 = C1

so r1 = r1g = 1, then r−1
1 = r−1

1g = 1 and we have

g = eg = e1g1 = er1gr
−1
1g ,

hence G ⊆ {er1gr−1
1g : g ∈ G} ⊆M . We conclude that

G = {erisr
−1
is : i ∈ I, s ∈ S, is 6= 0}.

Now let s be any element of S, we can write s = a1a2 . . . an for some a1, a2, . . . , an ∈
A ∪ A−1, and some n ∈ N. If n = 1 we have s = a1 and erisr

−1
is ∈ Y . Assume

that for n ≤ k the element erisr
−1
is belongs to the monoid generated by Y , and

let s = a1a2 . . . ak+1. We can write s = a1t where t = a2 . . . ak+1, and it follows

that

erisr
−1
is = eria1tr

−1
ia1t = eria1r

−1
ia1
eria1tr

−1
ia1t
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since eria1 ∈ Gria1 = Cia1 = Cia1 , so eria1r
−1
ia1
∈ Cia1r

−1
ia1

= G, hence

(eria1r
−1
ia1

)e = eria1r
−1
ia1
, and (eria1)r

−1
ia1
ria1 = eria1.

We know that eria1r
−1
ia1

belongs to the monoid generated by Y , for a1 ∈ A∪A−1.

And eria1tr
−1
ia1t belongs to the monoid generated by Y by hypothesis. Then,

erisr
−1
is belongs to the monoid generated by Y . By induction, we conclude that

erisr
−1
is belongs to the monoid generated by Y for all s ∈ S. It follows that G is

contained in the monoid generated by Y , but Y is clearly contained in G, so Y

generates G as a monoid. �

Let < A | R > be an inverse monoid presentation defining S, we know that

the presentation

< A, A−1 | R, w = ww−1w, ww−1zz−1 = zz−1ww−1, (w, z ∈ (A ∪ A−1)∗) >

defines S as a monoid. We denote by Q the union of R with the sets

{(w,ww−1w) : w ∈ (A ∪ A−1)∗} ∪ {(ww−1zz−1, zz−1ww−1) : w, z ∈ (A ∪ A−1)∗}.

We already have a generating set for the subgroup G, given by Proposition 2.14,

so we need a set of defining relations for it. We define an alphabet

B′ = {[i, a] : i ∈ I, a ∈ A ∪ A−1, ia 6= 0},

and a map φ′ : {(i, w) : i ∈ I, w ∈ (A ∪ A−1)∗, iw 6= 0} −→ (B′)∗ by the rules

(i, 1)φ′ = 1, (i, aw)φ′ = [i, a]((ia, w)φ′),

for any i ∈ I, a ∈ A∪A−1, w ∈ (A∪A−1)∗ such that iaw 6= 0. Note that the

definition of φ′ can be extended to

(i, w1w2)φ
′ ≡ (i, w1)φ

′(iw1, w2)φ
′

for any i ∈ I, w1, w2 ∈ (A ∪ A−1)∗ with iw1w2 6= 0, since writing w1 as a

product of elements of A ∪ A−1, say w1 ≡ a1a2 . . . an, we obtain

(i, w1w2)φ
′ ≡ [i, a1](ia1, a2 . . . anw2)φ

′ ≡ · · ·
≡ [i, a1][i, a2] . . . [i, an](iw1, w2)φ

′ ≡ (i, w1)φ
′(iw1, w2)φ

′.
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Lemma 2.15 Let w1, w2 ∈ (A ∪ A−1)∗ be such that w1 = w2 holds in S, and

let i ∈ I be such that iw1 6= 0. Then the relation (i, w1)φ
′ = (i, w2)φ

′ is a

consequence of the relations

(i, u)φ′ = (i, v)φ′, i ∈ I, (u = v) ∈ Q, iu 6= 0.

Proof. The relation w1 = w2 holds in S, so we can obtain w2 from w1 by

applying relations from Q. Suppose, without loss of generality, that we only

need to apply one relation from Q, then w1 = αuβ and w2 = αvβ for some

α, β ∈ (A ∪ A−1)∗ and some relation u = v in Q. It follows that

(i, w1)φ
′ ≡ (i, α)φ′(iα, u)φ′(iαu, β)

= (i, α)φ′(iα, v)φ′(iαv, β) (by hypothesis)
≡ (i, w2)φ

′

note that iαu 6= 0, since iw1 6= 0. �

We can now give a presentation for G.

Theorem 2.16 The presentation

< B′ | (i, u)φ′ = (i, v)φ′ (i ∈ I, (u = v) ∈ R, iu 6= 0), (2.4)

(i, αα−1α)φ′ = (i, α)φ′ (2.5)

(i ∈ I, α ∈ (A ∪ A−1)∗, iα 6= 0),

(i, αα−1ββ−1)φ′ = (i, ββ−1αα−1)φ′ (2.6)

(i ∈ I, α, β ∈ (A ∪ A−1)∗, iαα−1ββ−1, 6= 0),

(1, eriar
−1
ia )φ′ = [i, a] (i ∈ I, a ∈ A ∪ A−1, ia 6= 0), (2.7)

(1, e)φ′ = 1 > (2.8)

defines G as a monoid.

Proof. Define a map ψ : B′ −→ G, [i, a] 7→ eriar
−1
ia . This map can be

extended to a homomorphism ψ : (B′)∗ −→ G, by the rule:

([i, w])ψ = ([i, a1])ψ([i, a2])ψ . . . ([i, an])ψ,
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where w ≡ a1a2 . . . an, with a1, a2, . . . , an ∈ B′. We can think of ψ as interpreting

the elements of (B′)∗ as elements of G, so we say that the relation γ = δ holds

in G if (γ)ψ = (δ)ψ holds in S.

Let u = v be any relation in R and i ∈ I be such that iu 6= 0, we can write

u ≡ u1u2 . . . un, for some u1, u2, . . . , un ∈ A ∪ A−1, and we have

((i, u)φ′)ψ = ([i, u1][iu1, u2] . . . [iu1u2 . . . un−1, un])ψ
= (eriu1r

−1
iu1

)(eriu1u2r
−1
iu1u2

) . . . (eriu1...un−1unr
−1
iu )

= eriu1r
−1
iu1
riu1u2r

−1
iu1u2

. . . eriu1...un−1unr
−1
iu (eriu1r

−1
iu1
∈ G)

= eriu1u2r
−1
iu1u2

. . . eriu1...un−1unr
−1
iu (eriu1 ∈ Ciu1)

· · ·
= eriur

−1
iu ,

similarly we obtain ((i, v)φ′)ψ = erivr
−1
iv . The relation u = v holds in S so the

relation

eriur
−1
iu = erivr

−1
iv ⇔ ((i, u)φ′)ψ = ((i, v)φ′)ψ

holds in S, thus (i, u)φ′ = (i, v)φ′ holds in G. Similarly we can check that the

relations (2.5) and (2.6) hold in G. Now

((1, eriar
−1
ia )φ′)ψ = er1eriar

−1
ia r

−1

1eriar−1
ia

(by above)

= eriar
−1
ia (eriar

−1
ia ∈ G)

and ([i, a])ψ = eriar
−1
ia , so relation (2.7) holds in G. We have ((1, e)φ′)ψ = e

and, since ψ is a morphism, (1)ψ = e hence ((1, e)φ′)ψ = (1)ψ holds in S, it

follows that (2.8) holds in G.

Note that φ′ can be seen as a rewriting mapping, since for any w ∈ L(A ∪
A−1, G), with w ≡ w1w2 . . . wn for some w1, w2, . . . , wn ∈ A ∪ A−1, we have

((1, w)φ′)ψ = ([1, w1][w1, w2][w1w2, w3] . . . [w1 . . . wn−1, wn])ψ
= ([1, w1])ψ([w1, w2])ψ . . . ([w1 . . . wn−1, wn])ψ
= (er1w1r

−1
1w1

)((erw1w2r
−1
1w1w2

) . . . (erw1...wn−1wnr
−1
1w)

= er1w1r
−1
1w1
rw1w2r

−1
1w1w2

. . . (erw1...wn−1wnr
−1
1w)

= er1w1w2r
−1
1w1w2

. . . (erw1...wn−1wnr
−1
1w)

· · ·
= er1w1w2 . . . wnr

−1
1w

= w,

then the map φ′ : L(A∪A−1, G) −→ (B′)∗, w 7→ (1, w)φ′ satisfies ((w)φ′)ψ = w,

so it is a rewriting mapping. In this case L(A ∪ A−1, G) is the set of all words
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in (A ∪ A−1)∗ representing elements of G. Applying Theorem 2.6 we obtain the

presentation

< B′ | (1, w1uw2)φ
′ = (1, w1vw2)φ

′, (2.9)

(w1, w2 ∈ (A ∪ A−1)∗, (u = v) ∈ R, w1uw2 ∈ L(A ∪ A−1, G))

(1, w3ww4)φ
′ = (1, w3ww

−1ww4)φ
′, (2.10)

(1, w5ww
−1zz−1w6)φ

′ = (1, w5zz
−1ww−1w6)φ

′, (2.11)

(w3, w4, w5, w6 ∈ (A ∪ A−1)∗, w, z ∈ (A ∪ A−1)∗,

w3ww4, w5ww
−1zz−1w6 ∈ L(A ∪ A−1, G))

(1, eriar
−1
ia )φ′ = [i, a], (i ∈ I, a ∈ A ∪ A−1, ia 6= 0) (2.12)

(1, u1u2)φ
′ = (1, u1)φ

′(1, u2)φ
′, (u1, u2 ∈ L(A ∪ A−1, G)) > (2.13)

that defines G as a semigroup. Adding to this presentation the relation (2.8) we

obtain a presentation defining G as a monoid. Now we will see that the relations

(2.4) to (2.8) imply relations (2.8) to (2.13). By Lemma 2.15, we know that the

relation

(i, x)φ′ = (i, y)φ′, i ∈ I, (x = y) ∈ Q, ix 6= 0

implies

(i, α)φ′ = (i, β)φ′, i ∈ I,

if α = β is a relation in S. But for any relation x = y in Q and w1, w2 ∈
(A ∪ A−1)∗ the relation w1xw2 = w1yw2 holds in S, so the relations (2.9)

to (2.11) are a consequence of relations (2.4) to (2.6). Let u1, u2 be arbitrary

elements of L(A ∪ A−1, G), by definition of φ′ we have

(1, u1u2)φ
′ ≡ (1, u1)φ

′(1u1, u2)φ
′ ≡ (1, u1)φ

′(1, u2)φ,

so relation (2.13) is redundant and can be removed from the presentation. Rela-

tion (2.12) is the same relation as (2.7), so we conclude that the set B′ subject

to the relations (2.4) to (2.8) defines G as a monoid. �

Now we define a new alphabet

B = {[i, a] : i ∈ I, a ∈ A, ia 6= 0},
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and a map φ : {(i, w) : i ∈ I, w ∈ (A ∪ A−1)∗, iw 6= 0} −→ (B ∪ B−1)∗ by the

rules (i, 1)φ = 1 and

(i, aw)φ =

{
[i, a](ia, w)φ if a ∈ A

[ia, a−1]−1(ia, w)φ if a ∈ A−1,

we can check, like we did to φ′, that φ is a rewriting mapping and using it we

can obtain a simpler presentation for the group G.

Theorem 2.17 The presentation

< B | (i, u)φ = (i, v)φ, (i ∈ I, (u = v) ∈ R, iu 6= 0)

(1, eriar
−1
ia )φ = [i, a], (i ∈ I, a ∈ A, ia 6= 0) >

defines G as a group.

Proof. The presentation for G given in Theorem 2.16 defines it as a monoid

so it also defines G as a group. Let i ∈ I and a ∈ A∪A−1 arbitrary, be such that

ia 6= 0, we have

([i, a][ia, a−1])ψ ≡ ([i, a])ψ([ia, a−1])ψ
≡ (eriar

−1
ia )(eriaa

−1riaa−1)
≡ (eriar

−1
ia )(eriaa

−1ri). (Lemma 2.12)

We know that eria belongs to the coset Cia, so, by Lemma 2.10, we have eReria,

and since S is inverse we obtain

ee−1 = eriaa
−1r−1

i e−1 ⇔ e = e(riaa
−1r−1

i )e
⇔ e = ee(riaa

−1r−1
i ) ⇔ e = eriaa

−1r−1
i ,

it follows that

([i, a][ia, a−1])ψ ≡ (eriar
−1
ia )eriaa

−1ri

≡ (eria)r
−1
ia riaa

−1ri (eriar
−1
ia ∈ G)

≡ eriaa
−1ri (Lemma 2.11)

= e. (by above)

We know that (1)ψ = e and we have just seen that ([i, a][ia, a−1])ψ = e, so the

relation ([i, a][ia, a−1])ψ = (1)ψ holds in S. It follows that

[i, a][ia, a−1] = 1, (i ∈ I, a ∈ A ∪ A−1, ia 6= 0) (2.14)
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holds in G so we can add it to the presentation given in Theorem 2.16. Let

α be an arbitrary element of (A ∪ A−1)∗ such that iα 6= 0, i ∈ I, and let

a1, a2, . . . , an ∈ A∪A−1 be such that α ≡ a1a2 . . . an. Supposing, without loss of

generality, that a1, a2, . . . , an ∈ A, we obtain

(i, α)φ(iα, α−1)φ ≡ (i, a1a2 . . . an)φ(iα, a−1
n a−1

n−1 . . . a
−1
1 )φ

≡ [i, a1]((ia1, a2 . . . an)φ)[iαa−1
n , an]−1((iαa−1

n , a−1
n−1 . . . a

−1
1 )φ)

· · ·
≡ [i, a1][ia1, a2] . . . [ia1a2 . . . an−1, an][iαa−1

n , an]−1

[iαa−1
n a−1

n−1, an−1]
−1[iαa−1

n . . . a−1
1 , a1]

−1

≡ [i, a1][ia1, a2] . . . [ia1a2 . . . an−1, an]
[ia1 . . . an−1, an]−1 . . . [i, a1]

−1,

then

((i, α)φ(iα, α−1)φ)ψ ≡ ((i, α)φ)ψ((iα, α−1)φ)ψ
≡ ([i, a1])ψ . . . ([ia1a2 . . . an−1, an])ψ

([ia1 . . . an−1, an]−1)ψ . . . ([iαa−1
n . . . a−1

1 , a1]
−1)ψ

≡ ([i, a1])ψ . . . ([ia1a2 . . . an−1, an])ψ
(([ia1 . . . an−1, an])ψ)−1 . . . (([iαa−1

n . . . a−1
1 , a1)ψ)−1

≡ e,

so the relation ((i, α)φ(iα, α−1)φ)ψ = (1)ψ holds in S, hence

(i, α)φ(iα, α−1)φ = 1, (i ∈ I, α ∈ (A ∪ A−1)∗, iα 6= 0) (2.15)

holds in G. Adding this relation, we obtain the following presentation for G:

< B′ | (2.4), (2.5), (2.6), (2.7), (2.8), (2.14), (2.15) > .

From [i, a][ia, a−1] = 1 we obtain [ia, a−1] = [i, a]−1 and [i, a] = [ia, a−1]−1, so

[ia−1, a]−1 = [i, a−1], ∀a ∈ A ∪ A−1, i ∈ I, ia 6= 0,

and we can write the set B−1 = {[i, a]−1 : i ∈ I, a ∈ A, ia 6= 0} in the form

B−1 = {[ia, a−1] : i ∈ I, a ∈ A, ia 6= 0}

and the set B′ becomes

B′ = B ∪ {[i, a−1] : i ∈ I, a ∈ A, ia 6= 0}
= B ∪ {[ia−1, a]−1 : i ∈ I, a ∈ A, ia 6= 0},
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then B′ ⊆ B ∪ B−1. For a ∈ A−1, w ∈ (A ∪ A−1)∗, with iaw 6= 0, i ∈ I, we

have

(i, aw)φ′ = [i, a](ia, w)φ′ = [ia, a−1]−1(ia, w)φ′,

hence, relation (2.14) allow us to replace φ′ by φ, substituting the generating set

B′ by B. Note that we substitute B′ by B following the rule

[ia−1, a]−1 = [i, a−1], ∀a ∈ A ∪ A−1, i ∈ I, ia 6= 0.

Relation (2.15) is equivalent to (i, αα−1)φ = 1, and from this relation we obtain

relation (2.6), since

(i, αα−1)φ ≡ (i, αα−1)φ(iαα−1, ββ−1)φ
= 1(iαα−1, ββ−1)φ (2.15)
≡ (i, ββ−1)φ (Lemma 2.12)
= 1 (2.15)

and, similarly, (i, ββ−1αα−1)φ = 1. Thus, we can remove relation (2.6) from the

presentation of G. For i ∈ I and α ∈ (A ∪ A−1)∗ with iα 6= 0 we have

(i, αα−1α)φ ≡ (i, α)φ(iα, α−1)φ(iαα−1, α)φ
= 1(iαα−1, α)φ (2.15)
≡ (i, α)φ, (Lemma 2.12)

hence relation (2.5) can be deduced from relation (2.15). By the definition of φ

we can deduce relation (2.14) from relation (2.15), so we have

G ∼=< B | (2.4), (2.7), (2.8), (2.15) > .

The element (1, e)φ of (B ∪B−1)∗ is an idempotent in G, since

(1, e)φ(1, e)φ ≡ (1, e)φ(1e, e)φ
≡ (1, ee)φ
= (1, e)φ (Lemma 2.15)

so, considering our presentation for G as a group presentation, the relation (2.8)

is redundant. Since we changed the generators B′ to B, the relation [i, a]−1 =

[ia, a−1], a ∈ A, holds naturally in G, and we have

(i, α)φ(iα, α−1)φ
≡ [i, a1][ia1, a2] . . . [ia1 . . . an−1, an][ia1 . . . an, a

−1
n ] . . . [ia1, a

−1
1 ] = 1
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hence, we can remove relation (2.15). We conclude that the presentation

< B | (i, u)φ = (i, v)φ, (i ∈ I, (u = v) ∈ R, iu 6= 0)

(1, eriar
−1
ia )φ = [i, a], (i ∈ I, a ∈ A, ia 6= 0) >

defines G as a group. �
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Chapter 3

Finite Presentability

Finite presentations facilitate the study of infinite semigroups when they are

finitely presented, but this not always happen, as we will see in section 2. Our

main purpose in this chapter is to study some necessary and (or) sufficient con-

ditions for a semigroup to be finitely presented, we will continue this topic in

chapter 4 with Bruck-Reilly extensions. We also try to relate, in the ‘finite pre-

sentability’ sense, inverse semigroup and semigroup presentations.

1 Definition and Examples

A semigroup is said to be finitely presented if it can be defined by a presentation

< A | R > where A and R are finite. Note that the property of being finitely

presented is invariant of generating set, see for example [10, Proposition 3.1].

This definition can be extended to inverse semigroups (monoids, groups, etc.),

and we say, for example, that the group G is finitely presented as a monoid if it

is defined by a monoid presentation < B | T >, where B and T are finite.

Example 3.1 The semigroups defined in Examples 2.1 to 2.4 are examples of

finitely presented semigroups.
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More generally we have:

Example 3.2 Every finite semigroup is finitely presented.

We just need to notice that when a semigroup is finite we can always choose

a finite generating set and a finite set of defining relations when constructing the

presentation given by Proposition 2.3.

By the definition of semigroup, monoid and group presentation, and by Re-

marks 2 and 4 we can see that the following holds:

Proposition 3.1 A monoid is finitely presented as a monoid if and only if it is

finitely presented as a semigroup.

Proposition 3.2 A group is finitely presented as a group if and only if it is

finitely presented as a monoid.

In the next section we will see that in the case of inverse semigroups a similar

result may not hold.

2 Free Inverse Semigroup

We have seen that the free inverse semigroup, FIX , on the non-empty set X, is

the semigroup Y +/τ , where Y = X ∪X−1 and τ is the congruence generated by

the set

{(ww−1w,w) : w ∈ Y +} ∪ {(ww−1zz−1, zz−1ww−1) : w, z ∈ Y +},

so FIX is defined by the semigroup presentation

< X, X−1 | ww−1w = w, ww−1zz−1 = zz−1ww−1, (w, z ∈ Y +) > .
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From this presentation we can see that FIX , as an inverse semigroup, is defined

by the presentation < X | >. So it is clear that when X is finite, FIX is finitely

presented as an inverse semigroup. The question that arises from this is if in this

case FIX is finitely presented as a semigroup. We will now answer this question,

following the work of Schein [12], that also appears in [9, Section IX.4].

Lemma 3.3 Let S be the semigroup generated by the set {u, v}, subject to the

relations
uvu = u, v = vuv,

Am,n) umvm+nun = vnun+mvm, ∀m,n ∈ N.
S is the free monogenic inverse semigroup.

Proof. The free monogenic inverse semigroup is the free inverse semigroup on

the set with one element, {x}, we denote it by FIx. Let ρ be the congruence

generated by the set

{(uvu, u), (vuv, v)} ∪ {Am,n : m,n ∈ N},

then S = {u, v}+/ρ. We define a map ϕ : {u, v}+ −→ FIx by the rules

uϕ = x, vϕ = x−1,
(w1w2 . . . wn)ϕ = w1ϕw2ϕ . . . wnϕ,

for w1, w2, . . . , wn ∈ {u, v}. Clearly ϕ is a morphism and its kernel

Kerϕ = {(a, b) ∈ {u, v}+ × {u, v}+ : aϕ = bϕ}

is a congruence in {u, v}+, see [6, Theorem 1.5.2]. In FIx we have xx−1x = x

and x−1xx−1 = x−1 so

vϕ = (vuv)ϕ and uϕ = (uvu)ϕ,

for any m,n ∈ N, since ϕ is a morphism. For any k ∈ N the word xk(x−1)k =

xk(xk)−1 is an idempotent in FIx, then

xm(xm)−1(xn)−1xn = (xn)−1xnxm(xm)−1

50



since the idempotents in FIx commute, it follows that

xm(xm)−1(xn)−1xn = (xn)−1xnxm(xm)−1

⇔ xm(x−1)m(x−1)nxn = (x−1)nxn+m(x−1)m

⇔ xm(x−1)m+nxn = (x−1)nxn+m(x−1)m

⇔ (uϕ)m(vϕ)m+n(uϕ)n = (vϕ)n(uϕ)n+m(vϕ)m

⇔ (umvm+mun)ϕ = (vnun+mvm)ϕ.

Thus (u, uvu), (v, vuv) and (umvm+mun, vnun+mvm) belong to Kerϕ for any

m,n ∈ N. So ρ ⊆ kerϕ.

Claim 5 Let m,n, p ∈ N0 be arbitrary. The following holds:

(umvnup)ρ =


(um+p−n)ρ if n ≤ m, n ≤ p
(umvn−p)ρ if m ≥ n ≥ p
(vn−mup)ρ if m ≤ n ≤ p

(vn−munvn−p)ρ if n ≥ m, n ≥ p.

Proof. First suppose that m ≥ n,

(umvnup)ρ = (um−n+1(un−1vnu)up−1)ρ
= (um−n+1)ρ(vunvn−1)ρ(up−1)ρ = (um−n+1vunvn−1up−1)ρ
= (um−nuvuun−1vn−1up−1)ρ = (um−n)ρ(uvu)ρ(un−1vn−1up−1)ρ
= (um−n)ρuρ(un−1vn−1up−1)ρ = (um−n+1+n−1vn−1up−1)ρ
= (umvn−1up−1)ρ = · · · = (umvn−2up−2)ρ = · · ·

if n ≥ p we obtain

· · · = (umvn−pup−p)ρ = (umvn−p)ρ,

and, if p ≥ n we obtain

· · · = (umvn−nup−n)ρ = (um+p−n)ρ.

Secondly, suppose that p ≥ n ≥ m, then

(umvnup)ρ = (um−1(uvnun−1u)up−n+1)ρ
= (um−1)ρ(uvnun−1)ρ(up−n+1)ρ = (um−1)ρ(vn−1unv)ρ(up−n+1)ρ
= (um−1vn−1un−1)ρ(uvu)ρ(up−n)ρ = ((um−1vn−1un−1)u(up−n))ρ
= (um−1vn−1up)ρ = · · · = (um−mvn−mup−m)ρ
= (vn−mvp−m)ρ.

Finally, suppose that n ≥ m and n ≥ p, then

(umvnup)ρ = (umvmvn−mup)ρ,
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if p ≥ n−m we obtain

(umvmvn−mun−mup−n+m)ρ = (umvmvn−mun−m)ρ(up−n+m)ρ
= (vn−munvm)ρ(up−n+m)ρ = (vn−m)ρ(unvmup−n+m)ρ
?
= (vn−m)ρ(unvm−(p−n+m)ρ = (vn−munvn−p)ρ

(? - we have n ≥ m and n ≥ m, this implies p − n ≤ 0 ⇒ m + p − n ≤ m, so

n ≥ m ≥ p− n+m and we apply what we proved above),

if p < n − m, defining m′ = n − m and p′ = n − p we have p′ > n − m′, and

applying the last case backwards we obtain

(un−m′
vnun−p′)ρ = (vm′

unvp′)ρ = (vn−munvn−p)ρ.

�

Dually we can show that

(vmunvp)ρ =


(vm+p−n)ρ if n ≤ m, n ≤ p
(vmun−p)ρ if m ≥ n ≥ p
(un−mvp)ρ if m ≤ n ≤ p

(un−mvnun−p)ρ if n ≥ m, n ≥ p.

Claim 6 Every element of {u, v}+/ρ can be written in the form (umvnup)ρ for

some m, p ∈ N0, n ∈ N, with m, p ≤ n.

Proof. Let w ∈ {u, v}+/ρ arbitrary. If w = (un)ρ for some n ∈ N we have

w = (un+n−n)ρ = (unvnun)ρ, (Claim 5)

if w = (vn)ρ for some n ∈ N, then

w = (v0+n−0)ρ = (u0vnu0)ρ, (Claim 5)

suppose now that w = (umvn)ρ for some m,n ∈ N0 not both zero, if m > n

then 0 ≤ m− n ≤ m and m > 0, and by Claim 5, we obtain

w = (umvm−(m−n))ρ = (umvmum−n)ρ,

if n ≥ m then

w = (umvnu0)ρ
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where 0 ≤ m ≤ n and n > 0. Suppose that w = (vmun)ρ for some m,n ∈ N0 not

both zero, if m ≥ n then

w = (u0vmun)ρ, with 0 ≤ n ≤ m, 0 < m,

if n > m then 0 ≤ n−m ≤ n, 0 < n and by Claim 5 we have

w = (vm+n−nun)ρ = (vn−(n−m)un)ρ = (un−mvnun)ρ.

Suppose that w = (umvnup)ρ, if 0 ≤ m, p ≤ n then w is already in the form we

want, if p ≤ n < m then 0 ≤ m − n + p ≤ m, 0 < m and using the first cases

we considered, we obtain

w = (umvn)ρ(up)ρ = (umvmum−n)ρ(up)ρ = (umvmum−n+p)ρ,

if m ≤ n < p then 0 ≤ m− n+ p ≤ p, p > 0 and by what we have seen above

w = (um)ρ(vnup)ρ = (um)ρ(up−nvpup)ρ = (um+p−nvpup)ρ,

if n < m, n < p, by Claim 5 we obtain

w = (um+p−n)ρ = (um+p−nvm+p−num+p−n)ρ.

Suppose that w = (vmunvp)ρ, then using the dual of Claim 5 we can show, like

we did above, that w can be written in the form (uαvβuγ)ρ for some 0 ≤ α, γ ≤
β, 0 < β. Suppose that w = (uqvmunvp)ρ for some p, q, n,m ∈ N0 not all zero,

then

w = (uq)ρ(vmunvp)ρ
= (uq)ρ(um′

vn′up′)ρ (for some 0 ≤ m′, p′ ≤ n′, by above)
= (uq+m′

vn′up′)ρ
= (uαvβuγ)ρ, (for some 0 ≤ α, γ ≤ β, by above)

similarly we can write w in the same form if w = (vmunvpuq)ρ. This shows that

we can reduce any element of {u, v}+/ρ to an element of the form (umvnup)ρ

where 0 ≤ m, p ≤ n and n > 0. �
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Conversely, we will see that Kerϕ ⊆ ρ. Let b, b′ ∈ {u, v}+ be such that

(b, b′) ∈ Kerϕ, i.e. bϕ = b′ϕ. By Claim 6 we know that bρ = (umvnup)ρ and

b′ρ = (uαvβuγ)ρ, for some 0 ≤ m, p ≤ n, 0 < n and 0 ≤ α, γ ≤ β, 0 < β. Since

ρ ⊆ Kerϕ we have

bϕ = (umvnup)ϕ and b′ϕ = (uαvβuγ)ϕ,

but bϕ = b′ϕ by hypothesis, so

(umvnup)ϕ = (uαvβuγ)ϕ
⇒ (uϕ)m(vϕ)n(uϕ)p = (uϕ)α(vϕ)β(uϕ)γ

⇒ xm(x−1)nxp = xα(x−1)βxγ.

We can consider the free inverse semigroup as the P-semigroup

P (FGX ,X , E)\{(1↓, 1)}

and using the isomorphism described in Remark 1, we rewrite the equality above

in the following way:

(x↓, x)m((x−1)↓, x−1)n(x↓, x)p = (x↓, x)α((x−1)↓, x−1)β(x↓, x)γ.

We have
(y↓, y)(y↓, y) = (y↓ ∪ y · y↓, y2),
(y↓, y)2(y↓, y) = (y↓ ∪ y · y↓ ∪ y2 · y↓, y3),
· · ·

so we can write (y↓, y)k = (∪k−1
i=0 y

i · x↓, yk), for any k ∈ N and y ∈ {x, x−1}. It

follows that

(x↓, x)m((x−1)↓, x−1)n(x↓, x)p

= (∪m−1
i=0 x

i · x↓, xm)(∪n−1
i=0 (x−1)i · (x−1)↓, (x−1)n)(∪p−1

i=0x
i · x↓, xp)

= (∪m−1
i=0 x

i · x↓ ∪ xm · (∪n−1
i=0 (x−1)i · (x−1)↓), xm · (x−1)n)(∪p−1

i=0x
i · x↓, xp)

= (∪m−1
i=0 x

i · x↓ ∪ (∪n−1
i=0 x

m−i · (x−1)↓) ∪ xm−n · (∪p−1
i=0x

i · x↓), xm−n+p)

= (∪m−1
i=0 x

i · x↓ ∪ (∪n−1
i=0 x

m−i · (x−1)↓) ∪ (∪p−1
i=0x

m−n+i · x↓), xm−n+p)

= (∪m−1
i=0 x

i · x↓ ∪ (∪n−1
i=0 x

m−i−1 · x↓) ∪ (∪p−1
i=0x

m−n+i · x↓), xm−n+p)
(Lemma 1.6).

We know that x↓ = {1, x}, so

∪m−1
i=0 x

i · x↓ ∪ (∪n−1
i=0 x

m−i · (x−1)↓) ∪ (∪p−1
i=0x

m−n+i · x↓) =
= {1, x} ∪ {x, x2} ∪ · · · ∪ {xm−1, xm} ∪ {xm−1, xm} ∪ {xm−2, xm−1} ∪ · · ·

· · · ∪ {xm−n, xm−n+1} ∪ {xm−n, xm−n+1} ∪ {xm−n+1, xm−n+2} ∪ · · ·
· · · ∪ {xm−n+p+1, xm−n+p}
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if m+ p ≤ n this set becomes

{xm−n, xm−n+1, . . . , xm−n+p, xm−n+p+1, . . . , 1, x, . . . , xm},

and if m+ p > n we obtain

{xm−n, xm−n+1, . . . , 1, x, . . . , xm+p−n, xm−n+p+1, . . . , xm}.

From

(x↓, x)m((x−1)↓, x−1)n(x↓, x)p = (x↓, x)α((x−1)↓, x−1)β(x↓, x)γ

we get xm+p−n = xα+γ−β, from the decomposition above. This implies that

m+ p−n = α+ γ−β, so if m+ p ≤ n we must have α+ γ ≤ β and if m+ p > n

then α+ γ > β. Suppose without loss of generality that m+ p > n, then

{xm−n, xm−n+1, . . . , 1, x, . . . , xm+p−n, . . . , xm}
= {xα−β, xα−β+1, . . . , 1, x, . . . , xα+γ−β, . . . , xα},

so xm = xα and m − n = α − β, this implies α = m and β = n, then from

m+ p− n = α+ γ − β we obtain p = γ, hence umvnup = uαvβuγ . Thus, since ρ

is reflexive, we have

bρ = (umvnup)ρ = (uαvβuγ)ρ = b′ρ,

i.e. (b, b′) ∈ ρ, then Kerϕ ⊆ ρ and we can conclude that Kerϕ = ρ. From the

Homomorphism Theorem, see for example [6, Theorem 1.5.2], we know that

{u, v}+/Kerϕ ∼= (FIx)ϕ,

but ϕ is onto and Kerϕ = ρ, so

{u, v}+/ρ ∼= FIx,

this shows that FIx is defined by the semigroup presentation

< u, v | u = uvu, v = vuv, Am,n, (m,n ∈ N) > .

�
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Lemma 3.4 Consider the free monogenic inverse semigroup, FIx, defined by the

presentation

< u, v | u = uvu, v = vuv, Am,n, (m,n ∈ N) >,

given in Lemma 3.3. The set of defining relations in this presentation is not

equivalent to any finite subset of these defining relations.

Proof. Let A = {0, 1, 2, . . . , n} be a finite set and consider the two partial

transformations of A:

α =

(
0 1 2 . . . n− 2 n− 1
1 2 3 . . . n− 1 n

)
β =

(
0 1 2 . . . n− 1 n
0 0 1 . . . n− 2 n− 1

)
these transformations satisfy the defining relations of FIx:

αβα =


0 1 2 . . . n− 2 n− 1 n
1 2 3 . . . n− 1 n −
0 1 2 . . . n− 2 n− 1 −
1 2 3 . . . n− 1 n −

 = α,

where α is the transformation from the first row to the second, β is the trans-

formation from the second row to the third, the second α is the transformation

from the third row to the fourth, their composition, αβα, is the transformation

from the first row to the fourth and we can see that it is equal to α,

βαβ =


0 1 2 . . . n− 2 n− 1 n
0 0 1 . . . n− 3 n− 2 n− 1
1 1 2 . . . n− 2 n− 1 n
0 0 1 . . . n− 3 n− 2 n− 1

 = β,

and

α2 =

 0 1 2 . . . n− 2 n− 1
1 2 3 . . . n− 1 n
2 3 4 . . . n −

 , α3 =

 0 1 2 . . . n− 2 n− 1
2 3 4 . . . n −
3 4 5 . . . − −

 ,

if we keep doing powers of α we see that

αk =

(
0 1 2 . . . n− k
k k + 1 k + 2 . . . n

)
, if k ≤ n
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and αk is the null transformation if k > n, we will denote it by ∅. Similarly we

can see that

βk =

(
0 1 2 . . . k k + 1 . . . n− 1 n
0 0 0 . . . 0 1 . . . n− k − 1 n− k

)
, if k ≤ n, and

βk =

(
0 1 2 . . . n
0 0 0 . . . 0

)
= 0, if k > n.

Let Ai,j = {uivi+juj = vjuj+iyi}, i, j ∈ N, be a subset of the defining relations

of FIx. For i, j > n we have

αiβi+jαj = ∅, and βjαj+iβi = 0∅0 = ∅.

If i, j ≤ n then

αiβi =

 0 1 2 . . . n− i
i i+ 1 i+ 2 . . . n
0 1 2 . . . n− i

 , and

βjαj =

 0 1 2 . . . j j + 1 . . . n− 1 n
0 0 0 . . . 0 1 . . . n− j − 1 n− j
j j j . . . j j + 1 . . . n− 1 n

 ,

so if n− i < j we obtain

αiβi+jαj =

(
0 1 . . . n− i
j j . . . j

)
, and βjαj+iβi = ∅,

if n− i ≥ j then

αiβi+jαj =

(
0 1 . . . j j + 1 . . . n− i
j j . . . j j + 1 . . . n− i

)
= βjαj+iβi.

We can resume this in the following way:

αiβi+jαj =


∅ if i, j > n(

0 1 . . . n− i
j j . . . j

)
if n < i+ j, i, j ≤ n(

0 1 . . . j j + 1 . . . n− i
j j . . . j j + 1 . . . n− i

)
if i+ j ≤ n

βjαj+iβi =

 ∅ if i+ j > n(
0 1 . . . j j + 1 . . . n− i
j j . . . j j + 1 . . . n− i

)
if i+ j ≤ n
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so u and v satisfy Ai,j if and only if αiβi+jαj = βjαj+iβi if and only if

j + i ≤ n or i, j ≥ n. Let Sn be the semigroup of partial transformations of A

generated by α and β and suppose that the set of defining relations

αβα = α, βαβ = β, Ai,j, (i, j ∈ N)

is equivalent to a finite subset B of these relations. Define n in the following way:

n =

{
max{i+ j : Ai,j ∈ B} if {i+ j : Ai,j ∈ B} 6= ∅
any natural number otherwise,

note that, since B is finite, if {i+ j : Ai,j ∈ B} 6= ∅ this set must have a maximal

element. If Ai,j ∈ B then

i+ j ≤ max{i+ j : Ai,j ∈ B},

i.e. i+ j ≤ n then, by what we have seen above, Ai,j holds in Sn. It follows that

all relations in B hold in Sn. Since B is equivalent to the relations

αβα = α, βαβ = β, Ai,j, (i, j ∈ N),

all the relations in this set must hold in Sn, but we know that for example A1,n

does not hold in Sn, so we have a contradiction. We may conclude that the set

of defining relations of FIx is not equivalent to any finite subset of itself. �

We can now prove the following result:

Proposition 3.5 The free monogenic inverse semigroup is not finitely presented

as a semigroup.

Proof. By Lemma 3.3, we know that FIx is defined by the semigroup presen-

tation

< u, v | u = uvu, v = vuv, Am,n, (m,n ∈ N) > .

Suppose that FIx is finitely presented, then FIx ∼=< X | R >, where X and R

are finite. Since the presentations < X | R > and

< u, v | u = uvu, v = vuv, Am,n, (m,n ∈ N) >,
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define the same semigroup, every element of X is equivalent to an expression of

products of u and v, so we can replace X by {u, v} and the elements of X in the

relations R by their expression as products of u and v. Let D be this new set of

relations, D is obviously finite, and the presentation < u, v | D > defines the

same semigroup as

< u, v | u = uvu, v = vuv, Am,n, (m,n ∈ N) >,

so D is a finite set that can be deduced from the relations

u = uvu, v = vuv, Am,n, (m,n ∈ N),

and vice-versa. To obtain D from this set of relations we can only use a finite

number of relations from it , let T be the finite set of relations used. Then

< u, v | D > and < u, v | T > define the same semigroup. This implies that T

is a subset of

u = uvu, v = vuv, Am,n, (m,n ∈ N),

equivalent to it, but this contradicts Lemma 3.4. We conclude that FIx cannot

be finitely presented. �

Finally, we generalize this result to any free inverse semigroup.

Proposition 3.6 No free inverse semigroup is finitely presented as a semigroup.

Proof. Let X be a non-empty set and assume that FIX is defined by the

semigroup presentation < Y | R >, where Y and R are finite. If X is infinite

then some elements of X do not occur in the relations from R since this set is

finite. Let x be an element of X not occurring in the relations of R, then the

relation x = x−1x does not hold in FIX , this is a contradiction, so X must be

finite. We may express each element in Y as a product of elements in X, so we

can assume that Y = X. Let us add to R the finite set of relations

{xi = xj : xi, xj ∈ X, i 6= j},

59



we are identifying all the elements of X as a unique element so we obviously

obtain the free monogenic inverse semigroup, but we have already seen that this

semigroup is not finitely presented so we can conclude that FIX is not finitely

presented. �

3 Some Finite Presentability Conditions

We start by giving sufficient conditions for a subgroup of a monoid to be finitely

presented. These first two results follow from results in chapter 2 and can be

found in [11].

Proposition 3.7 A subgroup of finite index in a finitely generated inverse monoid

is itself finitely generated.

Proof. Proposition 2.14 give us the generating set

Y = {eriar
−1
ia : i ∈ I, a ∈ A ∪ A−1, ia 6= 0}

for a subgroup G, of an inverse monoid S, where the set A ∪ A−1 generates S

as a monoid, and the cardinality of I equals the number of cosets of G in S. It

follows that if S is finitely generated and the index of G in S is finite, G is finitely

generated. �

Note that in this result, as in Proposition 2.14, the condition of being inverse

is not necessary. The results also hold for semigroups, with an appropriate system

of coset representatives, see [11].

Theorem 3.8 A subgroup of finite index in a finitely presented inverse monoid

is also finitely presented.
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Proof. Let S be a finitely presented inverse monoid, defined by the presentation

< A | R >, and G a subgroup of S, such that [S : G] = q, for some q ∈ N. By

theorem 2.17, we know that G is defined by the group presentation

< B | (i, u)φ = (i, v)φ, (i ∈ I, (u = v) ∈ R, iu 6= 0)

(1, eriar
−1
ia )φ = [i, a], (i ∈ I, a ∈ A, ia 6= 0) > .

Since A and R are finite and |I| = q we conclude that G is finitely presented. �

A semigroup without zero is called simple if it has no proper ideals. A semi-

group, S, with zero is called 0-simple if {0} and S are its only ideals and S2 6= {0}.
A 0-simple (simple) semigroup is said to be completely 0-simple ( completely sim-

ple) if it contains a minimal idempotent within the set of non-zero idempotents.

We will give a necessary and sufficient condition for a completely 0-simple

semigroup to be finitely presented. The properties of these semigroups appear in

[6, Chapter 3], but the only result we need about them is the following:

Proposition 3.9 Let G0 (G) be a 0-group (group). Let I,Λ be non-empty sets,

and let P = (pλi) be a I×Λ matrix with entries in G0 (G). Suppose that no row or

column of P consists entirely of zeros. Let S = (I×G×Λ)∪{0} (S = (I×G×Λ))

and define a multiplication on S in the following way:

(i, g, λ)(j, h, µ) =

{
(i, gpλjh, µ) if pλj 6= 0

0 if pλj = 0,
0(i, g, λ) = (i, g, λ)0 = 00 = 0.

( (i, g, λ)(j, h, µ) = (i, gpλjh, µ) ). Then S is a completely 0-simple (simple)

semigroup. We denote it by M0[G, I,Λ;P ] ( M[G, I,Λ;P ] ).

Conversely, every completely 0-simple (simple) semigroup is isomorphic to a

semigroup constructed in this way.

For a proof see [6, Theorem 3.2.3 (3.3.1)].
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Proposition 3.10 A completely 0-simple semigroup S = M0[G, I,Λ;P ] is finitely

presented if and only if G is finitely presented and both I and Λ are finite.

Proof. S is the semigroup (I ×G× Λ) ∪ {0} subject to the multiplication

(i, g, λ)(j, h, µ) =

{
(i, gpλjh, µ) if pλj 6= 0

0 if pλj = 0
0(i, g, λ) = (i, g, λ)0 = 00 = 0.

Suppose that S is finitely presented, then S is finitely generated, let

{(i1, g1, λ1), (i2, g2, λ2), . . . , (ik, gk, λk)} ∪ {0}

be a generating set for it. By the multiplication defined on S we can see that I

and Λ are the sets

I = {i1, i2, . . . , ik} and Λ = {λ1, λ2, . . . , λk},

so they are finite. Let us fix a non-zero element pλ0i0 in P , note that pλ0i0 ∈ G.

Claim 7 (i0, G, λ0) is a maximal subgroup of S.

Proof. The map ϕ : (i0, G, λ0) −→ G, (i0, g, λ0)ϕ = p−1
λ0i0

gp2
λ0i0

, is obviously

well-defined. Let (i0, g, λ0), (i0, h, λ0) ∈ (i0, G, λ0) be arbitrary. Since pλ0i0 6= 0

we have

((i0, g, λ0)(i0, h, λ0))ϕ = (i0, gpλ0i0h, λ0)ϕ = p−1
λ0i0

gpλ0i0hp
2
λ0i0

,
(i0, g, λ0)ϕ(i0, h, λ0)ϕ = p−1

λ0i0
gp2

λ0i0
p−1

λ0i0
hp2

λ0i0
= p−1

λ0i0
gpλ0i0hp

2
λ0i0

so ϕ is a morphism. Supposing that (i0, g, λ0)ϕ = (i0, h, λ0)ϕ we obtain

p−1
λ0i0

gp2
λ0i0

= p−1
λ0i0

hp2
λ0i0

⇒ pλ0i0p
−1
λ0i0

gp2
λ0i0

p−2
λ0i0

= pλ0i0p
−1
λ0i0

hp2
λ0i0

p−2
λ0i0

⇒ g = h (G group)
⇒ (i0, g, λ0) = (i0, h, λ0)

so ϕ is one-one. For any g ∈ G we have

g = (p−1
λ0i0

pλ0i0)g(p
−2
λ0i0

p2
λ0i0

)
= p−1

λ0i0
(pλ0i0gp

−2
λ0i0

)p2
λ0i0

= (i0, pλ0i0gp
−2
λ0i0

, λ0)ϕ
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and (i0, pλ0i0gp
−2
λ0i0

, λ0) belongs to (i0, G, λ0), so ϕ is onto. Hence G is isomorphic

to (i0, G, λ0), so (i0, G, λ0) is a subgroup of S. Let T be a subgroup of S and

suppose that (i0, G, λ0) ⊆ T , then T is of the form (I ′, G,Λ′), with i0 ∈ I ′ and

λ0 ∈ Λ′. Let (i, e, λ) be the identity of T , we have

(i0, g, λ0)(i, e, λ) = (i0, g, λ0) ⇔ (i0, gpλ0ie, λ) = (i0, g, λ0) ⇒ λ = λ0,

and

gpλ0ie = g ⇔ g−1gpλ0i0e = g−1g ⇔ p−1
λ0i0

= e,

similarly, from (i, e, λ)(i0, g, λ0) = (i0, g, λ0), we obtain i = i0, so (i0, p
−1
λ0i0

, λ0) is

the identity of T . For any (i, g, λ) in T we have

(i, g, λ)(i0, p
−1
λ0i0

, λ0) = (i, g, λ) ⇔ (i, gpλi0p
−1
λ0i0

, λ0) = (i, g, λ),

so λ = λ0, and similarly we obtain i = i0, so T = (i0, G, λ0). Hence (i0, G, λ0) is

a maximal subgroup of S. �

Claim 8 (i0, G, λ0) has a finite number of cosets.

Proof. Let (i, g, λ) ∈ S be such that pλ0i 6= 0. Considering an element (j, h, λ0)

in S, we have

(i0, G, λ0)(i, g, λ)(j, h, λ0) = (i0, G, λ)(j, h, λ0) = (i0, G, λ0)

so, for any (i, g, λ) ∈ S such that pλ0i 6= 0, the set (i0, G, λ0)(i, g, λ) is a coset

of (i0, G, λ0) in S. By the multiplication defined on S we know that if pλ0i = 0

then (i0, G, λ0)(i, g, λ) cannot be a coset , so the cosets of (i0, G, λ0) are the sets

(i0, G, λ) for any λ ∈ Λ. Since Λ is finite we conclude that (i0, G, λ0) has only

finitely many cosets in S. �

We know that (i0, G, λ0) is a subgroup of S with finite index, then, adapting

Theorem 3.8 to semigroups, see [11, Corollary 2.11], we know that (i0, G, λ0) is
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finitely presented. Since G is isomorphic to this group we conclude that G is

finitely presented.

Conversely, suppose that I and Λ are finite and that G is finitely presented.

By Propositions 3.1 and 3.2 we know that G is finitely presented as a group

if and only if is finitely presented as a semigroup, so let < A | R > be finite

presentation, defining G as a semigroup. We can rearrange the elements of P so

that p11 is the identity of G. Let e ∈ A+ be a word representing the identity of

G and define a set

Y = A ∪ {yi : i ∈ I\{1}} ∪ {zλ : λ ∈ Λ\{1}}.

By [7, Theorem 6.2], we know that a presentation for S is

< Y | R, yie = yi, eyi = p1i, zλe = pλ1, ezλ = zλ,

zλyi = pλi, (i ∈ I\{1}, λ ∈ Λ\{1}) >

and, since A, R, I and Λ are finite, we conclude that S is finitely presented. �

Let S and T be disjoint semigroups, T having a zero. A semigroup M will be

called an ideal extension of S by T if it contains S as an ideal and if M/S ∼= T .

Note that if I is an ideal of a semigroup S, then S is an ideal extension of I by

S/I. The following result was proved in [11], and gives us a sufficient condition

for an ideal extension of a semigroup, by another, to be finitely presented.

Proposition 3.11 An ideal extension of a finitely presented semigroup by an-

other finitely presented semigroup is finitely presented.

Proof. Let T and U be semigroups defined by the finite presentations <

A | R > and < B | Q > respectively. Let S be an ideal extension of T by U ,

i.e. T is (isomorphic to) an ideal of S and S/T ∼= U . Let B0 be the set of all

generators from B representing the zero of U . We can look at S/T as the set

S\T ∪ {0}, where all products not falling in S\T are zero, this way B generates
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S\T ∪ {0}, so B\B0 generates S\T , then B\B0 ∪ A generates S. Define Q0 as

the set of relations

{u = v ∈ Q : u represents the zero of U}.

For all u ∈ (B\B0)
+ representing the zero of U fix a word ρ(u) ∈ A+ such

that u = ρ(u) holds in S. For all pair of letters a ∈ A, b ∈ B\B0 fix words

σ(a, b), τ(b, a) ∈ A+ such that

ab = σ(a, b) and ba = τ(b, a)

hold in S. We will see that S is defined by the presentation

< A, B\B0 | R, Q\Q0, (3.1)

u = ρ(u), ((u = v) ∈ Q, u ∈ (B\B0)
∗) (3.2)

ab = σ(a, b), ba = τ(b, a), (a ∈ A, b ∈ B\B0) > . (3.3)

Since T is an ideal of S we know that S satisfies R, and since U can be seen as

S\T ∪ {0} we know that S must satisfy Q\Q0. S obviously satisfies (3.2) and

(3.3). Now let w1 = w2 be any relation holding in S. If w1 represents a non-zero

element of U then w2 represents a non-zero element of U and w1 = w2 holds in

U , with w1, w2 ∈ (B\B0)
∗, so this relation can be deduced from Q\Q0. If w1

(and then w2) represents an element of T , we can write w1 ≡ a1a2 . . . ak with

a1, a2, . . . , ak ∈ A ∪ B\B0. If any product of a1, a2, . . . , ak represents the zero of

U we use relation (3.2) to transform the product in a word from A+, then we use

relation (3.3) to obtain from w1 a word w1 in A+, such that w1 = w1 holds in S.

Similarly we obtain a word w2 in A+, and we have

w1 = w2, w1, w2 ∈ A+

holding in S, so this relation holds in T , then it can be deduced from R. We

conclude that the presentation

< A, B\B0 | (3.1), (3.2), (3.3) >
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defines S, and since A, B, R and Q are finite we know that S is finitely pre-

sented. �

Let I, J be ideals of a semigroup S, such that I 6= J and J is a maximal ideal

in I. For any a in I\J define

I(a) = {x ∈ S1aS1 : S1xS1 ⊆ S1aS1}.

The principal factors of S are its subsemigroups S1aS1/I(a), and the minimal

ideal of S, if it exists, that we represent by K(S). We can now prove the following

results, that can be found in [11].

Theorem 3.12 Let S be a regular monoid with finitely many left and right ideals.

Then S is finitely presented if and only if all maximal subgroups of S are finitely

presented.

Proof. Saying that S has finitely many left and right ideals is equivalent to

say that S has finitely many R and L-classes. This implies that S contains

finitely many H-classes, then, by Proposition 2.13, every maximal subgroup of S

has a finite number of cosets, i.e. it has finite index. Suppose that S is finitely

presented, then, by Theorem 3.8, we know that all maximal subgroups of S are

finitely presented.

Conversely, suppose that all maximal subgroups of S are finitely presented.

The principal factors of a semigroup are null, 0-simple or simple semigroups,

see for example [8, Proposition 1.13]. In this case S cannot have null principal

factors since it is regular, the principal factors are subsemigroups of S and the

null semigroup is not regular.

Claim 9 Every 0-simple (simple) subsemigroup of S is completely 0-simple (sim-

ple).
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Proof. Suppose that S has an infinite descending chain of idempotents

f1 > f2 > f3 > · · · > fk > · · ·

we recall that fi ≤ fj ⇔ fi = fifj = fjfi, then the ideal Sfi equals the ideal

Sfifj that is contained in the ideal Sfj, and we obtain a descending chain of left

ideals

Sf1 ⊇ Sf2 ⊇ Sf3 ⊇ · · · ⊇ Sfk ⊇ · · ·

Suppose that Sfi = Sfi+1, for some i ∈ N, we know that fi ∈ Sfi, since S is

regular, so there exists a ∈ S such that fi = afi+1, then

fi = afi+1 ⇒ fifi+1 = afi+1fi+1

⇔ fifi+1 = afi+1 ⇔ fifi+1 = fi ⇔ fi ≤ fi+1,

this implies fi = fi+1, but this contradicts fi > fi+1, so we must have an infinite

descending chain of left ideals

Sf1 ⊃ Sf2 ⊃ Sf3 ⊃ · · · ⊃ Sfk ⊃ · · ·

that contradicts our assumption. We conclude that S cannot have an infinite de-

scending chain of idempotents, so it must contain a minimal idempotent within

the set of non-zero idempotents, hence, every 0-simple (simple) subsemigroup of

S is completely 0-simple (simple). �

This result implies that all principal factors of S are completely 0-simple

or completely simple semigroups. Let T be any principal factor of S that is a

completely 0-simple semigroup, then, by Proposition 3.9,

T ∼= M0[G, I,Λ;P ]

where G is a group isomorphic to any maximal subgroup of S, I is a set in one-

one correspondence with the set of all 0-minimal right ideals of S and Λ is a set

in one-one correspondence with the set of all 0-minimal left ideals, see [6, Proof

of Theorem 3.2.3]. From the fact that S contains only finitely many left and

right ideals we know that I and Λ are finite. The group G is finitely presented
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by hypothesis, so, by Proposition 3.10, T is finitely presented. We may conclude

that all principal factors of S are finitely presented, since we can clearly adapt

Proposition 3.10 to show that K(S), the principal factor of S that is completely

simple, see [6, Proposition 3.1.4], is finitely presented. Considering a principal

series of S

S1 = S ⊃ S2 ⊃ · · · ⊃ Sm = K(S)

the factors

S1/S2, S2/S3, . . . , Sm−1/Sm

are isomorphic, in some order, to the principal factors of S, see [6, Exc.4,Chap.

3]. We have seen that Sm is finitely presented, and Sm−1/Sm is isomorphic to a

principal factor of S, so Sm−1 is an ideal extension of K(S) by a principal factor

of S, that we have seen to be finitely presented, it follows, from Proposition 3.11,

that Sm−1 is finitely presented. Sm−2 is an ideal extension of Sm−1 by a principal

factor of S, so Sm−2 is finitely presented, by Proposition 3.11. We keep repeat-

ing this argument until the beginning of the principal series and we obtain that

S1 = S is finitely presented. �

Finally, we will show that a similar result to Propositions 3.1 and 3.2 holds

for inverse monoids, when they contain only finitely many left and right ideals.

Theorem 3.13 Let S be an inverse monoid with finitely many left and right

ideals. Then S is finitely presented as an inverse monoid if and only if it is

finitely presented as a monoid.

Proof. Suppose that S is finitely presented as an inverse monoid. From the

fact that S contains only finitely many left and right ideals we know that any

maximal subgroup of S has finite index, using the same argument as in the last

result. Then, by Theorem 3.8, every maximal subgroup of S is finitely presented.

Since S is inverse we know that S is regular then, by Theorem 3.12, S is finitely

presented.
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Conversely, suppose that the finite presentation < A | R > defines S as a

monoid. Then this presentation also defines S as an inverse monoid, so S is

finitely presented as an inverse monoid. �
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Chapter 4

Bruck-Reilly Extensions

Our main aim in this chapter is to present necessary and (or) sufficient conditions

for a Bruck-Reilly extension, of certain classes of monoids, to be finitely presented.

We also relate the finite presentability of a Bruck-Reilly extension, of this classes

of monoids, as an inverse monoid with its finite presentability when defined by a

monoid presentation.

We look at Bruck-Reilly extensions of groups, following the work done in [2],

and generalize some of this results for Bruck-Reilly extensions of monoids, stating

some results from [1].

We will study the Bruck-Reilly extension of a Clifford monoid that is a union

of two groups, considering two different cases. First we consider two copies of the

same group, and the morphism linking them is similar to the identity map. In

the second case we consider two arbitrary groups, linked by the morphism that

maps all the elements of one group to the identity of the other.

Finally, we look at a Bruck-Reilly extension, BR(S, θ), of an arbitrary Clifford

semigroup, S, determined by the morphism θ, that maps all elements of S to its

identity.
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1 Introduction - Bruck-Reilly Extensions of

Monoids

Let S be a monoid, x ∈ S is said to be a unit in S if there exist p, q ∈ S such

that xp = 1 and qx = 1, where 1 is the identity of S.

The set of all units of S is a subgroup of S, we will call it the group of units

of S and represent it by U(S). Note that every subgroup of S containing its

identity, 1, is contained in U(S), see [5, Theorem 1.10].

Let θ a morphism from S into U(S). We define a multiplication on N0×S×N0

in the following way:

(m, a, n)(p, b, q) = (m− n+ t, (aθt−n)(bθt−p), q − p+ t)

where t = max(n, p) and θ0 is interpreted as the identity map in S. We de-

note N0 × S × N0 together with this multiplication by BR(S, θ) and call it the

Bruck-Reilly extension of S determined by θ. The following results help us to

characterize BR(S, θ):

Proposition 4.1

1. BR(S, θ) is a semigroup with identity (0, 1, 0).

2. (m, a, n) RBR(S,θ) (p, b, q) ⇔ m = p and a RS b.

3. (m, a, n) LBR(S,θ) (p, b, q) ⇔ n = q and a LS b.

4. (m, a, n) HBR(S,θ) (p, b, q) ⇔ m = p, n = q and a HS b.

5. (m, a, n) DBR(S,θ) (p, b, q) ⇔ a DS b.

6.The set of idempotents of BR(S, θ) is:

E(BR(S, θ)) = {(m, a, n) ∈ BR(S, θ) : m = n, a ∈ E(S)}.

7.BR(S, θ) is regular if and only if S is regular, in particular if a−1 is one inverse

of a in S then (n, a−1,m) is one inverse of (m, a, n) in BR(S, θ).

8.BR(S, θ) is inverse if and only if S is inverse.
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For a proof see [6, Proposition 5.6.6]. Let < A | R > be a presentation for the

monoid S, we can define BR(S, θ) by means of a presentation containing the

generators and defining relations of S.

Proposition 4.2 The monoid BR(S, θ) is defined by the presentation

< A, b, c | R, bc = 1, ba = (aθ)b, ac = c(aθ), (a ∈ A) > .

This result appears in [7], where we can find a proof for it. The following result

is a consequence of the presentation obtained for BR(S, θ).

Proposition 4.3 If S is finitely presented then BR(S, θ) is finitely presented.

The converse does not always hold. We can find an example of a Bruck-Reilly

extension of a, not finitely presented, group, that is finitely presented in [11,

Proposition 3.3].

Considering the presentation given in Proposition 4.2 as the definition of a

Bruck-Reilly extension, we will rewrite some known properties of these monoids,

using the elements of the presentation.

Lemma 4.4 For all i, j, k, l ∈ N0 and α, β ∈ A∗, the relation ciαbj = ckβbl

holds in BR(S, θ) if and only if i = k, j = l and α = β holds in S.

Proof. Let φ : (A∪{b, c})∗ −→ BR(S, θ) be the monoid morphism extending

the mapping

bφ = (0, 1S, 1), cφ = (1, 1S, 0), aφ = (0, a, 0), a ∈ A,

where 1S is the identity of S. The map φ is an epimorphism, see [7, Lemma 4.1].

So, if ciαbj = ckβbl holds in BR(S, θ) we have (ciαbj)φ = (ckβbl)φ, then

(ci)φ(α)φ(bj)φ = (ck)φ(β)φ(bl)φ ⇔ (i, α, j) = (k, β, l),
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it follows that i = k, j = l and α = β in S. �

Lemma 4.5 In BR(S, θ) we have:
(i) bw = (wθ)b, for all w ∈ A∗;

(ii) wc = c(wθ), for all w ∈ A∗;
(iii) bna = (aθn)bn, for all n ∈ N, and all a ∈ A;
(iv) acn = cn(aθn), for all n ∈ N, and all a ∈ A.

Proof. Let w ∈ A∗ be arbitrary, say w ≡ a1a2 . . . ar, where ai ∈ A, i = 1, . . . , r.

Then

bw ≡ b(a1a2 . . . ar) ≡ (ba1)a2 . . . ar = (a1θ)ba2 . . . ar = (a1θ)(a2θ)ba3 . . . ar

= · · · = (a1θ)(a2θ)(a3θ) . . . (arθ)b = ((a1a2 . . . ar)θ)b ≡ (wθ)b,

similarly we can see that wc = c(wθ). Let a be an arbitrary element in A, for

any n ∈ N we have

bna ≡ bn−1(ba) = bn−1(aθ)b ≡ bn−2b(aθ)b
?
= bn−2((aθ)θ)b2 ≡ bn−2(aθ2)b2 = · · · = (aθn)b

( ? - aθ belongs to A∗ so we can use (i)), similarly we can see that acn = cn(aθn).

�

Lemma 4.6 Every word w ∈ (A ∪ {b, c})∗ is equal, in BR(S, θ), to a word of

the form ciαbj, where α ∈ A∗ and i, j ∈ N0.

Proof. Let w ∈ (A ∪ {b, c})∗. If w = bicj for some i, j ∈ N, using the relation

bc = 1, holding in BR(S, θ), we obtain

w = bicj =

{
bi−j if i ≥ j
cj−i if i < j.

If w = αci for some α ∈ A∗ and i ∈ N0, by Lemma 4.5 (ii) and (iv) we can write

w in the form ci(αθi), and (αθi) belongs to A∗. If w = biα for some α ∈ A∗ and

i ∈ N0, using Lemma 4.5 (i) and (iii) we can write w in the form (αθi)bi where
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(αθi) belongs to A∗. We conclude that in BR(S, θ) every word can be written in

the form ciαbj for some α ∈ A∗ and i, j ∈ N0. �

Proposition 4.7 For any ciαbj, ckβbl ∈ BR(S, θ) we have:
(i) ciαbj RBR(S,θ) c

kβbl ⇔ i = k and α RS β;
(ii) ciαbj LBR(S,θ) c

kβbl ⇔ j = l and α LS β;
(iii) ciαbj HBR(S,θ) c

kβbl ⇔ i = k, j = l and α HS β.

Proof. Suppose that ciαbj and ckβbl are any two elements in BR(S, θ) that are

R related. By Lemma 4.6, we know that we can define the Green’s equivalence

R, in BR(S, θ), in the following way:

ciαbj R ckβbl ⇔
⇔ ∃ cm1α1b

m2 , cm3α2b
m4 ∈ BR(S, θ) :

ciαbjcm1α1b
m2 = ckβbl and ckβblcm3α2b

m4 = ciαbj.

If j ≥ m1 we have

ciαbjcm1α1b
m2 = ckβbl

⇔ ciαbj−m1α1b
m2 = ckβbl

⇔ ciα(α1θ
j−m1)bj−m1+m2 = ckβbl

⇒ i = k, α(α1θ
j−m1) = β, j −m1 +m2 = l,

if m1 > j we obtain

ciαbjcm1α1b
m2 = ckβbl

⇔ ciαcm1−jα1b
m2 = ckβbl

⇔ cicm1−j(αθm1−j)α1b
m2 = ckβbl

⇒ m1 = k − i+ j ⇒ i > k.

Suppose that i > k, from

ckβblcm3α2b
m4 = ciαbj,

if l ≥ m3 we obtain

ckβbl−m3α2b
m4 = ciαbj

⇔ ckβ(α2θ
l−m3)bl−m3+m4 = ciαbj

⇒ i = k

74



this contradicts our assumption, so we must have l < m3, and in this case we

obtain
ckβcm3−lα2b

m4 = ciαbj

⇔ ck+m3−l(βθm3−l)α2b
m4 = ciαbj

⇒ i = k +m3 − l,

but i > k, so we must have m3 > l, that is a contradiction. Hence i must be

equal to k, and looking at the cases where we did not obtain a contradiction we

see that we must have j ≥ m1, and similarly l ≥ m3, this implies that

α(α1θ
j−m1) = β and β(α2θ

l−m3) = α,

so we can obtain α by multiplying β by an element of A∗ on the right and vice-

versa, this is equivalent to say that α and β must be R related in S.

Conversely, consider the elements cjα1b
l, clα2b

j ∈ BR(S, θ), where α1, α2 ∈
A∗ are such that αα1 = β and βα2 = α. Then

ciαbjcjα1b
l = ciαα1b

l = ciβbl,
ciβblclα2b

j = ciβα2b
j = ciαbj,

so ciβbl is R related with ciαbj in BR(S, θ). We conclude that

ciαbj RBR(S,θ) c
kβbl ⇔ i = k and α RS β.

Similarly we can see that (ii) holds, and since H = R∩L we conclude that (iii)

holds. �

2 Bruck-Reilly Extensions of Groups

Let G be a group and θ an endomorphism in G. Considering the Bruck-Reilly ex-

tension, BR(G, θ), we can simplify some results of section 4.1 using the properties

of the groups. Note that, since G is a group, BR(G, θ) is an inverse semigroup.

We represent by 1 the identity of BR(G, θ) and by 1G the identity of G. Let

< A | R > be a presentation defining G as a monoid.
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Lemma 4.8 In BR(G, θ), for all i, j, k, l ∈ N0 and α, β ∈ A∗ we have:
(i) ciαbj R ckβbl ⇔ i = k;

(ii) ciαbj L ckβbl ⇔ j = l;
(iii) ciαbj H ckβbl ⇔ i = k, j = l.

Proof. It follows from Lemma 4.7 and from the fact that in (a group) G we

have R = L = H = G×G, see [6, Section 2.1] �

Lemma 4.9 There is a (unique) epimorphism, π, from BR(G, θ) onto the bi-

cyclic monoid B, such that bπ = b, cπ = c and aπ = 1B, a ∈ A, where 1B

represents the identity of B.

Proof. In Example 2.4 we saw that the presentation

< b, c | bc = 1 >

defines B as a monoid. Define a map π : A ∪ {b, c} −→ B by the rules:

bπ = b, cπ = c and aπ = 1B,

for any a ∈ A. The map π is obviously well-defined and we can extend it to a

morphism from BR(G, θ) into B by the rule

(x1x2 . . . xr)π = x1πx2π . . . xrπ, xi ∈ A ∪ {b, c}, i = 1, . . . , r.

Let w ∈ B be arbitrary, noticing that the bicyclic monoid can be seen as the

Bruck-Reilly extension of the trivial group, we can write w = ckbl for some

k, l ∈ N0. Then

w = ckbl = (cπ)k(bπ)l = (ck)π(bl)π = (ckbl)π = (ckbl)π

and ckbl belongs to BR(G, θ), hence π is onto. Since we defined π over the gen-

erators of BR(G, θ), we can conclude that π is the unique epimorphism from

BR(G, θ) onto the bicyclic monoid. �
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Lemma 4.10 G is isomorphic to the group of units of BR(G, θ). A word w in

(A∪{b, c})∗ represents an element of the group of units of BR(G, θ) if and only if

it is equal to some word from A∗, i.e. if and only if wπ = 1B, where π is defined

above.

Proof. Let ciαbl be a unit in BR(G, θ), there exists cjβbk ∈ BR(G, θ) such

that ciαblcjβbk = 1. If l ≥ j this implies

ciαbl−jβbk = 1 ⇔ ciα(βθl−j)bl−j+k = 1
⇒ i = 0, α(βθl−j) = 1G, j = l + k,

if j > l we obtain

ciαcj−lβbk = 1 ⇔ cicj−l(αθj−l)βbk = 1 ⇒ i+ j = l,

so in this case we have a contradiction. Hence i = 0 and j = l + k, then

ciαblcjβbk = 1 ⇔ αblcl+kβbk = 1
⇔ αckβbk = 1 ⇔ ck(αθk)βbk = 1 ⇒ k = 0.

Thus w is a unit if and only if w is of the form c0αb0 with α ∈ A∗, i.e. if

and only if w belongs to A∗. Since A generates G we conclude that the map

U(BR(G, θ)) −→ G, α 7→ α, is an isomorphism. �

To the words in (A∪{b, c})∗ which represent elements of G we will call group

words. We are now able to follow the proof of the next result, given in [2].

Proposition 4.11 BR(G, θ) is finitely generated if and only if there exists a

finite subset, A0, of G such that G is generated, as a monoid, by the set
⋃

i≥0A0θ
i.

Proof. Let A0 be a finite subset of G such that the presentation

<
⋃
i≥0

A0θ
i | R >
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defines G as a monoid. By Proposition 4.2, we know that BR(G, θ) is defined by

the monoid presentation

<
⋃
i≥0

A0θ
i, b, c | R, bc = 1, ba = (aθ)b,

ac = c(aθ), (a ∈
⋃
i≥0

A0θ
i) > .

Let a ∈ A0 be arbitrary, note that a = aθ0, so a ∈
⋃

i≥0A0θ
i. For any i ∈ N0 we

have
(aθi)bi = bia (Lemma 4.5)

⇒ (aθi)bici = biaci

⇔ aθi = biaci (bc = 1)

it follows that
⋃

i≥0A0θ
i ⊆ (A0 ∪ {b, c})∗. Thus A0 ∪ {b, c} generates BR(G, θ),

so this monoid is finitely generated.

Conversely, suppose that BR(G, θ) is finitely generated. We know that if A

generates G, then A ∪ {b, c} generates BR(G, θ), so there exists a finite subset

A0 of A such that A0 ∪ {b, c} generates BR(G, θ) . Let U be the group of units

of BR(G, θ), clearly the identity of U is the identity of BR(G, θ). Suppose that

T is a subgroup of BR(G, θ) that contains U , then 1 ∈ T and we obviously have

1g = g = g1,

for all g ∈ T , so 1 is the identity of T . Then all elements of T are units of BR(G, θ)

and we must have U = T . Hence U is maximal. By Lemma 4.10, we know that

G ∼= U so G is a maximal subgroup of BR(G, θ), then, by Proposition 2.13, the

cosets of G in BR(G, θ) are the H-classes in the R-class of G. By Lemma 4.8,

we can see that the R-class of G is the set Gb∗ = {αbi : i ≥ 0, α ∈ G} and that

the H-classes in this R-class are the sets Hi = Gbi−1, i ≥ 1. Proposition 2.14

give us the following generating set for G:

Y = {1Griar
−1
ia : i ∈ I, a ∈ A0 ∪ {b, c}, ia ∈ I}

where ri, r
−1
i , i ∈ I, is a system of coset representatives. We have

Hic
i−1 = Gbi−1ci−1 = G, i ≥ 1,
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so we can take ri = bi−1, r−1
i = ci−1, to be a system of coset representatives. For

any a ∈ A0 we have

Gba = G(aθ)b = Gb, (aθ ∈ G)

so ria = ri for a ∈ A0, and

Gbib = Gbi+1 ⇒ rib = rib ⇒ r−1
ib = b−1r−1

i = cr−1
i ,

Gbic = Gbi−1 ⇒ ric = ri−1,

then our generating set becomes

{1Gb
iar−1

ia : i ≥ 0, a ∈ A0 ∪ {b, c}}
= {1Gb

iaci, 1Gb
ibcci, 1Gb

i+1cbi : i ≥ 0, a ∈ A0}
= {1G(biaci), 1G1 : i ≥ 0, a ∈ A0}
= {biaci : i ≥ 0, a ∈ A0} ∪ {1G},

note that biaci = aθi, i ≥ 0, so biaci ∈ G for any i ≥ 0. Thus, the set

{biaci : i ≥ 0, a ∈ A0} = {aθi : i ≥ 0, a ∈ A0} =
⋃
i≥0

A0θ
i

generates G. �

Proposition 4.12 If BR(G, θ) is finitely presented then G is finitely generated.

Theorem 4.13 BR(G, θ) is finitely presented if and only if G can be defined by

a presentation < A | R >, where A is finite and

R =
⋃
k≥0

Rθk = {uθk = vθk : k ≥ 0, (u = v) ∈ R}

for some finite set of relations R ⊆ A∗ × A∗.

The proofs of these last two results can be found in [2]. Except for Proposition

4.12, these results were generalized for monoids in [1], we will now state these

results.
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Proposition 4.14 Let M be a monoid, σ : M −→ U(M) a morphism. The

Bruck-Reilly extension BR(M,σ) is finitely generated if and only if there exists

a finite subset A0 of M , such that M is generated by the set A =
⋃

k≥0A0σ
k.

Proposition 4.15 Let M be a monoid and σ : M −→ U(M) a morphism. If

BR(M,σ) is finitely presented and M is generated by a set A, then M is defined

by the presentation < A | R > where R =
⋃

k≥0 Rσk, for some finite set of

relations R.

Proposition 4.16 Let M be a finitely generated monoid defined by a presenta-

tion < A | R > where A is finite and R =
⋃

k≥0 Rσk, for some finite set of

relations R. Then BR(M,σ) is finitely presented.

Finally, we relate finite presentability as an inverse monoid with finite presentabil-

ity as a monoid, in Bruck-Reilly extensions of groups. We will follow the proof

given in [2].

Theorem 4.17 Let S = BR(G, θ) be a Bruck-Reilly extension of a group G.

Then S is finitely presented as an inverse monoid if and only if S is finitely

presented as a monoid.

Proof. S = BR(G, θ) is an inverse monoid, then a monoid presentation for S

also defines it when considered as an inverse monoid presentation. Hence, if S is

finitely presented as a monoid it is also finitely presented as an inverse monoid.

Conversely, suppose that S is finitely presented as an inverse monoid. Let

< A′ | R > be a monoid presentation for G, by Proposition 4.2, we have

S ∼=< A′, b, c | R, bc = 1, ba = (aθ)b, ac = c(aθ), (a ∈ A′) > .

So S admits an inverse monoid presentation

< A, b, c | T′ >,
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for some finite set A ⊆ A′ and some finite set of defining relations T′. The relation

bc = 1 holds in S so c is the inverse of b in S. Since our presentation for S is an

inverse monoid presentation, applying Tietze Transformations (T4) (removing

the generator c, substituting all occurrences of c in T′ by b−1), we obtain the

inverse monoid presentation for S

< A, b | T >

where, obviously, T is a finite set. We know that the following relations hold in

S:

bb−1 = 1, aa−1 = a−1a = 1, ba = (aθ)b, ab−1 = b−1(aθ), (a ∈ A),

so, applying Tietze Transformations (T1), we obtain the inverse monoid presen-

tation for S

< A, b | T, aa−1 = a−1a = 1, bb−1 = 1,
ba = (aθ)b, ab−1 = b−1(aθ), (a ∈ A) >,

and, by Remark 3, we know that a monoid presentation for S is

< A, A−1, b, b−1 | T, aa−1 = a−1a = 1, bb−1 = 1, ba = (aθ)b,
ab−1 = b−1(aθ), ww−1w = w, ww−1zz−1 = zz−1ww−1,

(a ∈ A, w, z ∈ (A ∪ A−1 ∪ {b, b−1})∗) > .

Note that from the relations aa−1 = a−1a = 1, for all a ∈ A, we can deduced

the relations αα−1 = α−1α = 1, for all α ∈ (A ∪ A−1)∗. We have seen that for

any w in (A∪A−1∪{b, b−1})∗, we have w = (b−1)iαbj, for some i, j ≥ 0, and α ∈
(A ∪ A−1)∗, as a consequence of the relations

bb−1 = 1, ba = (aθ)b, ab−1 = b−1(aθ), (a ∈ A).

Then
ww−1 = b−iαbj(b−iαbj)−1

= b−iαb−jα−1bi

= b−iαα−1bi (bb−1 = 1)
= b−ibi, (aa−1 = a−1a = 1, ∀a ∈ A)

it follows that
ww−1w = b−ibib−iαbj

= b−iαbj (bb−1 = 1)
= w.
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Similarly, for z ∈ (A ∪ A−1 ∪ {b, b−1)∗, we have zz−1 = b−kbk for some k ≥ 0, so

we obtain

ww−1zz−1 = b−ibib−kbk =

{
b−ibi−kbk = b−ibi−k+k = b−ibi if i ≥ k
b−ib−k+ibk = b−i−k+ibk = b−kbk if i < k

zz−1ww−1 = b−kbkb−ibi =

{
b−kb−i+kbi = b−k−i+kbi = b−ibi if i ≥ k
b−kbk−ibi = b−kbk−i+i = b−kbk if i < k,

hence ww−1zz−1 = zz−1ww−1. This shows that the relations

ww−1w = w, ww−1zz−1 = zz−1ww−1, (w, z ∈ (A ∪ A−1 ∪ {b, b−1})∗),

can be deduced from the relations

aa−1 = a−1a = 1, bb−1 = 1, ba = (aθ)b, ab−1 = b−1(aθ), (a ∈ A),

so, applying Tietze Transformations (T2), we know that the presentation

< A, A−1, b, b−1 | T, aa−1 = a−1a = 1, bb−1 = 1, ba = (aθ)b,
ab−1 = b−1(aθ), (a ∈ A) >

defines S as a monoid. Since A and T are finite, we conclude that S is finitely

presented as a monoid. �

3 Some Results on Clifford Semigroups

Let Y be a semilattice, i.e. a commutative semigroup of idempotents, and {Gα :

α ∈ Y } a set of groups indexed by Y , such that Gα ∩Gβ = ∅ for α 6= β. We will

represent by 1α the identity of the group Gα, α ∈ Y . Suppose that for all α ≥ β

in Y , where

α ≥ β ⇔ β = βα = αβ,

there exists a morphism φα,β : Gα −→ Gβ such that

∀α ∈ Y φα,α = idGα ,
∀α, β, γ ∈ Y, α ≥ β ≥ γ, φα,βφβ,γ = φα,γ,
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where idGα is the identity map in Gα. Define a multiplication in S =
⋃

α∈Y Gα

by the rule

xy = (xφα,αβ)(yφβ,αβ), x ∈ Gα, y ∈ Gβ,

for any α, β ∈ Y . This multiplication is associative, see [6, Section 4.1]. We will

denote this semigroup by S(Y,Gα, φα,β) and say that it is a strong semilattice of

groups.

A semigroup S is called a Clifford Semigroup if there exists a unary operation

x 7→ x−1 on S, with the properties:

∀x, y ∈ S (x−1)−1 = x, xx−1x = x, xx−1 = x−1x,
(xx−1)(yy−1) = (yy−1)(xx−1).

Proposition 4.18 Let S be a semigroup. The following statements are equiva-

lent:
(i) S is a Clifford semigroup;

(ii) S is a strong semilattice of groups;
(iii) S is regular and its idempotents commute with all elements in S;
(iv) S is regular and each D − class of S contains exactly one idempotent.

For a proof see for example [6, Theorem 4.2.1]. From (iii) we know that a Clifford

semigroup is an inverse semigroup.

Proposition 4.19 Let S = S(Y,Gα, φα,β) be a Clifford monoid. The group of

units of S is Ge, where e is the identity of the semilattice Y .

Proof. Let a be a unit of S, there exists b ∈ S such that ab = 1. We know

that a ∈ Gα and b ∈ Gβ, for some α, β ∈ Y , then ab ∈ Gαβ, by the multiplication

defined in S, so 1 ∈ Gαβ, hence 1 must be the identity of the group Gαβ. Let γ

be an arbitrary element of Y and x ∈ Gγ arbitrary. We know that x1 = x, but

GγGαβ ⊆ Gγαβ, so

x ∈ Gγ, x ∈ Gγαβ ⇒ Gγ ∩Gγαβ 6= ∅ ⇔ γ = γ(αβ),
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similarly we obtain (αβ)γ = γ, so (αβ) is the identity of Y . It follows that

α(αβ) = α ⇔ (αα)β = α ⇔ αβ = α,

so a belongs to Gαβ, hence the group of units is contained in Gαβ, and

∀y ∈ Gαβ ∃y−1 ∈ Gαβ : yy−1 = y−1 = 1αβ = 1,

so all elements of Gαβ are units of S. We conclude that Gαβ is the group of units

of S, where αβ is the identity of Y . �

Proposition 4.20 Let S = S(Y,Gα, φα,β) be a Clifford semigroup. In S we have

H = L = R = D. Moreover the D-classes of S are the groups Gα, α ∈ Y .

Proof. Let Dx represent the D-class of x in S. By Proposition 4.18 (iv), we

know that the D-classes of S are the sets De, with e = ee ∈ S. Let De be any

D-class in S and x an arbitrary element of De. There exists z ∈ S such that

x R z L e, then

x R z ⇔ xx−1 = zz−1 (S inverse)
⇔ xx−1 = z−1z, (S Clifford)

z L e ⇔ z−1z = e−1e
⇔ z−1z = ee−1,

so xRe and, similarly, xLe, it follows that xHe. Then De ⊆ He, where He

represents the H-class of e, and we may conclude that

D = R = L = H

in S. Let α ∈ Y arbitrary, and x, y ∈ Gα. We have

x = x1α = x(yy−1), xy = x(y),

so xyRx and similarly we can see that xyLy, then xDy. It follows, by what

we have just seen, that xHy. Thus, for any x ∈ Gα we have Gα ⊆ Hx. Now
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consider x, y ∈ S such that xHy, and suppose that x ∈ Gβ and y ∈ Gγ for some

β, γ ∈ Y with β 6= γ. From H = R we obtain

x H y ⇔ xx−1 = yy−1,

then
(xy)(xy)−1 = (xy)(y−1x−1) = x(yy−1)x−1 = x(xx−1)x−1

= x(x−1x)x−1 = (xx−1)(xx−1) = xx−1

so xyRx, this is equivalent to xyHx. We know that xy ∈ Gβγ, and, by what we

have seen above, we have Gβγ ⊆ Hxy and Gβ ⊆ Hx. From Hxy = Hx, we obtain

Gβγ, Gβ ⊆ Hx = Dx, but each D-class contains exactly one idempotent, so

1βγ = 1β ⇒ Gβγ ∩Gβ 6= ∅ ⇔ βγ = β.

Similarly we can see that βγ = γ, hence γ = β, that contradicts our assumption.

We conclude that the groups Gα, α ∈ Y , are the D-classes of S. �

We can obtain a presentation for the Clifford semigroup S = S(Y,Gα;φα,β)

in terms of the presentations for the groups Gα, α ∈ Y , in the following way:

Proposition 4.21 Suppose that the group Gα, α ∈ Y , is defined by the semi-

group presentation < Aα | Rα >, with Aα ∩ Aβ = ∅ for α 6= β. Let

A =
⋃
α∈Y

Aα, R =
⋃
α∈Y

Rα,

and 1α ∈ A∗
α be a word representing the identity of Gα. Then

< A | R, 1α1β = 1β1α, 1γa = a1γ = aφσ,γ

(α, β, γ, σ ∈ Y, α 6= β, σ > γ, a ∈ Aσ) >

is a presentation for the Clifford semigroup S.

For a proof see [7, Theorem 5.1]. If S is a Clifford monoid, then 1ξ = 1 for some

ξ ∈ Y . So, to obtain a monoid presentation for S, in terms of the presentations of
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the groups Gα, α ∈ Y , we just need to add the relation 1ξ = 1 to the presentation

given in this last result.

Note: From the presentation given above, we can see that if Y is finite

and, for all α ∈ Y , the group Gα is finitely presented (generated) then S is

finitely presented (generated). The next result shows that this is a necessary and

sufficient condition.

Theorem 4.22 If the Clifford monoid S is finitely presented (generated), then

every group Gα, α ∈ Y , is finitely presented (generated).

Proof. Suppose that S is finitely presented (generated). Since S =
⋃

α∈Y Gα

and Gα ∩ Gβ = ∅ for α 6= β, the group Gα is a maximal subgroup of S for all

α ∈ Y . Then, by Proposition 2.13, the index of Gα in S equals the number of

H-classes in the R-class of Gα, α ∈ Y . But, in Proposition 4.19, we have seen

that Gα is a D-class and an H-class of S, so there is exactly one H-class in the

R-class of Gα, then Gα has index one, for all α ∈ Y . It follows, from Theorem

3.8 (3.7), that Gα is finitely presented (generated), for all α ∈ Y . �

An alternative proof of this result can be found in [3, Theorem 6.1]. Note

that if S is finitely generated then Y must be finite, see [6, Theorem 4.5.3].

4 Bruck-Reilly Extensions of Clifford Monoids

4.1 Properties

Given a Clifford monoid S = S(Y,Gα, φα,β), let e be the identity of the semilattice

Y , and θ a morphism from S into Ge. Considering the Bruck-Reilly extension

BR(S, θ), since S is inverse, we know that BR(S, θ) is an inverse monoid. Let
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(m, a, n), (p, b, q) ∈ N0 × S × N0 arbitrary, by Proposition 4.1, we know that

(m, a, n) DBR(S,θ) (p, b, q) ⇔ a DS b,

and we have seen that a is D related to b in S if and only if they belong to

the same group Gα, for some α ∈ Y . So, the D-classes of BR(S, θ) are the sets

N0 ×Gα × N0 with α ∈ Y .

Note that these D-classes are not groups, since, given x = xx ∈ S and

m,n ∈ N0 with m 6= n, the triples (m,x,m) and (n, x, n) are two, different,

idempotents in BR(S, θ) that belong to the same D-class.

We will now see that the result in Theorem 4.17, also holds for Bruck-Reilly

extensions of Clifford monoids.

Theorem 4.23 Let S be a Clifford monoid, θ a morphism from S into U(S) and

BR(S, θ) the Bruck-Reilly extension of S. Then BR(S, θ) is finitely presented as

an inverse monoid if and only if it is finitely presented as a monoid.

Proof. A monoid presentation for BR(S, θ) also defines it when considered as

an inverse monoid presentation, so, if BR(S, θ) is finitely presented as a monoid

it is finitely presented as an inverse monoid.

Conversely, suppose that BR(S, θ) is finitely presented as an inverse monoid.

Given a monoid presentation, < Q | R >, for S, by Theorem 4.2, BR(S, θ) is

defined by the monoid presentation

< Q, b, c | R, bc = 1, ba = (aθ)b, ac = c(aθ), (a ∈ Q) > .

Since BR(S, θ) is finitely presented as an inverse monoid it admits an inverse

monoid presentation

< A, b, c | T >

for some finite set A ⊆ S and some finite set of defining relations T. We know

that bc = 1 in BR(S, θ) (by the presentation given above), so bcb = b and cbc = c,

i.e. c is the inverse of b in BR(S, θ), hence, applying Tietze Transformations (T4)
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we know that the presentation

< A, b | T′ >

where T′ is the set T with the occurrences of c substituted by b−1, defines BR(S, θ)

as an inverse monoid. By the first presentation given for BR(S, θ), we know that

the following relations hold in BR(S, θ):

bb−1 = 1, ba = (aθ)b, ab−1 = b−1(aθ), (a ∈ A),

so we can add them to the presentation of BR(S, θ). A ⊆ S and S is a Clifford

semigroup so for any a1, a2 ∈ A we have

a1(a2a
−1
2 ) = (a2a

−1
2 )a1, a1a

−1
1 = a−1

1 a1, a1 = a1a
−1
1 a1,

adding these relations to the presentation of BR(S, θ) we obtain the following

presentation for it:

< A, b | T′, bb−1 = 1, aa−1 = a−1a, ba = (aθ)b, ab−1 = b−1(aθ),
a = aa−1a, a(a1a

−1
1 ) = (a1a

−1
1 )a, (a, a1 ∈ A) > .

We have been applying Tietze Transformations (T1) and these operations do not

change the type of structure defined by the presentation, so this presentation

still defines BR(S, θ) as an inverse monoid. Now, by Remark 3, we know that a

monoid presentation for BR(S, θ) is

< A, A−1, b, b−1 | T′, bb−1 = 1, (4.1)

ba = (aθ)b, ab−1 = b−1(aθ), (4.2)

aa−1 = a−1a, (4.3)

a = aa−1a, (4.4)

a(a1a
−1
1 ) = (a1a

−1
1 )a, (4.5)

w = ww−1w, ww−1zz−1 = zz−1ww−1, (4.6)

(a, a1 ∈ A), w, z ∈ (A ∪ A−1 ∪ {b, b−1})∗) > .

Note that, for any a, a1 ∈ A
a−1b−1 = (ba)−1 (BR(S, θ) inverse)

= ((aθ)b)−1 (4.2)
= b−1(aθ)−1 (BR(S, θ) inverse)
= b−1(a−1θ), (θ morphism)
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ba−1 = (ab−1)−1 = (b−1(aθ))−1 = (a−1θ)b−1,
(4.2)

a−1(a1a
−1
1 ) = (a1a

−1
1 a)−1 = (aa1a

−1
1 )−1 = (a1a

−1
1 )a−1,

(4.5)

this last relation implies, from (4.3), that a−1(a−1
1 a1) = (a1a

−1
1 )a−1, we also have

a−1 = (aa−1a)−1 = a−1aa−1.
(4.4)

So, the relations

xb−1 = b−1(xθ), bx = (xθ)b,
x(yy−1) = (yy−1)x, x = xx−1x, (x, y ∈ A ∪ A−1),

are a consequence of (4.2), (4.5), (4.3), (4.4) and (4.6). Then, like in Theorem

4.17, given w ∈ (A ∪ A−1 ∪ {b, b−1})∗, the relations (4.1) and (4.2) imply that

w = b−ia1a2 . . . akb
j, for some i, j ≥ 0 and some a1, a2, . . . , ak ∈ A ∪ A−1 and we

get
ww−1 = b−ia1a2 . . . akb

j(b−ia1a2 . . . akb
j)−1

= b−ia1a2 . . . akb
jb−ja−1

k . . . a−1
2 a−1

1 bi

= b−ia1a2 . . . aka
−1
k . . . a−1

2 a−1
1 bi (4.1)

= b−i(aka
−1
k )a1a2 . . . ak−1a

−1
k−1 . . . a

−1
2 a−1

1 bi (4.5)
· · ·

= b−i(aka
−1
k ) . . . (a1a

−1
1 )bi

then
ww−1w = b−i(aka

−1
k ) . . . (a1a

−1
1 )bib−ia1a2 . . . akb

j

= b−i(aka
−1
k ) . . . a1a

−1
1 a1a2 . . . akb

j (4.1)
= b−i(aka

−1
k ) . . . (a2a

−1
2 )a1a2 . . . akb

j (4.4)
= b−ia1(aka

−1
k ) . . . (a2a

−1
2 )a2 . . . akb

j (4.5)
= b−ia1(aka

−1
k ) . . . (a3a

−1
3 )a2a3 . . . akb

j (4.4)
· · ·

= b−ia1a2 . . . akb
j

= w.

Thus, the relation w = ww−1w, w ∈ (A ∪ A−1 ∪ {b, b−1})∗ is a consequence of

the relations (4.1) to (4.5), so we can remove it from the presentation. Given

z ∈ (A ∪ A−1 ∪ {b, b−1})∗, we have z = bpa′1a
′
2 . . . a

′
sb

l for some p, l ≥ 0 and some

a′1, a
′
2, . . . , a

′
s ∈ A ∪A−1, then writing zz−1 in the same form we wrote ww−1, we

obtain

ww−1zz−1 = b−i(aka
−1
k ) . . . (a1a

−1
1 )bib−p(a′sa

′
s
−1

) . . . (a′1a
′
1
−1

)bp,
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if i > p this becomes

ww−1zz−1 = b−i(aka
−1
k ) . . . (a1a

−1
1 )bi−p(a′sa

′
s
−1) . . . (a′1a

′
1
−1)bp

= b−i(aka
−1
k ) . . . (a1a

−1
1 )((a′sa

′
s
−1) . . . (a′1a

′
1
−1))θi−pbi−pbp (4.2)

= b−i(aka
−1
k ) . . . (a1a

−1
1 )(a′sa

′
s
−1)θi−p . . . (a′1a

′
1
−1)θi−pbi,

since i > p and a′ta
′
t
−1 is an idempotent for any t = 1, . . . , s, the morphism θi−p

maps this element to the identity of S, so

ww−1zz−1 = b−1((aka
−1
k ) . . . (a1a

−1
1 )1)bi = b−1(aka

−1
k ) . . . (a1a

−1
1 )bi = ww−1,

similarly we have

zz−1ww−1 = b−p(a′sa
′
s
−1) . . . (a′1a

′
1
−1)bpb−i(aka

−1
k ) . . . (a1a

−1
1 )bi

= b−p(a′sa
′
s
−1) . . . (a′1a

′
1
−1)b−i+k(aka

−1
k ) . . . (a1a

−1
1 )bi

= b−pb−i+p((a′sa
′
s
−1) . . . (a′1a

′
1
−1))θ−i+p(aka

−1
k ) . . . (a1a

−1
1 )bi (4.2)

· · ·
= b−i(aka

−1
k ) . . . (a1a

−1
1 )bi

= ww−1.

If p > i, repeating the arguments that we have just use for i > p, we obtain

ww−1zz−1 = zz−1 = zz−1ww−1.

If i = p then

ww−1zz−1 = b−i(aka
−1
k ) . . . (a1a

−1
1 )bib−i(a′sa

′
s
−1) . . . (a′1a

′
1
−1)bi

= b−i(aka
−1
k ) . . . (a1a

−1
1 )(a′sa

′
s
−1) . . . (a′1a

′
1
−1)bi (4.1)

= b−i(a′sa
′
s
−1) . . . (a′1a

′
1
−1)(aka

−1
k ) . . . (a1a

−1
1 )bi (4.5)

= zz−1ww−1. (4.1)

Hence, the relation ww−1zz−1 = zz−1ww−1 for any w, z ∈ (A∪A−1∪{b, b−1})∗ is

a consequence of relations (4.1) to (4.5) so we can remove it from the presentation.

We obtain the following monoid presentation for BR(S, θ):

< A, A−1, b, b−1 | T′, bb−1, ba = (aθ)b,
ab−1 = b−1(aθ), aa−1 = a−1a, a = aa−1a,

a(a1a
−1
1 ) = (a1a

−1
1 )a, (a, a1 ∈ A) >

since A and T′ are finite we conclude that BR(S, θ) is finitely presented as a

monoid. �
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4.2 Clifford monoid that is the union of two copies of the
same group

Let Y be the semilattice

 0

1

and G be a group. Let G0 = {g0 : g ∈ G} and G1 = {g1 : g ∈ G} be two copies

of G and define a map φ1,0 : G1 −→ G0, g1 7→ g0, that maps an element of G1

to its copy in G0, φ1,0 is clearly an isomorphism. Let S be the Clifford monoid

S(Y ; {G0, G1}, φ1,0), and θ a homomorphism from S into G1. Note that 1 is the

identity of Y , so G1 is the group of units of S.

Claim 10 For all g ∈ G the morphism θ maps g0 and g1 to the same element in

G1.

Proof. For any g ∈ G we have

(g0g1)θ = (g0(g1φ1,0))θ (multiplication in S)
= (g0g0)θ (def. φ1,0)
= (g0)θ(g0)θ (θ morphism)

then

(g0g1)θ = (g0)θ(g1)θ (θ morphism)
⇔ (g0)θ(g0)θ = (g0)θ(g1)θ (by above)
⇔ ((g0)θ)

−1(g0)θ(g0)θ = ((g0)θ)
−1(g0)θ(g1)θ (G1 group)

⇔ (g0)θ = (g1)θ. (G1 group)

�

Consider the Bruck-Reilly extension BR(S, θ) of S. The D-classes of BR(S, θ)

are the sets D0 = N0 ×G0 × N0 and D1 = N0 ×G1 × N0.
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Theorem 4.24 The D-classes D1 and D0 are Bruck-Reilly extensions of groups,

in particular BR(S, θ) is a disjoint union of two Bruck-Reilly extensions of groups.

Proof. Let θ1 be the restriction of θ to G1. For any (m, g1, n), (p, h1, q) ∈ D1

we have

(m, g1, n)(p, h1, q) = (m− n+ t, (g1)θ
t−n(h1)θ

t−p, q + p− t),

where t = max(n, p), but (g1)θ
k, (h1)θ

k ∈ G1, for all k ∈ N0, hence

(m, g1, n)(p, h1, q) = (m− n+ t, (g1)θ
t−n
1 (h1)θ

t−p
1 , q + p− t),

so D1 is the Bruck-Reilly extension BR(G1, θ1). Define a map

θ0 : G0 −→ G0, g0 7→ ((g0)θ)0,

where ((g0)θ)0 is the copy of (g0)θ in G0. We can think of θ0 as a composition

of θ with φ1,0, so θ0 is a morphism. Let (m, g0, n), (p, h0, n) ∈ D0 be arbitrary

and suppose, without loss of generality, that n > p. Then

(m, g0, n)(p, h0, n) = (m, g0(h0θ
n−p), q − p+ n)

= (m, g0((h0θ
n−p)φ1,0), q − p+ n)

= (m, g0(h0θ
n−p)0, q − p+ n)

= (m, g0((h0θ
n−p−1)θ)0, q − p+ n)

= (m, g0(((h0θ
n−p−1)0)θ)0, q − p+ n) (Claim 10)

= (m, g0(((h0θ
n−p−1)0)θ0), q − p+ n) (def. θ0)

· · ·
= (m, g0(h0θ

t−p
0 ), q − p+ n),

so D0 is the Bruck-Reilly extension BR(G0, θ0). Since D0 and D1 are the D-

classes of BR(S, θ), we clearly have BR(S, θ) = D0 ∪D1 and D0 ∩D1 = ∅. �

Define a map ζ : D1 −→ D0, (m, g1, n) 7→ (m, g0, n). It is clear that ζ is well-

defined, one-one and onto. Let (m, g1, n), (p, h1, q) ∈ D1 be arbitrary, suppose,

without loss of generality, that n > p, then

((m, g1, n)(p, h1, q))ζ = (m, g1(h1θ
n−p), q−p+n)ζ = (m, (g1(h1θ

n−p))0, q−p+n)
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and

(m, g1, n)ζ(p, h1, q)ζ = (m, g0, n)(p, h0, q) = (m, g0(h0θ
n−p
0 ), q − p+ n),

but we have

(g1(h1θ
n−p))0 = (g1(h1θ

n−p))φ1,0 = (g1)φ1,0(h1θ
n−p)φ1,0

= g0((h0θ
n−p)φ1,0) = g0(h0θ

n−p)0 = g0(h0θ
n−p
0 ),

so ((m, g1, n)(p, h1, q))ζ = (m, g1, n)ζ(p, h1, q)ζ, i.e. ζ is a morphism. It follows

that D0 is isomorphic to D1.

Now we define a map η : BR(S, θ) −→ D1, (m, gi, n) 7→ (m, g1, n), where

i ∈ {0, 1}. This map is obviously onto. Let (m, gi, n), (p, hj, q) ∈ BR(S, θ) be

arbitrary, where i, j ∈ {0, 1}. Suppose, without loss of generality, that n > p,

then

((m, gi, n)(p, hj, q))η = (m, gi(hjθ
n−p), q − p+ n)η

= (m, gi(h1θ
n−p), q − p+ n)η = (m, (gi(h1θ

n−p))1, q − p+ n),

if i = 1 we obtain

(m, (g1(h1θ
n−p))1, q − p+ n) = (m, g1(h1θ

n−p), q − p+ n),

and, if i = 0 we obtain

(m, (g0(h1θ
n−p))1, q − p+ n) = (m, (g0((h1θ

n−p)φ1,0))1, q − p+ n)
= (m, (g0((h1θ

n−p)φ1,0))φ
−1
1,0, q − p+ n)

= (m, (g0)φ
−1
1,0((h1θ

n−p)φ1,0)φ
−1
1,0, q − p+ n)

= (m, g1(h1θ
n−p), q − p+ n),

so η is an epimorphism, since

(m, gi, n)η(p, hj, q)η = (m, g1, n)(p, h1, q) = (m, g1(h1θ
n−p), q − p+ n).

Note that η restricted to D1 is the identity map, i.e. η|D1 = idD1 , and η|D0 is an

isomorphism, the inverse of ζ. We have just proved the following:

Theorem 4.25 The D-classes of BR(S, θ) are isomorphic, and the D-class D1

is a homomorphic image of BR(S, θ).
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In section 4.2 we gave necessary and sufficient conditions for a Bruck-Reilly

extension of a group to be finitely presented. Since the D-classes of BR(S, θ)

are Bruck-Reilly extensions of groups, if we relate the finite presentability of

BR(S, θ) with the finite presentability of its D-classes, we can apply the results

in section 4.2 to know when BR(S, θ) is finitely presented. We will then look

for connections between the presentation of BR(S, θ) and the presentations of its

D-classes.

Theorem 4.26 BR(S, θ) is finitely generated if and only if D0 and D1 are

finitely generated.

Proof. Suppose that BR(S, θ) is finitely generated. By Proposition 4.14 we

know that there exists a finite set M ⊆ G0 ∪G1 such that G0 ∪G1 is generated

by
⋃

k≥0Mθk. If we multiply two elements of S, the only way of obtaining an

element of G1 is if those two elements belong to G1, so G1 is generated by the set

(
⋃
k≥0

Mθk) ∩G1 = (M ∩G1) ∪ (
⋃
k>0

Mθk).

Let M ′ = M ∩G1 and M0 = M ∩G0, the generating set of G1 becomes

M ′ ∪ (
⋃
k>0

M ′θk) ∪ (
⋃
k>0

M0θk) = M ′ ∪ (
⋃
k>0

M ′θk
1) ∪ (

⋃
k>0

M0θk),

denote this set by A. By Proposition 4.2, we know that D1 is defined by the

presentation

< A, b, c | bc = 1, ba = (aθ1)b, ac = c(aθ1), (a ∈ A) > .

Let a be an arbitrary element of M ′, by the defining relations of D1, we know

that for any k > 0 the relation aθk
1 = bkack holds in D1 (proof of Proposition

4.11). So we can write any element from
⋃

k>0M
′θk

1 as a product of elements

in M ′ ∪ {b, c}, thus M ′ ∪ {b, c} ∪ (
⋃

k>0M
0θk) generates D1. We have⋃

k>0

M0θk =
⋃
k≥0

(M0θ)θk =
⋃
k≥0

(M0θ)θk
1
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and again we can write the elements (aθ)θk
1 , with a ∈M0 and k ≥ 0, in the form

bk(aθ)ck , so ⋃
k≥0

(M0θ)θk
1 ⊆ (M0θ ∪ {b, c})∗

hence, D1 is generated by M ′ ∪ (M0θ) ∪ {b, c}, where M ′ and M0 (hence M0θ)

are finite, thus D1 is finitely generated. It follows, from Theorem 4.25, that D0

is finitely generated.

Conversely, suppose that D1 and D0 are finitely generated. Then, since

BR(S, θ) is the disjoint union of D1 and D0, we know that BR(S, θ) is finitely

generated, see [3, Proposition 3.1]. �

Theorem 4.27 If BR(S, θ) is finitely presented then D0 and D1 are finitely pre-

sented.

Proof. Suppose thatBR(S, θ) is defined by the monoid presentation< A |R >,

where A and R are finite. In particular, BR(S, θ) is finitely generated, hence, by

Theorem 4.26, D1 is finitely generated. Let B be a finite generating set for D1.

D1 is a subsemigroup of BR(S, θ) so for every word b ∈ B there exists a word

wb ∈ A+ such that b = wb holds in BR(S, θ). Also, for every b ∈ B, bζ(= bη−1
|D0

)

belongs to D0, so there exists a word wbζ ∈ A+ such that bζ = wbζ holds in

BR(S, θ).

Claim 11 For every word x in D1 there exists ux ∈ {wb : b ∈ B}+ such that

x = ux in BR(S, θ).

Proof. Let x ∈ D1 be arbitrary, D1 is generated by B so x ≡ b1b2 . . . br for

some bi ∈ B, i = 1, . . . , r. Then

x ≡ b1b2 . . . br = wb1wb2 . . . wbr
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holds in BR(S, θ), so there exists ux ≡ wb1wb2 . . . wbr ∈ {wb : b ∈ B}+ such that

x = ux in BR(S, θ). �

Claim 12 For every word v ∈ D0 there exists uv ∈ {wbζ : b ∈ B}+ such that the

relation v = uv holds in BR(S, θ).

Proof. Let v ∈ D0 arbitrary, then vη ∈ D1, then, by Claim 11, there exists

uvη ∈ {wb : b ∈ B}+ such that vη = uvη in BR(S, θ). It follows that

vη = uvη ≡ wb1wb2 . . . wbm = b1b2 . . . bm,

for some wb1 , wb2 , . . . , wbm ∈ {wb : b ∈ B}+, so vη = b1b2 . . . bm holds inBR(S, θ).

But v ∈ D0 and η|D0 is an isomorphism, so we obtain

vη ≡ vη|D0 = b1b2 . . . bm
⇒ (vη|D0)η

−1
|D0

= (b1b2 . . . bm)η−1
|D0

⇔ v = (b1b2 . . . bm)ζ
⇔ v = (b1)ζ(b2)ζ . . . (bm)ζ.

Hence v = (b1)ζ(b2)ζ . . . (bm)ζ = w(b1)ζw(b2)ζ . . . w(bm)ζ . �

Claim 13 Aη generates D1.

Proof. Let w ∈ D1 be arbitrary. SinceD1 is a homomorphic image of BR(S, θ),

there exists u ∈ BR(S, θ) such that w = uη. Since BR(S, θ) is generated by A

we can write w ≡ a1a2 . . . an, for some a1, a2, . . . , an ∈ A. Hence

w = uη ≡ (a1a2 . . . an)η ≡ (a1)η(a2)η . . . (an)η ∈ (Aη)∗,

so Aη generates D1. �

Given a relation u = v in BR(S, θ), saying that this relation holds in D1 is

equivalent to say that uη = vη, since D1 is a homomorphic image of BR(S, θ)
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by the map η.

We will see that D1 is defined by the monoid presentation

< A | R, wb = wbζ (b ∈ B) >,

where a ∈ A represents the generator aη of D1.

Let u = v be any relation in R, u = v holds in BR(S, θ), then, since η is a

morphism, we have uη = vη, hence u = v holds in D1, and we conclude that

R holds in D1.

Let b ∈ B be arbitrary, wbζ = bζ holds in BR(S, θ), so (wbζ)η = (bζ)η.

Then

(wbζ)η = (bζ)η ≡ (bζ)η|D0 ≡ (bη−1
|D0

)η|D0 ≡ b = wb ≡ (wb)idD1 ≡ (wb)η,

so (wbζ)η = (wb)η holds in BR(S, θ), hence wbζ = wb holds in D1, for all b ∈ B.

Now let x = y be an arbitrary relation holding inD1, we have x, y ∈ BR(S, θ)

and xη = yη. Suppose that x, y ∈ D1, then

xη = yη ⇔ xidD1 = yidD1 ⇔ x = y,

so x = y holds in BR(S, θ), hence xη = yη is a consequence of R. Suppose that

x, y ∈ D0, then

xη = yη ⇔ xη|D0 = yη|D0 ⇔ x = y

since η|D0 is one-one, so xη = yη is a consequence of R. Finally, suppose

that x ∈ D0 and y ∈ D1. By Claim 12, there exists ux ∈ {wbζ : b ∈ B}+

such that x = ux holds in BR(S, θ) (hence, is a consequence of R) . Let

ux ≡ w(b1)ζw(b2)ζ . . . w(br)ζ , for some b1, b2, . . . br ∈ B, we have

xη = yη ⇔ (ux)η = yη
⇔ (w(b1)ζw(b2)ζ . . . w(br)ζ)η = yη
⇔ (wb1wb2 . . . wbr)η = yη, (wbζ = wb, ∀b ∈ B)

and the elements y and wb1wb2 . . . wbr belong to D1, so we are back in the first

case. Thus any relation inD1 is a consequence of R and of the relations wb = wbζ ,

for all b ∈ B, hence

< A | R, wb = wbζ (b ∈ B) >
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defines D1. The sets A, R and B are finite so D1 is finitely presented. Since D0

is isomorphic to D1 we conclude that D0 is finitely presented. �

This result can be generalized for semigroups, that are not Bruck-Reilly ex-

tensions, in the following way:

Theorem 4.28 Let S be a semigroup, T1 and T2 be isomorphic semigroups such

that S = T1 ∪ T2 and T1 ∩ T2 = ∅. Suppose that T ∼= T1 is a homomorphic image

of S. If S is finitely presented then T is finitely presented.

Proof. We can rewrite T1 and T2 in the following way:

Ti = {ti : t ∈ T}, i = 1, 2.

T is an homomorphic image of S, so there exists a morphism η : S −→ T, ti 7→ t.

Let < A | R > be a presentation for S, where A and R are finite. Let x ∈ T be

arbitrary, since T is a homomorphic image of S, there exists y ∈ A+, such that

x = yη. Writing y as a product of letters from A, say y ≡ a1a2 . . . an, we obtain

x = (a1a2 . . . an)η = (a1)η(a2)η . . . (an)η,

so Aη generates T . Thus T is finitely generated. For any generator x of S there

exists a1, a2 ∈ A∗, with a1 ∈ T1, a2 ∈ T2, and a ∈ Aη such that

xη = a1η = a2η = a.

We will see that the presentation

< A | R, a1 = a2, (a ∈ Aη) >,

where x ∈ A represents the generator element xη of T , defines the semigroup

T . Note that saying that a relation x = y holds in T is equivalent to say that

xη = yη. Let u = v be an arbitrary relation in R, η is a morphism so uη = vη,

hence u = v holds in T . For all a ∈ Aη we have

a1η = a, a2η = a ⇒ a1η = a2η,
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so a1 = a2 holds in T , for all a ∈ Aη. Let x = y be an arbitrary relation holding

in T , x, y ∈ A+. Suppose that x, y ∈ Ti, for some i ∈ {1, 2}, then

xη = yη ⇔ xη|Ti
= yη|Ti

⇔ x = y,

since η|Ti
is a bijection, i ∈ {1, 2}. Hence, the relation x = y holds in S, so it

is a consequence of R. Suppose that x ∈ T1 and y ∈ T2. The word x belongs

to S so we can write it as a product of generators of S, say x ≡ ai1a
(1)
i2
. . . a

(r)
ir

,

i1, i2, . . . , ir ∈ {1, 2}, and we know that for every generator ai of S, a is a generator

of T . So, applying the relation a1 = a2, a ∈ Aη to all elements in the

decomposition of x that belong to T1, we obtain

x ≡ ai1a
(1)
i2
. . . a

(r)
ir

= a2a
(1)
2 . . . a

(r)
2 ,

and, since a2a
(1)
2 . . . a

(r)
2 and y belong to T2, we are back in the first case. Hence

x = y in T is a consequence of the relations R and a1 = a2, a ∈ Aη. We

conclude that T is defined by the presentation above, and since A and R are

finite it follows that T is finitely presented. �

Note: In general, a subsemigroup of a finitely presented semigroup need not

be finitely presented.

Returning to the Bruck-Reilly extension BR(S, θ), we will see that the con-

verse of Theorem 4.27 holds.

Theorem 4.29 If D1 is finitely presented then BR(S, θ) is finitely presented.

Proof. Suppose that D1 is finitely presented, then D0 is also finitely pre-

sented. Let B0 and B1 be finite generating sets for D0 and D1, respectively.

Since BR(S, θ) is the disjoint union of D0 and D1, the set B0 ∪ B1 generates

BR(S, θ), see [3, Proposition 3.1], so this monoid is finitely generated. D1 is a
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finitely presented Bruck-Reilly extension of the group G1 so, by Theorem 4.13,

G1 can be defined by a presentation < A1 | R1 > where A1 is finite and

R1 =
⋃
k≥0

R1θ
k
1 = {uθk

1 = vθk
1 : k ≥ 0, (u = v) ∈ R1}

with R1 ⊆ A∗
1 × A∗

1 finite. D0 is a finitely presented Bruck-Reilly extension of

the group G0, isomorphic to D1, so we can consider a presentation for it that is

a copy of the presentation of D1, let it be < A0 | R0 >. From Proposition 4.21

we obtain the following presentation for the Clifford monoid S:

< A0, A1 | R0, R1, 10a1 = a110 = a0, 1011 = 1110, 11 = 1, (a1 ∈ A1) >,

then, by Proposition 4.2, we have

BR(S, θ) ∼= < A0, A1, b, c | R0, R1, 1011 = 1110, 11 = 1,

bc = 1, 10x0 = x010 = x1, ba = (aθ)b,

ac = c(aθ), (a ∈ A0 ∪ A1, x1 ∈ A1) > .

Let u = v be an arbitrary relation in R1 and k ≥ 0, then

uθk
1 = vθk

1 ⇔ uθk = vθk

since θ1 coincides with θ in G1 and R1 is a set of relations in G1. We know that

for all u ∈ A1 the relation uθk = bkuck is a consequence of the relations

ba = (aθ)b, ac = c(aθ), bc = 1, (a ∈ A0 ∪ A1),

hence, uθk = vθk is a consequence of

R1, ba = (aθ)b, ac = c(aθ), bc = 1, (a ∈ A0 ∪ A1),
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so the set R1 can be replaced by R1 in the presentation of BR(S, θ). Consider

now an arbitrary relation u = v in R0, and k ≥ 0 arbitrary. Then

uθk
0 = vθk

0 ⇔
⇔ (uθk−1

0 )θ0 = (vθk−1
0 )θ0

⇔ ((uθk−1
0 )θ)0 = ((vθk−1

0 )θ)0 (def. θ0)
⇔ (((uθk−2

0 )θ)0)θ)0 = (((vθk−2
0 )θ)0)θ)0 (def. θ0)

⇔ (((uθk−2
0 )θ)θ)0 = (((vθk−2

0 )θ)θ)0 (Claim 10)
⇔ ((uθk−2

0 )θ2)0 = ((vθk−2
0 )θ2)0

· · ·
⇔ (uθk)0 = (vθk)0

⇔ (bkuck)0 = (bkvck)0,

this last step is a consequence of the relations

ba = (aθ)b, ac = c(aθ), bc = 1, (a ∈ A0 ∪ A1).

If k = 0 the words bkuck and bkvck belong to D0, so the relation (bkuck)0 =

(bkvck)0 is equivalent to u = v. If k > 0 then bkuck and bkvck belong to D1 and

we have

(bkuck)0 = (bkvck)0 ⇔ (bkuck)φ1,0 = (bkvck)φ1,0,

since φ1,0 is a morphism this is a consequence of bkuck = bkvck. Hence uθk
0 = vθk

0

is a consequence of the relations

R0, ba = (aθ)b, ac = c(aθ), bc = 1, (a ∈ A0 ∪ A1).

So BR(S, θ) is defined by the presentation

< A0, A1, b, c | R0, R1, 1011 = 1110, 11 = 1,

bc = 1, 10x = x10, ba = (aθ)b,

ac = c(aθ), (a ∈ A0 ∪ A1, x ∈ A1) >,

and, since A0, A1, R0 and R1 are finite, it follows that BR(S, θ) is finitely

presented. �

In conclusion, we have:
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Theorem 4.30 Let G be a group, Gi = {gi : g ∈ G}, i = 0, 1, two copies

of G and S the Clifford monoid S({0, 1}; {G0, G1}, φ1,0), where φ1,0 : G1 −→
G0, g1 7→ g0. Let BR(S, θ) be a Bruck-Reilly extension of S. Then, the D-classes

of BR(S, θ) are Bruck-Reilly extensions of the groups G0 and G1 and BR(S, θ)

is finitely presented if and only if its D-classes are finitely presented.

4.3 Clifford monoid that is the union of two groups linked
by the morphism φ1,0 : x 7→ 10

Let Y be the semilattice

 0

1

and G0, G1 be any two groups. Define a map φ1,0 : G1 −→ G0, x 7→ 10 where

10 is the identity of G0. For any x, y ∈ G1 we have

(xy)φ1,0 = 10, xφ1,0yφ1,0 = 1010 = 10,

so φ1,0 is a morphism. Let S be the Clifford monoid S(Y ; {G0, G1}, φ1,0) and θ

any homomorphism from S into its group of units, G1. Consider the Bruck-Reilly

extension of S, BR(S, θ).

Like in section 4.2, we can see that the D-class, N0 ×G1 ×N0, of BR(S, θ),

is the Bruck-Reilly extension BR(G1, θ1), where θ1 is the restriction of θ to G1.

We will denote this Bruck-Reilly extension by D1. Define a map in G0

θ0 : G0 −→ G0, x 7→ 10,

like we did to φ1,0, we can see that θ0 is a morphism. Let D0 be the Bruck-Reilly

extension BR(G0, θ0). Given any two elements (m, g, n), (p, h, q) in N0×G0×N0,

and supposing, without loss of generality, that n > p, their multiplication in

BR(S, θ) is

(m, g, n)(p, h, q) = (m, g(hθn−p), q − p+ n)
= (m, g((hθn−p)φ1,0), q − p+ n) = (m, g10, q − p+ n),
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and multiplying these two elements in D0, we obtain

(m, g, n)(p, h, q) = (m, g(hθn−p
0 ), q − p+ n)

= (m, g(10θ
n−p−1
0 ), q − p+ n) = (m, g10, q − p+ n),

so we can think in the D-class of BR(S, θ), N0 ×G0 × N0, as the Bruck-Reilly

extension D0. We have proved the following:

Theorem 4.31 BR(S, θ) is the disjoint union of its D-classes, D0 and D1, and

these are Bruck-Reilly extensions of groups.

Now we will, as in section 4.2, relate the finite presentability of BR(S, θ) with

the finite presentability of its D-classes.

Theorem 4.32 BR(S, θ) is finitely generated if and only if its D-classes, D0

and D1, are finitely generated.

Proof. Suppose that BR(S, θ) is finitely generated, then, repeating the argu-

ments we have used in the proof of Theorem 4.26, we can see that D1 is finitely

generated. Suppose that BR(S, θ) is generated by the finite setM , since BR(S, θ)

is the disjoint union of D0 and D1, M is the disjoint union of M0 and M1, where

Mi = M ∩ Di, i ∈ {0, 1}. Let (m, g, n) be an arbitrary element of D0, we can

write it as a product of elements in M0 ∪M1, and in this product we must have

at least one element of M0, since a product of elements of D1 clearly belongs to

D1. Define a set

M ′
1 = {(m, 10, n) : ∃ x ∈ G1 such that (m,x, n) ∈M1}.

Claim 14 M0 ∪M ′
1 generates D0.

Proof. Let (m, g, n) be an arbitrary element of D0, since M0 ∪M1 generates

BR(S, θ), we can write (m, g, n) as a product of k elements in this set, for some
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k ∈ N. We will show, by induction on k, that (m, g, n) can be written as a

product of elements in M0 ∪M ′
1.

If k = 1 the element (m, g, n) must belong to M0, since M1 ⊆ D1.

Suppose that for all k ≤ l, (m, g, n) can be written as a product of elements

from M0 ∪M ′
1. Let k = l + 1, we have

(m, g, n) = (m1, g1, n1) . . . (ml, gl, nl)(ml+1, gl+1, nl+1),

for some (m1, g1, n1), . . . , (ml+1, gl+1, nl+1) ∈M0∪M1. Let (p, h, q) be the product

of the first l elements in this decomposition, i.e.

(p, h, q) = (m1, g1, n1) . . . (ml, gl, nl).

· If (p, h, q) ∈ D0 then, by the hypothesis of induction, it can be written as a

product of elements from M0 ∪M ′
1. If (ml+1, gl+1, nl+1) ∈M0, all the elements

of our product belong to M0 ∪M ′
1. If (ml+1, gl+1, nl+1) ∈M1 we have

(p, h, q)(ml+1, gl+1, nl+1) = (p− q + t, (hθt−q)(gl+1θ
t−ml+1), nl+1 −ml+1 + t),

where t = max(q,ml+1), if q = ml+1 we obtain

(p, hg, nl+1) = (p, h(gφ1,0), nl+1) = (p, h10, nl+1) = (p, h, q)(ml+1, 10, nl+1),

that is in the form we wanted, if q > ml+1 we obtain

(p, h(gθq−ml+1), nl+1 −ml+1 + q) = (p, h((gθq−ml+1)φ1,0)), nl+1 −ml+1 + q)
= (p, h10, nl+1 −ml+1 + q) = (p, h, q)(ml+1, 10, nl+1),

if q < ml+1 the product becomes

(p− q +ml+1, (gθml+1−q)h, nl+1)

but this belongs to D1, so this case cannot happen.

· If (p, h, q) ∈ D1 then (ml+1, gl+1, nl+1) must belong to M0. Suppose that

(mi, gi, ni) is the first element, counting from the right, in the product

(p, h, q) = (m1, g1, n1) . . . (ml, gl, nl)
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that belongs to M1, and define

(p′, h′, q′) = (m1, g1, n1) . . . (mi−1, gi−1, ni−1).

The elements

(mi+1, gi+1, ni+1), . . . , (ml, gl, nl), (ml+1, gl+1, nl+1)

belong to M0, so their product is in D0. Since (p, h, q) ∈ D1, and we removed

from this product only elements of M0, the product (p′, h′, q′)(mi, gi, ni) must be

in D1. The element (mi, gi, ni) is in M1, so we have

Claim 15 The product

(mi, gi, ni) . . . (ml, gl, nl)(ml+1, gl+1, nl+1)

belongs to D0.

Proof. Let (α, u, β) ∈ BR(S, θ), (γ, v, ι) ∈ D0 and (δ, r, ϑ) ∈ D1 be such that

(α, u, β)(δ, r, ϑ), (δ, r, ϑ)(γ, v, ι) ∈ D1, and (α, u, β)(δ, r, ϑ)(γ, v, ι) ∈ D0.

We have

(δ, r, ϑ)(γ, v, ι) ∈ D1 ⇔ ϑ > γ,

then, if δ > β we have

(α, u, β)(δ, r, ϑ)(γ, v, ι) = (α− β + δ, (uθδ−β)r, ϑ)(γ, v, ι)
= (α− β + δ, (uθδ−β)r(vθϑ−γ), ι− γ + ϑ) ∈ D1,

if δ = β then

(α, u, β)(δ, r, ϑ)(γ, v, ι) = (α, ur, ϑ)(γ, v, ι)
= (α, ur(vθϑ−γ), ι− γ + ϑ) ∈ D1,

finally, if δ < β, we must have u ∈ G1, and we know that ϑ − δ + β > γ, it

follows that

(α, u, β)(δ, r, ϑ)(γ, v, ι) = (α, u(rθβ−δ), ϑ− δ + β)(γ, v, ι)
= (α, u(rθβ−δ)(vθ(ϑ−δ+γ)−γ), ι− γ + ϑ− δ + β) ∈ D1,
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so, in all cases we have a contradiction. We conclude that, since

(p′, h′, q′) ∈ D0 ∪D1, (mi, gi, ni) ∈ D1,
(mi+1, gi+1, ni+1) . . . (ml, gl, nl)(ml+1, gl+1, nl+1) ∈ D0

and

(p′, h′, q′)(mi, gi, ni) ∈ D1,
(p′, h′, q′)(mi, gi, ni)(mi+1, gi+1, ni+1) . . . (ml, gl, nl)(ml+1, gl+1, nl+1) ∈ D0,

we must have

(mi, gi, ni)(mi+1, gi+1, ni+1) . . . (ml, gl, nl)(ml+1, gl+1, nl+1) ∈ D0.

�

By the induction hypothesis, the product

(mi, gi, ni) . . . (ml, gl, nl)(ml+1, gl+1, nl+1)

can be written as a product of elements in M0 ∪M ′
1. Note that if i = 1 the case

is equivalent to the case “(p, h, q) ∈ D0” since we can read the multiplication

from right to left, so this product contains at most l elements. If (p′, h′, q′) ∈ D0

then, by the induction hypothesis, it can be written as a product of elements in

M0 ∪M ′
1. If (p′, h′, q′) ∈ D1 we repeat the process we used for (p, h, q), with the

product

(mi, gi, ni) . . . (ml+1, gl+1, nl+1)

written as a product of elements in M0 ∪M ′
1.

We conclude that M0 ∪M ′
1 generates D0 �

Since M1 and M0 are finite we know that M0∪M ′
1 is finite, hence D0 is finitely

generated.

Conversely, suppose that D0 and D1 are finitely generated. Then BR(S, θ) is

finitely generated, by [3, Proposition 3.1]. �
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Theorem 4.33 If D1 and D0 are finitely presented then BR(S, θ) is finitely pre-

sented.

Proof. Suppose that D1 and D0 are finitely presented. Like in Theorem 4.29,

we obtain the following presentation for BR(S, θ) :

< A0, A1, b, c | R0, R1, 1011 = 1110, 11 = 1,

bc = 1, 10x = x10, ba = (aθ)b,

ac = c(aθ), (a ∈ A0 ∪ A1, x ∈ A1) >,

where A0 and A1 are finite sets generating G0 and G1 respectively,

R0 =
⋃
k≥0

R0θ
k
0 = {uθk

0 = vθk
1 : k ≥ 0, (u = v) ∈ R0}

where R0 is a finite subset of A∗
0 × A∗

0, and

R1 =
⋃
k≥0

R1θ
k
1 = {uθk

1 = vθk
1 : k ≥ 0, (u = v) ∈ R1},

where R1 is a finite subset of A∗
1 × A∗

1. Since θ1 is the restriction of θ to G1 we

can see, like on Theorem 4.29, that the relations in R1 are a consequence of the

relations

R1, bc = 1, ba = (aθ)b, ac = c(aθ), (a ∈ A0 ∪ A1).

Let uθk
0 = vθk

0 be an arbitrary relation in R0. If k = 0 the relation u = v

belongs to R0, and if k > 0 we obtain

uθk
0 = vθk

0 ⇔ 10 = 10,

by definition of θ0. So, for k > 0, the sets of relations R0θ
k and R1θ

k are

redundant. It follows that BR(S, θ) is defined by the presentation

< A0, A1, b, c | R0, R1, 1011 = 1110, 11 = 1,

bc = 1, 10x = x10, ba = (aθ)b,

ac = c(aθ), (a ∈ A0 ∪ A1, x ∈ A1) >,

hence, it is finitely presented. �
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Theorem 4.34 If BR(S, θ) is finitely presented then its D-classes are finitely

presented.

Proof. Suppose that BR(S, θ) is finitely presented. By Propositions 4.14 and

4.15 we know that S is defined by the presentation < A | R > where

A =
⋃
k≥0

Aθk and R =
⋃
k≥0

Rθk,

for a finite subset A of S and some finite set of relations R ⊆ A∗ × A∗. A can

be written in the form A0 ∪ A1 where Ai ⊆ Gi, i = 1, 2.

Claim 16 G1 is generated by A1, subject to the set of relations

(
⋃
k>0

Rθk) ∪ {u = v : (u = v) ∈ R, u, v ∈ A∗
1}.

Proof. Since the only way of obtaining an element of G1 is as a product of

elements of G1, the set A1 generates G1. For all u ∈ A∗ and k > 0, uθk belongs

to G1, and this group is generated by A1, so uθk is a product of elements in

A1. Let uθk = vθk be any relation in
⋃

k>0 Rθk, this relation holds in S and

uθk, vθk belong to A∗
1, so uθk = vθk must hold in G1. Similarly,

{u = v : (u = v) ∈ R, u, v ∈ A∗
1}

holds in G1. Consider now x = y an arbitrary relation in G1, this relation holds

in S, since G1 is a subgroup of S, so it is a consequence of R. The words x, y

belong to A∗
1, so x = y must be a consequence of

(
⋃
k>0

Rθk) ∪ {u = v : (u = v) ∈ R, u, v ∈ A∗
1},

since if we have a relation α = β where the word α contains a letter from

A0, then α ∈ G0, and we cannot obtain a relation involving elements of G1

as a consequence of this relation. It follows that G1 is defined by the monoid
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presentation

< A1 | u = v, ((u = v ∈ R, u, v ∈ A∗
1)

xθk = yθk, (k > 0, (x = y) ∈ R) > .

�

From Theorem 4.32 we know that BR(G1, θ1) is finitely generated, then,

applying Proposition 4.2, there exists a finite subset of A1, say A′
1, such that

BR(G1, θ1) is defined by the presentation

< A′
1, b, c | u = v, ((u = v) ∈ R, u, v ∈ A′

1
∗
)

xθk = yθk, (k > 0, (x = y) ∈ R)

bc = 1, ba = (aθ1)b, ac = c(aθ1), (a ∈ A′
1) > .

The relations xθk = yθk, with k > 0 and (x = y) ∈ R can be rewritten as

follows:

xθk = yθk ⇔ (xθ)θk−1 = (yθ)θk−1 ⇔ (xθ)θk−1
1 = (yθ)θk−1

1 ,

and we know that (yθ)θk−1
1 = bk−1(yθ)ck−1 is a consequence of the relations

bc = 1, ba = (aθ1)b, ac = c(aθ1), (a ∈ A′
1)

so xθk = yθk is a consequence of these relations and of the relations

xθ = yθ, (x = y) ∈ R,

hence

D1
∼= < A′

1, b, c | u = v, ((u = v) ∈ R, u, v ∈ A′
1
∗
)

xθ = yθ, ((x = y) ∈ R)

bc = 1, ba = (aθ1)b, ac = c(aθ1), (a ∈ A′
1) > .

Thus D1 is finitely presented.

Let < Q | T > be a finite presentation defining BR(S, θ). By Theorem 4.32,
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we know that D0 is generated by Q0 ∪Q′
1, where Qi = Q ∩Di, i = 1, 2, and

Q′
1 = {q′ : q ∈ Q1},

where q represents the element (m, g, n) generating D1 and q′ represents the

element (m, 10, n) in D0. Define a map

Q0 ∪Q1 −→ Q0 ∪Q′
1, q 7→

{
q if q ∈ Q0

q′ if q ∈ Q1

We know that if q0 ∈ Q0, q1 ∈ Q1 and q0q1 ∈ D0, then q0q1 = q0q
′
1. Let

φ : (Q0∪Q1)
∗ −→ (Q0∪Q′

1)
∗ be the natural homomorphism defined by the map

above. Note that φ is a bijection, so φ−1 exists and is an isomorphism. For any

q′ ∈ Q′
1, q′ belongs to BR(S, θ), and this semigroup is generated by Q0 ∪Q1, so

we can write q′ as a product of elements from Q0 ∪Q1, i.e.

∀ q′ ∈ Q′
1 ∃ q′ψ ∈ (Q0 ∪Q1)

∗ : q′ = q′ψ in BR(S, θ).

We note that, since q′ ∈ D0, the word q′ψ must contain at least one letter from

Q0. Let q′ψ = q0q1 . . . qn, where qi ∈ Q0 ∪ Q1, and suppose, without loss of

generality, that q0 ∈ Q0, then

(q′ψ)φ = (q0q1 . . . qn)φ = q0φq1φ . . . qnφ
= q0q

′
1 . . . q

′
n = q0q1 . . . qn = q′ψ,

so the relations q′ = q′ψ = (q′ψ)φ hold in BR(S, θ), and q′, (q′ψ)φ ∈ D0, hence,

the relation q′ = ((q′ψ)φ holds in D0. Now we will see that the presentation

< Q0, Q
′
1 | uφ = vφ, ((u = v) ∈ T, u, v ∈ D0) (4.7)

q′ = (q′ψ)φ, (q′ ∈ Q′
1) > (4.8)

defines D0. We have already seen that the relation (4.8) holds in D0, so let u = v

be an arbitrary relation in T, with u, v ∈ D0. Then u = v holds in D0 and φ is

a morphism, so uφ = vφ holds in D0.

Claim 17 Let w1, w2 ∈ D0. If w2 can be obtained from w1 by using relations

from T, then w2φ can be obtained from w1φ by using relations (4.7).
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Proof. Suppose that the relation w1 = w2 is a consequence of T, with

w1, w2 ∈ D0. Without loss of generality suppose that w2 is obtained from w1 by

using one relation from T. Then there exists α, β ∈ (Q0 ∪ Q1)
∗ and a relation

(u = v) ∈ T, with u, v ∈ D0, such that w1 ≡ αuβ, w2 ≡ αvβ, it follows that

w1φ ≡ (αuβ)φ ≡ αφuφβφ,
w2φ ≡ (αvβ)φ ≡ αφvφβφ,

where αφ, βφ ∈ (Q0 ∪ Q′
1)

∗ and uφ = vφ is a relation in (4.7), so w2φ can

be obtained from w1φ by using one relation from (4.7). We conclude that if

w1 = w2 is a relation in D0 that is a consequence of T, then w1φ = w2φ is a

consequence of (4.7). �

Let x = y be any relation in D0, x, y ∈ (Q0 ∪ Q′
1)

∗. First suppose that x

and y are a product of letters in Q0 and Q′
1, say x ≡ x1x2 . . . xn, y ≡ y1y2 . . . yr,

then
x ≡ x1x2 . . . xn = (x1x2 . . . xn)φ−1,
y ≡ y1y2 . . . yr = (y1y2 . . . yr)φ

−1,

it follows that (x1x2 . . . xn)φ−1 = (y1y2 . . . yr)φ
−1 holds in BR(S, θ), so it is a

consequence of T, then, by Claim 17, the relation

((x1x2 . . . xn)φ−1)φ = ((y1y2 . . . yr)φ
−1)φ ⇔ x = y

is a consequence of (4.7). If x, y are a product of letters from Q′
1, we know that

x = xψ and y = yψ, then the relation xψ = yψ holds in BR(S, θ), so it is a

consequence of T. By Claim 17 the relation (xψ)φ = (yψ)φ is a consequence of

(4.7), and by relations (4.8), we have

x = (xψ)φ = (yψ)φ = y,

so x = y is a consequence of (4.7) and (4.8). Thus

< Q0, Q
′
1 | (4.7), (4.8) >

defines D0, and we conclude that D0 is finitely presented. �
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4.4 Bruck-Reilly extension determined by the morphism
that maps all elements to the identity

Let S be a Clifford monoid S(Y ;Gα, φα,β), and θ the morphism that maps all

elements of S to its identity, 1. Let T be the Bruck-Reilly extension of S defined

by θ. We will represent by e the identity of the semilattice Y .

As in the last two sections, we will investigate the D-classes of this Bruck-

Reilly extension, and look for conditions for its finite presentability.

Theorem 4.35 The D-classes of the Bruck-Reilly extension T = BR(S, θ) are

Bruck-Reilly extensions of groups.

Proof. We have seen that the D-classes of BR(S, θ) are the sets N0×Gα×N0

with α ∈ Y . Let θα be the morphism that maps all elements of Gα to its

identity, 1α, α ∈ Y . Define a multiplication in N0 × Gα × N0, α ∈ Y , by the

rule

(m, g, n)(p, h, q) = (m− n+ t, (gθt−n
α )(hθt−p

α ), q − p+ t),

where t = max(n, p). Let α ∈ Y , and (m, g, n), (p, h, q) ∈ N0 × Gα × N0, be

arbitrary. Suppose, without loss of generality, that p > n, then multiplying these

elements, using the multiplication defined above, we obtain

(m− n+ p, (gθp−n
α )h, q) = (m− n+ p, 1αh, q) = (m− n+ p, h, q),

and multiplying this elements in BR(S, θ), we obtain

(m− n+ p, (gθp−n)h, q) = (m− n+ p, 1h, q)
= (m− n+ p, (1φe,α)h, q) = (m− n+ p, 1αh, q) = (m− n+ p, h, q),

note that the identity of S, 1, belongs to Ge, since e is the identity of Y , and φe,α

is a morphism so it must map the identity of Ge to the identity of Gα. Since the

multiplications above coincide we can conclude that the D-classes of BR(S, θ)

are the Bruck-Reilly extensions, BR(Gα, θα), of the groups Gα, α ∈ Y . �
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Theorem 4.36 If Y is finite and BR(Gα, θα) is finitely generated, for all α ∈ Y ,

then T is finitely generated.

Proof. Suppose that for all α ∈ Y , BR(Gα, θα) is generated by the finite set

Bα, then, by [3, Proposition 3.1], T is generated by the set
⋃

α∈Y Bα, since Y is

finite we conclude that T is finitely generated. �

Theorem 4.37 If Y is finite and its D-classes, BR(Gα, θα), are finitely pre-

sented, then T is finitely presented.

Proof. Suppose that BR(Gα, θα) is finitely presented, α ∈ Y , then by Theorem

4.13, we know that Gα is defined by the presentation

< Aα, |
⋃
k≥0

Rαθ
k
α >,

where Aα is finite and Rα is a finite set of relations in A∗
α × A∗

α. Then, using

the presentations given in Propositions 4.2 and 4.21, we obtain the following

presentation for T :

<
⋃
α∈Y

Aα, b, c |
⋃
k≥0

Rαθ
k
α, 1ξ1β = 1β1ξ, 1γx = x1γ = xφσ,γ,

(α, ξ, β, γ, σ ∈ Y, ξ 6= β, σ > γ, x ∈ Aσ)

bc = 1, ba = (aθ)b, ac = c(aθ), (a ∈
⋃
α∈Y

Aα) > .

For k > 0, the set of relations

Rαθ
k
α = {uθk

α = vθk
α : (u = v) ∈ Rα}

is reduced to the relation 1α = 1α, so these relations are redundant and we can

remove them from the presentation. Then

T ∼= <
⋃
α∈Y

Aα, b, c | Rα, 1ξ1β = 1β1ξ, 1γx = x1γ = aφσ,γ,

(α, ξ, β, γ, σ ∈ Y, ξ 6= β, σ > γ, x ∈ Aσ)

bc = 1, ba = b, ac = c, (a ∈
⋃
α∈Y

Aα) >,
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with Aα, Rα finite for all α ∈ Y , and Y finite, so T is finitely presented. �

The converse of this results does not follow directly like in the other cases,

since now we have an arbitrary number of groups. Another way of finding con-

ditions for T to be finitely presented is to relate the presentation of T with the

presentation of S, and in fact we have:

Theorem 4.38 T is finitely presented (generated) if and only if S is finitely

presented (generated).

Proof. Suppose that T is finitely presented. By Propositions 4.14 and 4.15,

we know that there exists a finite subset, A, of S such that S is generated by⋃
k≥0Aθ

k, subject to the relations
⋃

k≥0 Rθk, where

R ⊆ (
⋃
k≥0

Aθk)∗ × (
⋃
k≥0

Aθk)∗

is finite. For k > 0, we have Aθk = 1 and the defining relations become

Rθk = {uθk = vθk : (u = v) ∈ R} =
= {1 = 1 : (u = v) ∈ R}.

So S is generated by the set A, and the relations Rθk are redundant for k > 0.

Hence S is defined by the presentation < A | R >, thus it is finitely presented.

The converse follows from Proposition 4.3. �

We did not use the fact that S is a Clifford semigroup, so this result holds

for the Bruck-Reilly extension of any monoid, determined by the morphism that

maps all elements of the monoid to its identity.

Now we are able to prove the converse of Theorems 4.37 and 4.38, and we

conclude that BR(S, θ) is finitely presented if and only if its D-classes are finitely

presented if and only if S is finitely presented.
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Theorem 4.39 If T is finitely presented (generated) then its D-classes are finitely

presented (generated).

Proof. Suppose that T is finitely presented (generated), by Theorem 4.38

we know that S is finitely presented (generated), then, by Theorem 4.22, Gα is

finitely presented (generated) for all α ∈ Y . It follows, by Proposition 4.3 (4.2),

that BR(Gα, θα) is finitely presented (generated) for all α ∈ Y . �

4.5 Open Problems

These three particular cases of Bruck-Reilly extensions of Clifford monoids are

the first steps in the attempt to answer the question:

Question Is a Bruck-Reilly extension of a Clifford monoid always finitely

presented if and only if its D-classes are finitely presented?

Some more particular cases that we intend to study, before considering the

general case, are:

Question Can the case studied in section 4.2 be generalized for an arbitrary

number of copies of the same group? Are these results still true if we consider an

arbitrary morphism linking the groups?

Question Considering the Clifford monoid that is the union of an arbitrary

number of groups, linked by the morphism

φα,β : Gα −→ Gβ, x 7→ 1β, α > β,

can we generalize the results in section 4.3?

Another question that arises from this dissertation is:
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Question Is a Bruck-Reilly extension of an inverse monoid finitely presented

as an inverse semigroup if and only if it is finitely presented as a semigroup?

In an attempt to answer this question we can start by considering the Bruck-

Reilly extension of an inverse semigroup that is finitely presented as a semigroup,

since the existence of an inverse semigroup that is finitely presented as an inverse

semigroup and not as a semigroup might have some influence in the solution of

this problem.
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Appendix A

Ideals and Green’s Relations

Let S be a semigroup. A non-empty subset A of S is called a left ideal of S if
SA ⊆ A. We call A a right ideal of S if AS ⊆ A. We say that A is an ideal of S
if it is both a left and a right ideal.

Let I be a proper ideal of the semigroup S. We define a congruence on S, ρI ,
by the rule

xρIy ⇔ x = y or x, y ∈ I.

The quotient semigroup of S by this congruence is the set

S/ρI = {I} ∪ {{x} : x ∈ S\I}.

Since the element I of S/ρI is the zero in this semigroup, we can think of S/ρI

as (S\I) ∪ {0} where all product not falling in S\I are zero. This quotient is
sometimes called a Rees quotient, and is denoted by S/I.

If a ∈ S, the smallest left ideal of S containing a is the set Sa ∪ {a} = S1a,
where

S1 =

{
S if S has an identity

S ∪ {1} if S does not have identity,

we call it the principal left ideal generated by a. Similarly we can define principal
right ideal and principal ideal generated by a.

We define five equivalence relations in S, called Green’s Equivalences, in terms
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of principal ideals in S. We have, for a, b ∈ S:

a L b ⇔ S1a = S1b,
a R b ⇔ aS1 = bS1,
a J b ⇔ S1aS1 = S1bS1,
a D b ⇔ ∃ c ∈ S : a R c L b,
a H b ⇔ a L b and a R b.

These equivalences are related in the following way

H ⊆ L, R ⊆ D ⊆ J .

When we are working with Green’s relations in more than one semigroup, instead
of saying that a is L related with b in the semigroup S, we can write a LS b. We
use a similar notation for all the other Green’s relations.

Some properties of the Green’s relations are resumed in the following remark,
and can be found in [6, Section 2.1].

Remark :
1. Let a, b ∈ S. Then aLb if and only if there exists x, y ∈ S1 such that
xa = b, yb = a. Also, aRb if and only if there exists u, v ∈ S1 such that
au = b, bv = a.
2. L is a right congruence and R is a left congruence.
3. The relations L and R commute.
4. If S is regular, then S1 can be replaced by S in the definition of R, L and J .

Given an element a ∈ S, we usually represent the R-class of a, i.e. the set of
all elements x in S such that xRa, by Ra. For all a, b ∈ S we have

Ra ∩Rb 6= ∅ ⇔ aRb.

We use a similar notation for the other relations, and a similar result holds.
Finally, we note that :
· each D-class is a union of L-classes and also a union of R-classes;
· the intersection of an L-class with an R-class is either empty or is an H-class.
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[1] Araújo, I., ‘Presentations for Semigroup Constructions and related Compu-
tational Methods’, Ph.D. Thesis, University of St. Andrews, 2000.
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‘Reidemeister-Schreier type rewriting for semigroups’, Semigroup forum 51
(1995), 47-62.

[5] Clifford, A. H., Preston, G. B., ‘The Algebraic Theory of Semigroups’ vol.
1, Amer. Math. Soc., Rhode Island, 1961.

[6] Howie, J. M. , ‘Fundamentals of semigroup Theory’, Claredon Press, Oxford,
1995.
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