
ABC: A New Fast Flexible Stream Cipher

Specification

Vladimir Anashin∗, Andrey Bogdanov†, Ilya Kizhvatov
Faculty of Information Security

Institute for Information Sciences and Security Technologies

Russian State University for the Humanities

{anashin, bogdanov, kizhvatov}@rsuh.ru

Sandeep Kumar ‡

Communication Security Group (COSY)

Department of Electrical Engineering and Information Sciences

Ruhr-University Bochum

kumar@crypto.rub.de

Introduction

ABC is a synchronous stream cipher optimized for software applications.
Its design offers large flexibility concerning key material usage and memory
consumption. Here we present a version of ABC with a 128-bit key and a
128-bit IV, a 32-bit non-linear filter, flexible key expansion, flexible and fast
IV setup procedures, and variable memory requirements.

∗Corresponding author
†Partially supported by the Institute for Experimental Mathematics, University of

Duisburg-Essen, Germany
‡Implementation for 8-bit processor

1

ABC: A new fast flexible stream cipher

A new approach to the stream cipher design has been used which results
in a cipher based upon key- and clock-dependent state transition and non-
linear filter functions. Our techniques guarantee the period of 232 ∙(263 − 1)
words (the longest of possible), uniform distribution, and high linear com-
plexity of the key stream of ABC.
The ABC stream cipher offers a security level of 2128. No hidden weak-

nesses have been incorporated in the design of ABC. We have found no
weaknesses of the design with respect to standard cryptanalytic attacks.
ABC can be efficiently implemented in software. Our C implementation

provides the throughput of about 7 Gbps. The flexibility property results
in the possibility of its efficient application on almost every platform by
choosing proper implementation parameters.

1 Variables and basic operations

In the description of cryptographic primitives and in the specification of
ABC we rest upon some variables which change at each step of computations:

x is a 32-bit integer value and can be represented in different ways:

x = (x31, . . . , x0) =
∑31
i=0 xi2

i ∈ Z/232Z, xi ∈ {0, 1}, i = 0, . . . , 31;

x = (x̂t−1, . . . , x̂0), x̂i ∈ Z/2wZ, i = 0, . . . , t − 1, w ∈ Z, w | 32,
t = 32/w ∈ Z;

x ∈ V32 = GF(2)32;

y is a 32-bit integer value, one way of representing it being used only:

y = (y31, . . . , y0) =
∑31
i=0 yi2

i ∈ Z/232Z, yi ∈ {0, 1}, i = 0, . . . , 31;

z is a 64-bit integer value and allows several equivalent representations too:

z = (z63, . . . , z0) =
∑63
i=0 zi2

i ∈ Z/264Z, zi ∈ {0, 1}, i = 0, . . . , 63;

z ∈ V64 = GF(2)64;

z = (z̄1, z̄0) ∈ (Z/232Z)2, z̄1, z̄0 ∈ Z/232Z.

x and z represent the current internal state of the cipher. The initial values
of x and z are defined in the course of the initialization stage. y denotes the
32-bit output of the key stream generator.
Moreover, ABC uses some further variables that are calculated from the

key and initial value at the initialization stage by applying a special key
expansion routine:

e, e0, . . . , e31 ∈ Z/232Z are 32-bit integer values;

d0 = (d0,31, . . . , d0,0), d1 = (d1,31, . . . , d1,0) ∈ Z/232Z are 32-bit integer
values.

2

ABC: A new fast flexible stream cipher

Having been defined once the variables d0, d1, e and {ei}31i=0 remain un-
changed during the whole subsequent encryption stage as distinct from x

and z.
In the description of cryptographic primitives we will also require a 32-bit

integer ζ ∈ Z/232Z for storing intermediate computation results.
To describe some optimization techniques we will need an auxiliary w-bit

integer variable j ∈ Z/2wZ:

j = (jw−1, . . . , j0) =
∑w−1
i=0 ji2

i ∈ Z/2wZ, ji ∈ {0, 1}, i = 0, . . . , w − 1.

Finally, in the description of operations below we will require a pair of
32-bit integer variables

a = (a31, . . . , a0), b = (b31, . . . , b0) ∈ Z/2
32Z, ai, bi ∈ {0, 1}, i = 0, . . . , 31,

for representing operands of some operators.
The ABC cipher requires the following operations for its specification:

Addition modulo 232, +, represents an ordinary arithmetic addition of 2
operands in Z/232Z as 32-bit integers;

Bitwise addition modulo 2, XOR, defines a binary addition of 2 operands in
V32, or bitwise exclusive ’OR’ of 2 32-bit integer operands as follows:

a XOR b = (a31 ⊕ b31, . . . , a0 ⊕ b0),

where

ai ⊕ bi =

{
0, if ai = bi,

1, otherwise;

Bitwise multiplication modulo 2, AND, defines a bitwise ’AND’ of 2 32-bit
integer operands as follows:

a AND b = (a31 ∧ b31, . . . , a0 ∧ b0),

where

ai ∧ bi =

{
1, if ai = bi = 1,

0, otherwise;

Bitwise disjunction, OR, defines a bitwise inclusive ’OR’ of 2 32-bit integer
operands as follows:

aOR b = (a31 ∨ b31, . . . , a0 ∨ b0),

where

ai ∨ bi =

{
0, if ai = bi = 0,

1, otherwise;

3

ABC: A new fast flexible stream cipher

The i-th bit selection, δi(∙), determines the i-th bit of a 32- or 64-bit inte-
ger number and can be described in the following way as applied to
respectively x, z, d1 and j:

δi : Z/232Z→ {0, 1}, δi(x) = xi, i = 0, . . . , 31,

δi : Z/264Z→ {0, 1}, δi(z) = zi, i = 0, . . . , 63,

δi : Z/232Z→ {0, 1}, δi(d1) = d1i, i = 0, . . . , 31,

δi : Z/2wZ→ {0, 1}, δi(j) = ji, i = 0, . . . , w − 1;

Bit substring selection, [∙]vu, denotes a substring of bits in positions from u

to v, u, v ∈ Z/25Z, in the binary expansion of a 32-bit integer number
and is defined as follows:

[a]vu = (δv(a), . . . , δu(a)) = (av, . . . , au), u < v,

for example,

a = 000000000000000100000000001110102,

[a]161 = 10000000000111012;

Right shift, ∙� c, denotes right zero-fill bit shift of binary expansion of a
32-bit integer number by c bits, c ∈ Z/25Z, and can be described as
follows:

a� c = (0, . . . , 0
︸ ︷︷ ︸
c

, a31, . . . , ac);

Left shift, ∙� c, denotes left zero-fill bit shift of binary expansion of a 32-bit
integer number by c bits, c ∈ Z/25Z, and can be described as follows:

a� c = (a31−c, . . . , a0, 0, . . . , 0︸ ︷︷ ︸
c

);

Right rotation, ∙≫ c, denotes right bit-wise rotation of binary expansion of
a 32-bit integer number by c bits, c ∈ Z/25Z, and can be described as
follows:

a≫ c = (ac−1, . . . , a0, a31, . . . , ac).

2 Primitives

ABC uses 3 main primitives (A, B and C respectively):

A: Z/264Z→ Z/264Z is a linear feedback shift register of length 64 (LFSR),
z representing its state;

4

ABC: A new fast flexible stream cipher

B: Z/232Z → Z/232Z represents a single cycle mapping based on arith-
metical addition in Z/232Z, bitwise addition modulo 2 (XOR), and left
bit shift (�), transforming x;

C: Z/232Z → Z/232Z specifies a filter function based on lookup tables,
arithmetical addition in Z/232Z and right bit-wise rotation (≫), as-
suming x as argument and delivering y.

A: Linear feedback shift register, counter

A is a linear transformation of the vector space V64 = GF(2)64, z = A(z),
and is defined by a LFSR. Since bit operations are relatively slow on general
purpose processors, we use a word oriented representation of the LFSR. It
is of length 64 and its characteristic polynomial is φ(θ) = ψ(θ)θ , where
ψ(θ) = θ63 + θ31 + 1 is primitive. Moreover, as in [9] we produce the next
32 bits at once, which is done as follows:

ζ ← z̄1 XOR(z̄0� 1) XOR(z̄1� 31)mod 2
32,

z̄0 ← z̄1,

z̄1 ← ζ.

(1)

It is important to stress here that the above representation is just another
(word-oriented) representation of the 63-bit LFSR with primitive polynomial
ψ(θ); we obtain two outputs from this LFSR, the first one for the state
transition procedure and the second one for updating the output function.
Thus, the cycle length of this LFSR is 263 − 1, and not 264 − 1.
This also leads to the fact that the cycle length becomes 1 in case the

initial state z = (z̄1, z̄0) of A is either (0, 0) or (0, 1). We eliminate this
danger by forcing δ1(z) to 1 in ABC key setup and IV setup procedures.

B: Single cycle function, state transition

The single cycle function B used in the ABC cipher can be specified through
the following equation:

B(x) = d0 + 5(x XOR d1)mod 2
32, (2)

where d0, d1 ∈ Z/232Z, d0 ≡ 1 (mod 2), d1 ≡ 0 (mod 4). These restrictions
guarantee that B is a single cycle map modulo 232, see Proposition 1 in
Appendix A.
Since 510 = 1012 B(x) can be computed via 1 left zero-fill shift and 1

extra addition modulo 232. The form of this function is determined at the
initialization stage (through setting the 61 bits of d0 and d1 in a key- and
IV-dependent manner).

5

ABC: A new fast flexible stream cipher

C: Filter function, output

Here we give two representations of the ABC filter C. At first the coordinate
representation is discussed. Then we show how to speed up the computation
of the function through the introduction of several tables of variable length.
Let S : Z/232Z→ Z/232Z be a mapping defined by

S(x) = e+
31∑

i=0

eiδi(x)mod 2
32, (3)

where e31 ≡ 216 (mod 217). The filter function C takes x as argument and
produces y in the following way:

ζ = S(x),

y = ζ≫ 16.
(4)

The function C is a highly non-linear mapping and is the main security
block of ABC. Its cryptographical properties are studied in detail in Ap-
pendix A. Rotation by 16 bits was chosen to enable fast implementation by
byte swapping on 8-bit and 16-bit processors.
Actually, to compute S it is not necessary to read x bitwise at each

iteration. Instead of this we can use a window technique. To give another
representation of S consider a positive integer value w 6= 1 or 32, w | 32,
i.e. w = 2, 4, 8 or 16. Now divide the bit representation of x into t = 32/w
windows, each of length w bits :

x = (x̂t−1, . . . , x̂0), x̂i ∈ Z/2
wZ, i = 0, . . . , t− 1. (5)

Let T0, . . . , Tt−1 be tables, each holding 2
w 32-bit elements. These tables

can be precomputed in the following way:

Ti[j] =
w−1∑

l=0

δl(j) ∙ ew∙i+lmod 2
32, j = 0, . . . , 2w − 1, (6)

for i = 1, . . . , t− 1 and

T0[j] = e+
w−1∑

l=0

δl(j) ∙ elmod 2
32, j = 0, . . . , 2w − 1, (7)

for i = 0. Then we can rewrite S in the corresponding way:

S(x) =
t−1∑

s=0

Ts[x̂s], x̂s ∈ Z/2
wZ, s = 0, . . . , t− 1. (8)

Using this window optimization method it is possible to vary memory con-
sumption. We have computed the respective values and give them in Table

6

ABC: A new fast flexible stream cipher

1. Depending on the available hardware or software resources, users can
select the optimal value for their specific purposes. More generally, the bit
lengths of windows do not need to be equal. For example, one can use
three windows of bit lengths 12, 12 and 8 bit respectively. This approach
makes memory consumption much more flexible. Additionally it is possible
to make no use of this optimization method in case of strictly limited mem-
ory resources. However, this approach is not recommended in applications
subject to side-channel attacks. The last case will be referred to as w = 1; it
requires 33 32-bit values e, {ei}31i=0 and therefore 132 byte of memory, which
is the minimum value for ABC.

Table 1: Memory consumption and window bit length

w = window bit length t = number of tables memory, 4 ∙ t ∙ 2w byte
2 16 256

4 8 512

8 4 4096

16 2 524288

3 Key stream generator

Now we describe the kernel of the ABC cipher. The key stream generation
routine of ABC involves the primitives described in Section 2 and consists
of 3 steps.

ABC key stream generator

Input: z ∈ Z/264Z, x ∈ Z/232Z

z ← A(z)

x← z̄1 +B(x)mod 2
32

y ← z̄0 + C(x)mod 2
32

Output: z ∈ Z/264Z, x ∈ Z/232Z, y ∈ Z/232Z

This routine generates the next 32 key stream bits, y. The newly computed
values x and z form the input of the next iteration of the key stream gener-
ation routine. Here A is a counter which makes the state transition function
and the output function clock-dependent (see Figure 1).
It is also worth noticing that the sequence of states (x; z) of the ABC key

stream generator forms a cycle of length 232 ∙ (263 − 1). The cycle is totally
determined by the LFSR A and function B: Pairwise distinct functions B
(that correspond to distinct pairs of coefficients d0, d1) determine pairwise
distinct cycles. A pair of initial states z (of the LFSR A) and x (of the
function B) determine a unique initial position on the cycle.

7

ABC: A new fast flexible stream cipher

Figure 1: ABC key stream generator.
⊕
denotes bitwise addition modulo

2 (XOR). + and � represent arithmetical addition modulo 232.

3.1 Properties of the key stream

The following properties of the key stream produced by ABC key stream
generator are proved:

• The length P of the shortest period of the key stream sequence of
32-bit words is 232 ∙ (263 − 1)

• The distribution of the key stream sequence of 32-bit words is uniform;
that is, for each 32-bit word a the number μ(a) of occurrences of a at
the period of the key stream satisfies the following inequality:

∣
∣
∣
∣
μ(a)

P
−
1

232

∣
∣
∣
∣ <

1
√
P

• The linear complexity of the key stream bit sequence exceeds 231

Proofs are given in the Appendix (see Sections A and B). Note that
it could be proved that linear complexity λ of the key stream satisfies the
inequality 231 ∙ (263− 1)+1 ≥ λ ≥ 231+1. However, a reduced model of the

8

ABC: A new fast flexible stream cipher

cipher (with reduced bit lengths of variables) shows that the lower bound
is too pessimistic: In all cases we obtained values of the linear complexity
close to the upper bound.
Note also that for a truly random sequence of length P of 32-bit words

with probability > 1− 1
232
one has

∣
∣
∣μ(a)P −

1
232

∣
∣
∣ < 1√

P
.

4 Key expansion and nonce setup

As we already mentioned at the beginning, the ABC cipher offers large vari-
ability concerning key management. This statement applies also to the key
expansion procedure. After a short preliminary remark we present several
extreme cases and some different variants of initialization routine for the
case of a 128-bit key k and a 128-bit initial value iv. Although it is up
to the user which setup procedure to employ, we define some basic routine
which seems to be optimal in general. It can be not the case for all special
cases.
For its operation the ABC cipher requires:

• 2 32-bit integer values for the initial fill of z = (z̄1, z̄0),

• 1 32-bit integer value for the initial fill of x,

• 2 32-bit integer values d0, d1 for the coefficients of B,

• 33 32-bit integer values e, {ei}31i=0 for the coefficients of C.

Altogether we have to generate 38 32-bit integer values, which makes 1195
bits of data concerning the restrictions on z̄0, d0, d1 and e31 from (1), (2)
and (3). Note that some of these bit values can be fixed and be therefore a
part of the cipher itself. Then the user has to generate the rest of the values
only. It is important to stress here that strictly speaking all the distinct key
initialization procedures defined below lead to distinct ciphers. They are
only given here in order to demonstrate the flexibility of ABC with respect to
key material usage and to provide the designer of a concrete cryptographical
system with a (relatively loose) solution framework. We hope that people
interested in secure and efficient end product can use the ideas stated here
to adjust the ABC stream cipher to their specific applications.

Extreme cases

1. Let the user disbelieve all the variants of key expansion routine sug-
gested below. Then a 1195-bit key k′ can be used and all the coeffi-

9

ABC: A new fast flexible stream cipher

cients can be filled with the subkeys directly. In this case we have:

k′ ∈ Z/21195Z,
k′ = (k̄′37, ..., k̄

′
0) ∈ (Z/2

32Z)32 × (Z/215Z)× (Z/230Z)2 × (Z/232Z)3,
k̄′i ∈ Z/2

32Z, 0 ≤ i ≤ 37, i 6= 32, 33, 34,
k̄′32 ∈ Z/2

15Z,
k̄′33, k̄

′
34 ∈ Z/2

30Z.
(9)

So the key initialization routine can be realized in the following way:

e ← k̄′0;
ei ← k̄′1+i, i = 0, . . . , 30;
e31 ← (k̄′32� 17)OR 2

16;
d0 ← (k̄′33� 2)OR 1;
δ1(d0) ← δ1(k̄

′
36);

d1 ← k̄′34� 2;
x ← k̄′35;
z̄0 ← k̄′36 OR 2;
z̄1 ← k̄′37.

(10)

It is worth putting here that there exist some attacks that require less
than 21195 operations in this case.

2. Alternatively, the user can define his own key expansion routine, say
G(k), where k is the primary key of some bit length m and

G : Z/2mZ→ Z/21195Z. (11)

Then by setting k′ ← G(k) we come to the previous case and proceed
with (10). G(k) has to satisfy the properties of a hash function, that
is,

(a) preimage resistance,

(b) second preimage resistance,

(c) collision resistance,

(d) strong propagation of changes in preimage k onto the image G(k).

A review of the first three properties can be found in [18].

3. Let the user have extremely restricted computational resources at his
disposal for some reasons and wish to significantly speed up the ini-
tialization phase. Then it can be advisable he fix e, {ei}31i=0 and some
bits of d0, d1, taking the values e, {ei}31i=0, d0, d1 with some statistical
requirements fulfilled (a set of such values can be found in Table 2):

e = e,

ei = ei, i = 0, . . . , 31,
d0 = d0,

d1 = d1,

10

ABC: A new fast flexible stream cipher

and fill the rest of the cipher state only. Note that the fixed coefficients
d0, d1 and e31 satisfy the restrictions imposed by (2) and (3). Here
we state no security properties of this type of key initialization and
declaim no security level of this solution. The properties of this key
initialization routine are to be studied in more detail.

Table 2: Coefficients for key setup routines, in hexadecimal notation

d0 = 0C376D75 e9 = EAA84751 e21 = 923DDD55

d1 = BBB5B0B4 e10 = 77F1CE29 e22 = A6461E22

e = A883B17D e11 = EB94AD46 e23 = CBF825B8

e0 = 8BBC7B0A e12 = FFD624D0 e24 = 1139265E

e1 = E774A906 e13 = 89581695 e25 = B9CF4535

e2 = 13040EC0 e14 = F0BBFBD3 e26 = E7C87F14

e3 = EA149BD0 e15 = 83404B20 e27 = F4F855D3

e4 = 32E3281D e16 = 9E66ABEA e28 = 7C77F154

e5 = 38C15589 e17 = 798CE417 e29 = 46C0F13C

e6 = BDC92EA9 e18 = 8D1ADFB3 e30 = 2D1229E6

e7 = 6B587BA0 e19 = B8C6BF9F e31 = CF390000

e8 = E1009816 e20 = 3BBAD552

Note that instead of the fixed coefficients of C it is preferable to use
the fixed optimization tables {Ti}

t−1
i=0 precomputed from e, {ei}

31
i=0 for

a window of size w bits in the following way:

Ti[j] =
w−1∑

l=0

δl(j) ∙ ew∙i+lmod 2
32, j = 0, . . . , 2w − 1, (12)

for i = 1, . . . , t− 1 and

T0[j] = e+
w−1∑

l=0

δl(j) ∙ elmod 2
32, j = 0, . . . , 2w − 1, (13)

for i = 0.

Let k be the key of length 96 bit,

k ∈ Z/296Z,
k = (k̄2, k̄1, k̄0) ∈ (Z/232Z)3, k̄i ∈ Z/232Z, i = 0, . . . , 2.

Then the key initialization stage can be carried out in the following

11

ABC: A new fast flexible stream cipher

way:
e ← e;
ei ← ei, i = 0, . . . , 31;
d0 ← d0;
δ1(d0) ← δ1(d0) XOR δ1(k̄1);
d1 ← d1;
x ← k̄2;
z̄0 ← k̄1 OR 2;
z̄1 ← k̄0.

For a 128-bit key k,

k ∈ Z/2128Z,
k = (k̄3, k̄2, k̄1, k̄0) ∈ (Z/232Z)4, k̄i ∈ Z/232Z, i = 0, . . . , 3,

the key initialization stage can be performed as follows:

e ← e;
ei ← ei, i = 0, . . . , 31;
d0 ← d0;

[d0]
17
2 ← [d0]

17
2 XOR

[
k̄3
]15
0
;

δ1(d0) ← δ1(d0) XOR δ1(k̄1);
d1 ← d1;

[d1]
17
2 ← [d1]

17
2 XOR

[
k̄3
]32
16
;

x ← k̄2;
z̄0 ← k̄1 OR 2;
z̄1 ← k̄0.

Note that the user does not have to compute the optimization tables
for the efficient computation of S since S is fixed. In this case some
additional effort is required to select the appropriate values of the
coefficients. This can be a subject of the further work.

The last case may require several runs of the state transition function
with feedback before allowing it to produce some output in order for the
diffusion characteristics to be acceptable. A similar technique is used in one
of the following key expansion methods. But there are applications that do
not require this warmup.

Standard case

As standard we regard the case involving no fixed bits of the coefficients
of B or C except for those implied by (1), (2) and (3) and using a 128-bit
primary key and a 128-bit initial value. In all the following cases let k be
the 128-bit primary key,

k ∈ Z/2128Z, k = (k̄3, ..., k̄0) ∈ (Z/2
32Z)4, (14)

12

ABC: A new fast flexible stream cipher

and iv be a 128-bit initial value,

iv ∈ Z/2128Z, iv = (īv3, ..., īv0) ∈ (Z/2
32Z)4. (15)

By applying the notation from (11) we get m = 128. So we need to
specify the key expansion function G : Z/2128Z → Z/21195Z and obtain
k′ ∈ Z/21195Z as a result.

1. A 128-bit version of C. This mapping is a version of the primitive
C with 128-bit arguments and coefficients. To guarantee some good
properties of the mapping we use 128-bit coefficients of a special form
and take 2 similar 128-bit mappings in sequence. Let u be the first
function and v the second one. They can be specified through the
corresponding sets of coefficients:

u(x) = α+
∑127
i=0 αiδi(x)mod 2

128,

v(x) = β +
∑127
i=0 βiδi(x)mod 2

128,

(16)

where x ∈ Z/2128Z, δi : x 7→ xi, i = 0, . . . , 127, selects the i-th bit
of x. α and β are in Z/2128Z and have 1 in their least significant
binary positions (δ0(α) = δ0(β) = 1), the other bits being specified at
will. α0 and β127 are in Z/2128Z and have 1 in their least significant
binary positions, 0 in the next-to-least binary positions (α0 ≡ β127 ≡ 1
(mod 4)), the other bits being specified at will. α127 = 2

127 ∈ Z/2128Z,
β0 = 2

127 ∈ Z/2128Z. αi, i = 1, 2, . . . , 126, has 0 in bits 0, 1, . . . , i − 1
and 1 in bit i, the other bits being specified at will. βi, i = 1, 2, . . . , 126,
has 0 in bits 0, 1, . . . , 126− i and 1 in bit 127− i, the other bits being
specified at will. Then we define the function h : Z/2128Z→ Z/2128Z
as the subsequent application of u and v to x:

h : x 7→ v(u(x)), (17)

and define function h2(k) = h(h(k)). u and v are both single cycle
functions. This property excludes the possibility to face two equiva-
lent values of k′ using different values of k in the following key setup
algorithm:

Input: k = (k̄3, . . . , k̄0)

Temporary variables: i

k ← h2(k);

for i from 0 to 7 do

k ← h(k);

k̄′4∙i ← k̄0;

k̄′4∙i+1 ← k̄1;

13

ABC: A new fast flexible stream cipher

k̄′4∙i+2 ← k̄2;

k̄′4∙i+3 ← k̄3;

end for

k ← h(k);

k̄′32 ←
[
k̄0
]30
0
;

k̄′33 ←
[
k̄1
]29
0
;

k̄′34 ←
[
k̄2
]29
0
;

k̄′35 ← k̄3;

k ← h(k);

k̄′36 ← k̄0;

k̄′37 ← k̄1;

Output: k′ = (k̄′37, . . . , k̄
′
0)

To be able to use u and v in this algorithm it is necessary to somehow
define their coefficients. The transformation h could be used as a
good stream cipher itself but for its relatively low throughput (about
1,3 Gbps on a standard 3,2 GHz Intel Pentium 4 processor).

2. AES round function. In this case the function G uses the non-linear
round function of AES (without adding any subkeys) for a 128-bit
block as a primitive. Let f denote the round function of AES:

f : Z/2128Z→ Z/2128Z.

f performs 16 byte substitutions, 3 right byte rotations, and 1 matrix
multiplication. It is well known [21] that this function turns out be
to statistically good after 3 subsequent applications. Moreover, the
change of a single bit spreads to the whole block after 2 rounds for
128-bit blocks. We build G relying upon these facts. Having defined
f2(k) = f(f(k)) and f3(k) = f(f2(k)), we can specify G through the
following algorithm, the idea similar to that in [11] being used:

Input: k = (k̄3, . . . , k̄0)

Temporary variables: c ∈ Z/2128Z, i

c← f2(k);

for i from 0 to 7 do

k ← f3(k) XOR c;

k̄′4∙i ← k̄0;

k̄′4∙i+1 ← k̄1;

k̄′4∙i+2 ← k̄2;

k̄′4∙i+3 ← k̄3;

14

ABC: A new fast flexible stream cipher

end for

k ← f3(k) XOR c;

k̄′32 ←
[
k̄0
]30
0
;

k̄′33 ←
[
k̄1
]29
0
;

k̄′34 ←
[
k̄2
]29
0
;

k̄′35 ← k̄3;

k ← f3(k);

k̄′36 ← k̄0;

k̄′37 ← k̄1;

Output: k′ = (k̄′37, . . . , k̄
′
0)

3. Self-initialization with feedback. In this case G is based upon
the key stream generator of ABC, defined in Section 3 as algorithm
”ABC key stream generator”. We will denote a single call of ABC key
stream generator as a function g(z̄0, z̄1, x, d0, d1, e, {ei}31i=0):

g : Z/21216Z→ Z/232Z.

If the optimization tables {Ti}
t−1
i=0 are precomputed, the ABC key

stream generator can be alternatively called as g(z̄0, z̄1, x, d0, d1, {Ti}
t−1
i=0).

In the latter definition the optimization tables are passed to the gen-
erator instead of the coefficients of C. We note that this is a preferable
way of calling g, the former definition being the most suitable one in
case no window optimization is used. In both calls variables z̄0, z̄1, x
are changed in a call (i.e. within the function g).

In this algorithm we first use a set of fixed values e, {ei}31i=0, d0, d1 and a
128-bit key k exactly as in 128-bit version of extreme case 3 to fill the
temporary initial values z̄′0, z̄

′
1, x
′, d′0, d

′
1 ∈ Z/2

32Z. We note again that
the fixed values with some statistical properties satisfied are given in
table 2. These values e, {ei}31i=0, d0, d1 satisfy the requirements imposed
by (2) and (4). Moreover, when optimization is employed, the fixed
precomputed optimization tables {Ti}

t−1
i=0 can be used instead of the

fixed coefficients of C. We describe the way of the fixed optimization
tables precomputation from e, {ei}31i=0 by equations (12) and (13).

Then we perform a number of the ABC key stream generator warmup
iterations, calling g(z̄′0, z̄

′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0). As already mentioned,

it is preferable to substitute this call by g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0)

in case optimization is used. After each iteration a 32-bit output of
generator is feeded back to some part of the state by means of bitwise
addition modulo 2.

Finally, after the warmup phase we call the ABC key stream generator
38 times to obtain the values for e, {ei}31i=0, d0, d1, x, z̄0, z̄1, composing
the main state of ABC.

15

ABC: A new fast flexible stream cipher

In case optimization is not used, the initialization function G can be
outlined in the following way:

Input: k = (k̄3, . . . , k̄0), z̄0, z̄1, x, d0, d1, e, {ei}31i=0, d0, d1, e, {ei}
31
i=0

Temporary variables: z̄′0, z̄
′
1, x
′, d′0, d

′
1, i, ζ

Initialization:

d′0 ← d0;

[d′0]
17
2 ← [d

′
0]
17
2 XOR

[
k̄3
]15
0
;

δ1(d
′
0)← δ1(d0) XOR δ1(k̄1);

d′1 ← d1;

[d′1]
17
2 ← [d

′
1]
17
2 XOR

[
k̄3
]31
16
;

x′ ← k̄2;

z̄′0 ← k̄1 OR 2;

z̄′1 ← k̄0.

Initial state warm-up with feedback:

ζ ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0);

x′ ← x′ XOR ζ;

ζ ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0);

d′0 ← (d
′
0 XOR ζ)OR 1;

ζ ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0);

d′1 ← (d
′
1 XOR ζ) AND 1 . . . 1︸ ︷︷ ︸

30

002;

ζ ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0);

z̄′0 ← (z̄
′
0 XOR ζ)OR 2;

ζ ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0);

z̄′1 ← z̄′1 XOR ζ;

Main state filling:

e← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0);

for i from 0 to 30 do

ei ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0);

end for

e31 ← (g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0) AND 1 . . . 1︸ ︷︷ ︸

16

0 . . . 0︸ ︷︷ ︸
16

2)OR 0 . . . 0︸ ︷︷ ︸
15

1 0 . . . 0︸ ︷︷ ︸
16

2;

d0 ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0)OR 1;

d1 ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0) AND 1 . . . 1︸ ︷︷ ︸

30

002;

x← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0);

z̄0 ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0)OR 2;

z̄1 ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, e, {ei}

31
i=0).

16

ABC: A new fast flexible stream cipher

Output: z̄0, z̄1, x, d0, d1, e, {ei}31i=0

In case optimization is used, the initialization function G can be de-
scribed as above with fixed C coefficients e, {ei}31i=0 substituted by fixed
precomputed optimization tables {Ti}

t−1
i=0. In Appendix C we give

some statistical properties of the function G described here as used in
key setup routine.

Initial value setup

Assume that the selected standard key setup routine has been already run
and the tables {Ti}

t−1
i=0 have been precomputed (in case optimization is em-

ployed). We suggest making the nonce setup in the following way:

Input: iv = (īv3, . . . , īv0), {Ti}
t−1
i=0

Temporary variables: ζ

IV application:

[d0]
17
2 ← [d0]

17
2 XOR [īv3]

15
0 ;

δ1(d0)← δ1(d0) XOR δ1(īv1);

[d1]
17
2 ← [d1]

17
2 XOR [īv3]

31
16;

x← x XOR īv2;

z̄0 ← (z̄0 XOR īv1)OR 2;

z̄1 ← z̄1 XOR īv0;

Warm-up with feedback:

ζ ← g(z̄0, z̄1, x, d0, d1, {Ti}
t−1
i=0);

x← x XOR ζ;

ζ ← g(z̄0, z̄1, x, d0, d1, {Ti}
t−1
i=0);

d0 ← (d0 XOR ζ)OR 1;

ζ ← g(z̄0, z̄1, x, d0, d1, {Ti}
t−1
i=0);

d1 ← (d1 XOR ζ) AND 1 . . . 1︸ ︷︷ ︸
30

002;

ζ ← g(z̄0, z̄1, x, d0, d1, {Ti}
t−1
i=0);

z̄0 ← (z̄0 XOR ζ)OR 2;

ζ ← g(z̄0, z̄1, x, d0, d1, {Ti}
t−1
i=0);

z̄1 ← z̄1 XOR ζ.

Output: z̄0, z̄1, x, d0, d1

17

ABC: A new fast flexible stream cipher

If optimization is not used, {Ti}
t−1
i=0 in the above algorithm are substituted

by e, {ei}31i=0.
So we add iv to z̄0, z̄1, x, d0, d1 bitwise modulo 2 and then let the key

stream generator warm up with feedback. As a matter of fact we influence
the initial state of the whole key stream generation mapping by making it
run from a new start point. Empirical statistical evaluation shows strong
propagation properties of this algorithm (see Appendix C).

Summing up: The basic setup routine

Although it is possible to make use of any combination of key expansion/nonce
setup functions described above, it is necessary to describe the basic method
used at the initialization stage. We assume that the table optimization is
employed and use {Ti}

t−1
i=0 or {Ti}

t−1
i=0 in calls to the ABC key stream gener-

ator g.

ABC setup routine

Key expansion

Input: k = (k̄3, . . . , k̄0), z̄0, z̄1, x, d0, d1, e, {ei}31i=0, d0, d1, {Ti}
t−1
i=0

Temporary variables: z̄′0, z̄
′
1, x
′, d′0, d

′
1, i, ζ

Initialization:

d′0 ← d0;

[d′0]
17
2 ← [d

′
0]
17
2 XOR

[
k̄3
]15
0
;

δ1(d
′
0)← δ1(d0) XOR δ1(k̄1);

d′1 ← d1;

[d′1]
17
2 ← [d

′
1]
17
2 XOR

[
k̄3
]31
16
;

x′ ← k̄2;

z̄′0 ← k̄1 OR 2;

z̄′1 ← k̄0.

Initial state warm-up with feedback:

ζ ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0);

x′ ← x′ XOR ζ;

ζ ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0);

d′0 ← (d
′
0 XOR ζ)OR 1;

ζ ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0);

d′1 ← (d
′
1 XOR ζ) AND 1 . . . 1︸ ︷︷ ︸

30

002;

ζ ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0);

z̄′0 ← (z̄
′
0 XOR ζ)OR 2;

18

ABC: A new fast flexible stream cipher

ζ ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0);

z̄′1 ← z̄′1 XOR ζ;

Main state filling:

e← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0);

for i from 0 to 30 do

ei ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0);

end for

e31 ← (g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0) AND 1 . . . 1︸ ︷︷ ︸

16

0 . . . 0︸ ︷︷ ︸
16

2)OR 0 . . . 0︸ ︷︷ ︸
15

1 0 . . . 0︸ ︷︷ ︸
16

2;

d0 ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0)OR 1;

d1 ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0) AND 1 . . . 1︸ ︷︷ ︸

30

002;

x← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0);

z̄0 ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0)OR 2;

z̄1 ← g(z̄′0, z̄
′
1, x
′, d′0, d

′
1, {Ti}

t−1
i=0).

Output: z̄0, z̄1, x, d0, d1, e, {ei}31i=0

Optimization tables precomputation

Input: w, t, e, {ei}31i=0
Temporary variables: i, j, l

for i from 1 to t− 1 do

for j from 0 to 2w − 1 do

Ti[j] = 0

for l from 0 to w − 1 do

Ti[j]← Ti[j] + δl(j) ∙ ew∙i+l
for j from 0 to 2w − 1 do

T0[j] = e;

for l from 0 to w − 1 do

T0[j]← T0[j] + δl(j) ∙ el;

Output: T0, . . . , Tt−1

IV setup

Input: iv = (īv3, īv2, īv1, īv0),{Ti}
t−1
i=0

Temporary variables: ζ

IV application:

[d0]
17
2 ← [d0]

17
2 XOR [īv3]

15
0 ;

δ1(d0)← δ1(d0) XOR δ1(īv1);

[d1]
17
2 ← [d1]

17
2 XOR [īv3]

31
16;

19

ABC: A new fast flexible stream cipher

x← x XOR īv2;

z̄0 ← (z̄0 XOR īv1)OR 2;

z̄1 ← z̄1 XOR īv0.

Warm-up with feedback:

ζ ← g(z̄0, z̄1, x, d0, d1, {Ti}
t−1
i=0);

x← x XOR ζ;

ζ ← g(z̄0, z̄1, x, d0, d1, {Ti}
t−1
i=0);

d0 ← (d0 XOR ζ)OR 1;

ζ ← g(z̄0, z̄1, x, d0, d1, {Ti}
t−1
i=0);

d1 ← (d1 XOR ζ) AND 1 . . . 1︸ ︷︷ ︸
30

002;

ζ ← g(z̄0, z̄1, x, d0, d1, {Ti}
t−1
i=0);

z̄0 ← (z̄0 XOR ζ)OR 2;

ζ ← g(z̄0, z̄1, x, d0, d1, {Ti}
t−1
i=0);

z̄1 ← z̄1 XOR ζ;

Output: z̄0, z̄1, x, d0, d1

It is important to note that once the key setup routine was run and the tables
were precomputed, there is no need in the table precomputation when the
same key is being set up again. Moreover, the state variables z̄0, z̄1, x, d0, d1
can be stored immediately after the completion of the key expansion routine
and then be used to restore the state prior to IV setup, thus shortening the
setup routine.

5 Brief security analysis

To analyse the security of the ABC stream cipher it is important to stress
that the cipher is very flexible; that is, we impose any extra restrictions on
coefficients neither of function B nor of function C, except for the ones that
are imposed above. In other words, we assume that the rest of bits of these
coefficients are produced in a key-dependent way out of the key by a certain
routine, which is, in fact, a sort of PRNG, and which could be user-defined
(for a concrete routine see Section 4). That is, a key expansion procedure
is applied to a key to produce sufficiently many pseudorandom bits to fill
the coefficients of the functions B and C, and the registers that store initial
values of x and z. This implies that neither coefficients of the functions B
and C nor the initial states x and z are known to an adversary.

General attacks

We have discovered no vulnerabilities of the ABC stream cipher with respect
to a set of commonly considered attacks and have not found any weak keys.

20

ABC: A new fast flexible stream cipher

Time-memory-data tradeoffs, either suggested by Biryukov and Shamir
in [8] or the generalized ones suggested by Hong and Sarkar in [13] (see
[10] for discussion), are not posing a threat to the ABC cipher. For the
former case the TMD complexity is greater than 2128 exhaustive search due
to large state size (about 1200 bits). The latter case also does not lower the
exhaustive search threshold even if unlimited precomputational resources are
considered, as ABC supports the 128-bit initial value size, which is equal to
key size.
Related-key and resynchronization attacks are withstood by proper choice

of key setup and IV initialization algorithms. Our suggestion for both al-
gorithms (see Section 4) uses self-initializing with feedback, which does not
show possibilities for applying these techniques.
Algebraic attacks are withstood by the non-linear properties of the out-

put primitive (see Appendix A). The latter also does not provide possibilities
for correlation and linear attacks.
Empirical statistical testing, performed with NIST suite with respect to

AES candidates evaluation (see [22]), has not indicated any deviation of
ABC key stream from a random sequence. Moreover, our testing has shown
that the key stream statistical properties provided by ABC are at least as
good as those of AES finalists, given in [21]).

Resistance to side-channel attacks

Ciphers subject to implementation on hardware or some constraint platforms
including chip cards are often required to be resistant to side-channel attacks.
The introduction of the table optimization technique was motivated (among
other things) by the considerations of the security of ABC with respect to
side-channel attacks. Note that if the table optimization is not employed and
S is computed as in (3), the implementation can be vulnerable with regard
to simple side-channel attacks such as simple timing attack or simple power
analysis, since the Hamming weight of x can be easily restored. Note that we
do not recommend using equation (3) to compute S if the implementation is
likely to be subject to side-channel attacks. The users are referred to equation
(8) with an appropriate proper value of w instead.
Here we introduce a simple technique which can be used to randomize

the computation of the function S defined by (3) and, hence, to hamper
different types of differential analysis including differential power analysis
(DPA) or possible analogues of the Goubin-type analysis for stream ciphers.
In the unprotected version of S we use t tables, each containing 2w 32-bit
elements computed according to (6) and (7). Each table except T0 has at
least one zero element T1[0] = ∙ ∙ ∙ = Tt−1[0] = 0 which means that if we
have a zero window in x then this case stands out against the background
of power consumption in all the other cases. This can lead to an attack and
should be avoided.

21

ABC: A new fast flexible stream cipher

Let t be even and r ∈ Z/232Z be a random number (taken for instance
from a physical random number generator available on some chip cards).
Assume that the key expansion routine has already been run. This means
that we have generated e, e0, . . . , e31 and precomputed the tables T0, . . . , Tt−1
according to (6) and (7). Now we modify each table by adding r or −r to
the table elements depending on the parity of the table number:

Ti[j] = −r + Ti[j] (mod 2
32), j = 0, . . . , 2w − 1, (18)

for i = 1, 3, . . . , t− 1 and

Ti[j] = r + Ti[j] (mod 2
32), j = 0, . . . , 2w − 1, (19)

for i = 0, 2, . . . , t− 2.
During the computation of S in accordance with (8) −r and r annul

each other because of t being even. If t has been selected to be odd, then
one can add r to the elements of T0, −2 ∙ r to T1, and then proceed with
(18) and (19). One has to perform 2w ∙ t extra additions1 modulo 232 at the
initialization stage to apply this trick.
In applications where it it possible to compute the optimization tables

only once and then to store these for future use (performing the initial
setup routine when needed), this masking operation can be performed only
once during the key expansion procedure. This does not randomize the
computation of S, but enables to avoid additions with zeros in case of zero
windows within x, which raises the security of ABC with regard to side-
channel attacks. This (simplified) countermeasure requires no additional
operations at the initialization stage.

6 Implementation

Software implementation for 32-bit processors

Although the ABC stream cipher shows very good throughput results on
every software platform, it is optimized to be used on 32-bit processors such
as Intel Pentium 4 or PowerPC G4+.
Our C reference implementation was compiled using gcc 3.3.1 without

any processor-specific options. Hence the throughput estimates we give here
are of generic nature. We expect that usage of additional processor-specific
compiler options or some specific compilers, such as Intel C++ compiler,
could lead to performance improvement. The corresponding programs were
run under Linux with a 2.4.21 kernel on a desktop with a 3.2 GHz Intel
Pentium 4 processor with 8KB L1 cache and 512KB L2 cache, and 512 MB
main memory. We measured the execution time in ms needed to produce

1In fact the number of extra additions is different if t is odd, since the lengths of the
windows are unequal.

22

ABC: A new fast flexible stream cipher

a 1024-byte output buffer 1310720 times (in total producing 10 Gbit of
data) and then calculated the throughput in Gbps, processor cycles per
byte and per 64-byte block of data. The best throughput for this hardware
configuration was achieved with w = 8. The results of the throughput
measurement for C reference implementation including the memory needed
for the lookup tables can be found in Table 3 for different measurement
conditions.

Table 3: ABC throughput for Intel Pentium 4

w Speed, Gbps Cycles per byte Cycles per block Memory, bytes

1 0.21 121.91 7802 132

2 2.25 11.38 728 256

4 4.24 6.04 387 512

8 6.86 3.73 239 4096

Additionally we measured the cost of key setup, including the precom-
putation of optimization tables, and of the initial value setup in processor
cycles on the same hardware platform. Also the cost of optimization tables
precomputation was separately measured. The initialization routines are
implemented in C. The results can be found in Table 4. Here one mode of
operation was used only. We ran the key initialization routine and the IV
setup routine 1000 times separately, measuring the number of clocks needed.
Then we divided the values through 1000 to get the result in its final shape.

Table 4: Cost of ABC setup routines in processor cycles for Intel Pentium 4

w Key setup with IV setup Table Key setup without
precomputation precomputation precomputation

1 22952 5732 0 22952

2 2906 776 682 2224

4 5509 690 3916 1593

8 89313 631 88053 1260

Measurement results make it clear that precomputation of the optimiza-
tion tables has the major impact on the total cost of the key setup procedure.
Thus, we recommend choosing smaller window sizes when dealing with en-
cryption of short packets, which would raise the total performance of ABC
in this case. Exact values depend, however, on a specific platform.
Our implementation can be flexibly tuned for maximum performance on

a specific platform by choosing the appropriate values of two implementation
parameters. The first parameter is the length of optimization window w.
The second parameter, to which we refer as unroll depth, is the number of

23

ABC: A new fast flexible stream cipher

ABC core transform iterations explicitly unrolled within cycles producing a
number of key stream bytes. In our C reference implementation we allow
users to choose one of the 10 predefined variants of optimization window
length and unroll depth combinations at compile time. We expect that
different variants will show different performance on specific platforms. The
choice of the variant that shows the best performance depends on various
parameters of a platform, such as processor architecture, relative costs of
processor operations, L1 and L2 cache sizes, relative costs of the access
operations to different types of RAM/ROM, and also type of operation
system, version of compiler, compiler options, and many others.
We also expect a speedup of ABC for the implementation in assembly

language, which invokes the usage of SIMD extensions available for specific
processors.
In Table 5 and Table 6 we give the results of reference C implementation

throughput and setup costs measurement for the 32-bit ARM7TDMI pro-
cessor. The code was cross compiled using ARM Developer Suite 1.2 and the
running time was measured on the Evaluator-7T board with KS32C50100
ARM7TDMI microprocessor clocked at 50 Mhz. It has a 512 kByte flash
EPROM with 512 kByte SRAM and 8 kByte cache. The testing methodol-
ogy was same as that used for Intel Pentium 4 processor. 10 Gbit of output
data was generated and key setup and IV setup procedures were run 1000000
times.

Table 5: ABC throughput for ARM7TDMI

w Speed Cycles Cycles Data Memory
Mbps per byte per block byte

1 3.4 117.65 7466 132

2 4.2 95.24 6095 256

4 7.2 55.56 3556 512

8 11.6 34.48 2207 4096

12− 12− 8 12.4 32.26 2065 33792

Table 6: Cost of ABC setup procedures in processor cycles for ARM7TDMI

w Key setup with IV setup Table
precomputation precomputation

1 17300 2250 0

2 15450 1950 1350

4 19450 1200 12000

8 166150 850 163950

12− 12− 8 1915000 800 1913000

24

ABC: A new fast flexible stream cipher

Software implementation for 64-bit processors

The ABC cipher can be efficiently implemented on 64-bit processors such
as Intel Itanium or PowerPC G5. Moreover, a natural extension of the digit
capacity of its primitives can lead to a more secure and efficient cipher. For
example, let A be a 128-bit word-oriented LFSR, B be a 64-bit mapping of
the form (2), and C be a 64-bit lookup based filter of the form (4). Then
the resulting cipher will have a longer period, at least 264(2127− 1), than its
32-bit prototype, a higher linear complexity, exceeding 263, and will allow a
faster implementation on a 64-bit processor, assuming w has been adjusted
with the amount of available cache memory. The changes suggested here
lead to a different stream cipher. This demonstrates that our solutions are
very flexible and can be easily adjusted to specific needs of designers without
worsening the cryptographical properties of the cipher.

Software implementation for 8-bit microprocessors

Stream ciphers are particularly interesting in constrained environments like
smart cards and newly emerging sensor networks. In such devices mem-
ory, code size and computational power are very limited to provide security
features. The ABC cipher with its flexibility to tradeoff between precompu-
tation and performance is ideally suited for such environments.
We have implemented an optimized assembly implementation of the

ABC cipher on a generic 8051 micro-controller. The measurements were
done using the Keil μVision2 tools using the Philips 80/87C51 microcon-
troller belonging to the MCS-51 family. It is a 8051 based CMOS controller
with 32 I/O Lines, 3 Timers/Counters, 6 Interrupts/4 Priority Levels, 4K
Bytes ROM/OTP, 128 Bytes on-chip RAM. Though the ABC cipher is op-
timized for a 32-bit architecture, its implementation on 8-bit architectures
is not constrained in any way. We have implemented here the version with
2-bit and 4-bit wide precomputation. The results below show that ABC
cipher is suited also for very constrained environments.

Table 7: Performance of ABC key stream generation for 8-bit implementa-
tion

Precomp Code Size Const Ram Size Clock cycles
byte byte IDATA+XRAM,byte per byte

2-bit wide 1372 264 57+452 241

4-bit wide 1216 520 57+708 162

25

ABC: A new fast flexible stream cipher

Table 8: Cost of ABC setup procedures for 8-bit implementation

Procedure Clock cycles
w=2-bit w=4-bit

Key setup(incl. precomp) 54775 63383

IV setup 5202 3622

Conclusion

In this paper we presented ABC – a fast flexible synchronous stream cipher
for software applications. ABC advantages are high performance, provable
security properties and extremely high flexibility. The cipher could serve as
an example of special design techniques, of which the mathematical back-
ground has being developed since early 90-th (see [1]–[7]), and which exploit
some ideas of p-adic dynamical systems theory.
An underlying mathematical theory is a p-adic theory of certain map-

pings, which were introduced to crypto community in 2002 under the name
of T -functions (see [14]), and which have been studied in mathematics since
early 70-th. Actually, the ABC cipher utilizes some T -functions that were
proved to have the single cycle property (see [1], [2]) in 1993, i.e., nearly ten
years before the notion ‘T -function’ was invented.
The key stream generator of ABC is counter-dependent; that is, both its

state transition and output (filter) functions are being modified dynamically
during the encryption. The notion of a counter-dependent generator was
originally introduced in [20]. We use this notion in a broader sense: In
ABC not only the state transition function, but also the output function is
being modified while encrypting. Moreover, our techniques provide the long
period, uniform distribution, and high linear complexity of output sequences;
cf. [20], where the diversity is guaranteed only.

References

[1] V. S. Anashin. Uniformly distributed sequences over p-adic integers. In:
Number theoretic and algebraic methods in computer science. Proceed-
ings of the Int’l Conference (Moscow, June–July, 1993) (A. J. van der
Poorten, I. Shparlinsky and H. G. Zimmer, eds.), World Scientific, 1995,
pp. 1–18. 26, 30, 31

[2] V. S. Anashin. Uniformly distributed sequences over p-adic integers,
Mat. Zametki, vol. 55 (1994), no. 2, 3–46 (in Russian; English transl.
in Mathematical Notes, vol. 55 (1994), no. 2, pp. 109–133.) 26, 30, 31,
35

26

ABC: A new fast flexible stream cipher

[3] V. S. Anashin Uniformly distributed sequences in computer algebra, or
how to construct program generators of random numbers, J. Math. Sci.
(Plenum Publishing Corp., New York), 89 (1998), No 4, 1355 – 1390.
30

[4] V. S. Anashin. Uniformly distributed sequences of p-adic integers, II,
(Russian) Diskret. Mat. vol. 14 (2002), no. 4, pp. 3–64; English trans-
lation in Discrete Math. Appl. vol. 12 (2002), no. 6, pp. 527–590. A
preprint in English available from http://arXiv.org/math.NT/0209407
30, 31

[5] V. S. Anashin. On finite pseudorandom sequences. In: Kolmogorov
and contemporary mathematics. Abstracts of the Int’l Conference,
(Moscow, 16–21 June, 2003), RAS–MSU, Moscow, 2003, pp. 382–383.
30

[6] V. Anashin. Pseudorandom Number Generation by p-
adic Ergodic Transformations, 2004. Available from
http://arXiv.org/abs/cs.CR/0401030 30, 32, 33, 36, 37

[7] V. Anashin. Pseudorandom Number Generation by p-adic Er-
godic Transformations: An addendum, 2004. Available from
http://arXiv.org/abs/cs.CR/0402060 26, 30

[8] A. Biryukov and A. Shamir, Cryptanalytic Time/Memory/Data
Tradeoffs for Stream Ciphers, in:Asiacrypt 2000, Lect. Notes in Comp.
Sci., Vol. 1976, Springer-Verlag, 2000, pp.1–13 21

[9] C. Carroll, A. Chan and M. Zhang The Software-Oriented Stream
Cipher SSC2, In Proceedings of Fast Software Encryption - FSE 2000,
LNCS volume 1978, 2001 5

[10] C. De Cannière, J. Lano and B. Preneel, Comments on the
Rediscovery of Time Memory Data Tradeoffs. Available from http:

//www.ecrypt.eu.org/stream/TMD.pdf 21

[11] D. Coppersmith, S. Halevi and C. Jutla, Scream: a software-
efficient stream cipher, Cryptology ePrint Archive, Report 2002/019,
2002. Available from http://eprint.iacr.org/ 14

[12] Diehard Battery of Tests of Randomness v0.2 beta. Available from
http://www.cs.hku.hk/∼diehard/ 39

[13] J. Hong and P. Sarkar, Rediscovery of Time Memory Tradeoffs,
Cryptology ePrint Archive, Report 2005/090, 2005. Available from
http://eprint.iacr.org/ 21

27

http://eprint.iacr.org/
http://www.cs.hku.hk/~diehard/
http://www.cs.hku.hk/~diehard/
http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream/TMD.pdf
http://www.ecrypt.eu.org/stream/TMD.pdf

ABC: A new fast flexible stream cipher

[14] A. Klimov and A. Shamir. A new class of invertible mappings, in:
Cryptographic Hardware and Embedded Systems 2002 (B.S.Kaliski Jr.et
al., eds.), Lect. Notes in Comp. Sci.,Vol. 2523, Springer-Verlag, 2003,
pp.470–483. 26, 30

[15] A. Klimov and A. Shamir. Cryptographic applications of T -functions,
in: Selected Areas in Cryptography -2003 30

[16] A. Klimov and A. Shamir, New Cryptographic Primitives Based on
Multiword T -functions, in: Fast Software Encryption -2004, 11th Int’l
Workshop. Lect. Notes Comp. Sci., Vol. 3017, Springer-Verlag, 2004,
pp. 1–15 30

[17] D. Knuth. The Art of Computer Programming. Vol. 2: Seminumerical
Algorithms, (Third edition) Addison-Wesley, Reading M.A. 1998. 36

[18] A. Menezes, P. van Oorshot and S. Vanstone, Handbook of Applied
Cryptography, CRC Press, 1996. 10

[19] NIST Statistical Test Suite, Version 1.8. Available from http://csrc.

nist.gov/rng/sts-1.8.zip 39

[20] A. Shamir and B. Tsaban, Guaranteeing the diversity of number gen-
erators, Information and Computation, vol. 171 (2001), pp. 350–363.
Available from http: //arXiv.org/ abs/ cs.CR/ 0112014 26, 29

[21] J. Soto, L. Bassham, Randomness Testing of the Advanced Encryption
Standard Finalist Candidates, NIST IR 6483. Available from http:

//csrc.nist.gov/rng/aes-report-final.doc 14, 21

[22] J. Soto, Randomness Testing of the Advanced Encryption Standard
Candidate Algorithms, NIST IR 6390. Available from http://csrc.

nist.gov/rng/AES-REPORT2.doc 21

28

http://csrc.nist.gov/rng/AES-REPORT2.doc
http://csrc.nist.gov/rng/AES-REPORT2.doc
http://csrc.nist.gov/rng/aes-report-final.doc
http://csrc.nist.gov/rng/aes-report-final.doc
http://csrc.nist.gov/rng/sts-1.8.zip
http://csrc.nist.gov/rng/sts-1.8.zip

ABC: A new fast flexible stream cipher

A Design rationale

Preliminaries

Basically, ABC is a counter-dependent pseudorandom generator. An (or-
dinary) generator usually could be thought of as a finite automaton A =
〈N ,M, f, C, u0〉 with a finite state set N , state transition function f : N →
N , finite output alphabet M, output function C : N → M and an initial
state (seed) u0 ∈ N . Thus, the generator produces a sequence

C = {c(u0), C(f(u0)), C(f
(2)(u0)), . . . , C(f

(j)(u0)), . . .}

over the setM, where

f (j)(u0) = f(. . . f(︸ ︷︷ ︸
j times

u0) . . .) (j = 1, 2, . . .); f (0)(u0) = u0.

Automata of the form A could be used either as pseudorandom generators
per se, or as components of more complicated pseudorandom generators,
the so called counter-dependent generators. The latter produce sequences
{y0, y1, y2, . . .} overM according to the rule

y0 = C0(u0), u1 = f0(u0); . . . yi = Ci(ui), ui+1 = fi(ui); . . . (20)

That is, at the (i + 1)-th round the automaton Ai = 〈N ,M, fi, Ci, ui〉 is
applied to the state ui ∈ N , producing a new state ui+1 = fi(ui) ∈ N , and
outputting yi = Ci(ui) ∈M.
The notion of a counter-dependent generator was originally introduced

in [20]. We use this notion in a broader sense: In ABC not only the state
transition function, but also the output function depends on i. Moreover,
our constructions provide long period, uniform distribution, and high lin-
ear complexity of output sequences; cf. [20], where only the diversity is
guaranteed.
Usually the dynamical change of the clock state transition function fi (as

well as of the clock output function Ci) of a counter-dependent generator is
controlled by another generator, which in turn could be either an ordinary,
or a counter-dependent one. So a counter-dependent generator could be
implemented as a cascaded scheme. In the ABC stream cipher the number
of cascades is 2.

Notation and terminology

Further throughout this section we assume that N = In = {0, 1, . . . , 2n−1},
M = Im for suitable natural numbers m and n, m ≤ n. It is convenient to
think of elements z ∈ In as base-2 expansions of rational integers:

z = δ0(z) + δ1(z) ∙ 2 + ∙ ∙ ∙+ δn−1(z) ∙ 2
n−1;

29

ABC: A new fast flexible stream cipher

here δj(z) ∈ {0, 1}. We usually identify In with the ring Z/2nZ of residues
modulo 2n or with the vector space Vn of dimension n over a field of two
elements. The latter also could be thought of as the set Bn of all n-bit words.
We construct both the state transition and the output functions of the

generators as composition of mappings, some of which are of the following
form:

F : (α↓0, α
↓
1, α

↓
2, . . .) 7→ (Φ0(α

↓
0),Φ1(α

↓
0, α

↓
1),Φ2(α

↓
0, α

↓
1, α

↓
2), . . .).

Here α↓i ∈ B
m is a Boolean columnar m-dimensional vector; B = {0, 1};

Φi : (Bm)(i+1) → Br maps (i + 1) Boolean columnar m-dimensional vec-
tors α↓0, . . . , α

↓
i to the r-dimensional Boolean vector Φi(α

↓
0, . . . , α

↓
i), i =

0, 1, 2, . . . , n − 1. These mappings were introduced to crypto community
in 2002 (see [14]) as (m-variate) T -functions on n-bit words.
In fact, in mathematics these mappings have been studied at least since

the beginning of 70-th: They are known in the theory of Boolean functions
under the name of triangle mappings, in automata theory they are studied
as determined functions, in general algebra these are referred to as com-
patible functions on the residue ring Z/2n. In early 90-th deep connections
between these mappings and 2-adic continuous functions were understood;
the connections resulted in usage of the non-Archimedean analysis machin-
ery in study of these functions (see [1], [2]). So a significant part of results
of works [14], [15], and [16] is not new for mathematicians.2

The most important for cryptography are such properties of T -functions
as invertibility (that is, bijectivity), single cycle property, and balance.
Recall that the mapping f : A → B of A onto B is called balanced iff
the cardinality of each preimage f−1(x) does not depend on x; that is,
|f−1(x)| = |f−1(y)| for every pair x, y ∈ B. In case |A| = |B|, the balanced
mapping is bijective, so it is called invertible. For A = B the invertible
mapping f is a permutation on A; in case this permutation is a cycle of
length |A|, f is said to have a single cycle property.
It worth noticing here that namely these properties (i.e., balance, in-

vertibility and single cycle property) have been studied since early 90-th
with the use of techniques of non-Archimedean analysis, under the names
of measure preservation and ergodicity, see [1],[2],[3], [4], [5], [6], and [7] for
details. Results of these works have direct applications to the subject since
they give conditions for T -functions to be balanced, invertible, or to have a
single cycle property.
Obviously, anym-variate T -function F could be considered as a mapping

from a Cartesian product (Z/2nZ)m into a Cartesian product (Z/2nZ)r,
since one could identify n-bit words (rows of the matrix (α↓0α

↓
1 . . . α

↓
n−1))

2The observation that a significant part of basic microprocessor instructions (arithmetic
and bitwise logical ones), and hence, all their compositions, are T -functions, also goes back
to 1993, see [1], [2].

30

ABC: A new fast flexible stream cipher

with numbers represented in their base-2 expansions in inverse bit order,
less significant bits left.
Note that then any m-variate T -function F on n-bit words defines a

unique m-variate T -function F̄k on k-bit words for any k ≤ n: One just
truncate n − k more significant bits of each n-bit word. It is obvious that
F̄k is balanced (resp., invertible, or with a single cycle property) whenever
F is balanced (resp., invertible, or with a single cycle property). So we can
speak of these properties modulo some 2k, since the truncation of n−k most
significant bits of an n-bit word is merely a reduction of the corresponding
integer modulo 2k. Further for short we say that the T -function F is, re-
spectively, balanced, bijective, or transitive modulo 2k meaning the function
F̄k is, respectively, balanced, invertible, or has a single cycle property. Of-
ten it turns out that these properties hold modulo 2n for every n = 1, 2, . . .
whenever they hold modulo 2k for some k. 3

Some properties of T -functions

The following example of a univariate T -function with a single cycle prop-
erty, which was published in 1993, i.e., nearly 10 years before the term
‘T -function’ was introduced by Klimov and Shamir.

Proposition 1 (see [1, Proposition 4.8], [2, Proposition 4.12])4 The T -
function h(x) = a0 + b1 ∙ (x ⊕ a1) + b2 ∙ (x ⊕ a2) + ∙ ∙ ∙ has a single cycle
property iff it is transitive modulo 4. (Here and further ⊕ stands for XOR, a
bitwise addition modulo 2.)

Our construction of the ABC stream cipher uses a T -function that is
a special case of those described by proposition 1; namely, a T -function B
defined by (2). The proof of the above criterion for this particular case could
be obtained with the use of more than 30 years old folklore theorem, which
concerns the so-called triangle Boolean mappings, and which completely
describe univariate T -functions that are invertible, or have a single cycle
property, in terms of algebraic normal forms. We recall this theorem further
(see theorem 1 below) while giving a proof that our T -function B of equation
(2) has a single cycle property.
In the sequel we need one more notion: For arbitrary sequence V =

{v0, v1, . . .} of n-bit words we call the sequence Vj = δj(V) = {δj(vi) : i =
0, 1, 2, . . .} the j-th coordinate sequence of the sequence V. That is, the j-th

3 This could be naturally explained within 2-adic analysis, since T -functions are ap-
proximations of continuous functions on the space Z2 of 2-adic integers, see [1], [2] and [4]
for details

4The original proof of Proposition 1 used 2-adic analysis techniques. In fact, this
proposition served just an illustration to the interpolation series technique (the technique
determines whether a given T -function is invertible/has a single cycle property); the tech-
nique was originally introduced in 1993, see [1] and [2].

31

ABC: A new fast flexible stream cipher

coordinate sequence is just a bit sequence obtained by reading each j-th bit
of the outputted word. The following obvious proposition holds.

Proposition 2 Whenever f is a T -function with a single cycle property,
the j-th coordinate sequence of the sequence x0, x1 = f(x0), x2 = f(x1), . . .
is purely periodic, and the length of it shortest period is 2j+1.

Our goal is to construct counter-dependent automata that produce uni-
formly distributed sequences of long period. Obviously, if the state transition
function f of the automaton A is transitive on the state set N , i.e., if f is a
permutation with a single cycle of length |N |; if, further, |N | is a multiple
of |M|, and if the output function C : N →M is balanced (in particular, is
bijective), then the output sequence C of the automaton A is purely periodic
with a period of length |N | (i.e., maximum possible), and each element of
M occurs at the period the same number of times: |N ||M| exactly. That is, the
output sequence C is uniformly distributed.
Further in the section we call a sequence C = {yi ∈M} over a finite set

M purely periodic with a period of length t iff yi+t = yi for all i = 0, 1, 2,
The sequence C is called strictly uniformly distributed iff it is purely periodic
with a period of length t, and every element ofM occurs at the period the
same number of times, i.e., exactly t

|M| .

State sequences of counter-dependent generators

In [6, Theorem 4.10] there were established general conditions a counter-
dependent generator must meet to produce a sequence of states of a maxi-
mum possible period length. We need a special case of that theorem.

Proposition 3 (see [6, Proposition 4.6]) Let M > 1 be an odd number, and
let {h0, . . . , hM−1} be a finite sequence of T -functions with a single cycle
property; let further {c0, . . . , cM−1} be a finite sequence of integers such that

1.
∑M−1
j=0 cj ≡ 0 (mod 2), and

2. the sequence {ci modM mod 2: i = 0, 1, 2, . . .} is purely periodic with
the shortest period of length M .

Put fj(x) = cj⊕hj(x) (respectively, fj(x) = cj+hj(x)). Then the recurrence
sequence Z defined by the relation xi+1 = fi modM (xi) is strictly uniformly
distributed modulo 2r, r = 1, 2, . . . : That is, modulo 2r the sequence Z is
purely periodic, its shortest period is of length M ∙ 2r, and each element of
Z/2rZ occurs at the period exactly M times.

Note 1 It is obvious that the sequence of states of a linear feedback shift
register with a primitive polynomial of degree s (and with a non-zero ini-
tial state c0), which could be considered as a sequence {c0, . . . , cM−1} over
integers in their base-2 expansions, satisfy conditions of Proposition 3 for
M = 2s − 1.

32

ABC: A new fast flexible stream cipher

The sequence of states of a counter-dependent generator that satisfies condi-
tions of Proposition 3 suffers the weakness similar to that of any T -function
does (see Proposition 2):

Proposition 4 (see [6, Theorem 5.6]) Under conditions of Proposition 3
the j-th coordinate sequence Zj of the sequence Z of Proposition 3 is purely
periodic, and the length of its shortest period is 2j+1 ∙ t, where 1 ≤ t ≤M .

Constructions

Now we describe a general construction of a counter-dependent generator of
the ABC family. The generator is controlled by a linear feedback shift reg-
ister, and produces uniformly distributed sequences of a maximum possible
period length. Basically the construction could be described as follows.
Let A be a linear transformation of the vector space Vn of dimension n

over a field GF (2) = Z/2Z, let the characteristic polynomial (of degree n)
of A be primitive. We use linear recurrence sequence {zi+1 = A(zi)} as a
sequence that controls modifications of the clock state transition functions fi
in the following way: fi(xi) ≡ z̃i+hi(xi) (mod 2k), where hi are T -functions
on k-bit words with a single cycle property of proposition 3, and z̃i is a k-
bit part of the n-bit word zi (in the current version of ABC we assume
n = 2k − 1 = 63, k = 32). Note that since the characteristic polynomial of
A is primitive, and its degree is n, the sequence {z̃i} is purely periodic, and
the length of its shortest period is 2n−1, despite of which k bits of the n-bit
state of the LFSR we choose to form z̃i.

5

Mappings hi satisfy conditions of Proposition 3: In ABC we assume all
these to be equal to the same T -function B of equation (2) that satisfies
proposition 1; that is, B has a single cycle property. Note that then in view
of Proposition 3 and note 1 the sequence of states of the ABC stream cipher
formes a cycle of length 2k ∙ (2n− 1). The cycle is totally determined by the
LFSR A and the function B: Pairwise distinct functions B (that correspond
to distinct pairs d0, d1 ∈ Z/2kZ) determine pairwise distinct cycles. A pair
(z;x) of initial states z ∈ (Z/2nZ)\{0} (of the LFSR A) and x ∈ Z/2kZ (of
the function B) determine a unique initial position at the cycle.
Now we choose clock output functions to guarantee that the length of the

shortest period of the output sequence is also (2n−1) ∙2k, i.e., the maximum
possible.

5Of course, the numbers j0 < ∙ ∙ ∙ < jk−1 of bits in zi we choose to form z̃i must be
fixed, i.e., must not depend on i.

33

ABC: A new fast flexible stream cipher

Choosing output functions for ABC family

In ABC stream cipher clock output functions are of the form Ci(x) = či +
(S(x)≫ t) mod 2k, where

S(x) = e+
k−1∑

j=0

ej ∙ δj(x), (21)

Actually, in the ABC stream cipher we assume that Ci(x) = z̄0 + C(x)
(mod 2k), where z̄0 is the low order k-bit word of the output of the LFSR
A at the i-th round (thus, z̄0 = z̄i,0 depends on i), and

C(x) = (S(x)≫ t).

Note here that C (whence, Ci) are not T -functions. However, the following
proposition holds.

Proposition 5 Whenever ek−1 ≡ 2t (mod 2t+1), the length of the shortest
period of the key-stream sequence {Ci(xi)} is exactly (2n − 1) ∙ 2k, and the
linear complexity λ of this sequence > 2k−1.

Actually, it could be proved that 2k−1 ∙ (2n− 1)+1 ≥ λ ≥ 2k−1+1. Our
experiments with a reduced model of the cipher (with reduced bit lengths
of variables) show that the lower bound is too pessimistic: In all cases we
obtained values of the linear complexity close to the upper bound.
Henceforth, in view of Proposition 5, we assume that t = k

2 = 16 and
e31 ≡ 216 (mod 217) in the current version of the ABC stream cipher. This
restriction also guarantees that the distribution of the key stream is close to
uniform:

Proposition 6 For a ∈ Z/2kZ let μ(a) be the number of occurrences of a
k-bit word a at the shortest period (which is of length P = (2n− 1) ∙ 2k since

we assume ek−1 ≡ 2
k
2 (mod 2

k
2
+1), see Proposition 5) of the key stream

sequence {Ci(xi)}. Then
∣
∣
∣
∣
μ(a)

P
−
1

2k

∣
∣
∣
∣ <

1
√
P
.

Note that for truly random sequence of length P of k-bit words with prob-

ability > 1− 1
2k
one has

∣
∣
∣μ(a)P −

1
2k

∣
∣
∣ < 1√

P
.

B Proofs and extra results

B.1 Proof of the special case of Proposition 1

We are going to prove that a T -function h(x) = a+ b1 ∙ (x⊕a1) has a single
cycle property whenever simultaneously a ≡ 1 (mod 2), b1 ≡ 1 (mod 4),

34

ABC: A new fast flexible stream cipher

and a1 ≡ 0 (mod 4). To do this, we need some known results. The first
of these is a folklore criteria of bijectivity/transitivity of triangle Boolean
mappings.
Recall that the algebraic normal form, ANF, of the Boolean function

ψj(χ0, . . . , χj) is the representation of this function via ⊕ (addition modulo
2= logical ‘exclusive or’) and ∙ (multiplication modulo 2 =logical ‘and’=
conjunction). In other words, the ANF of the Boolean function ψ is

ψ(χ0, . . . , χj) = β ⊕ β0χ0 ⊕ β1χ1 ⊕ . . .⊕ β0,1χ0χ1 ⊕ . . . ,

where β, β0, . . . ∈ {0, 1}. The ANF is sometimes called a Boolean polynomial.
The number of factors in the longest monomial χj0χj1 . . . with a non-

zero coefficient βj0,j1,... is called a (full) degree of the function ψ; Boolean
functions of a (full) degree 1 are called linear. The degree of the functions
with respect to a variable χj is the number of terms in the longest monomial
that contains χj . Recall that the weight of the Boolean function ψj in (j+1)
variables is the number of (j + 1)-bit words that satisfy ψj ; that is, weight
is the cardinality of the truth set of ψj .
The following theorem is known at least 30 years; however, since it is a

folklore, we can not attribute it, yet an interested reader could find a proof
in, e.g., [2, Lemma 4.8].

Theorem 1 A univariate T -function F

(χ0, χ1, χ2, . . .)
F
7→ (ψ0(χ0);ψ1(χ0, χ1);ψ2(χ0, χ1, χ2); . . .),

is invertible iff for each j = 0, 1, . . . the Boolean function ψj in Boolean
variables χ0, . . . , χj is linear with respect to the variable χj; that is, F is
invertible iff the ANF of each ψj is of the form

ψj(χ0, . . . , χj) = χj ⊕ ϕj(χ0, . . . , χj−1),

where ϕj is the Boolean function that does not depend on the variable χj.
The mapping F has a single cycle property iff, additionally, the Boolean
function ϕj is of odd weight. The latter takes place if and only if ϕ0 = 1,
and the full degree of the Boolean function ϕj for j ≥ 1 is exactly j, that is,
the ANF of ϕj contains a monomial χ0 ∙ ∙ ∙χj−1. Thus, F has a single cycle
property iff ψ0(χ0) = χ0 ⊕ 1, and for j ≥ 1 the ANF of each ψj is of the
form

ψj(χ0, . . . , χj) = χj ⊕ χ0 ∙ ∙ ∙χj−1 ⊕ θj(χ0, . . . , χj−1),

where the weight of θj is even; i.e., deg θj ≤ j − 1.

With the use of this theorem the following result was obtained:

35

ABC: A new fast flexible stream cipher

Proposition 7 ([6, Proposition 3.15]) For any T -function F with a single
cycle property and for arbitrary T -function V the following T -functions have
a single cycle property: F (x+ 4 ∙ V (x)), F (x⊕ (4 ∙ V (x))), F (x) + 4 ∙ V (x),
and F (x) ⊕ (4 ∙ V (x)). Here ⊕ stands for a XOR instruction; that is, for a
bitwise addition modulo 2 (i.e., without a carry to more significant bits) of
n-bit words.

In view of this Proposition 7 the statement at the beginning of this
subsection becomes obvious: Indeed, h(x) = a+b1 ∙(x+a1) is a composition
of a linear congruential generator H(x) = a + b1 ∙ x, which has a single
cycle property since a ≡ 1 (mod 2) and b1 ≡ 1 (mod 4) (for a well-known
transitivity criterion for linear congruential generators see e.g. [17]), with
a mapping x 7→ x ⊕ b1, where b1 = 4r for a suitable r; now just apply
Proposition 7.

B.2 Proof of Proposition 5

Indeed, in view of Proposition 4, the length of the shortest period of the
(k−1)-th coordinate sequence {δk−1(xi)} of internal states is 2k ∙ t0 for some
integer t0 > 0; that is, the length of the shortest period of the sequence
{e31 ∙ δk−1(xi)} of k-bit words is also is 2k ∙ t0, whereas the length of the
shortest period of any other sequence {ej ∙ δj(xi)} for j = 0, 1, 2, . . . , k − 1
is 2j ∙ tj for a suitable tj > 0 (or might be 1 in case ej = 0). Moreover,
since the length of shortest period of the j-th coordinate sequence {δj(xi)}
is a divisor of the length of the shortest period of the whole sequence {xi}
(which is (2n−1) ∙2k in view of Proposition 3 and note 1), all rj are divisors
of (2n − 1), i.e., odd, j = 0, 1, 2, . . . , k− 1. Hence, the length of the shortest
period of the sequence

{
δt

(
e+

k−1∑

j=1

ej ∙ δj(xi)
)
: i = 0, 1, 2, . . .

}

is a divisor of 2k−1 ∙ (2n − 1). Now, as δt(ek−1) = 1, and δj(ek−1) = 0 for
j = 0, 1, . . . , t− 1, we conclude that the length of the shortest period of the
bit sequence {δ0(C(xi))} is 2k ∙ r for a suitable r > 0, since

δ0(C(xi)) ≡ δt
(
e+

k−2∑

j=0

ej ∙ δj(xi)
)
+ δt(ek−1) ∙ δk−1(xi) (mod 2).

Yet then the length of the shortest period of the sum {C(xi)⊕ z̄i,0 (mod 2)}
of two sequences modulo 2 is at least (2n − 1) ∙ 2k. However, it can not be
greater than (2n−1) ∙2k. This implies that the length of the shortest period
of the 0-th coordinate sequence F0 = {δ0(Ci(xi)} (and whence of the whole
output sequence F = {Ci(xi)}) is exactly (2n − 1) ∙ 2k.

36

ABC: A new fast flexible stream cipher

To prove that linear complexity over a field Z/2 of the output sequence
F exceeds 2k−1 it is sufficient to demonstrate that linear complexity of the
0-th coordinate sequence F0 exceeds 2k−1.
It was shown above that the length of the shortest period of the sequence

F0 is 2k ∙ (2n− 1). Hence the polynomial u(X) = X2
k∙(2n−1)− 1 = (X2

n−1−
1)2

k
is a characteristic polynomial of the sequence F0. Thus, the minimal

polynomial m(X) of the sequence F0 is a factor of u(X). On the other
hand, m(X) is not a factor of w(X) = (X2

n−1 − 1)2
k−1
since otherwise the

sequence has a period of length 2k−1 ∙ (2n − 1). Since the both polynomials
u(X) and w(X) have in their common splitting field the same set of roots
(namely, 2n − 1 pairwise distinct roots of a unity of degree 2n − 1), at least
one of these roots must be a root of m(X) with multiplicity exceeding 2k−1.
Thus, degm(X) > 2k−1.

B.3 Proof of Proposition 6

We will use the following lemma, which originally was used in the proof of
[6, Theorem 4.10].

Lemma 1 (see [6, Lemma 4.7]) Let c0, . . . , cM−1 be a finite sequence of
integers, and let f0, . . . , fM−1 be a finite sequence of T -functions such that

i. fj(x) ≡ x+ cj (mod 2) for j = 0, 1, . . . ,M − 1,

ii.
∑M−1
j=0 cj ≡ 1 (mod 2),

iii. the sequence {ci modM mod 2: i = 0, 1, 2, . . .} is purely periodic, its
shortest period is of length M ,

iv. δt(fj(z)) ≡ ζt + ϕ
j
k(ζ0, . . . , ζt−1) (mod 2), t = 1, 2, . . ., where ζ` =

δr(z), ` = 0, 1, 2, . . .,

v. for each t = 1, 2, . . . an odd number of Boolean polynomials ϕjt in
Boolean variables ζ0, . . . , ζt−1 are of odd weight.

Then the recurrence sequence Y = {xi} defined by the relation xi+1 =
fi modM (xi) is strictly uniformly distributed: It is purely periodic modulo
2r for all r = 1, 2, . . .; its shortest period is of length M ∙ 2r; each element of
Z/2rZ occurs at the period exactly M times. Moreover,

1. the sequence Ds = {δs(xi) : i = 0, 1, 2, . . .} is purely periodic; it has a
period of length M ∙ 2s+1,

2. δs(xi+M ∙2s) ≡ δs(xi) + 1 (mod 2) for all s = 0, 1, . . . , k − 1, i =
0, 1, 2, . . .,

37

ABC: A new fast flexible stream cipher

3. for each m = 1, 2, . . . , r and each ` = 0, 1, 2, . . . the sequence

x` mod 2
m, x`+M mod 2

m, x`+2M mod 2
m, . . .

is purely periodic, its shortest period is of length 2m, each element of
Z/2mZ occurs at the period exactly once.

In fact, the lemma says that the sequence {xi} of states of a counter-
dependent generator satisfies conditions 1–3 whenever fj are of Proposition
3.
Now for i = 0, 1, . . . , 2n − 2 =M − 1 denote νi(a) the number of occur-

rences of a k-bit word a ∈ Z/2kZ at the period of length 2k of the sequence

S(i) = {C(xi+M ∙t) (mod 2
k) : t = 0, 1, 2, . . .}.

In view of statement 3 of lemma 1 we conclude that νi(a) = νj(a) = ν̃(a)
for i, j ∈ {0, 1, . . . ,M − 1}.
Now consider a subsequence

Y(i) = {C(xi+M ∙t) + z̄i+M ∙t,0 (mod 2k) : t = 0, 1, 2, . . .}

of the output sequence of our generator. Note that z̄i+M ∙t,0 = z̄i,0 since the
length of the period of the sequence {z̄i,0 : i = 0, 1, 2, . . .} is M ; hence, the
subsequence Y(i) is periodic, and has a period of length 2k. Now denoting
μi(a) the number of occurrences of a k-bit word a ∈ Z/2kZ at the period of
length 2k of the sequence Y(i), we conclude that the number of occurrences
μ(a) of a at the shortest period, which is of length M ∙ 2k, of the output
sequence (i.e., of the key stream) of our generator is

μ(a) =
M−1∑

i=0

μi(a) =
M−1∑

i=0

νi((a− z̄i,0) mod 2
k) =

M−1∑

i=0

ν̃((a− z̄i,0) mod 2
k).

Yet in the sequence {z̄i,0 : i = 0, 1, 2, . . . ,M − 1} each non-zero k-bit word
occurs exactly 2n−k times, whereas a zero word occurs 2n−k−1 times. Thus,
in view of the above equality we conclude that

μ(a) = 2n−k ∙
∑

w∈Bk

ν̃(w)− ν̃(a) = 2n − ν̃(a)

since
∑
w∈Bk ν̃(w) = 2

k in view of statement 3 of lemma 1. Now easy exercise
in inequalities finishes the proof.

C Statistical properties of key and IV setup pro-
cedure

ABC key setup and IV setup algorithms employ the same mechanism of
warm-up with feedback. Here we present an empirical statistical evaluation

38

ABC: A new fast flexible stream cipher

of propagation properties of this mechanism for the procedures described in
Section 4.
An extreme case of single-bit change was chosen for assessment, concern-

ing implementations that use simple counter to produce IV value or cases
of improper key management. Empirical statistical testing shows that the
procedures provide a significant impact of minor ABC state change upon
generated key stream.
Let (iv, îv) be a pair of 128-bit initial values, where îv differs from iv in

one arbitrary bit position, and (s, ŝ) be a pair of corresponding L-bit key
stream vectors. That is, s is obtained directly after setup of some key and
iv, and ŝ is obtained directly after setup of same key and îv. H(u, v) denotes
Hamming distance between N -bit vectors u and v. Thus, H(iv, îv) = 1 and
H(s, ŝ) ∈ [0, L].
Two targets of evaluation were chosen, each employing some statistics

over a number of (s, ŝ) pairs.

Hamming distance distribution. Let us take the null-hypothesis H0
that s and ŝ were taken randomly and independently from GF(2)L. In this
case the value of H(s, ŝ) would theoretically follow binomial distribution
with known parameters. Key stream length L = 32 bits and a sample
size of 107 (s, ŝ) pairs for a fixed key and for a key varying with each pair
were chosen for simulation. In either cases obtained empirical distribution
indicates high order of single-bit state change propagation to key stream.

Naive correlation. Another indicator of propagation properties is an L-
bit product of bitwise XOR of k and ŝ. For a fixed key and for a key varying
with each IV pair, 384 such sequences of length L = 106 were obtained
and empirically evaluated. Results of NIST Statistical Test Suite ([19]) and
DIEHARD Battery of Tests ([12]) application do not show any deviation
from random behaviour in either case.

D ABC reference code

Here we give the reference ANSI C code of the ABC core transform iteration,
key setup and IV setup procedures. Throughout this section it is assumed
that w = 8. The precomputation of the optimization tables from the fixed
initial values in Table 2 is omitted.

typedef unsigned long int u32;

u32 z0, z1; /* state of A transform */

u32 x; /* state of B transform */

u32 d0, d1; /* coefficients of B transform */

u32 z0i, z1i; /* state of A transform after key setup */

39

ABC: A new fast flexible stream cipher

u32 xi; /* state of B transform after key setup */

u32 d0i, d1i; /* coefficients of B transform after key setup */

u32 t[1024]; /* optimization table

u32 ptable[1024]; /* precomputed optimization table for key

setup (initialization omitted) */

/* Keystream generator */

u32 abc_keystream(u32 *z0, u32 *z1, u32 *x, u32 d0, u32 d1, u32 *t)

{

u32 r, s; /* local temporary variables */

s = *z1 ^ (*z0 >> 1) ^ (*z1 << 31);

*z0 = *z1;

*z1 = s;

s = *x ^ d1;

*x = *z1 + d0 + s + (s << 2);

s = *x;

r = t[s & 0xff];

s >>= 8;

r += t[256 + (s & 0xff)];

s >>= 8;

r += t[512 + (s & 0xff)];

s >>= 8;

r += t[768 + (s & 0xff)];

return *z0 + ((r >> 16) | (r << 16));

}

/* Key setup routine */

void abc_keysetup(const u32* key)

{

u32 e[33]; /* C coefficients for main state */

u32 i, r; /* local temporary variables */

/* Key-dependent part of initial state */

u32 id0 =

0x0c376d75UL ^ ((key[3] & 0x0000ffffUL) << 2) ^ (key[1] & 2UL);

u32 id1 = 0xbbb5b0b4UL ^ ((key[3] & 0xffff0000UL) >> 14);

u32 ix = key[2];

u32 iz0 = key[1] | 2UL;

u32 iz1 = key[0];

/* Warm up initial state with feedback */

r = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

ix ^= r;

r = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

id0 ^= r;

id0 |= 1UL;

r = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

id1 ^= r;

40

ABC: A new fast flexible stream cipher

id1 &= 0xfffffffcUL;

r = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

iz0 ^= r;

iz0 |= 2UL;

r = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

iz1 ^= r;

/* Fill main state */

e[32] = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

for (i = 0; i < 32; ++i)

e[i] = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

d0 = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

d1 = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

x = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

z0 = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

z1 = abc_keystream(&iz0, &iz1, &ix, id0, id1, ptable);

/* Apply restrictions and save changeable part of state */

z0i = z0 = z0 | 2UL;

z1i = z1;

xi = x;

d0i = d0 = d0 | 1UL;

d1i = d1 = d1 & 0xfffffffcUL;

e[31] = (e[31] & 0xffff0000UL) | 0x00010000UL;

/* Precompute optimization tables */

for(i = 0; i < 256; ++i)

{

t[i] = e[32];

t[i] += (i & 0x01) ? e[8 * 0 + 0] : 0;

t[i] += (i & 0x02) ? e[8 * 0 + 1] : 0;

t[i] += (i & 0x04) ? e[8 * 0 + 2] : 0;

t[i] += (i & 0x08) ? e[8 * 0 + 3] : 0;

t[i] += (i & 0x10) ? e[8 * 0 + 4] : 0;

t[i] += (i & 0x20) ? e[8 * 0 + 5] : 0;

t[i] += (i & 0x40) ? e[8 * 0 + 6] : 0;

t[i] += (i & 0x80) ? e[8 * 0 + 7] : 0;

}

for(i = 0; i < 256; ++i)

{

t[256 + i] = 0;

t[256 + i] += (i & 0x01) ? e[8 * 1 + 0] : 0;

t[256 + i] += (i & 0x02) ? e[8 * 1 + 1] : 0;

t[256 + i] += (i & 0x04) ? e[8 * 1 + 2] : 0;

t[256 + i] += (i & 0x08) ? e[8 * 1 + 3] : 0;

t[256 + i] += (i & 0x10) ? e[8 * 1 + 4] : 0;

t[256 + i] += (i & 0x20) ? e[8 * 1 + 5] : 0;

t[256 + i] += (i & 0x40) ? e[8 * 1 + 6] : 0;

t[256 + i] += (i & 0x80) ? e[8 * 1 + 7] : 0;

41

ABC: A new fast flexible stream cipher

}

for(i = 0; i < 256; ++i)

{

t[512 + i] = 0;

t[512 + i] += (i & 0x01) ? e[8 * 2 + 0] : 0;

t[512 + i] += (i & 0x02) ? e[8 * 2 + 1] : 0;

t[512 + i] += (i & 0x04) ? e[8 * 2 + 2] : 0;

t[512 + i] += (i & 0x08) ? e[8 * 2 + 3] : 0;

t[512 + i] += (i & 0x10) ? e[8 * 2 + 4] : 0;

t[512 + i] += (i & 0x20) ? e[8 * 2 + 5] : 0;

t[512 + i] += (i & 0x40) ? e[8 * 2 + 6] : 0;

t[512 + i] += (i & 0x80) ? e[8 * 2 + 7] : 0;

}

for(i = 0; i < 256; ++i)

{

t[768 + i] = 0;

t[768 + i] += (i & 0x01) ? e[8 * 3 + 0] : 0;

t[768 + i] += (i & 0x02) ? e[8 * 3 + 1] : 0;

t[768 + i] += (i & 0x04) ? e[8 * 3 + 2] : 0;

t[768 + i] += (i & 0x08) ? e[8 * 3 + 3] : 0;

t[768 + i] += (i & 0x10) ? e[8 * 3 + 4] : 0;

t[768 + i] += (i & 0x20) ? e[8 * 3 + 5] : 0;

t[768 + i] += (i & 0x40) ? e[8 * 3 + 6] : 0;

t[768 + i] += (i & 0x80) ? e[8 * 3 + 7] : 0;

}

}

/* IV setup routine */

void abc_ivsetup(const u32* iv)

{

u32 r; /* local temporary variables */

/* Apply IV to restored state */

d0 =

d0i ^ ((iv[3] & 0x0000ffffUL) << 2) ^ (iv[1] & 2UL);

d1 = d1i ^ ((iv[3] & 0xffff0000UL) >> 14);

x = xi ^ iv[2];

z0 = (z0i ^ iv[1]) | 2UL;

z1 = z1i ^ iv[0];

/* Warm up with feedback */

r = abc_keystream(&z0, &z1, &x, d0, d1, t);

x ^= r;

r = abc_keystream(&z0, &z1, &x, d0, d1, t);

d0 ^= r;

d0 |= 1UL;

r = abc_keystream(&z0, &z1, &x, d0, d1, t);

d1 ^= r;

d1 &= 0xfffffffcUL;

42

ABC: A new fast flexible stream cipher

r = abc_keystream(&z0, &z1, &x, d0, d1, t);

z0 ^= r;

z0 |= 2UL;

r = abc_keystream(&z0, &z1, &x, d0, d1, t);

z1 ^= r;

}

43

