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Abstract

We address the problems of estimating the reliability of multiple-version software, and improve the
understanding of the various ways failure dependence between versions can arise. Specifically, we
step from the previous conceptual models, which described what behaviour could be expected "on
average" from a randomly chosen pair of "independently generated" versions to predictions using
specific information about a given pair of versions. The concept of "variation of difficulty" between
situations to which software may be subject is central to the previous models cited. We show that it
has more far-reaching implications than previously found.
We show the practical implications of varying probabilities of failure over input subdomains or
operating regimes. A direct practical gain for designers, users and regulators is the possibility of
estimating useful upper and lower bounds on the reliability of a two-versions system.

Key words: Software fault-tolerance, design diversity, demand space partitioning, common-
mode failure.

1. Introduction
Design diversity is an intuitively attractive method for increasing the reliability of critical
systems subject to design error. In applications such as nuclear plant protection it is common
to employ parallel, diverse "channels" that separately process plant data and trigger a safe
shut-down if they detect indications of unsafe conditions. With control or safety systems that
use software or complex computer hardware (like modern microprocessors), where design
errors are widespread, design diversity appears even more desirable and has achieved some
degree of recognition from industry and some regulators [1], [2]. Additional interest has
arisen recently due to two trends. The first is that for some applications that traditionally
relied on non-software-based systems, at least as backups for software-based ones, this
alternative has disappeared: the necessary hardware components are no longer available. The
second trend is the increased reliance on commercial-off-the-shelf (COTS) systems or
subsystems. These are often developed without the rigorous quality assurance procedures
required by customers with high reliability requirements. Then, it seems desirable to add to
the COTS product a backup system, which would detect and contain especially dangerous
failures. However, the use of diversity remains controversial because of the difficulty of
evaluating its advantages (and, as a corollary, of managing its application so as to achieve
dependability in a cost-effective manner).1

                                                
1 We note in passing that in this respect software design diversity has been researched more thoroughly than most software engineering
techniques. Ironically, this very effort, which  has accumulated evidence that diversity is useful [1], [7], [10], has led many (through
misunderstanding of the Knight and Leveson results [10]) to believe that it is not.
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Design diversity, in the basic form used in industry, requires that two or more versions of a
program be developed by separate teams, which do not communicate, and may be given
explicit directives for diversifying the internal structures of their products (e.g., using
different algorithms), while keeping the products equivalent in their externally visible
functional behaviour. It is hoped that, if one version fails, the other, being internally different,
will not fail at the same time: if they contain bugs, these will not cause failures in exactly the
same circumstances in all versions. The two or more versions are then run in a redundant
configuration, so that failures in a subset of the versions may be masked or at least detected.
More refined arrangements are possible, e.g. with some version performing a monitoring or
auditing function but no control function.
Estimating the dependability of diverse-redundant systems before they are used is crucial, as
they are usually safety-critical systems. In addition, their requirements are usually in the class
of "ultra-high reliability" [3], for which black-box operational testing cannot produce
sufficiently high confidence at a feasible cost.
The difficulty in reliability modelling of diverse-redundant systems hinges on the fact that
one cannot claim independence of failures in diverse versions. Independence would allow
claims like: "The probability of failure per demand of a 2-channel safety system, in which
each channel has been convincingly shown to have a probability of failure per demand not
greater than 10-3, is not greater than (10-3)2 = 10-6". Without independence, this is not
possible. Independence is often postulated between identical hardware channels, concerning
failures due to physical (non-design) faults. For design faults, we have convincing evidence
that independence should not be expected to arise naturally. Conceptual models, first
developed by Eckhardt and Lee [4], support this view. A similar result actually applies to
physical faults. Parts of the reliability engineering community routinely account for it by
rules-of-thumb which limit the reliability increase that one is allowed to claim through the
use of redundancy. A theoretical explanation of positive correlation among physical failures
is due to Hughes [5]. Littlewood [6] summarizes and compares the models concerning design
faults and physical faults. We will use the terminology of software and design faults, though
many considerations apply to hardware and physical faults as well.
In this paper, we extend previous conceptual models to improve our understanding of failure
behaviour. We gain a small improvement in the ability actually to predict reliability, and a
greater one in our ability to avoid misleading predictions. Previous conceptual models dealt
mostly with what could be expected "on average" from the failure behaviour of diverse
versions developed for a given application. We discuss the problem of prediction "in
particular", for an individual set of versions, i.e., the prediction that is truly important for a
designer, customer or regulator. In detail, we study the probability of failure on demand for a
2-version system.
In section 2 we recall the essential previous results in modelling diverse-redundant systems.
Section 3 describes the reliability of a two-version system in terms of complete knowledge of
which demands are failure demands for either version. Section 4 shows how to apply this
model on the basis of incomplete knowledge, which may be available in practice, i.e.
knowledge about failures of the versions over subdomains of the demand space. In section 5
we illustrate the derivation of lower and upper bounds for the probability of system failure
using data from an experiment on multi-version software. Section 6 discusses the practical
implications of these results.

2. Background
The problem of evaluating the reliability of fault-tolerant software is far from being solved,
despite the long time since the idea of improving the reliability of software through
redundancy was introduced. The initial hope of building up a software system with arbitrarily
high reliability from components with modest reliability has been proven wrong by a number
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of empirical studies, summarised recently in [7], in which failures of "independently
developed" versions were positively correlated. More importantly, the break-through
modelling work by Eckhardt and Lee [4] (“EL model”) showed that these empirical results
were not artefacts but very much what one should expect. These authors assumed
"independently developed" versions in the sense that, given a specific demand, the failure of
one version would not give any indication about the probability of failure of another version,
randomly chosen among the infinite other possible versions.
The problem solved by different software versions is common to all of them. Different parts
of the problem present different degrees of difficulty, and this phenomenon makes
independent teams more likely to err while building the same "difficult" parts of the problem
than they are on average. Therefore multiple "independent" developments may fail to produce
independent failures between versions (when failure probability is averaged over all
demands). For a randomly chosen pair of versions (i.e. “on average” over all possible pairs)
there will be positive correlation for most plausible form of “problem difficulty”. Littlewood
and Miller [8] later showed (“LM model”) that with forced design diversity the varying
difficulty could be turned from a disadvantage into a benefit. "Forced" diversity means
imposing different constraints on the different teams, e.g. different design methods, tools and
languages. If what is difficult for one team is consistently easy for another team, the actual
reliability of a pair of versions "on average" will be better than what one can expect under the
assumption of independence.
Both these models are "conceptual" models only, in that they do not support predictions for
specific cases, and very much depend on the notion of "difficulty" defined over the space of
the demands (input domain) of the software2. The difficulty of a demand point x is quantified
by the probability θ(x) that a version, randomly chosen among those that at least
hypothetically can be developed from the same specification, will fail on x. If the demand is
"intrinsically difficult" then θ(x) will be close to 1. If demand x1 is more difficult than x2 then
θ(x1) > θ(x2). Presumably, for the vast majority of demands θ(x) will be close to 0.
Under the EL model the variation of difficulty over the demand space is deemed an inevitable
disadvantage, while under the LM model it may turn out to be an advantage. Everything
depends on the covariance between the random variables ΘA and ΘB representing the

difficulty under two diverse design processes A and B, respectively. ΘA is by definition a

function θA(X) representing the difficulty of a randomly selected demand X when design
process A is used. The work by Littlewood and Miller [8] indicates the need for research to
objectively measure development processes in quest for less (in the best case negatively)
correlated processes. To the best of our knowledge, little progress has been reported in this
direction so far. Nicola and Goyal [9] suggested the Beta distribution as a suitable
representation of the probability of failure of a randomly selected version on a randomly
selected demand, with the two model parameters to be determined from testing. These
authors refer to the experiment by Knight and Leveson [10] to show the plausibility of the
suggested distribution.
The problem with using these two conceptual models in practice is two-fold. On the one
hand, one can hardly expect the "difficulty" function Θ to be measurable. On the other hand,
even if it were, the predictions of the models are predictions for an "average" multiple-
version development. The models consider all software realisations from the same
specification. If we could repeat many times the process of developing pairs of versions and
take the average over their probabilities of coincident failure, we would see the numbers
predicted by the models. The models say nothing about a particular pair of versions,

                                                
2 An “input”, in this context, is one demand on the software. For instance, for a plant protection system it could be the whole sequence of
sensor inputs as the plant state evolves to cross its safe operation envelope.
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however. A specific software project will only develop a small number of versions (typically
2, 3 or 4). What is of interest is the reliability of the particular set of developed versions in
hand. The EL and LM models tell us that the independence assumption about coincident
failure of versions may be wrong. We can not even say whether it is optimistic or pessimistic.
The experiment by Knight and Leveson [10] confirms that individual pairs may greatly vary
in their probability of coincident failure and deviate from the result "on average". Similar
results were observed in other empirical studies recently summarized in [7]. In a simulation
study this phenomenon was exercised [11] and the results, under plausible assumptions, were
very discouraging: with increasing reliability, the result "on average" becomes a poorer and
poorer indication of the reliability "in particular".
In addition to the EL and LM models, a series of “structural” models for fault-tolerant
software have been published ([12], [13], [14], [15], [16], [17]) which do not attempt to
predict the likelihood of common failure on one demand, but to predict the reliability of a
diverse-redundant system over time, given parameters that describe the behaviours of its
components, e.g., the probabilities of individual and common failures per execution step, the
duration of execution steps, etc. These models are straightforward, though complex,
applications of Markov chains, and allow a user to understand the respective roles of the
various parameters. However, they are useless for actual prediction, because the many
parameters they require, especially the probabilities of common failures of versions, are
difficult to estimate.
We attempt to bridge the gap between these two kinds of models, by studying how the
conceptual model of failure generation can be applied to a specific set of versions.
For the sake of simplicity, all our models refer to the simplest possible diverse-redundant
configuration: two versions, with perfect adjudication ("1-out-of-2", diverse system).
Although very simple, this scheme corresponds to some real systems, like a plant safety shut-
down system, in which two versions run on completely separate and non-communicating
hardware channels (sensors, computers and actuators), and either version is able to order a
shut-down action no matter what the other does.

3. Probability of failure on demand in 2-version system, given complete
knowledge

A 1-out-of-2 system is said to fail if both versions produce incorrect results on the same
demand. It is said to succeed otherwise. We call the two versions A and B.
For each version, we define a score (indicator) function. ωA(x) and ωB(x) represent the scores

of version A and B on demand x, respectively. Saying that, for instance, ωA(x) = 1 means that

version A deterministically fails on demand x. We can define two random variables, ΩA and
ΩB, describing the behaviours of A and B on a random demand X, as:
Ω A A X= ω ( )  ,  Ω B B X= ω ( ) (1)
Then the probabilities of failure of versions A and B on a randomly selected demand X
(probability of failure on demand, pfd) are:

P P A failson X E P x xA A A
x D

≡ = = ⋅
∈
∑( ) ( ) ( ) ( )Ω ω

and

P P B failson X E P x xB B B
x D

≡ = = ⋅
∈
∑( ) ( ) ( ) ( )Ω ω  (2)

where D denotes the demand space and P(x) is the probability that demand x will be input to
the software (the demand profile of the software).
By definition:
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( ) ( )
cov( , )

( ) ( ) ( )

Ω ΩA B

A A B B
x D

x P x P P x

=

− ⋅ − ⋅
∈
∑ ω ω  (3)

The probability of coincident failure on one randomly chosen demand X can then be
expressed as:

P(A, B fail on X) = P(X such that ωA(X) = ωB(X) = 1) =

           P(A fails on X).P(B fails on X) + cov(ΩA, ΩB)   (4)
The expression given by (4) appears very similar to the expression for the probability of
system failure given by the LM model. The difference, however, is huge. In the LM model
the difficulty (ΘA and ΘB) as a random variable is expressed by the probability that a version
(picked at random from the population of possible versions produced from the same
specification using the same design process) will fail on a randomly selected demand. The
values that this difficulty can take on particular demands may be any number in the range [0,
1] including the extreme values. In (4), ΩA and ΩB represent the score functions of two
particular versions. The values that these two random variables can take on randomly
selected demands are strictly from the set {0, 1}, and no value in between. The terms P(A
fails on X) and P(B fails on X) in (4) truly represent the probabilities of failure of the two
particular versions, while the similar terms under the LM model represent the probabilities of
two randomly selected versions developed using different design processes. This is why we
say that the LM probabilities of failure are measures “on average”.
We can express the distribution of ΩA (or ΩB) as something like Fig. 1a:

a) b)
Fig. 1

The X-axis represents the values of the score function (probability of failure on one demand).
On the Y-axis the probability of demands with the same probability of failure is given. There
is a (usually small) probability PA of selecting a demand on which the score function is 1, i.e.
on which version A will fail. The majority of demands, with probability (1 - PA), do not
produce a failure. The probability PA characterises how likely it is for version A to fail on a
randomly selected demand. Sometimes, implicitly, Fig. 1a is substituted with Fig. 1b in
which every demand has the same probability of failure, PA. The difference between the two

is substantial. Although in both cases the mean value of ΩA is the same, PA, Fig. 1b
misleadingly hides variability, i.e., makes all demands equally likely to produce a failure.
With the situation in Fig. 1b, the covariance term in (4) would be 0 and would allow us to use
the independence assumption to calculate the probability of system failure for a 1-out-of-2
system. With Fig. 1a, this is not a legal operation.
How useful is expression (4) in practice? We may reasonably expect to be able to estimate
individual probabilities of failure (or bounds on them) via operational testing. On the other
hand, estimating the covariance term by testing the two versions together is as difficult as
estimating the failure probability of the two-version system: very difficult, usually, as design
diversity is used in the attempt to satisfy very high reliability requirements [3]. Geist et al.
[18] have proposed an indirect method. For real-time software, they suggest that the
covariance term could be estimated from the covariance between the execution times of the
versions. We think that such methods depend on many unwarranted assumptions. Rather than

0 1

PA

1-PA

PA

1

10
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seeking methods for estimating the covariance term, we will study how reliability assessment
can make use of the data that may be available from current practice in software reliability
engineering.

4. Probability of failure on demand given knowledge on subdomains
Practitioners and researchers of software testing have found it useful to reason in terms of
subdomains in the demand space of a program. Subdomains are simply subsets of the
demand space, defined on the basis of some plausibly useful criterion. For instance, testers
find it useful to define subdomains on the basis of which "function" of the program the
demands invoke, or on the basis of which parts of the code they cause to be executed. In
some other cases the environment in which the system is operating can have different states
which affect substantially software reliability. Such states could, for instance, be associated
with failures of hardware components, e.g. sensors, [4] and “naturally” partition the demand
space.
For our two versions, A and B, we now consider subdomains that form a partition in the
demand space, i.e., they cover it completely and no two subdomains have elements in
common. Formally, the demand space D is divided into a set of subdomains, α ={S1, S2, …,
Sn},with:
D = S1 ∪  S2 ∪  … ∪  Sn and Si ∩ Sj = ∅  for i ≠ j | i, j ∈  {1, 2, …, n}.
Although very little is known about the score functions of the two versions, we may be able
to say something about the failure probabilities of the two versions as a function of the
subdomain to which a demand belongs.
The typical way of gaining reliability information is by monitoring operation or (statistically)
realistic testing. In particular, if two pre-existing products are being combined into two-
channel system, there may be extensive experience of previous operation and recorded
failures (or lack thereof for highly reliable systems).
The versions are executed on a randomly selected demand. For each subdomain Si (i=1,…,n),
we assume that the following probabilities are known: the probability of a demand being
drawn from Si during software operation, P(Si), and the probabilities of failure of A and B for
demands from Si, P(A| Si) and P(B| Si).
We will be interested in the probability of failure of the 1-out-of-2 system, P(A,B fail on X),
for a randomly selected X. For the sake of brevity we will write P(A,B) instead of P(A,B fail
on X) and P(A,B|Si) instead of P(A, B fail on X ∈  Si).
For each subdomain, according to (4):
P(A,B|Si)= P(A|Si)

.P(B|Si) + covi(ΩA, ΩB).
where covi(ΩA, ΩB) is calculated for demands taken from the subdomain Si.
The probability of coincident failure on a randomly selected demand is then:

( )
( ) ( )

( )

P A B P A B S P S P A S P B S P S

P A S P B S P S P S

P A B

i i
i

i i i A B i
i

i i i
i

i A B i
i

sub ind i A B

( , ) ( , | ) ( ) ( | ) ( | ) cov ( , ) ( )

( | ) ( | ) ( ) cov ( , ) ( )

( , ) cov ( , )

= ⋅ = ⋅ + ⋅ =

⋅ ⋅ + ⋅ =

+

∑ ∑
∑ ∑

−

Ω Ω

Ω Ω

Ε Ω Ω

 (5)

The first term in the right hand sum of (5) could be called the probability of coincident failure
if inside every subdomain the versions failed independently (hence the index “sub-ind”). The
second term is the mean (over the set of subdomains) of the covariance between the score
functions of the versions in a randomly chosen subdomain. Obviously, it depends on the
versions themselves and the way the demand space has been partitioned. This term does not
seem to be directly measurable. Psub-ind(A,B) however, can be calculated using parameters that
we have assumed to be known.
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Let us introduce some more notations to facilitate the analysis of Psub-ind(A,B). If we choose a
subdomain S* at random, according to the probability distribution P(Si), we can define the
random variable SA as the probability that version A fails on a demand selected at random
from S* (according to the demand profile). Then SA, “the probability of failure of A in a
randomly selected subdomain”, takes on the value P(A|Si) with probability P(Si). Thus the
distribution of SA is completely defined on the set of subdomains, α . Similarly, let SB and
SAB denote the random variables representing the probability of failure of B and of the
coincident failure of A and B in a randomly selected subdomain. Clearly:
P A B E S

E S E S S S
sub ind AB

A B A B

− = =
+

( , ) ( )

( ) ( ) cov( , )
 (6)

where “E” stands for expected value and “cov” for covariance. Obviously, E(SA) = PA and
E(SB) = PB. Therefore, (6) becomes:
P A B P P S Ssub ind A B A B− = ⋅ +( , ) cov( , )  (7)
and (5) becomes:

( )P A B P P S S EA B A B i A B( , ) cov( , ) cov ( , )= ⋅ + + Ω Ω   (8)

Psub-ind(A,B) represents the probability of system failure if we assume that, within every
subdomain, the two versions fail independently. This is an extreme assumption. One might
believe it to be approximately true, for instance, if subdomains were defined by grouping
together demands that require similar operations of the software. One might then claim that
over each subdomain the EL and LM "difficulty function" is approximately constant.
Equation (7) says that even this assumption does not allow us to claim failure independence.
Equation (7) models the effect of variation (in the probability of failure) over the demand
space, similarly to equation (4), except in that the demand space is described in less detail.
The covariance cov(SA,SB) is something new, added to the probability of coincident failure of
both versions by splitting the demand space into subdomains. There are 3 cases that can be
identified with respect to the value taken by the covariance term:
cov(SA,SB) = 0. Apart from other possible cases, this holds if the probability of failure for at

least one of the versions does not vary between the subdomains, i.e. the version is believed
to be equally reliable in all subdomains. This case seems highly unlikely in real situations.

cov(SA,SB) > 0. This is bad news, but seems the most common one to expect in practice under
the EL hypothesis, i.e., if we have not found a means of “forcing diversity” which would
make the difficulty functions negatively correlated.

cov(SA,SB) < 0. This is good news. We may do even better than under the assumption of
independence. This is a highly desirable case, but difficult to achieve.

4.1. Lower bound on the probability of common failure

The practical utility of (7) is that we can actually calculate cov(SA,SB) if we can estimate
P(A|Si), P(B|Si) and P(Si) (for all values of i), and we can thus know exactly which one of
cases i) through iii) is true. Knowing the probabilities of failure in subdomains reduces our
uncertainty about the system’s probability of failure. Under the (generally optimistic)
assumption that versions fail independently in each subdomain, we can even compute this
latter probability, Psub-ind(A,B). This presumably optimistic estimate can be used by a
regulator as a "claim limit" on the reliability that can be claimed for a diverse system in a
safety case, and will often be a stricter limit than one based on unconditional independence,
P(A,B)=PAPB.
The analysis we developed with reference to demand subdomains can be applied to a wider
range of situations. Whenever we have multiple versions (of software or any other system)
which may be used in different conditions of use, and we can make statements on their
reliability conditional on these various conditions, the same equations will apply. Different
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"conditions of use" could represent, for instance, different regimes of operation of a
controlled plant, different modes of operation of the software [4], different loads on the
software (in situations like those studied in [19]), different environmental conditions
affecting reliability of the hardware. This last interpretation, in which the conditional
independence assumption might be considered true, produces the Hughes model for common
failure in hardware [5]. The general result is that if those conditions that cause a higher
failure rate in one version do so in the other as well, the failures of the two versions are
positively correlated.

4.2. Upper bound on the probability of common failure

Clearly, a 1-out-of-2 system is at least as reliable as the more reliable of the two channels.
This is true on the whole demand space as well as on each subdomain. We can express,
therefore, an upper bound on the probability of system failure as a weighted sum of upper
bounds within subdomains:

( )P A B P A S P B S P Si i i
i

( , ) min ( | ), ( | ) ( )≤ ∑ (9)

which would be lower than the marginal probability of failure of the better channel,
min(P(A), P(B)), iff there is at least one subdomain on which the (marginally) better channel
is less reliable than the (marginally) worse channel.
We shall call the right-hand term of (9) P upper(A,B).

4.3. Examples

These two fictional examples illustrate the use of the upper and lower bounds.

Example 1 Table 1
Subdomain Profile, P(Si) P(A|Si) P(B|Si) P(A|Si) 

. P(B|Si) min(P(A|Si), P(B|Si))

S1 0.2 10-2 10-2 10-4 10-2

S2 0.3 2.10-4 2.10-3 4.10-7 2.10-4

S3 0.05 10-3 10-3 10-6 10-3

S4 0.1 5.10-5 5.10-5 2.5.10-7 5.10-5

S5 0.35 2.10-3 2.10-3 4.10-6 2.10-3

P(A) = P A S P Si i

i

( | ) ( )∑ 2.8.10-3

P(B) = P B S P Si i

i

( | ) ( )∑ 3.4.10-3

cov(SA,SB) 1.21.10-5

P sub-ind(A,B) = 2.2.10-5 P upper(A,B) = 2.8.10-3 = min(P(A), P(B))

Example 2 Table 2
Subdomain Profile, P(Si) P(A|Si) P(B|Si) P(A|Si) 

. P(B|Si) min(P(A|Si), P(B|Si))

S1 0.2 10-5 10-1 10-6 10-5

S2 0.3 10-5 10-1 10-6 10-5

S3 0.05 10-1 10-5 10-6 10-5

S4 0.1 10-1 10-5 10-6 10-5

S5 0.35 10-1 10-5 10-6 10-5

P(A) = P A S P Si i

i

( | ) ( )∑ 5.0005.10-2

P(B) = P B S P Si i

i

( | ) ( )∑ 5.0005.10-2

cov(SA,SB) -2.5.10-5

P sub-ind(A,B) = 10-6 P upper(A,B) = 10-5 < min(P(A), P(B))

In the first example the bounds are not tight: the ratio of the two is more than 100. Instead, in
the second example the bounds are closer by an order of magnitude. In addition, in the first
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example the upper bound simply coincides with the pfd of the more reliable channel while in
the second example the upper bound is 3 orders of magnitude better than the pfd of the two
individual channels, which are equally reliable. The gain is clearly due to the negative
covariance between SA and SB, which in Example 2 has a substantial value (comparable in
absolute value with the product of the individual marginal pfds). The channels in the second
example are “really failure-diverse”: where the first channel has a modest reliability the
second channel is very reliable, and vice-versa.

4.4. Practical use of the upper and lower bounds

In practice, how would these upper and lower bounds be used?
Let us first circumscribe the situations in which they would be useful:
• two software products A and B are intended to be combined in a two-version, 1-out-of-2

system, and for both of them there are previous records of (separate) usage and failures;
• the demand profile is identical, both between the environments where A and B were

previously used and the environment in which the new AB system will be used); or,
alternatively, the demand profiles conditional on each subdomain are identical, and the
probabilities P(Si) in all three environments are known.

Once satisfied that these conditions apply,  an assessor or regulator would, in the typical
situation with safety-critical software, try to err on the conservative side. There are three
scenarios of interest for using our bounds based on the separate usage-and-failure statistics of
the two versions:
• deriving an upper bound on the probability of joint failure. The upper bound Pupper(A,B)

would be taken as an acceptable claim on the pfd of the two-version system, to be used,
for instance, in probabilistic safety assessment of a plant protected by this two-version
system. Since both Pupper(A,B) and min(P(A),P(B)) are conservative estimates, the smaller
(less pessimistic) of the two would be preferred. The value of Psub-ind(A,B) would be
irrelevant;

• claim limits. Sometimes, a claim will be made that the true pfd of the two-version system
is substantially lower than Pupper(A,B), for instance by invoking non-statistically based
arguments about the quality of the two versions. A regulator may consider such an
argument plausible, and yet want some check on its realism. Then, Psub-ind(A,B) becomes
useful: if the claimed pfd is lower than Psub-ind(A,B), the regulator is justified in doubting it
or requiring a very strong argument to accept it. The claim indeed implies claiming that,
for demands from individual subdomains, the two versions are (on average over all
subdomains) “better than independent”, a very strong claim;

• precise estimation. A third, different situation may exist: rather than trying to be
conservative, the assessor would like as precise as possible an estimate of the true pfd of
the two-version system. Then, having both an upper and a lower bound is useful if they
happen to be close together.

In the next section, we show examples of calculation of the two bounds, demonstrating some
interesting cases. We also show how to account for the fact that in reality we do not know
with certainty the probabilities of failures of the versions in each subdomain, but we have to
infer them, with some uncertainty, from the available records of usage and failure counts.

5. Example application to experimental data
We can demonstrate the application of the model using the data reported in [20]. In a
controlled experiment, 20 independently developed versions were tested under various
“states” of the software’s environment. These states, S0,0, S0,1, S1,0, S2,0 and S2,1, differed in
the fact that different subsets of the (redundant) set of sensors read by the software were
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faulty prior or during the execution of the test cases. S1,0, for instance, denotes the “state” of
the environment with a single faulty sensor prior to testing and no more sensor failures
during the testing. Details of the experimental setup and meaning of states are given in [20].
The experiment’s results thus include measurements for many version pairs conditional on
various “states” of the environment. Each “state” defines in our terms a subdomain in the
demand space - the space of possible test runs. We select three version pairs, (4,5), (7,11) and
(11,18), to illustrate the derivation of lower and upper bounds on the probability of joint
failure (joint pfd). None of the five versions considered passed all tests.
An excerpt from the testing results [20] with failure counts of the chosen versions is
presented in Table 3. We use the notation “P(4,5)”, for instance, to designate the joint pfd of
the two versions 4 and 5.

Table 3. Failure counts of selected versions
“States” of the environment [20]

Version S0,0 S0,1 S1,0 S1,1 S2,0 S2,1

4 0 2 4 51 9 63

5 0 1 0 0 0 0

7 0 3 0 12360 110 41032

11 14 179 20 155 13 41662

18 53 194 13 55 7 40

Tests 309442 134135 129999 101151 102510 143509

The authors of [20] did not estimate the likelihood of different states of the environment,
limiting the discussion to pointing out that “no failure of sensors” will almost always be the
case ( P S( ),0 0 1≈ ) and therefore the impact of other states of the environment on the marginal

probability of failure of versions will be negligible.
The next table shows three hypothetical “demand profiles” which we have used in our
calculations, so that we can also illustrate the effect of the demand profile on the bounds we
seek.

Table 4. Demand profiles
OP1 OP2 OP3

P(S0,0) 0.99 0.4 0.2

P(S0,1) 0.005 0.2 0.16

P(S1,0) 0.003 0.2 0.16

P(S1,1) 0.001 0.1 0.16

P(S2,0) 0.0005 0.05 0.16

P(S2,1) 0.0005 0.05 0.16

OP1 represents a more “realistic” profile, where the likelihood that all sensors function
correctly is 99%. The likelihood of the other states (with sensor failures) is much lower.
In OP3 the states are almost equally likely, which may be used as a conservative measure to
assess the system reliability. OP2 is “in between”.

5.1. Application using point estimates

In this section, we use, for the probabilities of failure of each version in each of the states, the
classical unbiased point estimator given by the sample proportion, i.e. the ratio between the
number of version failures and the number of tests conducted. For instance, we use for
P(11|S0,1) the estimated value 179/134135 = 0.001334 because version 11 has failed 179
times in 134135 tests conducted in state S0,1. For these point estimates and all measures
derived from them we will use the subscript "pe", e.g., Ppe(A|Si) and Ppe(B|Si), Psub-ind_pe(A,B),
Pupper_pe(A,B).
The bounds Psub-ind_pe(A,B) and Pupper_pe(A,B) and the covpe(SA,SB) under OP1 are shown in
Tables 5 - 7 which illustrate the usefulness and limitations of the proposed bounds.
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Table 5. Pair (4,5) under profile OP1
States Profile, P(Si) Ppe(4|Si) Ppe(5|Si) Ppe(4|Si) Ppe(5|Si) min(Ppe(4|Si), Ppe(5|Si))

S0,0 0.99 0 0 0 0

S0,1 0.005 1.49.10-5 7.46.10-6 1.11.10-10 7.46.10-6

S1,0 0.003 3.08.10-5 0 0 0

S1,1 0.001 5.04.10-4 0 0 0

S2,0 0.0005 8.78.10-5 0 0 0

S2,1 0.0005 4.39.10-4 0 0 0

Ppe(4) 9.34.10-7

Ppe(5) 3.73.10-8

Ppe(4)Ppe(5) 3.48.10-14

covpe(S4,S5) 5.21.10-13

P sub-ind_pe(4,5) = 5.56.10-13 P upper_pe(4,5) = 3.73.10-8

Table 6. Pair (7,11) under profile OP1
States Profile, P(Si) Ppe(7|Si) Ppe(11|Si) Ppe(7|Si) Ppe(11|Si) min(Ppe(7|Si), Ppe(11|Si))

S0,0 0.99 0 4.52.10-5 0 0

S0,1 0.005 2.24.10-5 1.33.10-3 2.98.10-8 2.24.10-5

S1,0 0.003 0 1.54.10-4 0 0

S1,1 0.001 0.122 1.53.10-3 1.87.10-4 1.53.10-3

S2,0 0.0005 1.07.10-3 1.27.10-4 1.36.10-7 1.27.10-4

S2,1 0.0005 0.29 0.29 8.30.10-2 0.29

Ppe(7) 2.66.10-4

Ppe(11) 1.99.10-4

Ppe(7)Ppe(11) 5.28.10-8

covpe(S7,S11) 4.16.10-5

Psub-ind_pe(7,11) = 4.17.10-5 Pupper_pe(7,11) = 1.45.10-4

Table 7. Pair (11,18)  under profile OP1
States Profile, P(Si) Ppe(11|Si) Ppe(18|Si) Ppe(11|Si) Ppe(18|Si) min(Ppe(11|Si), Ppe(18|Si))

S0,0 0.99 4.52.10-5 1.71.10-4 7.75.10-9 4.52.10-5

S0,1 0.005 1.33.10-3 1.45.10-3 1.93.10-6 1.33.10-3

S1,0 0.003 1.54.10-4 10-4 1.54.10-8 10-4

S1,1 0.001 1.53.10-3 5.44.10-4 8.33.10-7 5.44.10-4

S2,0 0.0005 1.27.10-4 6.83.10-5 8.66.10-9 6.83.10-5

S2,1 0.0005 0.29 2.79.10-4 8.09.10-5 2.79.10-4

Ppe(11) 1.99.10-4

Ppe(18) 1.78.10-4

Ppe(11)Ppe(18) 3.53.10-8

covpe(S11,S18) 2.33.10-8

Psub-ind_pe(11,18) = 5.87.10-8 P upper_pe(11,18) = 5.25.10-5

The three tables reveal the following:
• the lower bound we have identified, Psub-ind_pe(A,B), may differ from the estimate given by

the naïve assumption of marginal independence between failures of the two channels. For
the first pair, (4,5), the lower bound Psub-ind_pe(4,5) is an order of magnitude greater -
5.56.10-13 vs 3.48.10-14 - than the pfd given by the independence assumption, but is still a
very small number. With the second pair, (7,11), due to the strong positive covariance
over subdomains, 4.16.10-5, which is comparable with the marginal probabilities of failure
of the two channels, Psub-ind_pe(7,11) is almost three orders of magnitude more conservative
than the pfd under the assumption of marginal independence: 4.17.10-5 vs 5.28.10-8.
Finally, with the third pair we have an example when Psub-ind_pe(11,18) = 5.87.10-8 is less
than twice greater than under the assumption of marginal independence, 3.53.10-8. Thus,
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we have examples in which assuming independence may lead to underestimation of the
joint pfd. With this demand profile, OP1, we do not have an example of Psub-ind_pe(A,B)
being lower than the value calculated under the assumption of marginal independence,
which as the theory suggests is possible.

• Pupper_pe(A,B) may be better (i.e. lower) than the pfd of the better channel. In the pair (4,5),
version 5 is better than version 4 in each subdomain. Therefore, Pupper_pe(4,5) equals the
pfd of version 5. With the pairs, (7,11) and (11,18), Pupper_pe(A,B) is better than the pfd of
the more reliable version, versions 11 and 18 respectively. This is due to the fact that in
neither pair one of the versions is universally (i.e. in every subdomain) better than the
other. The improvement of Pupper_pe(A,B) compared with the pfd of the better channel is
marginal for the pair (7,11) and substantial (more than 3 times) for the pair (11,18). Notice
that for both (7,11) and (11,18), under the demand profile OP1, the covariance term is
positive and yet P upper_pe(A,B) is better than the pfd of the better version.

• the bounds may or may not be tight. The pair (4,5) is an example of very loose bounds -
Pupper_pe(4,5) is several orders of magnitude greater than Psub-ind_pe(4,5). This is not very
good news for the assessor of the joint pfd. The uncertainty about this probability should
be reduced using other methods or at the expense of further V&V if Pupper_pe(4,5) is not
satisfactory. The second pair (7,11) is an example of very tight bounds: the ratio of
Pupper_pe(7,11) and Psub-ind_pe(7,11) is less than 4.

The results shown in Tables 5-7 are under the demand profile OP1. The effect of the demand
profile on the bounds is summarised in Table 8.

Table 8. Effect of demand profiles on the joint pfds
Pair Ppe(4) Ppe(5) covpe(SA,SB) Ppe(4)Ppe(5) min(Ppe(4),Ppe(5)) Psub-ind_pe(4,5) Pupper_pe(4,5)

OP1 9.34.10-7 3.73.10-8 5.21.10-13 3.48.10-14 3.73.10-8 5.56.10-13 3.73.10-8

(4,5) OP2 8.59.10-5 1.49.10-6 -1.1.10-10 1.28.10-10 1.49.10-6 2.22.10-11 1.49.10-6

OP3 1.72.10-4 1.19.10-6 -1.9.10-10 2.05.10-10 1.19.10-6 1.78.10-11 1.19.10-6

Ppe(7) Ppe(11) covpe(SA,SB) Ppe(7)Ppe(11) min(Ppe(7),Ppe(11)) Psub-ind_pe(7,11) Pupper_pe(7,11)

OP1 2.66.10-4 1.99.10-4 4.16.10-5 5.28.10-8 1.99.10-4 4.17.10-5 1.45.10-4

(7,11) OP2 2.66.10-2 1.50.10-2 3.77.10-3 3.98.10-4 1.50.10-2 4.17.10-3 1.45.10-2

OP3 6.55.10-2 4.70.10-2 1.02.10-2 3.08.10-3 4.70.10-2 1.33.10-2 4.60.10-2

Ppe(11) Ppe(18) covpe(SA,SB) Ppe(11)Ppe(18) min(Ppe(11),Ppe(18)) Psub-ind_pe(11,18) Pupper_pe(11,18)

OP1 1.99.10-4 1.78.10-4 2.33.10-8 3.53.10-8 1.78.10-4 5.87.10-8 5.25.10-5

(11,18) OP2 1.50.10-2 4.49.10-4 -2.2.10-6 6.74.10-6 4.49.10-4 4.52.10-6 3.77.10-4

OP3 4.70.10-2 4.24.10-4 -6.5.10-6 1.99.10-5 4.24.10-4 1.34.10-5 3.81.10-4

The demand profile does affect the probability of failure of both versions and pairs. We see
dramatic change of the bounds. With the first pair, both Psub-ind_pe(4,5) and Pupper_pe(4,5) vary
together, by almost two orders of magnitude. Thus the bounds remain loose for all three
demand profiles. This is due to the fact that version 5 failed in a single subdomain and
therefore both bounds are proportional to the probability of a demand from that single
subdomain.
The demand profile changes the bounds on the joint pfd of pairs (7,11) and (11,18) too. The
effect of the profile on the tightness of the bounds is different, however, for these two pairs.
The bounds for (7,11) remain tight: the ratio of Pupper_pe(7,11) and Psub-ind_pe(7,11) stays
approximately 3.5 despite the fact that the bounds change by two orders of magnitude. With
the pair (11,18), the effect of the demand profile on the bounds is different: while under OP1
the bounds are very loose under OP3 they become very tight (OP2 being in between with
bounds moderately tight).
The third pair, (11,18), is particularly interesting because under OP2 and OP3 the covariance
term becomes negative and Psub-ind_pe(11,18) becomes lower than the product Ppe(11)Ppe(18).
Thus, assuming marginal independence between failures is not necessarily an optimistic
assumption.
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5.2. Application using confidence bounds

We have used point estimates of the various probabilities of failure in subdomains, P(A|Si),
P(B|Si), to derive a point estimate for the joint pfd of a 2-version system. Point estimates may
be unsatisfactory if there is great uncertainty about the true values of the estimated measures.
So, we now apply the same procedure as in Section 5.1, but using one-sided confidence
bounds on the probabilities of failure of each version in each of the subdomains. For each
subdomain, we compute Bayesian bounds on the pfd of versions based on uniform priors, as
described in [3], [21]3. We use the notation P99%(A|Si)  for a 99% confidence upper bound
(i.e., such that the probability of the true measure being smaller is 99%), and P1%(A|Si)  for a
99% confidence lower bound (i.e., such that the probability of the true measure being smaller
is 1%). The derived measures based on these bounds will be denoted with the same
subscripts, e.g.  Psub-ind99%(A,B).

Table 9. Upper bounds with 99% confidence
State, Si P99%(4|Si) P99%(5|Si) P99%(7|Si) P99%(11|Si) P99%(18|Si)

S0,0 1.49.10-5 1.49.10-5 1.49.10-5 8.22.10-5 0.000234

S0,1 6.27.10-5 4.95.10-5 7.49.10-5 0.001585 0.001707

S1,0 8.93.10-5 3.54.10-5 3.54.10-5 0.000255 0.000186

S1,1 0.000694 4.55.10-5 0.124608 0.001844 0.00074

S2,0 0.000183 4.49.10-5 0.001336 0.000235 0.000156

S2,1 0.000586 3.21.10-5 0.288701 0.293104 0.0004

The 99% Bayesian bound is substantially more conservative than the point estimate in cases
with zero or few observed failures (Table 10 shows some examples). The two are close
together, instead, if many failures were observed (this happens for instance with versions 11
and 18, in every subdomain).

Table 10. Version 5: estimates of the conditional pfd, P(5|Si).
P(5|S0,0) P(5|S0,1) P(5|S1,0) P(5|S1,1) P(5|S2,0) P(5|S2,1)

point estimate, Ppe(5|Si) 0 7.46.10-6 0 0 0 0

99% bound, P99%(5|Si) 1.49.10-5 4.95.10-5 3.54.10-5 4.55.10-5 4.49.10-5 3.21.10-5

In Section 4.4, we identified three possible situations for an assessor:
• the assessor seeks an upper bound, based on the failure statistics of the two versions, for

their probability of joint failure. Then he/she can use the Bayesian 99% confidence
bounds, P99%(A|Si) and P99%(B|Si), and calculate Pupper99%(A,B)4.  
Table 11 shows the calculation results, and compares Pupper99%(A,B) with Pupper_pe(A,B)
(last two columns). As expected, the former is more conservative, and substantially so for
the pair (4,5), for which few failures were observed.

                                                
3 We apply the inference procedure separately to the recorded behaviour of each version, to derive the version's pfd.  In some situations,
this would not be enough: failures (resp. proper operation) of one version would be evidence about the "difficulty" of the function required,
and thus affect our expectations about the reliability of the other version. With the Bayesian approach, this more complex analysis is
feasible; however it is beyond the scope of this paper.
4 The probability of Pupper99%(A,B) being greater than the true value of Pupper(A,B) could only be computed knowing the joint distributions
of all the 12 parameters P(A|Si), P(B|Si). A conservative statement, though, is that it is at least 88%, since 12% is the maximum possible

probability of at least one of the 12 parameters being greater than the corresponding 99% Bayesian confidence bound, which in turn is a

necessary condition for Pupper99%(A,B) to be greater than the true Pupper(A,B).
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Table 11. Upper bounds on joint pfd using Bayesian upper bounds on version pfds
Pair P99%(4) P99%(5) min(P99%(4),P99%(5)) Pupper99%(4,5) Pupper_pe(4,5)

OP1 1.64.10-5 1.52.10-5 1.52.10-5 1.52.10-5 3.73.10-8

(4,5) OP2 1.44.10-4 3.13.10-5 3.13.10-5 3.13.10-5 1.49.10-6

OP3 2.61.10-4 3.62.10-5 3.62.10-5 3.62.10-5 1.19.10-6

P99%(7) P99%(11) min(P99%(7),P99%(11)) Pupper99%(7,11) Pupper_pe(7,11)

OP1 2.85.10-4 2.39.10-4 2.39.10-4 1.62.10-4 1.45.10-4

(7,11) OP2 2.70.10-2 1.53.10-2 1.53.10-2 1.47.10-2 1.45.10-2

OP3 6.63.10-2 4.76.10-2 4.76.10-2 4.65.10-2 4.60.10-2

P99%(11) P99%(18) min(P99%(11),P99%(18)) Pupper99%(11,18) Pupper_pe(11,18)

OP1 2.39.10-4 2.42.10-4 2.39.10-4 9.09.10-5 5.25.10-5

(11,18) OP2 1.53.10-2 5.74.10-4 5.74.10-4 4.89.10-4 3.77.10-4

OP3 4.76.10-2 5.57.10-4 5.57.10-4 5.07.10-4 3.81.10-4

• the assessor wishes to use the statistics to obtain a lower bound  on the joint pfd, to use as
a claim limit. If, for instance, the assessor computes a 99% lower bound on the true
P(A|Si) and P(B|Si), and from these derives an estimate  Psub-ind1%(A,B), with probability at
least 0.88 the calculated Psub-ind1%(A,B) will be lower than the “true” lower bound Psub–

ind(A,B). This will give strong reasons for rejecting any claim of joint pfd lower than the
calculated Psub-ind1%(A,B).
Table 12 shows the 99% lower bounds on the conditional pfds of the chosen versions,
P1%(A|Si).

Table 12. Lower bounds with 99% confidence
State, Si P1%(4|Si) P1%(5|Si) P1%(7|Si) P1%(11|Si) P1%(18|Si)

S0,0 3.25.10-8 3.25.10-8 3.25.10-8 2.42.10-5 0.000124

S0,1 3.25.10-6 1.11.10-6 6.14.10-6 0.00112 0.001223

S1,0 9.84.10-6 7.73.10-8 7.73.10-8 9.1.10-5 5.22.10-5

S1,1 0.000363 9.94.10-8 7.73.10-8 0.00127 0.000396

S2,0 4.03.10-5 9.8.10-8 0.000858 6.62.10-5 2.83.10-5

S2,1 0.000327 7.10-8 0.283152 0.287529 0.000192

The calculated Psub-ind1%(A,B) for the selected pairs of versions are shown in Table 13
together with the lower bounds Psub-ind_pe(A,B).

Table 13. Lower bounds on joint pfd using Bayesian lower bounds on version pfds
Pair P1%(4) P1%(5) cov1%(SA,SB) P1%(4)P1%(5) Psub-ind1%(4,5) Psub-ind_pe(4,5)

OP1 6.24.10-7 3.81.10-8 4.7.10-14 2.38.10-14 7.08.10-14 5.56.10-13

(4,5) OP2 5.73.10-5 2.68.10-7 -9.5.10-12 1.54.10-11 5.82.10-12 2.22.10-11

OP3 1.19.10-4 2.39.10-7 -1.8.10-11 2.84.10-11 1.08.10-11 1.78.10-11

P1%(7) P1%(11) cov1%(SA,SB) P1%(7)P1%(11) Psub-ind1%(7,11) Psub-ind_pe(7,11)

OP1 2.62.10-4 1.75.10-4 4.08.10-5 4.58.10-8 4.09.10-5 4.17.10-5

(7,11) OP2 2.62.10-2 1.48.10-2 0.0037 3.86.10-4 4.09.10-3 4.17.10-3

OP3 6.46.10-2 4.64.10-2 1.01.10-2 3.00.10-3 1.31.10-2 1.33.10-2

P1%(11) P1%(18) cov1%(SA,SB) P1%(11)P1%(18) Psub-ind1%(11,18) Psub-ind_pe(11,18)

OP1 1.75.10-4 1.3.10-4 1.53.10-8 2.27.10-8 3.8.10-8 5.87.10-8

(11,18) OP2 1.48.10-2 3.55.10-4 3.9.10-6 5.24.10-6 9.15.10-6 4.521.10-6

OP3 4.64.10-2 3.27.10-4 -6.1.10-6 1.52.10-5 9.15.10-6 1.34.10-5

Not surprisingly, the lower bounds Psub-ind1%(A,B) are more optimistic than the
corresponding Psub-ind_pe(A,B).

• last, the assessor may seek tight bounds on the true probability of joint failure. Table 14
compares the intervals obtained with the 99% upper and lower Bayesian confidence
bounds with those obtained from the point estimates in the previous section.
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Table 14. Intervals for joint pfd: point estimates vs. Bayesian bounds
Intervals based on point estimates Intervals based on Bayesian bounds

Pair OP Psub-ind_pe(4,5) Pupper_pe(4,5) Psub-ind1%(4,5) Pupper99%(4,5)

OP1 5.56.10-13 3.73.10-8 7.08.10-14 1.52.10-5

(4,5) OP2 2.22.10-11 1.49.10-6 5.82.10-12 3.13.10-5

OP3 1.78.10-11 1.19.10-6 1.08.10-11 3.62.10-5

Psub-ind_pe(7,11) Pupper_pe(7,11) Psub-ind1%(7,11) Pupper99%(7,11)

OP1 4.17.10-5 1.45.10-4 4.09.10-5 1.62.10-4

(7,11) OP2 4.17.10-3 1.45.10-2 4.09.10-3 1.47.10-2

OP3 1.33.10-2 4.60.10-2 1.31.10-2 4.65.10-2

Psub-ind_pe(11,18) Pupper_pe(11,18) Psub-ind1%(11,18) Pupper99%(11,18)

OP1 5.87.10-8 5.25.10-5 3.8.10-8 9.09.10-5

(11,18) OP2 4.52.10-6 3.77.10-4 9.15.10-6 4.89.10-4

OP3 1.34.10-5 3.81.10-4 9.15.10-6 5.07.10-4

The intervals computed from the Bayesian bounds are clearly wider. Again, this is much
more pronounced for the pair (4,5): having observed fewer failures means greater uncertainty
on each of the estimates for P(4|Si) and P(5|Si).
Note that assessors may well require different confidence levels from the calculations used in
the three cases, although we have arbitrarily used the same level (99%) for all three. With
critical software, a conservative bias is usually desired. So, in the first scenario it would make
sense to require high confidence levels (a high probability that the statistically calculated
bounds are actually worse than the true values). In the second scenario, on the other hand, a
calculation showing Psub-ind to be greater than the claimed pfd with a probability of, say,
70% or even just 50% would often be enough to prompt a close re-examination of the
arguments supporting the claim.

6. Discussion
We have studied models of failure behaviour of two-version software systems, essentially
extending the “varying difficulty” assumption first introduced by Eckhardt and Lee. Our main
concern has been to help with the problem of evaluating a specific multiple-version system,
as opposed to an “average” system. We have modified the previously published models to
use the actual failure points in the produced versions rather than the “difficulty function”
which describes the probability that a demand could be a failure point.  We have used
parameters describing aggregates of demands, rather than individual demands. The resulting
model has both some value in terms of insight into the problem and (which is new) practical
applicability: we have shown how to state lower and upper bounds on system pfd for a
specific two-version system.
We will first discuss the mathematical aspects of our results, and then their practical uses.  In
mathematical terms, we notice that there is no substantial difference between models based
on subdomains and the previous (EL and LM) models based on individual demands. The
only difference is in the level of detail with which we model the demand space. The practical
difference, of course, is that there is no hope of practical use for individual-point models, but
there is for our subdomain- or mode-based models.
Our model operates at a coarser level of presentation than the EL and LM ones. We do not
know details about the versions’ behaviours on individual demands inside each subdomain.
The correlation between failures of two versions on demands from a certain subdomain
(“intra-subdomain” dependence) can take any value: zero, positive or negative. The EL
model suggests that intra-subdomain independence is an optimistic assumption. On this
basis, one can establish a lower bound on the probability of system failure. Even if the intra-
subdomain dependence varies between subdomains, what matters is the mean over the
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subdomains of a measure of this dependence, the last term in equations (5) and (8). It is
plausible that this will be positive, so that (9) gives a true lower bound on the system pfd, but
if it is not we would err on the conservative side - we are not overestimating the reliability of
the system.
From the viewpoint of practical application, we have discussed various cases in Section 4.4.
Our bounds are only useful if they are substantially narrower than those obtainable by other
means. In this sense, the lower bound is useful (i.e., higher than alternative known lower
bounds) if the above-mentioned mean measure of intra-domain dependence can be assumed
positive. This would be the reasonable position for a conservative assessor.
Our upper bound based on subdomains may not be useful, if it coincides with the pfd of the
more reliable version, (min(P(A), P(B))). However, in some cases it is substantially smaller
than (min(P(A), P(B))), and therefore very useful. These cases cannot be predicted in advance
of the actual measurements: we cannot use this upper bound in the safety case for a two-
channel system that is yet to be built; but if we are going to build a two-channel system from
two pre-existing systems for which (separate) operational experience already exists, this
upper bound may be very useful, under the conditions listed in Section 4.4 on the similarity
between the old and new operating environments. If the two versions were very reliable (no
failures observed), the only reasonable pfd estimates for the versions would be upper bounds.
These can be used as point estimates, which is questionable, but one can also exploit the
possibility of deriving a pessimistic upper bound for system pfd as shown in section 5.2.
It is also worth noting that one can also apply our method from section 4 with estimates (of
the conditional probabilities of failure of versions in subdomains) which are not based on
statistical testing but on other evidence, e.g. from inspection or formal proof.
In conclusion, our results do improve the ability of assessors and regulators to assess a
particular diverse-channel system using information specific to that system.
We see two main questions which remain open.
First, in practice we usually deal with very reliable versions (only a few failures are likely to
be detected during the testing) and thus inference about the pfd of channels is difficult. The
natural approach is Bayesian, which allows us to consider explicitly dependencies between
one’s uncertainties about the pfds of the two versions: failures (respectively proper operation)
of one version would affect our expectations about the reliability of the other version.
The other problem, common to all cases of re-use of software with an existing record of
operation, is how to take account of differences between the demand profiles under which the
previous statistics were collected and the demand profile in the intended operational
environment.
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