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ABSTRACT

This paper presents the sofive architecture and implementation of the problem solving
environment (PSE) PELLPACK for modelingysical objects described by partialfdif

ential equations (PDESs). The scope of this PSE is broad as REKLIAcorporates many

PDE solving systems and some of these, in turn, includeradespecific PDE solving
methods. Its ogerage for 1-D, 2-D and 3-D elliptic or parabolic problems is quite broad,
and it handles someyperbolic problems. Since a PSE shouldvfite complete support

for the problem solving process, PELLPACK also contains a large amount of code to sup-
port graphical user intea€es, analytic tools, user help, domain or mesh partitioning,
machine and data selection, visualization, aaribus other tasks. Its total size is welép

1 million lines of code. Its open-ended sddte architecture consists ofveeal softvare

layers. The top layer is an interaetigraphical inteefce for specifying the PDE model

and its solution frameork. This interface sas the results of the user specification in the
form of a \ery high leel PDE language which is an alternatinterfice to the PELL-

PACK system. This language also albba user to specify the PDE problem and its solu-
tion framevork textually in a natural form. The PELIZCK language preprocessor
generates a Fortran control program with the interfaces, calls to specified components and
libraries of the PDE solution frawerk, and functions defining the PDE problem. The
PELLPACK program execution is supported by a high level tool where the virtual parallel
system is defined, where thgeeution mode, file system, and haete resources are
selected, and where the compilation, loading, amtwion are controlled. Finallyhe
PELLPACK PSE integrates several PDE libraries and PDE systems available in the public
domain. The system employs several parallel reuse methodologies based on the decompo-
sition of discrete geometric data to map sparse PDE computations to parallel machines.
An instance of the system igadlable as aVeb serve(WebPELLPACK for public use at
thehttp://pellpack.cs.purdue.edu

keywords: domain decompositionygert systems, framerk, knovledge bases, parallel
reuse methodologies, parallel saiy, problem solving @ironments, programming-in-
the-large, programming frameworks, software bus.

1. INTRODUCTION

The concept of a mathematical sadte library vas introduced in the early 70s [41] to support the reuse of high qual-

ity software. In addition, special journals, conferences, public domainaeftepositories (e.g.,GM, Netlib), and
commercial libraries (i.e., IMSL, NAG) have been established to support this concept. Similar efforts can be found in
engineering softare, particularly in the areas of structural and fluid mechanics. The increasing ,nsizdyeand
compl«ity of mathematical softare libraries necessitated thevelepment of a classification and ixileg of exist-

ing and future software modules. This software is currentlsgrozgd in terms of the mathematical model®ived.

A significant efort in this direction is the GAMS on-line catalog and advisory system [5] which has become a stan-
dard framework for indexing mathematical software. Information about engineering software can be found in several
handbooks which usually describe the applicability and functionalityisfimy packages. The aalvces in desktop
software/hardware, workstation clustering and disttited computing technologies, and the ease of access to super-
computing &cilities hae made computational prototyping ameost efective alternatie for the design of ne
products and for the study of science and engineering phenomena in general. Although éne Bofary provides
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some form of abstraction and a facility of reusing software parts, it still requires a level of computing expertise above
the background and skills of theesiage scientist and engineer who usually design raatwréd products. This rec-

ognition has lead to the weconcept of softare reuse referred throughout as Problem Solvingr&rmment (PSE).

The current PSEs consist of small sets of modules, usuadly fedm existing libraries, inteated (packaged) to han-

dle a predefined class of mathematical models. In these PSEs the specification of the mathematical model, the prob-
lem solving process, and the required pre-processing or post-processing phases are done witlved bggn le
interface. This intedice usually consists of &y high level language and graphical intece that alles the user to

specify the problem and visualize the solution in some “natural” form. Baap@es of PSEs are Macsyma, Mathe-
matica, Maple, ELLRCK, MatLab, and seeral engineering softave systems. Similar sofare @olution can be

obsened in the pre-processing (CAD, mesh generation) and post-processing (data visualization) tools. These PSEs
and the associated pre- and post-processing tools have greatly increased the abstraction of computational prototyping
for some applications. As a result users with minimum computational background camafedenghe prototyping

of complex artifacts. PSEs are distinguished with respect to the domain of problems or applications they can handle.

An important distinction between a PSE and a monolithic soésystem is that PSE's/kaa flexible and extensible
architecture that is easy for a user to tailor or a builder to enhance. The software architecture of PSEs is characterized
by the intgration model used to connect the saitev parts imolved and the underlyingxecution model
assumed.The common shortcoming of current PSEs is that thekige associated with the libratiie applicabil-

ity, compatibility and performance (i.e. compity) of library modules, the selection of the computational parame-

ters, error estimation, etc. is not part of the P8Eidpart of the responsibility of the us€me can a@ue that the

ideal PSE should mekdecisions to help the user by consulting altedge base about the ustive problem domain,

and past solutions of similar problems. This leads us to the following formal definition of a PSE:

PSE = User interface + libraries + knowledge base + software bus.

In this paper we describe the architecture and functionality of a PSE called PELLPACK for solving certain classes of
partial diferential equations (PDES) on sequential and multicomputer platforms. It is a descendentACEI[46|

which allons users to sotvPDEs for linear and nonlinear field andvlproblems. Figure 1 depicts a useriew of

the PELLACK system in terms of the tools and libraries needed to specify arel s@NDE problem on a tmat
computational platform and to visualize the solution. Figure 1 is further illustrated by a PDE solving scenario in sec-
tion 2.4.2. PELLRCK provides an interacte graphical user inteate for specifying the PDE model, its solution
method and post-processing, supported by the Maxima symbolic system and waellikmaries. In addition, it pro-

vides an intermediate high level facility for composing new algorithms from existing parts and it supports a program-
ming-in-the lage ewironment with a language which is artension of the ELLRCK language [40]. The user
interface and programming @ronment of PELLRCK is independent of the gt machine architecture and its
native programming anronment. PELLRCK is supported by a library of parallel PDE modules for the numerical
solution of stationary and time dependent single equation PDE models andvthree dimensionalgiens. A num-

ber of well knevn “foreign” PDE systems va been intgrated into PELLRCK which are listed in dble 1. PELL-

PACK can simulate structural mechanics, semi-conductors, heat trdimsfieelectromagnetic, microelectronics, and

mary other scientific and engineering phenomenee Bifferent implementation languages/adeen used touild

the system. The current size of PEIAGK is 1,900,000 lines of code. The parallel codes of PRIQK currently

use the PICL, PARMACS 5.1, MPI, PVM, NX and Vertex communication libraries. The size of the parallel library is
128,000 lines of &rtran code for each implementation and consists of finite element &r@mlie modules for dis-
cretizating elliptic PDEs, a parallelization of the AEK library [28], [30], [32] and the MP-PCG (parallel precondi-
tioning conjugite gradient) package [44]. The parallel library is based on the discrete domain decomposition
approach and it is implemented in both the host-node and hostless programming paradigms. A number of tools and
libraries &ist to support the domain decomposition methodology and estimate (specify) its pararoetbesréuse

of existing “legacy” sequential PDE software we have implementedibmain decomposition based reuse method-
ologies described in [33].

The paper is oanized in nine sections. Section 2 describesxhetapplicability of the system in terms of thése

ing PDE libraries and pre-defined franogks. We list several standard solution frameworks for various PDE models,
and we describe the framevks needed to use one of the grtged “foreign” systems. In addition we describe paral-
lel re-use frameworks for steady-state PDE software. The multi-level PELK B#chitecture is discussed in Section

3, and Section 4 describes the threell@rogramming environment. The PELLPACK PSE allows the user to execute
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programs in a ariety of plysical and virtual parallel architectures. Section 5 describes a visual scripgitigtien
environment that alles the user to select the computers and to direct the running of computations and the visualizing
of results. Section 6 describes aqpert system methodology that can be used to implement the adaptability of the
system to uses’ expertise and computational objees. This methodology and its softve has been implemented

and tested in the contieof the ELLFACK library [25] whose highlights are presented in Section 6. Section 7 presents
two scenarios that demonstrate the PEACR design objectie of reuse of high quality mathematical safte; the

facility for development of n& PDE softvare, and the inggation of “foreign” softvare. The future scenario for
usage and maintenance of high quality mathematical addtealls for remote “net-centered” servand networked
software that will allavs users to computever the “network” as thecompute in the arld of front-end workstation

to an intranet computer systeme\Wae created a Bb server for PELLPACK that allousers to xperiment with the

system and get answers, instead ofimloading softvare and addressing issues of local installation, maintenance,
and licensing. This server and its accessibility is described in Section 8 and its Web location is http://pellpack.cs.pur-
due.edu.
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FIGURE 1. A user’s view of the PELLPACK system depicting the tools and libraries
supported. The diagram is organized in terms of the four solution phases involved in
PDE computing: problem specification, solution specification, problem execution,
and solution post-processing.
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This work is the result of a significantly e group of people and the support of gngavernment and industrial
organizations listed in alphabetical order in Section 9.

2. DOMAIN OF APPLICABILITY

The applicability of the PELLACK system is defined in terms of the types of PDE so#ibraries integrated into

the system, and the pre-defined algoritheletions and franveorks directly supported at the PELAEK very high

language and graphical user inted leels. An algorithm sileton is a “solution dver”, i.e., a specification of the
methods which are to be used in the solution of a PDE problem. A PEIK Rrameworkis a customized solution

driver, requiring a specialized form of PDE problem and solution specification. The form of this specification is deter-
mined by the useselected PDE softave library to be used in the solution process. The frameincludes the

solver system selection, the mathematical representation of the PDE model (which often depends upon the selected
solver), and the interfaces between the solver library and the PELLPACK runtime system. Most frameworks in PEL-
LACK handle general (systems of) PDEs. A PEACR templateis a framewrk for a specific PDE model, such as

the Navier-Stokes equations. The PDE specification in this case is a set of parameter values.

2.1 PDE FTWARE LIBRARIES

The PDE libraries currently integrated in PELLPACK are listed in Table 1. They allow the numerical soliigéh of
andflow PDE problems in various geometric regions. The integration of these simulation libraries is done at the PDE
language, graphical intexdée, and data intexée leels. The PELLRCK programming evironment allowdifferen-

tial, variational, andtemplateforms for specifying the PDE and auxiliary operators. The PBAOKPDE problem
specification and its “deratives” (i.e., Jacobian, linearization transformations, forcing functions) are computed and
conwerted symbolically to the pre-definedriran interbce format assumed by the selected PDE librng 3-D

PDE domain geometry can be specifiadly in terms of files in well established geometry data formats (e.g., polyfile)
that PELLPACK recognizes. The system provides a 2-D geometry specification tool.

TABLE 1. PDE systems integrated in PELLPACK, their applicability, and major characteristics

Solver Name | PDE Model Type Mathematical Representa- Dimensionality References
tion and Mesh Restrictions and Geometry
ELLPACK single elliptic Differential 2-D general, [40]
equation e.g.uxx+ uyy= f 3-D box geometry
PELLPACK single elliptic Differential 2-D and 3-D [21], [22],
equation general geometry [23], [29],
[57]
VECFEM non-linear, elliptic, Variational 1-D, 2-D, 3-D [17]
parabolic systems, e.g. general geometry
eigenvalue _
problems £(UXVX+ UyVy)doo = J;f"dw
FIDSOL nonlinear, elliptic, Differential 2-D and 3-D [43]
parabolic systems box geometry
CADSOL nonlinear, elliptic, Differential 2-D general geometry [42]
parabolic systems
PDECOL nonlinegparabolic Differential 1-D interval [31]
systems
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TABLE 1. PDE systems integrated in PELLPACK, their applicability, and major characteristics

ITGFS 2-D Navier-Stokes Template, 2-D general geometry [57]
structured meshes
e.g.transonic turbulence flow|
parameter values

NSC2KE 2-D Navier-Stokes Template, 2-D general geometry [3]
structured meshes
NPARC3-D 3-D Navier-Stokes Template, 3-D general geometry [10]
multi-block structured meshes
PDEONE nonlineaparabolic Differential 1-D interval [19]
systems

2.2 RRAMEWORKS FOR PELLPACK PDE SOLVERS

The design of the PELLPACK programming environment (i.e., a very high level PDE language and interactive edit-
ing tools) has been influenced by the requirements of its current solving capabilities and the structure of the solution
skeletons (i.e., drivers) that the user is allowed to specify and run. Other solution frameworks, can be easily created in
the PELLPACK system by utilizing the pre-definided interfacesamong the PDE solution phases, existing or new

PDE software parts, and Fortran code. For example, the parallel time-stepping methodology described in [53] has
been implemented in PELLPACK utilizing a variety of PELLPACK iterative solvers and its performance was mea-
sured on a variety of platforms [48]. In this section we describe the various pre-defined solution frameworks that
PELLPACK currently supports.

2.2.1 HLIPTIC AND PARABOLIC PDE SOLUTION FRAMEWORKS

PELLPACK allows the solution of single linear and non-linear elliptic and parabolic PDE equations defined on 2-D
and 3-D domains. In this framewk, the user can specify a solution method by naming (referencing) selected library
modules (liscretization, indexing, solution ) corresponding to the phases of the PDE solution pro-
cess [40] (see Figure 2 for axaenple). In the case of coupled or single-phaseesslthe name of theple  mod-

ule is specified. Framark 1 belaw lists the sgments of this franveork. The parallel elliptic franveork currently
supported in PELLRCK is based on geometric partitioning of the grid or mesh data. Thus, the user is required to
specify the decomposition data in the form of a file with appropriate format and parametergmbist ®an be gen-
erated by an interactive editor which allows the visualization and editing of mesh/grid decomposition data and uses a
library of semi-optimal partitioning algorithms for their automatic generation [7], [9], [54]. In the case of parallel
elliptic solers, the parallelersions of the library modules specifiedidndoeen implemented usingveeal virtual

(e.g., PVM, MPI) and machine native (e.g., Vertex, NX) communication libraries [28],[29],[32].

FRAMEWORK 1. Module based linear elliptic solution

Segment Description Options
Declarations, Optiong Space for sang solution, parallel machine configurati(¢ sequential, parallel
and model
Equation, BCs PDE problem definition differential
Grid/Mesh Domain discretization sequential, parallel
Decomposition Grid/Mesh partitioning file needed for the parallel solutjon ~ sequential, pafallel

Multi-phase PDE solver

Discretization PDE problem discretization sequential, parallel
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Indexing Discrete equations ordering scheme sequential, parallel

Solution Linear solver sequential, parallel

Single-phase PDE solver

Triple Integrated discretization, indexing, solution phases sequential

Output Format for solution output

For non-linear elliptic PDEs, a linearization procedure is applied at the continuous PDE proldemhieh is
described in [51]. This framrk is generated symbolically using the Maxima-based PDE fwankespecification

editor of the PELLPACK graphical interface, which is described in Section 4.2. Framework 2 describes the segments
of this framework.
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FIGURE 2. An instance of PELLPACK user interface for an elliptic framework

FRAMEWORK 2. Nonlinear sequential elliptic PDE solution

Segment Description

Declarations, Options Space for saving solution(s)

Equation, BCs PDE problem definition

Grid/Mesh Domain discretization

Triple Initial guess

Fortran Newton loop start

Linearized Elliptic Solver| Elliptic problem discretization, indexing, solutian
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FRAMEWORK 2. Nonlinear sequential elliptic PDE solution

Output Format for solution output

Fortran Convergence test

Fortran Newton loop end

Subprograms Initial guess, Jacobian and other support func1ions

Similarly, there is a framweork for implementing semi-discrete parabolic PDE edwhich utilizes thevailable
PELLPACK elliptic PDE solers. In this case users can select pre-defined time discretization schemes or specify their
own and reduce the parabolic PDE problem to a set of elliptic PDEs defined at each time-step. ThaKrione

these solvers is described in Framework 3 and [51].

FRAMEWORK 3. Parabolic sequential PDE solution

Segment Description

Declarations, Options Space for saving solution(s)

Equation, BCs PDE problem definition

Grid/Mesh Domain discretization

Triple Initial condition

Fortran Time stepping loop start

Elliptic PDE solver Elliptic problem discretization, indexing, solution
Output Format for solution output

Fortran Convergence test

Fortran Time stepping loop end

Subprograms Initial condition and other support functions

2.2.2 MPLUS (MATRIX PARTITIONING ) STEADY-STATE SOLUTION FRAMEWORK

This framework is applicable to yanon-time dependent PDE computation and is designed to redasegesequen-

tial PDE discretization softare in a parallel solution scheme. It assumes that the discrete equations are generated
sequentiallywith any of the gisting libraries. It uses mesh/grid decomposition data or user defined partitions for the
algebraic data structures associated with the selected PDE solver. The partitioned discrete PDE (i.e., algebraic) equa-
tions are loaded into the tpated multicomputer platform and setlin parallel by thevailable parallel sokers.
Frameworkd displays the sdeton of this frameork. The methodology and its performanegaleation described in

[33].

FRAMEWORK 4. Parallel matrix solution

Segment Description

Sequential solution The PDE problem, its discretization, and sequential solver

framework

Partition Discrete geometric or user defined algebraic data partitioning strategy
Load Loads partitioned algebraic system
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Display Display the structure of partitioning system

Solve Apply a parallel solver

Output Format for solution output

2.2.3 DRuUS (DOMAIN PARTITIONING ) STEADY-STATE SOLUTION FRAMEWORK

This framework is currently applicable to steady-state PDE models and their derivatives (i.e., implicit parabolic solv-
ers) defined on 2-D and 3-D domains. It is also based on a methodology to reuse sequential PDE discretization soft-
ware in a parallel computation [33]. lIivimives a decomposition of the model based on a balanced partitioning of the
PDE domain with appropriate artificial intade conditions that alothe uncoupled generation of the discrete equa-

tions in each subdomain. The decomposition of the domain is obtained via the partitioning ofeacelmse grid or

mesh [7]. Unlike MPlus, DPlus runs the sequential discretization code in parallel (i.e., each processor runs sequential
code on its assigned subdomain). Framework 5 lists the segments of this framework.

FRAMEWORK 5. Parallel stationary PDE solution

Segment Description

Declarations, Options | Space for sang solution, parallel machine configuration and
model

Equation, BCs PDE problem definition

Mesh generation ang Parallel multiphase mesh generation and decomposition

decomposition

Interior interfice condi-| Interior interface BCs definition so that the generation of glo-

tions bal discrete equations among sub-domains is decoupled

PDE discretization Local PDE problem discretization in parallel

Solve Parallel solution of distributed discrete PDE equations

Output Format for solution output

2.3 FRAMEWORKS FOR “F OREIGN” PDE SYSTEMS

Most general PDE solving systems require users to define PDE problems by waitirag Functions with figd

argument lists and data structures for the PDE equation, boyaahanitial conditions. Users write der programs

to allocate space, initializeaxiables and call the s@w routines with appropriate parameters and conamables.

Often, Jacobians or other symbolic computations are also required, and the results of these computations must be
written as additional értran functions. The functions anddni are compiled and liekl with the soler library to

produce the program. PELLPACK generates these functions and drivers symbolically for the PDE solving systems of
Table 1 and the frama@rks presented in the ptieus sections. This is the result of the gragion at seeral PELL-

PACK levels.

A “foreign” PDE system can be irgeated in PELLRCK at thePDE languae level, thegraphical interface leel,

and thedata level Each lgel of intggration prawides a further el of abstraction by placing an additional saftes

interface layer between the user and the foreign system, thus simplifying the input required for defining a PDE prob-
lem. To support thiEanguage level integratiqra specialized interface library is @dped for each system. The inter-

face code defines the required data structures, allocates space, init@igeles, and calls the appropriate system
solver routines with appropriate values for the parameters. Users still specify the PDE problem and symbolic compu-
tations via Brtran functions that are similar (or identical) to those required by the original system, and these func-
tions are placed in theubprograms sement of the PELLRCK problem definition. Users name the sohin a

high level way and identify various high &h\problem characteristics such as number of equations, non-linaadty

June 11, 1997 8



time-dependence. The language gn&ion supplies default parametalues when needed. Intacke routines for all
systems generate PELABK format output which is used for visualization and animation of solution data with
PELLPACK’s output tool (see Secti@n3 ). The PELLRCK execution emironment identifies the selected system
solver so that it can link automatically with the correct library to generate the program. The languaaeisterpli-

fies the specification of the PDE problem and sets the foundation for integration at the graphical level.

At the graphical interface leel, users can define PDE problems using a graphical e@it@implify the process of
specifying the PDE system, the integés are tailored to the representation of the equation(s) used in the selected sys-
tem. After a user enters the equations, the editor determines what symbolic manipulations are needed for defining the
problem with the selected framerk, and accesses the Maxima symbolic system to perform the computations. The
editor generates theoRran functions in the format required by the sgland places them in thleibprograms

segment. High lgel problem characteristics are identified symboli¢allyd the editor assigns appropriaséues to

solver parameters. Users can lateswand modify these parameters via a graphical algorithm eit¢his level of
integration, users must still barhiliar with the applicability and functionality of the PDE solving system,tibe

intrinsic details of problem specification are completely hidden from them.

The native data structus of the “foreign” PDE system are igeated at the értran leel using appropriate subrou-
tines specified at the PDE language interface.

We nav describe the frameorks of the intgrated “foreign” PDE systems at the PEIA®K PDE language el and
depict instances of their graphical user interface.

2.3.1 VECFEM FRAMEWORK

VECFEM [17] solves non-lineatime-dependent 1-D, 2-D, and 3-D systems of equations on general domains using
mixed finite element methodBrameworkb lists the segments of the VECFEM framework in the PELLPACK sys-
tem. Some of the PDE problem input data for VECFEM are generatdte lBDE frameork specification editor

(see Sectiod.2.1 ). ler VECFEM elliptic problems, this editor supports axiational template for specifying the
coeficients of bi-linear and linear forms and a functional template for entering the PDEenerdifal form. Ier the

stress analysis of isotropic materials, a stress templatailalde for entering only the elasticity modulus and Pois-
son’s number of the material. The differential form of the PDE equations is symbolically transformed to a variational
form. Figure 3displays an instance of the PELLPACK graphical interface for VECFEM.
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FIGURE 3. An instance of the PELLPACK interface for the VECFEM structural analysis framework
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FRAMEWORK 6. VECFEM

Segment

Description of language interface

Options

VECFEM id, tags indicating the type of PDE (i.e., non-lingarabolic), numbe
of PDE equations in the system

Equation, BCs, IC

VECFEM tag for all equations indicating that the equations are definedrbri
subroutines in the subprogram segment

Mesh a triangular or tetrahedral mesh file generated by PECKPs native mesh generg
tors, or a neutral file generated by a “foreign” mesh generator

Triple VECFEM solver and associated parameters, output specification parameters

Subprograms értran functions describing the PDE equations, boundary conditions, and

conditions. These functions are intarés to the functions used by VECFEM
describe the equations.

initial
to

2.3.2 FIDISOL FRAMEWORK

FIDISOL [43] solves non-lineatime-dependent 2-D and 3-D PDE systems on rectangular domains using finite dif-
ference methods. Framerk 7 describes the framerk for this library Jacobians are required for the nonlinear
equations and boundary conditions; these are computed symbolically by the PD&ditamgecification editor
Figure 4 displays an instance of the PELLPACK interface for FIDISOL.
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FIGURE 4.

An instance of the PELLPACK interface for the FIDISOL framework

FRAMEWORK 7. FIDISOL

Segment

Description of language interface

Options

FIDISOL id, tags indicating the type of PDE (i.e., non-ling@arabolic), number o
equations in the system

Equation, BCs, IC

FIDISOL tag for all equations indicating that the equations are definedrina
subroutines in the subprograms segment

Boundary

2-D, 3-D box geometry

Grid

Domain discretization (uniform, non-uniform grid)
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Triple FIDISOL solver and associated parameter, output specification parameters

Subprograms Fortran functions describing the PDE equations, boundary conditions, initial condi-
tions. These functions are identical to the functions used by FIDISOL to describe
the equations. Functions describing the Jacobians for the PDE equatior’\s and

boundary conditions are also placed here.

2.3.3 CADSOL FRRAMEWORK

CADSOL [42] soles non-lineartime-dependent 2-D systems of equations on general domains using ffeite dif
ence methods. Framverk 8 describes the framerk for CADSOL. The required Jacobians are computed by the
PDE framework specification editor. Figure 5 displays an instance of the PELLPACK interface for CADSOL.
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FIGURE 5. An instance of the PELLPACK interface for the CADSOL framework

FRAMEWORK 8. CADSOL

Segment

Description of language interface

Options

CADSOL id, tags indicating the type of PDE (nhon-lingaarabolic), number of
equations in the system

Equation, BCs, IC

CADSOL tag for all equations indicating that the equations are definedrtrmar
subroutines in the subprograms segment

Boundary domain definition (can be specified by the PELLPACK domain editor)

Mesh or Grid specify a body-oriented grid (can be generated by PECKPs structured mesh
generator) or a uniform or non-uniform grid and include a-wsiten routine that
generates the body-oriented grid in the subprogram segment.

Triple CADSOL solver and associated parameter, output specification parameters

Subprograms Fortran functions describing the PDE equations, boundary conditions, initial condi-

tions. These functions are identical to the functions used by CADSOL to describe
the equations. Functions describing the Jacobians for the PDE equatioTs and

boundary conditions are also placed here.
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2.3.4 PDECOL FRAMEWORK

PDECOL [31] soles time-dependent coupled systems of 1-D non-linear equations using the method afrlithes. F
space discretization a spline collocation scheme is gmglarhe user can select the time discretization scheme and
integration method from seral options. Jacobians are symbolically generated by the PDExoskngpecification
editor when they are required for the problem definition.

FRAMEWORK 9. PDECOL

Segment Description of language interface

Options PDECOL id, tags indicating the type of PDE (lingamn-linear), number of equa-
tions in the system

Equation, BCs, IC PDECOL tag for all equations indicating that the equations are definedrtogr
subroutines in the SUBPROGRAMS segment

Domain interval endpoints defined in the PELLPACK domain editor

Grid points in the interval are specified with the 1-D grid editor

Triple PDECOL solver and parameter specification, output specification parameters

Subprograms Fortran functions describing the PDE equations, boundary conditions, initial condi-
tions. These functions are identical to the functions used by PDECOL to describe
the equations. Functions describing the Jacobians for the PDE equations and
boundary conditions are also placed here. T
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FIGURE 6. An instance of the PELLPACK interface for the PDECOL framework

2.4 TEMPLATES FOR “F OREIGN” PDE SYSTEMS

There are PDE systems whose mathematical model and numerieal isadpecified through a set ofygical and
numerical parameters (usually numerical data). These systems are usually associated witithfans. In these
cases the PELIAZK interface consists of a hierarchical set of templates correspondirgicoy models the “for-
eign” system supports. In general, theseexsllo not require symbolic processing ortfan code generation. Three
such solvers (NWRC3-D, ITGFS, NSC2KE) hea been integrated into PELLPACK. AIRC3-D is a general purpose
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CFD simulator for three dimensional fluid problems. ITGFS and NSC2KE artuttwilence sokers for 2-D prob-
lems. ITGFS is only applicable for internal flows, however it is expected to be more efficient than the others.

2.4.1 NPARC3-D TEMPLATE

NPARC3-D [10] is a general purpose CFD simulatanich can be used for mosigflow computations, such as 2-D
axisymmetric, or 3-D for states ofviscid, laminar, or tunblent, and steady or transient with comxpdeometry flow.

The original NRRC system requires the fluid problems to be defined through tARGIBtandard input x-file

and the initial solution file. This case can involve very tedious work, especially for complex geometries. NPARC pro-
vides some utility tools that assist the user in the pre-processing phase. In addition, the originalustlioe recom-

piled when the mesh sizes changes. Nae created PELLACK templates for the NFRC system that support a
graphical user interface to allodirect access to the WRC utilities for redefinition of global parameters, including
memory allocation options. The memory space for theesaks automatically allocated without recompiling the
NPARC library. Further work is necessary for this sobo fully utilize the pre- and post-processing capability of the
PELLPACK environment. Template 1 depicts the items of the NPARC template.

TEMPLATE 1. NPARC3-D

Segment Description of language interface

Options NPARC id

Equation NPARC tag indicate model specific equations

Domain, BC NPARC tag indicates model specific boundary conditions

Mesh uses blockd structured meshes specified in FBO or GRIDGEN format [10],
and an initial NPARC solution file in binary format

Triple NPARC solver and associated parameter, output specification parameters

2.4.2 ITGFS TEMPLATE

The internal turbulence gas-flow solver ITGFS [57] is designed for the simulations of transonic turbulence flow in an
internal flav field. The equations gerning the flow consist of two-dimensional, compressible, time-dependent, Rey-
nolds averaged Navier-Ste& equations, supplemented by an equation of state together with the constant total tem-
perature assumption. Template 2 describes the items of this template.

TEMPLATE 2. ITGFS

Segment Description of language interface

Options ITGFS id

Equation ITGFS tag identifies model specific equations

Domain, BC specified graphically by the 2-D domain editor or textually by boundary parametri-
zation; boundary conditions are model-specific tags: inflow, outflow, wall

Mesh generated by PELLPACK's structured mesh generator

Triple ITGFS-turbulent solver and associated parameters, output specification parameters

We nav use the PELLRCK problem solving erironment to sole a separated, transonicfdger flow problem. We
will illustrate hav each PELLRCK subsystem is used in the solution process, and indicatéheocomponents of
Figure 1 are used.

The user scenario within thHRDE Problem Specification Subsystisndepicted in Figure 7 using snapshots from the
PELLPACK system along with a brief commentary for each of the editors.
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The PDE Framework Specification Editor
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FIGURE 7. PDE Problem Specification

The user scenario within tHRDE Solution Specification Subsystisnilustrated in Figur@®. Since we hze already
specified the PDE sadv library via the frameork selection, we need only to generate the appropriate domain dis-
cretization and specify the solver parameters.
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The 2D Structured Grid Generator
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FIGURE 8. PDE Solution Specification

A PELLPACK language description of this PDE problem (.e file) is generated by the editors and written to the PELL-
PACK session. The language processor withinBkecution Environment Subsysteom\erts the “.e file” to a &1-

tran driver program. The driver is linked with the PELLPACK CFD libraries, and then executed. Below are snapshots
from the Execution Environment.
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FIGURE 9. Execution Environment

PELLPACK format output is generated during execution, and can be loaded into the OutputTool wRbst-{ire-
cessing Subsystefor solution visualization. Figure 10 contains snapshots from several visualizers available from the
OutputTool.
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FIGURE 10. Post-processing Environment

2.4.3 NSC2KE TEMPLATE

NSC2KE [3] is a 2-D axisymmetric fluid fosolver applied on unstructured meshes. It sslthe Euler equations
using a Roe, Osheand a Kinetic solrs and the Naer-Stoles equations using lkeepsilon method with tw
approaches of all-laws and a tw-layer model of the nearal turbulence. Templat8 describes the items of this
template.

TEMPLATE 3. NSC2KE

Segment Description of language interface

Options NSC2KE id

Equation NSC2KE tag identifies model specific equations

Domain, BC specified graphically by the 2-D domain editor otteelly by boundary parametri-
zation; boundary conditions are model-specific tags: inflow, outflow, wall

Mesh generated by PELLPACK'’s structured mesh generator

Triple NSC2KE solver and associated parameters, output specification
parameters

3. SOFTWARE ARCHITECTURE

In this section, we present the architecture of PELLPACK in terms of (i) the level of programming supported, (ii) the
software subsystems involved, and (iii) the software layers used to implement PELLPACK.

3.1 THE PROGRAMMING VIEW

In order to realize the PELIREK computational erironment, we hae adopted three\els of programming with
standardized data structures and imtegs among theavious PDE objects wolved in the solution process. At the

highest level, the graphical user interface provides application users with knowledge-based, object-oriented editors to
define problem components, specify the solution process and perform various post-processing analyses. The problem
and solution specifications ampeessed in terms of a highvéd PDE language, which is used to represent the PDE

June 11, 1997 16



objects produced by the graphical editors. At the secaet the PELLPAK language processor compiles this high
level problem and solution specification into a proceduraledrprogram. In the third Vel, the drver program
invokes \arious library modules to realize the usestlution process. These three programmingldeare illustrated

in Figure 11.
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FIGURE 11. Three level programming view of PELLPACK

TABLE 2. PELLPACK Subsystems

Subsystems Components
PDE problem specification Editors, foreign templates, PDE language and embedded fortran
PDE solution specification Editors, foreign templates, PDE language and embedded Fartran
Execution environment Language processor:
Solver module database, program templates and preprocesso
PDE libraries:
ELLPACK, PELLPACK, foreign solvers
ExecuteTool:
Target platform properties database, libraries and editor
Post-processing environment Visualization tools, performance analyzers and editor

3.2 THE SUBSYSTEM VIEW

The functionality of PELLPACK is organized into four subsystems. These subsystems represent the solution process
that application users follo ThePDE Problem Specification SubsystéDE Solution Specification Subsystana
Post-processing Environment Subsyspemvide users with graphical editors, “foreign” system templates, the PELL-
PACK language and a facility for embedding Fortran code.Eiseution Environment Subsystprovides a frame-
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work for processing, compiling, anceeuting PELLRCK programs. It consists of a language procesBBiE
libraries, and the EecuteTool. Thdanguage processaises the high \el PDE language specification produced by

the graphical editors of the problem and solution specification subsystems to genevatepaatyiam. It can also be

used to intgrate n&v PDE soler components to the PELRBK system.ThePDE libraries implement sequential

and parallel soler components that argadlable to users via the solution specification subsysteny. iflctude the
ELLPACK solver library the PELLRACK solver library and “foreign” soler libraries such as FIDISOL, VECFEM,
PDECOL and PDEONE. ThexecuteToohelps users compile andezute programs on all the hame and soft-

ware platforms that PELIACK supports by managing the comptees associated with sequential and multi-plat-
form parallel execution Table 2 summarizes the subsystems. This subsystem view of PELLPACK is illustrated by the
vertical layers of Figure 12. Contained in each vertical layer are the PELLPACK programs and libraries that support
the subsystem represented by that layer.

Prgtagm SoIIDlRiI(E)n Execution Post-processing
Specification Specification Environment Environment
. _____________________________________________________________________________________________|
PDE Framework
Specification —
PYTHIA Visualization
} Tools
Egléatlon
Itor Solution
Pprggll_rléll:r)r?r%iﬁg Framework Execute Performance
Environment Geometry Specification Tool Analysis Tools
Editrors worith
A é}{grsm Data Analysis
Initial &Boundary Tools
Condition Editors

Very High Level PDE Language Layer

Language
Infrastructure

Procedural Language Layer

Domain
Discretization Pel ﬂ)crléri%glver
[PELLPACK Libraries Knowledge
nfrastructure Bases
Geometry ;
Decomposition Foreﬁgramteesrface
Libraries
“Foreign”
MAXIMA System
Libraries ~ Data |
System Visualization
Infrastructure Geometry Parallel Libraries
Modeling Communication
Libraries Libraries

X Toolkit, Motif, Mesa Libraries
_____________________________________________________________________________________________________________________________________|
FIGURE 12. The subsystem (vertical) view and the software layered (horizontal) view of PELLPACK
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3.3 THE SOFTWARE LAYERED VIEW

The softvare is implemented in fivlayers: theProgramming Ermironmentlayer, the PELLRCK Very High Level
Language(VHLL) layer, the Procedural LanguagéFortran) layer, th€ ELLPACK Infrastructurdayer and the&ys-

tem Infrastructurdayer. This viev of the PELLRACK architecture and the specific programs and libraries contained
in each layer are illustrated in Figuk2. Notice that the Language Infrastructure layer consistsoo$dfiware layers
supporting the VHLL layer and the procedural (code generation) languageHayee 12 shas the software view
ashorizontal layers which span the (vertical) subsystem layers. This figure illustrates how the PELLPACK architec-
ture can be viewed from the standpoint of functionality and from the standpoint of system design.

The implementation language and code size for each software layer are listed in Table 3. Table entries for the System
Infrastructure layer do not include generic system utilities such as X, Motif, etc.

TABLE 3. PELLPACK software layers, implementation languages, and lines of code

Layer Implementation language Lines of Code
Programming environment C, C++, Tcl/Tk, Perl, lisp, mac, fte 172,000
(Graphical user interface) bison
Language infrastructure: Fortran, custom parser generator (tp, pg) 80,000

Very high level language interface

Language infrastructure:
Procedural language (Fortran) interface

PELLPACK infrastructure: PELLRCK | Fortran, C 175,000
and “foreign” system interface libraries

System infrastructure: MAXIMA, “for-| Fortran, C,C++, lisp, mac 1,500,000
eign” PDE libraries, parallel communic
tion libraries, visualization libraries/tools.

57
I

The next four subsections discuss the architecture of the top four software layers in more detail.

3.3.1 FROGRAMMING ENVIRONMENT (GRAPHICAL USER INTERFACE)

The GUI of PELLRACK serves tvo main purposes: PELIMEK program luilding and solution/performance visual-
ization/analysis. The GUI supports multiple probleessionsvithin the same process. Each session represents a sin-

gle problem to be sobd. The tools that are madeadable to the user within a session are dependent on the type of
session: 1-D, 2-D, 3-D and finite fdifence / finite element. Dérent tools support a dérent part of the problem
specification or the solution specification. As the problem and solution are being defined, the session editor reflects
the current status by displaying the specification in the PECKPlanguage. The user may choose to edit the lan-
guage directly as well, but in order to maintain consisteéhe user must not be runningyasf the graphical tools at

the same time.d¥ solution and performance visualization and analysis, the user specifies wheeethe sgppropri-

ate data at problem specification time and the visualizatdiroement loads this data at postprocessing time to visu-

alize the results.

While the graphical tools are aati the current PELLACK program is internally represented in a set of data struc-

tures in a parsed form. In addition, it istieally represented within the session editor for the sigEmefit and com-

fort. Each tool manipulates one or more pieces of this data structure and is responsibleingrtthesn in a

consistent state. In some cases, a tool is actually a separate process. Then, the appropriate data structures are commu-
nicated to the other process via igpeocess communication and made consistent when the changes are “cotmmitted.

The tools also have a dependency relationship; for example, the mesh tool cannot be invoked until a domain has been
specified. This is supported byuirzg the tools themsebs be ware of their position in the chain of operation and

having them do the appropriate tests to ensure that the proper order is maintained.
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3.3.2 VERY HIGH LEVEL LANGUAGE |INTERFACE

The PELLRACK language intedce gves full flexibility to the user to specify their PDE problems and solution
framework using a covenient, high leel PDE-specific language. The language ssggnentdased on the natural
components of the PDE problem and the solution process. The user may write a program in this language directly or
use the graphical user interface to automatically generate the program.

The language processor translates the PBIOK program into a FORRAN contol program that irvokes the
appropriate library components to solve the problem according to the user’s specifications. Each problem component
is transformed into the PELLR¥K standard representation for it. Each solution step igectad to the call(s) to the
appropriate solver library using the standard interfaces described earlier. The resulting control program is then linked
with the appropriate libraries taitd the program for solving the problem. If the problem is to beesailv parallel,

then there may be more than one control program based on the model of execution selected (see Section 5).

In order for the language processor to be able to generate the control program, information aboutvlectiis-le

for each library module must bevgn to the system at the time a library is gméged into the system. In addition,
memory requirements of the module must glieitly stated here so that the control program can allocate memory
before calling the module. This information is kept in a module database and looked up at language translation time.

3.3.3 AROCEDURAL LANGUAGE (FORTRAN) | NTERFACE

The Fortran interbce of PELLRCK is defined based on a decomposition of the PDE problem and the solution
framework into their constituent parts: domain, interior equation, boundary conditions and initial conditions for the
problem, domain discretization, domain decomposition, operator discretization and algebraic system solution for the
solution framewsrk. Each problem part is represented at run-time using a set of standard data structures and/or func-
tions. Each solution framerk part (e.g., an operator discretizer) uses a set of well-defined data structures (inter-
faces) and/or functions for input and output. In addition, each such part may use and/or set certain global conditions
which imply some properties about that part of the problem at handx&mple, if an operator discretizer notices

that the resulting matrix is symmetric, it may set the “matrix is symmetric” flag and then use afioier egta

structure for storing the matrix. Solvers are expected to first check the symmetricity flag and then select the appropri-
ate data structures. These definitions extend those of the ELLPACK system [40].

3.4 PELLPACK | NFRASTRUCTURE

From a run-time vig of the architecture the PELREK infrastructure, consisting mainly of PDE system libraries, is
belov the Fortran interfice (Figurel2), hut the libraries themseds are intgrated to the PELLACK system based
on their compliance with the component indeds. The entire PELIMEK collection of solers is composed in this
manneri.e., there is no intrinsic owbt-in set of libraries. Some libraries (most notatthe ELLRACK libraries of
sequential sokrs and the PELLACK libraries of parallel sokrs) natiely support the PELLACK component
interface standards and hence can be “plugged-in” to the system immeditiggver mary other libraries (for
example, VECFEM, FIDISOL, PDECOL and MGGHAuse their wn interfaces and representations internally
integrate such libraries, one mustvdbp an interdice library that transforms the PELAGK representations pro-
duced by higher iels of the system to the internal representations assumed by teelgwobry It is important to
note that due to the structured nature of PDE components and PDE solutiondrigsnéhis is a feasible task; we
have so far not encountered any solver library that could not be integrated in PELLPACK in this manner.

The result of this ingrated framewrk is that components from thfent libraries can easily be rett-and-matched
to form interesting and peerful PDE solers. There is no doubt a performance cost withingea layer of softare
that allows this flexibility, bt it should be clear that the aahtages of having standard interés to widely dféring
software packages easily outweighs the cost.
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4. THE PELLPACK P ROGRAMMING ENVIRONMENT

The implementation of PDEameworksn PELLPACK provides a three level programming environment depicted in
Figurel11l. In this section we g a brief description of PELIAZK programming-in-the-large environment starting
with the PDE language.

4.1 VERY HIGH LEVEL PDE LANGUAGE

In the PELLRACK problem solving erironment, a PDE problem is defined in terms of the PDE objeatéved:

PDE equations, domain of definition, boundary and initial conditions, solutiongstratgput requirements, and

option parameters. Thexteal representation of the PDE objects and its syntax comprise the REKU&nguage,

which is a significant>@ension of the ELLRCK language defined in [40]. This language layer is the foundation of

the PELLRACK environment and underlies allVels and components. It defines the intrinsic objects which are
needed to specify a PDE problem and its solution glyateis parsed and generated by special editors, and it is
loaded by the execution environment and processed by the language translator into Fortran control program(s) which
are compiled and executed. All PELLPACK system functionality is represented in some way by the PDE language.

In the ELLPACK language, the PDE objects are defined by languapmeesds which either specify the PDE problem
(equation ,boundary and associated boundary and initial conditjoasname the module to be used in the solu-

tion processdrid , discretization , indexing, solution, triple , output ). To support the inser-
tion of arbitrary Brtran code for control and assignment statements, the ALKPlanguage uses the
declarations, global, procedure , andFortran  s@gments. The number and types ofsents and

modules which hae been added to the original ELA®K hawe greatly increased the types of problems that can be
solved and the methods for solving them. Thiersions to the ELLACK language which were defined by PELL-
PACK follow.

PELLPACK introduced anesh segmento support solution schemes using finite element methods. Tlgeaitib@

of “foreign” solvers required the introduction of tags and specialized identifiers optte  segment for relaying
information about the system selvand its intedce requirements to the language proce3swmtriple = segment

is the standard whichag adopted to specify the numerical solassociated with a foreign system. Fage seg-

ment allavs persistent storage of solutions, linear system matrices, and performance data for visualization and/or ani-
mation. Finally the ELLFACK language and systemaw extended to support a domain decomposition gyaf21]

to sohe PDE problems in parallel on multicomputer platforms. Specificdlg/decomposition  and paral-

lelsolution sgments define the geometry partitioning of the discrete domain and handle the assembly of the
partitioned solutions from the parallel processors. KMmeence of several parallel execution models necessitates the
use of tags in theption segment (i.e., hostless, Mplus) to identify the parallel model selection.

The language definition okisting sggments, modules and module parameteas amplified to contain information
related to the graphical environment. In this way, the language, the graphical interface, and the execution layers work
smoothly together to provide a unified PDE problem solving environment.

4.2 PDE OBJECT BASED GRAPHICAL USER INTERFACE

The process of specifying, solving, and analyzing a PDE problem occurs within a ABKld@ssion editor This

editor consists of axéwindow and an attached toolbox of editors. FigliBedisplays an instance of this editdhe

toolbox editors are used to create or modify the PDE objects which specify the PDE problem and desc¢dbe ho
solwve it. Each toolbox editor is a graphical, intenaetiool that generates ateal representation of the object and the
associated PELLPACK language segment in the main session editor witditmys in the toolbox are able to reload

a PDE object by reading its PELLPACK language representation, and then displaying the object for viewing or mod-
ification. PDE objects are communicated between editors or between an editor and thAGKEIseBsion editor
Moreover these editors may transform objects when needadedmple, domain objects are transported to mesh
editors, where angenerator requiring a piesese-linearization of the boundary will transform the domain object
appropriately. Table 4 lists the editors and their design objective in PELLPACK.
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TABLE 4. The PDE object based editors in PELLPACK

Editor Design objective

PELLPACK session editablextial representation of the PELAEK problem and solu

tion specification

PDE framework specification symbolic PDE operators definition, input functions transformation in
Fortran, linearization, Jacobian, and aldf framevork generation

for each PDE library

Domain and boundary conditions | CAD tools for 1-D, 2-D, 3-D domain boundary specification and

auxiliary conditions, or file in some standard format

Mesh generators 2-D, 3-D mesh generators using PERTK domain (or other stan

dard format) as input.

Grid generators 1-D, 2-D, 3-D uniform/non-uniform grid generators

Domain decomposers 2-D, 3-D geometry decomposition using a library of partitioning

heuristics

Discretizers algorithm specification, where choices for the solution scheme are

Linear system solvers
Triples / Foreign system solvers

controlled by a knewledge base to pwide numerical method mod
ules from the data base (using dimension, domain discretiza
sequential vs. parallel, etc.)

ation,

Output specification

solution or performance data output format specification

Output visualization

visualization and animation of all possible output data produce

d by

solution (solutions, error analysis, performance data), including
essary data conversion when accessing “integrated” visualizers

nec-

4.2.1 PDE FRAMEWORK SPECIFICATION EDITOR

This editor is used to specify the PDE equations and generate the programdidaosed for solving the PDE prob-

lem. The format of the framerk generated depends upon the PDE-solving system selected by theusach of

these systems, certain forms of the equation alid.\For example, PELLPACK solvers allow féifential and self-

adjoint forms of the equation; VECFEM alle differential and ariational forms. PDE equations are specified via a
graphical interfice which has been tailored to the representation of the chosen form of the equation. The editor then
performs the specialized symbolic processing and code generation required for the definition of PDE problems in the
format required by the selected system aplit generates by dafilt a boundary ggnent for a rectangular gmn

with Dirichlet boundary conditions and zero initial conditionolbox editors are used to define the actafies of

these PDE objects.

To implement the PELLPACK framework generation, the PDE system is sent in string form to the Maxima computer
algebra system. Depending on the framk, different symbolic transformations are performed. If non-linear equa-
tions are entered for the PELLPACK system solver, these equations are linearized by computing their Frechet deriva-
tives. If FIDISOL or CADSOL is the selected system sphacobians are computed for the specified system of
equations and boundary conditions. A symbolic representation of the REKLE2mplate is then deloped inside

Maxima. This representation is communicated to the PDE frankespecification editor which cweerts it to a
PELLPACK template using the GENCRAsystem [49]. Finallythis template is written in the PELABK session

window. All symbolic operations of this editor are provided by Maxima [12].
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FIGURE 13. An instance of the PELLPACK session editor

In addition to the general PDE framarks generated by this editdthere are seeral model specific templates that are
supported. In these cases, users enter the crucial pieces of information that define the problem parameters. These tem-
plates are implemented without support from a computer algebra system. User input is inserted in the appropriate
locations in the template for the selected model, and the result is written in the PELLPACK session window.

4.2.2 DOMAIN AND BOUNDARY CONDITIONS EDITORS

These editors are used to generate the boundgmyese and define the PDE domain and boundary conditiond.-F
D and 2-D domains, PELLPACK provides its own geometry editors. For 3-D cases, PELLPACK supports well estab-
lished geometry interfaces and the XXoX CAD editor [55] for the geometry modeling library XoX Shapes [46].

With the 1-D domain editpusers can define the intahendpoints and assign a boundary condition to each endpoint.
Boundary conditions for 1-D problems which are solved by PDECOL use a foreign system tag to identify the bound-
ary equations in the boundarygseent, since the equations are defined in the subprogrgmeiseby Brtran rou-

tines as described in previous sections.

For 2-D domains, PELLACK provides a 2-D draing tool where users can drahe boundary piece by piece, and

then assign boundary conditions to each piece. Users may instead dgfb doundary parametricallysing the

session editor and follding the PELLRACK language syntax. This includes using complicatedr&n functions to
describes boundary pieces, holes and slits. These parameterized functions are then dynamically loaded into the
domain editor so that the domain can be displayed and boundary conditions assignefdth&se domain defini-

tions can be used as input to the PEACK grid and mesh generators. Boundary conditions for foreign systems
either follow the ELLPAK language syntax, or thare tags to foreign system or model-specific identifiers indicat-

ing specialized conditions such as inflow, outflow]lyetc. All identifiers are handled by the language processor and

the PELLPACK foreign system interface so that the appropriate boundary conditions are applied.

In the 3-D case, box geometries with associated boundary conditiorecparain be specified using a 3-D domain
editor More complicated domains are defined using construcidlid geometry in the XXoX geometry editor
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XXoX generates suakce triangulations which can be used to define the geometry for REKI$3-D mesh gener-
ators. Boundary conditions are generally applied discretely on groupsaxfesnddes (called patches) resulting from
the mesh generating process. PERAOK provides a 3-D boundary conditions editor which wblousers to apply
boundary conditions on sade patches of nodesags or model-specific identifiers may be used to specify the
boundary conditions for foreign system solvers.

For many solvers integrated into PELLPACK, the domain and boundary conditions may be defined outside of PELL-
PACK and saved in files which are then accessed by PELLPACK during the solution process. Packages such as True-
Grid [56] and Patran [2] can be used to define the domain (or subsequent mesh) and boundary conditions.

4.2.3 RID GENERATION EDITORS

PELLPACK supports both uniform and non-uniform grid generation for 1-D, 2-D, and 3-D domaingniform

grids, the number of grid lines inyadirection can be specified. Non-uniform grids are specified by point-and-click

(to add, moe or delete grid lines) or by listing coordinates. Grids can be uniform in one direction and non-uniform in
another For collocation methods based on tensor product spline basis functions, the 2-D grid editor and the corre-
sponding oerlay grid to a domain can be used to generate and display the collocation meshes and points. In addition,
PELLPACK supports a body-oriented grid generatballows users to define the mapping of an arbitrary domain to a
four-sided domain, and alles the specification of an arbitrary number of grid lines per piece of the original domain
definition. The body-oriented grid generator supports systems such as CADSOL, which require a body-oriented grid
for the solution method.

4.2.4 MeESH GENERATION EDITOR

This editor is the dvier and graphical inteate to the finite element mesh generatorgrated in PELLRCK. The

available mesh generators are listed abl€5. For 2-D mesh generators, boundary conditions whicke Heeen

defined on the original domain boundary pieces are maintained throughout the mesh generation process. Thus, the
element edges on the domain boundary inherit the conditions of the original boundary piece. These meshes can be
graphically modified by mang appropriate nodes. In the 3-D case, boundary conditions defined on due sriain-

gulations are maintained throughout the mesh generation process, so that addidemahfthe swa€e inherit the
appropriate boundary condition. A 3-D mesh editor is alsdable to display or modify 3-D meshes and boundary
condition assignments.

TABLE 5. PELLPACK supported mesh generators and their applicability

Mesh generator Domain definition Description

for given edge length, generates a uniform,
triangular mesh and outputs a PELLPACK

2-D triangular PELLPACK domain editor mesh format file
piece-wise linear approximation uses quadtree method to generate a first-cyt
of domain from PELLPACK mesh which users refine by point-and-click,
2-D adaptive domain editor outputs a PELLPACK mesh format file
user specifies any number of “points” per side
arbitrary domain from on original domain then structured mesh is
PELLPACK domain editor is generated, outputs a PELLPACK mesh format
2-D structured mapped to 4-sided figure file

user specifies maximum edge length which i
used to generate a mesh using the quadtree
piece-wise linear approximation algorithm and the mesh is refined by

of domain from PELLPACK subsequent applications of algorithm, outputs a
2-D QMG [37] domain editor neutral [2] format file.

[Z
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users specify a set of parameters controlling
surface triangulation from 3-D | edges, angles, etc., and a tetrahedral mesh |s
3-D Geompack [27] | domain editor (e.g. XX0X) generated, outputs a neutral format file.

surface triangulation from 3-D | generates a tetrahedral mesh and outputs a
3-D QMG [36] domain editor (e.g. XXoX) neutral format file

4.2.5 DOMAIN DECOMPOSITION EDITOR

The decomposition editor supports the decomposition of meshes/grids into “balanced” subdomains. These data are
used to parallelize the underlying PDE computations. A library of partitioning algorithmsvidgatdo automati-

cally generate the decomposition. These algorithms produce decompositions that balance the load among processors
and minimize communication between processors. Users may choose frgmamamatic partioning heuristics,

such as Inertia Axis, Neighborhood Search, ReegiSpectral Bisection, and others. These algorithme algers to

specify numerous input parameters which control the partitioning process. In addition, decompositions can be modi-
fied manually The decomposition data is written to file(s) used uniformly across all suppogetgarallel plat-

forms, communication libraries, angegution models (hosted, hostless, Mplus, Dplus). Extersrallel processing
performance data has been collected using the PECKRervironment, comparing and analyzing algorithms, plat-

forms, communication libraries, and execution models [29],[32],[33].

4.2.6 ALGORITHM AND OUTPUT SPECIFICATION EDITORS

These editors help the user to specify the solution and outpuesgs by visualizing in a menu form the options that
currently exist in @rious PDE libraries. The ELI¥ZK and PELLPACK modules which arevailable for the solution
process depend on the problem description in the session. The problem dimension and selected methder{finite dif
ence or finite element) are used by internal filters to identify the applicable modules displayed in the discretization
and triple menus of the algorithm edittfrthe problem language specification has parallel information, only the par-
allel modules are listed in the menus.yAtontrolling parameters are accessible through the algorithm,editere

they can be viewed, modified and saved.

For a solution process which uses foreign systenmesalwusers must specify the appropriate triple module identified

by the framevork they selected when defining the problem (e.g., VECFEM, NSC2KE). As in the case of a PELL-
PACK triple, the foreign system triple module represents the entire numerical solution process. Selecting the triple
module and specifying the values of the required parameters is done within the algorithm editor.

To specify output requirements, the output editor may be usedydeldrPACK or PELLFACK solution process.
Foreign system output requirements are identified directly in the triple module as one of the parameters.

4.3 POST-PROCESSING TOOLS

This software layer includes the output tool which is an intevactivironment used to analyze and visualize scien-

tific data generated by PELARK solwers. It consists of customized and public domain visualization tools used to
visualize and/or animate 1-D, 2-D, and 3-D PDE solution dataryEsoher available in PELLRCK including the
integrated foreign systems supports the PEACR output file format. In addition, some seftg generate “solution
component” data files, which together with a mesh file describe the problem solutjaof.these file formats can be

loaded into the output tool. Once the data is loaded, all tools that can load the data (or a transformation thereof) are
made aailable for selection. dol applicability is based on problem dimension, domain discretization type (grid vs.
mesh), and the possibility for animation (time-dependent solution). When a visualization tool is selected, the output
tool handles all conversions and data transformation required by the visualization tool.

In addition, it contains performance tools that use timing and trace files generated by sequential or parallel PELL-
PACK programs to evaluate the performance of pre-processing and solution modules (the algorithms) and the perfor-
mance of execution models.
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TABLE 6. Output tool applications and recognized input

Visualization Applicability Solutions generated by solvers
tools
XGraph 1-D solutions PDECOL
1-D time-dependent solutions
Timel-D 1-D time-dependent solutions PDECOL
Visual2-D 2-D grid or mesh solutions solutions generated by wn2-D
2-D grid or mesh time-dependent solutions (animaelver including PELLRCK,
tion) VECFEM, FIDISOL, CADSOL,
ITGFS, NSC2KE.
Flow2-D 2-D mesh solutions solutions generated by wn2-D
2-D body-oriented grid solutions mesh or body-oriented grid sely
(Vector plot visualization) including PELLRACK, VECFEM,
CADSOL, ITGFS, NSC2KE.
Contour2-D 2-D mesh solutions solutions generated by wn2-D
2-D body-oriented grid solutions mesh or body-oriented grid sely
(Contour plot visualization) including PELLRACK, VECFEM,
CADSOL, ITGFS, NSC2KE.
MeshTV [6] 2-D and 3-D mesh solutions solutions generated by any 2-D or
2-D and 3-D body-oriented grid solutions 3-D mesh or body-oriented grid

solver  including PELLRCK,
VECFEM, CADSOL, ITGFS,

NSC2KE.
Visual3-D 2-D and 3-D mesh solutions solutions generated by any 2-D or
2-D body-oriented grid solutions 3-D mesh soler, including PELL-
3-D solutions on a box geometry PACK, VECFEM, ITGFS,
NSC2KE.
PATRAN 2-D and 3-D mesh solutions solutions generated by any 2-D or
2-D and 3-D body-oriented grid solutions 3-D mesh soler, including PELL-
3-D grid solutions on a box geometry PACK, VECFEM, ITGFS,
NSC2KE.
XDS 2-D and 3-D grid solutions on a box geometry 2-D or 3-D PELLRACK FDM solv-
ers

All PELLPACK solvers generate timing information which identifies the elapsed CPU time used by each step of the
numerical solution process. When programs aeewted in parallel, timing information is generated for each proces-

sor. The timing information can be loaded into the output tool and analyzed via REKIperformance visualiza-

tion tool, MPerform. Tming and trace data can also be analyzed dlyld’[38] and RTool [39]. Timing data is
transformed by the output tool into the required format, and users can selest #e hilt-in configurations

required by these performance analysis tools. ParaGraph [12] is available for parallel execution analysis when certain
parallel communication libraries are used.

5. EXECUTION ENVIRONMENT

The design objective of the execution environment is to assist users in compiling, linking, and running programs pro-
duced by the diérent framewrks discussed earlidn addition, the erironment is responsible for locating compil-

ers, allocating machines, runningeeution scripts, and scatteringtgering data to/from distnibed machines. This
ervironment is realized by thexecute tool which pnddes support for remote login, file transfand platform-
dependent>@cution management. In this section we describe the functionality and architecture of thé®@KLLP
execute tool.
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5.1 EXECUTETOOL FUNCTIONALITY

The main task of thexecute tool is toxecute a PDE solving program specified in the PACR language. The
PELLPACK language file is first translated to one or mooetrein programs, and then compiled to binary format
using the natie Fortran compiler Different types and numbers of programs are generated based oedhtoa
model selected by the user.

5.1.1 FRRAMEWORK AND EXECUTION MODEL DETERMINATION

Special identifiers in theptions sement of the PELLRCK source file specify the type of framerk (e.g.,
PELLPACK, CADSOL) and the»ecution model [33] to be used. When tlxeaite tool first loads the PELARK

program, it uses this information to configure its operation appropridiedyframeork determines which system

solver library will be used in the linking stage. Theseution model identifies whether theseution is sequential or
parallel, and when execution is parallel, it specifies the type of parallel model. For sequential execution, a single For-
tran program corresponding to the PERIGK problem specification is generated. This programesallze problem

and generates the global solution in a single output file.

5.1.2 PRALLEL EXECUTION MODELS

For parallel egcution, the parallel model tells theeeution emironment the number and types afrffan files to be
generated. In the parallel case, a partitioning of the PDE mesh/grid is assumed, and all computations are done on a
persubdomain (local) basis. Computations for each subdomain are mapped to the processors of a (virtual) parallel
machine, where multiple processors compute deréifit parts of the domain. Communication between subdomains
occurs on the subdomain intecks, which are specified in the decomposition data. Processors are thus able to com-
pute a local solution.drgenerate the global solution, the system needs to collect the local solutions and compute the
global one. Diferent control programs are generated for each of the paradlalitton models, each performing spe-

cific phases of the numerical solution process. The parakelu&on models and the correspondingaition tasks
supported by the PELLPACK execute tool are described in Table 7.

5.1.3 GOMPILATION AND EXECUTION PARAMETERS DETERMINATION

Following the principle of late binding, the user does not select the architecture on whiebuteehe program until

after loading it into thex@cution emironment. That is, PELLACK allows the user to completely specify the PDE
problem as well as moto sohe it without ha&ing to select the specific type of hamahe to be used for solving the
problem. Selecting the @t platform requires the selection of the haatbMe.g., Sun Sparc) as well as teesion

of the operating system (e.g., SunOS 4.1, Solaris 2.5). The user also selects the communication library to be used at
run-time. After this information is specified, theeeute tool determines the possible machines that can be used for
compilation and xecution based on the local configuration. If these machines need to be accessed feitna dif

user name and/or login name, those must be specified as well. ,Ainaljompilation and linking steps are per-

formed to produce the executable file(s).

TABLE 7. Parallel execution models

Execution | pisc® | Lss Control programs and their execution tasks
model
Hosted P P Host programReads in decomposition file and sends appropriate|data

to each of the node programs. Reesilocal solution data and genér-
ates global solution.
Node programEach node discretizes and ssthe linear system gn
its subdomain, collaborating with neighboring subdomains. Lpcal
solutions are sent back to the host.
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Hostles&) P P Node program Each node reads itsva decomposition file. It disJ
cretizes and sobs the linear system on its subdomain, collaborating
with neighboring subdomains. It generates a local solution file.
Post-processing prograr@ollects local solutions and generates a glo-
bal solution.

MPlus S P Discretization program: Generates linear system on the entire dofmain.
MPIlus ewironment:Partitions linear system using decomposition file

and global linear system.
Node programEach node reads its local linear system file. lteso|v
the linear system on its subdomain, collaborating with neighbaring
subdomains. It generates a local solution file.
Post-processing prograr@ollects local solutions and generates a glo-
bal solution.

DPIug? S P Node program:Each node reads itsva decomposition file. It dist
cretizes and sobs the linear system on its subdomain, collaborating
with neighboring subdomains. It generates a local solution file.
Post-processing prograr@ollects local solutions and generates a grlo—

bal solution.

() DISC = Discretization phase, LSS = Linear System Solver phase.
S = the code is sequential, P = the code is parallel.

@ The node program for the Hostless and DPIlus models carry out identical tasks. Note, however, that all
numerical code in the Hostless model is parallel. DPlus, on the other hand, uses sequential discretization
code; each node performs a sequential discretization on its partition of the domain. In this way, available
sequential discretization codes may be used for the discretization phase, while parallel codes can still be
used for the more time-consuming linear system solver phase.

5.1.4 HLE AVAILABILITY

For compilation and escution on remote machines, theseute tool addresses the issue of fil@ilability. Since the

user can choose to compile and execute the program on different machines, these files might not necessarily be avail-
able on the tgret machines. The files considered here include the PECKPsource file, ay generated object/

binary files, the files specified inside the PEROK program (such as mesh and decomposition files), and the output
file. These files are handled fdifently by the recute tool. The location of the source and generated object files is
known to the ewironment since these files are generated during the compilation phase. The location of the PELL-
PACK program specification files (i.e., file system paths), are specified within the REKLprogram file. These

files are needed during theegution and post-processing phases.itiéntify three dferent possibilities for each of

these files: i) the file isvailable on the ecution machine with the same pathname, ii) the file is aaliyadle on the

current machine, and iii) the file is available on the remote machine with a different path name. In the first case, noth-
ing special need be done tailg access to the input fileolFthe second case, a gogf the input file is temporarily
generated on the remote machine. In the last casexehate tool must map the path of the input files appropriately

so that the correct name is used on each machine.

5.1.5 GOMPILATION AND EXECUTION CONFIGURATION

Unlike the sequential case, the process for compilingrizah file into binary form for the parallel case may not be
straight forvard. In certain cases, cross compilers can be used thatadlebdle on certain machines. In some other
cases the compilers require certaimiemment \ariables to be set before running them. Tkerate tool allas the

local site specialist to configure this information at the time of PBIQK installation, so that this information is
known to the environment at run time and is available for user selection of platform and communication parameters.

The information needed to configure the execute tool for a user’s site consists of:
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¢ information about the hardware platforms and communication packages available at this site, including the list of
machines available to the user, thaiability of compilers and cross-compilers, th@ieznment settings needed
to compile a program on a specific architecture, and the process of executing on the selected parallel architectures

¢ information about the availability of the foreign solver libraries that are available at the site.

This information is specified at installation time and loaded in at runtime, so that the end-user is presented with a con-
venient and knowledgeable graphical inded that automatically determines the site-specific configuration based on
the taget platform selected by the us€he diagram in Figur#4 lists the platforms and communication libraries cur-

rently supported by the PELBEK system. Figurd5 shavs hav the platform configuration information is pre-
sented to the user during PELLPACK execution in a convenient and easy-to-use format.

workstation network Paragon
_ e LAM MPI e MPICH
Sun4 - SunOS Sun4 - Solaris e MPICH e PICL
e CHIMP MPI e Intel/NX
e PVM
nCube 2 iPSC 860
e VERTEX e MPICH
e MPICH e PICL
e hostless, MPlus, DPlus models e PICL e NX
e hosted, hostless, MPlus, DPlus models ® PARMACS e PARMACS

FIGURE 14. Available platforms and communication libraries

5.1.6 EXECUTION STATE

Since users may wish to re-start tlhe@ution process at apoint in the gecution sequence, a state file is introduced

to maintain state data about the actions thae Heeen performed on PELRRK source files. & example, if a

source file is compiled for the Inteaagon using the MPICH communication libraayrecord in the state file con-

tains this information along with the names of the generated object/binary files and other pertinent information. The
user may enter thexecute tool at a later time with this state file, which identifies that compilation has alreauly tak
place.
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FIGURE 15. Executing a parallel hostless program on a network of 2 Sun4-Sos4 machines
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5.2 ARCHITECTURE

The PELLPACK ercute tool consists of a Tcl der, a Tcl/Tk graphical user intex€e, and the site specific configu-
ration database. Uponviocation, the xecute tool loads all local configuration required to perform the supported
operations. Figure 16 depicts the software components of this tool.

EXECUTE TOOL

User Interface

Site Specific Configuration
Solver Comm. Compilation R IELLPACK
Librar Librar | & Execution | g diets
T Tl Scripts Database | PSE

Execute Tool Kernel

Communication Interface

FIGURE 16. The software architecture of the execute tool

6. THE PELLPACK E XPERT SYSTEM SUPPORT

Given the large number of solution frameworks available in PEOKPANnd the number of possible implementations

of a framework sgment, it is clear that most users will not be able to select the rfiostrafset of options needed to

best sole the problem at hand. The PYTHIA kmedge based system component of PEACR addresses this
algorithm selection problem by automatically selecting a solution scheme to use to solve a given problem within user
specified performance objeas [25]. The PYTHIA system is not a part of PERCX, but it operates on perfor-

mance data produced by PELLPACK.

The approach that PYTHIA tak to sole this problem is to select the best solution scheme based on the measured
performance of arious solers on “similar” problems. Problem similarity is measured by comparing characteristics

of the problem at hand with the characteristics of problems that have been solved before. Problem characteristics and
performance information about thefesftiveness of arious solution schemes on these problamsassumed to be
awailable from the PYTHIA kneledge base. Cleatljor better performance it is important tovha \ery large and

growing database that continues to accumulateviedge about the PDE problems that are beingesolMence it is

important to deelop techniques for fi€iently locating “similar” problems so that the algorithm selection can be

done quickly. This is achied by grouping sets of problems into classes based on some set of characteristics and then
restricting the search to problems belonging to similar classes of problems.

The PYTHIA system utilizes the ELI¥CK Performance Eluation System [4] (as modified to support the PELL-

PACK solvers) to generate the performance data thatigkes initial information to the kndedge bases. Thewa
performance information is automatically transformed into rules acis find stored in the knledge base. The
information in the kneledge base includes indglilual problem characteristiceetors, problem class characteristic
vectors, and problem and class performance rules. These are used by the inferencing logic to determine the best solu-
tion scheme and parameters for a given problem.

PYTHIA inferencing logic includes traditional case-based and clustering-type techniques as well as neantal netw
techniques to help determine the class(es) to which a problem belongs to. Once a pabédsns determined, then

the problem is compared @igst all the eemplars of that class to determine the best match. Then, the performance of
various solution methods on that problem is used as the basis upon which to select the solution schemeefor the gi
problem.
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After the solution method is selected, its parameters must be determined. The basic parameter to determine is the
number of dgrees of freedom that should be present in the discretized PDE teedtttd@iser specified performance
objectives. PYTHIA balances between conflicting user constraintsveothe best possible choice for the solution
algorithm and its parameters.

7. THE PELLPACK D EVELOPMENT ENVIRONMENT

The folloving two scenarios stvo hov the PELLIACK development evironment can be used for educational pur-
poses. It is important to note that both scenarios are possible without the slightest modification of tHeCRELLP
system itself. Instead, we rely on theyeo and fleibility inherent in the design of the open architecture whiels w
described earlier.

A graduate class in parallel programming is assigned to write the code for several domain decomposition algorithms.
After generating their decomposition, the student must write the data to a file in the PELLPACK format. This file can
immediately be brought into PELLPACK'’s graphical environment by inserting its filenamedetmaposition

segment, thus allang the decomposition editor to load and display the decomposition. Moreover, these decom-
position files canwen be used toxecute a PELLPEK problem in parallel, using srof the aailable parallel solu-

tion schemes. The classegutes the program on allalable parallel platforms, and collects timing data fwesa
different decompositions byarying the number of subdomains generated by their algorithms. The data collected by
the students describes the performance of their decompositionsféremifnumbers of subdomains, soytloan
compute and graph the speed-up.yTban also compare the performance of their decompositions to those generated
by the algorithms alreadyailable within PELLRCK. This use of the delopment ewironment requires no pro-
gramming on the part of the students other than writing the decomposition to a file in the pre-definedRgLLP
format.

A class in numerical methods is to write a collocation discrefiesting the correctness of the code avalumting

its efficieny for a test suite of PDE equations is done within the PBOKPenvironment. The discretizer is written
using the PELLRCK data structures for the input and output arrays amdhles. Virkspace and otheaxiable

space allocation is defined through PERK language constructs. The discretization code is inserted asranF
segment immediately before the solutiongseent of the problem definition. PELREK's language processor
embeds this code in the resulting program at the appropriate location, arddiie ¢ool handles the linking of the
additional user specified compiled objects. Students ean easily test their discretizers on matifferent PDE
problems, using PELIACK's test suite. The performance of the discretizer is captured as timing data which is output
at each xecution. The deelopment evironment has been used in thiaywfor testing linear system seks, mesh
generators, and many other kinds of user-written sequential and parallel code.

The components of PELLPACK that alldt to function as a delopment environment are the following: open archi-
tecture, standard intexées for the PDE problem and solution process specifications, published file formats and data
structures for all input and output, an extensible database defining the solver modules, the Fortran language segment,
the language processing tools, and the configurabikities of the execute tool. The table below describes how these
components work together to allow developers to add their own PDE solver components and have them inter-operate
seemlessly with thexesting components. delopment tasks that require PEIA®GK source code are matt with
(*).

TABLE 8. PELLPACK development tasks

Components of the PELLPACK
Development task Description of integration process development environment used
Use off-line code to use PELLPAK file format to saee data and| published input file formats, language
generate mesh, decom- insert filename in appropriate language segrocessing tools
position, etc. ment.
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Write new code for dis-
cretizer or linear systen
solver

define routines using PELLPACK data
structures for input/output, insert call to
top-level routine in Fortran segment, com
pile routines on target platforms

standard interfaces for PDE solution
process specifications, Fortran lan-

- guage segment, language processing
tools, configurable execution facilities

Test existing code for
discretization or linear
system solver

write interface routines transforming exis
ing data structures to PELLPACK data
structures, insert call to cearsion routines
and call to top-level solver routine in For-
tran segment, compile routines on target
platforms

- standard interfaces for PDE solution
process specifications, Fortran lan-
guage segment, language processing
tools, configurable execution facilities

Integrate permanent
module code into
PELLPACK (*)

define interface routines using PELLPAC
standard interfaces, add module definitio
to extensible module data base, add perr
nent new library to Execution configuratia

Kstandard interfaces for PDE solution
nprocess specifications, extensible mo
nale data base, configurable Execution
nfacilities

Integrate visualizer,
mesh generator, geom
try decomposer or othe
new tool to PELLACK

write routine to covert PELLPACK format
b-data structure or file to new tool format.

I Add following items to graphical environ-
ment: button to invok tool, callback to call

GUI ()

published file formats and data struc-
tures for all input and output

converter, call to start up tool

Adding a permanent module to PELAEGK requires modification of the module data base. This can only be done
when source code for the language processomitable, since the changes must be compiled into the runtime sys-
tem. 710 add a permanent module to PERIX, a deeloper must put the module definition into the data base. This
information includes: (1) the “type” of module (identified by the languagmeart where it will appear in the prob-
lem definition), (2) the name of the module, the list of module parameters, and thelt @dfies which can be mod-
ified by the user, (3) theoRran call to the top-iel routine of the module, (4) the list of data structures needed by the
new code, and (5) the memory requirements fasteng PELLFACK data structures and yamev data structures.
After the modified language processor is installed, tiemedule is @ailable as a standard part of the PEACK
system.

8. WEB PELLPACK

Web PELLRACK [52] is an instance of the PELAEBK system that has been madeikable for public use via the

World Wide Web at the URL http://pellpack.cs.purdue.edu/. The goal of tele PRELLRACK service is to allw

remote users to access and use the PELLPACK system in a safe, secure and effective manner. The design was guided
by the follawing principles: 1) outside users should notéhdirect access to servmachine(s) for olious security

reasons, 2) control access to the safewfor accountability purposes, and 3) users mus pavag; i.e., one user

should not be able to freely browse other users’ files.

To satisfy these constraints, an account-oriented model where users “log in” to their “account” and then access the
software was dealoped. These “accounts” are created within the data space of a custom welAseess to files

within such an account is controlled using standard web security constraintsaifitain security from usess’
“breaking in” to the server machines, several levels of Unix security are used.

To run Web PELLPACK (as a demonstration or otherwise), users needvio the X windav system operational on

their machines. In order for the machineypding the Wb PELLPACK service to display X windes on the uses’

display users must instruct theiwa machine to permit this action. The command for doing so igec@ntly pro-

vided to the user in a set up page in both demonstration and actual runs. Once the appropriate permissions are set up,
the demonstration is started by pressing the “Rwtton. The demonstration PELREK system then runs on the

web service machine and displays its wind®n the uses’display The web brarser is blocled until the gecution

is complete. Once the operation is complete, the user is presented with a pagenbdhaitoto send comments to

the PELLPACK developers.
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For normal operation, the user must first request access to useethPEULACK service by filling out a (\&b)

form and submitting it to the service administrators. Processing the request requires the administraidetth@ro
user with an initial login identifier and an initial passd which the user may use to create an account for them-
selwes. Then, this login is added to the WWW seraccess control file that controls who has access to the account
creation page. Once users reeethe initial login and pas®wd, the visit the account creation page using these
tokens and sets up an account for theneselThe account creation request is processed automatically by creating a
“home” directory for the user within the WWW seris data space and by creating an access control file there that
restricts access only to this user.

Once the account has been set up, users may logy itinag and use the PELAEK system. The home directory
works like a normal home directory; i.e., users may use it as a persistkimgvarea and may 8a programs and
results there. Files may beftdaded from this directory using a web Wwser but we currently do not support
uploading files to this directaryile uploading will be supported later using the FILE input type in HTML3 [26]
forms.

The primary concern of gone providing an Internet-wide service is that of securifjne security concerns in the

Web PELLPACK service include ensuring that users do not get access to files outside of the service boundaries, that
they hawe restricted access outside of their home directbat thg cannot compromise the system iry amay and

that they cannot access and compromise the local orétin any way Details of hav all these constraints are main-

tained are included in [52].
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