
June 11, 1997 1

PELLPACK: A Problem Solving Environment for PDE Based
Applications on Multicomputer Platforms

E. N. Houstis, J. R. Rice, S. Weerawarana, A. C. Catlin,
P. Papachiou, K.-Y. Wang and M. Gaitatzes

ABSTRACT

This paper presents the software architecture and implementation of the problem solving
environment (PSE) PELLPACK for modeling physical objects described by partial differ-
ential equations (PDEs). The scope of this PSE is broad as PELLPACK incorporates many
PDE solving systems and some of these, in turn, include several specific PDE solving
methods. Its coverage for 1-D, 2-D and 3-D elliptic or parabolic problems is quite broad,
and it handles some hyperbolic problems. Since a PSE should provide complete support
for the problem solving process, PELLPACK also contains a large amount of code to sup-
port graphical user interfaces, analytic tools, user help, domain or mesh partitioning,
machine and data selection, visualization, and various other tasks. Its total size is well over
1 million lines of code. Its open-ended software architecture consists of several software
layers. The top layer is an interactive graphical interface for specifying the PDE model
and its solution framework. This interface saves the results of the user specification in the
form of a very high level PDE language which is an alternative interface to the PELL-
PACK system. This language also allows a user to specify the PDE problem and its solu-
tion framework textually in a natural form. The PELLPACK language preprocessor
generates a Fortran control program with the interfaces, calls to specified components and
libraries of the PDE solution framework, and functions defining the PDE problem. The
PELLPACK program execution is supported by a high level tool where the virtual parallel
system is defined, where the execution mode, file system, and hardware resources are
selected, and where the compilation, loading, and execution are controlled. Finally, the
PELLPACK PSE integrates several PDE libraries and PDE systems available in the public
domain. The system employs several parallel reuse methodologies based on the decompo-
sition of discrete geometric data to map sparse PDE computations to parallel machines.
An instance of the system is available as aWeb server (WebPELLPACK) for public use at
thehttp://pellpack.cs.purdue.edu.

keywords: domain decomposition, expert systems, framework, knowledge bases, parallel
reuse methodologies, parallel solvers, problem solving environments, programming-in-
the-large, programming frameworks, software bus.

1. INTRODUCTION

The concept of a mathematical software library was introduced in the early 70s [41] to support the reuse of high qual-
ity software. In addition, special journals, conferences, public domain software repositories (e.g., ACM, Netlib), and
commercial libraries (i.e., IMSL, NAG) have been established to support this concept. Similar efforts can be found in
engineering software, particularly in the areas of structural and fluid mechanics. The increasing number, size, and
complexity of mathematical software libraries necessitated the development of a classification and indexing of exist-
ing and future software modules. This software is currently organized in terms of the mathematical models involved.
A significant effort in this direction is the GAMS on-line catalog and advisory system [5] which has become a stan-
dard framework for indexing mathematical software. Information about engineering software can be found in several
handbooks which usually describe the applicability and functionality of existing packages. The advances in desktop
software/hardware, workstation clustering and distributed computing technologies, and the ease of access to super-
computing facilities have made computational prototyping a new, cost effective alternative for the design of new
products and for the study of science and engineering phenomena in general. Although the software library provides

June 11, 1997 2

some form of abstraction and a facility of reusing software parts, it still requires a level of computing expertise above
the background and skills of the average scientist and engineer who usually design manufactured products. This rec-
ognition has lead to the new concept of software reuse referred throughout as Problem Solving Environment (PSE).
The current PSEs consist of small sets of modules, usually taken from existing libraries, integrated (packaged) to han-
dle a predefined class of mathematical models. In these PSEs the specification of the mathematical model, the prob-
lem solving process, and the required pre-processing or post-processing phases are done with a high level user
interface. This interface usually consists of a very high level language and graphical interface that allows the user to
specify the problem and visualize the solution in some “natural” form. Early examples of PSEs are Macsyma, Mathe-
matica, Maple, ELLPACK, MatLab, and several engineering software systems. Similar software evolution can be
observed in the pre-processing (CAD, mesh generation) and post-processing (data visualization) tools. These PSEs
and the associated pre- and post-processing tools have greatly increased the abstraction of computational prototyping
for some applications. As a result users with minimum computational background can be engaged in the prototyping
of complex artifacts. PSEs are distinguished with respect to the domain of problems or applications they can handle.

An important distinction between a PSE and a monolithic software system is that PSE's have a flexible and extensible
architecture that is easy for a user to tailor or a builder to enhance. The software architecture of PSEs is characterized
by the integration model used to connect the software parts involved and the underlying execution model
assumed.The common shortcoming of current PSEs is that the knowledge associated with the library, the applicabil-
ity, compatibility, and performance (i.e. complexity) of library modules, the selection of the computational parame-
ters, error estimation, etc. is not part of the PSE but is part of the responsibility of the user. One can argue that the
ideal PSE should make decisions to help the user by consulting a knowledge base about the user, the problem domain,
and past solutions of similar problems. This leads us to the following formal definition of a PSE:

PSE = User interface + libraries + knowledge base + software bus.

In this paper we describe the architecture and functionality of a PSE called PELLPACK for solving certain classes of
partial differential equations (PDEs) on sequential and multicomputer platforms. It is a descendent of ELLPACK [40]
which allows users to solve PDEs for linear and nonlinear field and flow problems. Figure 1 depicts a user’s view of
the PELLPACK system in terms of the tools and libraries needed to specify and solve a PDE problem on a target
computational platform and to visualize the solution. Figure 1 is further illustrated by a PDE solving scenario in sec-
tion 2.4.2. PELLPACK provides an interactive graphical user interface for specifying the PDE model, its solution
method and post-processing, supported by the Maxima symbolic system and well known libraries. In addition, it pro-
vides an intermediate high level facility for composing new algorithms from existing parts and it supports a program-
ming-in-the large environment with a language which is an extension of the ELLPACK language [40]. The user
interface and programming environment of PELLPACK is independent of the target machine architecture and its
native programming environment. PELLPACK is supported by a library of parallel PDE modules for the numerical
solution of stationary and time dependent single equation PDE models on two and three dimensional regions. A num-
ber of well known “foreign” PDE systems have been integrated into PELLPACK which are listed in Table 1. PELL-
PACK can simulate structural mechanics, semi-conductors, heat transfer, flow, electromagnetic, microelectronics, and
many other scientific and engineering phenomena. Five different implementation languages have been used to build
the system. The current size of PELLPACK is 1,900,000 lines of code. The parallel codes of PELLPACK currently
use the PICL, PARMACS 5.1, MPI, PVM, NX and Vertex communication libraries. The size of the parallel library is
128,000 lines of Fortran code for each implementation and consists of finite element and difference modules for dis-
cretizating elliptic PDEs, a parallelization of the ITPACK library [28], [30], [32] and the MP-PCG (parallel precondi-
tioning conjugate gradient) package [44]. The parallel library is based on the discrete domain decomposition
approach and it is implemented in both the host-node and hostless programming paradigms. A number of tools and
libraries exist to support the domain decomposition methodology and estimate (specify) its parameters. For the reuse
of existing “legacy” sequential PDE software we have implemented two domain decomposition based reuse method-
ologies described in [33].

The paper is organized in nine sections. Section 2 describes the exact applicability of the system in terms of the exist-
ing PDE libraries and pre-defined frameworks. We list several standard solution frameworks for various PDE models,
and we describe the frameworks needed to use one of the integrated “foreign” systems. In addition we describe paral-
lel re-use frameworks for steady-state PDE software. The multi-level PELLPACK architecture is discussed in Section
3, and Section 4 describes the three level programming environment. The PELLPACK PSE allows the user to execute

June 11, 1997 3

programs in a variety of physical and virtual parallel architectures. Section 5 describes a visual scripting execution
environment that allows the user to select the computers and to direct the running of computations and the visualizing
of results. Section 6 describes an expert system methodology that can be used to implement the adaptability of the
system to user’s expertise and computational objectives. This methodology and its software has been implemented
and tested in the context of the ELLPACK library [25] whose highlights are presented in Section 6. Section 7 presents
two scenarios that demonstrate the PELLPACK design objective of reuse of high quality mathematical software, the
facility for development of new PDE software, and the integration of “foreign” software. The future scenario for
usage and maintenance of high quality mathematical software calls for remote “net-centered” servers and networked
software that will allows users to compute over the “network” as they compute in the world of front-end workstation
to an intranet computer system. We have created a Web server for PELLPACK that allow users to experiment with the
system and get answers, instead of downloading software and addressing issues of local installation, maintenance,
and licensing. This server and its accessibility is described in Section 8 and its Web location is http://pellpack.cs.pur-
due.edu.

FIGURE 1. A user’s view of the PELLPACK system depicting the tools and libraries
supported. The diagram is organized in terms of the four solution phases involved in

PDE computing: problem specification, solution specification, problem execution,
and solution post-processing.

P
D

E
 P

ro
bl

em
P

D
E

 S
ol

ut
io

n
E

xe
cu

tio
n

P
os

t-
pr

oc
es

si
ng

MAXIMA

System
Symbolic

E
nv

iro
nm

en
t

E
nv

iro
nm

en
t

S
pe

ci
fic

at
io

n
S

pe
ci

fic
at

io
n

PDE

Specification
Framework

Boundary

Editors
Conditions

Geometry
Editors

Machine

Facilities
Configuration

Initial

Editors
Conditions

Geometry
Decomposers

Geometry
Discretizers

Algorithm
Editors

Output
Specification

Knowledge
Bases

S
o
f
t
w
a
r
e

b
u
s

i
n
t
e
r
f
a
c
e

E
L
L
P
A
C
K

S
E
S
S
I
O
N

Language
Processor

Execute
Tool

Performance

Tools
Analysis

Visualization
Tools

Data Analysis
Tools

Output
Tool

Foreign

Libraries
Solver

//ELLACK

Libraries
Solver

 P

June 11, 1997 4

This work is the result of a significantly large group of people and the support of many government and industrial
organizations listed in alphabetical order in Section 9.

2. DOMAIN OF APPLICABILITY

The applicability of the PELLPACK system is defined in terms of the types of PDE software libraries integrated into
the system, and the pre-defined algorithm skeletons and frameworks directly supported at the PELLPACK very high
language and graphical user interface levels. An algorithm skeleton is a “solution driver”, i.e., a specification of the
methods which are to be used in the solution of a PDE problem. A PELLPACK framework is a customized solution
driver, requiring a specialized form of PDE problem and solution specification. The form of this specification is deter-
mined by the user-selected PDE software library to be used in the solution process. The framework includes the
solver system selection, the mathematical representation of the PDE model (which often depends upon the selected
solver), and the interfaces between the solver library and the PELLPACK runtime system. Most frameworks in PEL-
LACK handle general (systems of) PDEs. A PELLPACK template is a framework for a specific PDE model, such as
the Navier-Stokes equations. The PDE specification in this case is a set of parameter values.

2.1 PDE SOFTWARE LIBRARIES

The PDE libraries currently integrated in PELLPACK are listed in Table 1. They allow the numerical solution offield
andflow PDE problems in various geometric regions. The integration of these simulation libraries is done at the PDE
language, graphical interface, and data interface levels. The PELLPACK programming environment allowsdifferen-
tial, variational, andtemplate forms for specifying the PDE and auxiliary operators. The PELLPACK PDE problem
specification and its “derivatives” (i.e., Jacobian, linearization transformations, forcing functions) are computed and
converted symbolically to the pre-defined Fortran interface format assumed by the selected PDE library. The 3-D
PDE domain geometry can be specifiedonly in terms of files in well established geometry data formats (e.g., polyfile)
that PELLPACK recognizes. The system provides a 2-D geometry specification tool.

TABLE 1. PDE systems integrated in PELLPACK, their applicability, and major characteristics

 Solver Name PDE Model Type Mathematical Representa-
tion and Mesh Restrictions

Dimensionality
and Geometry

References

ELLPACK single elliptic
equation

Differential
e.g.

2-D general,
3-D box geometry

[40]

PELLPACK single elliptic
equation

Differential 2-D and 3-D
general geometry

[21], [22],
[23], [29],

[57]

VECFEM non-linear, elliptic,
parabolic systems,

eigenvalue
problems

Variational
e.g.

1-D, 2-D, 3-D
general geometry

[17]

FIDSOL nonlinear, elliptic,
parabolic systems

Differential 2-D and 3-D
box geometry

[43]

CADSOL nonlinear, elliptic,
parabolic systems

Differential 2-D general geometry [42]

PDECOL nonlinear, parabolic
systems

Differential 1-D interval [31]

uxx uyy+ f=

uxvx uyvy+() ωd
Ω
∫ fv ωd

Ω
∫=

June 11, 1997 5

2.2 FRAMEWORKS FOR PELLPACK PDE SOLVERS

The design of the PELLPACK programming environment (i.e., a very high level PDE language and interactive edit-
ing tools) has been influenced by the requirements of its current solving capabilities and the structure of the solution
skeletons (i.e., drivers) that the user is allowed to specify and run. Other solution frameworks, can be easily created in
the PELLPACK system by utilizing the pre-definedfixed interfaces among the PDE solution phases, existing or new
PDE software parts, and Fortran code. For example, the parallel time-stepping methodology described in [53] has
been implemented in PELLPACK utilizing a variety of PELLPACK iterative solvers and its performance was mea-
sured on a variety of platforms [48]. In this section we describe the various pre-defined solution frameworks that
PELLPACK currently supports.

2.2.1 ELLIPTIC AND PARABOLIC PDE SOLUTION FRAMEWORKS

PELLPACK allows the solution of single linear and non-linear elliptic and parabolic PDE equations defined on 2-D
and 3-D domains. In this framework, the user can specify a solution method by naming (referencing) selected library
modules (discretization, indexing, solution) corresponding to the phases of the PDE solution pro-
cess [40] (see Figure 2 for an example). In the case of coupled or single-phase solvers the name of thetriple mod-
ule is specified. Framework 1 below lists the segments of this framework. The parallel elliptic framework currently
supported in PELLPACK is based on geometric partitioning of the grid or mesh data. Thus, the user is required to
specify the decomposition data in the form of a file with appropriate format and parameters. This segment can be gen-
erated by an interactive editor which allows the visualization and editing of mesh/grid decomposition data and uses a
library of semi-optimal partitioning algorithms for their automatic generation [7], [9], [54]. In the case of parallel
elliptic solvers, the parallel versions of the library modules specified have been implemented using several virtual
(e.g., PVM, MPI) and machine native (e.g., Vertex, NX) communication libraries [28],[29],[32].

FRAMEWORK 1. Module based linear elliptic solution

ITGFS 2-D Navier-Stokes Template,
structured meshes

e.g.transonic turbulence flow
parameter values

2-D general geometry [57]

NSC2KE 2-D Navier-Stokes Template,
structured meshes

2-D general geometry [3]

NPARC3-D 3-D Navier-Stokes Template,
multi-block structured meshes

3-D general geometry [10]

PDEONE nonlinear, parabolic
systems

Differential 1-D interval [19]

Segment Description Options

Declarations, Options Space for saving solution, parallel machine configuration
and model

sequential, parallel

Equation, BCs PDE problem definition differential

Grid/Mesh Domain discretization sequential, parallel

Decomposition Grid/Mesh partitioning file needed for the parallel solution sequential, parallel

Multi-phase PDE solver

Discretization PDE problem discretization sequential, parallel

TABLE 1. PDE systems integrated in PELLPACK, their applicability, and major characteristics

June 11, 1997 6

For non-linear elliptic PDEs, a linearization procedure is applied at the continuous PDE problem level which is
described in [51]. This framework is generated symbolically using the Maxima-based PDE framework specification
editor of the PELLPACK graphical interface, which is described in Section 4.2. Framework 2 describes the segments
of this framework.

FIGURE 2. An instance of PELLPACK user interface for an elliptic framework

Indexing Discrete equations ordering scheme sequential, parallel

Solution Linear solver sequential, parallel

Single-phase PDE solver

Triple Integrated discretization, indexing, solution phases sequential

Output Format for solution output

FRAMEWORK 2. Nonlinear sequential elliptic PDE solution

Segment Description

Declarations, Options Space for saving solution(s)

Equation, BCs PDE problem definition

Grid/Mesh Domain discretization

Triple Initial guess

Fortran Newton loop start

Linearized Elliptic Solver Elliptic problem discretization, indexing, solution

June 11, 1997 7

Similarly, there is a framework for implementing semi-discrete parabolic PDE solvers which utilizes the available
PELLPACK elliptic PDE solvers. In this case users can select pre-defined time discretization schemes or specify their
own and reduce the parabolic PDE problem to a set of elliptic PDEs defined at each time-step. The framework for
these solvers is described in Framework 3 and [51].

2.2.2 MPLUS (MATRIX PARTITIONING) STEADY-STATE SOLUTION FRAMEWORK

This framework is applicable to any non-time dependent PDE computation and is designed to re-use existing sequen-
tial PDE discretization software in a parallel solution scheme. It assumes that the discrete equations are generated
sequentially with any of the existing libraries. It uses mesh/grid decomposition data or user defined partitions for the
algebraic data structures associated with the selected PDE solver. The partitioned discrete PDE (i.e., algebraic) equa-
tions are loaded into the targeted multicomputer platform and solved in parallel by the available parallel solvers.
Framework4 displays the skeleton of this framework. The methodology and its performance evaluation described in
[33].

FRAMEWORK 4. Parallel matrix solution

Output Format for solution output

Fortran Convergence test

Fortran Newton loop end

Subprograms Initial guess, Jacobian and other support functions

FRAMEWORK 3. Parabolic sequential PDE solution

Segment Description

Declarations, Options Space for saving solution(s)

Equation, BCs PDE problem definition

Grid/Mesh Domain discretization

Triple Initial condition

Fortran Time stepping loop start

Elliptic PDE solver Elliptic problem discretization, indexing, solution

Output Format for solution output

Fortran Convergence test

Fortran Time stepping loop end

Subprograms Initial condition and other support functions

Segment Description

Sequential solution
framework

The PDE problem, its discretization, and sequential solver

Partition Discrete geometric or user defined algebraic data partitioning strategy

Load Loads partitioned algebraic system

FRAMEWORK 2. Nonlinear sequential elliptic PDE solution

June 11, 1997 8

2.2.3 DPLUS (DOMAIN PARTITIONING) STEADY-STATE SOLUTION FRAMEWORK

This framework is currently applicable to steady-state PDE models and their derivatives (i.e., implicit parabolic solv-
ers) defined on 2-D and 3-D domains. It is also based on a methodology to reuse sequential PDE discretization soft-
ware in a parallel computation [33]. It involves a decomposition of the model based on a balanced partitioning of the
PDE domain with appropriate artificial interface conditions that allow the uncoupled generation of the discrete equa-
tions in each subdomain. The decomposition of the domain is obtained via the partitioning of a relative course grid or
mesh [7]. Unlike MPlus, DPlus runs the sequential discretization code in parallel (i.e., each processor runs sequential
code on its assigned subdomain). Framework 5 lists the segments of this framework.

2.3 FRAMEWORKS FOR “F OREIGN” PDE SYSTEMS

Most general PDE solving systems require users to define PDE problems by writing Fortran functions with fixed
argument lists and data structures for the PDE equation, boundary, and initial conditions. Users write driver programs
to allocate space, initialize variables and call the solver routines with appropriate parameters and control variables.
Often, Jacobians or other symbolic computations are also required, and the results of these computations must be
written as additional Fortran functions. The functions and driver are compiled and linked with the solver library to
produce the program. PELLPACK generates these functions and drivers symbolically for the PDE solving systems of
Table 1 and the frameworks presented in the previous sections. This is the result of the integration at several PELL-
PACK levels.

A “foreign” PDE system can be integrated in PELLPACK at thePDE language level, thegraphical interface level,
and thedata level. Each level of integration provides a further level of abstraction by placing an additional software
interface layer between the user and the foreign system, thus simplifying the input required for defining a PDE prob-
lem. To support thelanguage level integration, a specialized interface library is developed for each system. The inter-
face code defines the required data structures, allocates space, initializes variables, and calls the appropriate system
solver routines with appropriate values for the parameters. Users still specify the PDE problem and symbolic compu-
tations via Fortran functions that are similar (or identical) to those required by the original system, and these func-
tions are placed in thesubprograms segment of the PELLPACK problem definition. Users name the solver in a
high level way and identify various high level problem characteristics such as number of equations, non-linearity, and

Display Display the structure of partitioning system

Solve Apply a parallel solver

Output Format for solution output

FRAMEWORK 5. Parallel stationary PDE solution

Segment Description

Declarations, Options Space for saving solution, parallel machine configuration and
model

Equation, BCs PDE problem definition

Mesh generation and
decomposition

Parallel multiphase mesh generation and decomposition

Interior interface condi-
tions

Interior interface BCs definition so that the generation of glo-
bal discrete equations among sub-domains is decoupled

PDE discretization Local PDE problem discretization in parallel

Solve Parallel solution of distributed discrete PDE equations

Output Format for solution output

June 11, 1997 9

time-dependence. The language integration supplies default parameter values when needed. Interface routines for all
systems generate PELLPACK format output which is used for visualization and animation of solution data with
PELLPACK’s output tool (see Section4.3). The PELLPACK execution environment identifies the selected system
solver so that it can link automatically with the correct library to generate the program. The language interface simpli-
fies the specification of the PDE problem and sets the foundation for integration at the graphical level.

At the graphical interface level, users can define PDE problems using a graphical editor. To simplify the process of
specifying the PDE system, the interfaces are tailored to the representation of the equation(s) used in the selected sys-
tem. After a user enters the equations, the editor determines what symbolic manipulations are needed for defining the
problem with the selected framework, and accesses the Maxima symbolic system to perform the computations. The
editor generates the Fortran functions in the format required by the solver, and places them in thesubprograms
segment. High level problem characteristics are identified symbolically, and the editor assigns appropriate values to
solver parameters. Users can later view and modify these parameters via a graphical algorithm editor. At this level of
integration, users must still be familiar with the applicability and functionality of the PDE solving system, but the
intrinsic details of problem specification are completely hidden from them.

Thenative data structures of the “foreign” PDE system are integrated at the Fortran level using appropriate subrou-
tines specified at the PDE language interface.

We now describe the frameworks of the integrated “foreign” PDE systems at the PELLPACK PDE language level and
depict instances of their graphical user interface.

2.3.1 VECFEM FRAMEWORK

VECFEM [17] solves non-linear, time-dependent 1-D, 2-D, and 3-D systems of equations on general domains using
mixed finite element methods.Framework6 lists the segments of the VECFEM framework in the PELLPACK sys-
tem. Some of the PDE problem input data for VECFEM are generated by the PDE framework specification editor
(see Section4.2.1). For VECFEM elliptic problems, this editor supports a variational template for specifying the
coefficients of bi-linear and linear forms and a functional template for entering the PDE in differential form. For the
stress analysis of isotropic materials, a stress template is available for entering only the elasticity modulus and Pois-
son’s number of the material. The differential form of the PDE equations is symbolically transformed to a variational
form. Figure 3 displays an instance of the PELLPACK graphical interface for VECFEM.

FIGURE 3. An instance of the PELLPACK interface for the VECFEM structural analysis framework

June 11, 1997 10

FRAMEWORK 6. VECFEM

2.3.2 FIDISOL FRAMEWORK

FIDISOL [43] solves non-linear, time-dependent 2-D and 3-D PDE systems on rectangular domains using finite dif-
ference methods. Framework 7 describes the framework for this library. Jacobians are required for the nonlinear
equations and boundary conditions; these are computed symbolically by the PDE framework specification editor.
Figure 4 displays an instance of the PELLPACK interface for FIDISOL.

FIGURE 4. An instance of the PELLPACK interface for the FIDISOL framework

FRAMEWORK 7. FIDISOL

Segment Description of language interface

Options VECFEM id, tags indicating the type of PDE (i.e., non-linear, parabolic), number
of PDE equations in the system

Equation, BCs, IC VECFEM tag for all equations indicating that the equations are defined by Fortran
subroutines in the subprogram segment

Mesh a triangular or tetrahedral mesh file generated by PELLPACK’s native mesh genera-
tors, or a neutral file generated by a “foreign” mesh generator

Triple VECFEM solver and associated parameters, output specification parameters

Subprograms Fortran functions describing the PDE equations, boundary conditions, and initial
conditions. These functions are interfaces to the functions used by VECFEM to
describe the equations.

Segment Description of language interface

Options FIDISOL id, tags indicating the type of PDE (i.e., non-linear, parabolic), number of
equations in the system

Equation, BCs, IC FIDISOL tag for all equations indicating that the equations are defined by Fortran
subroutines in the subprograms segment

Boundary 2-D, 3-D box geometry

Grid Domain discretization (uniform, non-uniform grid)

June 11, 1997 11

2.3.3 CADSOL FRAMEWORK

CADSOL [42] solves non-linear, time-dependent 2-D systems of equations on general domains using finite differ-
ence methods. Framework 8 describes the framework for CADSOL. The required Jacobians are computed by the
PDE framework specification editor. Figure 5 displays an instance of the PELLPACK interface for CADSOL.

FIGURE 5. An instance of the PELLPACK interface for the CADSOL framework

FRAMEWORK 8. CADSOL

Triple FIDISOL solver and associated parameter, output specification parameters

Subprograms Fortran functions describing the PDE equations, boundary conditions, initial condi-
tions. These functions are identical to the functions used by FIDISOL to describe
the equations. Functions describing the Jacobians for the PDE equations and
boundary conditions are also placed here.

Segment Description of language interface

Options CADSOL id, tags indicating the type of PDE (non-linear, parabolic), number of
equations in the system

Equation, BCs, IC CADSOL tag for all equations indicating that the equations are defined by Fortran
subroutines in the subprograms segment

Boundary domain definition (can be specified by the PELLPACK domain editor)

Mesh or Grid specify a body-oriented grid (can be generated by PELLPACK’s structured mesh
generator) or a uniform or non-uniform grid and include a user-written routine that
generates the body-oriented grid in the subprogram segment.

Triple CADSOL solver and associated parameter, output specification parameters

Subprograms Fortran functions describing the PDE equations, boundary conditions, initial condi-
tions. These functions are identical to the functions used by CADSOL to describe
the equations. Functions describing the Jacobians for the PDE equations and
boundary conditions are also placed here.

June 11, 1997 12

2.3.4 PDECOL FRAMEWORK

PDECOL [31] solves time-dependent coupled systems of 1-D non-linear equations using the method of lines. For the
space discretization a spline collocation scheme is employed. The user can select the time discretization scheme and
integration method from several options. Jacobians are symbolically generated by the PDE framework specification
editor when they are required for the problem definition.

FRAMEWORK 9. PDECOL

FIGURE 6. An instance of the PELLPACK interface for the PDECOL framework

2.4 TEMPLATES FOR “F OREIGN” PDE SYSTEMS

There are PDE systems whose mathematical model and numerical solver is specified through a set of physical and
numerical parameters (usually numerical data). These systems are usually associated with flow problems. In these
cases the PELLPACK interface consists of a hierarchical set of templates corresponding to various models the “for-
eign” system supports. In general, these solvers do not require symbolic processing or Fortran code generation. Three
such solvers (NPARC3-D, ITGFS, NSC2KE) have been integrated into PELLPACK. NPARC3-D is a general purpose

Segment Description of language interface

Options PDECOL id, tags indicating the type of PDE (linear, non-linear), number of equa-
tions in the system

Equation, BCs, IC PDECOL tag for all equations indicating that the equations are defined by Fortran
subroutines in the SUBPROGRAMS segment

Domain interval endpoints defined in the PELLPACK domain editor

Grid points in the interval are specified with the 1-D grid editor

Triple PDECOL solver and parameter specification, output specification parameters

Subprograms Fortran functions describing the PDE equations, boundary conditions, initial condi-
tions. These functions are identical to the functions used by PDECOL to describe
the equations. Functions describing the Jacobians for the PDE equations and
boundary conditions are also placed here.

June 11, 1997 13

CFD simulator for three dimensional fluid problems. ITGFS and NSC2KE are two turbulence solvers for 2-D prob-
lems. ITGFS is only applicable for internal flows, however it is expected to be more efficient than the others.

2.4.1 NPARC3-D TEMPLATE

NPARC3-D [10] is a general purpose CFD simulator, which can be used for most gas flow computations, such as 2-D
axisymmetric, or 3-D for states of inviscid, laminar, or turbulent, and steady or transient with complex geometry flow.

 The original NPARC system requires the fluid problems to be defined through the NPARC standard input text-file
and the initial solution file. This case can involve very tedious work, especially for complex geometries. NPARC pro-
vides some utility tools that assist the user in the pre-processing phase. In addition, the original solver must be recom-
piled when the mesh sizes changes. We have created PELLPACK templates for the NPARC system that support a
graphical user interface to allow direct access to the NPARC utilities for redefinition of global parameters, including
memory allocation options. The memory space for the solver is automatically allocated without recompiling the
NPARC library. Further work is necessary for this solver to fully utilize the pre- and post-processing capability of the
PELLPACK environment. Template 1 depicts the items of the NPARC template.

TEMPLATE 1. NPARC3-D

2.4.2 ITGFS TEMPLATE

The internal turbulence gas-flow solver ITGFS [57] is designed for the simulations of transonic turbulence flow in an
internal flow field. The equations governing the flow consist of two-dimensional, compressible, time-dependent, Rey-
nolds averaged Navier-Stokes equations, supplemented by an equation of state together with the constant total tem-
perature assumption. Template 2 describes the items of this template.

TEMPLATE 2. ITGFS

We now use the PELLPACK problem solving environment to solve a separated, transonic diffuser flow problem. We
will illustrate how each PELLPACK subsystem is used in the solution process, and indicate how the components of
Figure 1 are used.

 The user scenario within thePDE Problem Specification Subsystem is depicted in Figure 7 using snapshots from the
PELLPACK system along with a brief commentary for each of the editors.

Segment Description of language interface

Options NPARC id

Equation NPARC tag indicate model specific equations

Domain, BC NPARC tag indicates model specific boundary conditions

Mesh uses blocked structured meshes specified in PLOT3D or GRIDGEN format [10],
and an initial NPARC solution file in binary format

Triple NPARC solver and associated parameter, output specification parameters

Segment Description of language interface

Options ITGFS id

Equation ITGFS tag identifies model specific equations

Domain, BC specified graphically by the 2-D domain editor or textually by boundary parametri-
zation; boundary conditions are model-specific tags: inflow, outflow, wall

Mesh generated by PELLPACK’s structured mesh generator

Triple ITGFS-turbulent solver and associated parameters, output specification parameters

June 11, 1997 14

FIGURE 7. PDE Problem Specification

The user scenario within thePDE Solution Specification Subsystemis illustrated in Figure8. Since we have already
specified the PDE solver library via the framework selection, we need only to generate the appropriate domain dis-
cretization and specify the solver parameters.

The PDE Framework Specification Editor

entering parameters for
governing equations

entering parameters for
the boundary conditionsselecting the CFD Template for ITGFS

The 2D Geometry Editor and
the Boundary Conditions Editor

The domain can be drawn with the
Geometry Editor, or the boundary
can be parameterized by the user
and dynamically loaded into the
editor. Note that the upper and
lower wall of the boundary have
been divided into 3 pieces. This
allows the specification of a varying
grid density across the domain.

Specialized boundary conditions
such as inflow, outflow, wall, and
slipping are recognized within this
framework, and can be assigned to
the boundary pieces.

June 11, 1997 15

FIGURE 8. PDE Solution Specification

A PELLPACK language description of this PDE problem (.e file) is generated by the editors and written to the PELL-
PACK session. The language processor within theExecution Environment Subsystem converts the “.e file” to a For-
tran driver program. The driver is linked with the PELLPACK CFD libraries, and then executed. Below are snapshots
from the Execution Environment.

FIGURE 9. Execution Environment

PELLPACK format output is generated during execution, and can be loaded into the OutputTool within thePost-pro-
cessing Subsystemfor solution visualization. Figure 10 contains snapshots from several visualizers available from the
OutputTool.

The 2D Structured Grid Generator

The ITGFS solver requires a structured grid. We can
define our own mapping of a general boundary to a rect-
angle or let the system determine one. We can also spec-
ify the number of grid points to use at each boundary
piece so that the solution is more accurately computed.

The Algorithm

The parameters of
the ITGFS solver can
be displayed or mod-
ified via this editor.

Editor

ExecuteTool accesses Compile window
Language Processor and PDE Libraries for Target Platform selection

June 11, 1997 16

FIGURE 10. Post-processing Environment

2.4.3 NSC2KE TEMPLATE

NSC2KE [3] is a 2-D axisymmetric fluid flow solver applied on unstructured meshes. It solves the Euler equations
using a Roe, Osher, and a Kinetic solvers and the Navier-Stokes equations using ak-epsilon method with two
approaches of wall-laws and a two-layer model of the near wall turbulence. Template3 describes the items of this
template.

TEMPLATE 3. NSC2KE

3. SOFTWARE ARCHITECTURE

In this section, we present the architecture of PELLPACK in terms of (i) the level of programming supported, (ii) the
software subsystems involved, and (iii) the software layers used to implement PELLPACK.

3.1 THE PROGRAMMING VIEW

 In order to realize the PELLPACK computational environment, we have adopted three levels of programming with
standardized data structures and interfaces among the various PDE objects involved in the solution process. At the
highest level, the graphical user interface provides application users with knowledge-based, object-oriented editors to
define problem components, specify the solution process and perform various post-processing analyses. The problem
and solution specifications are expressed in terms of a high level PDE language, which is used to represent the PDE

Segment Description of language interface

Options NSC2KE id

Equation NSC2KE tag identifies model specific equations

Domain, BC specified graphically by the 2-D domain editor or textually by boundary parametri-
zation; boundary conditions are model-specific tags: inflow, outflow, wall

Mesh generated by PELLPACK’s structured mesh generator

Triple NSC2KE solver and associated parameters, output specification
parameters

Vector plot of velocities in the x and y directions.
Turbulence occurs in the mid upper and lower walls.

velocity in the

velocity in the

pressure

temperature

density

2-D Contour Plots

x-direction

 y-direction

2-D Flow Plot

June 11, 1997 17

objects produced by the graphical editors. At the second level, the PELLPACK language processor compiles this high
level problem and solution specification into a procedural driver program. In the third level, the driver program
invokes various library modules to realize the user’s solution process. These three programming levels are illustrated
in Figure 11.

FIGURE 11. Three level programming view of PELLPACK

TABLE 2. PELLPACK Subsystems

3.2 THE SUBSYSTEM VIEW

The functionality of PELLPACK is organized into four subsystems. These subsystems represent the solution process
that application users follow. ThePDE Problem Specification Subsystem, PDE Solution Specification Subsystem and
Post-processing Environment Subsystem provide users with graphical editors, “foreign” system templates, the PELL-
PACK language and a facility for embedding Fortran code. TheExecution Environment Subsystem provides a frame-

Subsystems Components

PDE problem specification Editors, foreign templates, PDE language and embedded fortran

PDE solution specification Editors, foreign templates, PDE language and embedded Fortran

Execution environment Language processor:
Solver module database, program templates and preprocessor

PDE libraries:
ELLPACK, PELLPACK, foreign solvers

ExecuteTool:
Target platform properties database, libraries and editor

Post-processing environment Visualization tools, performance analyzers and editor

B
LA

S

framework

equation domain
algorithm

mesh/grid

output

decomposition

bc

FORTRAN

P
E

LL
P

A
C

K
 L

an
gu

ag
e

Parallel Tools
Visual System
Expert System

Geometry Modeler
MAXIMA

S
ci

en
tifi

c

//M
ac

ro
s

& C
om

m

M
ac

hi
ne

A
bs

tr
ac

tio
ns

Libraries

 Knowledge-based Editor

Very High Level

 Procedural Programming

PDE Language Layer

program

Module

Language
Processor

Database

Layer

Layer

June 11, 1997 18

work for processing, compiling, and executing PELLPACK programs. It consists of a language processor, PDE
libraries, and the ExecuteTool. Thelanguage processor uses the high level PDE language specification produced by
the graphical editors of the problem and solution specification subsystems to generate a driver program. It can also be
used to integrate new PDE solver components to the PELLPACK system.ThePDE libraries implement sequential
and parallel solver components that are available to users via the solution specification subsystem. They include the
ELLPACK solver library, the PELLPACK solver library and “foreign” solver libraries such as FIDISOL, VECFEM,
PDECOL and PDEONE. TheExecuteTool helps users compile and execute programs on all the hardware and soft-
ware platforms that PELLPACK supports by managing the complexities associated with sequential and multi-plat-
form parallel execution Table 2 summarizes the subsystems. This subsystem view of PELLPACK is illustrated by the
vertical layers of Figure 12. Contained in each vertical layer are the PELLPACK programs and libraries that support
the subsystem represented by that layer.

FIGURE 12. The subsystem (vertical) view and the software layered (horizontal) view of PELLPACK

Performance
Analysis Tools

PDE

Specification
Problem

Initial &Boundary
Condition Editors

Algorithm
Editors

Knowledge
Bases

Pellpack Solver
Libraries

Execution
Environment

Visualization
Tools

Post-processing
Environment

PELLPACK
Programming
Environment

PDE

Specification
Solution

PDE Framework
Specification

Data Analysis
Tools

Geometry

PELLPACK
Infrastructure

System
Infrastructure

Execute
Tool

X Toolkit, Motif, Mesa Libraries

Geometry
Editrors

Solution

Specification
Framework

Domain

 Libraries
Discretization

Very High Level PDE Language Layer

Procedural Language Layer

Language
Infrastructure

PYTHIA

Geometry

 Libraries
Decomposition

Equation
Editor

MAXIMA
“Foreign”

Libraries
System

Modeling
Libraries

Data
Visualization

LibrariesParallel

Libraries
Communication

Foreign Interface
Libraries

June 11, 1997 19

3.3 THE SOFTWARE LAYERED VIEW

The software is implemented in five layers: theProgramming Environment layer, the PELLPACK Very High Level
Language (VHLL) layer, theProcedural Language (Fortran) layer, the PELLPACK Infrastructure layer and theSys-
tem Infrastructure layer. This view of the PELLPACK architecture and the specific programs and libraries contained
in each layer are illustrated in Figure12. Notice that the Language Infrastructure layer consists of two software layers
supporting the VHLL layer and the procedural (code generation) language layer. Figure 12 shows the software view
ashorizontal layers which span the (vertical) subsystem layers. This figure illustrates how the PELLPACK architec-
ture can be viewed from the standpoint of functionality and from the standpoint of system design.

The implementation language and code size for each software layer are listed in Table 3. Table entries for the System
Infrastructure layer do not include generic system utilities such as X, Motif, etc.

TABLE 3. PELLPACK software layers, implementation languages, and lines of code

The next four subsections discuss the architecture of the top four software layers in more detail.

3.3.1 PROGRAMMING ENVIRONMENT (GRAPHICAL USER INTERFACE)

The GUI of PELLPACK serves two main purposes: PELLPACK program building and solution/performance visual-
ization/analysis. The GUI supports multiple problemsessions within the same process. Each session represents a sin-
gle problem to be solved. The tools that are made available to the user within a session are dependent on the type of
session: 1-D, 2-D, 3-D and finite difference / finite element. Different tools support a different part of the problem
specification or the solution specification. As the problem and solution are being defined, the session editor reflects
the current status by displaying the specification in the PELLPACK language. The user may choose to edit the lan-
guage directly as well, but in order to maintain consistency the user must not be running any of the graphical tools at
the same time. For solution and performance visualization and analysis, the user specifies where to save the appropri-
ate data at problem specification time and the visualization environment loads this data at postprocessing time to visu-
alize the results.

While the graphical tools are active, the current PELLPACK program is internally represented in a set of data struc-
tures in a parsed form. In addition, it is textually represented within the session editor for the user’s benefit and com-
fort. Each tool manipulates one or more pieces of this data structure and is responsible for leaving them in a
consistent state. In some cases, a tool is actually a separate process. Then, the appropriate data structures are commu-
nicated to the other process via inter-process communication and made consistent when the changes are “committed.”
The tools also have a dependency relationship; for example, the mesh tool cannot be invoked until a domain has been
specified. This is supported by having the tools themselves be aware of their position in the chain of operation and
having them do the appropriate tests to ensure that the proper order is maintained.

Layer Implementation language Lines of Code

Programming environment
(Graphical user interface)

C, C++, Tcl/Tk, Perl, lisp, mac, flex,
bison

 172,000

Language infrastructure:
Very high level language interface

Fortran, custom parser generator (tp, pg) 80,000

Language infrastructure:
Procedural language (Fortran) interface

PELLPACK infrastructure: PELLPACK
and “foreign” system interface libraries

Fortran, C 175,000

System infrastructure: MAXIMA, “for-
eign” PDE libraries, parallel communica-
tion libraries, visualization libraries/tools.

Fortran, C,C++, lisp, mac 1,500,000

June 11, 1997 20

3.3.2 VERY HIGH LEVEL LANGUAGE INTERFACE

The PELLPACK language interface gives full flexibility to the user to specify their PDE problems and solution
framework using a convenient, high level PDE-specific language. The language usessegments based on the natural
components of the PDE problem and the solution process. The user may write a program in this language directly or
use the graphical user interface to automatically generate the program.

The language processor translates the PELLPACK program into a FORTRAN control program that invokes the
appropriate library components to solve the problem according to the user’s specifications. Each problem component
is transformed into the PELLPACK standard representation for it. Each solution step is converted to the call(s) to the
appropriate solver library using the standard interfaces described earlier. The resulting control program is then linked
with the appropriate libraries to build the program for solving the problem. If the problem is to be solved in parallel,
then there may be more than one control program based on the model of execution selected (see Section 5).

In order for the language processor to be able to generate the control program, information about the top-level calls
for each library module must be given to the system at the time a library is integrated into the system. In addition,
memory requirements of the module must be explicitly stated here so that the control program can allocate memory
before calling the module. This information is kept in a module database and looked up at language translation time.

3.3.3 PROCEDURAL LANGUAGE (FORTRAN) I NTERFACE

The Fortran interface of PELLPACK is defined based on a decomposition of the PDE problem and the solution
framework into their constituent parts: domain, interior equation, boundary conditions and initial conditions for the
problem, domain discretization, domain decomposition, operator discretization and algebraic system solution for the
solution framework. Each problem part is represented at run-time using a set of standard data structures and/or func-
tions. Each solution framework part (e.g., an operator discretizer) uses a set of well-defined data structures (inter-
faces) and/or functions for input and output. In addition, each such part may use and/or set certain global conditions
which imply some properties about that part of the problem at hand. For example, if an operator discretizer notices
that the resulting matrix is symmetric, it may set the “matrix is symmetric” flag and then use a more efficient data
structure for storing the matrix. Solvers are expected to first check the symmetricity flag and then select the appropri-
ate data structures. These definitions extend those of the ELLPACK system [40].

3.4 PELLPACK I NFRASTRUCTURE

From a run-time view of the architecture the PELLPACK infrastructure, consisting mainly of PDE system libraries, is
below the Fortran interface (Figure12), but the libraries themselves are integrated to the PELLPACK system based
on their compliance with the component interfaces. The entire PELLPACK collection of solvers is composed in this
manner, i.e., there is no intrinsic or built-in set of libraries. Some libraries (most notably, the ELLPACK libraries of
sequential solvers and the PELLPACK libraries of parallel solvers) natively support the PELLPACK component
interface standards and hence can be “plugged-in” to the system immediately. However, many other libraries (for
example, VECFEM, FIDISOL, PDECOL and MGGHAT) use their own interfaces and representations internally. To
integrate such libraries, one must develop an interface library that transforms the PELLPACK representations pro-
duced by higher levels of the system to the internal representations assumed by the solver library. It is important to
note that due to the structured nature of PDE components and PDE solution frameworks, this is a feasible task; we
have so far not encountered any solver library that could not be integrated in PELLPACK in this manner.

The result of this integrated framework is that components from different libraries can easily be mixed-and-matched
to form interesting and powerful PDE solvers. There is no doubt a performance cost with having a layer of software
that allows this flexibility, but it should be clear that the advantages of having standard interfaces to widely differing
software packages easily outweighs the cost.

June 11, 1997 21

4. THE PELLPACK P ROGRAMMING ENVIRONMENT

The implementation of PDEframeworksin PELLPACK provides a three level programming environment depicted in
Figure11. In this section we give a brief description of PELLPACK programming-in-the-large environment starting
with the PDE language.

4.1 VERY HIGH LEVEL PDE LANGUAGE

In the PELLPACK problem solving environment, a PDE problem is defined in terms of the PDE objects involved:
PDE equations, domain of definition, boundary and initial conditions, solution strategy, output requirements, and
option parameters. The textual representation of the PDE objects and its syntax comprise the PELLPACK language,
which is a significant extension of the ELLPACK language defined in [40]. This language layer is the foundation of
the PELLPACK environment and underlies all levels and components. It defines the intrinsic objects which are
needed to specify a PDE problem and its solution strategy. It is parsed and generated by special editors, and it is
loaded by the execution environment and processed by the language translator into Fortran control program(s) which
are compiled and executed. All PELLPACK system functionality is represented in some way by the PDE language.

In the ELLPACK language, the PDE objects are defined by language segments which either specify the PDE problem
(equation , boundary and associated boundary and initial conditions) or name the module to be used in the solu-
tion process (grid , discretization , indexing, solution, triple , output). To support the inser-
tion of arbitrary Fortran code for control and assignment statements, the ELLPACK language uses the
declarations, global, procedure , andFortran segments. The number and types of segments and
modules which have been added to the original ELLPACK have greatly increased the types of problems that can be
solved and the methods for solving them. The extensions to the ELLPACK language which were defined by PELL-
PACK follow.

PELLPACK introduced amesh segmentto support solution schemes using finite element methods. The integration
of “foreign” solvers required the introduction of tags and specialized identifiers in theoption segment for relaying
information about the system solver and its interface requirements to the language processor. The triple segment
is the standard which was adopted to specify the numerical solver associated with a foreign system. Thesave seg-
ment allows persistent storage of solutions, linear system matrices, and performance data for visualization and/or ani-
mation. Finally, the ELLPACK language and system was extended to support a domain decomposition strategy [21]
to solve PDE problems in parallel on multicomputer platforms. Specifically, thedecomposition andparal-
lelsolution segments define the geometry partitioning of the discrete domain and handle the assembly of the
partitioned solutions from the parallel processors. The existence of several parallel execution models necessitates the
use of tags in theoption segment (i.e., hostless, Mplus) to identify the parallel model selection.

The language definition of existing segments, modules and module parameters was amplified to contain information
related to the graphical environment. In this way, the language, the graphical interface, and the execution layers work
smoothly together to provide a unified PDE problem solving environment.

4.2 PDE OBJECT BASED GRAPHICAL USER INTERFACE

The process of specifying, solving, and analyzing a PDE problem occurs within a PELLPACK session editor This
editor consists of a text window and an attached toolbox of editors. Figure13 displays an instance of this editor. The
toolbox editors are used to create or modify the PDE objects which specify the PDE problem and describe how to
solve it. Each toolbox editor is a graphical, interactive tool that generates a textual representation of the object and the
associated PELLPACK language segment in the main session editor window. Editors in the toolbox are able to reload
a PDE object by reading its PELLPACK language representation, and then displaying the object for viewing or mod-
ification. PDE objects are communicated between editors or between an editor and the PELLPACK session editor.
Moreover, these editors may transform objects when needed. For example, domain objects are transported to mesh
editors, where any generator requiring a piecewise-linearization of the boundary will transform the domain object
appropriately. Table 4 lists the editors and their design objective in PELLPACK.

June 11, 1997 22

TABLE 4. The PDE object based editors in PELLPACK

4.2.1 PDE FRAMEWORK SPECIFICATION EDITOR

This editor is used to specify the PDE equations and generate the program framework used for solving the PDE prob-
lem. The format of the framework generated depends upon the PDE-solving system selected by the user. For each of
these systems, certain forms of the equation are valid. For example, PELLPACK solvers allow differential and self-
adjoint forms of the equation; VECFEM allows differential and variational forms. PDE equations are specified via a
graphical interface which has been tailored to the representation of the chosen form of the equation. The editor then
performs the specialized symbolic processing and code generation required for the definition of PDE problems in the
format required by the selected system solver. It generates by default a boundary segment for a rectangular region
with Dirichlet boundary conditions and zero initial condition. Toolbox editors are used to define the actual values of
these PDE objects.

To implement the PELLPACK framework generation, the PDE system is sent in string form to the Maxima computer
algebra system. Depending on the framework, different symbolic transformations are performed. If non-linear equa-
tions are entered for the PELLPACK system solver, these equations are linearized by computing their Frechet deriva-
tives. If FIDISOL or CADSOL is the selected system solver, Jacobians are computed for the specified system of
equations and boundary conditions. A symbolic representation of the PELLPACK template is then developed inside
Maxima. This representation is communicated to the PDE framework specification editor which converts it to a
PELLPACK template using the GENCRAY system [49]. Finally, this template is written in the PELLPACK session
window. All symbolic operations of this editor are provided by Maxima [12].

Editor Design objective

PELLPACK session editable textual representation of the PELLPACK problem and solu-
tion specification

PDE framework specification symbolic PDE operators definition, input functions transformation in
Fortran, linearization, Jacobian, and default framework generation
for each PDE library

Domain and boundary conditions CAD tools for 1-D, 2-D, 3-D domain boundary specification and
auxiliary conditions, or file in some standard format

Mesh generators 2-D, 3-D mesh generators using PELLPACK domain (or other stan-
dard format) as input.

Grid generators 1-D, 2-D, 3-D uniform/non-uniform grid generators

Domain decomposers 2-D, 3-D geometry decomposition using a library of partitioning
heuristics

Discretizers
Linear system solvers
Triples / Foreign system solvers

algorithm specification, where choices for the solution scheme are
controlled by a knowledge base to provide numerical method mod-
ules from the data base (using dimension, domain discretization,
sequential vs. parallel, etc.)

Output specification solution or performance data output format specification

Output visualization visualization and animation of all possible output data produced by
solution (solutions, error analysis, performance data), including nec-
essary data conversion when accessing “integrated” visualizers

June 11, 1997 23

FIGURE 13. An instance of the PELLPACK session editor

In addition to the general PDE frameworks generated by this editor, there are several model specific templates that are
supported. In these cases, users enter the crucial pieces of information that define the problem parameters. These tem-
plates are implemented without support from a computer algebra system. User input is inserted in the appropriate
locations in the template for the selected model, and the result is written in the PELLPACK session window.

4.2.2 DOMAIN AND BOUNDARY CONDITIONS EDITORS

These editors are used to generate the boundary segment and define the PDE domain and boundary conditions. For 1-
D and 2-D domains, PELLPACK provides its own geometry editors. For 3-D cases, PELLPACK supports well estab-
lished geometry interfaces and the XXoX CAD editor [55] for the geometry modeling library XoX Shapes [46].

With the 1-D domain editor, users can define the interval endpoints and assign a boundary condition to each endpoint.
Boundary conditions for 1-D problems which are solved by PDECOL use a foreign system tag to identify the bound-
ary equations in the boundary segment, since the equations are defined in the subprograms segment by Fortran rou-
tines as described in previous sections.

For 2-D domains, PELLPACK provides a 2-D drawing tool where users can draw the boundary piece by piece, and
then assign boundary conditions to each piece. Users may instead define any 2-D boundary parametrically, using the
session editor and following the PELLPACK language syntax. This includes using complicated Fortran functions to
describes boundary pieces, holes and slits. These parameterized functions are then dynamically loaded into the
domain editor so that the domain can be displayed and boundary conditions assigned. Any of these domain defini-
tions can be used as input to the PELLPACK grid and mesh generators. Boundary conditions for foreign systems
either follow the ELLPACK language syntax, or they are tags to foreign system or model-specific identifiers indicat-
ing specialized conditions such as inflow, outflow, wall, etc. All identifiers are handled by the language processor and
the PELLPACK foreign system interface so that the appropriate boundary conditions are applied.

In the 3-D case, box geometries with associated boundary conditions per face can be specified using a 3-D domain
editor. More complicated domains are defined using constructive solid geometry in the XXoX geometry editor.

June 11, 1997 24

XXoX generates surface triangulations which can be used to define the geometry for PELLPACK’s 3-D mesh gener-
ators. Boundary conditions are generally applied discretely on groups of surface nodes (called patches) resulting from
the mesh generating process. PELLPACK provides a 3-D boundary conditions editor which allows users to apply
boundary conditions on surface patches of nodes. Tags or model-specific identifiers may be used to specify the
boundary conditions for foreign system solvers.

For many solvers integrated into PELLPACK, the domain and boundary conditions may be defined outside of PELL-
PACK and saved in files which are then accessed by PELLPACK during the solution process. Packages such as True-
Grid [56] and Patran [2] can be used to define the domain (or subsequent mesh) and boundary conditions.

4.2.3 GRID GENERATION EDITORS

 PELLPACK supports both uniform and non-uniform grid generation for 1-D, 2-D, and 3-D domains. For uniform
grids, the number of grid lines in any direction can be specified. Non-uniform grids are specified by point-and-click
(to add, move or delete grid lines) or by listing coordinates. Grids can be uniform in one direction and non-uniform in
another. For collocation methods based on tensor product spline basis functions, the 2-D grid editor and the corre-
sponding overlay grid to a domain can be used to generate and display the collocation meshes and points. In addition,
PELLPACK supports a body-oriented grid generator. It allows users to define the mapping of an arbitrary domain to a
four-sided domain, and allows the specification of an arbitrary number of grid lines per piece of the original domain
definition. The body-oriented grid generator supports systems such as CADSOL, which require a body-oriented grid
for the solution method.

4.2.4 MESH GENERATION EDITOR

This editor is the driver and graphical interface to the finite element mesh generators integrated in PELLPACK. The
available mesh generators are listed in Table5. For 2-D mesh generators, boundary conditions which have been
defined on the original domain boundary pieces are maintained throughout the mesh generation process. Thus, the
element edges on the domain boundary inherit the conditions of the original boundary piece. These meshes can be
graphically modified by moving appropriate nodes. In the 3-D case, boundary conditions defined on the surface trian-
gulations are maintained throughout the mesh generation process, so that additional faces on the surface inherit the
appropriate boundary condition. A 3-D mesh editor is also available to display or modify 3-D meshes and boundary
condition assignments.

TABLE 5. PELLPACK supported mesh generators and their applicability

Mesh generator Domain definition Description

2-D triangular PELLPACK domain editor

for given edge length, generates a uniform,
triangular mesh and outputs a PELLPACK
mesh format file

2-D adaptive

piece-wise linear approximation
of domain from PELLPACK
domain editor

 uses quadtree method to generate a first-cut
mesh which users refine by point-and-click,
outputs a PELLPACK mesh format file

2-D structured

arbitrary domain from
PELLPACK domain editor is
mapped to 4-sided figure

user specifies any number of “points” per side
on original domain then structured mesh is
generated, outputs a PELLPACK mesh format
file

2-D QMG [37]

piece-wise linear approximation
of domain from PELLPACK
domain editor

user specifies maximum edge length which is
used to generate a mesh using the quadtree
algorithm and the mesh is refined by
subsequent applications of algorithm, outputs a
neutral [2] format file.

June 11, 1997 25

4.2.5 DOMAIN DECOMPOSITION EDITOR

The decomposition editor supports the decomposition of meshes/grids into “balanced” subdomains. These data are
used to parallelize the underlying PDE computations. A library of partitioning algorithms is provided to automati-
cally generate the decomposition. These algorithms produce decompositions that balance the load among processors
and minimize communication between processors. Users may choose from many automatic partioning heuristics,
such as Inertia Axis, Neighborhood Search, Recursive Spectral Bisection, and others. These algorithms allow users to
specify numerous input parameters which control the partitioning process. In addition, decompositions can be modi-
fied manually. The decomposition data is written to file(s) used uniformly across all supported target parallel plat-
forms, communication libraries, and execution models (hosted, hostless, Mplus, Dplus). Extensive parallel processing
performance data has been collected using the PELLPACK environment, comparing and analyzing algorithms, plat-
forms, communication libraries, and execution models [29],[32],[33].

4.2.6 ALGORITHM AND OUTPUT SPECIFICATION EDITORS

These editors help the user to specify the solution and output segments by visualizing in a menu form the options that
currently exist in various PDE libraries. The ELLPACK and PELLPACK modules which are available for the solution
process depend on the problem description in the session. The problem dimension and selected method (finite differ-
ence or finite element) are used by internal filters to identify the applicable modules displayed in the discretization
and triple menus of the algorithm editor. If the problem language specification has parallel information, only the par-
allel modules are listed in the menus. Any controlling parameters are accessible through the algorithm editor, where
they can be viewed, modified and saved.

For a solution process which uses foreign system solvers, users must specify the appropriate triple module identified
by the framework they selected when defining the problem (e.g., VECFEM, NSC2KE). As in the case of a PELL-
PACK triple, the foreign system triple module represents the entire numerical solution process. Selecting the triple
module and specifying the values of the required parameters is done within the algorithm editor.

To specify output requirements, the output editor may be used for any ELLPACK or PELLPACK solution process.
Foreign system output requirements are identified directly in the triple module as one of the parameters.

4.3 POST-PROCESSING TOOLS

This software layer includes the output tool which is an interactive environment used to analyze and visualize scien-
tific data generated by PELLPACK solvers. It consists of customized and public domain visualization tools used to
visualize and/or animate 1-D, 2-D, and 3-D PDE solution data. Every solver available in PELLPACK including the
integrated foreign systems supports the PELLPACK output file format. In addition, some solvers generate “solution
component” data files, which together with a mesh file describe the problem solution. Any of these file formats can be
loaded into the output tool. Once the data is loaded, all tools that can load the data (or a transformation thereof) are
made available for selection. Tool applicability is based on problem dimension, domain discretization type (grid vs.
mesh), and the possibility for animation (time-dependent solution). When a visualization tool is selected, the output
tool handles all conversions and data transformation required by the visualization tool.

In addition, it contains performance tools that use timing and trace files generated by sequential or parallel PELL-
PACK programs to evaluate the performance of pre-processing and solution modules (the algorithms) and the perfor-
mance of execution models.

3-D Geompack [27]
surface triangulation from 3-D
domain editor (e.g. XXoX)

users specify a set of parameters controlling
edges, angles, etc., and a tetrahedral mesh is
generated, outputs a neutral format file.

3-D QMG [36]
surface triangulation from 3-D
domain editor (e.g. XXoX)

generates a tetrahedral mesh and outputs a
neutral format file

June 11, 1997 26

TABLE 6. Output tool applications and recognized input

All PELLPACK solvers generate timing information which identifies the elapsed CPU time used by each step of the
numerical solution process. When programs are executed in parallel, timing information is generated for each proces-
sor. The timing information can be loaded into the output tool and analyzed via PELLPACK’s performance visualiza-
tion tool, ViPerform. Timing and trace data can also be analyzed by Pablo [38] and PATool [39]. Timing data is
transformed by the output tool into the required format, and users can select any of the built-in configurations
required by these performance analysis tools. ParaGraph [12] is available for parallel execution analysis when certain
parallel communication libraries are used.

5. EXECUTION ENVIRONMENT

The design objective of the execution environment is to assist users in compiling, linking, and running programs pro-
duced by the different frameworks discussed earlier. In addition, the environment is responsible for locating compil-
ers, allocating machines, running execution scripts, and scattering/gathering data to/from distributed machines. This
environment is realized by the execute tool which provides support for remote login, file transfer, and platform-
dependent execution management. In this section we describe the functionality and architecture of the PELLPACK
execute tool.

Visualization
tools

Applicability Solutions generated by solvers

XGraph 1-D solutions
1-D time-dependent solutions

PDECOL

Time1-D 1-D time-dependent solutions PDECOL

Visual2-D 2-D grid or mesh solutions
2-D grid or mesh time-dependent solutions (anima-
tion)

solutions generated by any 2-D
solver, including PELLPACK,
VECFEM, FIDISOL, CADSOL,
ITGFS, NSC2KE.

Flow2-D 2-D mesh solutions
2-D body-oriented grid solutions
(Vector plot visualization)

solutions generated by any 2-D
mesh or body-oriented grid solver,
including PELLPACK, VECFEM,
CADSOL, ITGFS, NSC2KE.

Contour2-D 2-D mesh solutions
2-D body-oriented grid solutions
(Contour plot visualization)

solutions generated by any 2-D
mesh or body-oriented grid solver,
including PELLPACK, VECFEM,
CADSOL, ITGFS, NSC2KE.

MeshTV [6] 2-D and 3-D mesh solutions
2-D and 3-D body-oriented grid solutions

solutions generated by any 2-D or
3-D mesh or body-oriented grid
solver, including PELLPACK,
VECFEM, CADSOL, ITGFS,
NSC2KE.

Visual3-D 2-D and 3-D mesh solutions
2-D body-oriented grid solutions
3-D solutions on a box geometry

solutions generated by any 2-D or
3-D mesh solver, including PELL-
PACK, VECFEM, ITGFS,
NSC2KE.

PATRAN 2-D and 3-D mesh solutions
2-D and 3-D body-oriented grid solutions
3-D grid solutions on a box geometry

solutions generated by any 2-D or
3-D mesh solver, including PELL-
PACK, VECFEM, ITGFS,
NSC2KE.

XDS 2-D and 3-D grid solutions on a box geometry 2-D or 3-D PELLPACK FDM solv-
ers

June 11, 1997 27

5.1 EXECUTETOOL FUNCTIONALITY

The main task of the execute tool is to execute a PDE solving program specified in the PELLPACK language. The
PELLPACK language file is first translated to one or more Fortran programs, and then compiled to binary format
using the native Fortran compiler. Different types and numbers of programs are generated based on the execution
model selected by the user.

5.1.1 FRAMEWORK AND EXECUTION MODEL DETERMINATION

Special identifiers in theoptions segment of the PELLPACK source file specify the type of framework (e.g.,
PELLPACK, CADSOL) and the execution model [33] to be used. When the execute tool first loads the PELLPACK
program, it uses this information to configure its operation appropriately. The framework determines which system
solver library will be used in the linking stage. The execution model identifies whether the execution is sequential or
parallel, and when execution is parallel, it specifies the type of parallel model. For sequential execution, a single For-
tran program corresponding to the PELLPACK problem specification is generated. This program solves the problem
and generates the global solution in a single output file.

5.1.2 PARALLEL EXECUTION MODELS

For parallel execution, the parallel model tells the execution environment the number and types of Fortran files to be
generated. In the parallel case, a partitioning of the PDE mesh/grid is assumed, and all computations are done on a
per-subdomain (local) basis. Computations for each subdomain are mapped to the processors of a (virtual) parallel
machine, where multiple processors compute on different parts of the domain. Communication between subdomains
occurs on the subdomain interfaces, which are specified in the decomposition data. Processors are thus able to com-
pute a local solution. To generate the global solution, the system needs to collect the local solutions and compute the
global one. Different control programs are generated for each of the parallel execution models, each performing spe-
cific phases of the numerical solution process. The parallel execution models and the corresponding execution tasks
supported by the PELLPACK execute tool are described in Table 7.

5.1.3 COMPILATION AND EXECUTION PARAMETERS DETERMINATION

Following the principle of late binding, the user does not select the architecture on which to execute the program until
after loading it into the execution environment. That is, PELLPACK allows the user to completely specify the PDE
problem as well as how to solve it without having to select the specific type of hardware to be used for solving the
problem. Selecting the target platform requires the selection of the hardware (e.g., Sun Sparc) as well as the version
of the operating system (e.g., SunOS 4.1, Solaris 2.5). The user also selects the communication library to be used at
run-time. After this information is specified, the execute tool determines the possible machines that can be used for
compilation and execution based on the local configuration. If these machines need to be accessed with a different
user name and/or login name, those must be specified as well. Finally, the compilation and linking steps are per-
formed to produce the executable file(s).

TABLE 7. Parallel execution models

Execution

model
DISC(1) LSS(1) Control programs and their execution tasks

Hosted P P Host program: Reads in decomposition file and sends appropriate data
to each of the node programs. Receives local solution data and gener-
ates global solution.
Node program: Each node discretizes and solves the linear system on
its subdomain, collaborating with neighboring subdomains. Local
solutions are sent back to the host.

June 11, 1997 28

(1) DISC = Discretization phase, LSS = Linear System Solver phase.
 S = the code is sequential, P = the code is parallel.

(2) The node program for the Hostless and DPlus models carry out identical tasks. Note, however, that all
numerical code in the Hostless model is parallel. DPlus, on the other hand, uses sequential discretization
code; each node performs a sequential discretization on its partition of the domain. In this way, available
sequential discretization codes may be used for the discretization phase, while parallel codes can still be
used for the more time-consuming linear system solver phase.

5.1.4 FILE AVAILABILITY

For compilation and execution on remote machines, the execute tool addresses the issue of file availability. Since the
user can choose to compile and execute the program on different machines, these files might not necessarily be avail-
able on the target machines. The files considered here include the PELLPACK source file, any generated object/
binary files, the files specified inside the PELLPACK program (such as mesh and decomposition files), and the output
file. These files are handled differently by the execute tool. The location of the source and generated object files is
known to the environment since these files are generated during the compilation phase. The location of the PELL-
PACK program specification files (i.e., file system paths), are specified within the PELLPACK program file. These
files are needed during the execution and post-processing phases. We identify three different possibilities for each of
these files: i) the file is available on the execution machine with the same pathname, ii) the file is only available on the
current machine, and iii) the file is available on the remote machine with a different path name. In the first case, noth-
ing special need be done to gain access to the input file. For the second case, a copy of the input file is temporarily
generated on the remote machine. In the last case, the execute tool must map the path of the input files appropriately
so that the correct name is used on each machine.

5.1.5 COMPILATION AND EXECUTION CONFIGURATION

Unlike the sequential case, the process for compiling a Fortran file into binary form for the parallel case may not be
straight forward. In certain cases, cross compilers can be used that are available on certain machines. In some other
cases the compilers require certain environment variables to be set before running them. The execute tool allows the
local site specialist to configure this information at the time of PELLPACK installation, so that this information is
known to the environment at run time and is available for user selection of platform and communication parameters.

The information needed to configure the execute tool for a user’s site consists of:

Hostless(2) P P Node program: Each node reads its own decomposition file. It dis-
cretizes and solves the linear system on its subdomain, collaborating
with neighboring subdomains. It generates a local solution file.
Post-processing program: Collects local solutions and generates a glo-
bal solution.

MPlus S P Discretization program: Generates linear system on the entire domain.
MPlus environment: Partitions linear system using decomposition file
and global linear system.
Node program: Each node reads its local linear system file. It solves
the linear system on its subdomain, collaborating with neighboring
subdomains. It generates a local solution file.
Post-processing program: Collects local solutions and generates a glo-
bal solution.

DPlus(2) S P Node program: Each node reads its own decomposition file. It dis-
cretizes and solves the linear system on its subdomain, collaborating
with neighboring subdomains. It generates a local solution file.
Post-processing program: Collects local solutions and generates a glo-
bal solution.

June 11, 1997 29

• information about the hardware platforms and communication packages available at this site, including the list of
machines available to the user, the availability of compilers and cross-compilers, the environment settings needed
to compile a program on a specific architecture, and the process of executing on the selected parallel architectures

• information about the availability of the foreign solver libraries that are available at the site.

This information is specified at installation time and loaded in at runtime, so that the end-user is presented with a con-
venient and knowledgeable graphical interface that automatically determines the site-specific configuration based on
the target platform selected by the user. The diagram in Figure14 lists the platforms and communication libraries cur-
rently supported by the PELLPACK system. Figure15 shows how the platform configuration information is pre-
sented to the user during PELLPACK execution in a convenient and easy-to-use format.

FIGURE 14. Available platforms and communication libraries

5.1.6 EXECUTION STATE

Since users may wish to re-start the execution process at any point in the execution sequence, a state file is introduced
to maintain state data about the actions that have been performed on PELLPACK source files. For example, if a
source file is compiled for the Intel Paragon using the MPICH communication library, a record in the state file con-
tains this information along with the names of the generated object/binary files and other pertinent information. The
user may enter the execute tool at a later time with this state file, which identifies that compilation has already taken
place.

FIGURE 15. Executing a parallel hostless program on a network of 2 Sun4-Sos4 machines

Sun4 - SunOS

nCube 2
● VERTEX
● MPICH
● PICL

iPSC 860
● MPICH
● PICL

workstation network
● LAM MPI
● MPICH
● CHIMP MPI
● PVM

Paragon
● MPICH
● PICL
● Intel/NX

● PARMACS
● NX
● PARMACS

Sun4 - Solaris

● hostless, MPlus, DPlus models
● hosted, hostless, MPlus, DPlus models

sequential execution
parallel execution

June 11, 1997 30

5.2 ARCHITECTURE

The PELLPACK execute tool consists of a Tcl driver, a Tcl/Tk graphical user interface, and the site specific configu-
ration database. Upon invocation, the execute tool loads all local configuration required to perform the supported
operations. Figure 16 depicts the software components of this tool.

FIGURE 16. The software architecture of the execute tool

6. THE PELLPACK E XPERT SYSTEM SUPPORT

Given the large number of solution frameworks available in PELLPACK and the number of possible implementations
of a framework segment, it is clear that most users will not be able to select the most efficient set of options needed to
best solve the problem at hand. The PYTHIA knowledge based system component of PELLPACK addresses this
algorithm selection problem by automatically selecting a solution scheme to use to solve a given problem within user
specified performance objectives [25]. The PYTHIA system is not a part of PELLPACK, but it operates on perfor-
mance data produced by PELLPACK.

The approach that PYTHIA takes to solve this problem is to select the best solution scheme based on the measured
performance of various solvers on “similar” problems. Problem similarity is measured by comparing characteristics
of the problem at hand with the characteristics of problems that have been solved before. Problem characteristics and
performance information about the effectiveness of various solution schemes on these problemsare assumed to be
available from the PYTHIA knowledge base. Clearly, for better performance it is important to have a very large and
growing database that continues to accumulate knowledge about the PDE problems that are being solved. Hence it is
important to develop techniques for efficiently locating “similar” problems so that the algorithm selection can be
done quickly. This is achieved by grouping sets of problems into classes based on some set of characteristics and then
restricting the search to problems belonging to similar classes of problems.

The PYTHIA system utilizes the ELLPACK Performance Evaluation System [4] (as modified to support the PELL-
PACK solvers) to generate the performance data that provides initial information to the knowledge bases. The raw
performance information is automatically transformed into rules and facts and stored in the knowledge base. The
information in the knowledge base includes individual problem characteristic vectors, problem class characteristic
vectors, and problem and class performance rules. These are used by the inferencing logic to determine the best solu-
tion scheme and parameters for a given problem.

PYTHIA inferencing logic includes traditional case-based and clustering-type techniques as well as neural network
techniques to help determine the class(es) to which a problem belongs to. Once a problem’s class is determined, then
the problem is compared against all the exemplars of that class to determine the best match. Then, the performance of
various solution methods on that problem is used as the basis upon which to select the solution scheme for the given
problem.

U s e r I n t e r f a c e

E x e c u t e T o o l K e r n e l

Solver

Interface

Compilation
& Execution

Comm.
Library

S i t e S p e c i f i c C o n f i g u r a t i o n

C o m m u n i c a t i o n I n t e r f a c e

// E L L P A C K
P S E

E X E C U T E T O O L

Resource
DatabaseInterface

Library
Scripts

June 11, 1997 31

After the solution method is selected, its parameters must be determined. The basic parameter to determine is the
number of degrees of freedom that should be present in the discretized PDE to achieve the user specified performance
objectives. PYTHIA balances between conflicting user constraints to give the best possible choice for the solution
algorithm and its parameters.

7. THE PELLPACK D EVELOPMENT ENVIRONMENT

The following two scenarios show how the PELLPACK development environment can be used for educational pur-
poses. It is important to note that both scenarios are possible without the slightest modification of the PELLPACK
system itself. Instead, we rely on the power and flexibility inherent in the design of the open architecture which was
described earlier.

A graduate class in parallel programming is assigned to write the code for several domain decomposition algorithms.
After generating their decomposition, the student must write the data to a file in the PELLPACK format. This file can
immediately be brought into PELLPACK’s graphical environment by inserting its filename into adecomposition
segment, thus allowing the decomposition editor to load and display the new decomposition. Moreover, these decom-
position files can even be used to execute a PELLPACK problem in parallel, using any of the available parallel solu-
tion schemes. The class executes the program on all available parallel platforms, and collects timing data for several
different decompositions by varying the number of subdomains generated by their algorithms. The data collected by
the students describes the performance of their decompositions for different numbers of subdomains, so they can
compute and graph the speed-up. They can also compare the performance of their decompositions to those generated
by the algorithms already available within PELLPACK. This use of the development environment requires no pro-
gramming on the part of the students other than writing the decomposition to a file in the pre-defined (PELLPACK)
format.

A class in numerical methods is to write a collocation discretizer. Testing the correctness of the code and evaluating
its efficiency for a test suite of PDE equations is done within the PELLPACK environment. The discretizer is written
using the PELLPACK data structures for the input and output arrays and variables. Workspace and other variable
space allocation is defined through PELLPACK language constructs. The discretization code is inserted as a Fortran
segment immediately before the solution segment of the problem definition. PELLPACK’s language processor
embeds this code in the resulting program at the appropriate location, and the execute tool handles the linking of the
additional user specified compiled objects. Students can very easily test their discretizers on many different PDE
problems, using PELLPACK’s test suite. The performance of the discretizer is captured as timing data which is output
at each execution. The development environment has been used in this way for testing linear system solvers, mesh
generators, and many other kinds of user-written sequential and parallel code.

The components of PELLPACK that allow it to function as a development environment are the following: open archi-
tecture, standard interfaces for the PDE problem and solution process specifications, published file formats and data
structures for all input and output, an extensible database defining the solver modules, the Fortran language segment,
the language processing tools, and the configurable facilities of the execute tool. The table below describes how these
components work together to allow developers to add their own PDE solver components and have them inter-operate
seemlessly with the existing components. Development tasks that require PELLPACK source code are marked with
(*).

TABLE 8. PELLPACK development tasks

Development task Description of integration process
Components of the PELLPACK
development environment used

Use off-line code to
generate mesh, decom-
position, etc.

use PELLPACK file format to save data and
insert filename in appropriate language seg-
ment.

published input file formats, language
processing tools

June 11, 1997 32

Adding a permanent module to PELLPACK requires modification of the module data base. This can only be done
when source code for the language processor is available, since the changes must be compiled into the runtime sys-
tem. To add a permanent module to PELLPACK, a developer must put the module definition into the data base. This
information includes: (1) the “type” of module (identified by the language segment where it will appear in the prob-
lem definition), (2) the name of the module, the list of module parameters, and their default values which can be mod-
ified by the user, (3) the Fortran call to the top-level routine of the module, (4) the list of data structures needed by the
new code, and (5) the memory requirements for existing PELLPACK data structures and any new data structures.
After the modified language processor is installed, the new module is available as a standard part of the PELLPACK
system.

8. WEB PELLPACK

Web PELLPACK [52] is an instance of the PELLPACK system that has been made available for public use via the
World Wide Web at the URL http://pellpack.cs.purdue.edu/. The goal of the Web PELLPACK service is to allow
remote users to access and use the PELLPACK system in a safe, secure and effective manner. The design was guided
by the following principles: 1) outside users should not have direct access to server machine(s) for obvious security
reasons, 2) control access to the software for accountability purposes, and 3) users must have privacy; i.e., one user
should not be able to freely browse other users’ files.

To satisfy these constraints, an account-oriented model where users “log in” to their “account” and then access the
software was developed. These “accounts” are created within the data space of a custom web server. Access to files
within such an account is controlled using standard web security constraints. To maintain security from users’s
“breaking in” to the server machines, several levels of Unix security are used.

To run Web PELLPACK (as a demonstration or otherwise), users need to have the X window system operational on
their machines. In order for the machine providing the Web PELLPACK service to display X windows on the user’s
display, users must instruct their own machine to permit this action. The command for doing so is conveniently pro-
vided to the user in a set up page in both demonstration and actual runs. Once the appropriate permissions are set up,
the demonstration is started by pressing the “Run” button. The demonstration PELLPACK system then runs on the
web service machine and displays its windows on the user’s display. The web browser is blocked until the execution
is complete. Once the operation is complete, the user is presented with a page that allows them to send comments to
the PELLPACK developers.

Write new code for dis-
cretizer or linear system
solver

define routines using PELLPACK data
structures for input/output, insert call to
top-level routine in Fortran segment, com-
pile routines on target platforms

standard interfaces for PDE solution
process specifications, Fortran lan-
guage segment, language processing
tools, configurable execution facilities

Test existing code for
discretization or linear
system solver

write interface routines transforming exist-
ing data structures to PELLPACK data
structures, insert call to conversion routines
and call to top-level solver routine in For-
tran segment, compile routines on target
platforms

standard interfaces for PDE solution
process specifications, Fortran lan-
guage segment, language processing
tools, configurable execution facilities

Integrate permanent
module code into
PELLPACK (*)

define interface routines using PELLPACK
standard interfaces, add module definition
to extensible module data base, add perma-
nent new library to Execution configuration

standard interfaces for PDE solution
process specifications, extensible mod-
ule data base, configurable Execution
facilities

Integrate visualizer,
mesh generator, geome-
try decomposer or other
new tool to PELLPACK
GUI (*)

write routine to convert PELLPACK format
data structure or file to new tool format.
Add following items to graphical environ-
ment: button to invoke tool, callback to call
converter, call to start up tool

published file formats and data struc-
tures for all input and output

June 11, 1997 33

For normal operation, the user must first request access to use the Web PELLPACK service by filling out a (Web)
form and submitting it to the service administrators. Processing the request requires the administrator to provide the
user with an initial login identifier and an initial password which the user may use to create an account for them-
selves. Then, this login is added to the WWW server access control file that controls who has access to the account
creation page. Once users receive the initial login and password, they visit the account creation page using these
tokens and sets up an account for themselves. The account creation request is processed automatically by creating a
“home” directory for the user within the WWW server’s data space and by creating an access control file there that
restricts access only to this user.

Once the account has been set up, users may log in any time and use the PELLPACK system. The home directory
works like a normal home directory; i.e., users may use it as a persistent working area and may save programs and
results there. Files may be off-loaded from this directory using a web browser, but we currently do not support
uploading files to this directory. File uploading will be supported later using the FILE input type in HTML3 [26]
forms.

The primary concern of anyone providing any Internet-wide service is that of security. The security concerns in the
Web PELLPACK service include ensuring that users do not get access to files outside of the service boundaries, that
they have restricted access outside of their home directory, that they cannot compromise the system in any way and
that they cannot access and compromise the local network in any way. Details of how all these constraints are main-
tained are included in [52].

9. ACKNOWLEDGMENTS

Many people have contributed to the design and implementation of PELLPACK in a period of about 6 years. The fol-
lowing is an incomplete list of the contributors to PELLPACK (in alphabetical order): A.C. Catlin, Y. Chen, N.P.
Chrisochoides, C.C. Chui, C.L. Crabill, M.G. Gaitzatzes, S.G. Gaitatzes, P.N. Galani, H. Gu, A. Hadjidimos, E.N.
Houstis, N.E. Houstis, B. Jackson, A. Joshi, H.C. Karanthanasis, S.B. Kim, S. Kim, T. Ku, Y.L. Lai, D. Maharry, A.L.
Ng, W.L, Ng, S. Markus, J.R. McCombs, A. Ocken, K. Pantazopoulos, P.N. Papachiou, N. Ramakrishnan, J.R. Rice,
M.K. Samartzis, M.L. Shyu, C.H. Song, E.A. Vavalis, V. Verykios, R.L. Walker, S. Weerawarana, P. Wu, S. Zhang,
and J.L. Zhen.

 This project was partially funded by the National Science Foundation (CCR-8704826, CDA-9123502, CCR-9202536,
ASC-9404859, CDA-9422038, CCR-8819501, CCR-8922537, CCR-9311486), National Aeronautics and Space Ad-
ministration (NGT-50708), Air Force Office of Scientific Research (AFOSR-88-0243, F49620-92-J-0069), the Army
Research Office (DAAH04-94-G-0010, DAAH04-G-0010), ESPRIT grants 2702, 6643, and support from the AT&T
Foundation, INTEL Corporation, FIRST Info Inc, and the Purdue Research Foundation.

10. REFERENCES

[1] Baldwin, B. and Lomax, H. 1978. Thin-layer approximation and algebraic model for separated turbulent
flows. AIAA-78-257.

[2] Baldwin, K. 1990.Patran Plus User Manual, Release 2.5, Vols I and II. PDA Engineering, PATRAN Division.

[3] Bijan, M. 1978. Fluid Dynamics Computation with NSC2KE, A User Guide, Release 1.0.No RT-0164, Mai
1994, Institut National de Recherche en Informatique et en Automatique 257.

[4] Boisvert, R. F., Houstis, E. N., and Rice, J. R. 1979. A system for performance evaluation of partial differential
equations software.IEEE Trans. Software Engineering. SE-5, 4, 418-425

[5] Boisvert, R. F., Howe, S. E., and Kahaner, D. K. 1985. GAMS -A framework for the management of scientific
software.ACM Trans. Math. Softw. 11, 313 -355.

[6] Brugger, E. S., Leibee, A., and Long, J. W. 1994.MeshTV User’s Manual. Lawrence Livermore National Lab-
oratory.

June 11, 1997 34

[7] Chrisochoides, N. P., Houstis, E. N., and Rice, J. R. 1994. Mapping algorithms and software environments for
data parallel pde iterative solvers. Journal of Distributed and Parallel Computing, 21, 75-95.

[8] Chrisochoides, N.P., Houstis, C.E., Kortesis, S.K., Houstis, E. N., Papachiou, P.N., and Rice, J. R. 1991.
Domain Decomposer: A software tool for mapping PDE computations to parallel machines. R. Glowinski, et
al. (Eds.).Domain Decomposition Methods for Partial Diferential Equations IV, 341-357. SIAM Publications.

[9] Chrisochoides, N.P., Houstis, C.E., Kortesis, S.K., Houstis, E.N., and Rice, J. R. 1989. Automatic load bal-
anced partitioning strategies for PDE computations. E.N. Houstis and D. Gannon, editors,Proceedings of
International Conference on Supercomputing, 99-107. ACM Press.

[10] Cooper, G.K., Jones, R.R., Power, G.D., Sirbaugh, J. R., Smith, C.F., and Towne, C. E. 1994.A User’s Guide to
NPARC, Version 2.0. NASA Lewis Research Center and Arnold Engineering Development Center.

[11] Denton, J. D. 1982. An improved time marching method for turbo-machinery flow calculation. ASME 82-GT-
239.

[12] Energy Science & Technology Software Center. 1995.The Maxima system. Oak Ridge, TN.

[13] Gallopoulos, E., Houstis, E.N., and Rice, J. R. 1994. Computer as thinker/doer: Problem solving environments
for computational science.IEEE Comp. Sci. Engr., 1, 11–23

[14] Gallopoulos, E., Houstis, E.N., and Rice, J. R. 1995. Workshop on problem-solving environments: Findings
and reommendations.Computing Surveys, 27,277-279.

[15] Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V. 1993. PVM 3 User’s Guide
and Reference Manual.Technical Report TM-12187. Oak Ridge National Laboratory.

[16] Gropp, W., Lusk, E., and Skjellum, A. 1994.Using MPI: Portable Parallel Programming with the Message-
Passing Interface. MIT Press.

[17] Gross, L., Roll, C., and Schoenauer, W. 1993. VECFEM for mixed finite elements. Technical Report Interner
Bericht Nr. 50/9.Rechenzentrum der Universitat Karlsruhe.

[18] Heath, M. T. and Finger, J. E. 1991. Visualizing the performance of parallel programs. IEEE Software, 8, 29-
39.

[19] Hindmarsh, A.C. 1983. Odepack, A systematized collection of ODE solvers. Scientific Computing. R.S.
Stepleman, et al. (Eds). 55-64. North-Holland, Amsterdam.

[20] Houstis, E. N., Mitchell, W. F., Rice, J. R. 1983. Collocation software for second order elliptic partial differen-
tial equations.CSD-TR 466, Department of Computer Science, Purdue University.

[21] Houstis, .E. N., Papatheodorou, T. S., and Rice, J. R. 1990. Parallel ELLPACK: An expert system for the paral-
lel processing of partial differential equations. Intelligent Mathematical Software Systems.63-73. North-Hol-
land, Amsterdam.

[22] Houstis, E. N., Rice, J. R., Chrisochoides, N. P., Karathanasis, H. C., Papachiou, P. N., Samartzis, M. K., Vava-
lis, E. A. , Wang, K. Y., and Weerawarana, S. 1990. Ellpack: A numerical simulation programming environ-
ment for parallel MIMD machines. In D. Marinescu and R. Frost (Eds.).International Conference on
Supercomputing, 96-107. ACM Press.

[23] Houstis, E. N., and Rice, J. R. 1992. Parallel Ellpack: A development and problem solving environment for
high performance computing machines. In P. W. Gaffney and E. N. Houstis (Eds.).Programming Environments
for High-Level Scientific Problem Solving, 229-241. North-Holland.

June 11, 1997 35

[24] Houstis, E.N., Kim, S.B., Markus, S., Wu, .P., Houstis, N.E., Catlin,, A.C., Weerawarana, S., and Papathe-
odorou, T.S. 1995. Parallel ELLPACK PDE solvers.Second Annual Intel SuperComputer User’s Group Con-
ference.Also: CSD-TR 95-042. Department of Computer Science, Purdue University

[25] Houstis, E.N., Weerawarana, S., Joshi, A., and Rice, J. R. to appear. PYTHIA: A knowledge based system to
select scientific algorithms.ACM Trans. Math. Software.

[26] HyperText Markup Language (HTML). 1996. Working and Background Materials, http://www.w3.org/pub/
WWW/MarkUp/.

[27] Joe, B. 1991. GEOMPACK-A software package for the generation of meshes using geometric algorithms.Adv.
Eng. Software, 13, 325-331

[28] Kim, S. B. 1993.Parallel Numerical Methods for Partial Differential Equations.Ph.D. Thesis. CSD-TR-94-
000. Department of Computer Science, Purdue University.

[29] Kim, S. B., Houstis, E. N., and Rice, J. R. 1994. Parallel stationary iterative methods and their performance.
Marinescu, D. and Frost, R. (Eds.), INTEL Supercomputer Users Group Conference.

[30] Kinkaid, D., Respess, J., and Grimes, J. 1982. Algorithm 586: Itpack 2c: A Fortran package for solving large
linear systems by adaptive accelerated iterative methods.ACM Trans. Math. Software., 8, 302-322.

[31] Madsen, N.K. and Sincovec, R.F. 1979. Algorithm 540: PDECOL, general collocation software for partial dif-
ferential equations, ACM Trans. Math. Software, 5, 326-351.

[32] Markus, S., Kim, S. B., Pantazopoulos, K., Ocken, A. L., Houstis, E. M., Wu, P., Weerawarana, S., and Maha-
rry D. 1996. , Performance evaluation of MPI implementations and MPI based Parallel ELLPACK solvers,
Proc. 2nd MPI Developer’s Conference. 162-169. IEEE Computer Society Press.

[33] Markus, S. and Houstis, E.N. 1996. Parallel Reuse Methodologies for Elliptic Boundary Value Problems.
CSD-TR 96-056. Department of Computer Science, Purdue University.

[34] Melgaard, D. K. and Sincovec, R. F. 1981. General software for two-dimensional nonlinear partial differential
equations. ACM Trans. Math.Software, 7, 106-125.

[35] Mitchell, W. F. 1991.Adaptive refinement for arbitrary finite element spaces with hierarchical bases. J. Compu-
tational and Applied Math., 36, 65-78.

[36] Mitchell, S.A. and Vavasis, S.A. 1992. Quality mesh generation in three dimensions.Proc. ACM Computa-
tional Geometry Conference, 212-221. ACM Press.

[37] Mitchell, S.A. and Vavasis, S.A. to appear. An aspect ratio bound for triangulating a mesh cut by an affine set.

[38] Reed, D. A., Aydt, R.A., Noe, R., Phillip, J., Roth, C., Shields, K. A., Schwartz, B., and Tavera, L.F. 1993.
Scalable performance analysis: The Pablo performance analysis environment. Anthony Skjellum (Ed.) Pro-
ceedings of the Scalable Parallel Libraries Conference,104-113. IEEE Computer Society.

[39] Reed D.A. 1994. Experimental performance analysis of parallel systems: techniques and open problems.Pro-
ceedings of the 7th International Conference on Modelling Techniques and Tools for Computer Performance
Evaluation, 25-51. IFIP.

[40] Rice, J. R. and Boisvert R. F. 1985.Solving Elliptic Problems using ELLPACK. Springer-Verlag.

[41] Rice, J.R. 1989. Libraries, software parts and problem solving systems. In Cai, Fosdick and Huang (Eds.)Sym-
posium on Scientific Software, 191-203. Tsinghua Univ.Press.

June 11, 1997 36

[42] Schmauder, M., Weiss, R., and Schoenauer, W. 1992. The CADSOL program package. Technical Report
Interner Bericht Nr. 46/9., Rechenzentrum der Universitat Karlsruhe.

[43] Schoenauer, W., Schnepf, E., and Mueller, H. 1985. The FIDISOL program package. Technical Report Interner
Bericht Nr. 27/85. Rechenzentrum der Universitat Karlsruhe.

[44] Scientific Computing Associates, Inc. 1995.PCGPACK2: A library of Fortran 77 subroutines for the solution
of large sparse linear systems.

[45] Shadid, J.N. and Tuminaro, R.S. 1992. Coarse iterative algorithm software for large scale MIMD machines: an
initial discussion and implementation.Concurrency:Practice and Experience, 4, 481-497.

[46] SHAPES Geometric Computing System. 1992. Geometry Library Reference Manual (C Edition). XoX Corpo-
ration.

[47] Sincovec, R. F. and Madsen, N. K. 1975.Software for nonlinear partial differential equations. ACM Trans.
Math. Software, 1, 232-260.

[48] Walker, R. 1996. The performance of a parallel time-stepping methodology in the Parallel (//) ELLPACK pro-
gramming environment. Proceedings of the 1996 Simulation Multiconference.206-213.

[49] Weerawarana, S. and Wang, P. S. 1992. A Portable code generator for Cray Fortran.Trans. Math. Software, 18,
241-255.

[50] Weerawarana, S., Houstis, E.N., Catlin, A.C. and Rice J.R. 1995.PELLPACK: A system for simulating partial
differential equations. C.E. deSilva and M.H.Hanzu (Eds).Modeling and Simulation. 122-126. IASTED-
ACTA Press Anaheim, Ca.

[51] Weerawarana, S., Houstis, E.N., and Rice, J.R. 1992. An interactive symbolic-numeric interface to parallel
ELLPACK for building general PDE solvers. Donald, Kapur and Mundy (Eds.)Symbolic and Numerical Com-
putation for Artificial Intellligence, 303–321. Academic Press.

[52] Weerawarana, S., Houstis, E.N., Rice, J. R., Gaitatzes, M.G., Markus, S., and Joshi, A. 1996. Web PELLPACK:
A Networked Computing Service on the World Wide Web. CSD-TR-95-011. Department of Computer Sci-
ence, Purdue University.

[53] Womble, D.E. 1990. A time-stepping algorithm for parallel computers.SIAM J. Sci. Stat Comput, 11,824-837.

[54] Wu, P. and Houstis, E. N. 1994. Parallel mesh generation and decomposition. CSD-TR-93-075. Department of
Computer Science, Purdue University.

[55] Wu, P. and Houstis, E.N. 1993. An interactive X-windows based user interface for the XoX solid modelling
library. CSD-TR-93-015, CAPO Report CAPO-93-08.Department of Computer Science, Purdue University.

[56] XYZ Scientific Applications, Inc. 1993.TrueGrid Manual.

[57] Zhang, S. 1995.Molecular-mixing measurements and turbulent-structure visualizations in a round jet with
tabs. Ph.D. Thesis. School of Aeronautics and Astronautics. Purdue University.

