

AMD Alchemy[™]Au1500[™] Processor Data Book

March 2006 Publication ID: 30361D

© 2006 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD's Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

AMD's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.

Trademarks

AMD, the AMD Arrow logo, and combinations thereof, and AMD Alchemy and Au1550 are trademarks of Advanced Micro Devices, Inc.

MIPS32 is a trademark of MIPS Technologies, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the United States and/or other jurisdictions.

SafeNet and CGX are trademarks of SafeNet, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

Contents

List	of Figure	es
List	of Table	s 9
1.0	1.1 Pr	ew 13 oduct Description 13 vatures 14
2.0	2.1 Cc 2.2 Ca 2.3 Wi 2.4 Vir 2.5 Ex 2.6 MI 2.7 Cc 2.8 Sy	15 ore 15 aches 17 rite Buffer 23 rtual Memory 26 acceptions 27 PS32™ Instruction Set 28 oprocessor 0 30 rstem Bus (SBUS) 41 TAG 42
3.0	3.1 SE	y Controllers43DRAM Memory Controller44atic Bus Controller53
4.0	4.1 PC 4.2 PC	Bus Controller 73 CI Memory Map 73 CI Arbiter 81 plementation Specifics 81
5.0	5.1 DN 5.2 Us	ontroller87MA Configuration Registers87sing GPIO as External DMA Requests (DMA_REQn)92ogramming Considerations93
6.0	6.1 Int 6.2 Re 6.3 Ha	pt Controller95verrupt Controller Sources95egister Definitions97ardware Considerations100ogramming Considerations100

Α	M	D	Л
---	---	---	---

7.0	Peripheral Devices	101
	7.1 AC97 Controller	102
	7.2 USB Host Controller	107
	7.3 USB Device Controller	109
	7.4 Ethernet MAC Controller	119
	7.5 UART Interfaces	140
	7.6 Secondary General Purpose I/O	149
8.0	System Control	153
	8.1 Clocks	
	8.2 Time of Year Clock and Real Time Clock	
	8.3 Primary General Purpose I/O and Pin Functionality	
	8.4 Power Management	
9.0	Power-up, Reset and Boot	180
5.0	•	
	9.1 Power-up Sequence	
	9.2 Reset	
	9.3 Boot	
10.0	EJTAG Implementation	184
	10.1 EJTAG Instructions	
	10.2 Debug Exceptions	
	10.3 Coprocessor 0 Registers	
	10.4 EJTAG Memory Range	188
11.0	Signal Descriptions	200
12 0	Electrical and Thermal Specifications	216
12.0	12.1 Absolute Maximum Ratings	
	12.1 Absolute Maximum Haungs	
	12.2 Ondershoot	
	12.4 Thermal Characteristics	
	12.5 DC Parameters	
	12.6 AC Parameters	
	12.7 Power-up and Reset Timing	
	12.8 Asynchronous Signals	
	12.9 External Clock Specifications	
	12.10 Crystal Specifications	
	12.11 System Design Considerations	
12 0	, ,	
13.0	Packaging, Pin Assignments, and Ordering Information 13.1 Packaging	
	13.1 Packaging	
	•	
	13.3 Ordering Information	

List of Figures

Figure 1-1.	Block Diagram	
Figure 2-1.	Au1 Core Diagram	
Figure 2-2.	Cache Organization	
Figure 2-3.	Au1 Write Buffer	
Figure 2-4.	SBUS Arbitration	
Figure 3-1.	SDRAM Typical Read Timing	
Figure 3-2.	SDRAM Typical Write Timing	
Figure 3-3.	SDRAM Refresh Timing	
Figure 3-4.	Static Memory Read Timing (Single Read Followed by Burst)	
Figure 3-5.	Static Memory Read EWAIT# Timing	
Figure 3-6.	Static Memory Write Timing	
Figure 3-7.	Static Memory Write EWAIT# Timing	
Figure 3-8.	One Card PCMCIA Interface	
Figure 3-9.	Two Card PCMCIA Interface	
Figure 3-10.	PCMCIA Memory Read Timing	
Figure 3-11.	PCMCIA Memory Read PWAIT# Timing	. 65
Figure 3-12.	PCMCIA Memory Write Timing	
Figure 3-13.	PCMCIA Memory Write PWAIT# Timing	
Figure 3-14.	PCMCIA I/O Read Timing	
Figure 3-15.	PCMCIA I/O Read PWAIT# Timing	. 67
Figure 3-16.	PCMCIA I/O Write Timing	
Figure 3-17.	PCMCIA I/O Write PWAIT# Timing	. 67
Figure 3-18.	LCD Controller Timing	. 69
Figure 3-19.	LCD Read LWAIT# Timing	. 69
Figure 3-20.	LCD Write LWAIT# Timing	. 69
Figure 3-21.	16-Bit Chip Select Little-Endian Data Format (Default)	. 70
Figure 3-22.	Big-Endian Au1 Core and Little-Endian 16-Bit Chip Select	.71
Figure 3-23.	Big-Endian Au1 Core and Big-Endian 16-Bit Chip Select	. 72
Figure 6-1.	Interrupt Controller Logic	. 97
Figure 7-1.	Endpoint Configuration Data Structure	111
Figure 7-2.	Logic for Interrupt Source Number 31 on Interrupt Controller 1	151
Figure 8-1.	Clocking Topology	
Figure 8-2.	Frequency Generator and Clock Source Block Diagram	156
Figure 8-3.	Frequency Generator and Clock Source Mapping	156
Figure 8-4.	TOY and RTC Block Diagram	163
Figure 8-5.	GPIO Logic Diagram	169
Figure 8-6.	Sleep and Idle Flow Diagram	172
Figure 8-7.	Sleep Sequence	174
Figure 9-1.	Power-up Sequence	180
Figure 9-2.	Hardware Reset Sequence	
Figure 9-3.	Runtime Reset Sequence	
Figure 11-1.	External Signals	
Figure 12-1.	Voltage Undershoot Tolerances for Input and I/O Pins	
Figure 12-2.	Voltage Overshoot Tolerances for Input and I/O Pins	
Figure 12-3.	SDRĂM Timing	
-	-	

Figure 12-4.	Static RAM, I/O Device and Flash Timing	222
Figure 12-5.	PCMCIA Host Adapter Timing	
•		
Figure 12-6.	LCD Interface Timing	. 224
Figure 12-7.	PCI Timing	. 225
Figure 12-8.	GPIO Interrupt Timing	. 226
Figure 12-9.	Ethernet MII Timing Diagram	. 227
Figure 12-10.	AC-Link Timing Diagram	. 228
Figure 12-11.	EJTAG Timing Diagram	. 229
Figure 12-12.	Power-up Sequence	. 230
Figure 12-13.	Hardware Reset Sequence	. 231
Figure 12-14.	Runtime Reset Sequence	. 232
Figure 13-1.	Package Dimensions	. 238
Figure 13-2.	Connection Diagram—Top View	
Figure 13-3.	OPN Example	. 254

List of Tables

Table 2-1.	Cache Line Allocation Behavior	. 18
Table 2-2.	Cache Operations	
Table 2-3.	Cache Coherency Attributes (CCA)	
Table 2-4.	Values for Page Size and PageMask Register	
Table 2-5.	Cause[ExcCode] Encodings	
Table 2-6.	CPU Interrupt Sources	
Table 2-7.	Coprocessor 0 Register Definitions	
Table 3-1.	Memory Controller Block Base Address	
Table 3-2.	SDRAM Configuration Registers	
Table 3-3.	SDRAM Signals	
Table 3-4.	Static Bus Controller Configuration Registers	
Table 3-5.	Device Type Encoding	
Table 3-6.	Burst Size Mapping	
Table 3-7.	Actual Number of Clocks for Timing Parameters (Except Tcsh)	
Table 3-8.	Actual Number of Clocks for Tcsh	
Table 3-9.	Static RAM, I/O Device and Flash Control Signals	. 60
Table 3-10.	PCMCIA Memory Mapping	. 62
Table 3-11.	PCMCIA Interface Signals	. 62
Table 3-12.	LCD Controller Interface Signals	. 68
Table 4-1.	PCI Memory Map	
Table 4-2.	PCI Bus Controller Configuration Registers	.74
Table 4-3.	PCI Arbiter Priority Configuration	
Table 4-4.	PCI Error Conditions on pci_config[27:24]	. 83
Table 4-5.	Data Bus Swapping	. 84
Table 4-6.	Swapping Configurations	. 84
Table 4-7.	Supported Endian/Swapping Modes	. 85
Table 4-8.	PCI Bus Support Signals	
Table 5-1.	DMA Channel Base Addresses	. 87
Table 5-2.	DMA Channel Configuration Registers	
Table 5-3.	Peripheral Addresses and Selectors	
Table 6-1.	Interrupt Controller Connections to the CPU	. 95
Table 6-2.	Interrupt Sources	
Table 6-3.	Interrupt Controller Base Addresses	. 97
Table 6-4.	Interrupt Controller Registers	
Table 6-5.	Interrupt Configuration Register Function	
Table 7-1.	AC97 Base Address	102
Table 7-2.	AC97 Registers	102
Table 7-3.	AC-Link Signals	
Table 7-4.	USB Host Base Address	107
Table 7-5.	USB Host Signals	
Table 7-6.	USB Device Base Address	109
Table 7-7.	USB Device Register Block	
Table 7-8.	Endpoint Configuration Field Descriptions	
Table 7-9.	Example Endpoint Configuration Data Block	
Table 7-10.	USB Device Signals	118

Table 7-11.	Ethernet Base Addresses	120
Table 7-12.	MAC Register Descriptions	
Table 7-13.	MAC DMA Entries	
Table 7-14.	MAC DMA Receive Entry Registers	
Table 7-15.	MAC DMA Transmit Entry Registers	
Table 7-16.	MAC DMA Block Indexed Address Bit Definitions	
Table 7-17.	Ethernet Signals	
Table 7-18.	UART Register Base Addresses	
Table 7-19.	UART Registers	
Table 7-20.	Interrupt Cause Encoding	
Table 7-21.		
Table 7-22.	GPIO2 Register Base Addresses	
Table 7-23.	GPIO2 Registers	
Table 8-1.	System Control Block Base Address	
Table 8-2.	Clock Generation Registers	
Table 8-3.	Clock Mux Input Select Values	
Table 8-4.	Programmable Counter Registers	
Table 8-5.	GPIO Control Registers	
Table 8-6.	Peripheral Power Management	
Table 8-7.	Power Management Registers	
Table 9-1.	ROMSEL and ROMSIZE Boot Device	
Table 10-1.	Coprocessor 0 Registers for EJTAG	
Table 10-2.	EJTAG Memory Mapped Registers at 0xFF300000	
Table 10-3.	EJTAG Instruction Register Values	
Table 10-4.	EJTAG Signals	
Table 11-1.	Signal Type Abbreviations for Table 11-3	
Table 11-2.	Signal State Abbreviations for Table 11-3	
Table 11-3.	Signal Description	
Table 12-1.	Absolute Maximum Ratings	
Table 12-2.	Thermal Characteristics with Changing Air Flow Conditions	
Table 12-3.	DC Parameters	
Table 12-4.	Voltage and Power Parameters for 333 MHz Part	
Table 12-5.	Voltage and Power Parameters for 400 MHz Part	
Table 12-6.	Voltage and Power Parameters for 500 MHz Part	
Table 12-7.	SDRAM Controller Interface	
Table 12-8.	Static RAM, I/O Device and Flash Timing	
Table 12-9.	PCMCIA Timing	
Table 12-10.	LCD Timing	
Table 12-11.	PCI Controller Interface	
Table 12-12.	GPIO Timing for Interrupts	
Table 12-13.	Ethernet MII Timing	
Table 12-14.	AC-Link Interface Timing	
Table 12-15.	EJTAG Interface Timing	
Table 12-16.	Power-up Timing Parameters	
Table 12-17.	Hardware Reset Timing Parameters	
Table 12-18.	Runtime Reset Timing Parameters	
Table 12-19.	External Clock EXTCLK[1:0] Specifications	
Table 12-20.	12 MHz Crystal Specification	
Table 12-21.	32.768 KHz Crystal Specification	
Table 13-1. Table 13-2.	Pin Assignment — Sorted by Pin Number	
Table 13-2. Table 13-3.	Pin Assignment — Sorted Alphabetically by Default Signal	
Table 13-3. Table 13-4.	Pin Assignment — Alternate Signals Sorted Alphabetically	
Table 13-4. Table A-1.	Valid OPN Combinations Basic Au1500 [™] Processor Physical Address Memory Map	
Table A-1. Table A-2.	System Bus Devices Physical Address Memory Map	
	Cystem Dus Devices i hysical Address Memory Map	200

List of Tables	30361D	
Table A-3.	Peripheral Bus Devices Physical Address Memory Map	
Table A-4.	Device Memory Map	
Table A-5.	Revision History	
Table A-6.	Edits to Current Revision	

The AMD Alchemy[™] Au1500[™] processor is a high-performance, low-power, high integration system-on-a-chip (SOC) designed for use in the Internet edge device market. These devices are customer premise equipment products, including both wireless and wired Internet access devices and portable compute devices, as well as Internet infrastructure products such as routers and line cards. Devices based on the Au1500 are capable of processing high performance digital video and data streams in either battery or line-powered environments. The Au1500 processor contains a PCI controller, providing a flexible interface to external peripherals.

1.1 Product Description

The Au1500 processor is a complete SOC based on the MIPS32[™] instruction set. Designed for maximum performance at low power, the processor runs up to 500 MHz. Power dissipation is less than 700 mW for the 400 MHz version. Highly integrated with on-chip memory controllers and Internet access peripherals, the Au1500 processor runs a variety of operating systems, including Windows® CE, Linux, and VxWorks. Moreover, the integration of peripherals with the unique, high performance, MIPS-compatible core provides low system cost, small form factor, low system power requirement, simple designs at multiple performance points and thus, short design cycles.

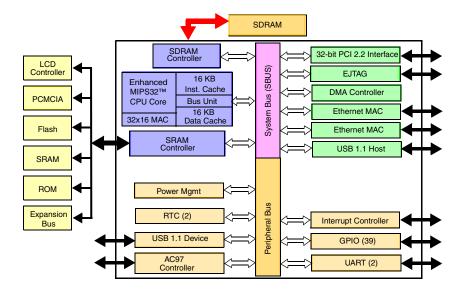


Figure 1-1. Block Diagram

1.2 Features

High Speed MIPS CPU Core

- 333, 400, or 500 MHz
- MIPS32 instruction set 32-bit architecture
- 16 KB instruction and 16 KB data caches
- High speed multiply-accumulate (MAC) and divide unit
- 1.5V core @ 333 MHz and 400 MHz, 1.8V core @ 500 MHz
- 3.3V I/O
- Pipeline:
 - Scalar 5-stage pipeline
 - Load/store adder in I-stage (instr decode)
 - Scalar branch techniques optimized: Pipelined register file access in fetch stage
 - Zero penalty branch
- Multiply-Accumulate (MAC) and Divide Unit:
 - Max issue rate of one 32x16 MAC per clock
 - Max issue rate of one 32x32 MAC per every other clock
 - Operates in parallel to CPU pipeline
 - Executes all integer multiply and divide instructions
 - 32 x 16-bit MAC hardware

Highly-Integrated System Peripherals

- GPIOs (39 total, 22 dedicated for system use)
- Two 10/100 Ethernet MAC controllers
- USB 1.1 device and host controllers
- Two UARTs
- AC97 controller
- PCI interface
- PCMCIA interface

High-Bandwidth Memory Buses

- 100 MHz SDRAM controller (@400 MHz)
- SRAM/Flash EPROM controller

Caches

- 16 KB non-blocking data cache
- 16 KB instruction cache
- Instruction and data caches are 4-way set associative

- Write-back with read-allocate
- Cache Management Features:
 - Programmable allocation policy
 - Line locking
- Prefetch instructions (instruction and data)
- High speed access to on-chip buses

MMU

- Instruction and data watch registers for software breakpoints
- Separate interrupt exception vector
- TLB Features:
 - 32 dual-entry fully-associative
 - Variable page sizes: 4 KB to 16 MB
 - 4-entry ITB

Low System Power

- Core / Power:
 - 333 MHz / 400 mW
 - 400 MHz/ 700 mW
 - 500 MHz/ 1.2 W
- Power-Saving Modes:
 - Idle
 - Sleep
- Pseudo-static design to 0 Hz

Package

■ 424 BGA (Ball Grid Array), 19x19 mm

Operating System Support

- Microsoft[®] Windows[®] CE
- Linux
- VxWorks

Development Tool Support

- Complete MIPS32TM Compatible Tool Set
- Numerous 3rd-Party Compilers, Assemblers and Debuggers

30361D

The Au1500 CPU core is a unique implementation of the MIPS32 instruction set architecture (ISA) designed for high frequency and low power. This chapter provides information on the implementation details of this MIPS32 compliant core.

The full description of the MIPS32 architecture is provided in the "MIPS32TM Architecture For Programmers" documentation, available from MIPS Technologies, Inc. The information contained in this chapter supplements the MIPS32 architecture documentation.

2.1 Core

The Au1500 CPU core (Au1) is a high performance, low power implementation of the MIPS32 architecture. Figure 2-1 shows a block diagram of the core.

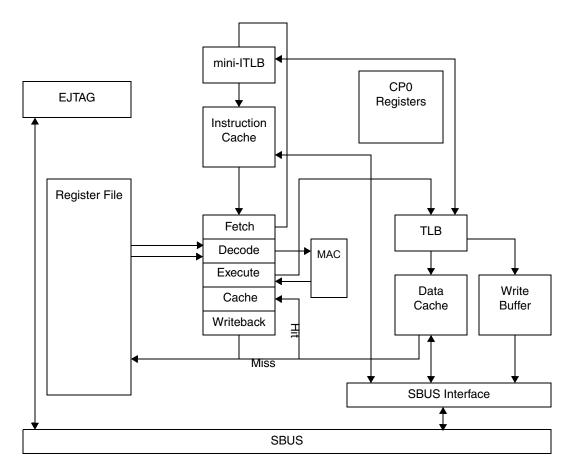


Figure 2-1. Au1 Core Diagram

The Au1 core contains a five-stage pipeline. All stages complete in a single cycle when data is present. All pipeline hazards and dependencies are enforced by hardware interlocks so that any sequence of instructions is guaranteed to execute correctly. Therefore, it is not necessary to pad legacy MIPS hazards (such as load delay slots and coprocessor accesses) with NOPs.

The general purpose register file has two read ports and one write port. The write port is shared with data cache loads and the pipeline Writeback stage.

2.1.1 Fetch Stage

The Fetch stage retrieves the next instruction from the instruction cache, where it is passed to the Decode stage. If the instruction is not present in the instruction cache, then the fetch address is forwarded to the virtual memory unit in order to fulfill the request. Instruction fetch stalls until the next instruction is available.

2.1.2 Decode Stage

The Decode stage prepares the pipeline for executing the instruction. In the Decode stage, the following occur in parallel:

- The instruction is decoded.
- Control for the instruction is generated.
- Register data is read.
- The branch target address is generated.
- The load/store address is generated.

Instructions stall in the Decode stage if dependent data or resources are not yet available. At the end of the Decode stage a new program counter value is sent to the Fetch stage for the next instruction fetch cycle.

2.1.3 Execute Stage

In the Execute stage, instructions that do not access memory are processed in hardware (shifters, adders, logical, comparators, etc.). Most instructions complete in a single cycle, but a few require multiple cycles (CLO, CLZ, MUL).

The virtual address calculation begins in the Decode stage so that physical address calculation can complete in the Execute stage, in time to initiate the access to the data cache in the Execute stage. If the physical address misses in the TLB, a TLB exception is posted.

Multiplies and divides are forwarded to the Multiply Accumulate unit. These instructions require multiple cycles to execute and operate mostly independent of the main five-stage pipeline.

All exception conditions (arithmetic, TLB, interrupt, etc.) are posted by the end of the Execute stage so that exceptions can be signalled in the Cache stage.

2.1.4 Cache Stage

In the Cache stage, load and store accesses complete.

Loads that hit in the data cache obtain the data in the Cache stage. If a load misses in the data cache, or is to a non-cacheable location, then the request is sent to the System Bus (SBUS) to be fulfilled. Load data is forwarded to dependent instructions in the pipeline.

Stores that hit in the data cache are written into the cache array. If a store misses in the data cache, or is to a non-cacheable location, then the store is sent to the write buffer.

If any exceptions are posted, an exception is signaled and the Au1 core is directed to fetch instructions at the appropriate exception vector address.

2.1.5 Writeback Stage

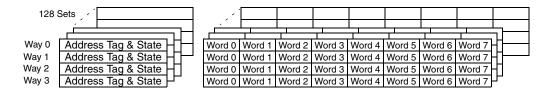
In the Writeback stage, results are posted to the general purpose register file, and forwarded to other stages as needed.

2.1.6 Multiply Accumulate Unit

The Multiply Accumulate unit (MAC) executes all multiply and divide instructions. The MAC is composed of a 32x16 bit pipelined array multiplier that supports early out detection, divide block, and the HI and LO registers used in calculations.

The MAC operates in parallel with the main five-stage pipeline. Instructions in the main pipeline that do not have dependencies on the MAC calculations execute simultaneously with instructions in the MAC unit.

A multiply calculation of 16x16 or 32x16 bits can complete in one cycle. The 32x16 bit multiply must have the signextended 16-bit value in register operand rt of the instruction.


32x32 bit multiplies may be started every other CPU cycle. The 32x32 multiplies will complete in two cycles if the results are written to the general purpose registers.

If the results are written to the HI/LO registers then three cycles are required for 16x16 and 32x16 bit multiplies. 32x32 bit multiplies that use HI/LO will complete in four cycles.

Divide instructions complete in a maximum of 35 cycles.

2.2 Caches

The Au1 core contains independent, on-chip 16KB instruction and data caches. As shown in Figure 2-2, each cache contains 128 sets and is four-way set associative with 32 bytes per way (cache line).

Figure 2-2. Cache Organization

A cache line is tagged with a 20-bit physical address, a lock bit, and a valid bit. Data cache lines also include coherency and dirty status bits. The physical address tag contains bits 31:12 of the physical address; as such, physical addresses in which bits 35:32 are non-zero must be mapped non-cacheable.

Cache Line State

Bit	31 3	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Physical Address Tag														D	S	L	V													

A cache line address is always 32-byte aligned. The cache is indexed with the lower, untranslated bits (bits 11:5) of the virtual address, allowing the virtual-to-physical address translation and the cache access to occur in parallel.

Cache Address Decode

Bit 31 30 29 28 27 26 25 24 23	22 21 20 19 18 17	16 15 14 13 1	2 11	10 9	87	6	5	4	3	2	1	0
Virtual/Physical Address					t Selec	t			Byte	e Se	lect	

2.2.1 Cache Line Replacement Policy

In general, the caches implement a least recently used (LRU) replacement policy. Each cache set maintains true LRU status bits (MRU, nMRU and LRU) to determine which cache line is selected for replacement. However, software can influence which cache line is replaced by marking memory pages as *streaming*, or by *locking* lines in the cache.

2.2.2 Cache Line Locking Support

The **CACHE** instruction is used to lock individual lines in the cache. A locked line is not subject to replacement. All four lines in a set can not be locked at once; at least one line is always available for replacement. To *unlock* individual cache lines use the **CACHE** instruction with a 'hit invalidate' command opcode. See Section 2.2.5 "Cache Management" on page 19 for further discussion of the **CACHE** instruction.

2.2.3 Cache Streaming Support

Streaming is typically characterized as the processing of a large amount of transient instructions and/or data. In traditional cache implementations (without explicit support for streaming), transient instructions and/or data quickly displace useful, recently used items in the cache. This yields poor utilization of the cache and results in poor system performance.

The Au1 caches explicitly support streaming by placing instructions and/or data marked as streaming into way 0 of the cache. This method ensures that streaming does not purge the cache(s) of useful, recently used items, while permitting transient instructions and/or data to be cached. The CCA bits in the TLB entry indicate if a page contains streaming instructions and/or data. In addition, the **PREF** instruction is available to software to allow data to be placed in the data cache in advance of its use.

2.2.4 Cache Line Allocation Behavior

When an instruction fetch misses in the instruction cache, or a data load misses in the data cache, a burst fill operation is performed to fill the cache line from memory. The cache line is selected by the following algorithm:

```
MRU is most recently used
nMRU is next most recently used
nLRU is next least recently used
LRU is least recently used
Cache Miss:
if (Streaming CCA=6) then Replacement = 0,
else if (LRU is !Valid or !Locked) then Replacement = LRU
else if (nLRU is !Valid or !Locked) then Replacement = nLRU
else if (nMRU is !Valid or !Locked) then Replacement = nMRU
else Replacement = MRU
Cache Hit:
new MRU = Hit Way
```

In short, the LRU selection is true LRU but with the following priorities:

- 1) Streaming: cache misses are forced to way 0.
- 2) Locking: cache misses follow policy above and set Lock bit.
- 3) Normal: true LRU replacement.

Table 2-1 summarizes cache line allocation for misses, as well as cache hit behavior. The table also shows how prefetching and cache locking affect the cache for hits and misses.

Operation	Hit	Miss					
NORMAL							
Data load, Instruction fetch	Read data from whichever cache line contains the address.	Allocate and fill cache line; clear Lock bit; return read data.					
Data store	Write data to whichever cache line contains the address.	Send to the write buffer.					
STREAMING (CCA=6)							
Data load, Instruction fetch	Read data from whichever cache line contains the address.	Allocate and fill cache line in Way 0; maintain Lock bit; return read data.					
Data store	Write data to whichever cache line contains the address.	Send to the write buffer.					
PREF (data prefetch instruction with 0x4 hint)	No action taken—data remains in cur- rent cache line.	Allocate and fill cache line in Way 0; maintain Lock bit.					
LOCKING							
CACHE 0x1D/0x1C (cache manage- ment instruction with Lock opcode)	Set Lock bit in whichever cache line contains the address.	Allocate and fill cache line; set Lock bit.					

Table 2-1. Ca	ache Line Allocatio	n Behavior
---------------	---------------------	------------

2.2.5 Cache Management

The caches are managed with the **CACHE** instruction. The effect of the **CACHE** instruction is immediately visible to subsequent data accesses. Table 2-2 shows the cache operations, including the opcode to direct the operation to either the instruction cache or data cache. (An "n/a" indicates that the operation is not applicable.)

Operation	CACHE[2018] Encoding	Opcode for Instruction Cache	Opcode for Data Cache
Index Invalidate	000	0x00	0x01 (with writeback)
Index Load Tag	001	0x04	0x05
Index Store Tag	010	0x08	0x09
Hit Invalidate	100	0x10	0x11
Fill	101	0x14	N/A
Hit Writeback and Invalidate	101	N/A	0x15
Hit Writeback	110	N/A	0x19
Fetch and Lock	111	0x1C	0x1D

Table 2-2. Cache Operations	Table 2	2-2. Ca	che Op	perations
-----------------------------	---------	---------	--------	-----------

These cache operations permit initialization, locking/unlocking and management of the caches.

2.2.6 Cache Coherency Attributes (CCA)

The cache coherency attributes (CCA) field in Config0[K0] and in the TLB determine the cache-ability of accesses to memory. Cached accesses (except CCA = 4) are performed critical-word-first to improve performance. The Au1 implements the following:

CCA	CCA (3 Bits)	Description
0, 1	00x	Reserved (undefined).
2	010	Uncached, non-mergeable, non-gatherable. Required by the MIPS32 architecture. In addition, data is not merged within the write buffer to achieve a truly uncached effect.
3	011	Cached, mergeable, gatherable.
4	100	Cached, mergeable, gatherable (word 0 first). Word 0 is always accessed first; that is, the cache line is accessed in word order (word 0, 17).
5	101	Cached, mergeable, gatherable.
6	110	Cached, mergeable, gatherable, streaming. Instructions and/or data are placed into way 0.
7	111	Uncached, mergeable, gatherable. Even though data is not cached, data stores sent to the write buffer are subject to merging and gathering in the write buffer.

Table 2-3. Cache Coherency Attributes (CCA)

2.2.7 Instruction Cache

The instruction cache is a 16 KB, four-way set associative cache. The instruction cache services instruction fetch requests from the Fetch stage of the pipeline.

An instruction cache line state consists of a 20-bit physical address tag, a lock bit (L) and a valid bit (V).

Instruction Cache line state

Bit 31 30 29 28 27 26 2	5 24 23 22 21	20 19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Physical Addres	ss Tag																		L	V

2.2.7.1 Instruction Cache Initialization and Invalidation

Out of reset, all instruction cache lines are invalidated; thus the instruction cache is ready for use.

To invalidate the instruction cache in software, a loop of index invalidate **CACHE** instructions for each of the lines in the cache invalidates the cache.

```
li t0,(16*1024) # Cache size
li t1,32 # Line size
li t2,0x80000000 # First KSEG0 address
addu t3,t0,t2 # terminate address of loop
loop:
    cache 0,0(t2) # Icache indexed invalidate tag
    addu t2,t1 # compute next address
    bne t2,t3,loop
    nop
```

2.2.7.2 Instruction Cache Line Fills

If an instruction fetch address hits in the instruction cache, the instruction word is returned to the Fetch stage. If the fetch address misses in the cache, and the address is cacheable, then the instruction cache performs a burst transfer from the memory subsystem to fill a cache line, and returns the instruction word to the Fetch stage.

The instruction cache line is selected by the replacement policy described in Section 2.2.1 "Cache Line Replacement Policy" on page 17.

2.2.7.3 Instruction Cache Coherency

The instruction cache does not maintain coherency with the data cache. Coherency between the instruction cache and the data cache is the responsibility of software. However, the data cache snoops during instruction cache line fills.

Maintaining coherency is important when loading programs into memory, creating exception vector tables, or for self-modifying code. In these circumstances, memory is updated with new instructions using store instructions which places the new instructions in the data cache, but not in the instruction cache (thus the instruction cache may contain old instructions).

To maintain coherency, software must use the **CACHE** instruction to invalidate the modified range of program addresses in the instruction cache. Because the data cache snoops during instruction cache line fills, it is not necessary to writeback the data cache prior to invalidating the instruction cache. An instruction fetch to the newly loaded/modified program correctly fetches the new instructions.

2.2.7.4 Instruction Cache Control

The cache-ability of instructions is controlled by three mechanisms:

- · Config0[K0] field
- The CCA bits in the TLB
- The CACHE instruction

The Config0[K0] field contains a cache coherency attribute (CCA) setting to control the cache-ability of KSEG0 region. At reset, this field defaults to CCA=3 (cacheable).

The CCA bits in the TLB entry control the cache-ability of the KUSEG, KSEG2, and KSEG3 regions. Each TLB entry specifies a CCA setting for the pages mapped by the TLB.

The **CACHE** instruction manages the caches, including the ability to lock lines in the cache. Valid instruction cache operations are the following:

- Index Invalidate
- Index Load Tag
- Index Store Tag
- Hit Invalidate
- Fill
- · Fetch and Lock

The effect of the **CACHE** instruction is visible to subsequent instructions not already in the pipeline. Instructions already in the fetch and decode stages of the pipeline are not affected by a cache operation on the instruction cache.

2.2.8 Data Cache

The data cache is a 16 KB four-way set associative write-back cache. Data cache accesses are distributed across the Execute and Cache pipeline stages.

A data cache line state consists the 20-bit physical address tag, a dirty bit (D), a coherency bit (S), a lock bit (L) and a valid bit (V).

Data cache line state

Bit 31 30 29 28 27 26 25	24 23 22 21 20 19 18 17 16 15	5 14 13 12 1 ⁻	1 10 9	87	65	4	3 2	1	0
	Physical Address Tag						DS	L	V

The data cache employs a read-allocate policy. Cache lines can be replaced on loads, but not on stores. Stores that miss in the data cache are forwarded to the write buffer.

The data cache supports hit-under-miss for one outstanding miss. If an access misses in the data cache, the data cache services the next access while the memory subsystem provides the data for the missed access. If the next access hits in the data cache, the data is available immediately; otherwise the cache stalls the access until the first access completes.

2.2.8.1 Data Cache Initialization and Invalidation

Out of reset, all data cache lines are invalidated; thus the data cache is ready for use.

To invalidate the data cache in software, a loop of indexed writeback invalidate **CACHE** instructions for each of the lines in the cache invalidates the cache.

```
li t0,(16*1024) # Cache size
li t1,32 # Line size
li t2,0x80000000 # First KSEG0 address
addu t3,t0,t2 # terminate address of loop
loop:
    cache 1,0(t2) # Dcache indexed invalidate tag
    addu t2,t1 # compute next address
    bne t2,t3,loop
    nop
```

2.2.8.2 Data Cache Line Fills

A data cache access is initiated in the Execute stage which allows a cache hit or miss indication and all exceptions to be signaled early in the Cache stage. If the data address hits in the data cache, the data is available in the Cache stage. If the data address misses in the data cache, and the address is cacheable, the data cache performs a burst fill to a cache line, forwarding the critical word to the Cache stage.

The data cache line is selected by the replacement policy described in Section 2.2.1 "Cache Line Replacement Policy" on page 17. If the line selected contains modified data (cache line is valid and has its dirty bit set by a store hit), then the cache line is moved to a cast-out buffer, the cache line is filled from memory and the load request fulfilled, and then the cast-out buffer is written to memory.

2.2.8.3 Data Cache Coherency

The data cache snoops coherent SBUS transactions to maintain data coherency with other SBUS masters (i.e. DMA). If a coherent read transaction on the SBUS hits in the data cache, the data cache provides the data. If a coherent write transaction on the SBUS hits in the data cache, the data cache updates its internal array with the data. If a coherent transaction (read or write) misses in the data cache, the data cache array is unchanged by the transaction.

Loads and stores which hit in the data cache can bypass previous stores in cacheable regions. The read-allocate data cache policy forwards store-misses to the write buffer. Subsequent loads and stores which hit in the data cache, and to a different cache line address than store-misses, are fulfilled immediately (while store-misses may still be in the write buffer). However, if a load address hits in a cache-line address of an item in the write buffer, the load is stalled until the write buffer commits the corresponding store.

The data cache also maintains coherency with other caching masters. When a load is serviced from another caching master, both caching masters set the shared bit for the affected cache line. Then if a store occurs to a data cache line with the

shared bit set, the cache line address is broadcast on the SBUS to invalidate cache lines in other caching masters that contain the same address.

The data cache is single-ported; therefore transactions on the SBUS are prioritized over accesses by the core. However, the data cache design prevents the SBUS from saturating the data cache indefinitely, which ensures that the core can make forward progress.

When changing the CCA encoding in Config0[K0] or the TLB to a different CCA encoding, software must ensure that data integrity is not compromised by first pushing modified (dirty) data to memory within the page. This is especially important when changing from a coherent CCA encoding to a non-coherent CCA encoding.

2.2.8.4 Data Cache Control

The cache-ability of data accesses is controlled by four mechanisms:

- Config0[K0] field
- The CCA bits in the TLB
- The CACHE instruction
- The PREF instruction

The Config0[K0] field contains a cache coherency attribute (CCA) setting to control the cache-ability of KSEG0 region. At reset, this field defaults to 011b, cacheable.

The CCA bits in the TLB entry control the cache-ability of the KUSEG, KSEG2, and KSEG3 regions. Each TLB entry specifies a CCA setting for the pages mapped by the TLB.

The **CACHE** instruction manages the caches; including the ability to lock lines in the cache. Valid data cache operations are:

- Index Writeback Invalidate
- Index Load Tag
- Index Store Tag
- Hit Invalidate (unlocks)
- Hit Writeback and Invalidate
- Hit Writeback
- Fetch and Lock

The effect of the CACHE instruction is immediately visible to subsequent data accesses.

The **PREF** instruction places data into the data cache. The following prefetch hints are implemented:

- 0x00 Normal load
- 0x04 Streaming load

The streaming load hint directs the data be placed into way 0 of the data cache (even if the line is locked), thus permitting transient data to be cached and non-transient data to remain in the cache for improved performance. Data cache streaming support combined with the **PREF** instruction enhances multimedia processing.

2.3 Write Buffer

The Au1 write buffer is depicted in Figure 2-3. All non-cacheable processor stores and data cache store-misses (the data cache is a read-allocate policy) are routed through the write buffer.

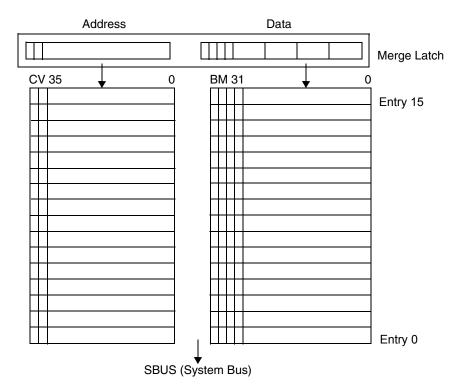


Figure 2-3. Au1 Write Buffer

The write buffer is a 16-word deep first-in-first-out (FIFO) queue. All processor stores arrive first at the merge latch, where merging and gathering decisions are performed, and then travel through the queue. The write buffer arbitrates for the SBUS to perform consolidated transfers to the main memory.

A write buffer FIFO entry contains the address (word address), the data and associated byte masks (BM), and two control bits. The four BM bits indicate which bytes within the word contain valid data. The two control bits are the Valid bit which indicates if the entry is valid, and the Closed (C) bit. When a C bit is set, the write buffer initiates a request to the SBUS so that it can transfer data to memory. The circumstances for which the C bit is set are described below.

The write buffer is capable of variable-length burst writes to memory. The length can vary from one word to eight words, and is determined by the C bits in the write buffer. During each beat of the burst, the appropriate bytes to write are selected from the corresponding byte masks. As each entry is written to memory, it is popped from the FIFO, advancing each entry in the FIFO by one. In other words, entry 0 is always presented to the SBUS for writing.

When the write buffer has at least one empty entry, processor stores do not stall, thus improving processor performance.

The write buffer is disabled by setting Config0[WD] to 1. In this instance, all non-cacheable and data cache store-misses stall until the write completes. The remaining description of the write buffer operation assumes Config0[WD] is 0. Out of reset, Config0[WD] is 0.

2.3.1 Merge Latch

All processor stores first arrive at the merge latch. Logic within the merge latch decides what action to take with the incoming data.

- 1) The incoming address is the *same word address* as the merge latch address. This case is for Merging, which occurs within the merge latch itself.
- 2) The incoming word address is *sequentially adjacent* to the merge latch word address (incoming address is merge latch address + 4). This case is for Gathering. The merge latch contents are propagated to the FIFO with the C bit cleared for this entry.
- 3) Neither 1 nor 2 is true. The merge latch contents are propagated to the FIFO with the C bit set for this entry.

If the merge latch contents are propagated to the FIFO, the incoming address and data are placed in the merge latch for future comparisons. Furthermore, if the incoming address is the last word address of the maximum burst line size (the least significant 5 bits are 0x1C), then the C bit is set.

2.3.2 Write Buffer Merging

Write buffer merging combines stores destined for the *same word address*. Merging places the incoming data into the appropriate data byte(s) within the merge latch.

Write buffer merging is particularly useful for sequential, incremental address write operations, such as string operations. With write buffer merging, the writes are merged into 32-bit writes which reduces the number of accesses to the memory and increases the effective throughput to main memory.

This example demonstrates merging: these five byte writes occur in sequence:

0x00001000 = 0xAB 0x00001001 = 0xCD 0x00001002 = 0xDE 0x00001003 = 0xEF 0x00001002 = 0xBE

After the first four writes, the data in the merge latch contains 0xABCDDEEF. However, after the fifth write, the merge latch data now contains 0xABCDBEEF.

So long as the incoming word address is the same as the merge latch word address, the data can change without a processor stall or access to memory.

Write buffer merging is controlled by the Config[NM] bit and the TLB[CCA] setting. When Config0[NM] is 1 or TLB[CCA] is 2, the merge latch does not perform merging. Conversely, Config0[NM] is 0 or TLB[CCA] is not 2 enables merging. Out of reset, Config0[NM] is 0.

- **Note:** Merging takes place *only* in the merge latch. As such, writes to an address which are in the FIFO (but not in the merge latch) do not merge. In the example below, writes to 0x0001000 and 0x0001002 do not merge because the intervening write to address 0x00001005 is not in the same word address which caused 0x00001000 to leave the merge latch.
 - 000 = 0xAB 005 = 0xCD 002 = 0xDE

AMDZ

2.3.3 Write Buffer Gathering

Write buffer gathering combines *sequentially adjacent* word addresses for burst transfers to the main memory. When a C bit is set, all queue entries from zero (0) up to and including the entry with its C bit set (N) are written to main memory in a single burst.

Write buffer gathering is particularly useful for sequential, incremental address store operations, such as string operations. With write buffer gathering, the stores are combined into bursts up to 32-bytes (eight words) in length which reduces the number of accesses to the memory and increases effective throughput.

Here is an example of an eight-word burst. The burst could result from code which sequentially writes words (optimized memcpy(), for example). These eight word writes occur in sequence:

0x00001000 0x00001004 0x00001008 0x0000100C 0x00001010 0x00001014 0x00001018 0x0000101C

The entries corresponding to word addresses 0x00001000 through 0x00001018 have C bit set to zero. When address 0x0000101C arrives, its C bit is set. When the write buffer is granted the SBUS, it bursts all eight entries to main memory.

Here is an example of two-word burst. This burst may be typical of application software. These four word writes occur in sequence:

0x00001000 0x00001004 0x0000100C 0x00001008

The C bit is cleared for the 0x00001000 entry and is set for the 0x00001004 entry. These two words are then burst to main memory. The 0x0000100C entry also has its C bit set, and is written to memory. The 0x00001008 will reside in the merge latch until displaced by a subsequent store.

2.3.4 Write Buffer Reads

When a read from memory is initiated, the read cache-line address (A35..A5) is compared against all cache-line addresses in the write buffer. If the read cache-line address matches a write buffer cache-line address, the read is stalled. The write buffer then flushes entries to memory until the read address no longer matches a write buffer cache-line address. The read is then allowed to complete. The write buffer ensures data integrity by not allowing reads to bypass writes.

2.3.5 Write Buffer Coherency

Non-cacheable stores and/or data cache store-misses reside in the write buffer, possibly indefinitely. Furthermore, the write buffer does not snoop SBUS transactions (e.g. integrated peripheral DMA engines). To ensure the write buffer contents are committed to memory, a **SYNC** instruction must be issued.

Issuing a **SYNC** instruction prior to enabling each DMA transfer from memory buffers and/or structures is necessary. Without the **SYNC**, the DMA engine may retrieve incomplete buffers and/or structures (the remainder of which may be in the write buffer).

Issuing a **SYNC** instruction after a store to an I/O region where stores have side effects is necessary. Without the **SYNC** instruction, the store may not leave the write buffer to achieve the side effects (e.g. clearing an interrupt acknowledge bit).

Note that a read access does not guarantee a complete write buffer flush since the write buffer flushes as few entries as necessary until the read address no longer matches an address in the write buffer.

2.4 Virtual Memory

The Au1 implements a TLB-based virtual address translation unit which is compliant with the MIPS32 specification. This scheme is similar to the R4000 TLB and CP0 implementation. The "MIPS32 Architecture For Programmers Volume III" contains all the information relevant to a TLB-based virtual address translation unit.

The virtual address translation architecture is composed of a main 32-entry fully associative TLB array. To improve instruction fetch performance, a 4-entry fully associative instruction TLB is implemented. This miniature instruction TLB is fully coherent with the main TLB array and is completely transparent to software.

Each TLB entry maps a 32-bit virtual address to a pair of 36-bit physical addresses. The page size of a TLB entry is variable under software control, from 4 KB to 16 MB.

A TLB entry is described below.

TLB Entry

·,																															
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PageMask	0								Pa	age	Mas	sk													0						
EntryHi								V	PN2	2											0						AS	SID			
EntryLo0 0	0												PF	N0													C0		D0	V0	G
EntryLo1 0	0												PF	N1													C1		D1	V1	G

The size of the page(s) that the TLB entry translates is determined by PageMask. The valid values for PageMask range from 4 KB to 16 MB, according to Table 2-4.

	•	• •	
Page Size	PageMask Register	Bits [28:13]	PFN Select Bit
4 KB	0x0000000	000000000000000000000000000000000000000	12
16 KB	0x00006000	00000000000011	14
64 KB	0x0001E000	000000000001111	16
256 KB	0x0007E000	000000000111111	18
1 MB	0x001FE000	000000011111111	20
4 MB	0x007FE000	0000001111111111	22
16 MB	0x01FFE000	0000111111111111	24

Table 2-4. Values for Page Size and PageMask Register

The PageMask determines the number of significant bits in the 32-bit address generated by the program (either as a load/ store address or an instruction fetch address). The upper, significant bits of the program address are compared against the upper, significant bits of VPN2. When an address match occurs, the even/odd PFN select bit of the program address selects either PFN0 (even) or PFN1 (odd) as the upper bits of the resulting 36-bit physical address.

The TLB mechanism permits mapping a larger, 36-bit physical address space into the smaller 32-bit program address space. The Au1 implements an internal 36-bit physical address SBUS which is then decoded by integrated peripherals, and by chip-selects for external memories and peripherals.

The cache coherency attributes (CCA) of the physical page are controlled by the TLB entry. The valid values are described in Table 2-3 on page 19. In general, I/O spaces require a non-cacheable setting, whereas memory can utilize a cacheable setting.

Note: Physical addresses in which address bits [35:32] are non-zero must be mapped non-cached (CCA = 2).

The TLB array is managed completely by software. Software can implement a TLB replacement algorithm that is either random (via the **TLBWR** instruction) or deterministic (via the **TLBWI** instruction). Hardware is available to segment the TLB via the Wired register so different replacement strategies can be used for different areas of the TLB.

2.5 Exceptions

The Au1 core implements a MIPS32 compliant exception scheme. The scheme consists of the exception vector entry points in both KSEG0 and KSEG1, and the exception code (ExcCode) encodings to determine the nature of the exception.

2.5.1 Exception Causes

The nature of an exception is reported in the Cause[ExcCode] field. The Au1 core can generate the following exceptions:

ExcCode	Mnemonic	Description
0	Int	Interrupt
1	Mod	TLB modification exception
2	TLBL	TLB exception (load or instruction fetch)
3	TLBS	TLB exception (store)
4	AdEL	Address error exception (load or instruction fetch)
5	AdES	Address error exception (store)
6	IBE	Bus error exception (instruction fetch)
7	DBE	Bus error exception (data reference: load or store)
8	Sys	Syscall exception
9	Вр	Breakpoint exception
10	RI	Reserved instruction exception
11	CpU	Coprocessor Unusable exception
12	Ov	Arithmetic Overflow exception
13	Tr	Trap exception
23	WATCH	Reference to Watchpoint address
24	MCheck	Machine Check (duplicate TLB entry)

Table 2-5. Cause[ExcCode] Encodings

The Au1 core does not implement hardware floating-point. As a result, all floating-point instructions generate the Reserved Instruction (RI) exception, which permits floating-point operations to be emulated in software.

In addition, the Au1 core does not recognize Soft Reset, Non-Maskable Interrupt (NMI), or Cache Error exception conditions. 2.5.2

Interrupt Architecture

The Au1 core implements a MIPS32 compliant interrupt mechanism in which eight interrupt sources are presented to the core. Each interrupt source is individually maskable to either enable or disable the core from detecting the interrupt. Interrupts are generated by software, integrated interrupt controllers, performance counters and timers, as noted in Table 2-6.

Interrupt Source	CP0 Cause Register Bit	CP0 Status Register Bit
Software Interrupt 0	8	8
Software Interrupt 1	9	9
Interrupt Controller 0: Request 0 Request 1	10 11	10 11
Interrupt Controller 1: Request 0 Request 1	12 13	12 13
Performance Counters	14	14
Count/Compare	15	15

Table 2-6.	CPU Interrupt Sources	
------------	------------------------------	--

All interrupt sources are equal in priority; that is, the interrupt sources are not prioritized in hardware. As a result, software determines the relative priority of the interrupt sources. When Cause[ExcCode]=0, software must examine the Cause[IP] bits to determine which interrupt source is requesting the interrupt.

For more information on Interrupt Controller 0 and 1 see Section 6.0 "Interrupt Controller" on page 95.

2.6 MIPS32[™] Instruction Set

The Au1 core implements the instruction set defined in "MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set". The floating-point instructions are not implemented in the Au1 core, but may be emulated in software.

The MIPS32 ISA is characterized as a combination of the R3000 user level instructions (MIPSII) and the R4000 memory management and kernel mode instructions (32-bit MIPSIII).

2.6.1 CACHE Instruction

The **CACHE** instruction permits management of the Au1 instruction and data caches. The valid operations are listed in Table 2-2 "Cache Operations" on page 19.

For *data* cache operations, the effect of the **CACHE** instruction is immediately visible to subsequent data accesses. However, for *instruction* cache operations, the effect of the **CACHE** instruction is not visible to subsequent instructions already in the Au1 core pipeline. Therefore, care should be exercised if modifying instruction cache lines containing the **CACHE** and subsequent instructions.

When issuing the **CACHE** instruction with indexed operations (Index Invalidate, Index Load Tag and Index Store Tag) the format of the effective address is as follows:

CACHE Index Operation Address Decode

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									0x8	000									W	ay			Se	t/Inc	lex				Byt	e Se	lect	

The effective address base should be 0x80000000 (KSEG0) to avoid possible TLB exceptions, and place zeros in the remainder of the effective address. The format correlates to a 16KB cache that is 4-way set associative with 128 sets and 32-byte line size.

Software must not use the Index Store Tag **CACHE** operation to change the Dirty, Lock and Shared state bits. To set the Lock bit, software must use the Fetch and Lock **CACHE** operation.

The Index Load Tag and Index Store Tag **CACHE** operations utilize CP0 registers DTag, DData, ITag and IData. The format of data for Index Tag operations is depicted in the description of these registers.

CACHE operations that require an effective address (i.e., not the Index operations) do not generate the Address Error Exception or trigger data watchpoint exceptions.

2.6.2 PREF Instruction

The **PREF** instruction prefetches data into the data cache. Data is prefetched to improve algorithm performance by placing the data in the cache in advance of its use, thus minimizing stalls due to data cache load misses. See also Section 2.2.8.4 "Data Cache Control" on page 22 for more on how to use **PREF**.

If the effective address computed by the **PREF** instruction does not translate in the TLB (i.e. the address would cause a TLBL exception), no exception is generated and the cache is unchanged.

The Au1 core implements the following **PREF** instruction hints:

- 0x00 Normal load
- 0x04 Streaming load

A PREF instruction using any other hint value becomes a NOP for the Au1 core.

2.6.3 WAIT Instruction

The **WAIT** instruction places the Au1 core in one of two low power modes: IDLE0 and IDLE1. The low power mode is encoded in the **WAIT** instruction bits 24:6 (implementation-dependent code). A value of 0 selects IDLE0, and the value 1 selects IDLE1. Other values are not supported and must not be used.

In the IDLE0 low power mode, the Au1 core stops clocks to all possible core units but continues to snoop the SBUS to maintain data coherency.

In the IDLE1 low power mode, the Au1 core stops clocks to all possible core units, including the data cache, so data coherency is no longer maintained.

In either Idle mode, the general purpose registers and the CP0 registers are preserved, so that when Idle mode is exited by an appropriate event, the Au1 core resumes processing instructions in exactly the same context as prior to entering Idle mode.

To enter the low power mode, the **WAIT** instruction must be followed by at least four NOPs, and the entire instruction sequence must be fetched from the instruction cache. More specifically, if the core fetches the **WAIT** and **NOP** instructions from main memory, then the mechanisms for accessing memory will prevent the core from entering low power mode. This is the recommended code sequence:

```
.global au1_wait
au1_wait:
la t0,au1_wait # obtain address of au1_wait
cache 0x14,0(t0) # fill icache with first 8 insns
cache 0x14,32(t0) # fill icache with next 8 insns
sync
nop
wait 0
nop
nop
nop
nop
j ra
```

When the Au1 core is in Idle mode, the Count register increments at an unpredictable rate; therefore the Count/Compare registers can not be used as the system timer tick when using the **WAIT** instruction to enter an Idle mode.

2.7 Coprocessor 0

Coprocessor 0 (CP0) is responsible for virtual memory, cache and system control.

The MIPS32 ISA provides for differentiation of the CP0 implementation. The Au1 core has a unique CP0 that is compliant with MIPS32 specification.

The Au1 CP0 registers are listed in Table 2-7.

Register Number	Sel	Register Name	Description	Compliance (Note 1
0	0	Index	Pointer into TLB array	Required
1	0	Random	Pseudo-random TLB pointer	Required
2	0	EntryLo0	Low half of TLB entry for even pages	Required
3	0	EntryLo1	Low half of TLB entry of odd pages	Required
4	0	Context	Pointer to a page table entry	Required
5	0	PageMask	Variable page size select	Required
6	0	Wired	Number of locked TLB entries	Required
7	0		Reserved	Reserved
8	0	BadVAddr	Bad virtual address	Required
9	0	Count	CPU cycle count	Required
10	0	EntryHi	High half of TLB entries	Required
11	0	Compare	CPU cycle count interrupt comparator	Required
12	0	Status	Status	Required
13	0	Cause	Reason for last exception	Required
14	0	EPC	Program Counter of last exception	Required
15	0	PRId	Processor ID and Revision	Required
16	0	Config	Configuration Registers (aka Config0)	Required
16	1	Config1	Configuration Register 1	Required
17	0	LLAddr	Load Link Address	Optional
18	0	WatchLo	Data memory break point low bits	Optional
18	1	IWatchLo	Instruction fetch breakpoint low bits	Optional
19	0	WatchHi	Data memory break point high bits	Optional
19	1	IWatchHi	Instruction fetch breakpoint high bits	Optional
20	0		Reserved	Reserved
21	0		Reserved	Reserved
22	0	Scratch	Scratch register	Au1
23	0	Debug	EJTAG control register	Optional
24	0	DEPC	PC of EJTAG debug exception	Optional
25	0	Reserved	Reserved	Au1 Reserved
25	1	Reserved	Reserved	Au1 Reserved
26	0		Reserved	Reserved
27	0		Reserved	Reserved
28	0	DTag	Data cache tag value	Au1
28	1	DData	Data cache data value	Au1
29	0	ITag	Instruction cache tag value	Au1
29	1	IData	Instruction cache data value	Au1
30	0	ErrorEPC	Program counter at last error	Required
31	0	DESave	EJTAG debug exception save register	Optional

Table 2-7.	Coprocessor 0 Register Definitions
------------	------------------------------------

Note 1. A compliance of "Required" denotes a register required by the MIPS32 architecture. "Optional" denotes an optional register in the MIPS32 architecture which is implemented in the Au1 core. "Au1" denotes an optional register unique to the Au1 core. "Reserved" denotes a register that is not implemented.

2.7.1 Index Register (CP0 Register 0, Select 0)

The Index register is required for TLB-based virtual address translation units.

Indov

Index																									C	CP0	Reg	iste	r 0, :	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Р													()															nde	(
Def. X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31	Р	Probe Failure.	R	UNPRED
30:5	Reserved	Must always write zeros, always reads zeros	R	0
4:0	Index	TLB Index	R/W	UNPRED

Random Register (CP0 Register 1, Select 0) 2.7.2

The Random register is required for TLB-based virtual address translation units.

Randon	n																								(CP0	Reg	iste	r 1,	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													0															Ra	ando	m	
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1

Bits	Name	Description	R/W	Default
31:5	Reserved	Must always write zeros, always reads zeros	R	0
4:0	Random	TLB Random Index	R	31

EntryLo0, EntryLo1 Register (CP0 Registers 2 and 3, Select 0) 2.7.3

The EntryLo0 and EntryLo1 registers are required for TLB-based virtual address translation units.

EntryLo0, EntryLo1

Entr	yLo	0, E	ntry	Lo1																					CP0	Reg	giste	ers 2	and	1 3,	Sele	ect 0
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ĺ	()												PF	-N													С		D	V	G
Def.	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:30	Reserved	Ignored on writes, returns zero on read	R	0
29:6	PFN	Page Frame Number. Corresponds to physical address bits 3512.	R/W	UNPRED
5:3	С	Cache coherency attribute of the page. See Table 2-3 "Cache Coherency Attributes (CCA)" on page 19.	R/W	UNPRED
2	D	Dirty bit.	R/W	UNPRED
1	V	Valid bit	R/W	UNPRED
0	G	Global bit	R/W	UNPRED

30361D

2.7.4 Context Register (CP0 Register 4, Select 0)

The Context register is required for TLB-based virtual address translation units.

Context

Contex	t																								(CP0	Reg	iste	r 4, :	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			PT	ΈBa	ase												Ва	dVP	N2										()	
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0

Bits	Name	Description	R/W	Default
31:23	PTEBase	Used by the operating system as a pointer into the current PTA array in memory.	R/W	UNPRED
22:4	BadVPN2	Contains virtual address bits 3113 upon a TLB exception.	R	UNPRED
3:0	Reserved	Reserved	R	0

PageMask Register (CP0 Register 5, Select 0) 2.7.5

The PageMask register is required for TLB-based virtual address translation units.

Page	Ma	sk																								C	CP0	Reg	iste	r 5,	Sele	ct 0
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		0									Ma	ask														0						
Def.	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:29	Reserved	Ignored on write, returns zero on read.	R	0
28:13	Mask	The Mask field is a bit mask in which a "1" bit indicates that the corre- sponding bit of the virtual address should not participate in the TLB match. See Table 2-4 "Values for Page Size and PageMask Register" on page 26.	R/W	UNPRED
12:0	Reserved	Ignored on write, returns zero on read.	R	0

2.7.6 Wired Register (CP0 Register 6, Select 0)

The Wired register is required for TLB-based virtual address translation units.

Wired																									C	CP0	Reg	iste	r 6,	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													0															<u>۱</u>	Nire	b	
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:5	Reserved	Ignored on write, returns zero on read.	R	0
4:0	Wired	TLB wired boundary	R/W	0

CD0 Degister 9 Colect 0

2.7.7 BadVAddr Register (CP0 Register 8, Select 0)

The BadVAddr register is required for TLB-based virtual address translation units.

BadVAddr

DauvA	uui																								•	550	ney	1510	10,	Sele	
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														E	Bad∨	'Add	r														
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	BadVAddr	Bad virtual address	R	UNPRED

2.7.8 Count Register (CP0 Register 9, Select 0)

The Count register is a required register for a constant rate timer. This counter increments 1:1 with the core frequency.

Count																									(CP0	Reg	iste	r 9,	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Co	unt															
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

During IDLE0 or IDLE1 mode, the Count register increments at an unpredictable rate; therefore the Count/Compare registers can not be used as the system timer tick when using the **WAIT** instruction to enter an Idle mode.

During Sleep mode, this register will not increment.

Bits	Name	Description	R/W	Default
31:0	Count	Interval counter	R/W	0

2.7.9 EntryHi Register (CP0 Register 10, Select 0)

The Index register is required for TLB-based virtual address translation units.

EntryHi																									C	P0 F	legis	ster	10,	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 VPN2																	0						AS	ID							
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:13	VPN2	Virtual address bits 3113.	R/W	UNPRED
12:8	Reserved	Ignored on write, returns zero on read.	R	0
7:0	ASID	Address space identifier	R/W	UNPRED

2.7.10 Compare Register (CP0 Register 11, Select 0)

The Compare register is a required register for generating an interrupt from the constant rate timer.

Com	npar	е																								С	P0 F	legis	ster	11,	Sele	ct 0
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ																Com	pare	e														
Def.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	Compare	Interval counter compare value	R/W	UNPRED

2.7.11 Status Register (CP0 Register 12, Select 0)

The Status register is a required register for general control of the processor.

Status

Status																									C	P0 F	Regis	ster	12,	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	CU0	RP	0	RE	0	0	BEV	0	SR	NMI	0	0	0				1	М				0	0	0	UM	0	ERL	EXL	IE
Def. 0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Bits	Name	Description	R/W	Default
31	CU3	This bit is zero. Coprocessor 3 is not implemented.	R	0
30	CU2	This bit is zero. Coprocessor 2 is not implemented.	R	0
29	CU1	This bit is zero. Coprocessor 1 is not implemented.	R	0
28	CU0	Controls access to coprocessor 0.	R/W	0
27	RP	Reduced power. This bit has no effect.	R/W	0
25	RE	Reverse-endian.	R/W	0
22	BEV	Boot exception vectors.	R/W	1
20	SR	Soft reset.	R/W	0
19	NMI	Non-maskable interrupt	R/W	0
15:8	IM	Interrupt mask	R/W	0
4	UM	User-mode.	R/W	0
3	R0	This bit is zero; Supervisor-mode not implemented	R	0
2	ERL	Error Level	R/W	1
1	EXL	Exception Level	R/W	0
0	IE	Interrupt Enable	R/W	0

2.7.12 Cause Register (CP0 Register 13, Select 0)

The Cause register is a required register for general exception processing.

Cause

CP0 Register 13, Select 0

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BD	0	C	Έ		(0		IV	WP			()							Р				0		Ex	cCo	de		0)
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31	BD	Exception in branch delay slot	R	0
29:28	CE	Coprocessor error	R	0
23	IV	Interrupt vector	R/W	0
22	WP	Watchpoint exception deferred	R/W	0
15:10	IP[7:2]	Hardware interrupts pending	R	0x20
9:8	IP[1:0]	Software interrupts pending	R/W	0
6:2	ExcCode	Exception Code	R	0

CPU

2.7.13 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC) register is a required register for general exception processing.

EPC																									C	P0 R	egi	ster	14, 9	Sele	ct 0
Bit 3	1 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															EF	ъС															
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	EPC	Exception Program Counter	R/W	UNPRED

2.7.14 Processor Identification (CP0 Register 15, Select 0)

The PRId register is a required register for processor identification.

PRId																									С	P0 F	legi	ster	15,	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Com	pany	/ Op	otion	s				C	omp	any	ID					Pr	oces	ssor	ID						Revi	sion			
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:24	Company	System-on-a-chip (SOC) identification:	R	1
	Options	0 Au1000		
		1 Au1500		
		2 Au1100		
23:16	Company ID	Company ID assigned by MIPS Technologies. AMD's ID = 3.	R	3
15:8	Processor	Identifies the core revision:	R	2
	Core ID	0 Reserved		
		1 Au1 revision 1		
		2 Au1 revision 2		
7:0	Revision	Contains a manufacturing-specific revision level.	R	SOC
		0 Silicon stepping AB; silicon revision 1.0		specific
		1 Silicon stepping AC; silicon revision 1.1		
		2 Silicon stepping AD; silicon revision 1.2		

30361D

2.7.15 Configuration Register 0 (CP0 Register 16, Select 0)

The Config0 register is a required register for various processor configuration and capability.

Confia0

Config0)																								C	P0 F	Regi	ster	16,	Sele	ct 0
Bit 31	30	29	28	27	-	-		-				-	-		-	-		13	12	11	10	9	8	7	6	5	4	3	2	1	0
М			СТ			DD	CD	UM	WD	NM	SM	OD	0	0	ΤM	BE	F	ΛT		AR			ΜT			()			K0	
Def. 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1

Bits	Name	Description	R/W	Default
31	М	Denotes Config1 register available at select 1	R	1
30:26	СТ	Reserved, must write 0	R/W	0
25	DD	Reserved, must write 0	R/W	0
24	CD	Reserved, must write 0	R/W	0
23	UM	Reserved, must write 0	R/W	0
22	WD	Reserved, must write 0	R/W	0
21	NM	Reserved, must write 0	R/W	0
20	SM	Reserved, must write 0	R/W	0
19	OD	Reserved, must write 0	R/W	0
16	ТМ	Reserved, must write 0	R/W	0
15	BE	Indicates the endian mode.	R	1
14:13	AT	Architecture type is MIPS32.	R	0
12:10	AR	Architecture revision is Revision 1.	R	0
9:7	MT	MMU type is standard TLB.	R	1
2:0	K0	KSEG0 is cacheable, coherent.	R/W	3

2.7.16 Configuration Register 1 (CP0 Register 16, Select 1)

The Config1 register is a required register for various processor configuration and capability.

Config1

CP0 Register 16, Select 1

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0		M	NU S	Size	- 1			IS			IL			IA			DS			DL			DA		C2	MD	PC	WR	CA	EΡ	FP
Def.	0	0	1	1	1	1	1	0	0	1	1	0	0	0	1	1	0	0	1	1	0	0	0	1	1	0	0	0	1	0	1	0

Bits	Name	Description	R/W	Default
30:25	MMU Size - 1	Number of entries in the TLB minus one. The TLB has 32 entries.	R	31
24:22	IS	Instruction cache sets per way is 128.	R	1
21:19	IL	Instruction cache line size is 32 bytes.	R	4
18:16	IA	Instruction cache associativity is 4-way.	R	3
15:13	DS	Data cache sets per way is 128.	R	1
12:10	DL	Data cache line size is 32 bytes.	R	4
9:7	DA	Data cache associativity is 4-way.	R	3
6	C2	Coprocessor 2 is not implemented.	R	0
5	MD	Always returns zero on read.	R	0
4	PC	Performance Counter registers are not implemented.	R	0
3	WR	Watchpoint registers are implemented.	R	1
2	CA	Code compression is not implemented.	R	0
1	EP	EJTAG is implemented.	R	1
0	FP	FPU is not implemented.	R	0

CP0 Register 18. Select 1

30361D

2.7.17 Load Linked Address Register (CP0 Register 17, Select 0)

The LLAddr register provides the physical address of the most recent Load Linked instruction.

LLAdd	r																								C	P0 R	legis	ster	17,	Sele	ct 0
Bit 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															LLA	١ddr															
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bit	s Name	Description	R/W	Default
31:0) LLAddı	Load Linked Address	R	UNPRED

2.7.18 Data WatchLo Register (CP0 Register 18, Select 0)

The WatchLo and WatchHi registers are the interface to the data watchpoint facility.

WatchL	0																								С	P0 F	legis	ster	18,	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														/Adc	lr														0	R	W
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0

Bits	Name	Description	R/W	Default
31:3	VAddr	The virtual address to match	R/W	UNPRED
1	R	If this bit is a one, then watch exceptions are enabled for loads that match the address.	R/W	0
0	W	If this bit is a one, then watch exceptions are enabled for stores that match the address.	R/W	0

2.7.19 Instruction WatchLo Register (CP0 Register 18, Select 1)

The IWatchLo and IWatchHi registers are the interface to the instruction watchpoint facility.

IWatchLo

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														\	/Adc	lr														-	0	0
Def.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0

Bits	Name	Description	R/W	Default
31:3	VAddr	The virtual address to match	R/W	UNPRED
2	I	If this bit is a one, then watch exceptions are enabled for instruction accesses that match the address.	R/W	0

2.7.20 Data WatchHi Register (CP0 Register 19, Select 0)

The WatchLo and WatchHi registerS are the interface to the data watchpoint facility.

WatchHi

WatchH	i																								С	P0 F	legi	ster	19,	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
М	G			(0						AS	SID					(0					N	Masl	<					0	
Def. 1	Х	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0

Bits	Name	Description	R/W	Default
31	М	Another pair of Watch registers is implemented at the next Select index.	R	1
30	G	If this bit is one, then the ASID field is ignored and any address that matches causes a watch exception.	R	UNPRED
23:16	ASID	ASID value which is required to match that in the EntryHi register if the G bit is zero in the WatchHi register.	R/W	UNPRED
11:3	Mask	Any bit in this field that is a one inhibits the corresponding address bit from participating in the address match.	R/W	UNPRED

Instruction WatchHi Register (CP0 Register 19, Select 1) 2.7.21

The IWatchLo and IWatchHi registers are the interface to the instruction watchpoint facility.

IWatchH	li																								С	P0 F	Regi	ster	19,	Sele	ct 1
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	G			()						AS	SID					()					1	Masł	(0	
Def. 0	Х	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0

Bits	Name	Description	R/W	Default
30	G	If this bit is one, then the ASID field is ignored and any address that matches causes a watch exception.	R	UNPRED
23:16	ASID	ASID value which is required to match that in the EntryHi register if the G bit is zero in the WatchHi register.	R/W	UNPRED
11:3	Mask	Any bit in this field that is a one inhibits the corresponding address bit from participating in the address match.	R/W	UNPRED

2.7.22 Scratch Register (CP0 Register 22, Select 0)

The Scratch register exists for the convenience of software. Upon a read, this register returns the value last written into it.

Scratch	1																								C	P0 F	legis	ster	22,	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Scra	atch															
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X

Bits	Name	Description	R/W	Default
31:0	Scratch	This register is present for the convenience of software.	R/W	UNPRED

2.7.23 Debug Register (CP0 Register 23, Select 0)

The Debug register is part of the interface to the EJTAG facility.

Debug

Debug																									C	CP0 F	Regi	ster	23,	Sele	ect O
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DBD	DM	0	LSNM					()						001			DI	ExcCo	de		0	SSt	0	0	DINT		0		DBp	DSS
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	Х	Х	Х	Х	Х	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31	DBD	Debug exception in branch delay slot.	R	UNPRED
30	DM	If this bit is a one, then in debug mode.	R	0
28	LSNM	Load/stores are performed in the normal fashion when in debug mode.	R/W	0
17:15	001	EJTAG version 2.5	R	001
14:10	DExcCode	Cause[ExcCode] for normal exceptions in debug mode.	R	UNPRED
8	SSt	Enable single step mode	R/W	0
5	DINT	Last debug exception was asynchronous debug interrupt	R	0
1	DBp	Last debug exception was an SDBPP instruction	R	0
0	DSS	Last debug exception was a single step	R	0

DEPC Register (CP0 Register 24, Select 0) 2.7.24

The DEPC register is part of the interface to the EJTAG facility.

DEPC																									C	P0 F	legis	ster	24, 9	Sele	ct 0
Bit 3	1 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															DE	PC															
Def.)	(X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	DEPC	Debug exception program counter.	R/W	UNPRED

Data Cache Tag Register (CP0 Register 28, Select 0) 2.7.25

The DTag and DData registers are the interface to the data cache array. This cache interface is unique to the Au1.

This register corresponds to the TagLo register in the MIPS32 ISA specification. Note:

DTag																									С	P0 F	legi	ster	28,	Sele	ect 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									TA	١G										M	RU	NM	RU	LF	RU	0	0	D	S	L	V
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	Х	Х	Х	X

Bits	Name	Description	R/W	Default
31:12	TAG	TAG represents bits [31:12] of a physical memory address. Bits [35:32] of the physical address are always zero.	R/W	UNPRED
11:10	MRU	Most recently used way.	R/W	UNPRED
9:8	NMRU	Next most recently used way.	R/W	UNPRED
7:6	LRU	Least recently used way.	R/W	UNPRED
3	D	Cache line is dirty (modified).	R/W	UNPRED
2	S	Cache line is shared (for data cache snoops).	R/W	UNPRED
1	L	Locked. This bit is set by the user to prevent overwriting of the cache line.	R/W	UNPRED
0	V	Cache line valid.	R/W	UNPRED

The DTag and DData registers are the interface to the data cache array.

Note: This register corresponds to the DataLo register in the MIPS32 ISA specification.

DData CP0 Register 28, Select 1 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Data Х Х XXXXX Х ХХ Х Х Х Х Х Х Def. X Х X Х Х Х Х Х Х Х Х Х Х Х Х Х

Bits	Name	Description	R/W	Default
31:0	Data	Data from the data cache line.	R	UNPRED

2.7.27 Instruction Cache Tag Register (CP0 Register 29, Select 0)

The ITag and IData registers are the interface to the instruction cache array. This cache interface is unique to the Au1.

This register corresponds to the TagHi register in the MIPS32 ISA specification. Note:

ITag																										С	P0 F	legis	ster	29,	Sele	ct 0
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										TA	١G										M	RU	NM	RU	LF	RU		0)		L	V
Def.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	0	0	0	Х	Х

Bits	Name	Description	R/W	Default
31:12	TAG	TAG represents bits [31:12] of a physical memory address. Bits [35:32] of the physical address are always zero.	R/W	UNPRED
11:10	MRU	Most recently used way.	R/W	UNPRED
9:8	NMRU	Next most recently used way.	R/W	UNPRED
7:6	LRU	Least recently used way.	R/W	UNPRED
1	L	Locked. This bit is set by the user to prevent overwriting of the cache line.	R/W	UNPRED
0	V	Cache line valid.	R/W	UNPRED

Instruction Cache Data Register (CP0 Register 29, Select 1) 2.7.28

The ITag and IData registers are the interface to the instruction cache array.

This register corresponds to the DataHi register in the MIPS32 ISA specification. Note:

IDat

IData																									C	P0 F	legi	ster	29,	Sele	ct 1
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Da	ata															
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X

Bits	Name	Description	R/W	Default
31:0	Data	Data from the instruction cache line.	R	UNPRED

ErrorEPC Register (CP0 Register 30, Select 0) 2.7.29

The ErrorEPC register is a required register for exception processing.

ErrorEDC

Error	EPO	C																								C	P0 F	Regi	ster	30,	Sele	ct 0
Bit 3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																Erroi	(EPC	2														
Def.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	ErrorEPC	Error Exception Program Counter	R/W	UNPRED

2.7.30 **DESAVE Register (CP0 Register 31, Select 0)**

The DESAVE register is part of the interface to the EJTAG facility.

DESAVI	E																								С	P0 F	legi	ster	31,	Sele	ct 0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															DES	AVE															
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	DESAVE	Debug save scratch register, for debug handlers.	R/W	UNPRED

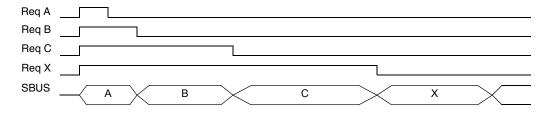
2.8 System Bus (SBUS)

The Au1 core communicates with memories and peripherals via the System Bus (SBUS). The SBUS is a 36-bit physical address and 32-bit data bus which is internal to the Au1500 processor. The SBUS is the coherency point within the Au1500 processor.

2.8.1 **SBUS** Arbitration

The SBUS supports multiple masters—the Au1 core and peripheral DMA engines. The SBUS is granted to the masters in a least-recently-used/fair scheme. This scheme prevents two or more masters from consuming the entire SBUS bandwidth, while permitting low latency access to the SBUS for masters which request the bus infrequently (such as peripherals).

The SBUS requestors in the Au1500 processor are:


- · Au1 core
- Ethernet MAC controller (2)
- USB Host controller
- PCI controller
- DMA controller

The Au1 presents a single request to the SBUS arbiter for the three possible requestors: the data cache, the instruction cache and the write buffer. The data cache has the highest priority and the write buffer the lowest priority among the three requests. However, the write buffer priority becomes the highest when the data cache requests a load to an address in the write buffer to allow the write buffer to empty prior to fulfilling the data cache load.

The SBUS arbiter has four bus arbitration slots for handling the SBUS masters:

- Slot 0: Au1 core (data cache, instruction cache, write buffer)
- Slot 1: Ethernet MAC controllers
- Slot 2: DMA controller
- Slot 3: USB host controller and PCI controller

The arbitration scheme for the SBUS is round-robin; that is, each bus master slot has an equal opportunity to obtain access to the SBUS. For a particular SBUS master X, if no other SBUS masters request the bus, then bus master X immediately wins the SBUS. By contrast, if all other SBUS masters request the bus, then bus master X must wait for three other SBUS master slots to transfer before it wins the SBUS, as shown in Figure 2-4.

When a SBUS master wins arbitration of the SBUS, it performs transfers to/from the integrated peripherals, SDRAM, or the Static bus.

2.8.2 SBUS Coherency Model

The SBUS is the coherency point within the Au1500 processor. An SBUS master (i.e. Au1 core or peripheral DMA engine) marks each SBUS transaction as either coherent or non-coherent. SBUS transactions marked as coherent are then snooped by all caching masters (i.e. Au1 data cache). An SBUS transaction that is marked non-coherent is not snooped by caching masters.

The Au1 core is a coherent, caching master. The Au1 data cache snoops SBUS transactions; if a read transaction hits in the data cache then the data cache provides the data, if a write transaction hits in the data cache then the data cache array is updated with the new data.

The integrated peripherals (with DMA engines) can be configured for coherent or non-coherent operation. The 'C' bit in the peripheral/module enable register directs whether peripheral SBUS transactions are to be marked coherent or non-coherent. If a peripheral is configured for coherent operation, then it is not necessary to writeback and invalidate Au1 data cache lines which hit in the memory buffers used by DMA engines. If, on the other hand, the peripheral is configured for non-coherent operation, then software must ensure that memory buffers used by the DMA engines are not in the data cache (else the data cache and/or the memory buffer may contain old, stale data).

The decision to use, or not use, coherent SBUS transactions is left to the application. However, peripheral device drivers using coherent SBUS transactions will perform better than drivers not using coherent SBUS transactions since the need to writeback the data cache is eliminated.

2.9 EJTAG

EJTAG is supported per the MIPS EJTAG Rev. 2.5 specification. EJTAG provides for CPU and board level bring-up and debug.

Memory Controllers

The Au1500 processor contains two memory controllers, one for SDRAM and one for static devices.

The SDRAM controller supports SDRAM, SMROM and SyncFlash.

The static device controller supports SRAM, Flash, ROM, page mode ROM, PCMCIA/Compact Flash devices, and an external LCD controller interface.

Both memory controllers support software configurable memory address spaces. This allows designers to keep memory regions contiguous. For example, a system with 4 MB initially installed would locate the memory at physical address 0. Normally, adding 16 MB would create a 12 MB gap in the memory map. With the address configuration options in the Au1500 the 4 MB can be relocated to start at 16 MB, and the new memory can be located at 0 to allow a 20 MB contiguous memory pool.

All registers in the Memory Controller block are located off of the base address shown in Table 3-1.

Table 3-1. Memory Controller Block Base Address

Name	Physical Base Address	KSEG1 Base Address
mem	0x0 1400 0000	0xB400 0000

The system designer has the choice of booting from 32-bit Flash, 16-bit Flash, 32-bit SMROM, and 32-bit SyncFlash. The ROMSEL and ROMSIZE configuration is discussed in more detail in Section 9.3 "Boot" on page 182. Table 9-1 on page 182 shows how the state of ROMSEL and ROMSIZE determines where the processor boots from.

30361D

3.1 SDRAM Memory Controller

The SDRAM memory controller of the Au1500 processor is designed for glueless interface to one, two, or three ranks of SDRAM or SMROM. SDRAM and SyncFlash are run at 1/2 the internal System Bus (SBUS) speed. The SBUS defaults to 1/2 the processor clock speed so that SDRAM or SyncFlash will run at 99 MHz with a 396 MHz Au1500. SMROM operates at 1/4 the speed of the SBUS. The SBUS divider is programmable, see Section 8.4.4 "Device Power Management - Sleep" on page 174 for more information.

The SDRAM interface supports three chip selects (SDCS[2:0]#), corresponding to three ranks of SDRAM. Each chip select can be configured to support either SDRAM or SMROM. In addition, chip select 0 can be configured for SyncFlash (no other chip selects can be used to support SyncFlash). For chip selects configured as SDRAM or SyncFlash (on chip select 0) the controller keeps one row open for up to four banks per chip select allowing fast accesses and reducing the need to issue precharge cycles.

Note: The SDRAM memory controller supports a maximum of two loads per chip select.

When RESETIN# is negated, code is fetched from SMROM/SyncFlash if SMROM/SyncFlash boot is selected. When using SMROM or SyncFlash for boot, the SMROMCKE signal should be used for the SMROM/SyncFlash CKE. If SMROM or SyncFlash are being used (but not for boot), SDCKE should be used for the clock enable.

After boot internal configuration registers can be written to enable SDRAM chip selects. When a chip select is enabled the SDCKE is driven asserted and clocks are started. Software must wait 10 µs for the SDRAM clock to stabilize before any device specific initialization steps.

All SDRAM/SMROM ranks must be 32 bits wide. Support is included for SDRAM with 2 or 4 banks, 11 to 13 row address bits, and 7 to 11 column address bits. It is also possible to send explicit commands to the SDRAM, under software control, for diagnostic, initialization, or power management purposes.

SDRAM clocks keep running during a runtime reset to allow any transaction in progress to complete. This avoids the possibility of bus contention when the part is brought out of reset.

Note that the SDRAM controller assumes the following external SDRAM configuration:

- Burst Length = 8
- Addressing Mode = Sequential
- Write Mode = Burst Read and Write

3.1.1 SDRAM Controller Programming Model

The SDRAM controller contains a number of registers which configure the operation of the interface. All registers in the SDRAM controller block are located off of the base address shown in Table 3-1 "Memory Controller Block Base Address" on page 43. Table 3-2 shows the memory map of the register block.

Offset (Note 1)	Register Name	Description
0x0000	mem_sdmode0	SDRAM chip select n (SDCS <i>n</i> #) mode configuration register
0x0004	mem_sdmode1	(timing and functionality)
0x0008	mem_sdmode2	
0x000C	mem_sdaddr0	SDCSn# address configuration and enable
0x0010	mem_sdaddr1	
0x0014	mem_sdaddr2	
0x0018	mem_sdrefcfg	Refresh Configuration and Timing
0x001C	mem_sdprecmd	Issue PRECHARGE to all enabled SDRAM chip selects
0x0020	mem_sdautoref	Issue AUTO REFRESH to all enabled SDRAM chip selects
0x0024	mem_sdwrmd0	Write data to SDCSn# SDRAM mode configuration register
0x0028	mem_sdwrmd1	
0x002C	mem_sdwrmd2	
0x0030	mem_sdsleep	Force SDRAM into self refresh mode
0x0034	mem_sdsmcke	Toggle SMROMCKE pin

Table 3-2. SDRAM Configuration Registers

Note 1. See Table 3-1 on page 43 for base address.

3.1.2 **SDRAM Registers**

Each chip select is configured by two registers, a mode register and an address configuration register.

3.1.2.1 **Chip Select Mode Configuration Registers**

The format and reset values of the chip select mode configuration registers is shown in the following figure. The timing parameters (Tcl, Tcrd, Trp, Twr, Tmrd, and Tras) correspond directly to times shown in the SDRAM timing diagrams. Times are measured in SDRAM/SMROM clock cycles.

The default values for chip select zero correspond to values for SMROM operation. Chip select 1 and 2 are configured with the slowest timing values at reset.

Reserved fields should be written as zeros and ignored on read to preserve compatibility with future versions of the product.

mer	n_sc	dmo	de0	- CS	50 N	lode	Co	nfig	urati	ion																			Offs	et =	= 0x0	000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									SF	F	SR	BS	R	S		CS			Tra	as		Tm	nrd	Τv	vr	Т	rp	Tr	cd		Tcl	
Def.	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	1	1	0	0

mem_sdmode1 - CS1 Mode Configuration

mer	n_so	dmo	de2	- CS	52 N	lode	Co	nfig	urat	ion																			Offs	et =	0x0	008
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
										F	SR	BS	R	S		CS			Tr	as		Tm	nrd	Τv	vr	Tr	p	Tro	cd		Tcl	
Def.	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Offset = 0x0004

30361D

Bits	Name	Description	R/W	Default
31:24	—	Reserved, should be cleared.	R	0
23	SF	Selects SyncFlash operation. SyncFlash is available only on SDCS0#. For other chip selects, this bit is reserved and should be cleared.	R/W	0
		0 SyncFlash is not being used.		
		1 SyncFlash is being used.		
22	F	Setting the F bit allows the SDRAM controller to assume that no caching master except the core will access this memory space. This allows accesses to begin sooner.	R/W	0
		Note that the CPU core is the only possible caching master, so it is safe for the system designer to set this bit.		
21	SR	Chip select operating mode.	R/W	See above
		0 SDRAM/SyncFlash operation.		
		1 SMROM operation.		
20	BS	Select Number of Banks.	R/W	See above
		0 Chip select controls 2-bank SDRAM.		
		1 Chip select controls 4-bank SDRAM.		
		Note: This bit must be cleared for SMROM support.		
19:18	RS	This field sets the number of bits in the row address as shown below:	R/W	See above
		RS Row Address Size		
		00 11		
		01 12		
		10 13		
		11 Reserved		
17:15	CS	This field sets the number of bits in the column address as shown below:	R/W	See above
		CS Column Size		
		000 7		
		001 8		
		010 9		
		011 10		
		100 11		
		All other values are reserved.		
14:11	Tras	This field designates the minimum delay from a activate to a precharge command.	R/W	15
		(Tras + 1) is the actual number of clock cycles.		
10:9	Tmrd	This field sets the required delay from an external load of the SDRAM mode register (not the chip select mode register) to an activate command.	R/W	3
		(Tmrd + 1) is the actual number of clock cycles.		
8:7	Twr	The Twr field sets the write recovery time. This is the last data for a write to a precharge. This field is sometimes referred to a Tdpl.	R/W	3
		(Twr + 1) is the actual number of clock cycles.		
6:5	Trp	This field sets the time from precharge to the next activate command.	R/W	3
		(Trp + 1) is the actual number of clock cycles.		
4:3	Trcd	This field sets the RAS to CAS delay.	R/W	See Above
		(Trcd + 1) is the actual number of clock cycles.		
2:0	Tcl	This field sets the minimum CAS latency timing. This is the time from CAS to DATA on reads.	R/W	See Above
		(Tcl + 1) is the actual number of clock cycles.		

3.1.2.2 SDRAM Chip Select Address Configuration Registers (mem_sdaddrn)

The SDRAM chip-select address configuration registers (**mem_sdaddr***n*) assign an address range for each chip select. As shown below, each register contains a base address, an address comparison mask, and an enable bit.

men	n_s	dado	dr0 -	SD	CS0	# Ac	ddre	ss (Conf	igur	atio	n																	Offs	et =	0x0	00C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	З	2	1	0
												E					CS	ΒA								(CSM	ASk	<			
Def.	0	0	0	0	0	0	0	0	0	0	0	Rs	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
merr	n_s	dado	dr1 -	SD	CS1	# Ac	ddre	ss (Conf	igur	atio	n																	Offs	set =	= 0x0	0010
men men	_									Ū)010)014
	- 1_s	dado	dr2 -	SD	CS2	# Ao	ddre	ss (igur	atio	n	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5					
merr	- 1_s	dado	dr2 -	SD	CS2	# Ao	ddre	ss (Conf	igur	atio	n	19	18	17	16		14 BA	13	12	11	10	9	8	7	· ·	5 CSM	4	Offs 3			0014

Bits	Name	Description	R/W	Default
31:21	_	Reserved, should be cleared.	R	0
20	E	Enable. 0 Chip select is disabled. 1 Chip select is enabled.	R/W	0, except for mem_sdaddr0 (Note 1)
19:10	CSBA	Chip select base address. Specifies bits 31:22 of the physical base address for this chip select. (The lower bits of the base address are zero.)	R/W	0x3FF, except for mem_sdaddr0 where the default value is 0x7F.
9:0	CSMASK	Chip select address mask. Specifies which bits of CSBA are used to decode this chip select.	R/W	0x3FF

Note 1. The E bits for the chip selects SDCS1# and SDCS2# are automatically cleared (disabled) coming out of a runtime or hardware reset. For SDCS0#, however, the reset value of the E bit depends on ROMSEL and ROMSIZE: SDCS0#'s E bit is set when the ROMSEL and ROMSIZE pins indicate that the SMROM/SyncFlash should be used for the boot vector (ROMSEL==1, ROMSIZE==0). See also Section 9.3 "Boot" on page 182.

Once enabled (E bit set), a chip select is asserted when the following condition is met:

(phys_addr & addr_mask) == base_addr

where

phys_addr: 32-bit physical address output on the internal SBUS (from the TLB for memory-mapped regions) (Bits 35:32 of the physical address are zeros.)

addr_mask: address comparison mask taken from CSMASK

base_addr: chip select base address taken from CSBA

Note that chip select regions must be programmed so that each chip select occupies a unique area of the physical address space. Programming overlapping chip select regions results in undefined operation.

3.1.2.3 Refresh Configuration Register

The refresh configuration register sets the timing of SDRAM refresh for all chip selects. Since the timing for these signals apply to all chip selects, if different types of SDRAM is used the worst case timing must be applied. The format of the refresh configuration register is as follows:

mem_s	dref	cfg -	Ret	fres	h Co	onfig	jura	tion																				Offs	set =	0x0	018
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Т	rc		Tr	pr	Е													RI												
Def. 1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description	R/W	Default
31:28	Trc	The Trc field specifies the minimum time from the start of an auto refresh cycle to an activate command for all SDRAM chip selects.	R/W	Oxf
		(Trc + 1) is the actual number of clock cycles.		
27:26	í	This field specifies the minimum time from a precharge to the start of a refresh cycle for all SDRAM chip selects. This is used because a precharge all command is automatically initiated before an auto refresh command. This value should be programmed with the worst case Trp from the sdr_csmode <i>n</i> registers.	R/W	3
		(Trpm + 1) is the actual number of clock cycles.		
25	E	When this bit is set, refresh is enabled for all chip selects configured as SDRAM.	R/W	0
24:0	RI	Refresh Interval - This field specifies the maximum refresh interval in SBUS clocks for all SDRAM ranks.	R/W	0x1FFFFFF
		The refresh interval is for each individual refresh so for a system with a row address size of 12 (4096 rows) and memory with a refresh time of 64 ms (all rows), the individual refresh interval will be 15.7 μ s (64 ms/4096). With a SBUS clock of 198 MHz, the RI value should be 0xC24 (15.7 μ s / (1/198 MHz).		

3.1.2.4 Precharge All Command Register

Writing any value to the **mem_sdprecmd** register issues a precharge all command to all enabled SDRAM chip selects. This can be used for initialization sequences that require certain operations to be performed in a deterministic order.

Reading from the **mem_sdprecmd** register is unpredictable.

men	n_so	dpre	cmo	1 - P	rech	narg	e Al	l Co	mm	and	Reg	I																(Offs	et =	0x0	01C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[P	A															
Def.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bit	s	Name	Description	R/W	Default
31:	:0	PA	Writing any value to PA will cause a precharge command to be issued to all enabled SDRAM chip selects.	W	UNPRED

3.1.2.5 Auto Refresh Command Register

Writing to the mem_sdautoref register performs an auto refresh command on all enabled SDRAM chip selects. This can be used for initialization sequences that require specific operations to be performed in a deterministic order. To insure future compatibility the value written should always be zero.

Reading from the mem_sdautoref register will return the current value of the refresh timer.

mem sdautoref - Auto Refresh Command

men	n_sc	daut	oref	i - A	uto	Refr	esh	Cor	nma	ind																			Offs	set =	0x0	020
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																A	R															
Def.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	AR	Writing a value to AR causes an AUTO REFRESH command to be issued to all enabled SDRAM chip selects.	R/W	UNPRED

3.1.2.6 **External SDRAM Mode Register Access**

The mem_sdwrmd0, mem_sdwrmd1, and mem_sdwrmd2 command registers allow software to directly write to the mode registers in SDRAM connected to each chip select. This can be used in initialization sequences that require certain operations be performed in a deterministic order.

mem_sdwrm	nd0 - Wr	ite CS	0 SD	RAN	1 Mo	de																			Offs	set =	0x0	0024
mem_sdwrm	nd1 - Wr	ite CS	1 SD	RAN	/ Mo	de																			Offs	set =	0x0	028
mem_sdwrm	nd2 - Wr	ite CS	2 SD	RAN	/ Mo	de																			Offs	et =	0x0	02C
Bit 31 30	29 28	27 26	5 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BA													N	/M														
Def. X X	ХХ	ХХ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:30	BA[1:0]	Bank address. These bits are reflected on the SDBA[1:0] signals. They can be used to write to the <i>extended</i> mode register (for synchronous Flash and battery RAM, for example). These bits must be cleared otherwise.	W	UNPRED
29:0	WM	The value written to this register is written to the external SDRAM mode register for the corresponding chip select.	W	UNPRED

3.1.2.7 SDRAM Sleep/Self Refresh Command Register

Writing any value to this register performs sends a self refresh command on all enabled SDRAM chip selects. This command can be used for the SDRAM power down sequence which requires specific commands to be performed in a deterministic order.

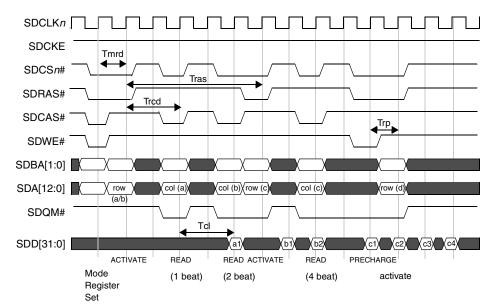
After performing self refresh the SDRAM controller will hold SDCKE low and wait until a Sleep exit sequence or reset is performed. For this reason nothing should access the SDRAM after this command has been issued.

mam adalaan CDDAM Claam

mem_s	dsle	ep -	SDR	AM	Slee	эp																						Offs	set =	0x0	030
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															S	SL -															
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	SL	Writing any value to SL will issue a self refresh command on all enabled chip selects.	W	UNPRED

3.1.2.8 SMROMCKE Toggle Register

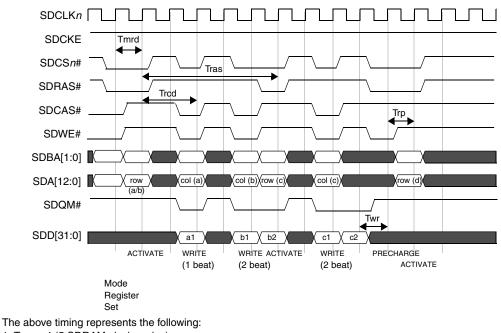

Writing to this register causes the state of the SMROMCKE signal to change. SMROMCKE will default to high when booting from SMROM or Sync Flash. This is used during power-up configuration to change the SMROM burst size from 4 to 8 beats. This command register does not affect the SDRAM SDCKE signal.

men	n_s	dsm	cke	-SM	ROI	мск	ET	oggl	е																				Offs	set =	0x0	034
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																5	SΤ															
Def.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	ST	Writing to ST (regardless of the value written) inverts the current state of SMROMCKE.	w	UNPRED

3.1.3 SDRAM Timing

The following figures show examples of typical read, typical write and refresh timing.

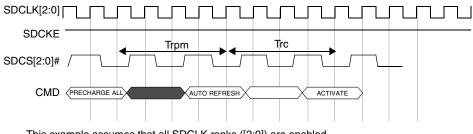


The above timing represents the following:

- 1. Tras = 4 (5 SDRAM clock cycles)
- 2. Trp = 0 (1 SDRAM clock cycles)
- 3. Trcd = 1 (2 SDRAM clock cycles)
- 4. Tcl = 1 (2 SDRAM clock cycles)
- 5. Tmrd = 0 (2 SDRAM clock cycles)

The above timing is presented to concisely display the different SDRAM timing parameters. The functional bus behavior may differ from that displayed.

Figure 3-1. SDRAM Typical Read Timing



- 1. Tras = 4 (5 SDRAM clock cycles)
- 2. Trp = 0 (1 SDRAM clock cycles)
- 3. Trcd = 1 (2 SDRAM clock cycles)

4. Tmrd = 0 (1 SDRAM clock cycles)

The above timing is presented to concisely display the different SDRAM timing parameters. The functional bus behavior may differ from that displayed.

Figure 3-2. SDRAM Typical Write Timing

This example assumes that all SDCLK ranks ([2:0]) are enabled.

- The above timing represents the following:
- 1. Trpm = 3 (4 SDRAM clock cycles)
- 2. Trc = 3 (4 SDRAM clock cycles)

Figure 3-3. SDRAM Refresh Timing

3.1.4 SDRAM Hardware Considerations

Table 3-3 shows the signals associated with the SDRAM interface.

Table 3-3.	SDRAM Signals
------------	---------------

Signal	Input/ Output	Description
SDA[12:0]	0	Address Outputs. A0-A12 are driven during the ACTIVE command (row-address A0-A12) and READ/WRITE command to select one location out of the memory array in the respective bank. The address outputs also provide the opcode during a LOAD MODE REGISTER command.
SDBA[1:0]	0	Bank Address Outputs. SDBA1 and SDBA0 define to which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied. The SDBA signal values are programmed in mem_sdwrmd <i>n</i> [BA].
SDD[31:0]	10	SDRAM data bus.
SDQM[3:0]#	0	Input/Output Mask. SDQM# is a mask signal for write accesses and an output enable signal for read accesses. SDQM0# masks SDD[7:0], SDQM1# masks SDD[15:8], SDQM2# masks SDD[23:16], SDQM3# masks SDD[31:24].
SDRAS#	0	Command Outputs. SDRAS#, SDCAS# and SDWE# (along with SDCSn#) define the
SDCAS#	0	command being sent to the SDRAM rank.
SDWE#	0	
SDCLK[2:0]	0	Clock output corresponding to each of the three chip selects. Clock speed is 1/2 SBUS frequency when corresponding SDCSn# is set to SDRAM or SyncFlash, 1/4 SBUS frequency when corresponding SDCSn# is set to SMROM.
SDCS[2:0]#	0	Programmable chip selects (3 ranks).
SDCKE	0	Clock enable for SDRAM.
SMROMCKE	0	Synchronous Mask ROM Clock Enable. This signal must be pulled high if the system is booting from SMROM.
		Muxed with GPIO[6]. If ROMSEL and ROMSIZE are configured to boot from Synchro- nous Mask ROM, SMROMCKE will control the pin out of reset, else GPIO[6] will con- trol the pin out of reset.

3.2 Static Bus Controller

The static bus controller provides a general purpose interface to a variety of external peripherals and memory devices. Each of the four static bus chip selects may be programmed to support standard Flash memory, ROM, Page Mode Flash/ ROM, SRAM, I/O peripherals, PCMCIA/Compact Flash devices, or an LCD controller. Because of the similarity of Compact Flash and PCMCIA, references to PCMCIA should be taken as applicable to Compact Flash except where noted.

The Au1500 processor allows control of different device types by reconfiguring what control signals chip select *n* manages based on how the device type field (DTY) is encoded in the **mem_stcfg***n* register. All device types use the same address and data bus signals, RAD[31:0] and RD[31:0].

Descriptions of all device types are provided in Section 3.2.2 "Static RAM, I/O Device and Flash Device Types" on page 60, Section 3.2.3 "PCMCIA/Compact Flash Device Type" on page 62, and Section 3.2.4 "LCD Controller Device Type" on page 68.

A read to the static bus causes a 32-bit access. This can cause a potential problem with volatile devices because a single 16-bit read results in two 16-bit reads on the external bus.

Chip selects may be programmed for fixed access times or an external wait signal may be used to provide a variable delay per access.

While the static bus controller is a synchronous device internally, no external clock is available to reference the control signals. The internal clock comes from the SBUS clock. Configuring the SBUS clock determines the internal reference for the static controller and associated timings.

3.2.1 Static Controller Programming Model

The properties of each static controller chip select are determined by a set of registers. All registers in the Static Controller block are located off of the base address shown in Table 3-1 "Memory Controller Block Base Address" on page 43. Table 3-4 shows the registers and offsets for the static bus controller.

After modifying the configuration of a chip select, software must issue a **SYNC** instruction before write accesses to the chip select are allowed.

Offset (Note 1)	Register Name	Description
0x1000	mem_stcfg0	Configuration for RCS0#
0x1004	mem_sttime0	Timing parameters for RCS0#
0x1008	mem_staddr0	Address region control for RCS0#
0x1010	mem_stcfg1	Configuration for RCS1#
0x1014	mem_sttime1	Timing parameters for RCS1#
0x1018	mem_staddr1	Address region control for RCS1#
0x1020	mem_stcfg2	Configuration for RCS2#
0x1024	mem_sttime2	Timing parameters for RCS2#
0x1028	mem_staddr2	Address region control for RCS2#
0x1030	mem_stcfg3	Configuration for RCS3#
0x1034	mem_sttime3	Timing parameters for RCS3#
0x1038	mem_staddr3	Address region control for RCS3#

Table 3-4. Static Bus Controller Configuration Registe
--

Note 1. See Table 3-1 on page 43 for base address.

3.2.1.1 Static Bus Configuration Registers

The static bus configuration registers (**mem_stcfg***n*) configure the basic properties of each chip select. Support is included for static RAM, Flash, ROM, PCMCIA, LCD, and other types of I/O devices.

When programming a chip select as an I/O, LCD, or PCMCIA device the address comparison mask will expect an address with the upper nibble set as shown in Table 3-5 "Device Type Encoding" on page 55 for the different device types. The TLB must be set up accordingly to map addresses to the memory region captured by the associated chip select.

For example, to configure the TLB for use with an LCD controller, bits 29:26 of CoProcessor register Entry Lo must be 0b1110 (in addition to the other steps necessary to set up the TLB). These bits represent address bits 35:32 of the physical address which must be 0xE in order for the address to match successfully when a chip select is enabled as an LCD device.

Since the RAM and Flash have an upper nibble of zero, it is not necessary to use the TLB to access devices set up with these types.

mem_s	stcfg	D																										Offs	et =	0x1	000
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																			ΒV	D5	AV	BE	TS	EW	Н	BS	РM	RO		DTY	
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Rs	0	0	0	0	1	1
mem_s mem_s mem_s	stcfg	2																										Offs	et =	0x1 0x1 0x1	020
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	-	0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9 BE	•	7 EW	•	5 BS	4	3	2	-	0

Bits	Name	Description	R/W	Default
31:13	—	Reserved, should be cleared.	R	0
12	BV	Burst size visible. When this bit is set the burst size for static transfers will be output for chip selects not configured as LCD or PCMCIA. The burst size output is one less than the number of 32-bit words to be transferred. For 16-bit chip selects twice as many beats will occur. The mapping of the burst size to pins is shown in Table 3-6 "Burst Size Mapping" on page 55.	R/W	0
		This bit is a global attribute and is present only in mem_stcfg0.		
11	D5	Divide by 5. Setting this bit will divide the SBUS clock by 5 to gener- ate LCLK. When D5 is cleared the SBUS clock is divided by 4 to gen- erate LCLK.	R/W	0
		This bit is a global attribute and is present only in mem_stcfg0.		
10	AV	Address visible. Setting this bit will place the address for all internal accesses to the SBUS on the static address bus. This is intended to be used as a debug aid and should not be used during normal operation as it will increase system power usage.	R/W	0
		This bit is a global attribute and is present only in mem_stcfg0.		
9	BE	Endianness. 0 Little Endian 1 Big Endian	R/W	0
		Program this bit to match the endianness of the processor. This bit should not be set for PCMCIA.		
8	TS	Time scale for chip select timing parameters.	R/W	0
		0 Do not scale the timing parameters.		
		1 Multiply the timing parameters by a factor of four. This option allows for longer access times.		
7	EW	When the EW bit is set the EWAIT# input is allowed to stretch the bus access time. The EW bit does not apply to chip selects operating in LCD or PCMCIA mode because they have different wait mechanisms.	R/W	0

Bits	Name	Description	R/W	Default
6	н	 Half Bus. Selects the data bus width for the chip select. 32-bit bus. 1 16-bit bus using bits 15:0 of the data bus. For PCMCIA device type, clear this bit. For LCD device type, set this bit. 	R/W	0, except for mem_stcfg0 where the default value is deter- mined by ROM- SEL and ROMSIZE out of reset. See Table 9-1 on page 182.
5	BS	Burst Size for Page Mode Accesses. Selects the burst size for page mode accesses. Valid only in page mode (PM=1). 0 4 beats 1 8 beats	R/W	0
4	PM	If the PM bit is set the chip select will operate in page mode. This allows quick access to sequential locations in memory. Page mode applies only to reads. See Section 3.2.6.1 "Page Mode Transfers" on page 70.	R/W	0
3	RO	If the RO bit is set the chip select will operate in read only mode. This will inhibit the generation of write cycles to the chip select. Any attempt to write to the address region controlled by a read only chip select will be ignored.	R/W	0
2:0	DTY	Device type. Selects the type of device controlled by the static con- troller chip select. A list of device types and encodings is shown in Table 3-5 "Device Type Encoding" on page 55. Programming multiple chip selects as LCD or PCMCIA is illegal. Only one of each is supported.	R/W	0 (SRAM), except for mem_stcfg0 where the default value is 3 (Flash).

Table 3-5. Device Type Encoding

		DEN[25-20]	
DTY	Chip Select Function	PFN[35:32] (upper nibble of physical address)	Reference
0	Static RAM	0x0	Section 3.2.2 on page 60
1	I/O Device	0xD	Section 3.2.2 on page 60
2	PCMCIA Device/Compact Flash	0xF	Section 3.2.3 on page 62
3	Flash Memory	0x0	Section 3.2.2 on page 60
4	LCD Device (RCS2# only)	0xE	Section 3.2.4 on page 68
5–7	Reserved		

Table 3-6. Burst Size Mapping

Signal	Pin
burst_size[2]	LWR0#
burst_size[1]	LRD1#
burst_size[0]	LRD0#

3.2.1.2 Static Timing Registers

The static timing registers allow software to control the timing of each phase of a static bus access. The names of the timing parameters correspond directly to timing parameters shown on the timing diagrams.

All timing parameters are expressed as a number of clock cycles. The base clock frequency is the SBUS clock.

The actual number of clocks for each timing parameter ($T_{parameter}$) is shown in Table 3-7. Note that the timing behavior for Tcsh is different and is shown in Table 3-8.

Table 3-7. Actual Number of Clocks for Timing Parameters (Except Tcsh)

Device Type	TS = 0	TS = 1
Static RAM, I/O, Flash	T _{parameter} + 1	(4 * T _{parameter}) + 1
PCMCIA Device/Compact Flash	T _{parameter} + 2	(4 * T _{parameter}) + 2

Tcsh Value	TS = 0	TS = 1
0000	3	3
0001	3	6
0010	6	12
0011	6	15
0100	6	18
0101	9	24
0110	9	27
0111	9	30
1000	12	36
1001	12	39
1010	12	42
1011	15	48
1100	15	51
1101	15	54
1110	18	60
1111	18	63

Table 3-8. Actual Number of Clocks for Tcsh

mem_sttime0 (I/O, Flash, SRAM co	onfig)				Offset = 0x1004								
Bit 31 30 29 28 27 26 25 24	23 22 21 20 1	19 18 17 16 15 14	13 12 11 10 9	8 7 6 5	4 3 2 1 0								
Twcs Tcsh		Twp	Tcsw	Tpm	Та								
Def. 1 1 1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1	1 1 1 1 1	1 1 1 0	1 1 1 0 1								
mem_sttime1 (I/O, Flash, SRAM config)Offset = 0x1014mem_sttime2 (I/O, Flash, SRAM and LCD config)Offset = 0x1024mem_sttime3 (I/O, Flash, SRAM config)Offset = 0x1034													
Bit 31 30 29 28 27 26 25 24	23 22 21 20 1	19 18 17 16 15 14	13 12 11 10 9	8765	4 3 2 1 0								
Twcs Tcsh		Тwp	Tcsw	Tpm	Та								
Def. 1 1 1 1 1 1 1 1		1 1 1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1 1 1								

Bits	Name	Description	R/W	Default
31	1-	Reserved, should be cleared.	R	0
30:28	Twcs	This field specifies the required chip select hold time after a write pulse.	R/W	0x3
		See Table 3-7 "Actual Number of Clocks for Timing Parameters (Except Tcsh)" on page 56 for the actual number of clock cycles.		
27:24	Tcsh	Chip select hold-off. Specifies the minimum number of cycles that the chip select must remain inactive between accesses. The next transaction through the static bus controller is held off until the Tcsh parameter is satisfied. If this next access falls within another chip select's memory region, the new set of timing parameters associated with the controlling chip select take effect once the new transaction begins.	R/W	0xF
		Note that the SBUS can arbitrarily extend the time between accesses for internal operations. This can add up to about five additional clocks to the programmed time.		
		See Table 3-8 "Actual Number of Clocks for Tcsh" on page 56 for the actual number of clock cycles.		
23:20	—	Reserved, should be cleared.	R	0
19:14	Тwp	This field specifies the duration of the write enable.	R/W	0x3F
		See Table 3-7 "Actual Number of Clocks for Timing Parameters (Except Tcsh)" on page 56 for the actual number of clock cycles.		
13:10	Tcsw	Chip select to write. Defines the delay from the assertion of chip select until the write strobe and byte enables are asserted.	R/W	0xF
		See Table 3-7 "Actual Number of Clocks for Timing Parameters (Except Tcsh)" on page 56 for the actual number of clock cycles.		
9:6	Tpm	This field determines the number of cycles required from a burst address change until read data is valid if the PM bit is set in the mem_stcfg <i>n</i> register.	R/W	0xF
		See Table 3-7 "Actual Number of Clocks for Timing Parameters (Except Tcsh)" on page 56 for the actual number of clock cycles.		
		Ta determines the access time for the <i>first</i> beat of each burst.		
5:0	Та	The Ta parameter determines the number of cycles required for the assertion of the chip select.	R/W	0x3F, except for mem_sttime0
		For page mode accesses Ta determines the access time up to the first beat of each burst, or the first beat after a page mode wrap.		where the default value is 0x1D.
		See Table 3-7 "Actual Number of Clocks for Timing Parameters (Except Tcsh)" on page 56 for the actual number of clock cycles.		

mem_	sttim	e0 (I	РСМ	CIA	con	fig)																						Offs	set =	0x1	004
Bit 3	1 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Tmst										Tmsı	L			Tmih							Т	st			Tisu						
Def. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	0	1
mem_ mem_ mem_	sttim	e2 (l	РСМ	CIA	con	fig)																						Off	set =	0x1	1014 1024 1034
Bit 3	1 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Tn	nst							Tmsı	L					Tn	nih					Т	st					Tisu		
Def. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description	R/W	Default
31:24 Tmst		This field specifies the strobe width during memory accesses to PCMCIA chip selects.	R/W	0xFF
		The timing duration depends on the time-scale option mem_stcfg <i>n</i> [TS]:		
		When TS=0, (Tmst + 2) is the number of cycles to the end of the strobe; however, the read occurs at (Tmst + 1).		
		When TS=1, $[(4 * Tmst) + 2]$ is the number of cycles to the end of the strobe; however, the read occurs at $[(4 * Tmst) + 1]$.		
23:17	Tmsu	This field specifies the setup time from chip select to strobe during memory accesses to PCMCIA chip selects.	R/W	0x7F
		See Table 3-7 "Actual Number of Clocks for Timing Parameters (Except Tcsh)" on page 56 for the actual number of clock cycles.		
16:11	Tmih	This field specifies the hold time for address, data, and chip selects from the end of the strobe for both memory and I/O cycles to PCM-CIA chip selects.	R/W	0x3F
		See Table 3-7 "Actual Number of Clocks for Timing Parameters (Except Tcsh)" on page 56 for the actual number of clock cycles.		
10:5	Tist	This field specifies the strobe width for I/O accesses for a chip select configured for PCMCIA.	R/W	0x3F, except for mem_sttime0
		The timing duration depends on the time-scale option mem_stcfg <i>n</i> [TS]:		where the default value is 0x3E.
		When TS=0, (Tmst + 2) is the number of cycles to the end of the strobe; however, the read occurs at (Tmst + 1).		
		When TS=1, $[(4 * Tmst) + 2]$ is the number of cycles to the end of the strobe; however, the read occurs at $[(4 * Tmst) + 1]$.		
4:0	Tisu	This field specifies the setup time from chip select to strobe during I/O accesses for PCMCIA.	R/W	0x1F, except for mem_sttime0
		See Table 3-7 "Actual Number of Clocks for Timing Parameters (Except Tcsh)" on page 56 for the actual number of clock cycles.		where the default value is 0x1D.

3.2.1.3 Static Chip Select Address Configuration Registers (mem_staddrn)

The static memory chip-select address configuration registers (mem_staddrn) assign an address range for each chip select. As shown below, each register contains a base address, an address comparison mask, and an enable bit.

mem_staddr0 - F	CS0# Add	dress Co	nfigurati	on																Offs	set =	0x1	008
Bit 31 30 29 2	28 27 26	5 25 24	23 22	21 20	19	18 1	17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	E CSBA CSMASK																						
Def. 0 0 0 I	Rs 0 0	0 1	1 1	1 1	1	1	0 0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
mem_staddr1 - F mem_staddr2 - F mem_staddr3 - F	CS2# Add	dress Co	nfigurati	on																Offs	set =	0x1	018 028 038
Bit 31 30 29 2	28 27 26	5 25 24	23 22	21 20	19	18 1	17 16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	E			CSBA											(CSN	IASK	(
Def. 0 0 0	0 1 1	1 1	1 1	1 1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description	R/W	Default
31:29	—	Reserved, should be cleared.	R	0
28	E	Enable 0 Chip select is disabled. 1 Chip select is enabled.	R/W	0, except for mem_staddr0 (Note 1)
27:14	CSBA	Chip select base address. Specifies bits 31:18 of the physical base address for this chip select. The upper nibble of the chip select address is determined by the device type selected in mem_stcfg n[DTY]. The lower bits of the base address are zeros.	R/W	0x3FFF, except for mem_staddr0 where the default value is 0x7F0.
13:0	CSMASK	Chip select address mask. Specifies bits 31:18 of the address comparison mask used to decode this chip select. (The upper nibble of the address comparison mask is determined by mem_stcfg n[DTY]. The lower bits of the mask are zeros.)	R/W	0x3FFF

Note 1. The enable (E) bits for chip selects RCS1#, RCS2#, and RCS3# are automatically cleared (disabled) coming out of a runtime or hardware reset. For RCS0#, however, the reset value of the E bit depends on ROMSEL: Holding ROMSEL low indicates that ROM should be used for the boot vector (and RCS0#'s E bit is set); otherwise, RCS0# is disabled. See also Section 9.3 "Boot" on page 182.

Once enabled, a chip select is asserted when the following condition is met:

(phys_addr & addr_mask) == base_addr

where:

phys_addr: 36-bit physical address output on the internal SBUS (from the TLB for memory-mapped regions) addr_mask: address comparison mask taken from CSMASK base_addr: chip select base address taken from CSBA

Note that chip select regions must be programmed so that each chip select occupies a unique area of the physical address space. Programming overlapping chip select regions results in undefined operation.

3.2.2 Static RAM, I/O Device and Flash Device Types

This section describes the static RAM interface which is implemented when the device type (**mem_stcfg**n[DTY]) is programmed to 0, 1 or 3. (See Section 3.2.1.1 "Static Bus Configuration Registers" on page 54.)

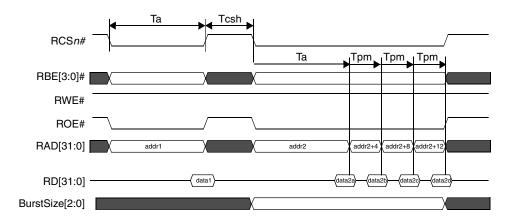
The static RAM, I/O device and Flash device types are all similar. The I/O device type is identical to the static RAM type except that it expects the upper nibble of the system address (bits [35:32]) to be 0xD. The only difference between the Flash device type and the static RAM device type is that the Flash timing allows for a chip select hold time after a write pulse using **mem_sttime**/[Twcs].

Other than these differences, the static RAM, I/O device and Flash device types share the same timing and control signals. The control signals are shown in Table 3-9.

Pin Name	Input/Output	Description
RAD[31:0]	0	Address bus
RD[31:0]	I/O	Data bus
RBE[3:0]#	0	Byte enables:
		RBE0# corresponds to RD[7:0].
		RBE1# is for RD[15:8].
		RBE2# is for RD[23:16].
		RBE3# is for RD[31:24].
RWE#	0	Write enable.
ROE#	0	Output enable.
RCS[3:0]#	0	Programmable Chip Selects (4 banks). RCS <i>n</i> # is not used when configured as a PCMCIA device.
EWAIT#	I	Can be used to stretch the bus access time when enabled through mem_stcfg <i>n</i> [EW].

Table 3-9. Static RAM, I/O Device and Flash Control Signals

3.2.2.1 Static Memory Timing


The following figures show static memory timing. Figure 3-4 on page 61 illustrates static memory read timing, and Figure 3-6 on page 61 illustrates static memory write timing. The EWAIT# timing diagrams are presented to show how EWAIT# will hold the cycle past Ta for reads and Twp for writes.

Setup, hold, and delay timing specifications (electrical switching characteristics) are presented in Section 12.0 "Electrical and Thermal Specifications". (See Section 12.6.2 "Static Bus Controller Timing" on page 222.)

Timing parameters do not take into account SBUS overhead which may add inter-access delays. These delays are dependent on system design and are affected by the number of bus masters and the ability of other devices to hold the bus.

Read Timing

Read accesses to the static bus always retrieve 32-bits of data. As such, all four byte enables are asserted during the 32-bit access or the two 16-bit beats. The control signals (RCSn#, ROE#, and RBE[1:0]#) span both accesses. The only signal that changes state to indicate the start of the second beat is RADDR[1].

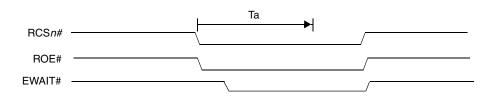


Figure 3-5. Static Memory Read EWAIT# Timing

Write Timing

The timing diagrams below show the static bus write timing for I/O and SRAM device types. Figure 3-6 shows a single 32-bit write on a 32-bit chip select.

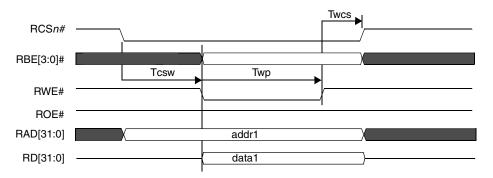
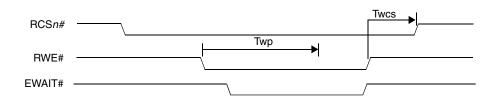



Figure 3-6. Static Memory Write Timing

3.2.3 PCMCIA/Compact Flash Device Type

Because of the similarity of Compact Flash and PCMCIA, references to PCMCIA should be taken as applicable to Compact Flash except where noted. The PCMCIA peripheral is designed to the PCMCIA2.1 specification—but only for the bus transactions as described in this section.

The Au1500 processor provides a PCMCIA host adapter when the device type is programmed for PCMCIA. The static controller interface provides the required bus signals necessary to control a PCMCIA interface. Auxiliary signals, such as card detect and voltage sense, can be implemented with GPIOs if desired.

The PCMCIA host interface adapter will support memory, attribute and I/O transactions. External logic can be added to support DMA transfers. The Au1500 processor supports only 8- and 16-bit load and store instructions (byte and halfword instructions) to PCMCIA devices. 32-bit accesses are not supported.

The PCMCIA interface provides control signals defined for PCMCIA devices. If two devices are required then external logic must be added to allow for both cards to share the bus. Note that when a chip select is programmed as a PCMCIA device that the associated RCSn# is not used.

The PCMCIA interface occupies a 36-bit address space with the upper 4 bits equal to 0xF. The TLB is required to generate addresses that will activate a chip select with a device type of "PCMCIA".

I/O, Memory and Attribute spaces are differentiated by addr[31:30]. Table 3-10 shows the mapping.

Physical Address	PCMCIA Mapping
0xF 0xxx xxxx	I/O
0xF 4xxx xxxx	Attribute Memory
0xF 8xxx xxxx	Memory

Table 3-10. PCMCIA Memory Mapping

Note: Each of the PCMCIA physical address spaces have a maximum size of 64 MBytes. Any access beyond the 64-MByte space will alias back into the defined region.

Table 3-11 enumerates the signals to support the PCMCIA interface.

Pin Name	Input/Output	Description
RAD[31:0]	0	Address Bus.
RD[15:0]	I/O	Data Bus.
PREG#	0	When this signal is asserted card access is limited to attribute memory when a memory access occurs and to I/O ports when an I/O access occurs.
PCE[2:1]#	0	Card Enables.
POE#	0	Memory Output Enable.
PWE#	0	Memory Write Enable.
PIOR#	0	I/O Read Cycle Indication.
PIOW#	0	I/O Write Cycle Indication.
PWAIT#	I	This signal is asserted by the card to delay completion of a pending cycle.
		Note that this signal should be tied high through a resistor when the PCMCIA inter- face is not used.
PIOS16#	I	16-bit port select. Note that this signal should be tied high through a resistor when the PCMCIA interface is not used.
ROE#	0	Output Enable - This output enable is intended to be used as a data transceiver control. During a PCMCIA transaction, ROE# remains asserted (low) as configured in the timing registers (mem_sttime <i>n</i>) for reads and negated (high) for writes.

Table 3-11. PCMCIA Interface Signals

Figure 3-8 and Figure 3-9 on page 64 show a one and two card PCMCIA implementation. For the two card implementation RAD26 is used as a card select signal. Both figures assume that the PCMCIA card can be hot swapped at any time—note the use of isolation buffers on the shared bus. If the card is fixed in the system much of the interface logic can be removed. A Compact Flash implementation is very similar to the PCMCIA implementation except that the number of address lines used is fewer.

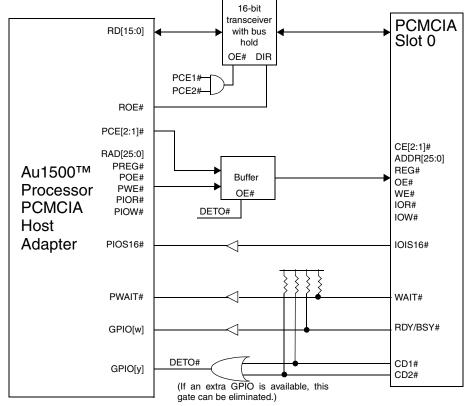


Figure 3-8. One Card PCMCIA Interface

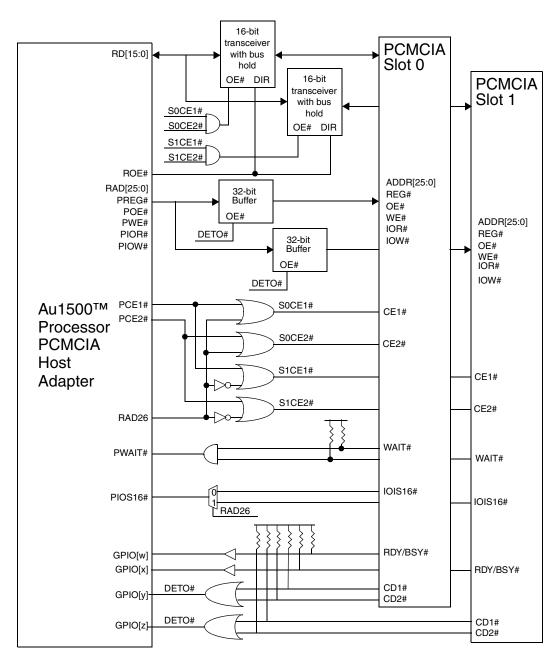


Figure 3-9. Two Card PCMCIA Interface

3.2.3.1 PCMCIA/CompactFlash Interface

The figures on the following pages illustrate the functional timing of the PCMCIA interface, including memory read timing, memory write timing, I/O read timing, and I/O write timing. The PWAIT# timing diagrams are presented to show how PWAIT# will hold the cycle past Tmst for memory reads and writes and Tist for I/O reads and writes.

Setup and hold time requirements are presented in Section 12.6.2 "Static Bus Controller Timing" on page 222.

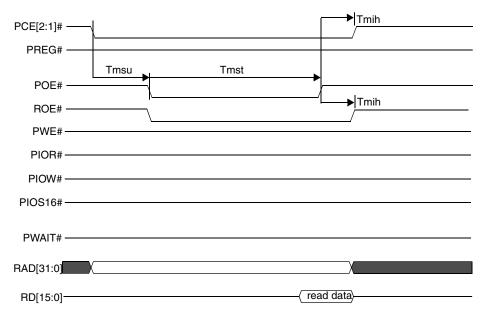


Figure 3-10. PCMCIA Memory Read Timing

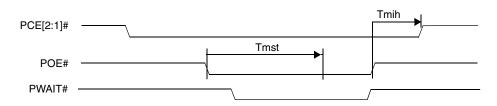
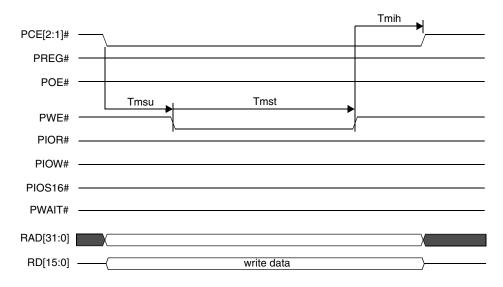
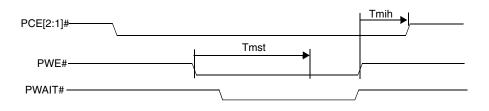
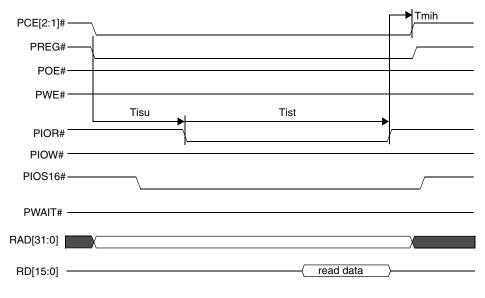
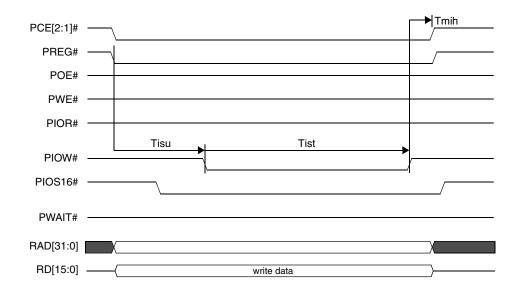



Figure 3-11. PCMCIA Memory Read PWAIT# Timing


Figure 3-13. PCMCIA Memory Write PWAIT# Timing

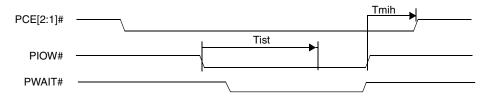


Figure 3-17. PCMCIA I/O Write PWAIT# Timing

3.2.4 LCD Controller Device Type

The Au1500 processor provides a LCD controller host adapter when the device type is programmed for an LCD. The static controller interface provides the bus signals necessary to interface to most LCD controllers.

A dedicated clock LCLK is provided for the LCD interface. The LCLK rate is the SBUS rate divided by a factor programmed in **mem_stcfg0**[D5]; see Section 3.2 "Static Bus Controller" on page 53.

The Au1500 supports 8-, 16-, and 32-bit load and store instructions (byte, halfword, and word instructions) to the LCD controller interface.

The LCD controller occupies 36-bit address space with the upper 4 bits equal to 0xE. The MMU is required to generate addresses that will generate a chip select with a device type of "LCD".

Table 3-12 lists the control signals to support the LCD controller.

Signal	Input/Output	Function
RAD[31:0]	0	Address Bus.
RD[15:0]	I/O	Data Bus.
RCS[3:0]#	0	Chip Selects.
LCLK	0	Interface Clock.
LWAIT#	I	Extend Cycle.
LRD[1:0]#	0	Read Indicators.
LWR[1:0]#	0	Write Indicators.

Table 3-12. LCD Controller Interface Signals

3.2.5 LCD Controller Interface Timing

The following figures shows the LCD timing. The LWAIT# timing diagrams are presented to show how LWAIT# will hold the cycle past Ta for memory reads and Twp for memory writes.

LWAIT# timing requirements as well as setup and hold times are presented in Section 12.6.2 "Static Bus Controller Timing" on page 222.

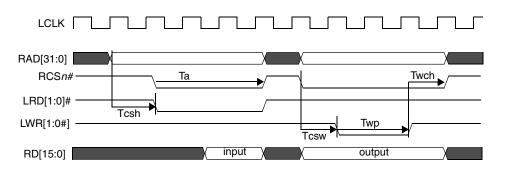


Figure 3-18. LCD Controller Timing

Figure 3-19. LCD Read LWAIT# Timing

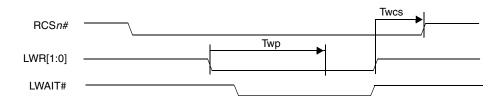


Figure 3-20. LCD Write LWAIT# Timing

3.2.6 Static Bus Controller Programming Considerations

3.2.6.1 Page Mode Transfers

The static bus controller provides a page mode for quick read access to sequential locations in memory. Setting **mem_stcfg**[PM] selects page mode operation for the chip select. The burst size (4 or 8 beats) for page mode transfers is programmed in **mem_stcfg**[PS].

Depending on the speed of the external memory device, the system designer can adjust two timing parameters in **mem_sttime***n* for page mode transfers:

- *Ta* is the time from chip select assertion to the first beat of valid data. Ta is the time required for the initial access to a peripheral device. Ta must allow time for the peripheral device to load its read buffer or activate the next page. Note that the page size depends on the peripheral device.
- *Tpm* is the time between beats.

Figure 3-4 "Static Memory Read Timing (Single Read Followed by Burst)" on page 61 shows an example page mode read with the timing parameters Ta and Tpm.

The static bus controller does not check for page boundaries during page mode reads. The addressing is sequential regardless of alignment. An access which crosses a page boundary may return invalid data if Tpm does not allow enough time for the external memory device to update its read buffer or activate the next page. If the system designer cannot ensure adequate address alignment to avoid crossing page boundaries, Tpm must be long enough to accommodate potential page updates.

In general, page-boundary timing issues do not arise for instruction fetches because they are always accessed first-wordfirst and therefore are properly aligned. Data fetches, however, may have page-boundary timing issues because they are accessed critical-word-first unless CCA=4 (fetch the first-word first).

Note that EWAIT# can delay only the start of the burst (extend the Ta timing). That is, EWAIT# cannot be used to account for varying timing between beats (extend the Tpm timing) that may occur even for transfers within a page.

Halfword Ordering and 16-bit Chip Selects

Because the static bus controller is not aware of the endian mode of the Au1 core, potential halfword swapping conflicts can arise. Upon reset, chip selects default to little-endian byte ordering ($mem_stcfg[BE] = 0$). Figure 3-21 on page 70 shows the data formats for the 32-bit SBUS and for a little-endian 16-bit chip select.

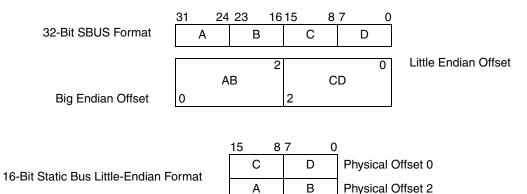


Figure 3-21. 16-Bit Chip Select Little-Endian Data Format (Default)

When a 16-bit chip select is in little-endian mode, the static bus controller accesses the least-significant halfword CD at physical offset 0 and accesses the most-significant halfword AB at physical offset 2. When the Au1 core is also in littleendian mode, the requested Au1 core offsets match the physical offsets of the 16-bit device. That is, the static bus controller and the Au1 core have the same view of memory. However, when the processor core is in big-endian mode, the default ordering of the static bus controller effectively reverses the ordering of the halfwords from what the big-endian Au1 core expects, as shown in Figure 3-22.

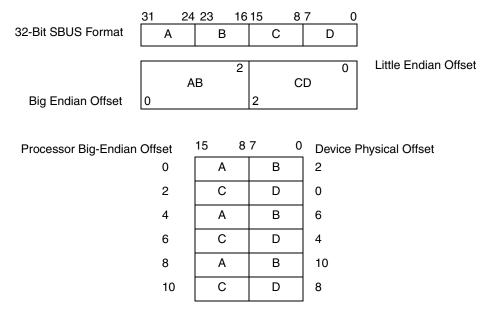


Figure 3-22. Big-Endian Au1 Core and Little-Endian 16-Bit Chip Select

For RAM memories, the halfword swapping has no side-effects because reads and writes are consistent. However, for ROM, Flash memories, and peripherals, be aware of the following side effects:

- · For ROM and Flash, the memory contents are halfword-swapped throughout the entire 16-bit device memory.
- For Flash and peripherals, the programming register offsets are also halfword-swapped.

To prevent halfword swapping, configure the chip select for big-endian mode (**mem_stcfg**[BE] = 1) before accessing the memory. (If booting from static memory, see Section 9.3.1 "Endianness and 16-Bit Static Bus Boot" on page 182.) The static bus controller inverts RAD1 for transfers on 16-bit chip selects in big-endian mode, as shown in Figure 3-23 on page 72.

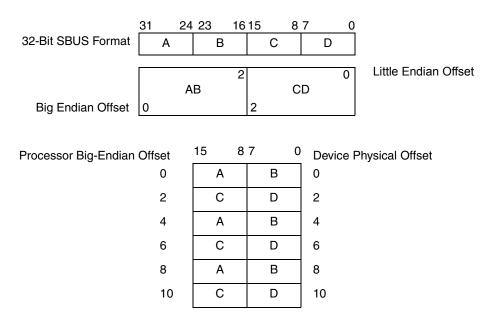


Figure 3-23. Big-Endian Au1 Core and Big-Endian 16-Bit Chip Select

PCI 2.2 Bus Controller

The Au1500 processor contains a PCI 2.2 compliant controller to allow connection of external peripherals. The PCI bus may be operated at 33 or 66 MHz. The PCI clock can be driven by the Au1500 processor or by an external source. Only 32bit wide operation is supported. The controller is capable of both executing processor initiated master transactions to PCI and accepting external PCI target transactions to the Au1500 processor's local memory.

The PCI controller can operate as either a host or satellite subsystem. When operating as a host, all PCI system configuration is done by the Au1500, and the PCI header space is not visible from the PCI bus. When operating as a satellite, PCI header space is only accessible by an external host, not by the Au1500 processor core. The Au1500 configuration registers are only visible from the processor in both host and satellite mode. The pin PCI_CFG determines whether the Au1500 processor operates as a host or a satellite.

The PCI controller contains an internal arbiter for five PCI devices including the Au1500 processor itself. This allows a glueless interface for up to four external PCI devices. The internal arbiter may be disabled if an external arbiter is desired.

The PCI controller contains 4 data FIFOs to enhance performance to and from PCI. These FIFOs are sized to minimize stalls and increase the System Bus (SBUS) efficiency during PCI bus transactions.

4.1 PCI Memory Map

Table 4-1 shows the location of PCI interface elements within the Au1500 memory map. Note that the addresses shown are 36-bit physical addresses. It is necessary to use the MMU to generate addresses to access PCI areas with the exception of the cacheable memory window, Au1500 processor configuration registers, and PCI header space.

Physical Address	Function
0x0 1400 50xx	Au1500 Configuration Registers
0x0 1400 51xx	PCI Header Space
0x4 xxxx xxxx	PCI Non-cacheable Memory Space
0x5 xxxx xxxx	PCI I/O Space
0x6 xxxx xxxx	PCI External Configuration Space

Table 4-1. PCI Memory Map

A window within the first 4 GB can be configured to access cacheable PCI memory space. This window is configured using the **pci_cmem** register. Accesses to the PCI Non-cacheable Memory, I/O, and External Configuration spaces will cause memory, I/O, or configuration cycles to be run on PCI respectively. The lower 32 bits of the 36-bit address are reflected on the PCI bus for these transactions. The Au1500 can generate both Type 0 and Type 1 configuration cycles. Setting physical address bit [31] when accessing PCI external configuration space will generate a Type 1 configuration cycle. Clearing this bit will generate a Type 0 configuration cycle. On the PCI bus, bit [31] will be 0 for both Type 0 and Type 1 configuration cycles.

4.1.1 Local PCI Configuration Register Block

Table 4-2 shows the register map for the Au1500 processor local configuration register block. The upper 256 bytes map to the PCI configuration header space defined by the PCI specification. When the PCI controller is configured to operate in satellite mode, the PCI header space is not accessible through the Au1500 PCI configuration space. In satellite mode, the PCI header space is accessible through external PCI configuration cycles. When the PCI controller is configured to operate in host mode, the PCI header space is not accessible via PCI by external devices. All appropriate configuration registers in the lower 256 bytes of the address map, the Au1500 processor configuration registers, must be written to the appropriate values before writing the upper registers or configuring the system in either Host or Satellite mode. In Host mode, all configuration registers must be written before accessing external devices.

Offset from 0x0 1400 5000 (Physical)	Pagiatar Nama	Description
0x0 1400 5000 (Physical)	Register Name	Description
0x000	pci_cmem	PCI Cacheable Memory Region Register
0x004	pci_config	Configuration/Error Register
0x008	pci_b2bmask_cch	Back-to-Back Mask/Class Code High Register
0x00C	pci_b2bbase0_venid	Back-to-Back Base 0/Vendor ID Register
0x010	pci_b2bbase1_subid	Back-to-Back Base 1/Subsystem ID Register
0x014	pci_mwmask_dev	MBAR Address Mask/Device ID Register
0x018	pci_mwbase_rev_ccl	MBAR Window Base/Revision/Class Code Low Register
0x01C	pci_err_addr	PCI Error Address Register
0x020	pci_spec_intack	PCI Special/Int Ack Cycle Register
0x100	pci_id	Device and Vendor ID Register
0x104	pci_statcmd	Status and Command Register
0x108	pci_classrev	Class and Revision Code
0x10C	pci_param	Parameter Register (BIST, header type, latency timer, cache line size)
0x110	pci_mbar	Memory Base Address Register (MBAR)
0x140	pci_timeout	Timeout Register

Table 4-2.	PCI Bus	Controller	Configuration	Registers
	I OI DUS	Controller	Configuration	ricgisters

4.1.1.1 PCI Cacheable Memory Region Register

The **pci_cmem** register configures the location of the cacheable memory window to PCI memory space. This allows processor initiated burst memory reads and writes to the PCI bus. Note that when the cacheable memory window is enabled, it must be mapped to CCA encoding 4. A cacheable memory window size of 256 KB to 2 GB is supported. A PCI memory transaction is executed when the following condition is met:

(physical_addr[31:18] & cm_mask) == cm_base

Bits [13:0] is the cacheable memory mask. Bits [27:14] is the base address of the cacheable memory region. Bit [28] is the cacheable memory enable.

pci_c	me	- m	PCI	cac	hea	ble	men	nory	reg	jion																			Of	fset	= 0×	000
Bit 3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Е						C	CM_I	BAS	E											C	M_N	MAS	K					
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:29	—	Reserved, should be cleared.	R	0
28	E	Enable.	R/W	0
		0 Disable PCI cacheable memory.		
		1 Enable PCI cacheable memory.		
27:14	CM_BASE	Specifies bits [31:18] of the starting/base address for the PCI cacheable memory region	R/W	0x0
13:0	CM_MASK	Specifies which bits of physical_addr[31:18] are used to decode the PCI cacheable memory region.	R/W	0x0

4.1.1.2 PCI Configuration/Error Register

The **pci_config** register configures the general operation of the PCI interface. It allows configuration of the Au1500 on-chip arbiter, interrupt generation, and improved error reporting. Bits [31:28] are the upper error address of the PCI Error Address register. Bits [27:22] determine what conditions were present during an error; see Section 4.3.6 "PCI Errors" on page 83 for further discussion. These bits can be used in conjunction with the PCI Status register defined in the PCI 2.2 specification.

Bit [19] enables byte masking for byte and halfword reads from memory or the configuration space. Note that if BME (bit 19) is not set, reads less than 32 bits from these areas are not supported.

Bit [16] is the non-cacheable bit. If set, all PCI master initiated accesses to the Au1500 memory space will be run as noncacheable. The default is for all accesses to be marked cacheable on the Au1500 SBUS. Bits [13:8] are the PCI interrupt mask. If a bit is a zero, the appropriate condition will not assert the PCI interrupt. This mask can be used to assist debug by only interrupting on specific conditions. Bits [7:4] are used to control address/data manipulation for big endian support. Refer to Section 4.3.8 "Endian Support" on page 84 for a detailed functional description of these bits. Bits [3:0] configure and enable the on-chip arbiter.

pci	_co	nfig ·	- PC	l co	nfigu	urati	ion/e	erro	r																				Of	fset	= 0x	:004
Bi	t 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ERR_	ADDF	3	ERD	ET	EF	EP	EM	BM		PD	BME			NC	IA		IP	IS	IMM	ITM	ITT	IPB	S	IC	ST	SM	AEN	R2H	R1H	СН
Def	. 0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:28	EA[35:32]	These bits are the upper 4 bits of the error address register.	R/W	0
27	ERD	PCI error occurred on a read/write#. If an error is detected for a PCI access, ERD reflects the direction of the transaction.	R/W	0
		0 Error occurred on a write.		
		1 Error occurred on a read.		
26	ET	PCI error occurred while the Au1500 was a target.	R/W	0
25	EF	PCI fatal error detected. These errors include Master and Target Aborts as well as certain errors not specified in the PCI Specification, but which may be important to the user.	R/W	0

Bits	Name	Description	R/W	Default
24	EP	PCI parity error detected. Parity errors are detected either by the Au1500 bus interface on data it receives, or by the target device on the PCI bus and passed to the Au1500 via PCI_PERR#.	R/W	0
23	EM	Multiple PCI errors detected. If an error was detected while EF or EP is asserted, EM is set.	R/W	0
22	BM	PCI Arbiter detected bad master—does not assert PCI_FRAME# (or negate PCI_REQ <i>n</i> #) within 16 clocks of being granted the PCI bus.	R/W	0
21	-	Reserved, should be cleared.	R	0
20	PD	PCI Disable. When this bit is set the PCI controller responds to target accesses with a PCI RETRY.	R/W	1
19	BME	 Byte mask enable for reads. This bit applies only to 8- and 16-bit <i>read</i> accesses to <i>memory</i> and the <i>configuration space</i>. (The appropriate byte lane masking is automatically applied for I/O reads less than 32 bits. Also, <i>writes</i> of any length and destination always have appropriate byte lane masking.) 0 Do not apply byte lane masking during 8-, 16-bit reads. (All byte enables are asserted regardless of transaction size.) 	R/W	0
		1 Mask the appropriate byte lanes during 8-, 16-bit reads.		
18:17	<u> _</u>	Reserved, should be cleared.	R	0
16	NC	Target accesses to Au1500 memory are marked as non-coherent if this bit is set.	R/W	0
15	IA	PCI_INTA# Enable. This bit is reflected in bit 8 of offset 0x3C in configura- tion space. If the Au1500 can generate a PCI interrupt this bit should be set.	R/W	0
14	_	Reserved, should be cleared.	R	0
13	IP	Assert the interrupt signal back to the interrupt controller if PCI_PERR# is detected. This is bit 15 of the status register in PCI space.	R/W	0
12	IS	Assert the interrupt signal back to the interrupt controller if a PCI_SERR# is generated. This is bit 14 of the status register in PCI space.	R/W	0
11	ІММ	Assert the interrupt signal back to the interrupt controller if a Master-Abort is asserted and the Au1500 processor is the master. This is bit 13 of the status register in PCI space.	R/W	0
10	ITM	Assert the interrupt signal back to the interrupt controller if a Target-Abort is detected while the Au1500 processor is a Master. This is bit 12 of the status register in PCI space.	R/W	0
9	ITT	Assert the interrupt signal back to the interrupt controller if a Target-Abort is asserted and the Au1500 is the Target. This is bit 11 of the status register in PCI space.	R/W	0
8	IPB	Assert the interrupt signal back to the interrupt controller if a PCI_PERR# is detected, the Au1500 is the bus master and the perr_enable bit is set in PCI configuration space. This is bit 8 of the status register in PCI space.	R/W	0
7:6	SIC	These bits determine the address and data swapping of I/O and Configu- ration cycles initiated by the Au1500 to/from external devices. Please refer to Section 4.3.8 "Endian Support" on page 84 for a detailed description of these bits.	R/W	0
5	ST	Swap data on PCI target transactions initiated by external PCI devices to/ from Au1500 memory.	R/W	0
4	SM	Swap data on Au1500 processor initiated master memory transactions to/ from PCI.	R/W	0
3	AEN	When set this bit enables the Au1500 internal arbiter.	R/W	0
2	R2H	When set, PCI_REQ2# arbitrates into the high priority arbiter.	R/W	0
1	R1H	When set, PCI_REQ1# arbitrates into the high priority arbiter.	R/W	0
0	СН	When set, the Au1500 processor arbitrates into the high priority arbiter.	R/W	0

4.1.1.3 PCI Back-to-Back Mask/Class Code High, Base0/PCI Subsystem Vendor ID, and Base1/PCI Subsystem ID Registers

Master initiated fast back-to-back transfers require that the subsequent access is to the same target as the previous access. The Au1500 processor allows the programmer to set up two target back-to-back windows. The Mask Register configures the size of the windows, while the base registers set the base address of each target window. A fast back-to-back transaction is attempted when ((*physical_addr & b2b_mask == b2b_base0*) / (*physical_addr & b2b_mask == b2b_base1*)). Fast back-to-back is enabled by setting bit 9 of the **pci_statcmd** register which is at offset 0x104 in the PCI Configuration space.

The lower 16 bits of the Fast Back-to-Back Mask register sets the Class Code High field. This field is the upper 16 bits of the Class Code defined by the PCI 2.2 specification. It is combined with the Class Code Low field to form the full 24-bit Class Code. This field can be written from the processor only and are reflected out to the PCI bus on configuration read cycles to address 0x08 when the Au1500 is configured as a satellite.

The lower 16 bits of the Fast Back-to-Back Base0 register sets the Subsystem Vendor ID, and the lower 16 bits of the Fast Back-to-Back Base1 register is the Subsystem ID. These fields can be written from the processor only, and allow for identification of different systems which contain an Au1500. These fields are reflected out to the PCI bus on configuration read cycles to address 0x2C when the Au1500 is configured as a satellite.

pci_b	2bm	asł	k_c	ch -	PC	l bad	ck-to	o-ba	ck m	nask	/cla	ss c	ode	hig	h														Of	fset	= 0x	800
Bit 3	1 3	0 2	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г							E	32BN	IAS	K														CC	ЭН							
Def.	o c)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	B2BMASK	This field is the mask used to qualify fast back-to-back transfers.	R/W	0
15:0	ССН	Class Code High. These bits are reflected as the upper two bytes of the class code field in PCI configuration register space.	R/W	0

pci_b2bbase0_venid - PCI back-to-back base

Offset = 0x00C

P0		-suo	•• <u>-</u>	•••••	~ ·	••••	Juon		Suo.																				•		- 07	
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							В	2BB	ASE	0														S٧	'ID							
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	B2BBASE0	This field specifies a base address for fast back-to-back transfers.	R/W	0
15:0	SVID	This field is reflected as the subsystem vendor ID in PCI configuration space.	R/W	0

pci_	b2b	bas	e1_:	subi	d - I	PCI	bacł	k-to-	bac	k ba	se																		Of	fset	= 0×	010
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							В	2BE	ASE	1														SU	BID							
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	ts	Name	Description	R/W	Default
31:1	16	B2BBASE1	This field specifies a base address for fast back-to-back transfers.	R/W	0
15:	:0	SUBID	This field is reflected as the subsystem ID in PCI configuration space.	R/W	0

4.1.1.4 PCI Memory Window Mask/Device ID and Base/Revision/Class Code Low Registers

The Au1500 processor allows PCI masters access to a window into memory. This window can be sized from 64 KB to 2 GB. The Memory Window Mask register configures the size of the memory window visible from the PCI bus. The Memory Window Base register configures the location of the memory window visible from the PCI bus. This allows a mapping from the PCI address to memory address. If a one to one mapping is required, the Memory Window Base register should be written with the same value as the Memory Base Address register which is located at offset 0x110 of the PCI Configuration space in Host mode. An external PCI access hits in the memory window when ($pci_addr \& mwmask == pci_mbar$). The physical address to the Au1500 memory system becomes (($pci_addr \& mwmask#$) | mwbase).

The lower 16 bits of the Memory Window Mask register is the Device ID field as defined by the PCI 2.2 specification. This field can be written from the processor only and is reflected out to the PCI bus on configuration read cycles to address 0x00 when the Au1500 is configured as a satellite.

The lower 8 bits of the Memory Window Base register is the Class Code Low field. This field is the lower 8 bits of the Class Code defined by the PCI 2.2 specification. It is combined with the Class Code High field to form the full 24 bit Class Code. This field can be written from the processor only and are reflected out to the PCI bus on configuration read cycles to address 0x08 when the Au1500 processor is configured as a satellite.

Bits [15:8] of the Memory Window Base register is the Revision ID field as defined by the PCI 2.2 specification. This field can be written from the processor only and is reflected out to the PCI bus on configuration read cycles to address 0x00 when the Au1500 is configured as a satellite.

pci_	mw	mas	sk_d	ev -	PC	l me	mor	y wi	ndo	w m	ask	/dev	ice	D															Of	fset	= 0x	014
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Ν	ЛWN	IAS	K														DE	VID							
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	MWMASK	This field sets the mask used to qualify target accesses to the PCI visible memory window.	R/W	0
15:0	DEVID	This field is reflected as the device ID in PCI configuration space.	R/W	0

pci_mwbase_rev_ccl - PCI memory window base/revision/class code low Offset = 0x018

					-																							-		-	
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						Ν	ИWE	BASE	=										RE	VID							CC	CL			
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	MWBASE	This field sets the base address used to qualify target accesses to the PCI visible memory window.	R/W	0
15:8	REVID	This field is reflected as the revision ID in PCI configuration space.	R/W	0
7:0	CCL	These bits are reflected as the low byte of the class code field in PCI con- figuration space.	R/W	0

4.1.1.5 **PCI Error Address Register**

This register captures error addresses on target writes, master reads and master writes. The upper 4 bits of the address are captured in the PCI Configuration/Error register. This address is intended to be used in conjunction with the PCI header error bits described in the PCI 2.2 specification. The error address captured is valid when the EF or EP bit is set in the Configuration/Error register. The address for target write errors may not be the specific identical error address due to synchronization issues. If multiple errors occur, this register contains the address of the first error.

pci err addr - PCI error address

pci_	err_	add	lr - F	PCI e	erro	r ade	dres	s																					Off	set	= 0x	01C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ															E	RR/	٩DD	R														
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

4.1.1.6 PCI Special/Int Ack Register

This register allows the programmer to initiate special and interrupt acknowledge cycles on the PCI bus. A read to this register invokes an interrupt acknowledge cycle, and a write executes a special cycle. The register value read is undefined and the actual value written is ignored.

pci specintack

pci_	spe	cint	ack																										Offs	set =	0x0	020
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ														S	PEC	CINT	ACK	[31:	0]													
Def.	Х	х	Х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	Х

4.1.2 **PCI Visible Configuration Registers**

The following registers are defined in PCI Local Bus Specification, revision 2.2. These registers are visible from the PCI bus as configuration space when the Au1500 is operating in satellite mode. When the Au1500 processor is operating in host mode these registers are available in the local configuration register block. For detailed description of these registers and their fields please refer to PCI Local Bus Specification, revision 2.2.

The offsets given in the register descriptions below are the offsets within the Au1500 local configuration register block. The offset in the PCI configuration space is given by the PCI specification.

PCI Device/Vendor ID Register 4.1.2.1

The pci_id register is defined in the PCI 2.2 specification. This register is visible at offset 0x00 in configuration header space from the PCI bus when the device is configured to operate in satellite mode. In host mode, this register is available at offset 0x100 of the PCI local configuration space.

pci_id -	PCI	cor	nfigu	rati	on d	levio	ce/ve	endo	or ID)																		Offs	set =	: 0xC	100
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							D	ID														VI) = ()x17	'55						
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	1	0	1	0	1	0	1	0	1

4.1.2.2 **PCI Status and Command Register**

The pci statcmd register is defined in the PCI 2.2 specification. This register is visible at offset 0x04 in configuration header space from the PCI bus when the device is configured to operate in satellite mode. In host mode and also again in satellite mode, this register is available at offset 0x104 of the PCI local configuration space.

pci_	stat	cma	1 - P	CI c	onfi	gura	atio	n sta	atus	/con	nma	nd																	Offs	set =	0x0	104
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								STA	TUS	i														CN	ЛD							
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

4.1.2.3 **PCI Class and Revision Register**

The pci_classrev register is defined in the PCI 2.2 specification. The CLASS field is constructed by concatenating the class code high and class code low fields in the local configuration block. This register is visible at offset 0x08 in configuration header space from the PCI bus when the device is configured to operate in satellite mode. In host mode, this register is available at offset 0x108 of the PCI local configuration space.

pci_cla	issre	v - F	PCI o	onfi	igur	atio	n cla	ass	code	e/rev	/isio	n																Offs	et =	0x0	108
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											CLA	١SS															R	EV			
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

PCI 2.2 Bus Controller

4.1.2.4 PCI Parameter Register

The **pci_param** register is defined in the PCI 2.2 specification. This register is visible at offset 0x0C in configuration header space from the PCI bus when the device is configured to operate in satellite mode. In host mode, this register is available at offset 0x10C of the PCI local configuration space.

pci_para	am ·	PC	l coi	nfigu	urati	ion	para	met	ers																		(Offs	et =	0x0	10C
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			BI	ST							Н	Т							Ľ	Т							CL	S			
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

4.1.2.5 PCI Memory Base Register

The **pci_mbar** register configures the PCI address base of the window into the Au1500 processor memory space. The **pci_mbar** register is defined in the PCI 2.2 specification. This register is visible at offset 0x10 in configuration header space from the PCI bus when the device is configured to operate in satellite mode. In host mode, this register is available at offset 0x110 of the PCI local configuration space.

pci_	pci_mbar - PCI configuration memory base address Offset = 0x0110										0110																					
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																M	BA															
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

4.1.2.6 PCI Timeout Register

The **pci_timeout** register specifies the maximum number of attempted retries per transaction and the maximum time spent waiting for a target to be ready for a transfer.

The **pci_timeout** register is defined in the PCI 2.2 specification. This register is visible at offset 0x40 in configuration header space from the PCI bus when the device is configured to operate in satellite mode. In host mode, this register is available at offset 0x140 of the PCI local configuration space.

pci_t	pci_timeout - PCI configuration timeout Offset = 0x0140																															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ																				Μ	R							T	0			
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	—	Reserved.	R/W	0
15:8	MR	Max retries. Contains the maximum number of retries to be attempted per transaction. Valid values range from 1 to 255. Note that a value of 0 disables this function, which means no limit is placed on the number of retries attempted.	R/W	0x80
7:0	то	Target-ready (PCI_TRDY#) timeout. Contains the maximum number of PCI clocks to wait for PCI_TRDY# assertion before terminating a transfer. Valid values range from 1 to 255. Note that a value of 0 disables this function, which means no time limit is placed on waiting for PCI_TRDY#.	R/W	0x80

4.1.3 Accesses to Processor Memory from PCI

The Au1500 processor supports one memory window visible from the PCI bus. This memory window can be configured to a minimum size of 64 KB and a maximum size of 2 GB. The PCI address base of the window is set in the **pci_mbar** register. The location of the window within the Au1500 address space is configured in the **pci_wbase** register. The size is configured in the **pci_wmask** register.

Only static memory accesses and SDRAM memory accesses are supported from PCI. Accesses to Au1500 processor peripherals and non-prefetchable external devices on the static interface are not supported. Also, all reads from Au1500 memory initiated from PCI will be prefetched.

The Au1500 processor cache will snoop accesses to cacheable memory from PCI if the NC bit is clear in the PCI Configuration/Error register and substitute cache contents when a hit occurs. By locking an area of memory into the cache it is possible to transfer information to and from PCI without causing external memory cycles.

4.2 PCI Arbiter

The Au1500 contains an on-chip PCI arbiter. This arbiter supports 4 external devices and can be disabled if the use of an external arbiter is desired. When the on-chip arbiter is enabled, the Au1500 processor has four request inputs and four grant outputs. When an external arbiter is used, the input PCI_REQ0# is re-defined to be PCI_GNT0#, and the output PCI_GNT0# is re-defined to be PCI_REQ0#. The other request/grant signals are unused when an external arbiter is used.

A two-level fair algorithm scheme is implemented, which ensures each master access to the bus independent of other requests. The two levels of arbitration allows bus masters to be assigned high or low priority according to their need to use the bus. Bus masters with a greater need to use the bus should be assigned to the high priority arbiter versus the low priority arbiter. As a group, the low priority requests will arbitrate into the high priority arbiter. In this way, high-priority bus masters cannot dominate the bus to the point of excluding low-priority masters which are continually requesting the bus.

Two of the external master's and the Au1500 are configurable for high/low priority. The other two external masters are tied to either a fixed high or low priority, as shown in Table 4-3. Priorities should be initialized by software before masters begin to request use of the bus.

Master	Priority
External Master 3	High Priority
External Master 2	pci_config[2]
External Master 1	pci_config[1]
External Master 0	Low Priority
Au1500	pci_config[0]

Table 4-3. PCI Arbiter Priority Configuration

The arbiter implements bus parking so that when no other masters are requesting the use of the bus, the last master to have ownership of the bus retains that ownership until another request is received. Out of system reset, the Au1500 processor is the default owner and assumes responsibility for driving the PCI address bus, C/BE bus and PAR. This ensures that no excess current is drawn due to floating nodes.

If a master receives a grant by requesting the bus and does not initiate a transaction within 16 PCI clocks after receiving the grant, the master is assumed to be broken and an error is reported to the bus controllers' PCI configuration/error register, **pci_config**[22].

4.3 Implementation Specifics

The following sections describe Au1500 implementation specific issues.

4.3.1 PCI Clock Generation

The Au1500 processor provides the capability to internally generate a clock on the PCI clock output pin (PCI_CLKO). For systems where internal generation of the PCI clock is insufficient, the Au1500 processor also provides the option to use an externally generated PCI clock.

4.3.1.1 Clock Connections

For internal PCI clock generation, the PCI_CLKO pin is used to generate the PCI clock. Note that the generated clock must be fed back into the PCI_CLK pin to drive the PCI interface logic. If an externally generated clock is used, the clock needs to be driven into the PCI_CLK pin, and the PCI_CLKO pin is left unconnected.

4.3.1.2 Limitations on Internal PCI Clock Generation

The internal frequency generation circuitry of the Au1500 processor is flexible, but there are limitations on the frequencies that can be generated. Either the CPU PLL or the AUX PLL may be used as the root source of the PCI clock generator. The AUX PLL has the advantage that it is independent of CPU frequency. However, the system designer must take into account that the AUX PLL is also used to generate the USB clocks, which are required to be 48 MHz.

All of the frequencies in the system are generated from the 12 MHz oscillator. The AUX PLL multiplies this up to some base frequency, from which the target frequency may be divided. The dividers can be programmed to divide only by even values, which places further constraints on the available frequencies.

If the AUX PLL is to be used to generate both the USB clock and the PCI clock, it should be programmed to 384 MHz by programming the **sys_auxpli** register to 32. This allows generation of the 48 MHz USB clock by setting the frequency generator to divide by eight. Setting a frequency generator to divide by six can generate a 64 MHz PCI clock, or dividing by twelve can generate a 32 MHz clock. If the AUX PLL is *not* used for USB clock generation, it can be programmed to 396 MHz and yield 66 MHz and 33 MHz with the same dividers. Alternately, if the CPU is being run at 396 MHz, the CPU PLL can be used as the root clock for a frequency generator with the same effect.

4.3.1.3 Programming Example

The CPU PLL and AUX PLL frequencies are programmed by writing to the **sys_cpupil** and **sys_auxpil** registers. The value written is multiplied by twelve to yield the resulting PLL frequency. The following configuration example uses the AUX PLL and results in a 64 MHz PCI clock on the PCI_CLKO pin:

- 1) Write 0x20 to **sys_auxpll** for an AUX PLL frequency of 384 MHz.
- 2) Choose a frequency generator for the PCI clock by programming the sys_clksrc register:
 - Write 0b100 to the MPC field. (For this example frequency generator 2 is used.)
 - Clear the CPC bit so that the PCI clock is not further divided.
- 3) Program the sys_freqctrl0 register:
 - Program the FRDIV2 field to 0x02 so that the frequency is divided by six.
 - Set the FE2 bit to enable output from frequency generator 2.
 - Set the FS2 bit to select the AUX PLL as the clock source.

For a description of the clock manager registers, see Section 8.1 "Clocks" on page 154.

4.3.2 PCI Interrupts

The PCI_INT[A:D]# signals are only inputs to the Au1500 processor. These signals are routed to the interrupt controller so that the Au1500 can be interrupted on the assertion of these signals. If software needs to generate an interrupt to an external device, a GPIO should be used.

4.3.3 PCI Reset (PCI_RST# and PCI_RSTO#)

The PCI_RST# pin is input only. For systems which require the PCI bus be held in reset as the Au1500 powers up, GPIO[200] (unlike other GPIOs) is configured to output a 0 on power up. System software can use GPIO[200] as a PCI reset output signal (labeled as PCI_RSTO#) to reset the PCI bus without resetting the processor. When the PCI bus is reset, the Au1500 processor PCI configuration registers are also reset. If the state of PCI_RST# is needed by software, another GPIO signal should be used to monitor the status of this pin.

4.3.4 Boot from PCI

The Au1500 has the ability to boot from a memory device on PCI. When the ROMSEL and ROMSIZE pins are both tied high, the Au1500 processor fetches the reset vector from PCI memory space. It is required that the boot memory be located at the Au1500 reset vector physical address because no address translation occurs on master transactions to PCI. The Au1500 processor may not be the clock source or the PCI reset source signal (PCI_RSTO# on GPIO[200]) if booting from PCI, since code is required to configure these functions. Also, the internal arbiter will be used when booting from PCI.

4.3.5 Host/Satellite Configuration (PCI_CFG)

The PCI_CFG pin determines whether the PCI interface behaves as a host or satellite. If this pin is grounded at reset the PCI interface will be in satellite mode, with configuration registers visible to the PCI bus. If this pin is pulled high at reset the interface will be set to host mode. In host mode the PCI configuration registers are only visible from the internal SBUS and the Au1500 is responsible for configuration of the bus.

4.3.6 PCI Errors

The Au1500 processor error registers (the PCI Configuration/Error register **pci_config** and the PCI Error Address register **pci_err_addr**) are intended to be used to supplement the PCI 2.2 Configuration Status bits.

PCI error conditions are reflected in the state of **pci_config**[27:22]. These bits allow software to determine if one or more errors occurred and the cause of at least the first error. Bit 23 (EM) is active only when a second error of any kind shown occurs—that is, when an error is pending while another error occurs. The EM bit allows software to know that multiple errors have occurred since the last time the error conditions were cleared. Once errors are cleared, EM is also cleared so that a subsequent error will be logged as a 'first error'. Table 4-4 shows the possible error conditions reflected in **pci_config**[27:24].

	• –		D '' 00	D'1 05	D'1 0 4
PCI Mode	PCI Error Condition	Bit 27 ERD	Bit 26 ET	Bit 25 EF	Bit 24 EP
Target	Parity Error is detected by the Au1500 on a PCI Write to Au1500 memory (and PCI_PERR# is asserted)	0	1	0	1
Master	PCI Master Abort on Configuration Space Read access, due to no response from target device on PCI_DEVSEL# (no device present on selected PCI_IDSEL)	1	0	1	0
Master	PCI Master Abort on Configuration Space Write access, due to no response from target device on PCI_DEVSEL# (no device present on selected PCI_IDSEL)	0	0	1	0
Master	PCI Master Abort on any PCI Read Access, due to transaction not completed in time—address claimed, but PCI_TRDY# or PCI_STOP# not asserted within the number of clocks programmed in pci_timeout [TO].	1	0	1	0
Master	PCI Master Abort on any PCI Write Access, due to transaction not completed in time—address claimed, but PCI_TRDY# or PCI_STOP# not asserted within the number of clocks programmed in pci_timeout [TO].	0	0	1	0
Master	PCI Access retried to the same device signaling RETRY more than the number of times programmed in pci_timeout [MR].	0	0	1	0
Master	PCI Target abort signaled by the addressed Target device	0	0	1	0
Master	Au1500 detects a PCI parity error condition on data received from a target during a read	1	0	0	1
Master	PCI Target signals a PCI parity error condition on PCI_PERR#, from data received from the Au1500 on a PCI Write Transaction	0	0	0	1

Table 4-4. PCI Error Conditions on pci_config[27:24]

There may be error situations where **pci_config** and **pci_err_addr** are not updated when an error occurs. On Au1500 initiated accesses that end in an fatal error, up to two transactions after the error could be discarded because of the asynchronous nature between the PCI bus and the SBUS. However, the address of the transaction to which the fatal error occurred will still be captured.

AMDA

4.3.7 Readline/ReadMultiple Support

The Au1500 processor will generate Read Line and Read Multiple commands on the PCI bus for Au1500 initiated PCI accesses. If the burst size of the transaction is equal to the cacheline size programmed into the command/status configuration register, then the transaction will be run as a read line transaction on PCI. If the burst size of the transaction is greater than the non-zero cacheline size and a multiple of the non-zero cacheline size, then a read multiple command will be run.

4.3.8 Endian Support

The Au1500 processor PCI block contains support for data swapping and address manipulation to support big endian systems. The Au1 processor core can be set to big endian or little endian. The memory interfaces write according to the byte masks and read the entire 32-bit word. With respect to the Au1500, if the processor is in little endian mode, all accesses are correct since PCI is little endian.

For big endian cores there is a choice to be made. The PCI data bus can be connected the same as for little endian or the bytes can be swapped. Table 4-5 shows how the bytes are connected for swapped configurations:

SBUS	PCI	Swapped PCI								
31:24	31:24	7:0								
23:16	23:16	15:8								
15:8	15:8	23:16								
7:0	7:0	31:24								

Table 4-5.	Data	Buc	Swon	nina
Table 4-5.	Dala	Dus	Swap	ping

For memory accesses between the Au1500 processor and external devices, software can choose whether or not to swap the bytes. If one selects to have no swapping, then 32-bit word accesses will read/write values as expected but byte accesses will be big endian from the core and little endian from PCI. For example, if a PCI device has 32-bit control registers and they were accessed with lw/sw from the core, the bit layout would match the devices' specification. But if one of the registers pointed to a buffer in memory that was written/read as a byte stream, the external PCI device would access the data little endian and the processor would access it big endian. Unless the PCI external device has a big endian mode the data would need to be byte swapped by software. The second option would be to swap the data bytes causing the byte accesses to be correct at the cost of word registers needing to be swapped by software. The Au1500 provides the hardware for swapping the data bytes. The endian policy of what to do is left to the system designer based on what accesses are easier to swap, if any.

Four control bits are provided to allow system designers to program when and how swapping is done. The four control bits are outlined in Table 4-6:

pci_config Bits	Function
4 (SM)	If this bit is set, then for accesses to PCI memory space that are initiated by the Au1 core or DMA devices on the Au1500 SBUS the bytes and byte masks are swapped. If this bit is clear then the bytes are not swapped.
5 (ST)	If this bit is set, then for accesses to memory from an external PCI master the bytes and byte masks are swapped. If this bit is clear then the bytes are not swapped.
7:6 (SIC)	For accesses to PCI I/O space initiated by the Au1 core or DMA devices on the Au1500 processor SBUS, the bytes must be swapped or the address changed in big endian mode so that valid PCI I/O accesses can be generated for byte and halfword accesses. The four encodings provide the following actions for both I/O and configuration accesses:
	00 The address and byte masks are unchanged.
	01 On byte accesses, invert the lower 2 address bits. On halfword accesses, invert the lower address bit. This encoding only affects I/O accesses.
	10 On byte and halfword accesses swap the data bytes and leave the address unchanged.
	11 Swap the data bytes on all accesses.

Table 4-6. Swapping Configurations

Table 4-7 shows the supported modes for the SM, ST and SIC bits based on the endianness of the processor.

Big Endian	Little Endian
yes	yes
yes	yes
no	yes
yes (only affects I/O transactions)	no
yes	no
yes	no
	Big Endian yes yes no yes (only affects I/O transactions) yes

Table 4-8. PCI Bus Support Signals

Table 4-7. Supported Endian/Swapping Modes

4.3.9 PCI Signals

The signals supporting the PCI bus are shown in Table 4-8.

PCI Signal	Input/Output	Definition
PCI_AD[31:0]	I/O	PCI Address/Data.
PCI_CBE[3:0]#	I/O	PCI Bus Command and Byte Enables.
PCI_FRAME#	I/O	PCI Cycle Frame.
PCI_IRDY#	I/O	PCI Initiator Ready.
PCI_TRDY#	I/O	PCI Target Ready.
PCI_STOP#	I/O	PCI Target Stop.
PCI_PERR#	I/O	PCI Parity Error.
PCI_SERR#	0	PCI System Error.
PCI_PAR	I/O	PCI Parity.
PCI_DEVSEL#	I/O	PCI Device Select.
PCI_IDSEL	I	PCI initialization device select input.
PCI_LOCK#	I/O	PCI Lock for Atomic Operations.
PCI_REQ[3:0]#	I	PCI Arbiter Bus Request Inputs.
PCI_GNT[3:0]#	0	PCI Arbiter Bus Grant Outputs.
PCI_INT[A:D]#	I/O	PCI interrupts.
PCI_CLKO	0	PCI Clock Output.
		Termination Note: Requires an external $22-\Omega$ resistor placed in series within 0.5 inches of the part.
PCI_CLK	I	PCI Input Clock.
		Termination Note: Should be tied low through a resistor when the PCI bus is not used.
PCI_RST#	I	PCI Reset Input.
		Termination Note: Should be tied low through a resistor when the PCI bus is not used.
PCI_RSTO# (GPIO[200])	0	PCI Reset Output. Unlike other GPIOs, GPIO[200] defaults as an output with a zero voltage level coming out of reset. For this reason, GPIO[200] can be controlled by system software to act as a PCI reset output signal (labeled PCI_RSTO#) if needed.

30361D

	Table 4-8. PCI Bus Support Signals (Continued)											
PCI Signal	Input/Output	Definition										
PCI_CFG	I	PCI configuration. Determines the mode (satellite or host) for the PCI interface at hardware reset.										

4.3.10 Other Notes

The Au1500 PCI contoller cannot be used with external PCI-to-PCI bridges that have PCI bus-mastering devices on the secondary bus which target the Au1500 memory.

Note that PCI_CFG must not change state after system power up.

For satellite mode, tie PCI_CFG low. For host mode, tie PCI_CFG high.

If the parity enable bit is cleared, the Au1500 will assert PCI_DEVSEL# on target writes in one PCI_CLK. If the parity error enable bit is set, the Au1500 processor will drive PCI_DEVSEL# in two cycles of PCI_CLK on target writes.

The Au1500 will not generate or respond to Dual Address Cycles. External PCI masters should not send Dual Address Cycles to the Au1500 processor.

The Au1500 processor will not respond to I/O Cycles. External PCI masters should not send I/O cycles to the Au1500 processor.

The Au1500 will not respond to Special Cycles. External PCI masters should not send Special cycles to the Au1500 processor.

Only Type 0 Configuration cycles are decoded by the Au1500. The Au1500 can generate both Type 0 and Type 1 configuration cycles.

The PCI_SERR# signal is only an output. The Au1500 processor will attempt to complete transactions which receive a PCI_SERR#.

The Memory Write and Invalidate command is not supported by the Au1500. Setting the Memory Write and Invalidate capable bit in the PCI configuration header has no effect.

The Au1500 processor supports PCI cacheline sizes of eight or four 32-bit words.

DMA Controller

The Au1500 processor contains an eight-channel DMA controller. Each channel is capable of transferring data between memory and any of the integrated peripherals or between memory and a memory-mapped FIFO through the Static Controller using a GPIO as a request.

Note that memory-to-memory transfers are not supported by the DMA controller. That is, one side of the DMA transfer must have an incrementing address (memory buffer), while the other side must have a *fixed* address (FIFO).

GPIO[4], GPIO[5], GPIO[208] and GPIO[209] can be programmed to act as external DMA request signals. When configured for this special system function, the pins are labeled as follows:

- GPIO[4] becomes DMA_REQ0.
- GPIO[5] becomes DMA_REQ1.
- GPIO[208] becomes DMA_REQ2.
- GPIO[209] becomes DMA_REQ3.

See Section 5.2 "Using GPIO as External DMA Requests (DMA_REQn)" on page 92 to configure these GPIO signals to act as DMA requests.

5.1 DMA Configuration Registers

Each channel of the DMA is configured by a register block. A channel register block contains seven registers. The 36-bit physical base address of the register block for each channel is shown in Table 5-1.

DMA Channel	Base Address	Base Address KSEG1 Base Address										
dma0	0x0 1400 2000	0xB400 2000	0 (highest)									
dma1	0x0 1400 2100	0xB400 2100	1									
dma2	0x0 1400 2200	0xB400 2200	2									
dma3	0x0 1400 2300	0xB400 2300	3									
dma4	0x0 1400 2400	0xB400 2400	4									
dma5	0x0 1400 2500	0xB400 2500	5									
dma6	0x0 1400 2600	0xB400 2600	6									
dma7	0x0 1400 2700	0xB400 2700	7 (lowest)									

Each register block contains the registers shown in Table 5-2.

Offset	Register Name	Description
0x0000	dma_moderead	Read channel mode register
0x0000	dma_modeset	Set bits in channel mode register
0x0004	dma_modeclr	Clear bits in channel mode register
0x0008	dma_peraddr	Address of peripheral FIFO
0x000C	dma_buf0addr	Starting address of buffer 0
0x0010	dma_buf0size	Transfer size and remaining transfer count for buffer 0
0x0014	dma_buf1addr	Starting address of buffer 1
0x0018	dma_buf1size	Transfer Size and remaining transfer count for buffer 1

Table 5-2. DMA Channel Configuration Register

Table 5-3 shows the different peripherals that are capable of DMA. The device ID, transfer size, and transfer width (device FIFO width) are configurable fields in the **dma_mode** register. The FIFO address is a physical address whose address should be programmed in the **dma_peraddr** register and in the DAH field of the **dma_mode** register.

Enabling multiple DMA channels with the same device ID is undefined.

				FIFO Physical
Peripheral Device	Device ID	Transfer Size	Device FIFO Width	Address
UART 0 Transmit	0	Programmable	8	0x0 1110 0004
UART 0 Receive	1	Programmable	8	0x0 1110 0000
DMA_REQ0 (GPIO[4])	2	Programmable	Programmable	Programmable
DMA_REQ1 (GPIO[5])	3	Programmable	Programmable	Programmable
AC97 Transmit	4	4	16	0x0 1000 0008
AC97 Receive	5	4	16	0x0 1000 0008
UART3 Transmit	6	Programmable	8	0x0 1140 0004
UART3 Receive	7	Programmable	8	0x0 1140 0000
USB Device Endpoint 0 Receive	8	4	8	0x0 1020 0000
USB Device Endpoint 0 Transmit	9	4	8	0x0 1020 0004
USB Device Endpoint 1 Transmit	10	4	8	0x0 1020 0008
USB Device Endpoint 2 Transmit	11	4	8	0x0 1020 000C
USB Device Endpoint 3 Receive	12	4	8	0x0 1020 0010
USB Device Endpoint 4 Receive	13	4	8	0x0 1020 0014
DMA_REQ2 (GPIO[208])	14	Programmable	Programmable	Programmable
DMA_REQ3 (GPIO[209])	15	Programmable	Programmable	Programmable

Table 5-3. Peripheral Addresses and Selectors

5.1.1 DMA Channel Mode Registers

Each DMA channel is controlled by a mode register. The current value of the register can be read from the **dma_moderead** register but can not be set to an arbitrary value in a single operation. Instead, the configuration register is controlled by two registers: **dma_modeset** and **dma_modeclr**.

- The **dma_modeset** register *sets* bits in the channel mode register when the corresponding bit is written as a one. (Bits written as zero do not affect the corresponding mode bit.)
- The **dma_modecir** register *clears* bits in the channel mode register when the corresponding bit is written as a one. (Bits written as zero do not affect the corresponding mode bit.)

The Au1500 processor has been designed to simplify the DMA control process by removing the need for a semaphore to control access to the registers. This is because there is no need to read, modify, write, as there are separate registers for setting and clearing a bit. In this way a function can freely manipulate the DMA channels associated with that function.

An arbitrary value may be written to a field within the register with the following sequence:

```
dma_modeset = new_value & field_mask;
dma_modeclr = ~new_value & field_mask;
```

The Transfer Size and Device Width fields must be programmed to match the FIFO of the peripheral chosen with the DID field according to Table 5-3.

For the UART FIFOs the transfer size is programmable. It is the programmers responsibility to insure that the Transfer Size matches the trigger depth set in the UART FIFO control register. See Section 7.5 "UART Interfaces" on page 140 for more information.

For external DMA using GPIO signals as requests (DMA_REQ*n*), the system designer must ensure that the Transfer Size and Device Width match the external FIFO and that memory is packed accordingly.

Note that before issuing a DMA request, the receiving or transmitting FIFO must be prepared to complete a full transaction (4 or 8 datums, depending on **dma_mode**[TS]) without risking overflow or underflow.

dma_n dma_r dma_n	node	eset	- Se	t DN	IA N	lode	Re	gist	er																			Offs	set = set = set =	0x0	
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									DA	Η			D	ID				BE	DR	TS	D\	Ν	NC	IE	Н	G	AB	D1	BE1	D0	BE0
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:24	—	Reserved, should be cleared.	R	0
23:20	DAH	Device Address High. Provides the most significant 4 bits of physical device address.	R/W	0
19:16	DID	Device ID. Identifies the peripheral device to act as source or destination; see Table 5-3 "Peripheral Addresses and Selectors" on page 88.	R/W	0
15:14	—	Reserved, should be cleared.	R	0
13	BE	Big Endian.	R/W	0
		0 Little Endian byte order		
		1 Big Endian byte order		
12	DR	Device Read.	R/W	0
		0 Data is transferred from memory to device.		
		1 Data is transferred from device to memory.		
11	TS	Transfer Size	R/W	0
		Number of datums transferred per transaction. The device width is pro- grammed in DW.		
		0 4 datums. (Valid for all device widths.)		
		1 8 datums. (Valid for 8-bit and 16-bit device widths only.)		

Bits	Name	Description	R/W	Default
10:9	DW	Device FIFO Width.	RW	0
		00 Transfer width is 8 bits.		
		01 Transfer width is 16 bits.		
		10 Transfer width is 32 bits. (Not valid for TS=1.)		
		11 Reserved		
8	NC	Not Coherent.	R/W	0
		0 Memory reads and writes are marked coherent on the SBUS.		
		1 Memory reads and writes are marked non coherent on the SBUS.		
		For more information on coherency see Section 2.8.2 "SBUS Coherency Model" on page 42 for more information on coherency.		
7	IE	Interrupt Enable.	R/W	0
		0 No interrupts will be generated.		
		1 Interrupts are generated when either D1 or D0 is set.		
6	Н	Channel Halted.	R	0
		0 Channel is active.		
		1 Channel is halted.		
		This bit should be used to determine if the channel has been halted after the G bit has been cleared.		
5	G	Channel Go. Setting the channel go bit enables the channel. When this bit is cleared the DMA controller does not arbitrate for this channel regardless of the state of the buffer enable bits. When the go bit is cleared by software the channel configuration should not be modified until the DMA controller sets the halt bit to indicate that the channel is inactive and therefore safe to be reconfigured.	R/W	0
4	AB	Active Buffer.	R	0
		0 Buffer 0 is currently in use by the DMA.		
		1 Buffer 1 is currently in use by the DMA.		
		This field can be read to determine what buffer the DMA will service next if there is not a DMA transaction in progress. During a DMA transaction this bit will reflect the buffer currently being used.		
		Note that the DMA alternates between the two buffers. In other words, it is not possible to only use one buffer, DMA transactions must be switched between each buffer.		
3	D1	Done 1. The D1 bit is set by the DMA controller to indicate that a transfer to or from buffer 1 is complete. This bit must be cleared by the processor.	R/W	0
2	BE1	The BE1 bit enables buffer 1. This bit is set by the processor and cleared by the DMA controller when the buffer has been filled or emptied. This bit may be cleared by the processor only when the H bit is set.	R/W	0
1	D0	Done 0. The D0 bit is set by the DMA controller to indicate that a transfer to or from buffer 0 is complete. This bit must be cleared by the processor.	R/W	0
0	BE0	The BE0 bit enables buffer 0. This bit is set by the processor and cleared by the DMA controller when the buffer has been filled or emptied. This bit may be cleared by the processor only when the H bit is set.	R/W	0

5.1.2 DMA Peripheral Device Address

The peripheral device address register contains a pointer to the peripheral FIFO to be used as a source or destination. Software is responsible for matching the peripheral address to the correct value of the Device ID (DID) field in the mode register. The correspondence between FIFO address and DID values is shown in Table 5-3 "Peripheral Addresses and Selectors" on page 88. The physical address of the FIFO must be used.

The DAH field from the dma_mode register is used as the most significant four bits of the FIFO physical address.

dma_p	berad	dr -	DMA	A Pe	riph	eral	Add	dres	s Re	gis	ter																	Offs	set =	0x0	800
Bit 3	1 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г															AD	DR															
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:0	ADDR	Peripheral FIFO address	R/W	0

5.1.3 DMA Buffer Starting Address Registers

Each DMA channel has two buffers, labeled buffer0 and buffer1. The starting address of each buffer should be written to the **dma_buf0addr** and **dma_buf0addr** registers respectively. The starting address must be cache line (32 bytes) aligned.

The 4 most significant bits of the buffer address are held in the *BAH* field of the **dma_buf0size** and **dma_buf1size** registers.

The starting address must explicitly be written before each DMA transaction, even if the address has not changed from the previous, as **dma_bufnaddr** will change during the DMA transaction.

Note that the DMA alternates between the two buffers. In other words, it is not possible to use only one buffer—DMA transactions must be switched between each buffer. The AB bit in the **dma_mode** register can be used to determine the active buffer.

dma dma	_							•																						et = set =		00C 0014
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1																AD	DR															
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	Bits	Name	Description	R/W	Default
ĺ	31:0	ADDR	Lower 32 bits of the physical starting address of the DMA memory buffer.	R/W	0

5.1.4 DMA Channel Buffer Size Registers

The size of each DMA buffer is given by the **dma_buf0size** and **dma_buf1size** registers. The buffer size registers also contributes the most significant four bits of the buffer physical address.

This register should be programmed with the block size of the buffer in datums. While a DMA transaction is in progress, it indicates the number of datums remaining in the transfer.

Note that the DMA alternates between the two buffers. In other words, it is not possible to only use one buffer, DMA transactions must be switched between each buffer. The active-buffer bit **dma_mode**[AB] can be used to determine which buffer is active at a given time.

dma_b dma_b																													set = set =		010 018
Bit 3	1 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													BA	١H									SL	ZE							
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:20	—	Reserved, should be cleared.	R/W	0
19:16	ВАН	Buffer Address High. Provides the 4 most significant bits of the buffer address.	R/W	0
15:0	SIZE	Buffer Size and Count Remaining. Indicates the number of datums remaining in the current transfer.	R/W	0

5.2 Using GPIO as External DMA Requests (DMA_REQ*n*)

To use GPIO[4], GPIO[5], GPIO[208] or GPIO[209] as an external DMA request (DMA_REQ*n*) follow these steps:

1) For GPIO[4] and GPIO[5]: Write the **sys_pininputen** to enable the GPIO to be used as an input. See Section 8.3 "Primary General Purpose I/O and Pin Functionality" on page 168 for more information.

For GPIO[208] and GPIO[209]: Be sure that the secondary GPIO block is enabled in **gpio2_enable**. Also, set the corresponding interrupt-enable bit in **gpio2_inten**. See Section 7.6 "Secondary General Purpose I/O" on page 149 for more information.

2) For GPIO[4] and GPIO[5]: TRI-STATE the GPIO to make it an input through the **sys_triout** register. See Section 8.3 "Primary General Purpose I/O and Pin Functionality" on page 168 for more information.

For GPIO[208] and GPIO[209]: Configure the signals as inputs in **gpio2_dir**. See Section 7.6 "Secondary General Purpose I/O" on page 149 for more information.

- 3) Set the **dma_peraddr** register to point to the external device data port. The Static Bus Controller must be configured correctly to recognize this address.
- 4) Program the mode register to match the direction of transfer and peripheral attributes.

The DMA_REQ*n* signal must be driven high to request a DMA transfer and must remain high until the DMA transaction is started. Once started, the DMA transaction continues until finished regardless of the DMA request signal state. A DMA transaction refers to a DMA transfer of one transfer size as defined in the DMA mode register (**dma_mode**[TS]).

DMA_REQ*n* should be tied to the external FIFO threshold indicator. In this way the DMA_REQ*n* signal asserts when the FIFO threshold is reached and remains asserted until the FIFO fills or empties past the threshold (after the DMA transaction starts). DMA_REQ*n* should then negate after the FIFO threshold is met from the opposite direction (approaches full for a transmit or approaches empty for a read). The threshold should be designed such that a complete DMA transaction (4 or 8 datums) can occur without risking overflow or underflow.

30361D

5.3 **Programming Considerations**

The following pseudo code is for setting up and servicing a DMA channel:

```
SetupDMA() {
Make sure interrupts are enabled globally (CPO Reg 12, bit 0)
Enable interrupt controller for this DMA channel, high/level
Program the DMA controller {
   dma_modeclr = 0xFFFFFFFF
   dma_buf0size = buffer size (up to 65535)
   dma_buf1size = buffer size (up to 65535)
   dma_peraddr = Address of peripheral FIFO
   dma_buf0addr = physical base address of buffer
   dma_bufladdr = physical base address of next buffer
   Write the dma_modeset register {
      Enable interrupt
      Enable both buffers
      Set endianness
      Set data width, 8-bit, 16-bit, 32-bit
      Set Device ID
      Set transfer size, 4-datum burst, 8-datum burst
      set coherency = 0 (memory is coherent)
      set go = 1
   }
}
InterruptHandler() {
Note: This routine assumes it is called from context save/
   restore routine at 0x80000200.
Check for hardware interrupt from interrupt controller 0,
   request 0: (CP0 Reg 13, bit 10) = 1
Read interrupt controller 0 ic_req0int (interrupt status)
   and check if source is from this DMA channel, bits[13:6]
if it is this DMA channel {
   Check dma_moderead to see which buffer is done: D0 or D1
   if (D0 is set) {
      write dma_modeclr bit D0 = 1 to clear interrupt
      if there is another buffer to send {
          dma_buf0addr = physical base address of buffer
          dma_buf0size = buffer size (up to 65535)
          write dma_modeset bit BE0 = 1 to enable buffer
          }
      }
   }
   if (D1 is set) {
      write dma modeclr bit D1 = 1 to clear interrupt
      if there is another buffer to send {
          dma_bufladdr = physical base address of buffer
          dma_buf1size = buffer size (up to 65535)
          write dma_modeset bit BE1 = 1 to enable buffer
          }
      }
   }
}
Issue sync
}
```

Interrupt Controller

There are two interrupt controllers in the Au1500 processor. Each interrupt controller supports 32 interrupt sources. Interrupts can generate a signal to bring the Au1500 processor out of an IDLE0 or IDLE1 state and generate a CPU interrupt.

Each interrupt controller has two outputs referred to as requests 0 and 1. Each of these outputs are connected to the CPU core. See Section 2.5 "Exceptions" on page 27 for a complete Au1500 processor interrupt architecture discussion. Table 6-1 shows the interrupt controller connections to the CPU.

Table 6-1. Interrupt Controller Connections to the CPU

Interrupt Source	CP0 Cause Register Bit
Interrupt Controller 0: Request 0 Request 1	10 11
Interrupt Controller 1: Request 0 Request 1	12 13

6.1 Interrupt Controller Sources

Table 6-2 shows the mapping of interrupt sources for Interrupt Controller 0 and 1.

Care should be taken to select the correct interrupt type (level or edge triggered) so that an interrupt is not missed. In general, level interrupts are chosen when multiple sources from a single peripheral might cause an interrupt. In this way the programmer will not miss a subsequent interrupt from a particular source while servicing the previous one.

Edge triggered interrupts can be used when there is only a single source for an interrupt. Edge triggered interrupts must be used when an interrupt is caused by an internal event and not tied to a register bit where it is latched and held until cleared by the programmer.

Details about the interrupt sources can be found in the respective peripheral sections.

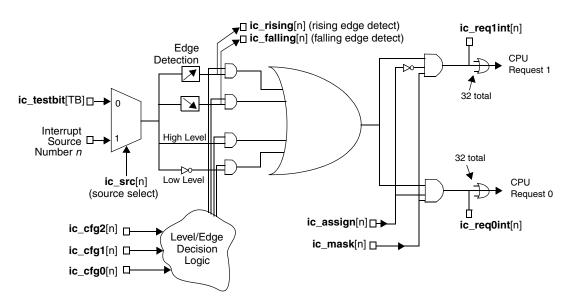

Controller	Interrupt Number	Source	Туре
0	0	UART0	High Level
0	1	PCI_INTA#	Low Level
0	2	PCI_INTB#	Low Level
0	3	UART3	High Level
0	4	PCI_INTC#	Low Level
0	5	PCI_INTD#	Low Level
0	6	DMA0	High Level
0	7	DMA1	High Level
0	8	DMA2	High Level
0	9	DMA3	High Level

Table 6-2. Interrupt Sources

		5-2. Interrupt Sources (Continued)			
Controller	Interrupt Number	Source	Туре		
0	10	DMA4	High Level		
0	11	DMA5	High Level		
0	12	DMA6	High Level		
0	13	DMA7	High Level		
0	14	TOY (tick)	Rising Edge		
0	15	TOY Match 0	Rising Edge		
0	16	TOY Match 1	Rising Edge		
0	17	TOY Match 2	Rising Edge		
0	18	RTC (tick)	Rising Edge		
0	19	RTC Match 0	Rising Edge		
0	20	RTC Match 1	Rising Edge		
0	21	RTC Match 2	Rising Edge		
0	22	PCI Error Interrupt	Internal		
0	23	Reserved	N/A		
0	24	USB Device Interrupt Request	High Level		
0	25	USB Device Suspend Interrupt	Rising/Falling edge		
0	26	USB Host	Low Level		
0	27	AC97 ACSYNC	Rising Edge		
0	28	MAC 0 DMA Done	High Level		
0	29	MAC 1 DMA Done	High Level		
0	30	Reserved	N/A		
0	31	AC97 Command Done	Rising Edge		
1	n = 015	GPIO[n]	System Dependent		
1	16	GPIO[200]	System Dependent		
1	17	GPIO[201]	System Dependent		
1	18	GPIO[202]	System Dependent		
1	19	GPIO[203]	System Dependent		
1	20	GPIO[20]	System Dependent		
1	21	GPIO[204]	System Dependent		
1	22	GPIO[205]	System Dependent		
1	23	GPIO[23]	System Dependent		
1	24	GPIO[24]	System Dependent		
1	25	GPIO[25]	System Dependent		
1	26	GPIO[26]	System Dependent		
1	27	GPIO[27]	System Dependent		
1	28	GPIO[28]	System Dependent		
1	29	GPIO[206]	System Dependent		
1	30	GPIO[207]	System Dependent		
1	31	Logical OR of GPIO[215:208] (See Section 7.6.2.4 "Interrupt Enable Register" on page 151.)	System Dependent		

Table 6-2. Interrupt Sources (Continued)

Figure 6-1 shows the Interrupt Controller logic diagram. Where applicable, the names in the diagram correspond to bit *n* in the relative control register.

6.2 Register Definitions

The design of the software interface to the interrupt controller is based on the premise that software tasks should be able to access the value and control of an individual port without blocking other tasks from accessing ports of interest to them. This interrupt controller design removes the need to arbitrate via a semaphore access to the interrupt controller registers. The result is faster and simpler interrupt controller accessing.

Table 6-3 shows the base address for each interrupt controller.

Table 6-3. Interrupt Controller Base Addresses

Name	Physical Base Address	KSEG1 Base Address
ic0_base	0x0 1040 0000	0xB040 0000
ic1_base	0x0 1180 0000	0xB180 0000

Each interrupt controller has an identical set of registers that controls its set of 32 interrupts. Table 6-4 shows the interrupt controller registers and their associated offsets. Certain offsets are shared but address different internal registers depending on whether the access is a read or a write. The register description details the functionality of the register. Bit n of a particular register is associated with interrupt n of the corresponding controller.

Offset (Note 1)	Register Name	Туре	Register Description	Default
0x0040	ic_cfg0rd	R	Configuration 0 register	UNPRED
0x0040	ic_cfg0set	W	Configuration 1 register	
0x0044	ic_cfg0clr	W	Configuration 2 register	
0x0048	ic_cfg1rd	R	The combined field consisting of ic_cfg2 [<i>n</i>],	UNPRED
0x0048	ic_cfg1set	W	ic_cfg1 [<i>n</i>], and ic_cfg0 [<i>n</i>] specifies the trigger charac- teristics for interrupt <i>n</i> as shown in Table 6-5 "Interrupt	
0x004C	ic_cfg1clr	W	Configuration Register Function" on page 100.	
0x0050	ic_cfg2rd	R		UNPRED
0x0050	ic_cfg2set	W		
0x0054	ic_cfg2clr	W		
0x0054	ic_req0int	R	Shows active interrupts on request 0. Used by host software to determine the source of the interrupt.	0x0000 000
0x0058	ic_srcrd	R	Selects the source of the interrupt between a test bit	UNPRED
0x0058	ic_srcset	W	and the designated source.	
0x005C	ic_srcclr	W	 The test bit (ic_testbit[TB]) is used as interrupt source. 	
			1 Peripheral interrupt (controller 0) or GPIO signal (controller 1) is used for interrupt source.	
0x005C	ic_req1int	R	Shows active interrupts on request 1. Used by host software to determine the source of the interrupt.	0x0000 000
0x0060	ic_assignrd	R	Assigns the interrupt to one of the CPU requests.	UNPRED
0x0060	-	W	0 Assign interrupt to request 1.	UNFRED
0x0060 0x0064	ic_assignset	W	1 Assign interrupt to request 0.	
	ic_assignclr	R		0x0000 000
0x0068 0x0068	ic_wakerd ic_wakeset	W N	Controls whether the interrupt can cause a wakeup from IDLE0 or IDLE1.	0x0000 000
0x006C	ic_wakeclr	W	 0 No wakeup from Idle 1 Interrupt will cause wakeup from Idle. The associated interrupt must still be enabled to wake from Idle. 	
0x0070	ic_maskrd	R	Interrupt enable.	0x0000 000
0x0070	ic_maskset	W	0 Disable the interrupt.	
0x0074	ic_maskclr	W	1 Enable the interrupt.	
0x0078	ic_risingrd	R	Designates active rising edge interrupts. If an interrupt	UNPRED
0x0078	ic_risingclr	W	is generated off of a rising edge, the associated rising edge detection bit must be cleared after detection.	
0x007C	ic_fallingrd	R	Designates active falling edge interrupts. If an interrupt	UNPRED
0x007C	ic_fallingclr	W	is generated off of a falling edge, the associated falling edge detection bit must be cleared after detection.	
0x0080	ic_testbit	R/W	This is a single bit register that is mapped to all the source select inputs for testing purposes.	UNPRED

Table 6-4. Interrupt Controller Registers

Note 1. See Table 6-3 on page 97 for base address.

6.2.1 Interrupt Controller Registers

Each register (except the test-bit register) is 32 bits wide with bit *n* in each register affecting interrupt *n* in the corresponding controller.

*rd *set

*clr

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	FUNC[31:0]																														
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	FUNC[n]	The function of each register is given in Table 6-4 "Interrupt Con- troller Registers" on page 98. FUNC[n] controls the functionality of interrupt <i>n</i> in the corresponding controller.	*rd - read only *set - write only *clr - write only See the following explanation.	See Table 6-4 "Interrupt Control- ler Registers" on page 98.

The test-bit register contains the test bit that can be used as a test source for each interrupt. Figure 6-1 "Interrupt Controller Logic" on page 97 shows how the test bit connects to the interrupt source-select logic.

ic_tes	stbit																											Offs	et =	0x0	080
Bit 3	31_30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																															TB
Def.	хх	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:1	—	Reserved, should be cleared.	R/W	UNPRED
0	ТВ	Test bit value used as an alternate interrupt source.	R/W	UNPRED

Certain interrupt controller registers have the same offset but offer different functionality. This is by design. Care should be taken when programming the registers because a read from one location may reference something different from a write to the same location.

Registers ending in *rd, *set and *clr have the following functionality:

- *rd registers are read only registers will read back the current value of the register.
- *set registers are write only registers and will set to 1 all bits that are written 1. Writing a value of 0 will have no impact on the corresponding bit.
- *clr registers are write only registers and will clear to zero all bits that are written 1. Writing a value of 0 will have no
 impact on the corresponding bit.

30361D

The three configuration registers have a special functionality in that the value associated with ic_cfg2[n], ic_cfg1[n], ic_cfg0[n] uniquely control interrupt n's functionality as shown in Table 6-5.

ic_cfg2[n]	ic_cfg1[n]	ic_cfg0[n]	Function
0	0	0	Interrupts Disabled
0	0	1	Rising Edge Enabled
0	1	0	Falling Edge Enabled
0	1	1	Rising and Falling Edge Enabled
1	0	0	Interrupts Disabled
1	0	1	High Level Enabled
1	1	0	Low Level Enabled
1	1	1	Both Levels and Both Edges Enabled

Table 6-5.	Interrupt	Configuration	Register Function
------------	-----------	---------------	--------------------------

6.3 Hardware Considerations

When using a GPIO or peripheral as an interrupt source, it is important that the associated pin functionality has been enabled in the **sys_pinfunc** register. In addition when using a GPIO, the GPIO must first be enabled as an input. See Section 8.3 "Primary General Purpose I/O and Pin Functionality" on page 168 for more information.

6.4 Programming Considerations

The Au1500 has been designed to simplify the interrupt control process by removing the need for a semaphore to control access to the registers. This is because there is no need to read, modify, write, as there are separate registers for setting and clearing a bit. In this way a function can freely manipulate the interrupts associated with that function.

If using edge triggered interrupts, it is important to clear the associated edge detection bit or future interrupts will not be seen.

Programming an interrupt controller can be broken into the following steps (the **set**, **clr**, and **rd** portion of the register name has been omitted):

- 1) Identify the interrupt number, *n*, with the associated peripheral or GPIO.
- 2) Use **ic_src**[*n*] to assign the interrupt to the associated peripheral/GPIO (or the test bit can be used if testing the interrupt).
- 3) Set the **ic_cfg2**[*n*], **ic_cfg1**[*n*] and **ic_cfg0**[*n*] bits to the correct configuration for the corresponding interrupt (edge, level, polarity).
- 4) Assign the interrupt to a CPU request using **ic_assign**[*n*].
- 5) Use **ic_wake**[*n*] to assign the interrupt to wake the processor from IDLE if necessary or clear this register bit to keep the interrupt from waking the processor from IDLE.
- 6) If the interrupt is an edge triggered interrupt, clear the edge detect register (**ic_risingclr** or **ic_fallingclr**) before enabling.
- 7) Finally, enable the interrupt through **ic_mask**[*n*].

When taking an interrupt the following steps should be taken:

- 1) Read ic_req0int and ic_req1int to determine the interrupt number n.
- 2) Use **ic_fallingrd** and **ic_risingrd** to determine if the interrupt was edge triggered. If the interrupt is edge triggered, use **ic_fallingclr**[*n*] or **ic_risingclr**[*n*] to clear the edge detection circuitry.
- 3) If the interrupt is to be disabled write **ic_maskclr**[*n*].
- 4) Service the interrupt.

Peripheral Devices

This section provides descriptions of the peripheral devices of the Au1500 processor. This includes an AC97 controller, USB Host and Device interfaces, two 10/100 Ethernet MACs and two UARTs.

Each peripheral contains an enable register. All other registers within each peripheral's register block should not be accessed until the enable register is written the correct sequence to bring the peripheral out of reset. Accessing the peripheral register block before a peripheral is enabled will result in undefined results.

7.1 AC97 Controller

The Au1500 processor contains an AC97 controller which incorporates an AC-link capable of bridging to an AC97 compliant codec.

7.1.1 AC97 Registers

The AC97 controller is controlled by a register block whose physical base address is shown in Table 7-1. The register block consists of 5 registers as shown in Table 7-2.

Name	Physical Base Address	KSEG1 Base Address
ac97_base	0x0 1000 0000	0xB000 0000

Offset (Note 1)	Register Name	Description
0x0000	ac97_config	AC-link Configuration
0x0004	ac97_status	Controller Status
0x0008	ac97_data	TX/RX Data
0x000C	ac97_cmmd	Codec Command
0x000C	ac97_cmmdresp	Codec Command Response
0x0010	ac97_enable	AC97 Block Control

Table 7-2. AC97 Registers

Note 1. See Table 7-1 for base address.

7.1.1.1 AC-Link Configuration Register

The configuration register contains bits necessary to configure and reset the AC-link and codec.

ac97_	con	nfig	- A	C-lir	nk C	onfi	igura	atio	n																				Offs	set =	0x0	000
Bit 3	31 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														R	C									Х	S					SG	SN	RS
Def.	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:23	—	Reserved, should be cleared.	R	0
22:13	RC	Receive Slots. The bits set in RC will control what data from valid slots are put into the input buffer.	R/W	0
		The corresponding valid bits in the AC97 tag (slot 0 of SDATA_IN) must be marked valid for the incoming PCM data to be put in the input buffer.		
		Slot 3 is mapped to bit 13, slot 4 to 14 and so on.		
		Note: The programmer must ensure that the codec is configured such that there will be valid data in the slots corresponding to what receive slots are enabled.		
12:3	XS	Transmit Slots. The bits making up XMIT_SLOTS map to the valid bits in the AC97 tag (slot 0 on SDATA_OUT) and indicate which outgoing slots have valid PCM data. Bit 3 maps to slot 3, bit 4 to slot 4 and so on. Setting the corresponding bit indicates to the codec that valid data will be in the respective slot. The number of valid bits will designate how many words will be pulled out of the FIFO per audio frame.	R/W	0
2	SG	SYNC Gate. Setting this bit to 1 will gate the clock from being driven on SYNC. This allows the SN bit to control the value on SYNC. In combination with SN, the SG bit can be used to initiate a warm reset.	R/W	0

30361D

Bits	Name	Description	R/W	Default
1	SN	SYNC Control. This bit controls the value of the SYNC signal when SG (SYNC gate) is set. In combination with SG, the SN bit can be used to initiate a warm reset.	R/W	0
0	RS	AC-link Reset (ACRST#) Control. To initiate a cold AC97 reset, set the RS bit to drive the ACRST# signal low. After satisfying the ACRST# low time for the codec, clear this bit to negate ACRST#.	R/W	0

7.1.1.2 **AC97 Controller Status**

The AC97 Controller Status register contains status bits for the transmit and receive FIFOs, command status and the codec.

ac97 status - Controller Status

ac97_	_sta	atus	- C	ontr	olle	r Sta	atus																						Offs	et =	: 0x0	004
Bit 3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																					XU	ХО	RU	RO	RD	CP		TE	TF		RE	RF
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0

Bits	Name	Description	R/W	Default
31:12	1-	These bits are reserved.	R	UNPRED
11	XU	Transmit Underflow. When set, this bit indicates that the transmit FIFO has experienced an underflow. This sticky bit is cleared when written (0 <i>or</i> 1).	R	0
10	XO	Transmit Overflow. When set, this bit indicates that the transmit FIFO has experienced an overflow. This sticky bit is cleared when written (0 <i>or</i> 1).	R	0
9	RU	Receive Underflow. When set, this bit indicates that the receive FIFO has experienced an underflow. This sticky bit is cleared when written (0 <i>or</i> 1).	R	0
8	RO	Receive Overflow. When set, this bit indicates that the receive FIFO has experienced an overflow. This sticky bit is cleared when written (0 <i>or</i> 1).	R	0
7	RD	Ready. This bit is mapped from the CODEC_READY bit in the SDATA_IN tag word. It indicates that the codec is properly booted and ready for normal operation.	R	0
6	CP	Command Pending. This bit indicates that there is a command pending on the AC-link. A write to the Codec Command register will cause this bit to be set until the command is completed. The command is completed for a write when the data has been written out on slot 2. The command is com- pleted for a read request when the status data has been read from the cor- responding read request. (This means that a read request could be pending for more than 1 cycle depending on the latency of the read.)	R	0
		The command register should not be written until the CP bit is clear. An interrupt can be enabled to indicate when a command is done. The source of this interrupt is an internal pulse so either rising edge or falling edge interrupt should be used for this interrupt.		
5	—	Reserved.	R	UNPRED
4	TE	Transmit Empty. When set this bit indicates that the transmit FIFO is empty.	R	0
3	TF	Transmit Full. When set this bit indicates the transmit FIFO is full.	R	0
2	—	Reserved.	R	UNPRED
1	RE	Receive Empty. When set this bit indicates that the receive FIFO is empty.	R	0
0	RF	Receive Full. When set this bit indicates that the receive FIFO is full.	R	0

Offeet - 0x0000

7.1.1.3 TX/RX Data

The TX/RX Data register is the transmit FIFO's input to the when written to and the receive FIFO's output when read from. Each FIFO has twelve 16-bit entries. Care should be taken to monitor the status register to insure that there is room for data in the FIFO for a read or write transaction. This will be taken care of automatically if using DMA (see Section 7.1.3 "Programming Considerations" on page 106).

The number of bits set in XMIT_SLOTS will correspond with how many samples are pulled out of the FIFO and aligned in the respective slots. The number of bits set in RECV_SLOTS will correspond with the number of samples placed in the FIFO from the respective slots in SDATA_IN.

ac97_data - TX/RX Data

ace	_ua	ala -	1 ~/		Jala	L																							Ulls	$e_{l} =$	UXU	000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-														DATA_WORD[15:0]																
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	—	Reserved, should be cleared.	R	0
15:0	DATA_WORD	Data Word. This is where data is written to or read from the FIFO. Each data word is 16 bits.	R/W	0

7.1.1.4 Codec Command

The Codec Command and Command Response registers share the same physical address.

The Codec Command register is used to send read and write commands to the codec. For write commands, the DATA field will be written to the register indicated by the INDEX field. For read commands, the DATA field should be written zero. The value read from the register indicated by INDEX will appear in the Codec Response register when the Command Pending bit in the status register (ac97_status[CP]) returns to 0.

The Codec Command register should only be written if ac97_status[CP] is 0.

ac97_cmmd - Codec Command Offset = 0x00C Bit 31 30 29 28 27 26 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DATA INDEX Def. 0<

Bits	Name	Description	R/W	Default
31:16	DATA	Data. These bits will be the actual 16-bit word written to the register indi- cated by INDEX if RW is a 0. If RW is set (indicating a read), these bits should be written 0.	W	0
15:8	—	Reserved, should be cleared.	W	0
7	RW	Read/Write# Bit (1=read, 0=write). This bit maps to the Read/Write# bit in the command address and designates whether the current operation will be a read or a write.	W	0
6:0	INDEX	Codec Register Index. These bits will address the specific register to be read or written to inside the codec.	W	0

7.1.1.5 **Codec Command Response**

The Codec Command and Response registers share the same physical address.

After a read command is sent through the Codec Command register, the response can be read from the Codec Response register. The command response becomes valid when the Command Pending bit in the status register (ac97_status[CP]) is cleared; however, the response remains valid for only one AC97 frame length in duration (20.8 µs).

ac97 cmmdresp - Codec Command Response

ac97	/_cr	nmd	Ires	p - C	ode	ec C	omr	nano	d Re	spo	nse																		Offs	et =	0x0	00C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ																							R	EAD	_DA	TA						
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	—	Reserved, should be cleared.	R	0
15:0	READ_DATA	Read Data. These bits will be the response to the last read command sent to the codec. The read data becomes valid after the read command is completed (ac97_status [CP] = 0).	R	0
		Note that READ_DATA remains valid for only <i>one</i> AC97 frame (20.8 μ s) and should therefore be read immediately after ac97_status [CP] is cleared.		

7.1.1.6 AC97 Enable

The AC97 Enable register is used to enable and reset the entire AC97 Controller block. The routine for bringing the AC97 controller out of reset is as follows:

- 1) Set the CE bit to enable clocks while leaving the block disabled (D=1).
- 2) Clear the D bit to enable the peripheral.

ac97 enable - AC97 Block Control

Offset = 0x0010

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																														D	CE
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Bits	Name	Description	R/W	Default
31:2	—	Reserved, should be cleared.	W	0
1	D	AC97 Controller Disable. Setting this bit will reset the AC97 block. After enabling the clock with CE, this bit should be cleared for normal operation.	W	1
0	CE	Clock Enable. This bit should be set to enable the clock driving the AC97 Controller. It can be cleared to disable the clock for power considerations.	W	0

7.1.2 Hardware Considerations

The AC-link consists of the signals listed in Table 7-3.

Signal	Input/Output	Definition
ACSYNC	0	Fixed Rate Sample Sync.
ACBCLK	I	Serial Data Clock.
ACDO	0	TDM Output Stream.
ACDI	I	TDM Input Stream.
ACRST#	0	Codec Reset.

For changing pin functionality please refer to the **sys_pinfunc** register in Section 8.3 "Primary General Purpose I/O and Pin Functionality" on page 168.

7.1.3 Programming Considerations

The AC97 block supports DMA transfers and interrupts. The use of the DMA or interrupts is program dependent and is not required to use the AC97 controller.

To use DMA for AC97 memory transfers the transmit and receive functions will each need a dedicated DMA channel. The DMA peripheral address register (**dma_peraddr**) in the DMA configuration registers will be set to point to the AC97 **ac97_data** register. The DMA mode register (**dma_mode**) will need to be set up with the correct Device ID (DID). The Device Read bit (DR) will depend on whether the channel is being used for receive or transmit. Typically the Device Width (DW) should be set to 16 bits and the transfer size bit (TS) should be cleared because the FIFO threshold indicators correspond to four-datum transfers. This assumes that the audio samples are aligned in memory on a 16-bit audio sample boundary. The DMA will automatically monitor the transmit and receive request bits and feed data accordingly.

An interrupt ("AC97 Command Done" in interrupt controller 0) can be enabled to indicate when a command is completed. The source of this interrupt is an internal pulse so either rising edge or falling edge interrupt should be used for this interrupt.

When the AC97 ACSYNC interrupt is enabled in interrupt controller 0, an interrupt will occur corresponding to the rising edge of the ACSYNC signal. Internally a pulse is generated from the rising edge of the ACSYNC signal and fed to the interrupt controller. Regardless of the edge enabled in the interrupt controller the interrupt will come after the rising edge of ACSYNC. Enabling a rising edge interrupt will interrupt the processor closest to the rising edge of ACSYNC.

The output FIFO for the AC-link is shared for all slots so care should be taken that there is a correspondence with the number of valid bits being set and the number of valid samples written to the transmit FIFO or aligned in memory for DMA or erroneous results will occur. It is the programmer's responsibility to ensure that the number of samples written to the FIFO corresponds with the number of valid slots enabled. Data will automatically be pulled out of the FIFO in the order of what slots are enabled. In other words if slots 3, 4, 6 and 9 are enabled, the programmer should write samples corresponding to data for slots 3, 4, 6, and 9, in that order, to the FIFO.

To insure against underflow at least *x* words should be written per audio frame where *x* is the number of slots enabled. This is a mean rate over time and the actual write rate may differ depending on latency requirements, DMA buffer size, and the number of slots enabled.

Care should be taken that there is a correspondence with the number of valid bits that have been set and the number of valid samples read from the receive FIFO or erroneous results will occur.

The input FIFO for the AC-link is shared for all slots so care should be taken that there is a correspondence with the number of valid bits that are set and the number of samples read from the receive FIFO or erroneous results will occur. It is the programmer's responsibility to ensure that the number of samples read from the FIFO corresponds with the number of valid slots enabled. Data will automatically be put in the FIFO in the order of what slots are enabled. In other words if slots 3 and 4, are enabled, the programmer should read samples corresponding to data for slots 3 and 4, in that order, from the FIFO.

To insure against overflow at least *x* words should be read per audio frame where *x* is the number of slots enabled. This is a mean rate over time and the actual read rate may differ depending on latency requirements, DMA buffer size, and the number of slots enabled.

7.2 USB Host Controller

The Au1500 processor USB host controller conforms to the Open HCI interface specification, revision 1.0, and is USB 1.1 compliant. Two root hub ports, port 0 and port 1, are provided. The base of the Open HCI register block is shown in Table 7-4.

Name	Physical Base Address	KSEG1 Base Address			
usbh_base	0x0 1010 0000	0xB010 0000			

Table 7-4. USB Host Base Address

Only 32-bit accesses are allowed to the Open HCI registers.

All interrupts as described in the Open HCI specification are supported. These interrupts are combined when brought to the interrupt controller into one active-low interrupt (negative-edge triggered does not work). The interrupt controller should be programmed to reflect this by setting the USB Host interrupt to low level. See Section 6.0 "Interrupt Controller" on page 95 for details.

7.2.1 USB Host Enable Register

This register is not part of the OpenHCI registers; however, it shares the same base address. The **usbh_enable** register controls the reset and clocks to the USB Host controller. When initializing the USB Host controller the programmer should first enable clocks, then enable the module (remove from reset), then wait for the RD bit to be set before performing Open-HCI initialization.

The correct routine for bringing the USB Host Controller out of reset is as follows:

- 1) Set the CE bit to enable clocks.
- 2) Set the E bit to enable the peripheral (at this time the C and BE bits should be configured appropriately for the system).
- 3) Clear the HCFS bit in the HcControl register to reset the OHCI state.
- 4) Wait for the RD bit to be set before issuing any commands to the OpenHCI controller.

To put the USB Host Controller into reset the following steps should be taken:

- 1) Set the HCFS bit in the HcControl register.
- 2) Clear the E and CE bits.

usbh_e	sbh_enable Offset = 0x7							x7F	FFC																						
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_																										RD	CE	Е	С	BE
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:5	—	Reserved, must be cleared.	R/W	0
4	RD	Reset Done. Wait for this bit to be set before issuing any commands to the OpenHCI controller.	R	0
		Note: When writing to the usbh_enable register, this bit position must be 0.		
3	CE	Clock Enable. When this bit is set, clocks are enabled to the USB Host controller.	R/W	0
2	E	Enable. This bit enables the USB Host controller. When this bit is clear the controller is held in reset.	R/W	0
1	С	Coherent. If this bit is set memory accesses by the controller will be marked coherent on the SBUS. When this bit is clear memory accesses by the USB Host controller are non coherent.	R/W	0
		For more information on coherency see Section 2.8.2 "SBUS Coherency Model" on page 42 for more information on coherency.		

Bits	Name	Description	R/W	Default
0	BE	Big Endian. When this bit is set the controller interprets data buffers in Big Endian byte order. When this bit is clear the controller interprets data buff- ers in Little Endian byte order.	R/W	0
		Setting the BE bit does not swap the control structures defined in the OHCI specification. Endpoint descriptors (section 4.2), transfer descriptors (section 4.3), and the HCCA (host controller communications area, section 4.4) should always be written as words to ensure proper operation.		

7.2.2 USB Host Signals

Table 7-5 shows the signals associated with the two USB host root hub ports. The USB root hub port pins have USB 1.1 compliant drivers with the addition of the external circuitry noted in the signal description.

Signal	Input/Output	Description
USBH0P	I/O	Positive signal of differential USB host port 0 driver
		Requires an external 15 kohm pull-down resistor and ESD protection diode (tran- sient voltage suppressor) to be USB 1.1 compliant.
		Termination Note: Requires an external 27- Ω resistor placed in series within 0.5 inches of the part.
		Muxed with USBDP which controls the pin out of reset.
USBH0M	I/O	Negative signal of differential USB host port 0 driver
		Requires an external 15 kohm pull-down resistor and ESD protection diode (tran- sient voltage suppressor) to be USB 1.1 compliant.
		Termination Note: Requires an external 27 ohm resistor placed in series within 0.5 inches of the part.
		Muxed with USBDM which controls the pin out of reset.
USBH1P	I/O	Positive signal of differential USB host port 1 driver.
		Requires an external 15 kohm pull-down resistor and ESD protection diode (tran- sient voltage suppressor) to be USB 1.1 compliant.
		Termination Note: Requires an external 27 ohm resistor placed in series within 0.5 inches of the part.
USBH1M	I/O	Negative signal of differential USB host port 1 driver.
		Requires an external 15 kohm pull-down resistor and ESD protection diode (tran- sient voltage suppressor) to be USB 1.1 compliant.
		Termination Note: Requires an external 27 ohm resistor placed in series within 0.5 inches of the part.

Table 7-5. USB Host Signals

For changing pin functionality please refer to the **sys_pinfunc** register in Section 8.3 "Primary General Purpose I/O and Pin Functionality" on page 168.

7.3 USB Device Controller

The Au1500 processor USB device controller supports endpoints 0, 1, 2, 3, and 4. Endpoint 0 is always configured as a bidirectional control endpoint. Endpoints 1 and 2 are always IN endpoints and endpoints 3 and 4 are always OUT endpoints.

IN is from device to host. From the device perspective these endpoints are written, so the associated registers are tagged with write or wr.

OUT is from host to device. From the device perspective these endpoints are read, so the associated registers are tagged with read or rd.

7.3.1 USB Device Controller Registers

The USB device registers are located off of the base address shown in Table 7-6. Table 7-7 shows the offsets of each register from the register base

Name	Physical Base Address	KSEG1 Base Address
usbd_base	0x0 1020 0000	0xB020 0000

Table 7-6. USB Device Base Address

	1	5
Offset (Note 1)	Name	Function
0x0000	usbd_ep0rd	Read from endpoint 0
0x0004	usbd_ep0wr	Write to endpoint 0
0x0008	usbd_ep1wr	Write to endpoint 1
0x000c	usbd_ep2wr	Write to endpoint 2
0x0010	usbd_ep3rd	Read from endpoint 3
0x0014	usbd_ep4rd	Read from endpoint 4
0x0018	usbd_inten	Interrupt Enable Register
0x001c	usbd_intstat	Interrupt Status Register
0x0020	usbd_config	Write Configuration Data
0x0024	usbd_ep0cs	Endpoint 0 control and status
0x0028	usbd_ep1cs	Endpoint 1 control and status
0x002c	usbd_ep2cs	Endpoint 2 control and status
0x0030	usbd_ep3cs	Endpoint 3 control and status
0x0034	usbd_ep4cs	Endpoint 4 control and status
0x0038	usbd_framenum	Current frame number
0x0040	usbd_ep0rdstat	EP0 Read FIFO Status
0x0044	usbd_ep0wrstat	EP0 Write FIFO Status
0x0048	usbd_ep1wrstat	EP1 Write FIFO Status
0x004c	usbd_ep2wrstat	EP2 Write FIFO Status
0x0050	usbd_ep3rdstat	EP3 Read FIFO Status
0x0054	usbd_ep4rdstat	EP4 Read FIFO Status
0x0058	usbd_enable	USB Device Controller Enable

Table 7-7. USB Device Register Block

Note 1. See Table 7-6 for base address.

7.3.1.1 Endpoint FIFO Read and Write Registers

The endpoint FIFO read and write registers provide access to the endpoint FIFOs. Each endpoint FIFO is unidirectional. FIFO read registers may not be written, and FIFO write registers return unpredictable results if read.

Only the least significant byte of the FIFO registers contain data.

usbd_ usbd_ usbd_ usbd_ usbd_ usbd_ usbd_	ep0w ep1w ep2w ep3rc	r r r																										Offs Offs Offs Offs	set = set = et = set =	0x0 0x0 0x0 0x0 0x0	0000 004 008 00C 010 014
Bit 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																											DA	ΤA			
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:8	—	Reserved, should be cleared.	R/W	0
7:0	DATA	Data. Byte of data to be written to, or read from the endpoint FIFO.	R/W	0

7.3.1.2 Interrupt Registers

Each endpoint has an interrupt enable register and an interrupt status register. The two registers have identical formats. When a condition becomes true the corresponding bit is set in the **usbd_intstat** register. If a bit is set in the interrupt enable register and the corresponding condition becomes true, then an interrupt is issued. The interrupt for the USB device should be programmed to high level.

Interrupts and pending conditions must be cleared by writing a 1 to the corresponding bit in the usbd_intstat register.

usbd_ usbd_	-		t																													018 01C
Bit 3	:1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																				SF	H5	H4	H3	H2	H1	H0	C5	C4	C3	C2	C1	C0
Def. (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:13	—	Reserved, should be cleared.	R/W	0
12	SF	Start of Frame. This interrupt issues when an SOF token is received.	R/W	0
11:6	H5:H0	FIFO Half Full. These interrupts issue when the corresponding FIFO reaches the half full/half empty mark. The bits correspond as follows: H0 - ep0rd H1 - ep0wr H2 - ep1wr H3 - ep2wr H4 - ep3rd H5 - ep4rd	R/W	0
5:0	C5:C0	Complete. These interrupts issue when a transmission or reception com- pletes on the corresponding FIFO. For the read FIFOs (ep0rd, ep3rd, and ep4rd) these interrupts indicate the reception of a DATA0 or DATA1 packet, or a SETUP packet (ep0rd FIFO only). For the write FIFOs (ep0wr, ep1wr, and ep2wr) these interrupts indicate the transmission of a DATA0 or DATA1 packet. The bits correspond as follows: C0 - ep0rd C1 - ep0wr C2 - ep1wr C3 - ep2wr C4 - ep3rd C5 - ep4rd	R/W	0

7.3.1.3 **Device Configuration Register**

The device configuration register allows configuration data to be loaded to the controller after reset.

ushd config

usb	d_co	onfi	g																										Offs	et =	0x0	020
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																											C	CFG	DAT	4		
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:8	—	Reserved, should be cleared.	R/W	0
7:0	CFGDATA	Configuration data byte. Use this field to write the configuration data block to the controller one byte at a time.	R/W	0

The device configuration data is a 25-byte block which contains the configuration information for the five supported endpoints. Each endpoint requires five configuration bytes in the format shown in Figure 7-1.

Bit:	7	6	5	4	3	2	1	0		
Byte 0		Endpoint	number		0	1	0	0		
Byte 1	0	0	backet siz	e[9:7]						
Byte 2			Мах	packet siz	ze[6:0]			0		
Byte 3	0	0	0 0 0 0 0 0 0							
Byte 4	0	0	0		FIFO n	umber				

Figure 7-1. Endpoint Configuration Data Structure

The configuration fields are described in Table 7-8.

Table 7-8.	Endpoint	Configuration	Field Descriptions
		•••·····	

Field	Description
Endpoint Number	Although the endpoint number ranges from 0 to 15, only endpoints 0, 1, 2, 3, and 4 are supported. It is highly recommended that the example values in Table 7-9 on page 112 be used for this field.
Туре	Endpoint type.
	00 Control
	01 Isochronous
	10 Bulk
	11 Interrupt
Direction	Endpoint direction. (Does not apply to control endpoints.)
	0 Out
	1 In
Max Packet Size	Maximum packet size (in bytes). Note that for control, bulk, and interrupt endpoints, the maximum packet size is limited to 64 bytes. Only isochronous endpoints can accept packets up to 1023 bytes.
	000 0000 000 = 0 bytes 000 0000 001 = 1 byte
	 111 1111 111 = 1023 bytes
FIFO Number	This field designates which FIFO the endpoint uses. For endpoint 0 this field is ignored since endpoint 0 always uses FIFOs 0 and 1. It is highly recommended that the example values in Table 7-9 on page 112 be used for this field.

After the controller is removed from reset, the device configuration data must be written to the **usbd_config** register in order beginning with byte 0. Bytes are written individually using unsigned 32-bit words, as shown the following example code:

for (i=0; i<25; i++)
 *usbd_config = (unsigned int) cfg_data_bytes[i];</pre>

An example configuration data block is shown in Table 7-9.

Byte	Value	Description
0	0000 0100	Endpoint number = 0
1	0000 0000	Type = control
2	1000 0000	Direction = bidirectional
3	0000 0000	Max packet size = 64 bytes
4	0000 0000	FIFOs 0 and 1
5	0001 0100	Endpoint number = 1
6	0011 1000	Type = interrupt
7	1000 0000	Direction = in
8	0000 0000	Max packet size = 64 bytes
9	0000 0010	FIFO 2
10	0010 0100	Endpoint number = 2
11	0010 1000	Type = bulk
12	1000 0000	Direction = in
13	0000 0000	Max packet size = 64 bytes
14	0000 0011	FIFO 3
15	0011 0100	Endpoint number = 3
16	0010 0000	Type = bulk
17	1000 0000	Direction = out
18	0000 0000	Max packet size = 64 bytes
19	0000 0100	FIFO 4
20	0100 0100	Endpoint number = 4
21	0010 0000	Type = bulk
22	1000 0000	Direction = out
23	0000 0000	Max packet size = 64 bytes
24	0000 0101	FIFO 5

Table 7-9. Example Endpoint Configuration Data Block

7.3.1.4 **Endpoint Control Registers**

The endpoint control registers define parameters and reflect operational conditions for each endpoint.

usbd_e	p0cs
--------	------

usb	d_e	p0cs	3																										Offs	set =	0x0	024
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[SU	Ν	Α	В					S	Z					FS
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
usb	d_e	p1cs	5																										Offs	set =	0x0	028
usb	d_e	p2cs	3																										Offs	et =	0x0	02C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																		SU	Ν	Α						S	Z		-			FS
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
usb	d_e	p3cs	5																										Offs	set =	0x0	030
usb	d_e	p4cs	3																										Offs	set =	0x0	034
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																		SU	Ν	Α												FS
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:15	—	Reserved, should be cleared.	R/W	0
14	SU	Setup Received - This bit is set when a SETUP packet is received from the host. It is only valid for EP 0.	R	0
13	N	NAK. This bit is set when an operation does not complete successfully or when data in a receive FIFO should be ignored. For most cases this implies a returned NAK in response to a DATA packet or an incorrect CRC.	R	0
12	A	ACK. This bit is set when an operation completes successfully. Most of the time this means that the Host returned an ACK to a DATA (or SETUP) packet or that a packet was received correctly and an ACK returned to the Host.	R	0
		Isochronous DATA and SETUP packets deviate from this model. For these types of packets the A bit indicates successful transmission or reception but no ACK is returned or expected.		
11	В	Alternate ACK - Set when a DATA frame is correctly received on endpoint 0. (B is not present on other endpoints.)	R	0
10:1	SZ	The SZ field specifies the data size of an IN transfer. The SZ field applies only to endpoints 0, 1, and 2.	R/W	0
0	FS	Force Stall. Setting this bit places the endpoint in a stalled condition. Any transaction directed to the endpoint is answered with a STALL response. STALL is typically used to indicate that the endpoint has halted. Note that a Clear Feature command received via the USB does not clear a stall condition forced by this bit.	R/W	0

7.3.1.5 **Current Frame Number**

This register provides the current frame number from the start of frame packet.

usbd_framenum - Current Frame Number Offset = 0x0038 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 FN

Bits	Name	Description	R/W	Default
31:11	—	Reserved, should be cleared.	R	0
10:0	FN	Frame Number. This field contains the frame number from the start of frame packet.	R	0

7.3.1.6 FIFO Status Registers

Each FIFO has a status register that indicates the current state and any error conditions. The USB FIFOs are 1-byte wide and eight bytes deep.

usbd_e usbd_e usbd_e usbd_e usbd_e usbd_e	p0w p1w p2w p3rd	rsta rsta rsta Istat	t t t																									Offs Offs Offs Offs	et = et = et = et =	0x0 0x0 0x0 0x0)040)044)048)04C)050)054
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_																								FL	UF	OF		FC	NT	
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:7	—	Reserved, should be cleared.	R/W	0
6	FL	Flush FIFO. Setting this bit flushes the corresponding FIFO and discards any data contained in it.	w	0
5	UF	Underflow Flag. Set when attempting a read from an empty FIFO. Clear this flag by writing a 1 to it.	R/W	0
4	OF	Overflow Flag. Set if a byte is written to a full FIFO. Clear this flag by writing a 1 to it.	R/W	0
3:0	FCNT	FIFO Count. Reflects the current number of bytes (0 to 8) in the corresponding FIFO.	R	

7.3.1.7 Device Controller Enable Register

The USB device controller enable register (**usbd_enable**) controls the clocks and reset to the device controller. The programmer should first enable clocks before enabling the device controller. To bring the USB device out of reset, follow these steps:

- 1) Set the CE bit to enable clocks.
- 2) Delay for a period greater than or equal to 1 μ s.
- 3) Set the E bit to enable the peripheral.
- 4) Delay at least 1 µs before programming any registers in the peripheral.

usbd_e	nabl	е																										Offs	set =	= 0x0	058
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_																												SI	CE	Е
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:3	—	Reserved, should be cleared.	W	0
2	SI	Streaming Isochronous Mode. Clearing this bit allows isochronous end- points to service IN and OUT transactions when the endpoint interrupt is pending. This mode is enabled by default.	W	0
		Setting this bit (not recommended) forces ISO endpoints to wait for pend- ing interrupts to be cleared before accepting further data.		
1	CE	Clock Enable. Clearing this bit disables all clocks to the USB Device core. Setting this bit allows normal operation.	W	0
0	E	Enable. When this bit is cleared the Device Controller will be held in reset. Setting this bit enables normal operation.	W	0

7.3.2 Programming Considerations

7.3.2.1 Removing the Controller from Reset

The following sequence of operations must be applied to remove the controller from reset.

- 1) Write a 0x0002 to the usbd_enable register to enable the clocks.
- 2) Wait 1 µs.
- 3) Write a 0x0003 to the **usbd_enable** register to remove the controller from reset.
- 4) Wait 1µs.
- 5) Write 25 bytes of configuration data to the **usbd_config** register.

There are no special constraints on *entering* the reset state: One write to the **usbd_enable** register may be used to turn the clocks off and reset the controller.

Note: Accessing the endpoint control registers (**usbd_ep***n***cs**), frame number register (**usbd_framenum**) or configuration data register (**usbd_config**) while the USB device is in suspend mode will result in a System Bus (SBUS) deadlock. This will inhibit any further operation of the CPU, including EJTAG debugger operation.

7.3.2.2 Latency Requirements

The time from reception of a token such as IN or OUT until the controller must source the corresponding DATA frame is very short. It is not practical to wait for a token before preparing the buffer for the response. Buffers must be posted before the token is received.

The token itself is not passed to the buffer—only DATA and SETUP frames are transferred. When a DATA or SETUP frame is received the difference between an OUT and a SETUP can be determined by examining the SU bit in the **usbd_ep0cs** register. (Only endpoint 0 should receive SETUP packets.)

If an IN endpoint is enabled and no data is available in the FIFO the endpoint will NAK. Underrunning the FIFO during a transfer (after the first byte has been written to the FIFO) will result in a bit stuff error.

7.3.2.3 Using DMA

DMA should be used for all transfers with the exception of the FIFO cleanout described below for OUT transactions.

For IN transactions the size in the **usbd_ep***n***cs** register should be set to MAXPACKET for all but the last buffer and to the actual remaining transfer size for the last packet. The DMA size must be set to match **usbd_ep***n***cs** before the DMA is enabled for proper frame transmission.

If the last buffer of an IN series is a full MAXPACKET in length it may be necessary to set the size in the **usbd_epncs** register to zero and write a byte to the FIFO to enable the transmission of a zero length DATA frame since this is often the indicator for end-of-transfer. In this case the FIFO must be cleared before the next buffer is set up.

For OUT endpoints the DMA may be programmed to a larger size than a transfer will use. When the endpoint completes the FIFO should be examined to see if there are any remaining bytes available. These bytes must be read from the FIFO under program control since the DMA will not receive a request when less than 4 bytes are in the FIFO.

For endpoint zero it is necessary to keep a DMA buffer enabled at all times since SETUP and OUT transactions can come at any time. The user should implement a circular buffer and extract transactions from this buffer in software, rather than trying to have the DMA place transactions into separate buffers.

7.3.2.4 Servicing Interrupts

When an interrupt is received the **usbd_intstat** register should be read to determine the cause of the interrupt. Once the interrupt has been serviced the **usbd_intstat** register should be written with the same value to clear the interrupt.

When an IN or OUT transaction is completed the device controller will NAK all further IN/OUT tokens until the interrupt is cleared by writing the **usbd_intstat** register. This allows the interrupt service routine time to drain the FIFO and set up for the next transaction rather than concatenating data from separate transactions. This automatic wait can be disabled for iso-chronous endpoints by clearing **usbd_enable**[SI]. SETUP packets can never be delayed with NAK.

For bulk, isochronous, and interrupt endpoints the A and N flags are somewhat redundant. Only one of them should be set for a given transaction.

For the control endpoint the flags are broken out to provide separate feedback for various phases of control transactions. This is necessary since only the IN and OUT phases can be paused with NAKs. SETUP packets must be absorbed grace-fully at all times.

The A flag (ACK) is set to indicate successful reception of OUT or SETUP packets. The B flag (alternate ACK) is set to indicate successful reception of OUT data only. (SETUP packets do not affect this flag.) The N flag (NAK) is set to indicate an unsuccessful attempt to send data in response to an IN token.

This combination of flags allows all situations to be decoded. The most complex of these is when a SETUP packet immediately follows an OUT phase used to acknowledge the previous transaction. Without this separation the acknowledgement would be lost.

7.3.2.5 Automatic Execution of Commands

Some standard setup commands directed at endpoint zero are automatically serviced by the USB device hardware. These commands are still passed to the memory buffer. No further action is required to service these commands although they may be used to signal state changes within the software.

The following commands are automatically serviced:

- Set Address
- Set/Clear Feature
- Set/Get Configuration
- Set/Get Interface
- Get Status

7.3.2.6 Detecting USB Reset

The USB device controller does not provide a way to detect reset on the USB. It is recommended that if a device needs to change state on reset it should use the reception of a **Set Address** command to indicate that a reset has occurred.

7.3.2.7 Automatic Suspension

If the USB device is Idle for more than 5 ms, the device controller enters a suspend state. In this state the device controller does not consume data. A rising edge suspend interrupt is provided to inform the CPU when this occurs. The suspend interrupt may also be used to detect the exit from suspend by using the falling edge of the interrupt.

Note: Because the USB device controller will suspend itself if left Idle, the USB device configuration routine (including programming the interrupt controller to recognize request and suspend interrupts from the USB device) must be *fully* completed within 5 ms of bringing the peripheral out of its reset state.

7.3.2.8 Re-establishing a Connection after Reset

During software initialization of the USB device controller, the USBDP and USBDM signals do not automatically enter a disconnect-bus state in which both signals go low for more than 2.5 µs. Instead, after a runtime or hardware reset of the system, the signals stay in a connect-bus state in which USBDP remains high and USBDM remains low. This prevents the USB host from recognizing the need to establish a new bus enumeration, and the logical communication flow remains disrupted.

To re-establish logical communication after reset, system initialization software can control a GPIO signal to temporarily (more than 2.5 μ s) disable power to USBDP. It is recommended to use the GPIO to toggle an LDO (low drop-out) voltage regulator placed between the USB power supply (VBUS) and the pull-up resistor attached to USBDP.

7.3.3 Programming Examples for USB Device

7.3.3.1 Initialization

```
1) Configure 4 8MHz USB device clock from AUX PLL.
```

2) Enable USB Device Controller.

```
usbd_enable = 0x02; // enable USBD clocks
wait at least 1us;
usbd_enable = 0x03; // remove reset from USBD Controller
wait at least 1us;
```

3) Write 25-byte configuration data to the Configuration Register.

```
for( i = 0; i < 25; ++i )
{
            usbd_config = (unsigned int) config_data_bytes[i];
}
wait at least 1us;</pre>
```

4) Set up Endpoint Control Registers (example).

```
usbd_ep0cs = 64 << 1; // set endpoint 0 MAXPACKET
usbd_ep1cs = 8 << 1; // set endpoint 1 MAXPACKET
usbd_ep2cs = 8 << 1; // set endpoint 2 MAXPACKET
usbd_ep3cs = 8 << 1; // set endpoint 3 MAXPACKET
usbd_ep4cs = 8 << 1; // set endpoint 4 MAXPACKET</pre>
```

5) Clear FIFO Status Registers.

```
// clear Overflow Flag, Underflow Flag, Flush FIFO
usbd_ep0rdstat = 0x70;
usbd_ep1wrstat = 0x70;
usbd_ep2wrstat = 0x70;
usbd_ep3rdstat = 0x70;
usbd_ep4rdstat = 0x70;
```

6) Configure DMA channels.

- // assign a DMA channel for endpoint 0 receive and build multiple buffer descriptors
- // assign a DMA channel for endpoint 0 transmit and build multiple buffer descriptors
- // assign a DMA channel for endpoint 1 transmit and build multiple buffer descriptors, if necessary
- // assign a DMA channel for endpoint 2 transmit and build multiple buffer descriptors, if necessary
- // assign a DMA channel for endpoint 3 receive and build multiple buffer descriptors, if necessary
- // assign a DMA channel for endpoint 4 receive and build multiple buffer descriptors, if necessary
- 7) Configure the interrupt type for the USB device request (interrupt controller 0, number 24) as high-level.
- 8) Configure the interrupt type for the USB device suspend (interrupt controller 0, number 25) as rising-edge.
- 9) Start the Endpoint 0 receive DMA.
- 10) Enable USB Interrupts.

usbd_inten = 0x0000003f;// enable transfer-complete interrupts

7.3.3.2 Interrupt Handler

The steps to handle an interrupt are shown below. This example handler is for a general USB application and may not be sufficient for a specific application. The handler must be installed before interrupts are enabled.

1) Obtain the USBD interrupt status.

```
status = usbd_intstat// obtain usbd_intstat
```

2) Execute each interrupt condition.

```
// check if endpoint transfer complete
{
    // if ep0rd completed, execute the process for ep0rd.
    // if ep0wr completed, execute the process for ep0wr.
    // if ep1wr completed, execute the process for ep1wr.
    // if ep2wr completed, execute the process for ep2wr.
    // if ep3rd completed, execute the process for ep3rd.
    // if ep4rd completed, execute the process for ep4rd.
}
```

3) Clear the USBD interrupt status.

usbd_intstat = status;// clear interrupts

7.3.4 Hardware Considerations

Table 7-10 shows the signals associated with the USB device. The USB root hub port pins have USB 1.1 compliant drivers with the addition of the external circuitry noted in the signal description. The USB device implementation is full speed with the required termination noted in Table 7-10. Low speed is not supported.

Signal	Input/Output	Description
USBDP	I/O	Positive signal of differential USB device driver.
		Requires a 1.5 kohm pull-up resistor to denote a full speed device. Also requires an external ESD protection diode (transient voltage suppressor) to be USB 1.1 compliant.
		Termination Note: Requires an external 27 ohm resistor placed in series within 0.5 inches of the part.
		Muxed with USBH0P
USBDM	I/O	Negative signal of differential USB device driver.
		Requires an external ESD protection diode (transient voltage suppressor) to be USB 1.1 compliant.
		Termination Note: Requires an external 27 ohm resistor placed in series within 0.5 inches of the part.
		Muxed with USBH0M

Table 7-10. USB Device Signals

For changing pin functionality please refer to the **sys_pinfunc** register in Section 8.3 "Primary General Purpose I/O and Pin Functionality" on page 168.

7.4 Ethernet MAC Controller

The Au1500 processor contains two Ethernet MAC devices. The MAC provides the interface between the host application and the PHY layer through the Media Independent Interface (MII). The PHY layer device is external to the processor.

The MAC supports the protocol requirements to meet the Ethernet/IEEE 802.3 specification. The MAC operates in both half and full duplex modes. In half duplex mode the MAC is compliant with section 4 of ISO/IEC 8802-3 (ANSI/IEEE Standard) and ANSI/IEEE 802.3.

The MAC provides programmable enhanced features designed to minimize host supervision, bus utilization and pre/post message processing. These features include ability to disable retries after a collision, dynamic FCS generation on a frame by frame basis, automatic pad field insertion and deletion to enforce minimum frame size attributes, automatic retransmission and detection of collision frames. The MAC can sustain transmission or reception of minimal size back-to-back packets at full line speed with an inter-packet gap of 9.6 µs for 10 Mbps and 0.96 µs for 100 Mbps.

A dedicated DMA engine is implemented to support the MAC so that the general purpose DMA is not required.

The primary attributes of the MAC are:

- Transmit and receive message data encapsulation with framing and error detection.
- Frame boundaries are delimited and frames are synchronized. Error detection is done at the physical medium transmission level.
- Media access management is supported through medium allocation and contention resolution. This is accomplished through collision avoidance and handling. The MAC handles collision per the ISO 8802.3 specification.
- Support for flow control during full duplex mode is accomplished by decoding of control frames and disabling the transmitter in conjunction with generation of control frames.
- The serial control interface supports the MII protocol to interface to an MII based PHY.

The MAC features are:

- IEEE 802.3, 802.3u, 803.3x specification compliance
- 10/100 Mbps data transfer rates
- · IEEE 802.3 compliant MII interface to talk to an external PHY
- Full and half duplex
- CSMA/CD in half duplex
- Flow control support for full duplex
- Collision detection and auto retransmit on collisions in half duplex
- Preamble generation and removal
- Automatic 32 bit CRC generation and checking
- · Optional automatic Pad stripping on the receive packets.
- · Loopback support on the MII
- Filtering modes supported on the Ethernet side:
 - One 48 bit perfect address
 - 64 hash-filtered multicast addresses
 - Pass all multicast addresses
 - Promiscuous Mode
 - Pass all incoming packets with a status report
 - Toss bad packets
 - Separate 32-bit status returned for transmit and receive packets
 - Jumbo packet (0x2800 bytes)
 - Big/Little Endian data format support

The following PHY interfaces are supported:

- MII Ethernet 4-bit parallel PHY per IEEE 802.3u spec
- MII Management 2-wire bus to control and receive status from PHY
- HPNA 1.0 support across MII

The control registers for the MAC are used for address filtering, packet filter for good and bad frames, 48-bit MAC address with a local station address, a multicast table for filtering multicast frames and more. Each register is 32 bits wide.

7.4.1 Ethernet Registers

The two Ethernet MACs contained in the Au1500 processor are located at the base addresses shown in Table 7-11. In addition, the base addresses for the enable registers and the MAC DMA registers are shown.

Name	Physical Base Address	KSEG1 Base Address
mac0_base	0x0 1150 0000	0xB150 0000
mac1_base	0x0 1151 0000	0xB151 0000
macen_base	0x0 1152 0000	0xB152 0000
macdma0_base	0x0 1400 4000	0xB400 4000
macdma1_base	0x0 1400 4200	0xB400 4200

 Table 7-11. Ethernet Base Addresses

7.4.2 MAC Registers

The Ethernet MAC registers are listed in Table 7-12.

Offset (Note 1)	Register Name	Description
0x0000	mac_control	Operation Mode and Address Filter.
0x0004	mac_addrhigh	High 16 bits of the MAC Physical Address.
0x0008	mac_addrlow	Lower 32 bits of the MAC Physical Address.
0x000C	mac_hashhigh	High 32 bits of the Multicast Hash Address.
0x0010	mac_hashlow	Low 32 bits of the Multicast Hash Address.
0x0014	mac_miictrl	Control of PHY Management Interface.
0x0018	mac_miidata	Data to be written or read from PHY over control interface.
0x001C	mac_flowctrl	Control Frame Generation Control.
0x0020	mac_vlan1	VLAN1 Tag.
0x0024	mac_vlan2	VLAN2 Tag.

Table 7-12. MAC Register Descriptions

Note 1. Each Ethernet MAC has an identical register set with identical offsets from **mac0_base** and **mac1_base**. See Table 7-11 for base address.

7.4.2.1 MAC Control Register

The MAC Control Register establishes the receive and transmit operating modes and controls for address filtering and packet filtering.

Note that the PM, PR, IF, HP and HO bits in the MAC Control register will determine the address filtering mode. The RA, DB, PC and PB bits will determine the packet filter mode. The first bit of the destination address will determine if the address is a physical address (first bit = 0) or a multicast address (first bit = 1). If all bits in the destination address are set to 1 then the address is a broadcast address.

mac_control

Offset = 0x0000

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RA	ΕM							DO	L	М	F	PM	PR	IF	PB	HO		ΗP	LC	DB	DR		AP	B	BL	DC		ΤE	RE		
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31	RA	Receive All.	R/W	0
		0 Normal Operation.		
		1 All incoming packets will be received regardless of the destination address.		
		The address filter status is reported in Receive Status bit Filtering Fail.		
		The Packet Filter bit in the Receive Status is set for all error-free frames regardless of the Destination Address field.		
30	EM	Endian Mode for Data Buffers.	R/W	0
		0 Little endian.		
		1 Big endian.		
29:24	—	Reserved, should be cleared.	R	0
23	DO	Disable Receive Own.	R/W	0
		0 The MAC receives all packets that are given by the PHY.		
		1 The MAC disables reception of frames when the TXEN is asserted. The MAC ignores any loop backed receive packets.		
		This bit should be cleared when the full duplex mode bit is set or the Oper- ating Mode is set to other than Normal Mode.		
22:21	LM	Loopback Operating Mode.	R/W	00
		00 Normal Mode.		
		01 Internal Loopback.		
		10 External Loopback.		
		11 Reserved.		
20	F	Full Duplex Mode.	R/W	0
		0 Half duplex mode.		
		1 Full duplex mode.		
		Note: Be sure to disable both the transmitter and receiver before changing duplex modes.		
19	PM	Pass All Multicast.	R/W	0
		0 Normal.		
		1 All incoming frames with a multicast destination address (first bit in the destination address field is '1') are received and the Filter Fail bit reset.		
		Incoming frames with physical address destinations are filtered according to HP (bit 13) and HO (bit 15).		
18	PR	Promiscuous Mode.	R/W	1
		0 Normal		
		1 Any incoming valid frame is received regardless of its destination address.		
		The Filter Fail bit is always cleared in Promiscuous Mode.		

Bits	Name	Description	R/W	Default
17	IF	Inverse Filtering. 0 Normal	R/W	0
		 Physical addresses are checked with inverse filtering. In other words if the address passes a perfect address filter, the frame is not passed; if the address fails a perfect filter, the frame is passed. 		
		This is valid only during perfect filtering mode.		
16	PB	Pass Bad Frames.	R/W	0
		0 Normal		
		1 All incoming frames that passed the address filtering are received including runt frames, collided frames, or truncated frames caused by buffer overflow.		
		The Packet Filter bit is set for error frames that pass the Address filtering. If all received bad frames are required, promiscuous mode (bit 18) should be set.		
15	HO	Hash Only Filtering Mode.	R/W	0
		0 Perfect address filtering mode for physical addresses		
		1 Imperfect address filtering mode both for physical and multicast addresses		
		Setting this bit is valid only if HP=1.		
14	—	Reserved, should be cleared.	R	0
13	HP	Hash/Perfect Filtering Mode	R/W	0
		0 Address Check block does a perfect address filter of incoming frames according the address specified in the MAC Address register.		
		Address Check block does imperfect address filtering of multicast incoming frames according to the hash table specified in the multicast Hash Table Register. If the Hash Only (HO) bit is set, then physical addresses are imperfectly filtered too. If the Hash Only bit (HO) is reset, then physical addresses are perfect address filtered according to the MAC Address Register.		
12	LC	Late Collision Control.	R/W	0
		0 Abort frame transmission on a late collision.		
		1 Enable the retransmission of the collided frame even after the collision period (late collision).		
		In either case the Late Collision Status is appropriately updated in the Transmit Packet Status.		
		This bit is valid only when operating in half duplex mode.		
11	DB	Disable Broadcast Frames.	R/W	0
		0 Forward all the broadcast frames to the application. (Packet Filter bit is set.)		
		1 Disable the reception of broadcast frames. (Packet Filter bit is cleared.)		
10	DR	Disable Retry.	R/W	0
		0 The MAC will attempt 16 transmissions before signaling a retry error.		
		1 The MAC will attempt transmission of a frame only once. When a col- lision is seen on the bus, the MAC will ignore the current frame and go to the next frame and a retry error will be reported in the Transmit Status.		
		This bit is valid only when operating in half duplex mode.		
9	_	Reserved, should be cleared.	R	0

Bits	Name	Description	R/W	Default
8	AP	Automatic Pad Stripping. 0 Pass all the incoming frames to the host unmodified.	R/W	0
		Strip the pad field on all the incoming frames if the length field is less than 46 bytes. The FCS field is also stripped, because it is computed at the transmitting station based on the data and pad field characters and will therefore be invalid for a receive frame that has had the pad characters stripped. Receive frames which have a length field of 46 bytes or greater will be passed to the host unmodified (FCS is not stripped).		
		Pad stripping is done only on the IEEE 802.3 formatted frames (frames with Length field).		
7:6	BL	Backoff Limit. The Backoff limit determines the integer number of slot times the MAC waits before rescheduling a transmission attempt (during retries after a collision).	R/W	00
5	DC	Deferral Check.	R/W	0
		0 The deferral check is disabled in the MAC and the MAC defers indef- initely.		
		1 The deferral check is enabled in the MAC. The MAC will abort the transmission attempt if it has deferred for more than 24,288 bit times. Deferring starts when the transmitter is ready to transmit, but is prevented from doing so because CRS is active. Defer time is not cumulative. In other words, if the transmitter defers, then transmits, collides, backs off, and then has to defer again after completion of backoff, the deferral timer resets to 0 and restarts.		
		This bit is valid only when operating in half duplex mode.		
4	_	Reserved, should be cleared.	R	0
3	TE	Transmitter Enable.0 The MAC transmitter is disabled and will not transmit any frames on	R/W	0
		the MII interface.1 The MAC transmitter is enabled and it will transmit frames from the buffer on to the MII interface.		
2	RE	Receiver Enable.	R/W	0
		0 The MAC receiver is disabled and will not receive any frames from the MII interface.		
		1 The MAC receiver is enabled and will receive frames from the MII interface.		
1:0		Reserved, should be cleared.	R	0

7.4.2.2 MAC Address High and Low Registers

The MAC Address High Register contains the upper 16 bits of the physical address of the MAC. The MAC Address Low Register contains the lower 32 bits of the physical address of the MAC.

It is the responsibility of the system designer to provide the MAC address for the system.

The MAC address will be compared with the destination address from the incoming frame with PADR[0] (bit 0 of the Mac Address Low register) being compared with the first bit of the destination address and PADR[47] (bit 15 of the MAC Address High register) compared with the 48th bit of the destination address.

Example: To program the MAC address 00.50.c2.0c.20.10 the MAC address registers should be programmed as follows:

mac_addrhigh = 0x00001020
mac_addrlow = 0x0CC25000

mac	_ad	drhi	gh																										Offs	set =	0x0	004
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ																							PA	\DR	47:3	32]						
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description	R/W	Default
31:16	—	Reserved, should be cleared.	R	0
15:0	PADR[47:32]	Physical Address [47:32]. Contains the upper 16 bits (47 to 32) of the Physical Address of the MAC.	R/W	0xFFFF

mac_addrlow

Offset = 0x0008

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ															P	ADF	3[31:	0]														
Def	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description	R/W	Default
31:0	PADR[31:0]	Physical Address [31:0]. Contains the lower 32 bits (31 to 0) of the Physical Address of the MAC.	R/W	0xFFFFFFFF

7.4.2.3 **Multicast Address High and Low Hash Table Registers**

The 64-bit multicast address hash table is used for group address filtering. For hash filtering, the contents of the destination address in the incoming frame is passed through the CRC logic and the upper 6 bits of the CRC register are used to index the contents of the Hash table. The most significant bit determines the register to be used (1 = Hi, 0 = Low), while the other five bits determine the bit within the register. A value of '00000' selects the bit 0 of the selected register and a value of '11111' selects the bit 31 of the selected register.

If the corresponding bit in the hash table is '1', then the multicast frame is accepted, otherwise it is rejected. If the Pass All Multicast is set, then all multi-cast frames are accepted regardless of the multi-cast hash values. The Multi Cast Hash Table High Register contains the higher 32 bits of the hash table and the Multi Cast Hash Table Low Register contains the lower 32 bits of the hash table.

.

mac_h	ashh	igh																										Offs	et =	0x0	00C
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														N	ICH[63:3	2]														
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:0	MCH[63:32]	Multicast Address Hash Table High. These bits map to the upper 32 bits of the 64 bit hash table.	R/W	0x00000000

mac_hashlow

Offset = 0x0010

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															Ν	1CH	[31:0)]														
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:0	MCH[31:0]	Multicast Address Hash Table Low. These bits map to the lower 32 bits of the 64 bit hash table.	R/W	0x00000000

7.4.2.4 MII Control Register

The MII Address Register is used to control and generate the Management cycles to the External PHY Controller chip. A write to this register will generate a read/write access on the MII Management Interface (MDIO/MDC) bus to an external PHY device.

mac_m	iictr	l																										Offs	et =	0x0	014
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																P	PHYA	DDI	R[4:0	D]		MIIF	REG	[4:0]						MW	MB
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	—	Reserved, should be cleared.	R	0
15:11	PHYADDR	PHY Address. These bits tell which of the 32 possible PHY devices are being accessed.	R/W	00000
10:6	MIIREG	MII Register. These bits select the desired MII register in the selected PHY device.	R/W	00000
5:2	—	Reserved, should be cleared.	R	0
1	MW	MII Write.	R/W	0
		0 Operation will be a read (data read is placed in MII Data Register)		
		1 Operation will be a write (data to be written is taken from MII Data Register)		
0	MB	MII Busy. This bit should read a logic 0 before writing to the MII address and MII data registers. This bit should be reset to 0 when writing to the MII address register.	R/W	0
		This bit will be set by the MAC to signify that a read or write access to the external PHY is in progress. For a write operation the data regis- ter should be kept valid until this bit is cleared by the MAC. For a read operation the MII data register is invalid until this bit is cleared by the MAC.		
		The MII address register should not be modified until this bit is cleared. The MAC clears this bit after the PHY access is done.		

7.4.2.5 MII Data Register

The MII Data Register contains the data to be written to the PHY register specified in the MII address register, or it contains the read data from the PHY register whose address is specified in the MII address register.

mac_	miid	lata	I																										Offs	et =	0x0	018
Bit 3	1 3	0	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																							MI	DAT	A[15	5:0]						
Def.) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	—	Reserved, should be cleared.	R	0
15:0	MIIDATA	MII Data	R/W	0x0000
		16-bit value read from the PHY after a MII read operation, or the 16- bit data value to be written to the PHY before a MII write operation.		

7.4.2.6 **Flow Control Register**

This register is used to control the generation and reception of the Control (PAUSE Command) frames by the MAC's Flow control block. A write to this register with the busy bit set to '1' triggers the Flow Control block to generate a PAUSE Control frame. The fields of the control frame are selected as specified in the 802.3x specification with the Pause Time field from this register used in the "Pause Time" field of the control frame. The Busy bit will remain set until the control frame is transmitted. The Host has to insure that the Busy bit is cleared before writing to the register. The Pass Control Frames bit indicates to the MAC whether or not to pass the control frame to the Host. The Flow Control Enable bit enables the receive portion of the Flow Control block.

mac flowctrl

mac_f	lowc	tri																										Offs	et =	0x0	01C
Bit 3	1 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							PT[⁻	15:0]																					PC	FE	FB
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	PT	Pause Time. This field will be used in the PAUSE TIME field in the genera- tion of the PAUSE control frame.	R/W	0x0000
15:3	—	Reserved, should be cleared.	R	0
2	PC	Pass Control Frame	R/W	0
		0 The MAC decodes the control frames but does not pass the frames to the Host. The Control Frame bit in the Receive Status (bit 25) is set and the Transmitter Pause Mode signal gives the current status of the Transmitter, but the PacketFilter bit in the Receive Status is reset to signal the application to flush the frame.		
		1 Control frames are passed to the Host. The MAC decodes the control frame (PAUSE) and disables the transmitter for the specified amount of time. The Control Frame bit in the Receive Status (bit 25) is set, and the Transmitter Pause Mode signal indicates the current state of the MAC Transmitter.		
1	FE	Flow Control Enable	R/W	0
		0 The flow control operation in the MAC is disabled, and the MAC does not decode the frames for control frames.		
		1 The MAC is enabled for flow control operation and it will decode all the incoming frames for control frames. If the MAC receives a valid control frame (PAUSE command), it will disable the transmitter for the specified time.		
		This bit is valid only in full duplex mode.		
0	FB	Flow Control Busy Status. This bit should read a logic 0 before writing to the Flow Control register. To initiate a PAUSE control frame the host must set this bit. During a transfer of Control Frame, this bit remains set to sig- nify that a frame transmission is in progress. After the completion of PAUSE control frame transmission, the MAC clears FB.	R/W	0

7.4.2.7 VLAN1 Tag Register

mac	_vla	an1																											Offs	et =	0x0	020
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																							VL	1TA	G[15	5:0]						
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description	R/W	Default
31:16	—	Reserved, should be cleared.	R	0
15:0	VL1TAG	VLAN 1 Tag Identifier. This field will be compared with the 13th and 14th bytes of the incoming frame. If a nonzero match occurs the VLAN 1 Frame bit will be set in the receiver status packet. In addition, the legal length of a frame is increased from 1518 bytes to 1522 bytes.	R/W	0xFFFF

7.4.2.8 VLAN2 Tag Register

mac vlan2

mac	_vla	n2																											Offs	set =	0x0	0024
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																							VL	2TA	G[15	5:0]						
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bits	Name	Description	R/W	Default
31:16	—	Reserved, should be cleared.	R	0
15:0	VL2TAG	VLAN 2 Tag Identifier	R/W	0xFFFF
		This field will be compared with the 13th and 14th bytes of the incoming frame. If a nonzero match occurs the VLAN 2 Frame bit will be set in the receiver status packet. In addition the legal length of a frame is increased from 1518 bytes to 1538 bytes.		

7.4.3 **MAC Enable Registers**

Each Ethernet MAC has an identical enable register. Both enable registers are located off of the macen_base shown in Table 7-11 "Ethernet Base Addresses" on page 120.

7.4.3.1 MAC0 and MAC1 Enable

The enable register for each MAC contains a bit that enables the entire block. The block should be disabled if not in use to minimize power consumption. In addition, each enable register contains a toss bit (TS) which prevents frames that do not pass the address filter from being put into memory.

The process for bringing the MAC out of reset is as follows:

- 1) Enable clocks (CE=1).
- 2) Bring E[2:0] high together with the other bits configured as desired (keeping clocks enabled).

Note: MAC clocks must be running before the internal MAC registers are accessed.

maa maa	_	-																														0000 0004
Bit	t 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																										JP	E2	E1	С	TS	E0	CE
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:7	—	Reserved, should be cleared.	W	0
6	JP	Jumbo Packet Enable.	W	0
		0 Normal (Max packet length = 0x800 bytes)		
		1 Enable Jumbo Packet (Max packet length = 0x2800 bytes)		
5:4	E[2:1]	Enable field bits 2 and 1. Together with E0, this field resets and enables the MAC.	W	00
		000 Reset		
		111 Enable		
		All other combinations are invalid.		
3	С	Coherent.	W	0
		0 Memory accesses are marked coherent on SBUS		
		1 Memory accesses are marked non coherent on SBUS		
		For more information on coherency see Section 2.8.2 "SBUS Coherency Model" on page 42.		

Bits	Name	Description	R/W	Default
2	TS	Disable Toss.	W	UNPRED
		 Only frames passing the address filter are passed to memory. Frames which fail length error, CRC error, or other non-address filter failures are still passed to memory. Frames are not passed to memory if the filter fail bit is set, or the frame is a broadcast frame and broadcast frames have been dis- abled. 		
		In promiscuous mode all frames are passed to memory unless the disable broadcast bit is set which prevents broadcast frames from being passed to memory.		
		Frames that are not passed to memory are transparent to software— no status or indication informs software.		
		1 All frames are passed to memory, regardless of address filter result.		
1	E[0]	Enable field bit 0. See description for E[2:1].	W	0
0	CE	Clock Enable.	W	0
		0 Clocks disabled to MAC		
		1 Clocks enabled to MAC		

7.4.4 MAC DMA Registers

Each MAC has four DMA buffers for both receive and transmit (four for RX, four for TX). The DMA buffers are serviced in a round-robin fashion. Each MAC has a 32-word FIFO for both transmit and receive. The transfer size for the MAC DMA is eight WORDs. Both the FIFO size and transfer size are taken care of automatically by the MAC DMA and are transparent to the programmer except that all memory buffers must be implemented on a cache line boundary (32 bytes).

The MAC DMA registers can be described as a set of transmit and receive entries off of the MAC DMA base addresses shown in Table 7-11 "Ethernet Base Addresses" on page 120.

Each MAC DMA base address contains eight entries which correspond to four transmit buffer entries and four receive buffer entries as shown in Table 7-13.

Offset (Note 1)	Entry Prefix	Entry Name
0x000	tx0	Transmit Buffer 0
0x010	tx1	Transmit Buffer 1
0x020	tx2	Transmit Buffer 2
0x030	tx3	Transmit Buffer 3
0x100	rx0	Receive Buffer 0
0x110	rx1	Receive Buffer 1
0x120	rx2	Receive Buffer 2
0x130	rx3	Receive Buffer 3

Table 7-13. MAC DMA Entries

Note 1. See Table 7-11 on page 120 for base address.

Within each receive entry there are two registers implemented as shown in Table 7-14. (The third and fourth reserved entries are shown for completeness but are not used.)

		, ,
Offset	Receive Entry Register	Description
0x0	stat	Status register
0x4	addr	Address/enable register
0x8	Reserved	Nothing is implemented at this offset.
0xC	Reserved	Nothing is implemented at this offset.

Table 7-14. MAC DMA Receive Entry Registers

Within each transmit entry, there are three registers implemented as shown in Table 7-15. (The fourth reserved entry is shown for completeness but is not used.)

Offset	Transmit Entry Register	Description
0x0	stat	Status register
0x4	addr	Address/enable register
0x8	len	Length register
0xC	Reserved	Nothing is implemented at this offset.

Table 7-15. MAC DMA Transmit Entry Registers

To calculate the address of a specific MAC DMA buffer all offsets should be combined. For example the physical address of the MAC1 receive buffer 3 address register is calculated as follows:

macdma1_rx3addr = macdma1_base + rx3 + addr = 0x0 1400 4200 + 0x130 + 0x4 = 0x0 1400 4334

Another way to look at the DMA register addresses is to view them as built off of the base address using an indexed approach to build the address for each unique register within the block. In other words, each bit (or set of bits) within the address will select a parameter of the DMA Register (TX/RX, Buffer number, Status/Address/Length register) until a unique address is formed selecting a single register.

Ethernet MAC Controller

To build the address for a unique register the bits should be set according to the definitions in Table 7-16.

AddrBits	Description
8	TX/RX.
	0 Transmit Block
	1 Receive Block
7:6	These bits should be cleared.
5:4	MAC DMA Buffer.
	00 Buffer 0
	01 Buffer 1
	10 Buffer 2
	11 Buffer 3
3:2	Register Select
	00 Status Register
	01 Address/Enable Register
	10 Length Register (valid for transmit only)
	11 Reserved
1:0	These bits should be cleared because the registers are aligned on a word boundary.

Table 7-16. MAC DMA Block Indexed Address Bit Definitions

The enumerated DMA registers are shown in Section A.1 "Memory Map" on page 255.

7.4.4.1 MAC DMA Receive Registers

There are two receive registers for each DMA channel associated with each MAC: the status register and the address/ enable register. The length register is not applicable to the receive DMA channel, as the length will be determined by the size of the received packet (typically the size of a frame for a complete, successful reception). The receive memory buffers should be 0x800 bytes when Jumbo Packets are not enabled and to 0x2800 when Jumbo packets are enabled. This will allow for the worst case maximum reception length.

In the naming of the receive registers dummy variables m and n have been inserted into the name to designate MAC number (m) and buffer number (n).

Receive Status

This register contains the receive packet status bits sent by the MAC after receiving a frame. This register is only valid after a receive transaction has been enabled by the host and the done bit has been set by the MAC in the Address/Enable Register to indicate that the transaction is complete.

The MI bit should be checked by software after receiving a frame to verify that the received frame is valid.

macdmam_rxnstat

ma	sum	um_	1	siai																										0113	οι –	0.00
Bi	t 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	MI	PF	FF	BF	MF	UC	CF	LE	V2	V1	CR	DB	ME	FT	CS	FL	RF	WΤ							L[1:	3:0]						
Def	. Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31	MI	Missed Frame.	R	UNPRED
		0 The frame is received normally by the Application without any latency or error violations		
		1 Indicates that a frame was missed due to an internal FIFO overrun.		

Offeet = 0x0

30361D

Bits	Name	Description	R/W	Default
30	PF	Packet Filter.	R	UNPRED
		0 Indicates that the current frame failed the packet filter.		
		1 Indicates that the current frame passed the packet filter that is imple- mented in the MAC.		
		Packet Filter will indicate failed frame when any of the following conditions happens.		
		a. FF = 0 and frame is not a Broadcast or RA is 1		
		b. Frame is Broadcast and DB is 0		
		c. Frame is not Control Frame or PC is 1		
		d. No Error Status or PB Frames is 1		
		e. Unsupported Control Frame is 0		
		The Application can use this bit to decide whether to keep the packet in the memory or flush the packet from the memory.		
		Note that frames with length greater than max Ethernet size (1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2) will create an error sta- tus thus failing the packet filter. The frames may still be valid with failure only due to frame size.		
29	FF	Filtering Fail.	R	UNPRED
		0 Current frame passed address filtering		
		1 Destination Address field in the current frame failed the Address filter- ing.		
28	BF	Broadcast Frame.	R	UNPRED
		0 Destination address is not Broadcast.		
		1 Destination address is all 1's indicating broadcast address.		
27	MF	Multicast Frame.	R	UNPRED
		0 Destination address is not multicast.		
		1 Destination address is multicast (the first bit is 1).		
26	UC	Unsupported Control Frame.	R	UNPRED
		0 If the Control Frame bit is set, this bit indicates a supported control frame has been received (Pause Frame).		
		1 The MAC observed an unsupported Control Frame. This is set when a control frame is received and the opcode field is unsupported, or the length is not equal to minFrameSize (64 bytes). This bit is set only when the MAC is operating in the full-duplex mode.		
25	CF	Control Frame.	R	UNPRED
		0 Current frame is not a control frame.		
		1 Current frame is a control frame. This bit is only set when operating in Full Duplex mode.		
24	LE	Length Error.	R	UNPRED
		0 No length error occurred.		
		1 The current frame Length value is inconsistent with the total number of bytes received in the current frame. When the number of bytes received in the data field are more than what indicated in the Length/ Type field, the additional bytes are assumed to be PAD bytes and the Length Error bit is not set. When the number of bytes received in the data field is less than what was indicated in the Length/Type field, the Length Error bit is set. This is valid when the Frame Type is set to '0' (802.3 Frame).		
		This bit is not applicable for frame lengths greater than max Ethernet size (1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2).		
23	V2	VLAN2 ID.	R	UNPRED
		0 No match with VLAN2 tag		
		1 The current frame is tagged with a VLAN2 ID. The thirteenth and fourteenth bytes of the frame were a nonzero match with the VLAN2 tag register.		

Bits	Name	Description	R/W	Default
22	V1	VLAN1 ID.	R	UNPRED
		0 No match with VLAN1 tag		
		1 The current frame is tagged with a VLAN1 ID. The thirteenth and		
		fourteenth bytes of the frame were a nonzero match with the VLAN1 tag register.		
21	CR	CRC Error.	R	UNPRED
	UT1	0 No CRC error in current frame		
		1 CRC error occurred in received frame.		
		This bit is not applicable for frame lengths greater than max Ethernet size		
		(1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2). If a CRC		
		check is required it must be done in software.		
20	DB	Dribbling Bit.	R	UNPRED
		0 An integer multiple of eight bits was received.		
		1 A non-integer multiple of eight bits was received. This bit is not valid if either the Collision Seen bit or Runt Frame bit is set. If this bit is set and the CRC Error bit is 0, then the packet is still valid.		
19	ME	MII Error.	R	UNPRED
		0 No MII error.		
		1 MII error during frame reception.		
18	FT	Frame Type.	R	UNPRED
		0 IEEE 802.3 Frame.		
		1 Ethernet-type frame (frame length field is greater than max Ethernet size (1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2).		
		This bit is still applicable when Jumbo packets are enabled.		
		This bit is not valid for runt frames of less than 14 bytes.		
17	CS	Collision Seen.	R	UNPRED
		0 No collision seen during frame reception.		
		 The frame was damaged by a collision that occurred after the 64 bytes following the start of frame delimiter (SFD). This is a late colli- sion. 		
16	FL	Frame Too Long.	R	UNPRED
		 Frame size is less than or equal to max Ethernet frame size (1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2). 		
		1 Frame size is greater than the maximum Ethernet specified size (1500 bytes- normal, 1518 bytes - VLAN1, 1538 bytes - VLAN2). This also applies when Jumbo packets are enabled.		
		Frame too long is only a length indication and does not cause frame trun-		
		cation.		
15	RF	Runt Frame.	R	UNPRED
		0 Frame was not damaged in collision window.		
		1 Frame was damaged by a collision or premature termination before the collision window passed.		
14	WT	Watchdog Timeout.	R	UNPRED
		0 Frame was received before timeout occurred.		
		1 The receive watchdog timer expired while receiving the frame. The watchdog timer inside the MAC is programmed to be twice the Max-FrameLength. When set, the Frame Length field is invalid.		
		Any time the max frame length is exceeded (0x800 bytes for normal mode, 0x2800 with Jumbo packets enabled) the WT bit will be set.		
13:0	L[13:0]	Frame Length. Indicates length in bytes of the received frame. The host should take into account how the Automatic Pad Stripping (AP) bit in the corresponding MAC control register is set, as this will affect how the length field and frame contents should be interpreted.	R	UNPRED

Receive Buffer Address/Enable Register

This register contains the starting address for the receive buffer. The host should ensure that the memory buffer is set up to accommodate the worst case largest frame size to be able to handle all received packets. At worst case the MAC will receive 0x800 bytes before aborting a receive in normal mode or 0x2800 bytes when Jumbo packets have been enabled in the **macen_macn** register.

After the transaction has been enabled this register should not be written until the DN bit has been set.

The buffer for the DMA must be cache line aligned so the lowest 5 bits are not used as part of the address. These bits have been employed as done and enable bits that are exclusive of the address.

macdma*m*_rx*n*addr

Offset = 0x4

macum	am_	1 1/10	uui																										ona	οι –	0.4
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												ADD	DR[3	1:5]														С	В	DN	EN
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:5	ADDR	Buffer Address. Upper 27 bits of the starting physical address for the DMA buffer. This address must be cache line (32 bytes) aligned so only 27 bits are used. This address must be written for each DMA transaction (the address will not remain after the transaction is enabled)	R/W	0
4	—	Reserved, should be cleared.	R	0
3:2	СВ	Current Buffer. Current DMA Receive Buffer	R	UNPRED
1	DN	Transaction Done. This bit will be set by hardware to indicate that the receive transaction has been completed and that the receive packet status is valid.	R/W	UNPRED
		If the respective MAC DMA interrupt is enabled (see Section 6.0 "Interrupt Controller" on page 95), an interrupt will be generated when this bit is set. Done bits for all TX and RX buffers are or'ed together for this interrupt so a high level interrupt should be used.		
		This bit must be cleared explicitly by software after checking for done. This will also clear the interrupt.		
0	EN	MAC DMA Enable. When set, this bit enables a DMA receive transaction to the memory location designated in ADDR.	R/W	UNPRED

7.4.4.2 MAC DMA Transmit Registers

There are three transmit registers, including the status register, the address/enable register, and the length register. In the naming of the receive registers dummy variables m and n have been inserted into the name to designate MAC number (m) and buffer number (n).

Transmit Packet Status Register

This register contains the transmit packet status bits sent by the MAC after transmitting a frame. This register is valid after a transmit transaction has been enabled by the host and the done bit has been set by the MAC in the Address/Enable Register to signify that the transmit transaction is complete.

If either PR (bit 31) or FA (bit 0) is set then the frame was not sent successfully and the application should resend the frame.

macdma	a <i>m_</i>	tx <i>n</i> s	stat																										Offs	et =	0x0
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PR																			С	C		LO	DF	UR	EC	LC	ED	LS	NC	JT	FA
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31	PR	Packet Retry.	R	UNPRED
		0 Transmission of current packet is complete.		
		1 The Application has to restart the transmission of the frame (packet)		
		when this bit is set to '1'. The successful/unsuccessful completion of the frame's transmission is indicated by the Frame Aberted bit (bit 0)		
30:14		the frame's transmission is indicated by the Frame Aborted bit (bit 0). These bits are reserved.	R	UNPRED
13:10	CC	Collision Count.	B	UNPRED
10.10	00	This 4-bit count indicates the number of collisions that occurred before the		OTTI TILED
		frame was transmitted. This bit is not valid when the Excessive Collisions		
		bit is set.		
		This bit is valid only when the MAC is operating in half-duplex mode.		
9	LO	Late Collision Observed.	R	UNPRED
		0 No late collision observed during transmission.		
		1 Indicates that the MAC observed a late collision (collision after 64		
		bytes into transmission of frame), but retransmitted the frame in the next retransmission attempt. This bit will be set when the Late Colli-		
		sion bit is set.		
		This bit is valid only when the MAC is operating in half-duplex mode.		
8	DF	Deferred.	R	UNPRED
		0 Transmitter did not defer when transmitting.		
		1 The transmitter had to defer while ready to transmit a frame.		
		This bit is valid only when operating in half-duplex mode.		
7	UR	Under Run.	R	UNPRED
		0 No data under run.		
		1 The transmitter aborted the message because of data under run dur- ing the frame's transmission.		
6	EC	Excessive Collisions.	R	UNPRED
		0 Transmission did not abort due to excessive collisions.		
		1 Transmission aborted after 16 successive collisions. If the Disable Retry bit is set, this bit is set after the first collision and the transmis- sion of the frame will be aborted.		
		This bit is valid only when operating in half-duplex mode.		
5	LC	Late Collision.	R	UNPRED
		0 No late collision.		
		1 Transmission was aborted due to collision occurring after the collision window of 64 bytes. This bit is not valid if under run error is set.		
		This bit is valid only when operating in half-duplex mode.		
4	ED	Excessive Deferral.	R	UNPRED
		0 No excessive deferral.		
		1 Transmission has ended because of excessive deferral of over		
		24,288 bit times during the transmission, if the defer bit is set high in the control register		
		the control register. This bit is valid only when operating in half-duplex mode.		
3	LS	Loss of Carrier.	R	UNPRED
5		0 No loss of carrier.		
		1 The loss of carrier occurred during the frame's transmission (i.e., the		
		CRS input was inactive for one or more bit times when the frame is being transmitted).		
		This bit is valid only when operating in half-duplex mode.		

Bits	Name	Description	R/W	Default
2	NC	No Carrier.	R	UNPRED
		0 Carrier present		
		1 The carrier signal from the transceiver was not present during trans- mission.		
		This bit is valid only when operating in half-duplex mode.		
1	JT	Jabber Timeout.	R	UNPRED
		0 No jabber timeout.		
		1 The MAC transmitter has been active for an abnormally long time (twice the Ethernet maxFrameLength size).		
0	FA	Frame Aborted.	R	UNPRED
		0 Current frame was successfully transmitted.		
		1 The transmission of the current frame has been aborted by the MAC because of one or more of the following conditions:		
		Jabber Timeout (bit 1) No Carrier (bit 2) Loss of Carrier (bit 3) Excessive Deferral (bit 4) Late Collision (bit 5) Retry Count exceeds the attempt limit (bit 6). Data under run (bit 7)		

Transmit Buffer Address/Enable Register

This register contains the starting address for the transmit memory buffer. The MAC DMA transfers the number of bytes designated in the Length register.

The buffer for the DMA must be cache line aligned so the lowest 5 bits are not used as part of the address. These bits have been employed as done and enable bits and are exclusive of the address.

macdma*m* tx*n*addr

macdm	a <i>m</i> _	tx <i>n</i> a	ıddr																										Offs	et =	0x4
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												ADD	DR[3	1:5]														С	В	DN	EN
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	0

Bits	Name	Description	R/W	Default
31:5	ADDR	Buffer Address. Upper 27 bits of the starting physical address for the DMA buffer—but not including the most significant nibble address bits 35:32. This address must be cache line (32 bytes) aligned so only 27 bits are used.	R/W	0
		Note: This address must be written for each DMA transaction (the address will not remain after the transaction is enabled).		
4	—	Reserved, should be cleared.	R	0
3:2	СВ	Current Buffer. Current DMA Transmit Buffer	R	UNPRED
1	DN	Transaction Done. This bit will be set by hardware to indicate that the transmit transaction has been completed and that the transmit packet status is valid.	R/W	UNPRED
		If the respective MAC DMA interrupt is enabled (see Section 6.0 "Interrupt Controller" on page 95), an interrupt will be generated when this bit is set. Done bits for all TX and RX buffers are or'ed together for this interrupt so a high level interrupt should be used.		
		This bit must be cleared explicitly by software after checking for done. This will also clear the interrupt.		
0	EN	MAC DMA Enable. When set, this bit enables a DMA transmit transaction from the memory location designated in ADDR.	R/W	

Transmit Buffer Length Register

This register contains the length of the memory buffer in bytes to be transmitted.

dma*m* tx*n*le

maco	dma	m_1	tx <i>n</i> l	en																										Offs	et =	0x8
Bit :	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																								L	.EN[13:0]					
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:14	—	Reserved, should be cleared.	R	0
13:0	LEN	Buffer Length. This field sets the length of the memory buffer (in bytes).	R/W	0
		When the normal bit is set the length can only be up to 0x800 bytes.		
		When the Jumbo packets are enabled in the enable register the length can be set up to 0x2800 bytes.		

7.4.5 **Hardware Connections**

Table 7-17 shows the signals associated with the two Ethernet MAC MII interfaces.

Signal	Input/Output	Description
Ethernet Cont	roller 0 (MAC0)	
NOTXCLK	I	Continuous clock input for synchronization of transmit data. 25 MHz when operating at 100 Mbps and 2.5 MHz when operating at 10 Mbps.
NOTXEN	0	Indicates that the data nibble on N0TXD[3:0] is valid.
N0TXD[3:0]	0	Nibble wide data bus synchronous to N0TXCLK. For each N0TXCLK period in which N0TXEN is asserted, TXD[3:0] will have the data to be accepted by the PHY. While N0TXEN is de-asserted the data presented on TXD[3:0] should be ignored.
NORXCLK	I	Continuous clock that provides the timing reference for the data transfer from the PHY to the MAC. NORXCLK is sourced by the PHY. The NORXCLK shall have a frequency equal to 25% of the data rate of the received signal data stream (typically 25 MHz at 100 Mbs and 2.5 MHz at 10 Mbs).
NORXDV	I	Active high. Indicates that a receive frame is in process and that the data on N0RXD[3:0] is valid.
N0RXD[3:0]	I	RXD[3:0] is a nibble wide data bus driven by the PHY to the MAC synchronous with N0RXCLK. For each N0RXCLK period in which N0RXDV is asserted, RXD[3:0] will transfer four bits of recovered data from the PHY to the MAC. While N0RXDV is deasserted, RXD[3:0] will have no effect on the MAC.
NOCRS	I	N0CRS shall be asserted by the PHY when either transmit or receive medium is non Idle. N0CRS shall be deasserted by the PHY when both the transmit and receive medium are Idle. N0CRS is an asynchronous input.
NOCOL	I	N0COL shall be asserted by the PHY upon detection of a collision on the medium, and shall remain asserted while the collision condition persists. N0COL is an asynchronous input. The N0COL signal is ignored by the MAC when operating in the full duplex mode.
NOMDC	0	N0MDC is sourced by the MAC to the PHY as the timing reference for transfer of information on the N0MDIO signal. N0MDC is an aperiodic signal that has no maximum high or low times. The N0MDC frequency is fixed at SBUS clock divided by 160.
NOMDIO	I/O	N0MDIO is the bidirectional data signal between the MAC and the PHY that is clocked by N0MDC.

Table 7-17. Ethernet Signals

		Table 7-17. Ethernet Signals (Continued)
Signal	Input/Output	Description
Ethernet Conti	roller 1 (MAC1)	
N1TXCLK	I	Continuous clock input for synchronization of transmit data. 25 MHz when operating at 100 Mbps and 2.5 MHz when operating at 10 Mbps.
N1TXEN	0	Active high. Indicates that the data nibble on N1TXD[3:0] is valid.
		Muxed with GPIO[24]. GPIO[24] is the default signal coming out of hardware reset, runtime reset, and Sleep.
N1TXD[3:0]	0	Nibble wide data bus synchronous to N1TXCLK. For each N1TXCLK period in which N1TXEN is asserted, TXD[3:0] will have the data to be accepted by the PHY. While N1TXEN is de-asserted the data presented on TXD[3:0] should be ignored.
		Muxed with GPIO[28:25]. GPIO[28:25] are the default signals coming out of hard- ware reset, runtime reset, and Sleep.
N1RXCLK	Ι	Continuous clock that provides the timing reference for the data transfer from the PHY to the MAC. N1RXCLK is sourced by the PHY. The N1RXCLK shall have a frequency equal to 25% of the data rate of the received signal data stream (typically 25 MHz at 100 Mbps and 2.5 MHz at 10 Mbps)
N1RXDV	I	Active high. Indicates that a receive frame is in process and that the data on N1RXD[3:0] is valid.
N1RXD[3:0]	Ι	RXD[3:0] is a nibble wide data bus driven by the PHY to the MAC synchronous with N1RXCLK. For each N1RXCLK period in which N1RXDV is asserted, RXD[3:0] will transfer four bits of recovered data from the PHY to the MAC. While N1RXDV is deasserted, RXD[3:0] will have no effect on the MAC.
N1CRS	I	N1CRS shall be asserted by the PHY when either transmit or receive medium is non Idle. N1CRS shall be deasserted by the PHY when both the transmit and receive medium are Idle. N1CRS is an isochronous input.
N1COL	I	N1COL shall be asserted by the PHY upon detection of a collision on the medium, and shall remain asserted while the collision condition persists. N1COL is an asynchronous input. The N1COL signal is ignored by the MAC when operating in the full duplex mode.
N1MDC	0	N1MDC is sourced by the MAC to the PHY as the timing reference for transfer of information on the N1MDIO signal. N1MDC is an aperiodic signal that has no maximum high or low times. The N1MDC frequency is fixed at SBUS clock divided by 160.
N1MDIO	I/O	N1MDIO is the bidirectional data signal between the MAC and the PHY that is clocked by N1MDC.

Table 7-17. Ethernet Signals (Continued)

MAC1 shares its pins with GPIO[28:24]; these pins must be assigned to MAC1 in order to use MAC1. Please see Section 8.3 "Primary General Purpose I/O and Pin Functionality" on page 168 for more information.

7.4.6 Programming Considerations

The Ethernet MAC is designed such that the application could use a pool of memory buffers for both the transmit and receive functions.

The lowest level device driver would respond to the MAC DMA interrupt and swap out the filled DMA buffers for those that are empty for the receive case. For the transmit case the driver should provide ready to transmit buffers to the DMA while reclaiming empty buffers. Four transmit and receive DMA buffers are allocated for each MAC to allow for latency to service the lowest level MAC DMA interrupt.

At the next level in software the device driver can parse the valid data out of the frame for receive, or build the frame for transmit. The number of memory buffers needed in the pool will depend on how fast the parsing can occur for worst case receive bursts, and any minimum transmit latency requirements.

From this level the application or protocol stack can take the data and apply it as needed.

7.4.7 Initialization

This section demonstrates the functional requirements for getting the MAC running. This assumes that the programmer has already performed the Au1500 bringup.

- 1) Interrupt Controller a high level interrupt should be used as the interrupt is triggered with an OR'ing of the DN (Done) bits.
- 2) DMA Controller Setup
- 3) MAC Registers It is the system designer's responsibility to set up addresses.
- 4) Memory Depending on how the system is built, there could be a pool of memory buffers which can be used for parsing and building of frames. Individual buffers would be swapped in and out of the 4 active receive and transmit DMA buffers as needed. This strategy would require some sort of minimal memory management within the Ethernet driver to insure chronology of Ethernet frames.

The following is a transmit example in a basic form. Typically this would be split between an interrupt handler and another higher layer.

- 1) Construct Frame
- 2) Set length in **macdma***m***tx***n***len** register
- 3) Set address of memory buffer and enable transmit. During this time the physical memory buffer and address and length registers should not be disrupted or transmit contents will be undefined.
- 4) Wait for done. This can be done by waiting for the interrupt handler or polling the done signal in the macdmam_txnaddr register.
- 5) Read status. Its validity is signaled by the reception of the done signal.

The following is a basic receive example:

- 1) Enable all receive buffers with four different memory buffer addresses.
- 2) Wait for interrupt. Conversely the done bit could be polled. During this time the physical memory buffer and address registers should not be disrupted or receive contents will be undefined.
- 3) Replace all full buffers with empty memory buffers.
- 4) Read Status for full buffers.
- 5) Parse frames.

7.5 UART Interfaces

The Au1500 contains two UART interfaces. Each UART has the following features:

- 5 8 Data Bits
- 1 2 Stop Bits
- Even, Odd, Mark, or No Parity
- 16-byte Transmit and Receive FIFOs
- Interrupts for Receive FIFO Full, Half Full, and Not Empty
- Interrupts for Transmit FIFO Empty
- False Start Bit Detection
- Full Modem Control Signals on UART3
- Capable of speeds up to 1.5 Mbps to enable connections with Bluetooth and other peripherals through a UART interface
- Similar to personal computer industry standard 16550 UART

7.5.1 Programming Model

Each UART is controlled by a register block. Table 7-18 lists the base address for each UART register block.

Table 7-18. UART Register Base Addresses

Name	Physical Base Address	KSEG1 Base Address
uart0_base	0x0 1110 0000	0xB110 0000
uart3_base	0x0 1140 0000	0xB140 0000

UART0 and UART3 are capable of being used with DMA. See Section 5.0 "DMA Controller" on page 87 for more information.

7.5.2 UART Registers

Each register block contains the registers listed in Table 7-19.

Offset (Note 1)	Register Name	Description
0x0000	uart_rxdata	Received Data FIFO
0x0004	uart_txdata	Transmit Data FIFO
0x0008	uart_inten	Interrupt Enable Register
0x000C	uart_intcause	Pending Interrupt Cause Register
0x0010	uart_fifoctrl	FIFO Control Register
0x0014	uart_linectrl	Line Control Register
0x0018	uart_mdmctrl	Modem Line Control Register (UART3 only)
0x001C	uart_linestat	Line Status Register
0x0020	uart_mdmstat	Modem Line Status Register (UART3 only)
0x0024	uart_autoflow	Automatic Hardware Flow Control (UART3 only)
0x0028	uart_clkdiv	Baud Rate Clock Divider
0x0100	uart_enable	Module Enable Register

Table 7-19. UART Registers

Note 1. See Table 7-18 for base address.

7.5.2.1 Received Data FIFO

The **uart_rxdata** register contains the next entry in the received data FIFO. This register is read only.

uart	_rxc	lata	- Re	ecei	ved	Data	a FIF	ō																					Offs	et =	0x0	000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																												RXC	ATA			
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:8	—	Reserved, should be cleared.	R	0
7:0	RXDATA	Receive Data	R	0

7.5.2.2 Transmit Data FIFO

The uart_txdata register provides access to the transmit data FIFO. This register is write only.

uart	_txc	lata	- Tra	ansr	nit [Data	FIF	0																					Offs	et =	0x0	0004
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																												TXD	ATA			
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:8	—	Reserved, should be cleared.	R	0
7:0	TXDATA	Transmit Data	R	0

7.5.2.3 Interrupt Enable Register

The uart_inten register contains bits which enable interrupts under certain operational conditions.

uart_int	ten -	Inte	errup	ot Er	nabl	e Re	gis	ter																				Offs	et =	0x0	800
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																												MIE	LIE	TIE	RIE
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:4	—	Reserved, should be cleared.	R	0
3	MIE	Modem Status Interrupt Enable (UART3 only). When the MIE bit is set an interrupt is generated when changes occur in the state of the optional modem control signals available with UART3.	R/W	0
		System Note : For systems that use the UART3 interface but do <i>not</i> use the optional modem control signals (sys_pinfunc [UR3]=0), the modem status interrupts must be disabled (MIE=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as a general-purpose system input.		
2	LIE	Line Status Interrupt Enable. When the LIE bit is set an interrupt is gener- ated when errors (overrun, framing, stop bits) or break conditions occur.	R/W	0
1	TIE	Transmit Interrupt Enable. When the TIE bit is set an interrupt is generated when the transmit FIFO is not full.	R/W	0
0	RIE	Receive Interrupt Enable. When the RIE bit is set the UART will generate an interrupt on received data ready (<i>DR</i> bit in the uart_linestat register) or a character time out.	R/W	0

7.5.2.4 Interrupt Cause Register

The uart_intcause register contains information about the cause of the current interrupt.

uar	_int	cau	se -	Inte	rrup	ot Ca	ause	Re	giste	ər																			Offs	set =	0x0)00c
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																														IID		IP
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bits	Name	Description	R/W	Default
31:4	—	Reserved, should be cleared.	R	0
3:1	IID	Interrupt Identifier. The IID field identifies the highest priority current inter- rupt condition. Table 7-20 "Interrupt Cause Encoding" lists the priorities and encodings of each interrupt condition.	R	0
0	IP	 No Interrupt Pending. O An interrupt is pending. 1 No interrupts are pending. 	R	1

Table 7-20 contains information about the interrupt cause encoding.

IID	Priority	Туре	Source
0	5 (lowest)	Modem Status	DD, TRI, DR or DC of uart_mdmstat
1	4	Transmit Buffer Available	TT of uart_linestat
2	3	Receive Data Available	The receive FIFO having greater than RFT (of uart_fifoctrl) bytes in it if FIFOs are enabled.
			DR of uart_linestat if FIFOs are disabled.
3	1 (highest)	Receive Line Status	OE, PE, FE, BI in uart_linestat register
4		Reserved	
5		Reserved	
6	2	Character Time Out	Character has been in receive FIFO for 0x300 UART clocks (set by uart_clkdiv)
7		Reserved	

Table 7-20. Interrupt Cause Encoding

FIFO Control Register 7.5.2.5

The uart_fifoctrl register provides control of character buffering options.

uart_fifoctrl - FIFO Control Register

uart	_fifo	octrl	- FI	FO	Con	trol	Reg	iste	r																				Offs	et =	0x0	010
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																									RI	FT	T	FT	MS	TR	RR	FE
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:8	—	Reserved, should be cleared.	R	0
7:6	RFT	Receive FIFO Threshold. A receive threshold interrupt is generated when the number of characters in the receiver FIFO is greater than or equal to the trigger level listed below:	R/W	0
		00 Trigger depth = 1		
		01 Trigger depth = 4		
		10 Trigger depth = 8		
		11 Trigger depth = 14		
		If using DMA it is important that the receive FIFO threshold and transmit FIFO threshold are the same and programmed consistently with the transfer size for the DMA channel being used. See Section 5.0 "DMA Controller" on page 87 for more information.		
5:4	TFT	Transmit FIFO Threshold. A transmit threshold interrupt is generated if the number of valid characters contained in the transmit FIFO is less than or equal to the trigger depth. The encoding of trigger depth for each value of TFT is shown below:	R/W	0
		00 Trigger depth = 0		
		01 Trigger depth = 4		
		10 Trigger depth = 8		
		11 Trigger depth = 12		
		If using DMA it is important that the receive FIFO threshold and transmit FIFO threshold are the same and programmed consistently with the transfer size for the DMA channel being used. See Section 5.0 "DMA Control- ler" on page 87 for more information.		
3	MS	Mode Select. If the MS bit is clear interrupts are generated by the receiver when any data is available and by the transmitter when there is no data to transmit. Setting the MS bit causes interrupts to be generated based on FIFO threshold levels.	R/W	0
2	TR	Transmitter Reset. Writing a one to the TR bit will clear the transmit FIFO and reset the transmitter. The transmit shift register is not cleared.	R/W	0
1	RR	Receiver Reset. Writing a one to the RR bit will clear the receiver FIFO and reset the receiver. The receiver shift register is not cleared.	R/W	0
0	FE	FIFO Enable. The FE bit enables the 16 byte FIFOs on transmit and receive. When the FE bit is clear both FIFOs will have an effective depth of 1 byte.	R/W	0

7.5.2.6 Line Control Register

The uart_linectrl register provides control over the data format and parity options.

uart	_lin	ectr	I - Li	ine (Con	trol	Reg	iste	r																				Offs	et =	0x0	014
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																										SB	PA	R	PE	ST	WL	S
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:7	—	Reserved, should be cleared.	R	0
6	SB	Send Break. Setting the SB bit will force the transmitter output to zero.	R/W	0
5:4	PAR	 Parity Select. Selects the parity encoding for the transmitter and receiver. 00 Odd parity 01 Even parity 10 Mark parity 11 Zero parity 	R/W	0
3	PE	Parity Enable. If the PE bit is clear parity will not be sent or expected. If the PE bit is set parity is selected according to the PAR field.	R/W	0
2	ST	Stop Bits. If the ST bit is clear one stop bit is sent and expected. Setting the ST bit selects 1.5 stop bits for 5 bit characters and 2 stop bits for all other character lengths.	R/W	0
1:0	WLS	Word Length Select. The WLS field selects the number of data bits in each character. The number of bits is WLS+5.	R/W	0

7.5.2.7 Modem Control Register

The **uart_mdmctrl** register allows the state of the output modem control signals to be set. The external modem signals are only available on UART3.

uart	_mc	Imc	trl -	Mod	lem	Con	ntrol	Reg	jiste	er																			Offs	set =	= 0x0	018
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																												LB	11	10	RT	DT
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:5	—	Reserved, should be cleared.	R	0
4	LB	Loopback.	R/W	0
		0 No loopback (normal operation)		
		1 Enable loopback for self-test. Establish the internal connections shown below:		
		Output SignalLooped Back ToTXDRXDDTR#DSR#RTS#CTS#I0#RI#I1#DCD#		
3	11	Internal Line 1 State. When the I1 bit is set the internal I1# line for this port is driven low. This can be used in loopback mode.	R/W	0
2	10	Internal Line 0 State. When the I0 bit is set the external I0# line for this port is driven low. This can be used in loopback mode.	R/W	0
1	RT	Request To Send. When the RT bit is set the external RTS# line for this port is driven low.	R/W	0
		Note: This bit has no effect if uart_autoflow[AE] is set.		
0	DT	Data Terminal Ready. When the DT bit is set the external DTR# line for this port is driven low.	R/W	0

7.5.2.8 Line Status Register

The uart_linestat register reflects the state of the interface.

Bits in this register are set when the listed condition and cleared when this register is read.

uart	_lin	esta	t - L	ine	Stat	us F	Regi	ster																					Offs	et =	0x0	01C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																									RF	TE	TT	BI	FE	PE	OE	DR
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:8	—	Reserved, should be cleared.	R	0
7	RF	Receiver FIFO Contains Error. This bit is set when one of the characters in the receive FIFO contains a parity error, framing error, or break indication.	R	0
6	TE	Transmit Shift Register Empty. This bit is set when the transmit shift regis- ter is empty and there are no more characters in the FIFO.	R	0
5	TT	Transmit Threshold. This bit is set when the transmitter FIFO depth is less than or equal to the value of the TFT field in the FIFO control register.	R	0
		When FIFOs are not enabled this bit is set when the transmitter data register is empty		
4	BI	Break Indication. This bit is set if a break is received. When a break is detected a single zero character is received. The BI bit is valid when the zero character is at the top of the receive FIFO. This bit must be cleared with a read to uart_linestat before more characters are received.	R	0
3	FE	Framing Error. The FE bit is set when a valid stop bit is not detected. This bit reflects the state of the character at the top of the receive FIFO. The FE bit is cleared by a read to uart_linestat .	R	0
2	PE	Parity Error. The PE bit is set when the received character at the top of the FIFO contains a parity error. This bit is cleared by reading uart_linestat .	R	0
1	OE	Overrun Error. The OE bit is set when a receiver overrun occurs. This bit is cleared when uart_linestat is read.	R	0
0	DR	Data Ready. The DR bit is set when the receive FIFO contains valid char- acters.	R	0

7.5.2.9 Modem Status Register

The **uart_mdmstat** register reflects the state of the external modem signals. Reading this register will clear any delta indications and the corresponding interrupt. The external modem signals are optional and are present only on UART3.

uart3_n	ndm	stat	- Mo	oder	n St	atus	Re	giste	er																			Offs	et =	0x0	020
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																								CD	RI	DS	СТ	DD	TRI	DR	DC
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:8	—	Reserved, should be cleared.	R	0
7	CD	Data Carrier Detect. The CD bit reflects the status of the external DCD# pin.	R	0
6	RI	Ring Indication. The RI bit reflects the status of the external RI# pin.	R	0
5	DS	Data Set Ready. The DS bit reflects the status of the external DSR# pin.	R	0
4	СТ	Clear To Send. The CT bit reflects the status of the external CTS# pin.	R	0
3	DD	Delta DCD. The DD bit is set when a change occurs in the state of the external DCD# pin.	R	0
2	TRI	Terminate Ring Indication. The TRI bit is set when a positive edge occurs in the state of the external RI# pin.	R	0
1	DR	Delta DSR. The DR bit is set when a change occurs in the state of the external DSR# pin.	R	0
0	DC	Delta CTS. The DC bit is set when a change occurs in the state of the external CTS# pin.	R	0

7.5.2.10 Automatic Hardware Flow Control Register

The **uart_autoflow** register controls automatic hardware flow control using modem control signals CTS# and RTS#. Upon enabling this mode, internal logic controls the output signal RTS# based upon the data register state and threshold levels. The internal logic asserts RTS (low) to request data until the internal receive FIFO reaches its preset threshold. In this mode RTS# cannot be controlled with the **uart_mdmctrl**[RT] bit. The input signal CTS# controls the transmission of data by loading the transmit shift register from the data register only while CTS# is asserted (low). Once the transmit shift register is loaded with data, it sends the entire character regardless of the CTS# signal state.

uart	_au	tofic	w -	Aut	oma	tic I	lard	lwar	e Fle	ow (Cont	roll	Regi	ster															Offs	et =	0x0	024
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																																AE
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:1	—	Reserved, should be cleared.	R	0
0	AE	Autoflow Enable. Setting this bit enables automatic hardware flow control on UART3. Enabling this mode overrides software control of the signals.	R/W	0

7.5.2.11 **Clock Divider Register**

The uart_clkdiv register contains the divider used to generate the baud rate clock. The input to the UART clock divider is the internal peripheral bus clock, which is derived from the System Bus (SBUS) clock; see Figure 8-1 "Clocking Topology" on page 154.

uart_	clk	div	- Cle	ock	Divi	der	Reg	iste	r																				Offs	set =	0x0	028
Bit 3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																								CLK	DIV							
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bits	Name	Description	R/W	Default
31:16	—	Reserved.	—	—
15:0	CLKDIV	Clock Divider. The baud rate of the interface is computed as follows:	R/W	0x1
		Baud rate = CPU / (SD * 2 * CLKDIV * 16)		
		CPU: CPU clock		
		SD: SBUS divider		
		See Section 8.4 "Power Management" on page 172 for information on changing SD.		

7.5.2.12 UART Enable

The uart_enable register controls reset and clock enable to the UART

The correct routine for bringing the USB Device out of reset is as follows:

- 1) Set the CE bit to enable clocks.
- 2) Set the E bit to enable the peripheral.

uart_enable - UART Enable Register

Offset = 0x0100 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 E CE 0 0 Def. 0

Bits	Name	Description	R/W	Default
31:2	—	Reserved, should be cleared.	R	0
1	E	Enable. When the E bit is clear the entire module is held in reset. After enabling clocks, this bit should be set to enable normal operation.	R/W	0
0	CE	Clock Enable. When the CE bit is clear the module clock source is inhib- ited. This can be used to place the module in a low power Stand-by state. The CE bit should be set before the module is enabled for proper bringup.	R/W	0

7.5.3 Hardware Considerations

The UART signals are listed in Table 7-21. For changing pin functionality please refer to the **sys_pinfunc** register in Section 8.3 "Primary General Purpose I/O and Pin Functionality" on page 168.

Signal	Input/Output	Definition
UART0		
UOTXD	0	UART0 Transmit. Muxed with GPIO[20]. GPIO[20] is the default signal coming out of hardware reset, runtime reset, and Sleep.
U0RXD	I	UART0 Receive.
UART3		
U3TXD	0	UART3 Transmit. Muxed with GPIO[23]. GPIO[23] is the default signal coming out of hardware reset, runtime reset, and Sleep.
U3RXD	I	UART3 Receive.
U3CTS#	I	Clear to Send (optional). Muxed with GPIO[9]. GPIO[9] is the default signal coming out of hardware reset, runtime reset, and Sleep.
		System Note : For systems that use the UART3 interface without the optional modem control signals (sys_pinfunc [UR3]=0), the modem status interrupts must be disabled (uart3_inten [MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.
U3DSR#	I	Data Set Ready (optional). Muxed with GPIO[10]. GPIO[10] is the default signal coming out of hardware reset, runtime reset, and Sleep.
		System Note : For systems that use the UART3 interface without the optional modem control signals (sys_pinfunc [UR3]=0), the modem status interrupts must be disabled (uart3_inten [MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.
U3DCD#	I	Data Carrier Detect (optional). Muxed with GPIO[11]. GPIO[11] is the default signal coming out of hardware reset, runtime reset, and Sleep.
		System Note : For systems that use the UART3 interface without the optional modem control signals (sys_pinfunc [UR3]=0), the modem status interrupts must be disabled (uart3_inten [MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.
U3RI#	I	Ring Indication (optional). Muxed with GPIO[12]. GPIO[12] is the default signal coming out of hardware reset, runtime reset, and Sleep.
		System Note : For systems that use the UART3 interface without the optional modem control signals (sys_pinfunc [UR3]=0), the modem status interrupts must be disabled (uart3_inten [MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.
U3RTS#	0	Request to Send (optional). Muxed with GPIO[13]. GPIO[13] is the default signal coming out of hardware reset, runtime reset, and Sleep.
U3DTR#	0	Data Terminal Ready (optional). Muxed with GPIO[14]. GPIO[14] is the default sig- nal coming out of hardware reset, runtime reset, and Sleep.

Table 7-21. UART Signals

7.6 Secondary General Purpose I/O

The Au1500 processor contains two GPIO blocks (primary and secondary). This section describes the programming model of the *secondary* GPIO block which corresponds to signals labeled GPIO[200] through GPIO[215]. (For a description of the primary GPIO block refer to Section 8.3 "Primary General Purpose I/O and Pin Functionality" on page 168 in the system control block description.)

GPIO[200] is configured at reset to output a low logic level. This pin can be used as a PCI reset output (PCI_RSTO#) if it is required that the processor generate PCI reset. All other secondary GPIOs are configured as inputs on reset.

7.6.1 GPIO2 Programming Model

The secondary GPIO (GPIO2) logic block is controlled by a register block referenced from the base address described in Table 7-22.

Table 7-22. GPIO2 Register Base Addresses

Name	Physical Base Address	KSEG1 Base Address
gpio2_base	0x0 1170 0000	0xB170 0000

7.6.2 GPIO2 Registers

The secondary GPIO register block is shown in Table 7-23.

Table 7-23. GPIO2 Registers

Offset (Note 1)	Register Name	Description
0x0000	gpio2_dir	GPIO2 Direction
0x0004	—	Reserved
0x0008	gpio2_output	GPIO2 Data Output
0x000C	gpio2_pinstate	GPIO2 Pin State
0x0010	gpio2_inten	GPIO2 Interrupt Enable (for GPIO[215:208])
0x0014	gpio2_enable	GPIO2 Enable

Note 1. See Table 7-22 for base address.

7.6.2.1 Direction Register

The **gpio2_dir** register controls the direction of each GPIO2 signal. Note that this register only controls the output enable for the output buffer. Clearing a bit in this register disables the output for the corresponding pin making it possible to read an externally driven input. Output enable control can also be used to emulate an open drain driver.

gpic	02_d	lir - I	Dire	ctio	n Re	egis	ter																						Offs	set =	0x0	0000
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																								D	R							
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Bits	Name	Description	R/W	Default
31:16	—	Reserved, should be cleared.	R	0
15:0	DIR	 Direction Control. Each bit controls the I/O direction of one GPIO signal in the secondary block. Bits 15:0 correspond to GPIO[215:200]. 0 Pin is an input (output disabled). 1 Pin is an output. Note that the GPIO[200] default direction is out because GPIO[200] is designed to act as a PCI reset output signal (PCI_RSTO#) if needed. 	R/W	0x0001

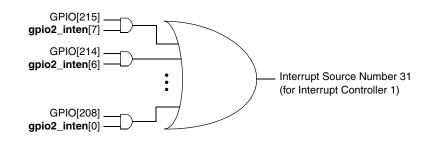
7.6.2.2 Data Output Register

The **gpio2_output** register controls the output data for the secondary GPIOs. Data bits 15:0 are output to the corresponding GPIO when the enable bit is set for that bit during a write to this register. For example, to output a '1' on GPIO[200] and a '0' on GPIO[201] without changing the output of any other GPIOs, write the value 0x00030001 to **gpio2_output**.

gpio2	_ou	tpι	ut - I	Data	ı Ou	tput	Reg	giste	ər																				Offs	set =	0x0	800
Bit 3	1 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г								١٦	NA															DA	TΑ							
Def. (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	ENA[15:0]	Data Output Write Enable. ENA[15:0] corresponds to DATA[15:0]. Note that ENA is write-only and should be ignored on reads.	W	0x0001
		0 Disable modifications to corresponding bit in DATA[15:0].		
		1 Enable modifications to corresponding bit in DATA[15:0].		
15:0	DATA[15:0]	Output Data. DATA[15:0] corresponds to GPIO[215:200]. The DATA bit values are reflected in the corresponding GPIO output signal level.	R/W	0
		When modifying a bit in DATA[15:0], the corresponding bit in ENA[15:0] must be set to allow the write. This mechanism allows individual data bits to be modified without affecting DATA[15:0] as a whole.		

7.6.2.3 Pin State Register


The gpio2_pinstate register reflects the current state of the corresponding secondary GPIO pin.

gpio	52_p	oinst	ate	- Pir	n Sta	ate																							Offs	et =	0x0	00C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																								DA	TΑ							
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:16	—	These bits are reserved and will be read 0.	R	0
15:0	DATA	Current Pin State for GPIO[215:200]	R	0

7.6.2.4 Interrupt Enable Register

The gpio2_inten register contains bits which enable interrupts under certain operational conditions. Note that gpio2_inten applies only to interrupts on GPIO[215:208]. The GPIO[215:208] signals are OR'd together to create one interrupt source (source number 31 on interrupt controller 1), as shown in Figure 7-2. (The GPIO[207:200] signals can be used as independent interrupt sources.) See Section 6.0 "Interrupt Controller" on page 95 for more information on how to program interrupts.

gpie	52_i	nten	- In	terr	upt	Ena	ble I	Regi	ster																				Offs	set =	: 0x0	010
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																												E	Ν			
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:8	—	Reserved, should be cleared.	R	0
7:0	EN	Interrupt enable bits [7:0] correspond to GPIO[215:208].	R/W	0
		Setting a bit enables the signal's OR'd contribution to interrupt source number 31 (on interrupt controller 1).		

7.6.2.5 **Enable Register**

The gpio2_enable register controls the clocks and reset to the secondary GPIO block.

Offset = 0x0014 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR CE Def. 0

Bits	Name	Description	R/W	Default
31:2	—	Reserved, should be cleared.	R	0
1	MR	Module Reset. When this bit is set the module is held in reset.	R/W	1
0	CE	Clock Enable. When this bit is clear the module clocks are disabled.	R/W	0

System Control

The Au1500 processor contains a robust system control strategy that includes the means to control the following:

- Clocking (See Section 8.1 "Clocks" on page 154.)
- Time of Year and Real Time Clock counters (See Section 8.2 "Time of Year Clock and Real Time Clock" on page 163.)
- GPIO control (See Section 8.3 "Primary General Purpose I/O and Pin Functionality" on page 168.)
- Power management (See Section 8.4 "Power Management" on page 172.)

All registers in the system control block are located off of the base address shown in Table 8-1.

Table 8-1. System Control Block Base Address

Name	Physical Base Address	KSEG1 Base Address
sys_base	0x0 1190 0000	0xB190 0000

The registers in the system control block are affected differently by events such as power-on hardware reset, Sleep and runtime reset (see Section 9.0 "Power-up, Reset and Boot" on page 180 for a discussion on the different reset types). Each register is documented with how it will be affected by the different system states. Care should be taken by the system designer to observe what registers will and will not revert to defaults when the different events occur.

8.1 Clocks

The Au1500 processor supports two oscillator inputs: 12 MHz and 32.768 KHz. This section documents the clock domains driven directly and indirectly by the 12 MHz input. The 32.768 KHz clock input drives the two programmable counters intended for use as a real time clock (RTC) and time of year clock (TOY). The programmable counters are documented in Section 8.2 "Time of Year Clock and Real Time Clock" on page 163. (See Section 12.10 "Crystal Specifications" on page 234 for the specifications of both crystals.)

The Au1500 processor contains two PLLs driven by the 12 MHz oscillator and a clocking block from which the following are derived:

- CPU Clock
- Core Cycle Counter register clocked by the CPU Clock
- System Bus (SBUS) Clock
- Peripheral Bus Clock
- SDRAM Bus Clock
- · Programmable Clocks needed by certain peripherals
- Programmable Clocks EXTCLK[1:0] for external use (provided on pins shared with the GPIO[3:2] signals)

Figure 8-1 shows the basic clocking topology and the relationship between the CPU Clock, the SBUS clock and the Peripheral Clock. As shown, the SBUS frequency is derived by dividing the CPU Clock by the value SD programmed in the **sys_powerctrl** register. (See Section 8.4 "Power Management" on page 172 for the **sys_powerctrl** register definition.) The Peripheral Bus clock and the SDRAM bus are fixed at the SBUS frequency divided by 2. Figure 8-1 also shows the peripheral blocks driven by clock sources derived from the programmable clock generator logic (as described in Section 8.1.2 "Clock Generation" on page 155).

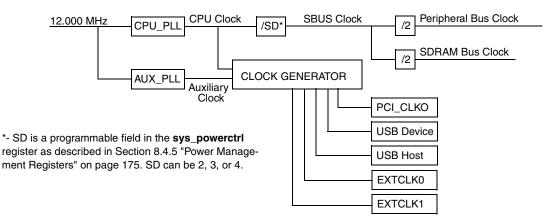


Figure 8-1. Clocking Topology

8.1.1 Clock Register Descriptions

The clock manager registers and their associated offsets are listed in Table 8-2.

Offset (Note 1)	Register Name	Description	Reset Type
0x0020	sys_freqctrl0	Controls (source, enable, and divider) frequency generators 0, 1, and 2	Hardware
0x0024	sys_freqctrl1	Controls (source, enable, and divider) frequency generators 3, 4, and 5	Hardware
0x0028	sys_clksrc	Controls (source and divider) the derived clocks	Hardware
0x0060	sys_cpupll	Changes CPU PLL frequency	Hardware
0x0064	sys_auxpll	Changes Auxiliary PLL frequency	Hardware & Runtime

Note 1. See Table 8-1 on page 153 for base address.

8.1.2 Clock Generation

This section documents registers for the clock generation block which provides clocks to some peripheral devices and as well as two externally available clocks. The clock generation subsystem is split into two sets of distinct blocks which allows up to six distinct frequencies to drive up to six clock sources. Figure 8-2 on page 156 shows a logical representation of one of the six identical frequency generators and how the six frequency sources are mapped to one of the six identical internal clock sources. The names in the figure correspond to the bit names in the control registers. Figure 8-3 on page 156 shows a pictorial representation of the relationship between the frequency generator blocks to the clock source blocks.

Each peripheral has clock restrictions as follows. If these restrictions are not met, the peripheral will not operate correctly.

The USB Device Clock must be programmed to 48 MHz.

The USB Host Clocks must be programmed to 48 MHz.

The EXTCLK[1:0] clocks can be programmed for system use.

Note that the EXTCLK[1:0] clocks have a maximum frequency rating of (F_{max} / 16), where F_{max} is the maximum frequency rating for the part. For example, for a 400 MHz part be sure the EXTCLK[1:0] clocks are programmed to run at no more than 25 MHz. (See also Section 12.9 "External Clock Specifications" on page 233.)

Note also that the EXTCLK[1:0] clocks are multiplexed signals and require programming of the **sys_pinfunc** register (see Section 8.3.1.1 "Pin Function" on page 168) as follows:

- EXTCLK0 shares a pin with GPIO[2]. If EXTCLK0 is to be used, sys_pinfunc[EX0] must be set to allow the clock to
 drive this pin. In addition, sys_pinfunc[CS] must be cleared.
- EXTCLK1 shares a pin with GPIO[3]. If EXTCLK1 is to be used, sys_pinfunc[EX1] must be set to allow the clock to
 drive this pin.

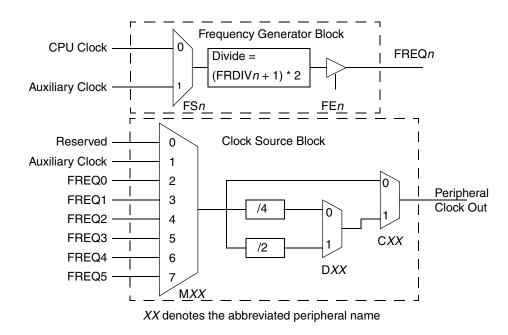


Figure 8-2. Frequency Generator and Clock Source Block Diagram

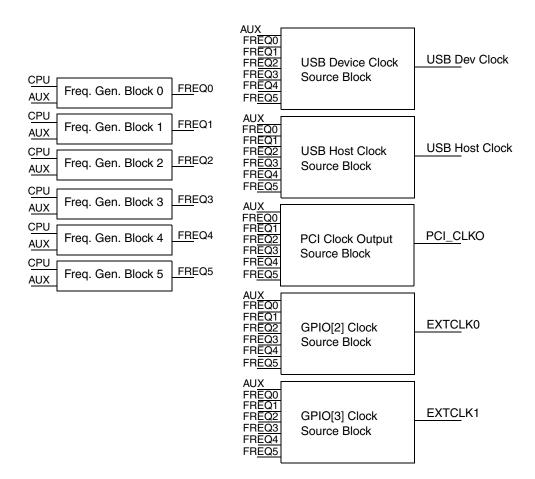


Figure 8-3. Frequency Generator and Clock Source Mapping

8.1.2.1 **Frequency Control 0**

This register controls the frequency generator block for output frequencies 0, 1, and 2. This register will reset to defaults only on a hardware reset. During a runtime reset and during Sleep this register will retain its value.

sys_freqctrl0

sys_f	reqc	trl	0																										Offs	set =	: 0x0	020
Bit 3	1 3	0	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					F	RDI\	/2[7:	:0]			FE2	FS2			F	RDI\	/1[7:	:0]			FE1	FS1			FF	RDI\	/0[7:	:0]			FE0	FS0
Def. (0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:30	—	Reserved, should be cleared.	R	0
29:22	FRDIV2	Divider for Frequency Generator 2. The frequency divider is (FRDIV + 1) * 2, <i>where</i> FRDIV is the value programmed in this field.	R/W	0
21	FE2	Frequency Generator Output Enable 2.	R/W	0
		0 Disable output.		
		1 Enable output.		
20	FS2	Frequency Generator 2 Source.	R/W	0
		0 CPU Core clock.		
		1 Auxiliary clock.		
19:12	FRDIV1	Divider for Frequency Generator 1. The frequency divider is (FRDIV + 1) * 2, <i>where</i> FRDIV is the value programmed in this field.	R/W	0
11	FE1	Frequency Generator 1 Output Enable.	R/W	0
		0 Disable output.		
		1 Enable output .		
10	FS1	Frequency Generator 1 Source.	R/W	0
		0 CPU Core clock.		
		1 Auxiliary clock.		
9:2	FRDIV0	Divider for Frequency Generator 0. The frequency divider is (FRDIV + 1) * 2, <i>where</i> FRDIV is the value programmed in this field.	R/W	0
1	FE0	Frequency Generator 0 Output Enable.	R/W	0
		0 Disable output.		
		1 Enable output .		
0	FS0	Frequency Generator 0 Source.	R/W	0
		0 CPU Core clock.		
		1 Auxiliary clock.		

8.1.2.2 **Frequency Control 1**

This register controls the frequency generator block for output frequencies 3, 4, and 5. This register will reset to defaults only on a hardware reset. During a runtime reset and during Sleep this register will retain its value.

sys_freqctrl1

sys_f	req	ctrl	1																										Offs	set =	= 0x0	024
Bit 3	31 (30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					F	RDI\	/5[7:	:0]			FE5	FS5			FI	RDI\	/4[7:	:0]			FE4	FS4			FF	RDI\	/3[7:	:0]			FE3	FS3
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:30	—	Reserved, should be cleared.	R	0
29:22	FRDIV5	Divider for Frequency Generator 5. The frequency divider is (FRDIV + 1) * 2, <i>where</i> FRDIV is the value programmed in this field.	R/W	0
21	FE5	Frequency Generator 5 Output Enable.	R/W	0
		0 Disable output.		
		1 Enable output .		
20	FS5	Frequency Generator 5 Source.	R/W	0
		0 CPU Core clock.		
		1 Auxiliary clock.		
19:12	FRDIV4	Divider for Frequency Generator 4. The frequency divider is (FRDIV + 1) * 2, <i>where</i> FRDIV is the value programmed in this field.	R/W	0
11	FE4	Frequency Generator 4 Output Enable.	R/W	0
		0 Disable output.		
		1 Enable output .		
10	FS4	Frequency Generator 4 Source.	R/W	0
		0 CPU Core clock.		
		1 Auxiliary clock.		
9:2	FRDIV3	Divider for Frequency Generator 3. The frequency divider is (FRDIV + 1) * 2, <i>where</i> FRDIV is the value programmed in this field.	R/W	0
1	FE3	Frequency Generator 3 Output Enable.	R/W	0
		0 Disable output.		
		1 Enable output .		
0	FS3	Frequency Generator 3 Source.	R/W	0
		0 CPU Core clock.		
		1 Auxiliary clock.		

8.1.2.3 **Clock Source Control**

This register controls the clock source for all output clocks. This register will reset to defaults only on a hardware reset. During a runtime reset and during Sleep this register will retain its value.

svs clksrc

sys_clksrc			Offs	set =	0x002	8
Bit 31 30	28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6	54	4 3	2	1 0	
	ME1[2:0] DE1 CG3 ME0[2:0] DE0 CE0 MPC[2:0] DPC CPC MUH[2:0] DUH CUH MUD[2:0] DUD					
Def. 0 0		0 0) ()	0	0 0	-

Bits	Name	Description	Read/Write	Default
31:30	_	Reserved, should be cleared.	R	0
29:27	ME1	EXTCLK1 Clock Mux Input Select. See Table 8-3 on page 160.	R/W	000
26	DE1	EXTCLK1 Clock Divider Select.	R/W	0
		0 Divide by 4.		
		1 Divide by 2.		
25	CE1	EXTCLK1 Clock Select.	R/W	0
		0 Clock is taken directly from mux. (The divider select bit DE1 has no effect.)		
		1 Clock is taken from 2/4 divider.		
24:22	ME0	EXTCLK0 Clock Mux Input Select. See Table 8-3 on page 160.	R/W	000
21	DE0	EXTCLK0 Clock Divider Select.	R/W	0
		0 Divide by 4.		
		1 Divide by 2.		
20	CE0	EXTCLK0 Clock Select.	R/W	0
		0 Clock is taken directly from mux. (The divider select bit DE0 has no effect.)		
		1 Clock is taken from 2/4 divider.		
19:17	MPC	PCI Clock Mux Input Select. See Table 8-3 on page 160.	R/W	000
16	DPC	PCI Clock Divider Select,	R/W	0
		0 Divide by 4.		
		1 Divide by 2.		
15	CPC	PCI Clock Select,	R/W	0
		0 Clock is taken directly from mux. (The divider select bit DPC has no effect.)		
		1 Clock is taken from 2/4 divider.		
14:12	MUH	USB Host Clock Mux Input Select. See Table 8-3 on page 160.	R/W	000
11	DUH	USB Host Clock Divider Select.	R/W	0
		0 Divide by 4.		
		1 Divide by 2.		
10	CUH	USB Host Clock Select.	R/W	0
		0 Clock is taken directly from mux. (The divider select bit DUH has no effect.)		
		1 Clock is taken from 2/4 divider.		
9:7	MUD	USB Device Clock Mux Input Select. See Table 8-3 on page 160.	R/W	000
6	DUD	USB Device Clock Divider Select.	R/W	0
		0 Divide by 4.		
		1 Divide by 2.		
5	CUD	USB Device Clock Select.	R/W	0
		0 Clock is taken directly from mux. (The divider select bit DUD has no effect.)		
		1 Clock is taken from 2/4 divider.		
4:0	_	Reserved.		

The specific values written to the 3-bit clock-mux-input-select fields are shown in Table 8-3. The FREQ*n* selections come from the output of the corresponding frequency generators, as shown in Figure 8-2 on page 156.

Value	Meaning
000	No clocking
001	Auxiliary Clock
010	FREQ0
011	FREQ1
100	FREQ2
101	FREQ3
110	FREQ4
111	FREQ5

30361D

8.1.3 PLL Control

There are two registers for controlling the two PLLs integrated into the Au1500 processor. Each PLL is independently programmable. Note that when programming the PLL control registers, the system designer must not violate the rated frequency limits of the Au1500 processor. Configuring the PLLs outside this frequency range causes undefined behavior.

For higher frequencies the Au1500 processor core requires a higher core voltage (V_{DDI}). Care should be taken that the system is providing the correct voltage for the operating frequency before changing the CPU clock. See Section 12.5 "DC Parameters" on page 218, for full information about the voltage/frequency requirements of the Au1500 processor.

The Core Cycle Counter register located at CP0 register 9 can be used to count core cycles. Please see Section 2.7 "Coprocessor 0" on page 30, for more information.

The two PLLs in the Au1500 processor drive the CPU clock and the auxiliary clock. The default PLL multiplier value is 16 for the CPU clock and 0 for the AUXPLL which has the following implications assuming a 12 MHz crystal on XTI12 and XTO12:

- CPU Clock = 192 MHz
- Auxiliary Clock = Disabled
- SBUS Clock = 96 MHz (SD SBUS divider defaults to 2)
- Peripheral Bus = 48 MHz
- SDRAM Bus = 48 MHz.

When modifying the CPU clock frequency approximately 20 µs elapse while the CPU and bus clocks shut off and the CPU PLL locks to the new frequency. During this period instructions are not executed and interrupts are not serviced. Interrupts are serviced once execution begins again at the new frequency.

8.1.3.1 CPU PLL Control

The CPU PLL control register (**sys_cpupil**) resets to its default value only for a hardware reset. That is, after Sleep, and during a runtime reset the CPU PLL retains its frequency.

Note that when programming the CPU PLL control register the system designer must not violate the rated frequency limits of the Au1500 processor. Configuring the PLL outside this frequency range causes undefined behavior.

This register is read/write, but the value read is valid only after initialization. After coming out of reset, hardware reset or Sleep, this register must first be written for the value read back to be valid. For this reason it is suggested that this register be initialized at boot time regardless if the value is changed from default.

After writing to the **sys_cpupII** register, the system automatically halts for 20 µs to allow for the PLL to relock and clocks to become stable.

sys_	срі	ıpll																											Offs	et =	0x0	060
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																													PLL	[5:0]		
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0

Bits	Name	Description	R/W	Default
31:6	—	Reserved, should be cleared.	R/W	0
5:0	PLL	CPU PLL Multiplier. Determines the integer multiplier used to multiply the CPU PLL to generate the CPU clock.	R/W	0x10
		For example, with the default of 16 and a 12 MHz OSC frequency, the CPU clock frequency is 192 MHz.		
		Note that PLL multiplier values that place the clock frequency outside of rated limits are invalid.		
		0–15: Reserved and undefined.		
		16–(<i>n</i> -1): Valid PLL multiplier.		
		<i>n</i> –63: Reserved and undefined.		
		Where n is the smallest PLL multiplier that would cause the CPU clock frequency to exceed the rated frequency limits of the part.		

8.1.3.2 Auxiliary PLL Control

The auxiliary PLL control register (**sys_auxpll**) resets to its default value on hardware reset, after Sleep, and during a runtime reset. This register is read/write, but the value read is valid only after initialization. For this reason it is recommended that system software initialize this register at hardware reset, runtime reset and Sleep, even if programming its default value.

Note that when programming the auxiliary PLL control register the system designer must not violate the rated frequency limits of the Au1500 processor. Configuring the PLL outside this frequency range causes undefined behavior.

Unlike the **sys_cpupil** register, writing **sys_auxpil** does not cause the system to halt. As a consequence, clocks taken from the AUX PLL may be unstable for up to 20 μ s. To ensure stable clocks during AUX PLL lock time, the **sys_cpupil** register can be written with its current value to force the system to halt for 20 μ s.

sys	_aux	cpll																											Offs	set =	0x0	064
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																													PLL	[5:0]		
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:6	—	Reserved, should be cleared.	R/W	0
5:0	PLL	Auxiliary PLL Multiplier. Determines the integer multiplier used to multiply the auxiliary PLL to generate the auxiliary clock.	R/W	0x00
		For example, with a value of 12 and a 12 MHz OSC frequency, the auxiliary clock frequency will be 144 MHz.		
		Note that PLL multiplier values that place the clock frequency outside of rated limits are invalid.		
		0: Disable the auxiliary PLL.		
		1–7: Reserved and undefined.		
		8–(n-1): Valid PLL multiplier.		
		<i>n</i> –63: Reserved and undefined.		
		Where <i>n</i> is the smallest PLL multiplier that would cause the auxiliary clock frequency to exceed the rated frequency limits of the part.		

8.1.4 Hardware Considerations

Note also that the EXTCLK[1:0] clocks are multiplexed signals and require programming of the **sys_pinfunc** register (see Section 8.3.1.1 "Pin Function" on page 168) as follows:

When using the external clocks from the clock generation block, the **sys_pinfunc** register must be programmed such that GPIO[2] and/or GPIO[3] are configured to be driven by EXTCLK0 and/or EXTCLK1.

Section 12.10 "Crystal Specifications" on page 234, define the crystal specifications.

8.1.5 Programming Considerations

When changing the CPU PLL value through the **sys_cpupII** register, the system automatically halts for 20 µs to allow clocks to stabilize. During this time no interrupts are serviced, potentially affecting real-time systems. However, modifying the **sys_auxpII** register does *not* cause the system to halt, and therefore clocks taken from the AUX PLL may be unstable for up to 20 µs. To ensure stable clocks while the AUX PLL locks, the **sys_cpupII** register can be written with its current value to force the system to halt for 20 µs.

8.2 Time of Year Clock and Real Time Clock

The Au1500 processor contains two programmable counters designed for use as a time of year clock (TOY) and real time clock (RTC). Because the TOY continues counting through Sleep, a TOY counter match can be used as a wake-up source. The RTC, however, will power down in Sleep mode.

Note that both the TOY and RTC counters are driven by the 32.768 KHz clock input. The clock input source can be a crystal or external clock. (See Section 12.10 "Crystal Specifications" on page 234 for crystal details.)

Each programmable counter employs a register to initialize the counter or load a new value, a trim divider to adjust the incoming 32.768 KHz clock, and three match registers which have associated interrupts that trigger on a match. Each counter is also able to generate an interrupt on every tick. All interrupts are maintained through the interrupt controller. Both programmable counters share a status register.

Figure 8-4 shows the functional block diagram of both the TOY and the RTC. The registers used to implement the block, including the counter control register (**sys_cntrctrl**), are described in the following section.

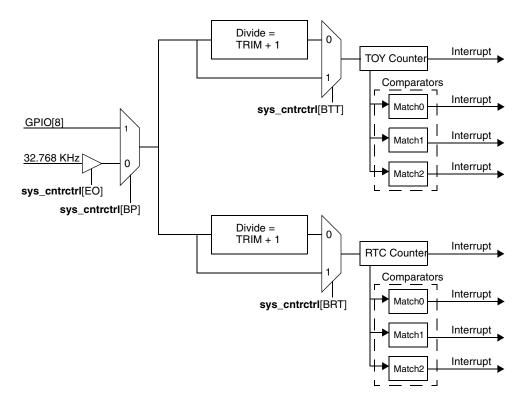


Figure 8-4. TOY and RTC Block Diagram

8.2.1 Time of Year Clock and Real Time Clock Registers

Each counter operates identically with the only difference being that the TOY continues counting through Sleep and the RTC does not.

The programmable counter control registers and their associated offsets are listed in Table 8-4. When functionality is identical for registers in the different programmable counters, only one general register description is presented with offsets pointing to the specific registers.

Offset (Note 1)	Register Name	Description	Reset Type
0x0000	sys_toytrim	Trim value for 32.768 KHz clock source for TOY	Hardware
0x0004	sys_toywrite	TOY counter value is written through this register.	Hardware
0x0008	sys_toymatch0	TOY match 0 value for interrupt generation.	Hardware
0x000C	sys_toymatch1	TOY match 1 value for interrupt generation.	Hardware
0x0010	sys_toymatch2	TOY match 2 value for interrupt generation.	Hardware
0x0014	sys_cntrctrl	Control register for TOY and RTC.	Hardware
0x0040	sys_toyread	TOY counter value is read from this register.	Hardware
0x0044	sys_rtctrim	Trim value for 32.768 KHz clock source for RTC.	Hardware
0x0048	sys_rtcwrite	RTC counter value is written through this register.	Hardware
0x004C	sys_rtcmatch0	RTC match 0 value for interrupt generation.	Hardware
0x0050	sys_rtcmatch1	RTC match 1 value for interrupt generation.	Hardware
0x0054	sys_rtcmatch2	RTC match 2 value for interrupt generation.	Hardware
0x0058	sys_rtcread	RTC counter value is read from this register.	Hardware

Note 1. See Table 8-1 on page 153 for base address.

8.2.1.1 Trim Register

The TOY trim write status bit (**sys_cntrctrl**[TTS]) must be clear before writing **sys_toytrim**. It is set upon writing this register and is cleared by hardware when the write takes effect.

The RTC trim write status bit (**sys_cntrctrl**[RTS]) must be clear before writing **sys_rtctrim**. It is set upon writing this register and is cleared by hardware when the write takes effect.

This register is unpredictable at power on. During a runtime reset and during Sleep this register retains its value.

sys_toytrim - TOY Trim Offset = 0x0000sys_rtctrim - RTC Trim Offset = 0x0044Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 TRIM[15:0] Def. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Х Х Х XXXXX X X Х Х Х Х Х

Bits	Name	Description	R/W	Default
31:16	-	Reserved, should be cleared.	R	0
15:0	TRIM	Divide value for 32.768 KHz input. Divide = TRIM + 1.	R/W	UNPRED

The TOY value write status bit (**sys_cntrctrl**[TS]) must be clear before writing **sys_toywrite**. It is set upon writing this register and is cleared by hardware when the write takes effect.

The RTC value write status bit (**sys_cntrctrl**[RS]) must be clear before writing **sys_rtcwrite**. It is set upon writing this register and is cleared by hardware when the write takes effect.

This register is unpredictable at power on. During a runtime reset and during Sleep this register retains its value.

sys_toywrite - TOY counter value write

sys_																															0x0	048
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ															CC	DUN	T[31	:0]														
Def.	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	COUNT	Counter Write. The respective counter will be updated with the value writ-	W	UNPRED
		ten to this register at the next trimmed clock.		

8.2.1.3 Match Registers

The corresponding write status bit (**sys_cntrctrl**[TM*n*] or **sys_cntrctrl**[RM*n*]) must be clear before writing the below registers. It is set upon writing the register and is cleared by hardware when the write takes effect.

Each match register is capable of causing an interrupt as shown in Section 6.0 "Interrupt Controller" on page 95. The **sys_toymatch2** can be used to wake up from Sleep; see Section 8.4.5.2 "Wakeup Source Mask Register" on page 176. See also Section 8.2.2 "Programming Considerations" on page 167.

These registers are unpredictable at power on. During a runtime reset and during Sleep these registers retain their value.

sys_toyma sys_toyma sys_toyma sys_rtcmat sys_rtcmat sys_rtcmat	tch1 - tch2 - ch0 - F ch1 - F	TOY M TOY M RTC M RTC M	latcl latcl latch latch	h 1 h 2 h 0 h 1																						Offs Offs Offs Offs	et = set = et = set =	0x0 0x0 0x0 0x0	0008 00C 0010 04C 0050 0054
Bit 31 30	29 2	8 27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
												M	ATCI	H[31	:0]														
Def. X X	XX	хх	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	MATCH	A match with the counter and the value in this register causes an interrupt.	R/W	UNPRED

8.2.1.4 TOY and RTC Counter Control

The TOY and RTC counter control register (**sys_cntrctrl**) contains control bits and status bits to configure and control both programmable counters.

Write Status Bits: These bits indicate the status of the latest update to the respective register/field. When the corresponding register/field is written, this bit is set indicating that there is a write pending. When this bit is cleared the write has taken place. Software should poll the correct bit and insure that it is 0 before updating the respective register/field.

This register resets to default values only on a hardware reset. During a runtime reset and during Sleep this register retains its value.

sys_ci	ntrcti	ı.																										Offs	set =	0x0	014
Bit 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											RTS	RM2	RM1	RMO	RS		BP		BRT		BTT		EO	CCS		32S	TTS	TM2	TM1	TM0	TS
Def. 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	0	0	0	0	0

Offset = 0x0004

Bits	Name	Description	R/W	Default
31:21	—	Reserved, should be cleared.	R	0
20	RTS	sys_rtctrim Write status.	R	0
19	RM2	sys_rtcmatch2 write status.	R	0
18	RM1	sys_rtcmatch1 write status.	R	0
17	RM0	sys_rtcwrite write status	R	0
16	RS	0 No write is pending. It is safe to write to the register.	R	R
10	110	 A write is pending. It is safe to write to the register. A write is pending. Do not write to the register. 		
15	_	Reserved, should be cleared.	R	0
14	BP	Bypass the 32.768 KHz OSC	R/W	0
14	5.	0 Select Oscillator Input (XTI32, XTO32).	10,00	Ū
		1 GPIO[8] drives the counters. This is a test mode where GPIO[8] can drive the counters from an external source or through software using the GPIO controller.		
13	_	Reserved, should be cleared.	R/W	0
12	BRT	Bypass RTC Trim.	R/W	0
		0 Normal operation.		
		1 The RTC is driven directly by the 32.768 KHz clock, bypassing the		
11		trim. Reserved, should be cleared.	R/W	0
10	BTT	Bypass TOY Trim.	R/W	0
		0 Normal operation.		
		1 The TOY is driven directly by the 32.768 KHz clock, bypassing the		
		trim.		
9	—	Reserved, should be cleared.	R	0
8	EO	Enable 32.768 KHz Oscillator. Enables the clock for the RTC/TOY block.	R/W	0
		0 Disable the clock.		
		1 Enable the clock.		
		Regardless of the clock source (crystal or overdriven clock through XTI32/ XTO32, or bypass through GPIO[8]), the EO bit must be set to enable the RTC/TOY counters. After enabling the clock by setting EO, poll the oscilla- tor status bit (32S) until it returns a '1'. Once 32S is set, wait an additional one second to allow for frequency stabilization within the block before accessing other RTC/TOY registers (not including sys_cntrctrl).		
		Note: If the oscillator is being overdriven or bypassed through GPIO[8], be sure to set EO only <i>after</i> a stable clock is being driven into the part.		
7	CCS	sys_cntrcntrl write status	R	0
6	—	Reserved, should be cleared.	R	0
5	32S	32.768 KHz Oscillator Status. Detects two consecutive 32 KHz cycles from the clock source for the RTC/TOY block.	R	UNPREI
		0 Clock is not running.		
		1 Clock is running.		
		Note: Be sure to wait 1 second after 32S is set to allow for frequency stabilization within the block before accessing RTC/TOY registers.		
4	TTS	sys_toytrim write status.	R	0
3	TM2	sys_toymatch2 write status.	R	0
2	TM1	sys_toymatch1 write status. sys_toymatch0 write status.	R	0
1	TM0	sys_toymatche write status.	R	0
0	TS	0 No write is pending. It is safe to write to the register.	R	0
		1 A write is pending. Do not write to the register.		

8.2.2 Programming Considerations

To change the values of the counter and match registers, software must poll the state of the corresponding status bit in **sys_cntrctrl**. When the corresponding write status bit (**sys_cntrctrl**[TTS,TM*n*,TS] or **sys_cntrctrl**[RTS,RM*n*,RS]) is 0 it is okay to write a new value. Once the new value is written to the register the status bit will change to a 1. When the write status bit is 1 the new value is being updated in supporting hardware. When the write status changes to a 0 then the new value is active in the device.

8.3 Primary General Purpose I/O and Pin Functionality

The Au1500 processor contains two separate GPIO blocks (primary and secondary). This section covers the programming model for the primary general purpose I/O (GPIO) signals. The Au1500 processor supports 39 GPIOs, 23 of which are controlled by the primary GPIO block. For a description of the programming model for the secondary GPIO block see Section 7.6 "Secondary General Purpose I/O" on page 149.

This section also documents how to change the functionality of multiplexed pins. These pins can function at the system level as a GPIO signal, or they can be assigned a signal function dedicated to an integrated peripheral device.

Each GPIO can be configured as either an input or an output. The GPIO ports also can be connected to the internal interrupt controllers to generate an interrupt from input signals. See Section 6.0 "Interrupt Controller" on page 95 for information on interrupts.

8.3.1 Pin Functionality

To maximize the functionality of the Au1500 processor, many of the pins have multiple uses. Note that if a pin is programmed for a certain use, any other functionality associated with that pin can not be utilized at the same time. In other words, a pin can not be used as a GPIO at the same time it is assigned to a peripheral device.

(For reference, Figure 11-1 on page 201 shows a block diagram of all external signals. Signals that are multiplexed on one pin will show the shared function in parentheses.)

8.3.1.1 Pin Function

This register resets to its default state at hardware reset, runtime reset and Sleep.

sys_	pin	fund	;																									(Offs	et =	0x0	02C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																CS	USB	U3		U1	SRC	EX1	EX0		UR3			NI2	U0			
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	1	1	1	1	0	1

Bits	Name	Description	R/W	Default
31:17	—	These bits are reserved and should be cleared.	R	all Os
16	CS	Clock Select. Applies only when EX0 = 1.	R/W	0
		0 EXTCLK0 will drive pin.		
		1 32 KHz OSC clock will drive pin.		
15	USB	USB Functionality	R/W	0
		0 USBDP and USBDM will drive pins (pins are connected to USB device module).		
		1 USBH0P and USBH0M will drive pins (pins are connected to USB host port 0).		
14	U3	UART3/GPIO[23].	R/W	1
		0 U3TXD drives pin.		
		1 Pin is configured for GPIO[23].		
13:12	—	These bits are reserved and should be written as 0b11.	R/W	11
11	SRC	GPIO[6]/SMROMCKE.	R/W	0
		0 Pin is configured for GPIO[6].		
		1 SMROMCKE drives pin.		
10	EX1	GPIO[3]/EXTCLK1.	R/W	0
		0 Pin is configured for GPIO[3].		
		1 EXTCLK1 will drive pin.		
9	EX0	GPIO[2] / (EXTCLK0 or 32 KHz OSC).	R/W	0
		0 Pin is configured for GPIO[2].		
		1 Pin is configured for EXTCLK0 or 32 KHz OSC. CS (bit 16) selects whether EXTCLK0 or the 32 KHz OSC drives the pin.		
8	—	This bit is reserved and should be written as 0.	R/W	0

30361D

Bits	Name	Description	R/W	Default
7	UR3	GPIO[14:9]/UART3.	R/W	0
		0 Pins are configured as GPIO[14:9].		
		1 Pins are configured for optional UART3 flow control. U3DTR#, U3RTS#, U3RI#, U3DCD#, U3DSR#, and U3CTS# will drive pins.		
		System Note : For systems that use the UART3 interface but do <i>not</i> use the optional modem control signals (UR3=0), the modem status interrupts must be disabled (uart3_inten [MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.		
6:5	—	These bits are reserved and should be written as 0b01.	R/W	01
4	NI2	MAC1/GPIO[28:24].	R/W	1
		0 Pins are configured as Ethernet port 1. N1TXD[3:0], and N1TXEN will drive port.		
		1 Pins are configured as GPIO[28:24].		
3	U0	UART0/GPIO[20].	R/W	1
		0 Pin is configured for U0TXD (necessary for UART0 operation).		
		1 Pin is configured as GPIO[20].		
2:0	_	These bits are reserved and should be written as 0b101.	R/W	101

8.3.2 Primary GPIO Control Registers

The primary GPIOs on the Au1500 processor have been designed to simplify the GPIO control process by removing the need for a semaphore to control access to the registers. This is because there is no need to read, modify, write, as there are separate registers for setting and clearing a bit. In this way a function can freely manipulate its associated GPIOs without interfering with other functions.

Figure 8-5 shows the logical implementation of each GPIO. The names represent bit *n* of the corresponding register which affect GPIO[n].

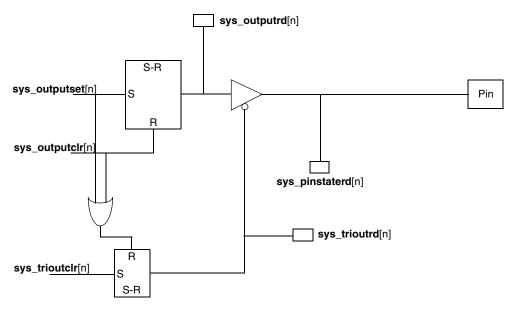


Figure 8-5. GPIO Logic Diagram

The following table shows the GPIO control registers and the associated offsets from **sys_base**. Certain registers share offsets and have different functionality depending on whether the access is a read or a write. The register descriptions detail the functionality of each register. Bit n of a particular register should be associated with GPIO[n] for all registers except **sys_pininputen**.

Offset (Note 1)	Register Name	Register Description	Default
0x0100	sys_trioutrd	The TRI-STATE/Output state register shows the current state	0x0000000
0x0100	sys_trioutclr	 of the GPIO. O GPIO[n] is in TRI-STATE. To TRI-STATE GPIO[n] set the corresponding bit in the sys_trioutclr register. 	(all GPIOs are TRI-STATED)
		 Output is enabled. To enable GPIO[n] as an output pro- gramming GPIO[n] as a 0 or 1 using the sys_outputclr[n] or sys_outputset[n] registers. 	
		If the pin is not an output it should be in TRI-STATE.	
0x0108	sys_outputrd	Controls the state of the GPIO[n] as an output.	UNPRED
0x0108	sys_outputset	0 To output a low level, set sys_outputclr [n].	
0x010C	sys_outputclr	1 To output a high level, set sys_outputset [n].	
		Programming a bit value in the output register brings the pin out of TRI-STATE mode and enables the output.	
0x0110	sys_pinstaterd	Allows the pin state to be read when an input. This register will also give the output state.	UNPRED
0x0110	sys_pininputen	Any write to this register allows GPIO[31:0] to be used as inputs. This register must be written before any GPIO can be used as an input, an interrupt source, or for use as a wake up source.	UNPRED

Table 8-5. GPIO Control Registers

Note 1. See Table 8-1 on page 153 for base address.

8.3.2.1 GPIO Control Registers

Each GPIO control register is 32 bits wide with bit *n* in each register affecting GPIO[n].

These registers will reset to defaults only on a hardware reset. During a runtime reset and during Sleep this register will retain its value.

See Table 8-5 for the default values at hardware reset.

*rd

*set

*clr

Bit 31	30 2	29 2	28 27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
													F	UNC	[31:	0]										-				

Bits	Name	Description	Read/Write	Default
31:0	FUNC[n]	The function of each register is given in the previous table. FUNC[n] controls the functionality of GPIO[n].	*_read - read only *_set - write only *_clear - write only	0
			See the following text.	

30361D

Certain registers in the list have the same offset but offer different functionality depending on whether a read or a write is being performed.

Registers ending in *rd, *set and *clr have the following functionality:

- *rd registers are read only registers will read back the current value of the register.
- *set registers are write only registers and will set to 1 all bits that are written 1. Writing a value of 0 will have no impact on the corresponding bit.
- *clr registers are write only registers and will clear to zero all bits that are written 1. Writing a value of 0 will have no
 impact on the corresponding bit.

8.3.2.2 GPIO Input Enable

The **sys_pininputen** is a 32-bit, write-only register. When this register is written, the input functionality of all GPIOs is enabled. This register enables GPIOs for use as an input but does not explicitly configure all GPIOs as inputs. The value of the GPIO control registers and the pin function register will define the state of each GPIO.

GPIOs cannot be used as inputs until this register is written. This write is required only once per hardware reset (i.e., Sleep and a runtime reset will not require another write to this register).

sys_pininputen

•)•_p.																															· · · •
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																															EN
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:1	—	Reserved, should be cleared.	W	N/A
0	EN	A write to this bit (0 or 1) enables all GPIOs to be used as inputs.	W	N/A

8.3.3 Hardware Considerations

The system pin function register (**sys_pinfunc**) controls the functionality of many GPIO/peripheral pins. If a pin is programmed for a certain functionality, all other functionality associated with that pin is disabled.

For example, if **sys_pinfunc**[U3] is cleared configuring the pin as U3TXD, GPIO[23] can not be used as a GPIO nor can the GPIO be configured as an interrupt. Conversely if **sys_pinfunc**[U3] is set configuring the pin as GPIO[23], U3TXD (and thus the UART3 interface) is not usable. GPIO[23] can be used as a GPIO and to generate interrupts.

8.3.4 Using GPIO for External DMA Requests

See Section 5.2 "Using GPIO as External DMA Requests (DMA_REQn)" on page 92 for information.

Offset - 0x0110

8.4 Power Management

The Au1500 processor contains a robust power management scheme allowing multiple levels of power conservation to enable the system designer options depending on whether power conservation or system responsiveness is more critical.

In the Au1500 processor, power management can be broken into three different areas:

- CPU
- Peripherals
- Device

The lowest power state consists of putting the entire device into a Sleep state. The CPU also supports two Idle states that differ as to whether bus snooping is supported. In addition each peripheral can have its clocks disabled when not in use thus significantly reducing the power draw by those blocks not in use.

The flow chart in Figure 8-6 shows the different stages of power management for the CPU (IDLE0,1) and the device (SLEEP) and how each state is entered and left. Note that any interrupt can be used to bring the CPU out of either Idle state while only a GPIO[7:0] or **sys_toymatch2** interrupt can be enabled (in **sys_wakemsk**) to bring the device out of Sleep.

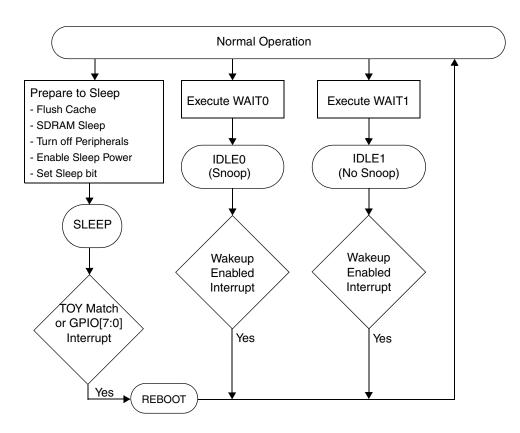


Figure 8-6. Sleep and Idle Flow Diagram

8.4.1 CPU Power Management - Idle

The CPU can be put into two different low-power Idle modes (IDLE0 and IDLE1) by using the wait instruction:

- In the IDLE0 state the CPU snoops the bus and cache coherency is maintained.
- In the IDLE1 state the CPU does not snoop the bus and cache coherency is lost.

The wait instruction and at least four instructions following it must be in the cache for the wait to occur. See Section 2.6.3 "WAIT Instruction" on page 29 for more information.

At all times the MMU, data cache, execution and multiply-and-accumulate blocks are placed in a low power state if they are not being used.

8.4.2 Returning from Idle

The processor wakes from the Idle state (IDLE0 or IDLE1) upon receiving an interrupt. The time required for the processor core to return to normal execution is as follows:

- Five to ten CPU clocks are needed to restart clocks to the CPU.
- It takes an additional ten CPU clocks for the core to recognize the interrupt and begin fetching the interrupt service routine.

Therefore, a maximum of 20 CPU clocks are required to resume normal instruction pipeline execution. If the interrupt service routine is in the instruction cache, the instruction returns immediately; otherwise, there is an additional delay while fetching the instruction from memory.

8.4.3 Peripheral Power Management

Peripheral power management is handled through clock management and disabling of unused peripherals. Table 8-6 lists the peripherals and their related power management registers. The actual register descriptions should be referred to for programming details.

Note that when separate reset/peripheral enable and clock-enable bits are provided, the reset must be applied first, and then the clocks should be disabled. This will simplify programming, as the suggested bring up sequence is typically to first enable clocks and then subsequently to bring the peripheral out of reset.

Peripheral	Power Management Register	Power Management Strategy
USB Host	usbh_enable	When the USB host is not in use the E bit can be cleared to disable the host. The CE bit should also be cleared to disable clocks to the block.
USB Device	usbd_enable	When the USB device is not in use the E bit can be cleared to dis- able the host. The CE bit should also be cleared to disable clocks to the block.
Ethernet MAC <i>n</i>	macen_mac <i>n</i>	When either block is not being used, the respective E[2:0] bits should be cleared to disable the MAC, and the CE bit should be cleared to gate clocks to the MAC.
UART <i>n</i>	uart <i>n</i> _enable	When a UART is not being used, the E bit should be cleared to hold the part in reset and the CE bit should be cleared to disable clocks to the block.
Primary General Purpose I/O (GPIO) Controller	sys_trioutclr	Although there is not a specific low-power configuration for the pri- mary GPIOs, tristating the unused GPIOs minimizes their power usage.
Secondary General Purpose I/O (GPIO2) Controller	gpio2_enable	If no GPIO2 signals are being used, the GPIO2 module reset (MR) bit should be set to place the module in reset. Also, clear the CE bit to disable clocks to the block. (By default, the GPIO2 module is disabled coming out of reset.)
Programmable Counters (TOY and RTC)	sys_cntrctrl	If both the TOY and RTC are not being used, then disable the oscilla- tor.
AC97 Controller	ac97_enable	If the AC97 block is not in use, the D bit should be used to disable the module and the CE bit should be disabled to gate clocks from the block.

Table 8-6. Peripheral Power Management

8.4.4 Device Power Management - Sleep

The Sleep state of the Au1500 processor puts the entire device into a low-power state. Sleep is the lowest power state of the part and requires a complete system initialization on wakeup. There are multiple steps to take when going into Sleep and waking up to insure data integrity. During this state all registers values outside the system control block are lost and cache coherency is not maintained.

The programmable counter 0 (intended for TOY) continues clocking and remains functional during Sleep. However, the programmable counter 1, as well as other clocks throughout the Au1500, are disabled during Sleep.

When coming out of Sleep there is a programmable delay defined by **sys_powerctrl**[VPUT]. This is the time that the system designer has to ensure V_{DDI} is stable from the rising edge of PWR_EN.

To enter Sleep the following steps should be taken. This code should be run from Flash, or conversely the system programmer should guarantee that this code will run from cache because after SDRAM is put into auto-refresh mode, memory accesses will no longer work.

- 1) Enable Sleep Power by writing to the **sys_slppwr** register.
- 2) Turn off all peripherals. (Explicitly turning off all peripherals in use ensures a graceful transition to Sleep mode.)
- 3) Push dirty data out of the cache. (During Sleep cached data is lost.)
- 4) If SDRAM contents are to be kept through Sleep, SDRAM should be put into auto-refresh mode. See Section 3.1 "SDRAM Memory Controller" on page 44 for more information.

If SDRAM is not needed to be maintained through Sleep, disable the SDRAM.

- 5) If using one of GPIO[7:0] as a wakeup source, **sys_pininputen** must be written to enable the GPIO as an input if this has not already been done at system startup.
- 6) The **sys_wakemsk** register should be set with the appropriate value according to what signal(s) should wake the processor.
- 7) The **sys_wakesrc** register should be written to explicitly clear any pending wake interrupts.
- 8) Enable Sleep by writing to the **sys_sleep** register. This step puts the system to Sleep.
- 9) As the system enters Sleep mode, the PWR_EN signal is negated. This can be used to disable V_{DDI} if needed.

When the processor takes a Sleep interrupt to wake up, the following steps should be taken:

- 1) After the Sleep interrupt is taken, the PWR_EN signal is asserted by hardware. Within the time indicated by **sys_powerctrl**[VPUT], the system must ensure that V_{DDI} is stable.
- 2) The processor will then boot from physical address 0x0 1FC0 0000 as normal.
- 3) If Sleep is to be used by the system and a different flow should be followed when coming out of Sleep the sys_wakesrc should be read to determine if the processor is coming out of Sleep and what caused the wakeup. The system should then write the sys_wakesrc register to clear this information.
- 4) The processor will need to perform complete system initialization. All registers except those described as otherwise in the System Control Block will be at their default values.

8.4.4.1 Sleep Sequence and Timing

As the processor enters Sleep mode, the system designer has the option of disabling V_{DDI} to conserve power. The PWR_EN signal defines the Sleep window. Figure 8-7 shows the Sleep sequence.

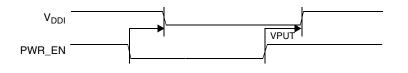


Figure 8-7. Sleep Sequence

The system designer must ensure V_{DDI} is stable from the rising edge of PWR_EN within the time period as programmed in **sys_powerctrl**[VPUT]. Note that VDDXOK (not shown) remains asserted during the Sleep sequence.

8.4.5 Power Management Registers

The power management registers and their associated offsets are listed in Table 8-7. These registers are located off of the base shown in Table 8-1 "System Control Block Base Address" on page 153.

Offset (Note 1)	Register Name	Description	Reset Type
0x0018	sys_scratch0	User-defined register that retains its value through Sleep.	Hardware
0x001C	sys_scratch1	User-defined register that retains its value through Sleep.	Hardware
0x0034	sys_wakemsk	Sets which GPIO or whether TOY match can cause Sleep wakeup.	Hardware
0x0038	sys_endian	Sets Big or Little Endian.	Hardware & Runtime
0x003C	sys_powerctrl	Sets System Bus (SBUS) divider and power-up time.	Mixed - See Register Description
0x005C	sys_wakesrc	Gives source of Sleep wakeup.	Hardware
0x0078	sys_slppwr	Initiates power state for Sleep mode.	Hardware
0x007C	sys_sleep	Initiates Sleep mode.	Hardware

Table 8-7. Power Management Registers

Note 1. See Table 8-1 on page 153 for base address.

8.4.5.1 Scratch Registers

The scratch registers keep their values through Sleep and runtime resets. These registers allow the system programmer to save user-defined state information or a pointer to a context so that the previous context can be restored when coming out of Sleep, if needed. Note that the scratch registers have unpredictable default values after a hardware reset.

sys_sc sys_sc																															018 01C
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														SCF	RATO	CH[3	1:0]														
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	s Name	Description	R/W	Default
31:0	SCRATCH	User-defined information.	R/W	UNPRED

8.4.5.2 Wakeup Source Mask Register

For each individual bit that is set, the corresponding signal or event (for the case of the TOY match) can be used to cause a Sleep wakeup.

A high level on the enabled GPIO will cause the interrupt to trigger.

This register will reset to defaults only on a hardware reset. During a runtime reset and during Sleep this register retains its value.

sys_wakemsk

Offset = 0x0034 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 GPIO[7:0] M2 0 0 0 0 0 0 0

Bits	Name	Description	R/W	Default
31:9	—	Reserved, should be cleared.	R	0
8	M2	Setting this bit enables the programmable TOY Counter Match Register 2 (sys_toymatch2) to cause a wakeup interrupt. See Section 8.2.1.3 "Match Registers" on page 165.	R/W	0
7:0	GPIO[7:0]	Setting bit <i>n</i> causes GPIO[<i>n</i>] to cause a Sleep wakeup.	R/W	0

8.4.5.3 **Endianness Register**

To change the endianness of the Au1500 processor is a three step process as follows:

- 1) Program the endianness bit in the system endianness register (sys_endian[EN]).
- 2) Read the sys_endian register. (This is required to ensure the final write to the CP0 register will update the endian value.)
- 3) Read the CP0 register Config0. (See Section 2.7.15 "Configuration Register 0 (CP0 Register 16, Select 0)" on page 36.)
- Write the value read back into the CP0 Config0 register. The act of writing the CP0 register will put the processor into 4) the endian state as programmed in sys_endian[EN].

This register as well as the processor endianness will reset to big endian after a hardware reset, runtime reset and after Sleep.

sys_end	dian																											Offs	et =	0x0	038
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																															EN
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0

Bits	Name	Description	R/W	Default
31:1	—	Reserved, should be cleared.	R	UNPRED
0	EN	Endianness.	R/W	0
		0 Big Endian.		
		1 Little Endian.		

8.4.5.4 Power Control Register

Bits[6:5] of this register are reset to default values for a hardware reset, runtime reset and after Sleep.

Bits[4:0] of this register reset to default values only on a hardware reset. During a runtime reset and during Sleep these bits retain their values.

sys	_po\	werc	trl																										Offs	et =	0x0	03C
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																										SI	SB		VP	UT	S	D
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:7	—	Reserved, should be cleared.	R	0
6	SI	Idle State SBUS Clock Divider Enable	R/W	0
		0 The Idle state SBUS clock divider is disabled.		
		1 Enable the SBUS clock to be divided by an additional factor of 2 when the processor is in an IDLE state (taken through the WAIT instruction). All peripheral bus clocks (such as the SDRAM and UART controllers) will be internally compensated with no programmer inter- vention required.		
		Note: SD must be programmed to 00 (divide by two) when SI is set.		
5	SB	SBUS Clock Divider Enable	R/W	0
		0 The SBUS clock divider is disabled.		
		1 Enable the SBUS clock to be divided by an additional factor of 2 when there is no bus activity. All clocks derived from the peripheral bus clock (such as the SDRAM and UART controllers) will be inter- nally compensated with no programmer intervention required.		
		Note: SD must be programmed to 00 (divide by two) when SB is set.		
4	—	Reserved, should be cleared.	R	0
3:2	VPUT	V _{DDI} Power-up Time.	R/W	Hardware
		00 20 ms		Reset
		01 5 ms		00
		10 100 ms		
		11 2 μs		
1:0	SD	SBUS Clock Divider.	R/W	Hardware
		00 2		Reset
		01 3		00
		10 4		
		11 Reserved		

8.4.5.5 Wakeup Cause Register

Before setting the Sleep bit this register should be cleared. This register will retain pending interrupts according to the setting in the sys_wakemsk register even if those events did not occur during Sleep. In other words if a GPIO's functionality is multiplexed between multiple functions, a high level could cause the associated sys_wakesrc bit to be set even if the action did not occur during Sleep.

The bits in this register must be explicitly cleared as they will hold their values through Sleep and a runtime reset.

All bits in this register are set by hardware and cleared by any write to this register.

sys_wakesrc

sys_wa	kesi	Ċ																										Offs	et =	0x0	05 C
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							M2	GP7	GP6	GP5	GP4	GP3	GP2	GP1	GP0															SW	IP
Def. 0	0	0	0	0	0	Rs	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Rs		

Bits	Name	Description	R/W	Default
31:25	—	Reserved, should be cleared.	R/W	0
24	M2	Programmable TOY Match 2 caused wakeup from Sleep. Set by hardware on Sleep wakeup due to TOY match.	R/W	0
		Cleared by hardware on VDDXOK assertion.		
		This bit must be explicitly cleared by software (any write) because it holds its value through Sleep and runtime reset.		
23	GP7	GPIO[n] caused wakeup from Sleep. Set by hardware on Sleep wakeup	R/W	0
22	GP6	due to GPIO[<i>n</i>].	R/W	0
21	GP5	This bit must be explicitly cleared by software (any write) because it holds	R/W	0
20	GP4	its value through Sleep and runtime reset.	R/W	0
19	GP3		R/W	0
18	GP2		R/W	0
17	GP1		R/W	0
16	GP0		R/W	0
15:2	—	Reserved, should be cleared.	R/W	0
1	SW	Sleep Wakeup. This bit is set by hardware on a Sleep wakeup and cleared by software by a write to this register.	R/W	0
		A runtime reset can be detected if both SW and IP are 0 at boot.		
		This bit must be explicitly cleared by software (any write) because it holds its value through Sleep and runtime reset.		
0	IP	Initial Power-up. This bit is set by hardware on a hardware reset and cleared by software by a write to this register.	R/W	1
		A runtime reset can be detected if both SW and IP are 0 at boot.		
		This bit must be explicitly cleared by software (any write) because it holds its value through Sleep and runtime reset.		

Offset = 0x0078

8.4.5.6 Sleep Power Register

sys_slppwr

Bits	Name	Description	R/W	Default
31:0	SP	A write to this register prepares the internal power supply for going to Sleep.	W	UNPRED

8.4.5.7 Sleep Register

sys_sle	ер																											Offs	et =	0x0	07C
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															S	SL .															
Def. X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	SL	A write to this register puts system to Sleep.	W	UNPRED

Power-up, Reset and Boot

This section presents the power-up, hardware reset and runtime reset sequence for the Au1500 processor. In addition the boot vector is described.

9.1 Power-up Sequence

The Au1500 processor power structure is designed such that the external I/O voltage (V_{DDX}) is driven separately from the core voltage (V_{DDI}). In this way the core voltage can be sourced at lower voltages saving power. In addition the Au1500 processor is designed to allow the system designer to remove the core voltage during Sleep to maximize power efficiency.

Two signals VDDXOK and PWR_EN are used to facilitate this power strategy. VDDXOK is used as a signal to the processor that power on V_{DDX} is stable. Stable is defined as having reached 90% of its nominal value. PWR_EN is an output from the Au1500 that is asserted after VDDXOK is asserted and can be used as an enable to the regulator that is providing the core voltage, V_{DDI} .

The following describes the power-up sequence for the Au1500 processor:

- 1) Apply V_{DDX} (3.3V I/O power).
- 2) When V_{DDX} has reached 90% of nominal, assert VDDXOK.
- 3) The Au1500 processor then asserts PWR_EN which can be used to enable the regulator driving V_{DDI} (CPU power).

Figure 9-1 shows the power-up sequence, including arrows representing causal dependencies. For the timing specifications of this sequence, refer to Section 12.7.1 "Power-up Sequence Timing" on page 230.

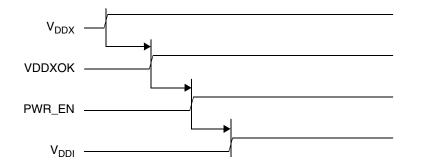


Figure 9-1. Power-up Sequence

9.2 Reset

A hardware reset is defined as a reset in which both VDDXOK and RESETIN# are toggled. Typically this happens only at power-on, but a system designer can choose to tie VDDXOK and RESETIN# together in which case all resets will be hardware resets.

For a runtime reset, power remains applied and only the RESETIN# signal is toggled. Note that certain registers, specifically some of those in the system control block, are not affected by this type of reset. See the register description for the register in question for more information. If a register is not reset to defaults by both hardware reset and runtime reset, it is noted in the register description.

9.2.1 Hardware Reset

For a hardware reset, VDDXOK makes a transition from low to high followed by RESETIN# negating (transitioning from low to high). The following sequence describes a hardware reset:

- 1) ROMSEL and ROMSIZE should be terminated in the design so the appropriate boot type occurs. These values should not change during runtime.
- 2) At the same time or after VDDXOK is asserted, RESETIN# can be negated. In other words, RESETIN# can not be negated before VDDXOK is asserted. This allows VDDXOK and RESETIN# to be tied together.
- 3) RESETOUT# is negated after RESETIN# is negated.

Figure 9-2 shows the hardware reset sequence, including arrows representing causal dependencies. For the timing specifications of this sequence, refer to Section 12.7.2 "Hardware Reset Timing" on page 231.

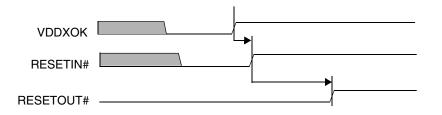


Figure 9-2. Hardware Reset Sequence

9.2.2 Runtime Reset

During runtime (after power is stable) the reset sequence can be broken down as follows:

- 1) During a runtime reset it is assumed that V_{DDX} and V_{DDI} remain at their nominal voltage. In addition, VDDXOK must remain asserted; otherwise, a hardware reset will occur. PWR_EN remains asserted by the Au1500 processor.
- 1) RESETIN# is held asserted long enough to be recognized as a valid reset.
- 2) The processor acknowledges the reset by asserting RESETOUT#.
- 3) After RESETIN# is released, the processor signals the end of the reset by negating RESETOUT#.

Note that certain registers (specifically those in the system control block) are not affected by a runtime reset. Note also that ROMSEL and ROMSIZE should already be terminated in the design so the appropriate boot type occurs—these values should not change during runtime.

Figure 9-3 shows the runtime reset sequence, including arrows representing causal dependencies. For the timing specifications of this sequence, refer to Section 12.7.3 "Runtime Reset Timing" on page 232.

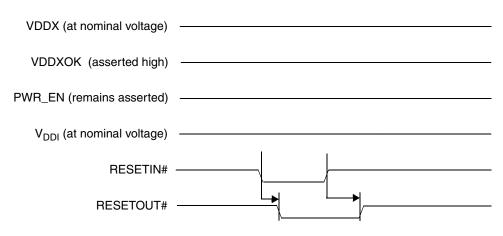


Figure 9-3. Runtime Reset Sequence

9.3 Boot

For both hardware and runtime resets, the CPU boots from KSEG1 address 0xBFC0 0000 which is translated to physical address 0x0 1FC0 0000; therefore, the system designer should place the start of the boot code at 0x0 1FC0 0000.

The ROMSEL and ROMSIZE signals determine the boot device type and width according to Table 9-1. The system designer should configure ROMSEL and ROMSIZE appropriately. Note that ROMSEL and ROMSIZE should not change during runtime.

ROMSEL	ROMSIZE	Boot Device Type and Width
0	0	Boot from 32-bit ROM interface.
0	1	Boot from 16-bit ROM interface.
1	0	Boot from 32-bit SMROM interface and Sync Flash boot.
1	1	Boot from PCI memory space.

Table 9-1. ROMSEL and ROMSIZE Boot Device

RCS0# is configured to be enabled for 0x0 1FC0 0000 at default when booting from a ROM device (ROMSEL = 0, ROM-SIZE = x). See Section 3.2 "Static Bus Controller" on page 53, for more information about the default timing and size of the address enabled at reset.

SDCS0# is configured to be enabled for 0x0 1FC0 0000 at default when booting from a SMROM device (ROMSEL = 1, ROMSIZE = 0). See Section 3.1 "SDRAM Memory Controller" on page 44, for more information about the default timing and size of the address enabled at reset.

9.3.1 Endianness and 16-Bit Static Bus Boot

When booting from a 16-bit chip select on the static bus, the system designer must be sure the data format (endianness) is consistent across the Au1 core, the static bus controller, and the software image itself. This section describes how to make endianness consistent for both little- and big-endian systems.

For more on how the endian mode affects the behavior of 16-bit static bus chip selects, see "Halfword Ordering and 16-bit Chip Selects" on page 70.

Note: When programming ROM or Flash devices with a part programmer, take care to ensure that the programmer is not swapping bytes or halfwords erroneously. The configuration of the part programmer is often a source of error when initially bringing-up a new design.

9.3.2 16-Bit Boot for Little-Endian System

Booting from 16-bit ROM or Flash in a system that is intended to run the Au1 core in little-endian mode is very straightforward. Generally speaking, the boot code and/or the application is compiled for little-endian. Because the the Au1 core defaults to big-endian mode, the boot code must change the Au1 core endianness to little-endian *before* any data accesses (to the 16-bit chip-select). The resulting boot code and/or application image is placed in the ROM/Flash memory in the littleendian format.

Even though the Au1 core starts in big-endian mode, the static bus controller properly retrieves instructions needed to boot the system since the application image is in little-endian format and the static bus controller defaults to little-endian ordering out of reset.

9.3.3 16-Bit Boot for Big-Endian System

Booting from 16-bit ROM or Flash in a system that is intended to run the Au1 core in big-endian mode is very straightforard, but does need one extra, important step.

Generally speaking, the boot code and/or the application is compiled for big-endian. The boot code must set the **mem_stcfg**[BE] bit before it can properly fetch/reference the big-endian image. The resulting boot code and/or application image is placed in the ROM/Flash memory in the big-endian format.

In this situation, there is the dilema that, out of reset, the Static Bus controller defaults to little-endian ordering, but the application image itself is in big-endian format. The solution is to place the following code at the reset exception vector (KSEG1 address 0xBFC 00000, physical adddress 0x0 1FC0 0000):

.long	0xb4003c08	#	lui	t0,0xb400
.long	0x10003508	#	ori	t0,t0,0x1000
.long	0x00008d09	#	lw	t1,0(t0)
.long	0x02003529	#	ori	t1,t1,0x200
.long	0x0000ad09	#	SW	t1,0(t0)
.long	$0 \times 0 0 0 0 0 0 0 0 0$	#	nop	
.long	$0 \times 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	#	nop	
.long	$0 \times 0 0 0 0 0 0 0 0 0$	#	nop	
.long	$0 \times 0 0 0 0 0 0 0 0 0$	#	nop	

The code does a read-modify-write of register **mem_stcfg0** to set the BE bit. The values in the .long statements above are the halfword-swapped opcodes of the instructions in the comments to the right. With this technique, these first few instructions are actually in the little-endian format to match the static bus controller out of reset, and set **mem_stcfg**[BE] which in turns allows the remainder of the big-endian memory contents to be accessed properly. The NOPs are necessary to ensure that the Au1 core pipeline does not contain incorrectly [halfword swapped] prefetched instructions. Note too that the NOP opcode 0x00000000 is the same instruction regardless of endian ordering.

Note: The boot code should set **mem_stcfg0**[BE] as early as possible, preferrably as the first activity. It is especially important to ensure that no cachable accesses take place to the 16-bit device, else the cache will contain the half-word swapped contents of the 16-bit memory.

9.3.4 System Boot

For system debug, the processor can be configured to boot from the EJTAG probe through the EJTAG port; see Section 10.0 "EJTAG Implementation" on page 184 for more information.

EJTAG Implementation

The Au1500 processor implements EJTAG following the MIPS' EJTAG 2.5 Specification. This section presents the EJTAG implementation on the Au1500 processor while concentrating on those features from the EJTAG 2.5 specification which are implementation specific. In addition, those features which have not been implemented or any differences in the Au1500 processor implementation of EJTAG from the rev 2.5 specification are also noted.

It is assumed that the EJTAG 2.5 specification will be referenced for implementation details not covered here. If a particular bit is not implemented it can be assumed that the functionality associated with the bit is not implemented or not applicable unless otherwise noted.

The following features comprise the EJTAG implementation on the Au1500 processor:

- Extended instructions SDBBP and DERET
- · Debug exceptions
- Extended CP0 registers DEBUG, DEPC and DESAVE
- EJTAG memory range 0xFF200000-0xFF3FFFFF
- Instruction/data breakpoints through the watch exception (specific to Au1500)
- Processor bus breakpoints (from EJTAG 2.0)
- Memory overlay (from EJTAG 2.0)
- EJTAG tap per IEEE1149.1

Note that the optional data and instruction breakpoint features from the EJTAG 2.5 specification are not implemented.

10.1 EJTAG Instructions

Both SDBBP and DERET are supported by the Au1500 processor:

- SDBBP causes a Debug Breakpoint exception.
- DERET is used to return from a Debug Exception.

10.2 Debug Exceptions

The following exceptions will cause entry into debug mode.

- DSS debug single step
- · DINT debug interrupt, processor bus break
- DBp execution of SDBBP instruction
- DWATCH debug watch exception. Au1500 processor-specific implementation allowing CPU watch exception to cause debug exception. See description of the Section 10.4.2.6 "EJWatch Register (TAP Instruction EJWATCH)" on page 198 register.

Note that other normal exceptions, when taken in debug mode, will be handled by the debug exception handler.

10.3 Coprocessor 0 Registers

The Coprocessor 0 Registers for EJTAG are shown in Table 10-1.

Register Number	Select	Name	Description
23	0	debug	Debug indications and controls for the processor
24	0	depc	Program Counter at last debug exception or exception in debug mode
31	0	desave	Debug exception save register

Table 10-1. Coprocessor 0 Registers for EJTAG

10.3.1 Debug Register (CP0 Register 23, Select 0)

The Debug register contains the cause of the most recent debug exception and exception in Debug Mode. It also controls single stepping. Only the DM bit and the EJTAGver field are valid when read from the Debug register in Non-Debug Mode; the value of all other bits and fields is UNPREDICTABLE.

The following bits and fields are updated only on debug exceptions and/or exceptions in Debug Mode:

- DSS, DBp, DINT are updated on both debug exceptions and on exceptions in Debug Modes.
- DExcCode is updated on normal exceptions in Debug Mode, and is undefined after a debug exception.
- DBD is updated on both debug and on normal exceptions in Debug Modes.

debug CP0 Register 23, Select 0														
Bit 31 30 29 28 27	26 25 24 23 22 21 20 19 18	17 16 15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0											
DD DM ND LS	CD	VER DEXCOSE NS SS	DI DB DS											
Def. x 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 1 x x x x x 0 0	0 0 x 0 0 0 x x											

Bits	Name	Description	R/W	Default
31	DD	DBD. Indicates whether the last debug exception or exception in Debug Mode occurred in a branch or jump delay slot.	R	UNPRED
		0 Not in delay slot		
		1 In delay slot		
30	DM	Indicates that the processor is operating in Debug Mode.	R	0
		0 Processor is operating in Non-Debug Mode		
		1 Processor is operating in Debug Mode		
29	ND	NoDCR.	R	0
		0 DSEG is present.		
28	LS	LSNM. Controls access of loads/stores between dseg and remaining memory when dseg is present and while in debug mode.	R/W	0
		0 Loads/stores in dseg address range go to dseg		
		1 Loads/stores in dseg address range go to system memory		
27	—	Reserved, should be cleared. This bit is called Doze in the EJTAG 2.5 specification and was not implemented.	R	0
26	—	Reserved, should be cleared. This bit is called Halt in the EJTAG 2.5 spec- ification and was not implemented.	R	0
25	CD	CountDM. This bit is 0, indicating that the counter will be stopped in debug mode.	R	0
24	—	Reserved, should be cleared. <i>This bit is called IBusEP in the EJTAG 2.5 specification and was not implemented.</i>	R	0
23	-	Reserved, should be cleared. This bit is called MCheckP in the EJTAG 2.5 specification and was not implemented.	R	0
22	—	Reserved, should be cleared. This bit is called CacheEP in the EJTAG 2.5 specification and was not implemented.	R	0

Bits	Name	Description	R/W	Default
21	-	Reserved, should be cleared. <i>This bit is called DBusEP in the EJTAG 2.5 specification and was not implemented.</i>	R	0
20	-	Reserved, should be cleared. This bit is called IEXI in the EJTAG 2.5 specification and was not implemented.	R	0
19	—	Reserved, should be cleared. <i>This bit is called DDBSImpr in the EJTAG</i> 2.5 specification and was not implemented.	R	0
18	—	Reserved, should be cleared. <i>This bit is called DDBLImpr in the EJTAG</i> 2.5 specification and was not implemented.	R	0
17:15	VER	EJTAGver. 1 EJTAG Version 2.5	R	1
14:10	DEXCODE	DExcCode. Indicates the cause of the latest exception in Debug Mode. The field is encoded as the ExcCode field in the Cause register for those exceptions that can occur in Debug Mode (the encoding is shown in the MIPS32 specification), with addition of code 30 with the mnemonic CacheErr for cache errors. This value is undefined after a debug exception.	R	UNPRED
9	NS	NoSSt. 0 Single step is implemented.	R	0
8	SS	SSt. Controls whether single-step feature is enabled: 0 No enable of single-step feature 1 Single-step feature enabled	R/W	0
7:6	_	Reserved, should be cleared.	R	0
5	DI	DINT. Indicates that a Debug Interrupt exception occurred. This could be either a Processor Bus Break (indicated by BS0 in the Processor Bus Break Status Register) or EJTAG break. The BS0 bit should be checked to see what caused the exception.Cleared on exception in Debug Mode.	R	UNPRED
		0 No Debug Interrupt exception1 Debug Interrupt exception		
4	-	Reserved, should be cleared. This bit is called DIB in the EJTAG 2.5 spec- ification and was not implemented.	R	0
3	-	Reserved, should be cleared. This bit is called DDBS in the EJTAG 2.5 specification and was not implemented.	R	0
2	-	Reserved, should be cleared. This bit is called DDBL in the EJTAG 2.5 specification and was not implemented.	R	0
1	DB	 DBp. Indicates that a Debug Breakpoint exception occurred. Cleared on exception in Debug Mode. 0 No Debug Breakpoint exception 1 Debug Breakpoint exception 	R	UNPRED
0	DS	DSS. Indicates that a Debug Single Step exception occurred. Cleared on exception in Debug Mode. 0 No debug single-step exception 1 Debug single-step exception	R	UNPRED

10.3.2 Debug Exception Program Counter Register

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which processing resumes after the exception has been serviced.

Hardware updates this register on debug exceptions and exceptions in Debug Mode.

For precise debug exceptions and precise exceptions in Debug Mode, the DEPC register contains either:

- The virtual address of the instruction that was the direct cause of the exception; or
- the virtual address of the immediately preceding branch or jump instruction, when the exception-causing instruction is in a branch delay slot, and the Debug Branch Delay (BDB) bit in the Debug register is set.

For imprecise debug exceptions and imprecise exceptions in Debug Mode, the DEPC register contains the address at which execution is resumed when returning to Non-Debug Mode.

dep	depc - Debug Exception Program Counter CP0 Register 24, Select															ct 0																
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[D	EPC	;[31:	0]														
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31:0	DEPC	Debug Exception Program Counter	R/W	UNPRED

10.3.3 Debug Exception Save Register

The Debug Exception Save (DESAVE) register is a read/write register that functions as a simple scratchpad register.

The debug exception handler uses this to save one of the GPRs, which is then used to save the rest of the context to a predetermined memory area, for example, in the dmseg. This register allows the safe debugging of exception handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

CP0 Register 31, Select 0 Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DESAVE[31:0] х х Def. x х

Bits	Name	Description	R/W	Default
31:0	DESAVE	Debug Exception Save contents	R/W	UNPRED

10.4 EJTAG Memory Range

In debug mode accesses to virtual 0xFF200000-0xFF3FFFFF bypass translation.

The debug memory is split into two logical divisions:

- dmseg: 0xFF20 0000-0xFF2F FFFF
- drseg: 0xFF30 0000-0xFF3F FFFF

Note that the physical address addr[35:32] of this range is zero.

dmseg is the memory range that will be serviced by the probe TAP in debug mode for all instruction accesses to this virtual address range and for data accesses if the LSNM in the Debug Register is 0.

drseg is the memory range containing the EJTAG memory mapped registers and is accessible when LSNM in the Debug Register is 0.

10.4.1 EJTAG Memory Mapped Registers

Table 10-2 shows the EJTAG memory mapped registers located in drseg.

Offset	Register	Description
0x0000	dcr	Debug Control Register
0x000C	pbs	Processor Break Status
0x0300	pab	Processor Address Bus Break
0x0304	pdb	Processor Data Break
0x0308	pdm	Processor Data Mask
0x030C	pbcam	Processor Control/Address Mask
0x0310	phab	Processor High Address Break
0x0314	pham	Processor High Address Mask

Table 10-2. EJTAG Memory Mapped Registers at 0xFF300000

The EJTAG implementation in the Au1500 processor does not employ data breakpoints and instruction breakpoints as described in the EJTAG 2.5 specification. Instead it offers Processor breakpoints as described in the EJTAG 2.0.0 specification.

The Processor Bus Match registers monitor the bus interface of the MIPS CPU and provide debug exception or trace trigger for a given physical address and data.

In addition, the implementation allows the CPU watchpoints to cause a debug exception. This functionality is enabled through the EJTAG TAP port. Please see Section 10.4.2.6 "EJWatch Register (TAP Instruction EJWATCH)" on page 198 for details.

10.4.1.1 Debug Control Register

The Debug Control Register (DCR) controls and provides information about debug issues. The width of the register is 32 bits. The DCR is located in the drseg at offset 0x0000.

dcr - De	dcr - Debug Control Register Offset = 0x0000															000															
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	_	EN												DB	IB												IE	NE	NP	SR	PE
Def. 0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0

Bits	Name	Description	R/W	Default
31:30	—	Reserved, should be cleared.	R	0
29	EN	ENM.	R	1
		1 Processor is big Endian in both debug and kernel mode.		
28:18	—	Reserved, should be cleared.	R	0
17	DB	DataBrk.	R	0
		0 No data hardware breakpoints implemented.		
16	IB	InstBrk.	R	0
		0 No instruction hardware breakpoints implemented.		
15:5	—	Reserved, should be cleared.	R	0
4	IE	IntE.	R	1
		1 Interrupt enabled in debug mode depending on other enabling mech- anisms.		
3	NE	NMIE.	R	1
		1 Non-Maskable Interrupt is enable for non-debug mode.		
		The NMI is not implemented in the Au1500 so this bit has no applicability.		
2	NP	NMIPend.	R	0
		0 No NMI pending.		
		The NMI is not implemented in the Au1500 so this bit has no applicability.		
1	SR	SRstE.	R	1
		1 Soft reset is fully enabled.		
		Soft Reset is not implemented in the Au1500 so this bit has no applicabil-		
		ity.		
0	PE	ProbEn. Indicates value of the ProbEn value in the ECR register.	R	Same value
		0 No access should occur to dmseg		as ProbEN in ECR
		1 Probe services accesses to dmseg		

10.4.1.2 Processor Bus Break Status Register

pbs - P	roce	sso	r Bu	s Br	eak	Sta	tus																				(Offs	et =	0x0	00C
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	OLP				BC	CN																									BS
Def. 0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits	Name	Description	R/W	Default
31	—	Reserved, should be cleared.	R	0
30	OLP	1 Memory overlay functionality is implemented for processor breaks.	R	1
29:28	—	Reserved, should be cleared.	R	0
27:24	BCN	Number of Processor Breaks.	R	1
		1 One Channel has been implemented for the Processor Bus Break.		
23:15	—	Reserved, should be cleared.	R	0
14:1	-	Reserved, should be cleared. These bits are the Bsn bits in the EJTAG 2.0.0 specification and are not needed since only one break is implemented.	R	0
0	BS	Break Status. This bit, when set, indicates that a processor bus break or processor bus trigger has occurred. BS can be cleared by activating PrRst (EJTAG CONTROL Register), hard reset and also by writing a '0' to it.	R/W	0
		The Debug handler must clear this bit before returning from debug mode.		

10.4.1.3 Processor Address Bus Break

This register contains the bits of the physical Processor Address Bus Break.

pab	- Pr	oce	sso	r Ad	dres	ss B	us E	Brea	k																				Offs	set =	0x0	300
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																PAB[31:0]														
Def.	х	х	Х	х	Х	х	х	х	х	Х	х	х	х	х	х	х	Х	х	Х	х	х	х	х	Х	Х	х	х	Х	х	х	Х	х

Bit	ts	Name	Description	R/W	Default
31:	:0	PAB	Processor Address Bus Break 0. This index contains the lower 32 bits of the physical address. In combination with the high order address bits, these bits make up the break address.	R	UNPRED

10.4.1.4 Processor Data Bus Break

This register specifies the data value for the Processor Data Bus match.

pdb - Processor Data Bus Break

			Offs	set =	0x0	0304	
3	5	4	3	2	1	0	

Bi	t 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															F	DB[31:0]														
Det	. х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	PDB	Processor Data Bus Break 0. This index contains the 32 bits of the data bus match.	R	UNPRED

10.4.1.5 Processor Data Mask/Upper Overlay Address Mask

This register is dual purpose depending on the value of the Overlay Enable bit in the Bus Break Control and Address Mask.

This register specifies the mask value for the Processor Data Mask register. Each bit corresponds to a bit in the data register.

pdm_	_uo	am	- Pr	oces	ssor	Dat	ta M	ask																					Offs	set =	0x0	308
Bit 3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г															F	PDM	[31:0	D]														
Def.	х	Х	Х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	Х	х	х	х	Х	х	х	х

Bits	Name	Description	R/W	Default
31:0	PDM	Applies only when OE not enabled. Processor Data Mask 0. When OE in the pbcam register is not enabled.	R	UNPRED
		0 Data bit is not masked, data bit is compared.		
		1 Data bit is masked, data bit is not compared.		
31:24	UOAM	Applies only when OE is enabled. Upper Overlay Address Mask. These bits represent bits 31:24 of the address mask and are combined with the LAM and HAM fields to create a complete 36 bit address mask.	R/W	UNPRED
		0 Address bit is not masked, address bit is compared.		
		1 Address bit is masked, address bit is not compared.		
		Note that bits [23:0] are not used when OE is set and should be written 0.		

10.4.1.6 Processor Bus Break Control and Address Mask

This register selects the Processor Bus match function to enable debug break or trace trigger. It also includes control bits to enable comparison as well as mask bits to exclude address bits from comparison.

Note that all processor break exceptions are imprecise.

pbcam - Bus Break Control and Address Mask

Offset = 0x030C Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DC DU DU OE BE x x x x x x 0 0 0 LAM[31:8] Def. x x x хххх x x x x x x x x x x x х хх

Bits	Name	Description	R/W	Default
31:8	LAM	Address Mask. These bits specify the mask value for the 24 lower bits of the Processor Address register (PBA0[230]). Each bit corresponds to the same bit in PBA0.	R/W	UNPRED
		0 Address bit is not masked, address bit is compared.		
		1 Address bit is masked, address bit is not compared.		
7	DC	Data Store to Cached Area. This bit enables the comparison on Processor Address and Data Bus for Data Store to the Cached area.	R/W	UNPRED
		0 Processor Address and Data is not compared for storing data to the Cached area.		
		1 Processor Address and Data is compared for storing data to the Cached area.		
6	DU	Data Store To Uncached Area. This bit enables the comparison on Pro- cessor Address and Data Bus for Data Store to the uncached area.	R/W	UNPRED
		0 Processor Address and Data is not compared for storing data into the un-cached area.		
		1 Processor Address and Data is compared for storing data into the un- cached area.		

30361D

Bits	Name	Description	R/W	Default
5:4	DIU	Data or Instruction fetch or load from Uncached Area. These bits enable the comparison on Processor Address and Data Bus for Data or Instruc- tion load and fetch from the un-cached area.	R	UNPRED
		00 Processor Address and Data is not compared for loading data or fetching instruction from the un-cached area.		
		11 Processor Address and Data is compared for loading data or fetching instruction from the un-cached area.		
		Bits 5 and 4 were named ILUC and DFUC in the EJTAG 2.0.0 specification and were implemented separately for instruction and data fetches.		
3	OE	Overlay Enable. When this bit is 1 and the processor physical address, masked by the HAM, UOAM and the LAM fields (all 36 bits of the address mask), matches the PHAB and PAB registers, then the memory request is redirected to the EJTAG Probe.	R/W	0
		The processor bus break can not be used for normal break, function if the OLE bit is set, so BE must be set to 0. The behavior is otherwise unde- fined.		
		Overlay is only valid for memory regions. It is not valid for I/O or debug space and the behavior is unpredictable if addresses within this space are used.		
2	-	Reserved, should be cleared. This bit is called TE in the EJTAG 2.0.0 specification and was not implemented.	R	0
1	-	Reserved, should be cleared. This bit is called CBE in the EJTAG 2.0.0 specification and was not implemented.	R	0
0	BE	 Break Enable. This bit enables the Processor Bus break function. 0 Processor Bus break function is disabled. 1 Processor Bus break function is enabled. 	R/W	0
		If Break Enable is set and the processor physical address, masked by the HAM and the LAM fields (UOAM is only for overlay so bits 31:24 are not masked here), matches the PHAB and PAB registers, and the processor data bus matches the PDB register (masked by PDM), then a debug exception to the processor is generated.		
		The BS bit in the Processor Bus Break Status register is set and the DINT bit in the Debug Register is set. If the debug exception handler is already running (DM='1'), then the debug exception will not be taken until DM = 0.		
		This functionality is mutually exclusive to OLE so only one of OLE or BE should be set at any time.		

10.4.1.7 Processor High Address Bus Break

This register specifies the high order address for the processor address bus break.

pha	pha - Processor High Address Bus Break Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1															0x0	310															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																														HA[3:0]	
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:4	—	Reserved, should be cleared.	R	0
3:0	HA	These bits map to the high physical address bits 35:31.	R/W	UNPRED

10.4.1.8 Processor High Address Mask

This register specifies the high order address mask for the processor address bus break.

pham - Processor High Address Mask Offse Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3															set =	0x0	314															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																													ł	HAM	[3:0]
Def.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:4	—	Reserved, should be cleared.	R	0
3:0	НАМ	High Address Mask for address bits [35:31].	R/W	UNPRED
		0 Data bit is not masked, data bit is compared		
		1 Data bit is masked, data bit is not compared		

10.4.2 EJTAG Test Access Port (TAP)

The EJTAG TAP contains the 5 TAP pins and a 16 state controller with a 5 bit instruction register.

Table 10-3 shows the 5-bit instructions supported by the Au1500.

Hex Value	Instruction	Function
0x00	EXTEST	Boundary Scan
0x01	IDCODE	Selects ID Register
0x02	SAMPLE	Boundary Scan Sample/Preload (IEEE JTAG Instruction)
0x03	IMPCODE	Selects Implementation Register
0x04	—	Reserved
0x05	—	This reserved register is for test mode HIZ - TRI-STATE all output pins and Select Bypass register.
0x06	—	This reserved register is for test mode CLAMP - IEEE Clamp pins and select bypass register.
0x07	—	Reserved
0x08	ADDRESS	Selects Address Register.
0x09	DATA	Selects Data Register.
0x0A	CONTROL	Selects EJTAG Control Register.
0x0B	ALL	Selects the Address, Data and EJTAG Control registers.
0x0C	EJTAGBOOT	Makes the processor take a debug exception after reset.
0x0D	NORMALBOOT	Makes the processor execute the reset handler after reset.
0x0E-0x1B	—	Reserved
0x1C	EJWATCH	Selects Watch register
0x1D-0x1E	—	Reserved
0x1F	BYPASS	Bypass mode

Table 10-3. EJTAG Instruction Register Values

10.4.2.1 Device Identification (ID) Register

The Device ID register is a 32-bit read-only register that identifies the specific device implementing EJTAG.

IDCODE	E - D	evic	e Id	enti	ficat	tion																			Т	ΆP	Inst	ruct	ion	DCC	DDE
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	V	ER									ΡN	UM												N	IANI	D					
Def. 0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0	1	0	0	0	0	0	1	0	1	0	0	0	1	1	1	1

Bits	Name	Description	R/W	Default
31:28	VER	Identifies the version of the device.	R	0
27:12	PNUM	Identifies the part number of the device.	R	0x03E8
11:1	MANID	Identifies the manufacturer ID code for the device. MANID[6:0] are derived from the last byte of the JEDEC code with the parity bit discarded. MANID[10:7] provides a binary count of the number of bytes in the JEDEC code that contain the continuation character (0x7F). When the number of continuations characters exceeds 15, these four bits contain the modulo-16 count.	R	0x147
0	—	This bit is reserved and should be written a 1.	R	1

TAB Instruction IMPCODE

10.4.2.2 Implementation Register

The Implementation register is a 32-bit read-only register that identifies features implemented in this EJTAG compliant processor, mainly those accessible from the TAP.

IMPCODE - Implementation

INFC	, OL	JE -	mp	lenne	enta	tion																				IA	F 111	suu	Clio		FUU	JDE
Bit 3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				DO						•	0					1440		NID														1120
		VER		R3				DI		A	5					M16		ND														M32

Bits	Name	Description	R/W	Default
31:29	EJTAGver	1 EJTAG version 2.5	R	1
28	R3	0 R3k privileged environment	R	0
27:25	—	Reserved, should be cleared.	R	0
24	DI	0 DINT signal from the probe is not supported.	R	0
23	—	Reserved, should be cleared.	R	0
22:21	AS	10 8-bit ASID	R	10
20:17	—	Reserved, should be cleared.	R	0
16	M16	0 No MIPS16 support	R	0
15	—	Reserved, should be cleared.	R	0
14	ND	1 No EJTAG DMA support	R	1
13:1	—	Reserved, should be cleared.	R	0
0	MIPS32/64	0 32-bit processor	R	0

10.4.2.3 Data Register

The read/write Data register is used for opcode and data transfers during processor accesses. The width of the Data register is 32 bits.

The value read in the Data register is valid only if a processor access for a write is pending, in which case the data register holds the store value. The value written to the Data register is only used if a processor access for a pending read is finished afterwards, in which case the data value written is the value for the fetch or load. This behavior implies that the Data register is not a memory location where a previously written value can be read afterwards.

DATA																								T/	AP li	nstr	uctio	on D	ATA	or	ALL
Bit 3	1 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г														C	ATA	[31:0)]														
Def. X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х

Bits	Name	Description	R/W	Default
31:0	DATA	Data used by processor access	R/W	UNPRED

10.4.2.4 **Address Register**

The read-only Address register provides the address for a processor access. The width of the register is 36 bits.

The value read in the register is valid if a processor access is pending, otherwise the value is undefined. The two LSBs of the register are used with the Psz field from the EJTAG Control register to indicate the size and data position of the pending processor access transfer. These bits are not taken directly from the address referenced by the load/store (i.e. these bits are encoded with Psz).

ADDRESS

AD	DRE	SS																									ТА	P Ir	str	ucti	on /	AD	DRE	SS	or A	۱LL
Bit	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
																ŀ	٩DD	RE	SS[36:0)]															
Def	fΧ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ

Bits	Name	Description	R/W	Default
35:0	Address	Address used by processor access	R	UNPRED

10.4.2.5 EJTAG Control Register (ECR)

The 32-bit EJTAG Control Register (ECR) handles processor reset, Debug Mode indication, access start, finish, and size and read/write indication. The ECR also:

- · Controls debug vector location and indication of serviced processor accesses.
- · Allows debug interrupt request.
- Indicates processor low-power mode.

The EJTAG Control register is not updated/written in the Update-DR state unless the Reset occurred; that is RO (bit 31) is either already 0 or is written to 0 at the same time. This condition ensures proper handling of processor accesses after a reset.

Bits that are R/W in the register return their written value on a subsequent read, unless other behavior is defined. Internal synchronization hardware thus ensures that a written value is updated for reading immediately afterwards, even when the TAP controller takes the shortest path from the Update-DR to Capture-DR state.

Note: To ensure a write is successful to the PE, PT and EB bits when the processor is undergoing a clock change (for PLL lock/relock), the host must continue writing these bits until the write is verified by reading the change. Failure to do this could result in the write of these bits being lost.

Reset of the processor can be indicated in the TCK domain a number of TCK cycles after it is removed in the processor clock domain in order to allow for proper synchronization between the two clock domains.

ECR - EJTAG	Control Register			TAP Instruction CONTROL or ALL
Bit 31 30 29	28 27 26 25 24 23	3 22 21 20 19 18	8 17 16 15 14 13 12 11 10 9	8 7 6 5 4 3 2 1 0
RO PSZ		DZ PRW PA	A PR PE PT EB	DM
Def 1 x x	0 0 0 0 0 0	0 0 0 x 0		0 0 0 0 0 0 0 0

Bits	Name	Description	R/W	Default
31	RO	Indicates if a processor reset has occurred since the bit was cleared:	R/W0	1
		0 No reset occurred		
		1 Reset occurred		
		The RO bit stays set as long as reset is applied.		
		This bit must be cleared to acknowledge that the reset was detected. The EJTAG Control register is not updated in the Update-DR state unless RO is 0 or written to 0 at the same time. This is in order to ensure correct handling of the processor access after reset.		

Bits	Name	Description	R/W	Default
30:29	PSZ	Indicates the size of a pending processor access, in combination with the Address register. 00 Byte	R	UNPRED
		01 Halfword		
		10 Word		
		11 Triple This field is valid only when a processor access is pending; otherwise, the read value is undefined.		
28:23	—	Reserved, should be cleared.	R	0
22	DZ	Doze. Indicates if the processor is in a WAIT state:	R	0
		0 Processor is not in a wait state.		
		1 Processor is in a wait state.		
21	_	Reserved, should be cleared. This bit is called Halt in the EJTAG 2.0.0 specification and was not implemented.	R	0
20	_	Reserved, should be cleared. This bit is called PerRst in the EJTAG 2.0.0 specification and was not implemented.	R	0
19	PRW	Indicates read or write of a pending processor access.	R	UNPRED
		0 Read processor access, for a fetch/load access		
		1 Write processor access, for a store access		
		This value is defined only when a processor access is pending.		
18	PA	Indicates a pending processor access and controls finishing of a pending processor access. When read:	R/W0	0
		0 No pending processor access		
		1 Pending processor access		
		A write of 0 finishes a processor access if pending; otherwise operation of the processor is UNDEFINED if the bit is written to 0 when no processor access is pending. A write of 1 is ignored.		
17	_	Reserved, should be cleared.	R	0
16	PR	Controls the processor reset.	R/W	0
		0 No processor reset applied		
		1 Processor reset applied		
		Setting this bit to 1 will apply a processor reset. When this bit is read back it will always read a 0. Note that startup latencies should be observed when applying reset.		
15	PE	Controls indication to the processor of whether the probe expects to han- dle accesses to EJTAG memory through servicing of processor accesses.	R/W	Determined by EJTAG-
		0 Probe does not service processor accesses		BOOT
		1 Probe will service processor accesses		
		The ProbEn bit is reflected as a read-only bit in the Debug Control Register (DCR) bit 0.		
		When a read from this bit shows a change, the new value has taken effect in the DCR. This handshake mechanism ensures that the setting from the TCK clock domain takes effect in the processor clock domain.		
		However, a change of the ProbEn prior to setting the EjtagBrk bit is ensured to affect execution of the debug handler due to the debug exception.		
		Not all combinations of ProbEn and ProbTrap are allowed.		
		Please see the previous note about writing this bit (in Section 10.4.2.5 "EJTAG Control Register (ECR)" on page 196).		

Bits	Name	Description	R/W	Default
14	PT	 Controls location of the debug exception vector: Normal memory 0xBFC0 0480 EJTAG memory 0xFF20 0200 When a read from this bit shows a change, the new value has taken effect in the DCR. This handshake mechanism ensures that the setting from the TCK clock domain takes effect in the processor clock domain. However, a change of the ProbTrap prior to setting the EjtagBrk bit is ensured to affect execution of the debug handler due to the debug exception. Not all combinations of ProbEn and ProbTrap are allowed. Please see the previous note about writing this bit (in Section 10.4.2.5 "EJTAG Control Register (ECR)" on page 196). 	R/W	Determined by EJTAG- BOOT
13	_	Reserved, should be cleared.	R	0
12	EB	 Requests a debug interrupt exception to the processor when this bit is written as 1. This bit is cleared by hardware when the processor enters debug mode. If software then sets EB while the processor is already in debug, the request is not ignored but is delayed. That is, once the processor returns to normal mode, the pending debug exception request immediately sends the processor back into debug. A write of 0 is ignored. The debug request restarts the processor clock if the processor was in a wait mode, which stopped the processor clock. The read value indicates a pending Debug Interrupt exception requested through this bit: 0 No pending Debug Interrupt exception The read value can, but is not required to, indicate other pending DINT debug requests (for example, through the DINT signal). Please see the previous note about writing this bit (in Section 10.4.2.5 "EJTAG Control Register (ECR)" on page 196). 	R/W1	Determined by EJTAG- BOOT
11:4	_	Reserved, should be cleared	R	0
3	DM	Indicates if the processor is in Debug Mode.	R	0
		0 Processor is in Non-Debug Mode1 Processor is in Debug Mode		

10.4.2.6 EJWatch Register (TAP Instruction EJWATCH)

The EJWatch register is used to enable CPU watchpoints to cause a debug exception. This functionality is unique to the Au1500.

EJWATCH

EJWATCH						TAF	P Instrue	ction E	JWATCH
	Bit	7	6	5	4	3	2	1	0
									WATCH
	Def.	0	0	0	0	0	0	0	0

Bits	Name	Description		Default
7:3	—	Reserved, should be cleared.	R	0
2	—	Reserved, should be cleared. This bit is the Global Scan test bit.	R	0
1	—	Reserved, should be cleared. This bit is a Test Mode bit.	R	0

EJTAG Implementation

30361D

Bits	Name	Description	R/W	Default
0	WATCH	This bit controls the debug functionality of the CPU watch register.	R/W	0
		0 Normal Watch Exception Mode		
		1 Debug Watch Exception Mode		
		- Blocks writes to Watch register in non-debug mode		
		- Watch Exception will become debug exceptions with DEXCODE=23		
		- The PC will be saved in the DEPC (not in the EPC as with a normal watch exception).		
		Note that the Status, Cause, and EPC will not be affected by a debug watch exception when this bit is enabled.		

10.4.2.7 Bypass Register (TAP Instruction BYPASS)

The Bypass register is a one-bit read-only register, which provides a minimum shift path through the TAP. This register is also defined in IEEE 1149.1.

BYPASS	TAP Instruction BYPASS
Bit	0
	BP
Def.	0

Bits	Name	Description	R/W	Default
0	BP	Ignored on writes; returns zeros on reads.	R	0

10.4.3 EJTAG TAP Hardware Considerations

The EJTAG interface consists of the signals listed in Table 10-4.

Table	10-4.	EJTAG	Signals	

Signal	Input/Output	Definition
TRST#	I	Asynchronous TAP reset
TDI	Ι	Test data input to the instruction or selected data registers. This signal will be sampled on the rising edge of TCK
TDO	0	Test data output from the instruction or data register. This signal will transition on the falling edge (valid on rising edge) of TCK
TMS	I	Control signal for TAP controller. This signal is sampled on the wising edge of TCK.
ТСК	I	Control clock for updating TAP controller and shifting data through instruction or selected data register.

Note that the EJTAG TAP signal TCK must always be less than 1/4 the System Bus (SBUS) clock speed for proper operation. In addition, termination as shown in EJTAG 2.5 spec must be followed.

Signal Descriptions

This section describes the external signals on the Au1500 processor.

In order to maximize the functionality of the Au1500 processor, many of the pins have multiple uses. Note that if a pin is configured for one use, any other functionality associated with that pin can not be utilized at the same time. In other words a pin can not be used as a general-purpose I/O signal at the same time it is assigned to a peripheral device. (See Section 8.3.1 "Pin Functionality" on page 168.)

Figure 11-1 on page 201 shows the external signals of the Au1500 processor. All signals are grouped according to their functional block. Signals that share a pin are listed with the multiplexed signal name in parentheses—the signal name shown in **bold** is the default.

Note: A signal with an "#" is *active-low*; that is, the signal is considered asserted (active) when low and negated when high. *Active-high* signals (no #) are considered asserted when high and negated when low.

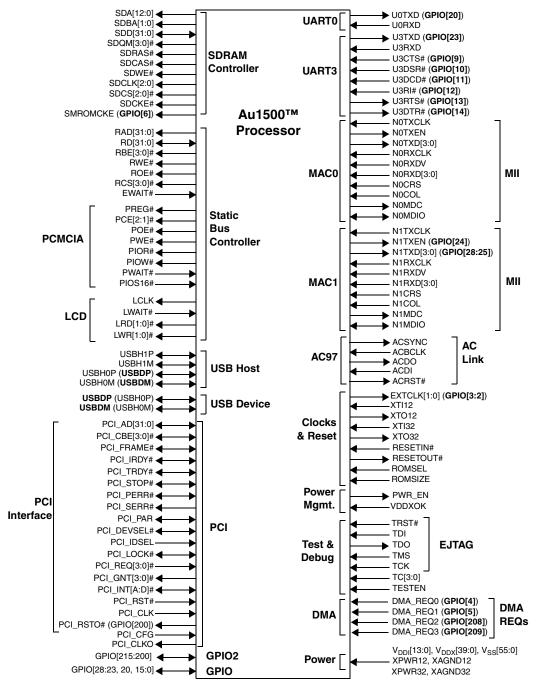


Figure 11-1. External Signals

Table 11-3 on page 203 gives a description of all external signals on the Au1500 processor. The signals have been grouped by functional block. Signals that require external termination are noted in the description. Table 11-3 also defines the default state of the signals during a hardware reset, a runtime reset, and Sleep. The abbreviations used for the signal types and the signal states are defined in Table 11-1 and Table 11-2.

Signal Type	Definition
I	Input. Note that all <i>unused</i> input pins should be terminated low or high via direct connection to either ground or power.
0	Output
I/O	Bidirectional
Z	Tristatable
Р	Power
G	Ground

Table 11-1. Signal Type Abbreviations for Table 11-3

Signal State	Definition
0	Driven low
1	Driven high
IN	Signal is a input.
LV	If driven, an output signal continues to be driven at the last value before a reset or entering Sleep.
HIZ	TRI-STATE mode
ON	Clock remains on <i>if already enabled</i> .
DEP	Depends (Signal-specific explanations are provided in table footnotes.)
UN	Unpredictable
NC	Not connected
NA	Does not apply because this signal is not the default function coming out of a hardware or runtime reset.

Note for Table 11-3 that the signal states shown in the far-right column are valid *during* Sleep. When waking from Sleep, the processor performs an internal system reset that produces the same signal behavior as a *runtime* reset with two exceptions:

- SDRAM interface behavior. During and after a runtime reset the SDRAM configuration *mode* registers retain their values to allow a transaction in progress to complete; the remaining SDRAM configuration registers revert to their default values. Waking from Sleep, however, *all* SDRAM configuration registers revert to their default values, and the interface behaves the same as when coming out of a *hardware* reset.
- PWR_EN behavior. During a runtime reset PWR_EN remains asserted. During Sleep, PWR_EN is negated. Waking from Sleep, PWR_EN is asserted according to the timing specified inSection 8.4.4.1 "Sleep Sequence and Timing" on page 174.

.

			Res	set	
Signal	Туре	Description	нw	Run Time	During Sleep
SDRAM Interface					
SDA[12:0]	0	Address Outputs: A0-A12 are sampled during the ACTIVE command (row-address A0-A12) and READ/ WRITE command to select one location out of the memory array in the respective bank. The address outputs also provide the opcode during a LOAD MODE REGISTER command.	UN	UN	LV
SDBA[1:0]	0	Bank Address Outputs: SDBA1 and SDBA0 define to which bank the ACTIVE, READ, WRITE, or PRECHARGE command is being applied.	UN	UN	LV
SDD[31:0]	I/O	SDRAM Data Bus. During a hardware reset the SDRAM data bus cycles from low voltage to hi-Z and then low as follows: 0 after VDDXOK is asserted.	(See descrip- tion at left.)	HIZ	LV
		In TRI-STATE when V _{DDI} is on and RESETOUT# is asserted. 0 after hardware reset sequence is complete.	,		
SDQM[3:0]#	0	Input/Output Mask: SDQM# is an input mask signal for write accesses and an output enable signal for read accesses.	1	1	LV
		SDQM0# masks SDD[7:0]. SDQM1# masks SDD[15:8]. SDQM2# masks SDD[23:16]. SDQM3# masks SDD[31:24].			
SDRAS#	0	Command Outputs. SDRAS#, SDCAS#, and SDWE#	1	1	LV
SDCAS#	0	(along with SDCSn#) define the command being sent to the SDRAM rank.	1	1	LV
SDWE#	0		1	1	LV
SDCLK[2:0]	0	Clock output corresponding to each of the three chip	0	ON	LV
		selects. Clock speed is 1/2 System Bus (SBUS) fre- quency when corresponding SDCS <i>n</i> # is set to SDRAM, 1/4 SBUS frequency when corresponding SDCS <i>n</i> # is set to SMROM.			LV
SDCS[2:0]#	0	Programmable chip selects.	1	1	LV
SDCKE	0	Clock enable for SDRAM.	0	1	LV
SMROMCKE	0	Synchronous Mask ROM Clock Enable. Valid only when ROMSEL=1 and ROMSIZE=0. Must be pulled high if the system is booting from SMROM.	1	1	LV
		Muxed with GPIO[6]. If ROMSEL and ROMSIZE are configured to boot from synchronous mask ROM, the SMROMCKE signal is selected for the pin coming out of reset; otherwise, GPIO[6] is selected.			

			Re	eset	
Signal	Туре	Description	нw	Run Time	During Sleep
Static Bus (SRAM/		A/Flash/ROM/LCD) Interface - Common Signals		1	J
RAD[31:0]	0	Address Bus.	UN	UN	LV
RD[31:0]	I/O	Data Bus.	0	UN	LV
RBE[3:0]#	0	Byte Enable. RBE0# corresponds to RD[7:0], RBE1# corresponds to RD[15:8], RBE2# corresponds to RD[23:16], RBE3# corresponds to RD[31:24].	1	1	LV
RWE#	0	Write Enable.	1	1	LV
ROE#	0	Output Enable.	1	1	LV
RCS[3:0]#	0	Programmable Chip Selects. RCS <i>n</i> # is not used when configured as a PCMCIA device.	1	1	LV
EWAIT#	I	Can be used to stretch the bus access time when enabled. This input is not recognized for chip selects configured as LCD or PCMCIA because these buses have their own wait mechanisms.	IN	IN	LV
PCMCIA					
PREG#	0	Register-Only Access Signal.	1	1	LV
PCE[2:1]#	0	Card Enables.	1	1	LV
POE#	0	Output Enable.	1	1	LV
PWE#	0	Write Enable.	1	1	LV
PIOR#	0	Read Cycle Indication.	1	1	LV
PIOW#	0	Write Cycle Indication.	1	1	LV
PWAIT#	I	Extend Cycle. Note that this signal should be tied high through a resistor when the PCMCIA interface is not used.	IN	IN	LV
PIOS16#	I	16-bit Port Select. Note that this signal should be tied high through a resistor when the PCMCIA interface is not used.	IN	IN	LV
LCD Controller Ch	ip Interfac	e			
LCLK	0	Interface Clock.	0	0	LV
LWAIT#	I	Extend Cycle. Note that this signal should be tied high through a resistor when not used.	IN	IN	LV
LRD[1:0]#	0	Read Indicators.	1	1	LV
LWR[1:0]#	0	Write Indicators.	1	1	LV
PCI Bus and Confi	guration				
PCI_AD[31:0]	I/O	PCI Address/Data.	Z	Z	LV
PCI_CBE[3:0]#	I/O	PCI Bus Command and Byte Enables.	Z	Z	LV
PCI_FRAME#	I/O	PCI Cycle Frame.	Z	Z	LV
PCI_IRDY#	I/O	PCI Initiator Ready.	Z	Z	LV
PCI_TRDY#	I/O	PCI Target Ready.	Z	Z	LV
PCI_STOP#	I/O	PCI Target Stop.	Z	Z	LV
PCI_PERR#	I/O	PCI Parity Error.	Z	Z	LV

Table 11-3. Signal Description (Continued)

			Re	eset	During Sleep
Signal	Туре	Description	нพ	Run Time	
PCI_SERR#	0	PCI System Error.	Z	Z	LV
PCI_PAR	I/O	PCI Parity.	Z	Z	LV
PCI_DEVSEL#	I/O	PCI Device Select.	Z	Z	LV
PCI_IDSEL	I	PCI Initialization Device Select Input.	IN	IN	LV
PCI_LOCK#	I/O	PCI Lock for Atomic Operations.	Z	Z	LV
PCI_REQ[3:0]#	I	PCI Arbiter Bus Request Inputs.	IN	IN	LV
PCI_GNT[3:0]#	0	PCI Arbiter Bus Grant Outputs.	HIZ	1	LV
PCI_INT[A:D]#	I/O	PCI Interrupts.	IN	IN	LV
PCI_CLKO	0	PCI Clock Output.	0	ON	LV
		Note: Requires an external $22-\Omega$ series resistor placed within 0.5 inches of the part.			
PCI_CLK	I	PCI Input Clock. Note: Should be tied low through a resistor when the PCI bus is not used.	IN	IN	LV
PCI_RST#	I	PCI reset input Note: Should be tied low through a resistor when the PCI bus is not used.	IN	IN	LV
PCI_RSTO# (GPIO[200])	0	PCI Reset Output. Unlike other GPIOs, GPIO[200] defaults as an output with a zero voltage level coming out of reset. For this reason, GPIO[200] can be con- trolled by system software to act as a PCI reset out- put signal (labeled PCI_RSTO#) if needed. Note: Should be tied low through a pull-down	HIZ	0	LV
PCI_CFG	I	resistor. PCI configuration. Determines the mode (satellite or host) for the PCI interface at hardware reset. For satellite mode, tie PCI_CFG low. For host mode, tie PCI_CFG high. Note that PCI_CFG must not change state after sys- tem power up.	IN	IN	LV
USB Host					
USBH1P	I/O	 Positive signal of differential USB host port 1 driver. Requires an external 15 kohm pull-down resistor and ESD protection diode (transient voltage suppressor) to be USB 1.1 compliant. Note: Requires an external 27 ohm series resistor placed within 0.5 inches of the part. 	IN	IN	LV
USBH1M	I/O	Negative Signal of Differential USB Host Port 1 Driver. Requires an external 15 kohm pull-down resistor and ESD protection diode (transient voltage suppressor) to be USB 1.1 compliant. Note: Requires an external 27 ohm series resistor placed within 0.5 inches of the part.	IN	IN	LV

Table 11-3. Signal Description (Continued)

	Туре	Description	Reset			
Signal			нพ	Run Time	During Sleep	
USBH0P	I/O	 Positive Signal of Differential USB Host Port 0 Driver. Requires an external 15 kohm pull-down resistor and ESD protection diode (transient voltage suppressor) to be USB 1.1 compliant. Note: Requires an external 27ohm series resistor placed within 0.5 inches of the part. Muxed with USBDP. USBDP is the default signal coming out of hardware reset, runtime reset, and Sleep. 	NA	NA	LV	
USBH0M	I/O	Negative Signal of Differential USB Host Port 0 Driver. Requires an external 15 kohm pull-down resistor and ESD protection diode (transient voltage suppressor) to be USB 1.1 compliant. Note: Requires an external 27 ohm series resistor placed within 0.5 inches of the part.	NA	NA	LV	
		Muxed with USBDM. USBDM is the default signal coming out of hardware reset, runtime reset, and Sleep.				
USB Device						
USBDP	I/O	Positive Signal of Differential USB Device Driver. Requires a 1.5 kohm pull-up resistor to denote a full speed device. Also requires an external ESD protec- tion diode (transient voltage suppressor) to be USB 1.1 compliant.	IN	IN	LV	
		Note: Requires an external 27 ohm series resistor placed within 0.5 inches of the part.				
		Muxed with USBH0P. USBDP is the default signal coming out of hardware reset, runtime reset, and Sleep.				
USBDM	I/O	Negative Signal of Differential USB Device Driver. Requires an external ESD protection diode (transient voltage suppressor) to be USB 1.1 compliant.	IN	IN	LV	
		Note: Requires an external 27 ohm series resistor placed within 0.5 inches of the part.				
		Muxed with USBH0M. USBDM is the default signal coming out of hardware reset, runtime reset, and Sleep.				
UART0	·					
U0TXD	0	UART0 Transmit. Muxed with GPIO[20]. GPIO[20] is the default signal coming out of hardware reset, runt- ime reset, and Sleep.	NA	NA	LV	
U0RXD	I	UART0 Receive.	IN	IN	IN	

Table 11-3. Signal Description (Continued)

			Re	eset	
Signal	Туре	Description	нพ	Run Time	During Sleep
UART3	·				
U3TXD	0	UART3 Transmit. Muxed with GPIO[23]. GPIO[23] is the default signal coming out of hardware reset, runt- ime reset, and Sleep.	NA	NA	LV
U3RXD	I	UART3 Receive.	IN	IN	LV
U3CTS#	I	Clear to Send. Muxed with GPIO[9]. GPIO[9] is the default signal coming out of hardware reset, runtime reset, and Sleep. Note: For systems that use the UART3 interface without the optional modem control signals (sys_pinfunc[UR3]=0), the modem status interrupts must be disabled	NA	NA	LV
		(uart3_inten [MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.			
U3DSR#	I	Data Set Ready. Muxed with GPIO[10]. GPIO[10] is the default signal coming out of hardware reset, runt- ime reset, and Sleep.	NA	NA	LV
		Note: For systems that use the UART3 interface without the optional modem control signals (sys_pinfunc[UR3]=0), the modem status interrupts must be disabled (uart3_inten[MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.			
U3DCD#	I	Data Carrier Detect. Muxed with GPIO[11]. GPIO[11] is the default signal coming out of hardware reset, runtime reset, and Sleep.	NA	NA	LV
		Note: For systems that use the UART3 interface without the optional modem control signals (sys_pinfunc[UR3]=0), the modem status interrupts must be disabled (uart3_inten[MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.			
U3RI#	I	Ring Indication. Muxed with GPIO[12]. GPIO[12] is the default signal coming out of hardware reset, runt- ime reset, and Sleep.	NA	NA	LV
		Note: For systems that use the UART3 interface without the optional modem control signals (sys_pinfunc[UR3]=0), the modem status interrupts must be disabled (uart3_inten[MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.			
U3RTS#	0	Request to Send. Muxed with GPIO[13]. GPIO[13] is the default signal coming out of hardware reset, runt- ime reset, and Sleep.	NA	NA	LV

			Re	eset	
Signal	Туре	Description	нพ	Run Time	During Sleep
U3DTR#	0	Data Terminal Ready. Muxed with GPIO[14]. GPIO[14] is the default signal coming out of hard- ware reset, runtime reset, and Sleep.	NA	NA	LV
Ethernet Controll	er 0				
NOTXCLK	I	Continuous clock input for synchronization of trans- mit data. 25 MHz when operating at 100 Mbps and 2.5 MHz when operating at 10 Mbps.	IN	IN	LV
NOTXEN	0	Indicates that the data nibble on N0TXD[3:0] is valid.	0	UN	LV
NOTXD[3:0]	0	Nibble wide data bus synchronous to N0TXCLK. For each N0TXCLK period in which N0TXEN is asserted, TXD[3:0] will have the data to be accepted by the PHY. While N0TXEN is de-asserted the data pre- sented on TXD[3:0] should be ignored.	0	UN	LV
NORXCLK	I	Continuous clock that provides the timing reference for the data transfer from the PHY to the MAC. NORXCLK is sourced by the PHY. The NORXCLK shall have a frequency equal to 25% of the data rate of the received signal data stream (typically 25 MHz at 100 Mbps and 2.5 MHz at 10 Mbps).	IN	IN	LV
NORXDV	I	Indicates that a receive frame is in process and that the data on N0RXD[3:0] is valid.	IN	IN	LV
N0RXD[3:0]	I	RXD[3:0] is a nibble wide data bus driven by the PHY to the MAC synchronous with N0RXCLK. For each N0RXCLK period in which N0RXDV is asserted, RXD[3:0] will transfer four bits of recovered data from the PHY to the MAC. While N0RXDV is de-asserted, RXD[3:0] will have no effect on the MAC.	IN	IN	LV
NOCRS	I	N0CRS shall be asserted by the PHY when either transmit or receive medium is non Idle. N0CRS shall be deasserted by the PHY when both the transmit and receive medium are Idle. N0CRS is an asynchro- nous input.	IN	IN	LV
NOCOL	I	N0COL shall be asserted by the PHY upon detection of a collision on the medium, and shall remain asserted while the collision condition persists. N0COL is an asynchronous input. The N0COL signal is ignored by the MAC when operating in the full duplex mode.	IN	IN	LV
NOMDC	0	NOMDC is sourced by the MAC to the PHY as the timing reference for transfer of information on the NOMDIO signal. NOMDC is an aperiodic signal that has no maximum high or low times. The minimum high and low times for NOMDC will be 160 ns each, and the minimum period for NOMDC will be 400 ns.	0	UN	LV
NOMDIO	I/O	N0MDIO is the bidirectional data signal between the MAC and the PHY that is clocked by N0MDC.	HIZ	UN	LV

Table 11-3. Signal Description (Continued)

			Reset	eset	
Signal	Туре	Description	нw	Run Time	During Sleep
Ethernet Controlle	er 1	· · · · · · · · · · · · · · · · · · ·			
N1TXCLK	I	Continuous clock input for synchronization of trans- mit data. 25 MHz when operating at 100 Mbps and 2.5 MHz when operating at 10 Mbps.	IN	IN	LV
N1TXEN	0	Indicates that the data nibble on N1TXD[3:0] is valid. Muxed with GPIO[24]. GPIO[24] is the default signal coming out of hardware reset, runtime reset, and Sleep.	NA	NA	LV
N1TXD[3:0]	0	Nibble wide data bus synchronous to N1TXCLK. For each N1TXCLK period in which N1TXEN is asserted, TXD[3:0] will have the data to be accepted by the PHY. While N1TXEN is de-asserted the data pre- sented on TXD[3:0] should be ignored.	NA	NA	LV
		Muxed with GPIO[28:25]. GPIO[28:25] are the default signals coming out of hardware reset, runtime reset, and Sleep.			
N1RXCLK	I	Continuous clock that provides the timing reference for the data transfer from the PHY to the MAC. N1RXCLK is sourced by the PHY. The N1RXCLK shall have a frequency equal to 25% of the data rate of the received signal data stream (typically 25 MHz at 100 Mbps and 2.5 MHz at 10 Mbps).	IN	IN	LV
N1RXDV	I	Indicates that a receive frame is in process and that the data on N1RXD[3:0] is valid.	IN	IN	LV
N1RXD[3:0]	I	RXD[3:0] is a nibble wide data bus driven by the PHY to the MAC synchronous with N1RXCLK. For each N1RXCLK period in which N1RXDV is asserted, RXD[3:0] will transfer four bits of recovered data from the PHY to the MAC. While N1RXDV is de-asserted, RXD[3:0] will have no effect on the MAC.	IN	IN	LV
N1CRS	I	N1CRS shall be asserted by the PHY when either transmit or receive medium is non Idle. N1CRS shall be deasserted by the PHY when both the transmit and receive medium are Idle. N1CRS is an asynchro- nous input.	IN	IN	LV
N1COL	Ι	N1COL shall be asserted by the PHY upon detection of a collision on the medium, and shall remain asserted while the collision condition persists. N1COL is an asynchronous input. The N1COL signal is ignored by the MAC when operating in the full duplex mode.	IN	IN	LV
N1MDC	0	N1MDC is sourced by the MAC to the PHY as the timing reference for transfer of information on the N1MDIO signal. N1MDC is an aperiodic signal that has no maximum high or low times. The minimum high and low times for N1MDC will be 160 ns each, and the minimum period for N1MDC will be 400 ns.	0	UN	LV
N1MDIO	I/O	N1MDIO is the bidirectional data signal between the MAC and the PHY that is clocked by N1MDC.	0	UN	LV

Table 11-3. Signal Description (Continued)

			Reset	eset	
Signal	Туре	Description	нพ	Run Time	During Sleep
AC-Link					
ACSYNC	0	Fixed Rate Sample Sync.	0	0	LV
ACBCLK	I	Serial Data Clock.	IN	IN	LV
ACDO	0	TDM Output Stream.	0	0	LV
ACDI	I	TDM Input Stream.	IN	IN	LV
ACRST#	0	Codec Reset.	1	0	LV
EJTAG				-	
TRST#	I	Asynchronous TAP Reset.	IN	IN	LV
TDI	I	Test Data Input to the instruction or selected data registers. Sampled on the rising edge of TCK.	IN	IN	LV
TDO	0	Test Data Output from the instruction or data register. Transitions occur on the falling edge (valid on rising edge) of TCK.	HIZ	UN	LV
TMS	I	Control signal for TAP controller. Sampled on the rising edge of TCK.	IN	IN	LV
ТСК	I	Control clock for updating TAP controller and shifting data through instruction or selected data register.	IN	IN	LV
Test					
TC[3:0]	I	Test Clock Inputs (not used in typical application). Should be pulled low for normal operation.	IN	IN	LV
TESTEN	I	Test Enable (not used in typical applications). Should be pulled low for normal operation.	IN	IN	LV
GPIO					
GPIO[1:0]	IOZ	General Purpose I/O.	HIZ	DEP (Note 1)	LV
GPIO[3:2]	IOZ	General Purpose I/O. Muxed with EXTCLK[1:0]. GPIO[3:2] are the default signals coming out of hard- ware reset, runtime reset, and Sleep.	HIZ	DEP (Note 1)	LV
GPIO[4]	IOZ	General Purpose I/O. Can be configured as DMA_REQ0.	HIZ	DEP (Note 1)	LV
GPIO[5]	IOZ	General Purpose I/O. Can be configured as DMA_REQ1.	HIZ	DEP (Note 1)	LV
GPIO[6]	IOZ	General Purpose I/O. Muxed with SMROMCKE. If ROMSEL and ROMSIZE are configured to boot from synchronous mask ROM, the SMROMCKE signal is selected for the pin coming out of reset; otherwise, GPIO[6] is selected.	HIZ	DEP (Note 1)	LV
GPIO[7]	IOZ	General Purpose I/O.	HIZ	DEP (Note 1)	LV
GPIO[8]	IOZ	General Purpose I/O.	HIZ	DEP (Note 1)	LV

Table 11-3. Signal Description (Continued)

			Reset			
Signal	Туре	Description	HW	Run Time	During Sleep	
GPIO[9]	IOZ	 General Purpose I/O. Muxed with U3CTS#. GPIO[9] is the default signal coming out of hardware reset, runtime reset, and Sleep. Note: For systems that use the UART3 interface without the optional modem control signals (are pinfung[UR2]-0), the modem status 	HIZ	DEP (Note 1)	LV	
		(sys_pinfunc [UR3]=0), the modem status interrupts must be disabled (uart3_inten [MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.				
GPIO[10]	IOZ	General Purpose I/O. Muxed with U3DSR#. GPIO[10] is the default signal coming out of hardware reset, runtime reset, and Sleep.	HIZ	DEP (Note 1)	LV	
		Note: For systems that use the UART3 interface without the optional modem control signals (sys_pinfunc[UR3]=0), the modem status interrupts must be disabled (uart3_inten[MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.				
GPIO[11]	IOZ	General Purpose I/O. Muxed with U3DCD#. GPIO[11] is the default signal coming out of hardware reset, runtime reset, and Sleep.	HIZ	DEP (Note 1)	LV	
		Note: For systems that use the UART3 interface without the optional modem control signals (sys_pinfunc[UR3]=0), the modem status interrupts must be disabled (uart3_inten[MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.				
GPIO[12]	IOZ	General Purpose I/O. Muxed with U3RI#. GPIO[12] is the default signal coming out of hardware reset, runt- ime reset, and Sleep.	HIZ	DEP (Note 1)	LV	
		Note: For systems that use the UART3 interface without the optional modem control signals (sys_pinfunc[UR3]=0), the modem status interrupts must be disabled (uart3_inten[MIE]=0) to avoid false UART3 interrupts when using GPIO[9], GPIO[10], GPIO[11], or GPIO[12] as an input.				
GPIO[13]	IOZ	General Purpose I/O. Muxed with U3RTS#. GPIO[13] is the default signal coming out of hardware reset, runtime reset, and Sleep.	HIZ	DEP (Note 1)	LV	
GPIO[14]	IOZ	General Purpose I/O. Muxed with U3DTR#. GPIO[14] is the default signal coming out of hardware reset, runtime reset, and Sleep.	HIZ	DEP (Note 1)	LV	
GPIO[15]	IOZ	General Purpose I/O.	HIZ	DEP (Note 1)	LV	

Table 11-3. Signal Description (Continued)

			Re	eset		
Signal	Туре	Description	HW	Run Time	During Sleep	
GPIO[20]	IOZ	General Purpose I/O. Muxed with U0TXD. GPIO[20] is the default signal coming out of hardware reset, runtime reset, and Sleep.	HIZ	DEP (Note 1)	LV	
GPIO[23]	IOZ	General Purpose I/O. Muxed with U3TXD. GPIO[23] is the default signal coming out of hardware reset, runtime reset, and Sleep.	HIZ	DEP (Note 1)	LV	
GPIO[24]	IOZ	General Purpose I/O. Muxed with N1TXEN. GPIO[24] is the default signal coming out of hard- ware reset, runtime reset, and Sleep.	HIZ	DEP (Note 1)	LV	
GPIO[28:25]	IOZ	General Purpose I/O. Muxed with N1TXD[3:0]. GPIO[28:25] are the default signals coming out of hardware reset, runtime reset, and Sleep.	HIZ	DEP (Note 1)	LV	
GPIO[200]	IOZ	General Purpose I/O (secondary GPIO block). Unlike other GPIOs, GPIO[200] defaults as an output with a zero voltage level coming out of reset. For this rea- son, GPIO[200] can be controlled by system software to act as a PCI reset output signal (labeled PCI_RSTO#) if needed.	HIZ	0	LV	
		Note: Should be tied low through a resistor.				
GPIO[207:201]	IOZ	General Purpose I/O (secondary GPIO block).	HIZ	HIZ	LV	
GPIO[208]	IOZ	General Purpose I/O (secondary GPIO block). Can be configured as DMA_REQ2.	HIZ	HIZ	LV	
GPIO[209]	IOZ	General Purpose I/O (secondary GPIO block). Can be configured as DMA_REQ3.	HIZ	HIZ	LV	
GPIO[215:210]	IOZ	General Purpose I/O (secondary GPIO block).	HIZ	HIZ	LV	
External Clocks						
EXTCLK[1:0]	0	General Purpose External Clocks. Muxed with GPIO[3:2]. GPIO[3:2] are the default signals coming out of hardware reset, runtime reset, and Sleep.	NA	NA	LV	
System DMA Requ	ests					
DMA_REQ0 (GPIO[4])	Ι	GPIO[4] can be configured as an external, system DMA request input.	HIZ	HIZ	LV	
DMA_REQ1 (GPIO[5])	I	GPIO[5] can be configured as an external, system DMA request input.	HIZ	HIZ	LV	
DMA_REQ2 (GPIO[208])	Ι	GPIO[208] can be configured as an external, system DMA request input.	HIZ	HIZ	LV	
DMA_REQ3 (GPIO[209])	Ι	GPIO[209] can be configured as an external, system DMA request input.	HIZ	HIZ	LV	

			Reset		
Signal	Туре	Description	нw	Run Time	During Sleep
System Clocks and	System Clocks and Reset				
XTI12	I	Internally Compensated 12 MHz (typical) Crystal Input.			
		Note: The termination depends on the application as follows:			
		Crystal—Connect crystal between XTI12 and XTO12.			
		Overdriven—Connect to external 12 MHz clock source and drive complementary to XTO12.			
XTO12	0	Internally compensated 12 MHz (typical) Crystal Output.			
		Note: The termination depends on the application as follows:			
		Crystal—Connect crystal between XTI12 and XTO12.			
		Overdriven—Connect to external 12 MHz clock source and drive complementary to XTI12.			
XTI32	I	Internally Compensated 32.768 KHz (typical) Crystal Input			
		Note: The termination depends on the application as follows:			
		Crystal—Connect crystal between XTI32 and XTO32.			
		Overdriven—Connect to external 32.768 KHz clock source through a series 10 KOHM resistor and drive complementary to XTO32.			
		Not used—Connect to V _{DDX} .			
XTO32	0	Internally compensated 32.768 KHz (typical) crystal output			
		Note: The termination depends on the application as follows:			
		Crystal—Connect crystal between XTI32 and XTO32.			
		Overdriven—Connect to external 32.768 KHz clock source through a series 10 Kohm resistor and drive complementary to XTI32.			
		Not used—Connect to V _{DDX} .			
RESETIN#	I	CPU Reset Input.	IN	IN	LV
RESETOUT#	0	Buffered output of CPU reset input (RESETIN#).	0	0	0
ROMSEL	I	Determines if boot is from ROM or SMROM.	IN	IN	LV
		ROMSEL should be terminated appropriately as these signals should not change during runtime.			

Table 11-3. Signal Description (Continued)

			Reset		
Signal	Туре	Description	нw	Run Time	During Sleep
ROMSIZE	I	Latched at the rising edge of reset to determine if ROM width is 16 or 32 bits.	IN	IN	LV
		ROMSIZE should be terminated appropriately as these signals should not change during runtime.			
Power Managem	ent				
PWR_EN	0	Power Enable Output. This signal is intended to be used as the regulator enable for V_{DDI} (core power).	1	1	0
VDDXOK	I	Input to signal that V _{DDX} is stable.	IN	IN	LV
Power/Ground		· · · · · · · · · · · · · · · · · · ·		1	1
V _{DDI}	Р	Internal Core Voltage.			
		Note: Follow the power supply layout guidelines in Section 12.11.2 "Decoupling Recommendations" on page 235.			
V _{DDX}	Р	External I/O voltage.			
		Note: Follow the power supply layout guidelines in Section 12.11.2 "Decoupling Recommenda- tions" on page 235.			
V _{SS}	G	Ground			
XPWR12	Р	12 MHz (typical) oscillator and PLL power.			
		Note: Connect to V_{DDX} through a 10 ohm resistor. In addition a 22 μ F capacitor in parallel with a 0.01 μ F capacitor should be placed from this pin to XAGND12.			
XAGND12	G	12 MHz (typical) oscillator and PLL ground.			
XPWR32	Р	32.768 KHz (typical) oscillator and PLL power.			
		Because XPWR32 powers other circuitry also, it should be connected even if the oscillator is not used.			
		Note: Connect to V_{DDX} through a 10 ohm resistor. In addition a 22 μ F capacitor in parallel with a 0.01 μ F capacitor should be placed from this pin to XAGND32.			
XAGND32	G	32.768 KHz (typical) oscillator and PLL ground			

Table 11-3. Signal Description (Continued)

Note 1. Depends on **sys_trioutrd** and **sys_outputset**. During a runtime reset, **sys_pinfunc** returns to its default value, but the GPIO control registers **sys_trioutrd** and **sys_outputset** remain unchanged.

Electrical and Thermal Specifications

This chapter provides *preliminary* electrical specifications for the Au1500 processor, including the following:

- Absolute Maximum Ratings
- Thermal Characteristics
- DC Parameters
- AC Parameters
- Power-up, Reset, Sleep, and Idle Timing
- External Clock Specifications
- Crystal Specifications
- System Design Considerations

12.1 Absolute Maximum Ratings

Table 12-1 shows the absolute maximum ratings for the Au1500 processor. These ratings are stress ratings, operating at or beyond these ratings for extended periods of time may result in damage to the Au1500 processor.

Unless otherwise designated all voltages are relative to V_{SS}.

		•		
Parameter	Description	Min	Max	Unit
V _{DDI}	Core Voltage	V _{SS} - 0.5	2	V
V _{DDX}	I/O Voltage	V _{SS} - 0.5	3.6	V
XPWR12, XPWR32	Oscillator Voltage	V _{SS} - 0.5	3.6	V
V _{IN}	Voltage Applied to Any Pin	V _{SS} - 0.5	V _{DDX} + 0.5	V
T _{CASE} Commerical	Package Operating Temperature	0	85	°C
T _{CASE} Industrial (333 MHz part only)	Package Operating Temperature	-40	100	°C
T _S	Storage Temperature	-40	125	°C

Table 12-1. Absolute Maximum Ratings

12.2 Undershoot

The minimum DC voltage on input or I/O pins is -0.5V. However, during voltage transitions, the device can tolerate undershoot to -2.0V for up to 20 ns, as shown in Figure 12-1.

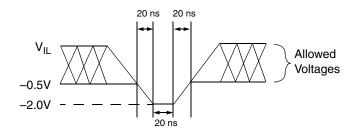


Figure 12-1. Voltage Undershoot Tolerances for Input and I/O Pins

12.3 Overshoot

The maximum DC voltage on input or I/O pins is (V_{DDX} + 0.5) V. However, during voltage transitions, the device can tolerate overshooting V_{DDX} to (V_{DDX} + 2.0) V for up to 20 ns, as shown in Figure 12-2.

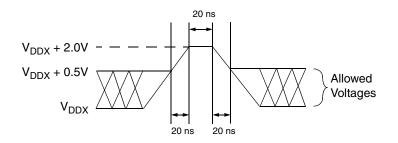


Figure 12-2. Voltage Overshoot Tolerances for Input and I/O Pins

12.4 Thermal Characteristics

Table 12-2 shows the thermal characteristics for the Au1500 processor.

Table 12-2.	Thermal	Characteristics	with Changing	g Air Flow	Conditions
-------------	---------	-----------------	---------------	------------	------------

Parameter	Still Air (Note 1)	50 lfpm (Note 2) (0.25 m/s)	100 lfpm (0.5 m/s)	150 lfpm (0.75 m/s)	200 lfpm (1.0 m/s)	Unit
Θ_{JA}	33.1	31.8	30.7	30.0	28.6	°C/W
Ψ_{JT}	5.0					°C/W

Note 1. Measured without forced air-natural convection only.

Note 2. Linear feet per minute.

12.5 DC Parameters

Table 12-3 shows the DC parameters for the Au1500 processor. Unless otherwise designated all voltages are relative to V_{SS} .

The operating requirements for the power supply voltages (V_{DDX} and V_{DDI}) are given in the sections describing the DC characteristics for the different operating frequencies, beginning with Table 12-4.

Parameter	Description	Min	Nominal	Мах	Unit
V _{IHX}	Input High Voltage	2.4			V
V _{ILX}	Input Low Voltage			0.2 * V _{DDX}	V
V _{OHX} @ 2 mA	Output High Voltage	0.8 * V _{DDX}			V
V _{OLX} @ 2 mA	Output Low Voltage			0.2 * V _{DDX}	V
l _l	Input Leakage Current			5	μA
C _{IN} (Note 1)	Input Capacitance		5		pF
IXPWR12 (Note 2)	XPWR12 Current		1	3	mA
IXPWR32 (Note 2)	XPWR32 Current		1	3	mA

Table 12-3. DC Parameters

Note 1. This parameter is by design and not tested.

Note 2. Does not apply during Sleep.

12.5.1 Power and Voltage for 333, 400, and 500 MHz Rated Parts

The tables that follow give the voltage and power parameters for the individual MHz rated parts.

	1		1	
Parameter	Min	Тур	Мах	Unit
V _{DDI}	1.4	1.5	1.6	V
V _{DDX} , XPWR12, XPWR32 (Note 1)	3.0	3.3	3.6	V
Power: VDDI		340	755 (Note 2)	mW
Power: V _{DDX}		60	290 (Note 2)	mW
IDLE Power (Note 3)		176		mW
Sleep Current (V _{DDI} = V _{SS})			50	μΑ

Table 12-4. Voltage and Power Parameters for 333 MHz Part

Note 1. XPWR12 and XPWR32 should be connected to V_{DDX}. For a description of this circuit connection, see the entries for XPWR12 and XPWR32 in Table 11-3 "Signal Description" on page 203.

- Note 2. While the maximum power numbers should be used when specifying a regulator for a system, the numbers are well above the typical power consumption because none of the power-saving design features (such as IDLE, or the automatic SBUS divider) are enabled. Note that because the particular application software and external loading affect the power consumption on a given system design, certain conditions may exist which could cause the maximum power consumption to be different than shown.
- Note 3. *IDLE power* is the power measured when the processor core is in the IDLE0 state. (IDLE0 maintains cache coherency by snooping the SBUS; IDLE1 does not snoop the bus. Because caches are turned off during the IDLE1 state, IDLE1 consumes less power than IDLE0.) Typically the IDLE state is entered during an operating system's wait loop in which the core has no processes to run. While the processor core is in IDLE, clocks to the core are gated off; however, all registers retain their values, and the peripherals, DMA engine, and the interrupts remain active so that the system is still functional.

Parameter	Min	Тур	Мах	Unit				
V _{DDI}	1.4	1.5	1.6	V				
V _{DDX} , XPWR12, XPWR32 (Note 1)	3.0	3.3	3.6	V				
Power: V _{DDI}		595	870 (Note 2)	mW				
Power: V _{DDX}		105	340 (Note 2)	mW				
IDLE Power (Note 3)		205		mW				
Sleep Current ($V_{DDI} = V_{SS}$)			50	μA				

Table 12-5. Voltage and Power Parameters for 400 MHz Part

Note 1. XPWR12 and XPWR32 should be connected to V_{DDX}. For a description of this circuit connection, see the entries for XPWR12 and XPWR32 in Table 11-3 "Signal Description" on page 203.

- Note 2. While the maximum power numbers should be used when specifying a regulator for a system, the numbers are well above the typical power consumption because none of the power-saving design features (such as IDLE, or the automatic SBUS divider) are enabled. Note that because the particular application software and external loading affect the power consumption on a given system design, certain conditions may exist which could cause the maximum power consumption to be different than shown.
- Note 3. *IDLE power* is the power measured when the processor core is in the IDLE0 state. (IDLE0 maintains cache coherency by snooping the SBUS; IDLE1 does not snoop the bus. Because caches are turned off during the IDLE1 state, IDLE1 consumes less power than IDLE0.) Typically the IDLE state is entered during an operating system's wait loop in which the core has no processes to run. While the processor core is in IDLE, clocks to the core are gated off; however, all registers retain their values, and the peripherals, DMA engine, and the interrupts remain active so that the system is still functional.

Parameter	Min	Тур	Мах	Unit
V _{DDI}	1.71	1.8	1.89	V
V _{DDX} , XPWR12, XPWR32 (Note 1)	3.0	3.3	3.6	V
Power: V _{DDI}		1080	1625 (Note 2)	mW
Power: V _{DDX}		120	450 (Note 2)	mW
IDLE Power (Note 3)		293		mW
Sleep Current (V _{DDI} = V _{SS})			50	μA

Table 12-6. Voltage and Power Parameters for 500 MHz Part

Note 1. XPWR12 and XPWR32 should be connected to V_{DDX}. For a description of this circuit connection, see the entries for XPWR12 and XPWR32 in Table 11-3 "Signal Description" on page 203.

- Note 2. While the maximum power numbers should be used when specifying a regulator for a system, the numbers are well above the typical power consumption because none of the power-saving design features (such as IDLE, or the automatic SBUS divider) are enabled. Note that because the particular application software and external loading affect the power consumption on a given system design, certain conditions may exist which could cause the maximum power consumption to be different than shown.
- Note 3. *IDLE power* is the power measured when the processor core is in the IDLE0 state. (IDLE0 maintains cache coherency by snooping the SBUS; IDLE1 does not snoop the bus. Because caches are turned off during the IDLE1 state, IDLE1 consumes less power than IDLE0.) Typically the IDLE state is entered during an operating system's wait loop in which the core has no processes to run. While the processor core is in IDLE, clocks to the core are gated off; however, all registers retain their values, and the peripherals, DMA engine, and the interrupts remain active so that the system is still functional.

12.6 AC Parameters

This section describes the AC parameters for I/O devices in the Au1500 processor. Each class of output signal has different capacitive loads. As the capacitance on the load increases the propagation delay will increase. These specifications assume the maximum capacitive load to be 50 pF for all I/O signals other than the SDRAM interface.

The timing of those signals which have synchronous relationships or have a defined requirement are given. The timing diagrams are shown to illustrate the timing only and should not necessarily be interpreted as the functional timing of the port.

It is assumed that the timing and/or functionality of the protocol related to the port is adhered to by the external system. The protocol timing is not necessarily presented here and the appropriate section or specification should be referenced for complete functional timing parameters.

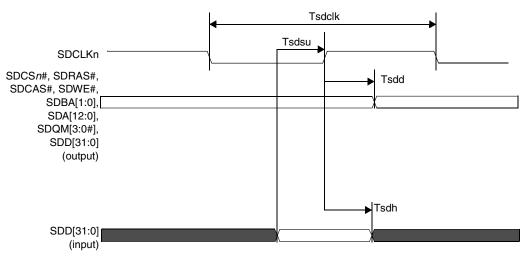
Timing measurements are made from 50% threshold to 50% threshold.

Certain timing parameters are based off of the internal System Bus (SBUS) clock. When this is the case the symbol T_{sys} is used. T_{sys} is defined in nanoseconds as:

 $T_{sys} = SD/CPU$

The symbol CPU should be interpreted as the CPU clock speed in MHz as set by the CPU PLL. See Section 8.1 "Clocks" on page 154 for details. The symbol SD is the SBUS divider. See Section 8.4 "Power Management" on page 172 for details.

12.6.1 SDRAM Timing and Loading

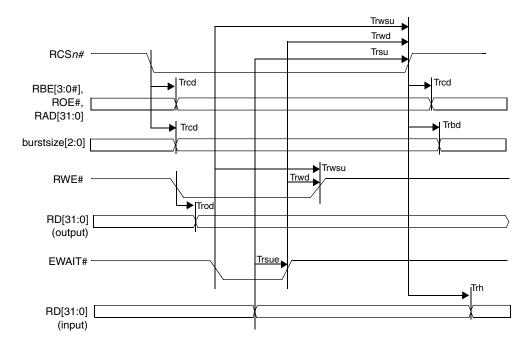

The SDRAM controller loading limits are as follows:

- SDRAM outputs *excluding the clocks and chip-selects* can support a maximum capacitive load of 35 pF (six 5 pF gate loads and 5 pF representing the trace).
- Each *clock* and each *chip-select* supports a maximum capacitive load of 15 pF (two 5 pF gate loads and 5 pF representing the trace).

The SDRAM is a high speed interface. Reflection and propagation delays should be accounted for in the system design. As a general rule of thumb, unterminated etches should be kept to 6 inches or less.

Signal	Symbol	Parameter	Min	Мах	Unit
SDCLKn	Tsdclk	SDCLKn Clock Cycle	2 * 1	ſsys	ns
SDCS <i>n</i> #, SDRAS#, SDCAS#, SDWE#, SDBA[1:0], SDA[12:0], SDQM[3:0]#, SDD[31:0] (output)	Tsdd	Delay from SDCLK <i>n</i>	Tsdclk/4 – 1.5	Tsdclk/4 + 2	ns
SDD[31:0] (input)	Tsdsu	Data setup to SDCLKn	1.8		ns
SDD[31:0] (input)	Tsdh	Data hold from SDCLKn	1.7		ns

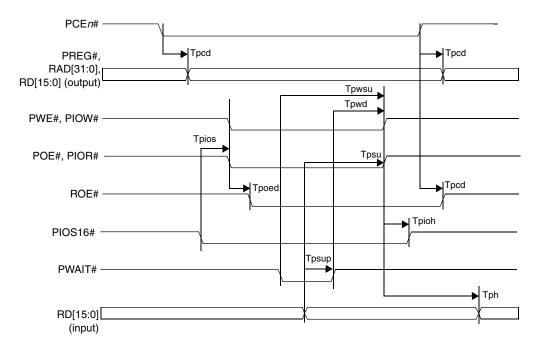
Table 12-7. SDRAM Controller Interface



12.6.2 Static Bus Controller Timing

The timing presented in registers **mem_sttime***n* are not presented here. The parameters in these registers are presented in a certain number of clock cycles and are accurate to within ± 2 ns.

Signal	Symbol	Parameter	Min	Мах	Unit
RBE[3:0]#, ROE#, RAD[31:0], burst- size[2:0]	Trcd	Delay from RCSn#.	-2	+2	ns
RD[31:0] (read)	Trsu	Data setup to RCSn#.	15		ns
		Note that Trsu does not apply when EWAIT# is used to extend the cycle.			
RD[31:0] (read)	Trsue	Data setup to EWAIT#. Note that Trsue applies only when EWAIT# is used to extend the cycle.	0		ns
RD[31:0] (read)	Trh	Data hold from RCSn#.	0		ns
RD[31:0] (write)	Trod	Delay from RWE# to data out	-2	2	ns
EWAIT#	Trwsu	EWAIT# setup to RCS <i>n</i> # for reads, or RWE# for writes.	3 * Tsys + 15		ns
		If EWAIT# does not meet this setup time the cycle will not be held.			
RCS# (reads), RWE# (writes)	Trwd	Delay from EWAIT#.	2 * Tsys	3 * Tsys + 15	
burstsize[2:0]	Trbd	Delay from RCS <i>n</i> #.		Tsys + 2	


Table 12-8	Statia DAM	10 Dovice and	I Elach Timing
	Static RAIN	I, I/O Device and	a Flash Timing

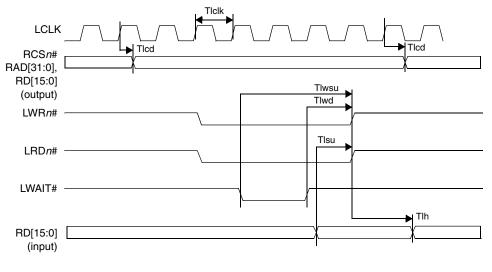
Signal	Symbol	Parameter	Min	Мах	Unit
PREG#, RAD[31:0], RD[31:0] (output)	Tpcd	Delay from PCE <i>n</i> #	-2	+2	ns
PIOS16#	Tpios	PIOS16# setup to PIOR#, PIOW#	4 * Tsys + 15		ns
PIOS16#	Tpioh	PIOS16# hold from PIOR#, PIOW#	0		ns
ROE#	Tpoed	ROE# delay from POE#, PIOR#	-2	+2	ns
RD[15:0] (input)	Tpsu	Data setup to POE#, PIOR#. Note that Tpsu does not apply when PWAIT# is used to extend the cycle.	Tsys + 15		ns
RD[15:0] (input)	Tpsup	Data setup to PWAIT#. Note that Tpsup applies only when PWAIT# is used to extend the cycle.	0		ns
RD[31:0]	Tph	Data hold from POE#, PIOR#	0		ns
PWAIT#	Tpwsu	PWAIT# setup to POE#, PWE#, PIOR#, PIOW#	4 * Tsys + 15		ns
		If PWAIT# does not meet this setup time the cycle will not be held			
POE#, PWE#, PIOR#, PIOW#	Tpwd	POE#, PWE#, PIOR#, PIOW# delay from PWAIT#.	3 * Tsys	4 * Tsys + 15	ns

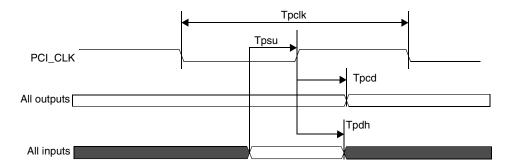
Table 12-9. PCMCIA Timing

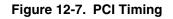
Figure 12-5. PCMCIA Host Adapter Timing

Signal	Symbol	Parameter	Min	Мах	Unit
LCLK	Ticlk	LCLK Period. This parameter is programmed in mem_stcfg0 [D5].	Tsys * 4	Tsys * 5	ns
RCS <i>n</i> #, RAD[31:0], RD[15:0] (output)	Tlcd	Delay from LCLK	-2	2	ns
RD[15:0] (input)	Tlsu	Data setup to LRDn#	15		ns
RD[15:0] (input)	Tlh	Data hold from LRDn#	0		ns
LWAIT#	Tlwsu	LWAIT# setup to LRD <i>n</i> # for reads, or LWR <i>n</i> # for writes. If LWAIT# does not meet this setup time the cycle will not be held.	3 * Tsys + Tlclk + 15		ns
LRD <i>n</i> # (reads), LWR <i>n</i> # (writes)	Tlwd	Delay from LWAIT#	2 * Tsys	3 * Tsys + Tlclk + 15	ns

Table 12-10. LCD Timing




Figure 12-6. LCD Interface Timing


12.6.3 PCI Timing and Loading

The PCI controller conforms to the PCI 2.2 Local Bus Specification for both the 33 MHz and 66 MHz options. The timing shown in Table 12-11 assumes a maximum of four PCI loads with each slot counting as one load. Trace lengths of PCI signals should be kept to a maximum of 9 inches.

			66 MHz		33		
Signal	Symbol	Parameter	Min	Max	Min	Max	Unit
PCI_CLK	Tpclk	PCI_CLK clock cycle	15	30	30	•	ns
All outputs	Tpcd	Delay from PCI_CLK	2	6	2	11	ns
All inputs	Tpsu	Data setup to PCI_CLK	3		7		ns
	Tpdh	Data hold from PCI_CLK	0		0		ns

12.6.4 GPIO Input Timing Requirements

12.6.5 GPIO Input Edge Rate

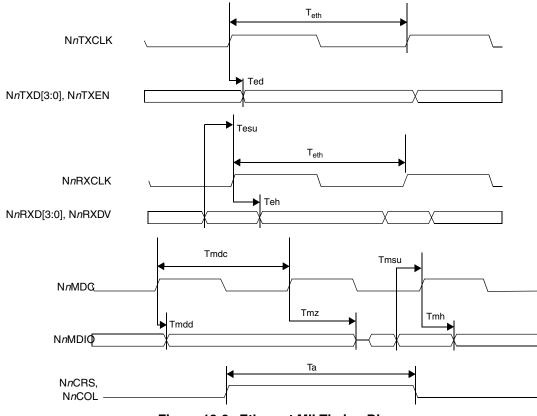
For level-sensitive GPIO inputs, edge rates as slow as 5 ms can be used. Note that no hysteresis is used on the inputs so for edge-sensitive inputs (such as clocks and edge-triggered interrupts) use a 20-ns (or faster) edge rate to ensure that noise does not cause false edges as the signal transitions through the threshold region.

12.6.6 GPIO Interrupt Timing

For system designs using GPIO signals as level-triggered interrupts, the signal level must be stable for at least 10 ns in order for a signal state change to be detected. See Table 12-12 and Figure 12-8.

Signal	Symbol	Parameter	Min	Max	Unit
GPIO[n]	Tmin	Minimum high or low time for interrupt.	10		ns
		The level is programmable. This timing reflects the minimum active period for the level programmed.			

Figure 12-8. GPIO Interrupt Timing


12.6.7 Peripheral Timing

This section contains the electrical timing specifications for the integrated peripherals.

12.6.7.1 Ethernet MII Timing

Signal	Symbol	Parameter	Min	Max	Unit		
N0TXCLK, N0RXCLK, N1TXCLK, N1RXCLK	Teth	Ethernet transmit/receive clock cycle time (25% of data rate)	40 ± 100ppn 400 ± 100pp	ns			
		Ethernet transmit/ receive clock duty cycle	35	65	%		
N0TXEN, N0TXD[3:0], N1TXEN, N1TXD[3:0]	Ted	Delay from TXCLK to TXEN, TXD[3:0]					
N0RXD[3:0], N0RXDV N1RXD[3:0], N1RXDV	Tesu	Setup time before RXCCLK for RXD, and 10 RXDV			ns		
	Teh	Hold time from RXCLK for RXD, and RXDV	10		ns		
N0MDC, N1MDC	Tmdc	MDC cycle time	SBUS clock / 160				
		MDC duty cycle	40	60	%		
N0MDIO, N1MDIO	Tmdd	Delay from MDC to MDIO	0	300	ns		
	Tmsu	Setup time before MDC for MDIO	10		ns		
	Tmh	Hold time from MDC for MDIO	10		ns		
	Tmz	Delay from MDC to MDIO TRI-STATE	0	300	ns		
N0CRS, N0COL, N1CRS, N1COL	Та	Minimum active time					

Table 12-13. Ethernet MII Timing

12.6.7.2 AC97 Timing

30361D

Signal	nal Symbol Parameter			Max	Unit
ACBCLK	Tabc	AC97 bit clock cycle time	12.288	(typical)	MHz
	Tabh	AC97 bit clock high time	36	45	ns
	Tabl	AC97 bit clock low time	36	45	ns
ACSYNC	Tacs	AC97 sync cycle	48 (typical)		KHz
	Tacsh	AC97 sync high time	μs		
	Tacsl	AC97 sync low time	19.5 (t	μs	
ACSYNC ACDO	Tad	Delay from ACBCLK to ACSYNC and ACDO on output		15	ns
ACDI	Tasu	Setup before ACBCLK for ACDI	10		ns
	Tah	Hold after ACBCLK for ACDI	10		ns

Table 12-14. AC-Link Interface Timing

Note: ACRST# is an asynchronous signal controlled by software through the register **ac97_config**. It has no relationship to the other AC97 signals.

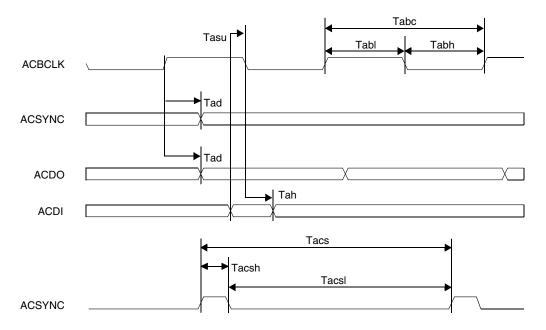


Figure 12-10. AC-Link Timing Diagram

12.6.7.3 EJTAG Interface Timing

			-		
Signal	Symbol	Parameter	Min	Max	Unit
ТСК	CK Tec EJTAG TCK cycle time		40		ns
	Tech	TCK high time	10		ns
	Tecl	TCK low time	10		ns
TMS, TDI	Tesu	Setup before TCK for TMS and TDI	5		ns
	Teh	Hold after TCK for TMS and TDI	3		ns
TDO	Тесо	Delay from TCK to TDO on output		15	ns
	Tecz	Delay from TCK to TDO TRI-STATE		15	ns
TRST#	Trstl	TRST# low time	25		ns

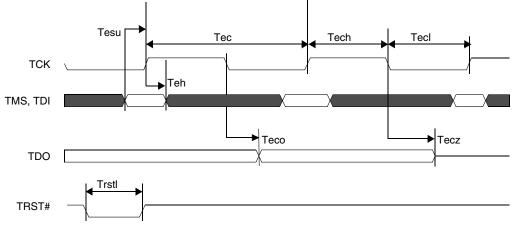


Figure 12-11. EJTAG Timing Diagram

12.7 Power-up and Reset Timing

This section provides the timing specifications for the power-up sequence, and the hardware and runtime reset sequences. (See Section 9.0 "Power-up, Reset and Boot" on page 180 for functional descriptions of the sequences.)

12.7.1 Power-up Sequence Timing

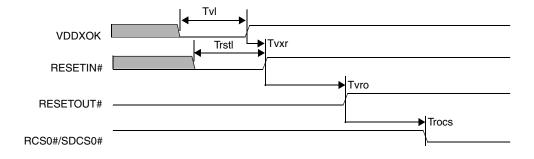
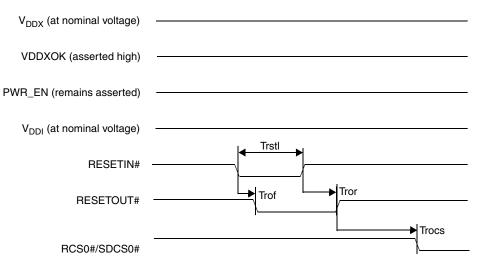
Parameter	Description	Min	Max	Unit
Тvo	V _{DDX} at 90% of nominal to VDDXOK asserted	0		ns
Tpen	VDDXOK asserted to PWR_EN driven high		30	ns
Tvi	PWR_EN to V _{DDI} stable		20	ms

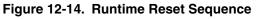
Figure 12-12. Power-up Sequence

12.7.2 Hardware Reset Timing

Parameter	Description	Min	Тур	Max
Tvxr	VDDXOK asserted to RESETIN# deasserted	0 ns		System Dependent
Tvl	VDDXOK low time	1 µs		
Trstl	RESETIN# low time	1 µs		
Tvro	RESETIN# to RESETOUT# delay MAX = max[750 ns, 170 ms - Tvxr]	600 ns		See Description
Trocs	RESETOUT# to RCS0#/SDCS0# asserted.		135 ns	1 µs

Table 12-17. Hardware Reset Timing Parameters


Figure 12-13. Hardware Reset Sequence

12.7.3 Runtime Reset Timing

	-			
Parameter	Description	Min	Тур	Max
Trstl	RESETIN# low time	1 µs		
Trof	RESETIN# falling to RESETOUT# falling			See
	MAX: 25 ns + (0.5 * (CPU Clock/2))			Description
Tror	RESETIN# rising to RESETOUT# rising	120 CPU		See
	MAX: 25 ns + (0.5 * (CPU Clock/2)) + (120 * CPU Clock)	clocks		Description
Trocs	RESETOUT# to RCS0#/SDCS0# asserted. Note that the timing values shown assume a 400 MHz CPU clock.		65 ns	500 ns

12.8 Asynchronous Signals

GPIO

The GPIO signals are driven by software. Note, however, when GPIO signals are used as inputs, there are timing requirements to ensure signal state changes are recognized cleanly; see Section 12.6.4 "GPIO Input Timing Requirements" on page 226.

UART

All UART signals are asynchronous to other external signals.

USB

All USB signals are asynchronous to other external signals. The USB protocol should be followed for appropriate operation.

12.9 External Clock Specifications

The EXTCLK[1:0] external clocks have a maximum frequency rating of (F_{max} / 16), where F_{max} is the maximum frequency rating for the part. Table 12-19 provides the EXTCLK[1:0] specifications.

	333 MHz		400 MHz		500 MHz		
Specification	Min	Max	Min	Max	Min	Max	Unit
Frequency		20.81		25		31.25	MHz
Frequency jitter		4		4		4	%
Duty cycle	40	60	40	60	40	60	%

Table 12-19. External Clock EXTCLK[1:0] Specifications

12.10 Crystal Specifications

Note that load capacitors for the external oscillators are integrated into the Au1500 processor so no external circuitry is required when using the specified crystal. For design layout considerations concerning the crystals, see Section 12.11.1 "Crystal Layout" on page 235.

Table 12-20 provides the specification for the parallel resonant 12 MHz crystal to be placed between XTI12 and XTO12. Table 12-21 provides the specification for the parallel resonant 32 KHz crystal to be placed between XTI32 and XTO32.

Specification	Min	Тур	Max	Unit					
Resonant Frequency	11	12	15	MHz					
Frequency Stability			±100	ppm					
Motional Resistance			60	Ohms					
Shunt Capacitance		<5	7	pF					
Load Capacitance (Note 1)	8	12	20	pF					
Drive Level			100	μW					
Crystal Type	AT Cut								

Table 12-20. 12 MHz Crystal Specification

Note 1. This capacitance is integrated on the Au1500.

Table 12-21.	32.768	KHz Crysta	I Specification
--------------	--------	------------	-----------------

		· · ·				
Specification	Min	Тур	Мах	Unit		
Resonant Frequency		32.768		KHz		
Equivalent Series Resistance			50k	Ohms		
Shunt Capacitance		1.5	2.0	pF		
Load Capacitance (Note 1)	6		12	pF		
Motional Capacitance		3	4	fF		
Drive Level			1	μW		
Quality Factor	40k					
Crystal Type	Tuning Fork					

Note 1. This capacitance is integrated on the Au1500.

12.11 System Design Considerations

This section provides information for system-level design issues.

12.11.1 Crystal Layout

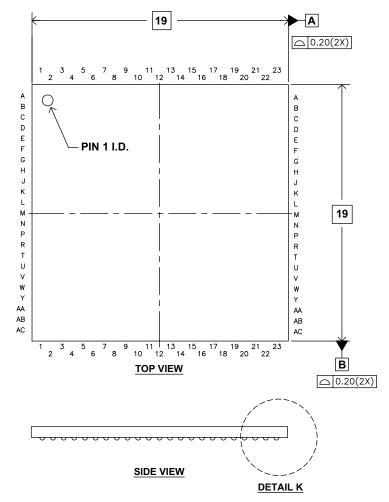
The crystal layouts are critical. Without using vias, place traces directly over a ground plane on the top layer with keep-outs on all surrounding sides. Trace lengths should be less than 0.5 inches, and trace widths should be set to the minimum signal trace width for the design. Be sure not to allow other signals to come within 0.025 inches of these sensitive analog signals.

12.11.2 Decoupling Recommendations

This section provides recommendations for minimizing noise in a system. Note that specific decoupling requirements are system dependent.

To filter noise on the power supplies, V_{DDX} and V_{DDI} , as well as XPWR12 and XPWR32, should be bypassed to ground using 10 μ F capacitors: For each of the four sides of the package, place a capacitor within 0.5 inches.

To filter high-frequency noise, capacitors in the 10 nF range should be placed under the package:

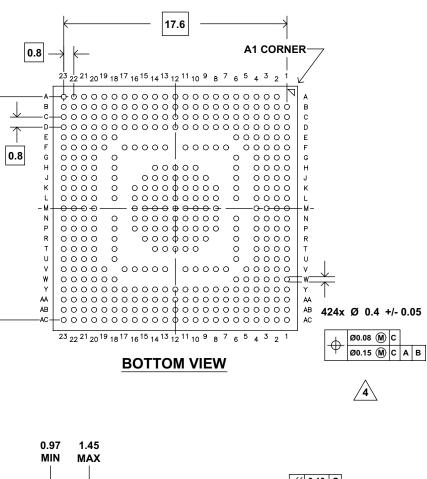

- For minimal high-frequency decoupling, use six to eight 10 nF capacitors.
- For systems requiring a broader spectrum of high-frequency noise be filtered, use four 15 nF and four 6.8 nF capacitors.

Packaging, Pin Assignments, and Ordering Information

This chapter provides information about the Au1500 processor package and pin assignment, as well as providing ordering information. The contents of the chapter are organized as follows:

- The package dimensions are shown in Figure 13-1 starting on page 238. The Au1500 is packaged in a 424-pin LF-PBGA device.
- Figure 13-2 (starting on page 240) is the connection diagram showing the pin and signal placement on the package. For pins that provide multiple signal functions, the default signal is shown first followed by the alternate signal in parentheses. Note that the black square in the upper-left hand corner indicates where the device is keyed.
- The pin assignment listing ordered by pin number starts on page 242.
- The pin assignment listing sorted by default signal starts on page 248.
- The pin assignment listing sorted by alternate signal starts on page 253.
- Ordering information is supplied on page 254.

13.1 Packaging



NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994 .
- 2. ALL DIMENSIONS ARE IN MILLIMETERS .
- 3. BALL POSITION DESIGNATION PER JESD 95-1, SPP-010.
- A BALL DIAMETER IS MEASURED AT ITS MAXIMUM DIMENSION IN A PLANE PARALLEL TO DATUM C.
- 5. THIS PACKAGE IS DIMENSIONED IN THE MANNER OF JEDEC OUTLINE MO-205 REV E, VARIATION Ax.

Figure 13-1. Package Dimensions

17.6

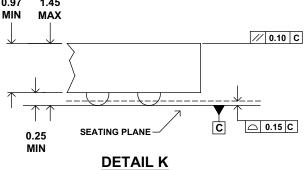


Figure 13-1. Package Dimensions (Continued)

13.2 Pin Assignment

	1	2	3	4	5	6	7	8	9	10	11	12
A		XTO32	XTI32	XTO12	XTI12	RESETIN#	GPIO[2] (EXTCLK0)	GPIO[4] (DMA_REQ0)	PIOR#	PREG#	PCE2#	EWAIT#
в	TESTEN	XPWR32	XAGND32	XPWR12	XAGND12	V _{DDX}	V _{SS}	GPIO[5] (DMA_REQ1)	POE#	PCE1#	LWAIT#	RD1
с	SDA8	V _{SS}	TMS	VDDXOK	ROMSEL	TC0	TC1	TC2	PIOW#	PWE#	LRD0#	LWR1#
D	SDA7	V _{DDX}	RESETOUT#	TRST#	ROMSIZE	GPIO[1]	GPIO[3] (EXTCLK1)	ТСЗ	GPIO[6] (SMROMCKE)	GPIO[7]	LRD1#	LCLK
E	SDA3	SDA4	SDA11	SDA12	PWR_EN	GPIO[0]						
F	SDA2	V_{SS}	SDA9	SDA10	SDA6		V _{DDX}	V _{DDX}	PIOS16#	PWAIT#	LWR0#	
G	SDBA1	V _{DDX}	SDA5	SDA0		V _{DDX}						
н	SDQM3#	SDBA0	SDA1	SDQM2#		V _{DDX}				V _{DDX}	V _{DDI}	V _{DDI}
J	SDCKE	SDCAS#	SDQM0#	SDQM1#		SDCS2#			V _{DDX}	V _{SS}	V _{SS}	V _{SS}
к	SDWE#	SDRAS#	SDCLK2	SDCLK1		SDD31		V _{DDX}	V _{SS}	V _{SS}	V _{SS}	V _{SS}
L	SDCS0#	SDCS1#	SDD30	SDD27		SDD25		V _{DDI}	V _{SS}	V _{SS}	V _{SS}	V _{SS}
м	SDD28	SDD29	SDD26	SDCLK0				V _{DDI}	V _{SS}	V _{SS}	V_{SS}	V _{SS}
N	SDD24	SDD23	SDD22	SDD21		SDD17		V _{DDI}	V _{SS}	V _{SS}	V _{SS}	V _{SS}
Р	SDD20	SDD19	SDD16	SDD15		SDD12		V _{DDX}	V _{SS}	V _{SS}	V _{SS}	V _{SS}
R	SDD18	SDD14	SDD11	SDD8		V _{DDX}			V _{DDX}	V _{SS}	V _{SS}	V _{SS}
т	SDD13	V _{SS}	SDD9	SDD7		V _{DDX}				V _{DDX}	V _{DDI}	V _{DDI}
U	SDD10	V _{DDX}	SDD5	GPIO[15]		V _{DDX}						
v	SDD6	SDD4	GPIO[14] (U3DTR#)	SDD0	SDD1		V _{DDX}	V _{DDX}	GPIO[27] (N1TXD2)	N1CRS	N0COL	
w	SDD3	SDD2	ACRST#	GPIO[214]	GPIO[211]	GPIO[208] (DMA_REQ2)						
Y	GPIO[13] (U3RTS#)	ACDO	GPIO[11] (U3DCD#)	GPIO[215]	GPIO[12] (U3RI#)	GPIO[212]	GPIO[210]	GPIO[28] (N1TXD3)	GPIO[25] (N1TXD0)	NOMDIO	N0TXD3	NORXDV
AA	ACSYNC	ACBCLK	GPIO[8]	GPIO[209] (DMA_REQ3)	TDI	GPIO[207]	GPIO[206]	ТСК	GPIO[26] (N1TXD1)	N1RXD1	N0TXD1	N0TXEN
AB	ACDI	V _{SS}	V _{DDX}	TDO	N1COL	V _{SS}	V _{DDX}	N1RXD3	GPIO[24] (N1TXEN)	N1RXD0	N1TXCLK	GPIO[205]
AC	GPIO[10] (U3DSR#)	GPIO[9] (U3CTS#)	GPIO[213]	N1MDIO	N1MDC	N1RXDV	N1RXCLK	N1RXD2	N0MDC	N0TXD2	N0TXD0	GPIO[204]
	1	2	3	4	5	6	7	8	9	10	11	12

Figure 13-2. Connection Diagram—Top View

13	14	15	16	17	18	19	20	21	22	23	
RD2	RD6	RD8	RD17	RD18	RD19	RD23	RD24	RAD1	RAD5	RAD8	A
RD3	RD7	RD12	RD14	V _{DDX}	V_{SS}	RD25	RD30	V _{DDX}	V _{SS}	RAD4	в
RD4	RD11	RD15	RD21	RD26	RD27	RD28	RAD0	RAD2	RAD3	RAD13	с
RD5	RD10	RD16	RD20	RD22	RD31	RAD7	RAD6	RAD15	RAD17	RAD18	D
					RD29	RAD10	RAD9	RAD11	RAD21	RAD22	E
RD0	RD9	RD13	V _{DDX}	V _{DDX}		RAD12	RAD14	RAD16	V _{DDX}	RAD23	F
					V _{DDX}		RAD19	RAD20	V _{SS}	RAD26	G
V _{DDI}	V _{DDX}				V _{DDX}		RAD25	RAD24	RAD28	RAD27	н
V _{SS}	V _{SS}	V _{DDX}			RBE2#		RAD30	RAD29	RBE0#	RAD31	J
V _{SS}	V _{SS}	V _{SS}	V _{DDI}		RCS2#		RWE#	RBE3#	RBE1#	ROE#	к
V _{SS}	V _{SS}	V _{SS}	V _{DDI}		PCI_STOP#		U0RXD	RCS1#	RCS3#	RCS0#	L
V _{SS}	V _{SS}	V _{SS}	V _{DDI}				PCI_FRAME#	PCI_IRDY#	GPIO[23] (U3TXD)	GPIO[20] (U0TXD)	М
V _{SS}	V _{SS}	V _{SS}	V _{DDI}		PCI_REQ0#		PCI_CLKO	PCI_CLK	PCI_DEVSEL#	U3RXD	N
V _{SS}	V _{SS}	V _{DDX}	V _{DDX}		PCI_PAR		PCI_GNT1#	PCI_GNT0#	PCI_LOCK#	PCI_TRDY#	Р
V _{SS}	V _{SS}	V _{DDX}			PCI_REQ3#		PCI_SERR#	PCI_CFG	PCI_REQ2#	PCI_REQ1#	R
V _{DDI}	V _{DDI}				V _{DDX}		PCI_AD4	PCI_AD3	PCI_GNT3#	PCI_GNT2#	т
					V _{DDX}		PCI_AD10	PCI_AD8	V _{DDX}	PCI_PERR#	U
N0RXD3	N0RXD2	PCI_INTB#	V _{DDX}	V _{DDX}		PCI_AD11	PCI_AD15	PCI_AD6	V _{SS}	PCI_AD0	v
					PCI_AD16	PCI_AD17	USBH1M	PCI_AD5	PCI_AD2	PCI_AD1	w
NORXCLK	GPIO[202]	PCI_INTC#	PCI_INTA#	PCI_AD25	PCI_AD21	USBDP (USBH0P)	USBDM (USBH0M)	PCI_AD13	PCI_AD9	PCI_AD7	Y
GPIO[203]	GPIO[201]	PCI_CBE3#	PCI_CBE1#	PCI_AD31	PCI_AD26	PCI_AD22	PCI_AD20	USBH1P	V _{DDX}	PCI_AD12	AA
N0RXD1	NOCRS	PCI_RST#	PCI_INTD#	V _{SS}	V _{DDX}	PCI_AD29	PCI_AD27	PCI_AD23	V _{SS}	PCI_AD14	AB
N0RXD0	N0TXCLK	GPIO[200] (PCI_RSTO#)	PCI_CBE2#	PCI_CBE0#	PCI_IDSEL	PCI_AD30	PCI_AD28	PCI_AD24	PCI_AD19	PCI_AD18	AC
13	14	15	16	17	18	19	20	21	22	23	

Figure 13-2. Connection Diagram—Top View (Continued)

Pin No.	Default Signal	Alternate Signal
A2	XTO32	
A3	XTI32	
A4	XTO12	
A5	XTI12	
A6	RESETIN#	
A7	GPIO[2]	EXTCLK0
A8	GPIO[4]	DMA_REQ0
A9	PIOR#	
A10	PREG#	
A11	PCE2#	
A12	EWAIT#	
A13	RD2	
A14	RD6	
A15	RD8	
A16	RD17	
A17	RD18	
A18	RD19	
A19	RD23	
A20	RD24	
A21	RAD1	
A22	RAD5	
A23	RAD8	
B1	TESTEN	
B2	XPWR32	
B3	XAGND32	
B4	XPWR12	
B5	XAGND12	
B6	V _{DDX}	
B7	V _{SS}	
B8	GPIO[5]	DMA_REQ1
B9	POE#	
B10	PCE1#	
B11	LWAIT#	
B12	RD1	
B13	RD3	
B14	RD7	
B15	RD12	
B16	RD14	
B17	V _{DDX}	

Pin No.	Default Signal	Alternate Signal
B18	V _{SS}	
B19	RD25	
B20	RD30	
B21	V _{DDX}	
B22	V _{SS}	
B23	RAD4	
C1	SDA8	
C2	V _{SS}	
C3	TMS	
C4	VDDXOK	
C5	ROMSEL	
C6	TC0	
C7	TC1	
C8	TC2	
C9	PIOW#	
C10	PWE#	
C11	LRD0#	
C12	LWR1#	
C13	RD4	
C14	RD11	
C15	RD15	
C16	RD21	
C17	RD26	
C18	RD27	
C19	RD28	
C20	RAD0	
C21	RAD2	
C22	RAD3	
C23	RAD13	
D1	SDA7	
D2	V _{DDX}	
D3	RESETOUT#	
D4	TRST#	
D5	ROMSIZE	
D6	GPIO[1]	
D7	GPIO[3]	EXTCLK1
D8	TC3	
D9	GPIO[6]	SMROMCKE
D10	GPIO[7]	

Table 13-1. Pin Assignment — Sorted by Pin Number

Table 13-1.	Pin Assignment — Sorted by Pin Number (Continued)
-------------	---

Pin No.	Default Signal	Alternate Signal
D11	LRD1#	
D12	LCLK	
D13	RD5	
D14	RD10	
D15	RD16	
D16	RD20	
D17	RD22	
D18	RD31	
D19	RAD7	
D20	RAD6	
D21	RAD15	
D22	RAD17	
D23	RAD18	
E1	SDA3	
E2	SDA4	
E3	SDA11	
E4	SDA12	
E5	PWR_EN	
E6	GPIO[0]	
E18	RD29	
E19	RAD10	
E20	RAD9	
E21	RAD11	
E22	RAD21	
E23	RAD22	
F1	SDA2	
F2	V _{SS}	
F3	SDA9	
F4	SDA10	
F5	SDA6	
F7	V _{DDX}	
F8	V _{DDX}	
F9	PIOS16#	
F10	PWAIT#	
F11	LWR0#	
F13	RD0	
F14	RD9	
F15	RD13	
F16	V _{DDX}	

Pin No.	Default Signal	Alternate Signal
F17	V _{DDX}	
F19	RAD12	
F20	RAD14	
F21	RAD16	
F22	V _{DDX}	
F23	RAD23	
G1	SDBA1	
G2	V _{DDX}	
G3	SDA5	
G4	SDA0	
G6	V _{DDX}	
G18	V _{DDX}	
G20	RAD19	
G21	RAD20	
G22	V _{SS}	
G23	RAD26	
H1	SDQM3#	
H2	SDBA0	
НЗ	SDA1	
H4	SDQM2#	
H6	V _{DDX}	
H10	V _{DDX}	
H11	V _{DDI}	
H12	V _{DDI}	
H13	V _{DDI}	
H14	V _{DDX}	
H18	V _{DDX}	
H20	RAD25	
H21	RAD24	
H22	RAD28	
H23	RAD27	
J1	SDCKE	
J2	SDCAS#	
J3	SDQM0#	
J4	SDQM1#	
J6	SDCS2#	
J 9	V _{DDX}	

Pin No.	Default Signal	Alternate Signal	Pin No.
J10	V _{SS}		L10
J11	V _{SS}		L11
J12	V _{SS}		L12
J13	V _{SS}		L13
J14	V _{SS}		L14
J15	V _{DDX}		L15
J18	RBE2#		L16
J20	RAD30		L18
J21	RAD29		L20
J22	RBE0#		L21
J23	RAD31		L22
K1	SDWE#		L23
K2	SDRAS#		M1
К3	SDCLK2		M2
K4	SDCLK1		M3
K6	SDD31		M4
K8	V _{DDX}		M8
К9	V _{SS}		M9
K10	V _{SS}		M10
K11	V _{SS}		M11
K12	V _{SS}		M12
K13	V _{SS}		M13
K14	V _{SS}		M14
K15	V _{SS}		M15
K16	V _{DDI}		M16
K18	RCS2#		M20
K20	RWE#		M21
K21	RBE3#		M22
K22	RBE1#		M23
K23	ROE#		N1
L1	SDCS0#		N2
L2	SDCS1#		N3
L3	SDD30		N4
L4	SDD27		N6
L6	SDD25		N8
L8	V _{DDI}		N9
L9	V _{SS}		N10

Table 13-1.	Pin Assignment — Sorted by Pin Number (Continued)

Pin No.	Default Signal	Alternate Signal
L10	V _{SS}	
L11	V _{SS}	
L12	V _{SS}	
L13	V _{SS}	
L14	V _{SS}	
L15	V _{SS}	
L16	V _{DDI}	
L18	PCI_STOP#	
L20	U0RXD	
L21	RCS1#	
L22	RCS3#	
L23	RCS0#	
M1	SDD28	
M2	SDD29	
M3	SDD26	
M4	SDCLK0	
M8	V _{DDI}	
M9	V _{SS}	
M10	V _{SS}	
M11	V _{SS}	
M12	V _{SS}	
M13	V _{SS}	
M14	V _{SS}	
M15	V _{SS}	
M16	V _{DDI}	
M20	PCI_FRAME#	
M21	PCI_IRDY#	
M22	GPIO[23]	U3TXD
M23	GPIO[20]	U0TXD
N1	SDD24	
N2	SDD23	
N3	SDD22	
N4	SDD21	
N6	SDD17	
N8	V _{DDI}	
N9	V _{SS}	
N10	V _{SS}	

Table 13-1. Pin Assignment — Sorted by Pin Number (Continued)

Pin No.	Default Signal	Alternate Signal
N11	V _{SS}	
N12	V _{SS}	
N13	V _{SS}	
N14	V _{SS}	
N15	V _{SS}	
N16	V _{DDI}	
N18	PCI_REQ0#	
N20	PCI_CLKO	
N21	PCI_CLK	
N22	PCI_DEVSEL#	
N23	U3RXD	
P1	SDD20	
P2	SDD19	
P3	SDD16	
P4	SDD15	
P6	SDD12	
P8	V _{DDX}	
P9	V _{SS}	
P10	V _{SS}	
P11	V _{SS}	
P12	V _{SS}	
P13	V _{SS}	
P14	V _{SS}	
P15	V _{DDX}	
P16	V _{DDX}	
P18	PCI_PAR	
P20	PCI_GNT1#	
P21	PCI_GNT0#	
P22	PCI_LOCK#	
P23	PCI_TRDY#	
R1	SDD18	
R2	SDD14	
R3	SDD11	
R4	SDD8	
R6	V _{DDX}	
R9	V _{DDX}	
R10	V _{SS}	

Pin No.	Default Signal	Alternate Signal
R11	V _{SS}	
R12	V _{SS}	
R13	V _{SS}	
R14	V _{SS}	
R15	V _{DDX}	
R18	PCI_REQ3#	
R20	PCI_SERR#	
R21	PCI_CFG	
R22	PCI_REQ2#	
R23	PCI_REQ1#	
T1	SDD13	
T2	V _{SS}	
Т3	SDD9	
T4	SDD7	
Т6	V _{DDX}	
T10	V _{DDX}	
T11	V _{DDI}	
T12	V _{DDI}	
T13	V _{DDI}	
T14	V _{DDI}	
T18	V _{DDX}	
T20	PCI_AD4	
T21	PCI_AD3	
T22	PCI_GNT3#	
T23	PCI_GNT2#	
U1	SDD10	
U2	V _{DDX}	
U3	SDD5	
U4	GPIO[15]	
U6	V _{DDX}	
U18	V _{DDX}	
U20	PCI_AD10	
U21	PCI_AD8	
U22	V _{DDX}	
U23	PCI_PERR#	
V1	SDD6	
V2	SDD4	

Table 13-1.	Pin Assignment — Sorted by Pin Number (Continued)
-------------	---

Pin No.	Default Signal	Alternate Signal
V3	GPIO[14]	U3DTR#
V4	SDD0	
V5	SDD1	
V7	V _{DDX}	
V8	V _{DDX}	
V9	GPIO[27]	N1TXD2
V10	N1CRS	
V11	N0COL	
V13	N0RXD3	
V14	N0RXD2	
V15	PCI_INTB#	
V16	V _{DDX}	
V17	V _{DDX}	
V19	PCI_AD11	
V20	PCI_AD15	
V21	PCI_AD6	
V22	V _{SS}	
V23	PCI_AD0	
W1	SDD3	
W2	SDD2	
W3	ACRST#	
W4	GPIO[214]	
W5	GPIO[211]	
W6	GPIO[208]	DMA_REQ2
W18	PCI_AD16	
W19	PCI_AD17	
W20	USBH1M	
W21	PCI_AD5	
W22	PCI_AD2	
W23	PCI_AD1	
Y1	GPIO[13]	U3RTS#
Y2	ACDO	
Y3	GPIO[11]	U3DCD#
Y4	GPIO[215]	
Y5	GPIO[12]	U3RI#
Y6	GPIO[212]	
Y7	GPIO[210]	
Y8	GPIO[28]	N1TXD3
Y9	GPIO[25]	N1TXD0

Pin No.	Default Signal	Alternate Signal
Y10	NOMDIO	
Y11	N0TXD3	
Y12	NORXDV	
Y13	NORXCLK	
Y14	GPIO[202]	
Y15	PCI_INTC#	
Y16	PCI_INTA#	
Y17	PCI_AD25	
Y18	PCI_AD21	
Y19	USBDP	USBH0P
Y20	USBDM	USBH0M
Y21	PCI_AD13	
Y22	PCI_AD9	
Y23	PCI_AD7	
AA1	ACSYNC	
AA2	ACBCLK	
AA3	GPIO[8]	
AA4	GPIO[209]	DMA_REQ3
AA5	TDI	
AA6	GPIO[207]	
AA7	GPIO[206]	
AA8	тск	
AA9	GPIO[26]	N1TXD1
AA10	N1RXD1	
AA11	N0TXD1	
AA12	NOTXEN	
AA13	GPIO[203]	
AA14	GPIO[201]	
AA15	PCI_CBE3#	
AA16	PCI_CBE1#	
AA17	PCI_AD31	
AA18	PCI_AD26	
AA19	PCI_AD22	
AA20	PCI_AD20	
AA21	USBH1P	
AA22	V _{DDX}	
AA23	PCI_AD12	
AB1	ACDI	
AB2	V _{SS}	

Pin No.	Default Signal	Alternate Signal
AB3	V _{DDX}	
AB4	TDO	
AB5	N1COL	
AB6	V _{SS}	
AB7	V _{DDX}	
AB8	N1RXD3	
AB9	GPIO[24]	N1TXEN
AB10	N1RXD0	
AB11	N1TXCLK	
AB12	GPIO[205]	
AB13	N0RXD1	
AB14	NOCRS	
AB15	PCI_RST#	
AB16	PCI_INTD#	
AB17	V _{SS}	
AB18	V _{DDX}	
AB19	PCI_AD29	
AB20	PCI_AD27	
AB21	PCI_AD23	
AB22	V _{SS}	
AB23	PCI_AD14	
AC1	GPIO[10]	U3DSR#

Table 13-1. Pin Assignment — Sorted by Pin Number (Continued)

Pin No.	Default Signal	Alternate Signal
AC2	GPIO[9]	U3CTS#
AC3	GPIO[213]	
AC4	N1MDIO	
AC5	N1MDC	
AC6	N1RXDV	
AC7	N1RXCLK	
AC8	N1RXD2	
AC9	NOMDC	
AC10	N0TXD2	
AC11	N0TXD0	
AC12	GPIO[204]	
AC13	N0RXD0	
AC14	N0TXCLK	
AC15	GPIO[200]	PCI_RSTO#
AC16	PCI_CBE2#	
AC17	PCI_CBE0#	
AC18	PCI_IDSEL	
AC19	PCI_AD30	
AC20	PCI_AD28	
AC21	PCI_AD24	
AC22	PCI_AD19	
AC23	PCI_AD18	

Table 13-2. Pin Assignment — Sorted Alphabetically by Default Signal

Default Signal	Alternate Signal	Pin No.	Default Signal	Alternate Signal	Pin No.
ACBCLK		AA2	GPIO[210]		Y7
ACDI		AB1	GPIO[211]		W5
ACDO		Y2	GPIO[212]		Y6
ACRST#		W3	GPIO[213]		AC3
ACSYNC		AA1	GPIO[214]		W4
EWAIT#		A12	GPIO[215]		Y4
GPIO[0]		E6	LCLK		D12
GPIO[1]		D6	LRD0#		C11
GPIO[2]	EXTCLK0	A7	LRD1#		D11
GPIO[3]	EXTCLK1	D7	LWAIT#		B11
GPIO[4]	DMA_REQ0	A8	LWR0#		F11
GPIO[5]	DMA_REQ1	B8	LWR1#		C12
GPIO[6]	SMROMCKE	D9	N0COL		V11
GPIO[7]		D10	N0CRS		AB14
GPIO[8]		AA3	N0MDC		AC9
GPIO[9]	U3CTS#	AC2	NOMDIO		Y10
GPIO[10]	U3DSR#	AC1	NORXCLK		Y13
GPIO[11]	U3DCD#	Y3	N0RXD0		AC13
GPIO[12]	U3RI#	Y5	N0RXD1		AB13
GPIO[13]	U3RTS#	Y1	N0RXD2		V14
GPIO[14]	U3DTR#	V3	N0RXD3		V13
GPIO[15]		U4	NORXDV		Y12
GPIO[20]	U0TXD	M23	NOTXCLK		AC14
GPIO[23]	U3TXD	M22	N0TXD0		AC11
GPIO[24]	N1TXEN	AB9	N0TXD1		AA11
GPIO[25]	N1TXD0	Y9	N0TXD2		AC10
GPIO[26]	N1TXD1	AA9	N0TXD3		Y11
GPIO[27]	N1TXD2	V9	NOTXEN		AA12
GPIO[28]	N1TXD3	Y8	N1COL		AB5
GPIO[200]	PCI_RSTO#	AC15	N1CRS		V10
GPIO[201]		AA14	N1MDC		AC5
GPIO[202]		Y14	N1MDIO		AC4
GPIO[203]		AA13	N1RXCLK		AC7
GPIO[204]		AC12	N1RXD0		AB10
GPIO[205]		AB12	N1RXD1		AA10
GPIO[206]		AA7	N1RXD2		AC8
GPIO[207]		AA6	N1RXD3		AB8
GPIO[208]	DMA_REQ2	W6	N1RXDV		AC6
GPIO[209]	DMA_REQ3	AA4	N1TXCLK		AB11

Table 13-2. Pin Assignment — Sorted Alphabetically by Default Signal (Continued)

Default Signal	Alternate Signal	Pin No.
PCE1#		B10
PCE2#		A11
PCI_AD0		V23
PCI_AD1		W23
PCI_AD2		W22
PCI_AD3		T21
PCI_AD4		T20
PCI_AD5		W21
PCI_AD6		V21
PCI_AD7		Y23
PCI_AD8		U21
PCI_AD9		Y22
PCI_AD10		U20
PCI_AD11		V19
PCI_AD12		AA23
PCI_AD13		Y21
PCI_AD14		AB23
PCI_AD15		V20
PCI_AD16		W18
PCI_AD17		W19
PCI_AD18		AC23
PCI_AD19		AC22
PCI_AD20		AA20
PCI_AD21		Y18
PCI_AD22		AA19
PCI_AD23		AB21
PCI_AD24		AC21
PCI_AD25		Y17
PCI_AD26		AA18
PCI_AD27		AB20
PCI_AD28		AC20
PCI_AD29		AB19
PCI_AD30		AC19
PCI_AD31		AA17
PCI_CBE0#		AC17
PCI_CBE1#		AA16
PCI_CBE2#		AC16
PCI_CBE3#		AA15
PCI_CFG		R21

Default Signal	Alternate Signal	Pin No.
PCI_CLK		N21
PCI_CLKO		N20
PCI_DEVSEL#		N22
PCI_FRAME#		M20
PCI_GNT0#		P21
PCI_GNT1#		P20
PCI_GNT2#		T23
PCI_GNT3#		T22
PCI_IDSEL		AC18
PCI_INTA#		Y16
PCI_INTB#		V15
PCI_INTC#		Y15
PCI_INTD#		AB16
PCI_IRDY#		M21
PCI_LOCK#		P22
PCI_PAR		P18
PCI_PERR#		U23
PCI_REQ0#		N18
PCI_REQ1#		R23
PCI_REQ2#		R22
PCI_REQ3#		R18
PCI_RST#		AB15
PCI_SERR#		R20
PCI_STOP#		L18
PCI_TRDY#		P23
PIOR#		A9
PIOS16#		F9
PIOW#		C9
POE#		B9
PREG#		A10
PWAIT#		F10
PWE#		C10
PWR_EN		E5
RAD0		C20
RAD1		A21
RAD2		C21
RAD3		C22
RAD4		B23
RAD5		A22

Table 13-2. Pin Assignment — Sorted Alphabetically by Default Signal (Continued)

Default Signal	Alternate Signal	Pin No.
RAD6		D20
RAD7		D19
RAD8		A23
RAD9		E20
RAD10		E19
RAD11		E21
RAD12		F19
RAD13		C23
RAD14		F20
RAD15		D21
RAD16		F21
RAD17		D22
RAD18		D23
RAD19		G20
RAD20		G21
RAD21		E22
RAD22		E23
RAD23		F23
RAD24		H21
RAD25		H20
RAD26		G23
RAD27		H23
RAD28		H22
RAD29		J21
RAD30		J20
RAD31		J23
RBE0#		J22
RBE1#		K22
RBE2#		J18
RBE3#		K21
RCS0#		L23
RCS1#		L21
RCS2#		K18
RCS3#		L22
RD0		F13
RD1		B12
RD2		A13
RD3		B13
RD4		C13

Default Signal	Alternate Signal	Pin No.
RD5		D13
RD6		A14
RD7		B14
RD8		A15
RD9		F14
RD10		D14
RD11		C14
RD12		B15
RD13		F15
RD14		B16
RD15		C15
RD16		D15
RD17		A16
RD18		A17
RD19		A18
RD20		D16
RD21		C16
RD22		D17
RD23		A19
RD24		A20
RD25		B19
RD26		C17
RD27		C18
RD28		C19
RD29		E18
RD30		B20
RD31		D18
RESETIN#		A6
RESETOUT#		D3
ROE#		K23
ROMSEL		C5
ROMSIZE		D5
RWE#		K20
SDA0		G4
SDA1		НЗ
SDA2		F1
SDA3		E1
SDA4		E2
SDA5		G3

Alternate Signal Pin No.

Table 13-2. Pin Assignment — Sorted Alphabetically by Default Signal (Continued)

Default Signal	Alternate Signal	Pin No.	Default Signal
SDA6		F5	SDD22
SDA7		D1	SDD23
SDA8		C1	SDD24
SDA9		F3	SDD25
SDA10		F4	SDD26
SDA11		E3	SDD27
SDA12		E4	SDD28
SDBA0		H2	SDD29
SDBA1		G1	SDD30
SDCAS#		J2	SDD31
SDCKE		J1	SDQM0#
SDCLK0		M4	SDQM1#
SDCLK1		K4	SDQM2#
SDCLK2		K3	SDQM3#
SDCS0#		L1	SDRAS#
SDCS1#		L2	SDWE#
SDCS2#		J6	TC0
SDD0		V4	TC1
SDD1		V5	TC2
SDD2		W2	TC3
SDD3		W1	TCK
SDD4		V2	TDI
SDD5		U3	TDO
SDD6		V1	TESTEN
SDD7		T4	TMS
SDD8		R4	TRST#
SDD9		Т3	U0RXD
SDD10		U1	U3RXD
SDD11		R3	USBDM
SDD12		P6	USBDP
SDD13		T1	USBH1M
SDD14		R2	USBH1P
SDD15		P4	V _{DDI}
SDD16		P3	
SDD17		N6	
SDD18		R1	─
SDD19		P2	
SDD20		P1	
SDD21		N4	

Belduit Olghai	Alternate Olginar	
SDD22		N3
SDD23		N2
SDD24		N1
SDD25		L6
SDD26		M3
SDD27		L4
SDD28		M1
SDD29		M2
SDD30		L3
SDD31		K6
SDQM0#		J3
SDQM1#		J4
SDQM2#		H4
SDQM3#		H1
SDRAS#		K2
SDWE#		K1
TC0		C6
TC1		C7
TC2		C8
TC3		D8
ТСК		AA8
TDI		AA5
TDO		AB4
TESTEN		B1
TMS		C3
TRST#		D4
UORXD		L20
U3RXD		N23
USBDM	USBH0M	Y20
USBDP	USBH0P	Y19
USBH1M		W20
USBH1P		AA21
V _{DDI}		H11, H12, H13, K16, L8, L16, M8, M16, N8, N16, T11, T12, T13, T14

Default Signal	Alternate Signal	Pin No.
V _{DDX}		B6, B17, B21, D2, F7, F8, F16, F17, F22, G2, G6, G18, H6, H10, H14, H18, J9, J15, K8, P8, P15, P16, R6, R9, R15, T6, T10, T18, U2, U6, U18, U22, V7, V8, V16, V17, AA22, AB3, AB7, AB18
VDDXOK		C4
V _{SS}		B7, B18, B22, C2, F2, G22, J10, J11, J12, J13, J14, K9, K10, K11, K12, K13, K14, K15, L9, L10, L11, L12, L13, L14, L15, M9, M10, M11, M12, M13, M14, M15, N9, N10, N11, N12, N13, N14, N15, P9, P10, P11, P12, P13, P14, R10, R11, R12, R13, R14, T2, V22, AB2, AB6, AB17, AB22

Table 13-2	Pin Assignment — Sorted Alphabetically by Default Signal (Continued)
	r in Assignment — Sorted Alphabetically by Delault Signal (Continued)

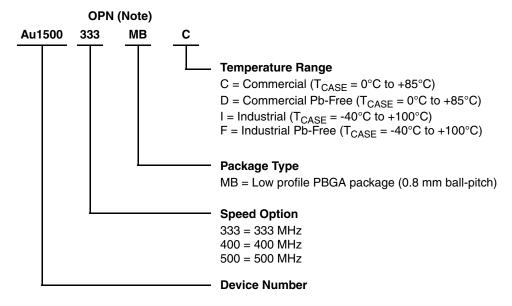

Default Signal	Alternate Signal	Pin No.
XAGND12		B5
XAGND32		B3
XPWR12		B4
XPWR32		B2
XTI12		A5
XTI32		A3
XTO12		A4
XTO32		A2

Table 13-3. Pin Assignment — Alternate Signals Sorted Alphabetically			
Alternate Signal	Default Signal	Pin No.	
EXTCLK0	GPIO[2]	A7	
EXTCLK1	GPIO[3]	D7	
DMA_REQ0	GPIO[4]	A8	
DMA_REQ1	GPIO[5]	B8	
DMA_REQ2	GPIO[208]	AA3	
DMA_REQ3	GPIO[209]	AA4	
N1TXD0	GPIO[25]	Y9	
N1TXD1	GPIO[26]	AA9	
N1TXD2	GPIO[27]	V9	
N1TXD3	GPIO[28]	Y8	
N1TXEN	GPIO[24]	AB9	
PCI_RSTO#	GPIO[200]	AC15	
SMROMCKE	GPIO[6]	D9	
U0TXD	GPIO[20]	M23	
U3CTS#	GPIO[9]	AC2	
U3DCD#	GPIO[11]	Y3	
U3DSR#	GPIO[10]	AC1	
U3DTR#	GPIO[14]	V3	
U3RI#	GPIO[12]	Y5	
U3RTS#	GPIO[13]	Y1	
U3TXD	GPIO[23]	M22	
USBH0M	USBDM	Y20	
USBH0P	USBDP	Y19	

13.3 Ordering Information

Ordering information for the AMD Alchemy[™] Au1500[™] processor is contained in this section. The ordering part number (OPN) is formed by a combination of elements. An example of the OPN is shown in Figure 13-3. Valid OPN combinations are provided in Table 13-4.

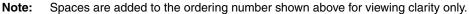


Figure 13-3. OPN Example

Device Number	Speed Option	Package Type	Temperature Range
Au1500	333	MB	С
			D
			Ι
			F
Au1500	400	MB	С
			D
Au1500	500	MB	С
			D
Note: Consult your local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations possibly not listed.			

Table 13-4. Valid OPN Combinations

Support Documentation

A.1 Memory Map

The peripheral devices on the Au1500 processor contain memory-mapped registers visible to software. Table A-1 contains the memory map for the peripheral devices and physical memory. The addresses are 36 bits wide.

Start Address	End Address	Size (MB)	Function
0x0 0000 0000	0x0 0FFF FFFF	256	Memory KSEG 0/1
0x0 1000 0000	0x0 11FF FFFF	32	I/O Devices on Peripheral Bus
0x0 1200 0000	0x0 13FF FFFF	32	Reserved
0x0 1400 0000	0x0 17FF FFFF	64	I/O Devices on System Bus
0x0 1800 0000	0x0 1FFF FFFF	128	Memory Mapped. 0x0 1FC0 0000 must contain the boot vec- tor so this is typically where Flash or ROM is located.
0x0 2000 0000	0x0 7FFF FFFF	1536	Memory Mapped
0x0 8000 0000	0x0 EFFF FFFF	1792	Memory Mapped. Currently this space is memory mapped, but it should be considered reserved for future use.
0x0 F000 0000	0x0 FFFF FFFF	256	Debug Probe
0x1 0000 0000	0x3 FFFF FFFF	4096 * 3	Reserved
0x4 0000 0000	0x4 FFFF FFFF	4096	PCI Uncached Memory Space
0x5 0000 0000	0x5 FFFF FFFF	4096	PCI I/O Space
0x6 0000 0000	0x6 FFFF FFFF	4096	PCI Configuration Space
0x7 0000 0000	0xC FFFF FFFF	4096 * 7	Reserved
0xD 0000 0000	0xD FFFF FFFF	4096	I/O Device
0xE 0000 0000	0xE FFFF FFFF	4096	External LCD Controller Interface
0xF 0000 0000	0xF FFFF FFFF	4096	PCMCIA Interface

Table A-1. Basic Au1500[™] Processor Physical Address Memory Map

The Au1500 processor system bus devices are mapped at the addresses based at 0x0 1400 0000. See Table A-2 for complete addresses.

Start Address	End Address	Size	Function
0x0 1400 0000	0x0 1400 0FFF	4 KB	SDRAM Memory Controller
0x0 1400 1000	0x0 1400 1FFF	4 KB	SRAM/Flash Memory Controller
0x0 1400 2000	0x0 1400 2FFF	4 KB	DMA
0x0 1400 4000	0x0 1400 4FFF	4 KB	Ethernet DMA

Table A-2. System Bus Devices Physical Address Memory Map

The Au1500 processor peripheral bus devices are based at 0x0 1100 0000. The individual memory spaces of the devices are defined in Table A-3.

	-		
Start Address	End Address	Size	Function
0x0 1000 0000	0x0 100F FFFF	1 MB	AC97 Controller
0x0 1010 0000	0x0 101F FFFF	1 MB	USB Host
0x0 1020 0000	0x0 102F FFFF	1 MB	USB Device
0x0 1030 0000	0x0 103F FFFF	1 MB	
0x0 1040 0000	0x0 104F FFFF	1 MB	Interrupt Controller 0
0x0 1050 0000	0x0 110F FFFF	12 MB	
0x0 1110 0000	0x0 111F FFFF	1 MB	UART0
0x0 1120 0000	0x0 113F FFFF	2 MB	
0x0 1140 0000	0x0 114F FFFF	1 MB	UART3
0x0 1150 0000	0x0 115F FFFF	1 MB	Ethernet MAC
0x0 1160 0000	0x0 116F FFFF	1 MB	
0x0 1170 0000	0x0 117F FFFF	1 MB	Secondary GPIO
0x0 1180 0000	0x0 118F FFFF	1 MB	Interrupt Controller 1
0x0 1190 0000	0x0 119F FFFF	1 MB	System Control: RTC, TOY, Timers, Primary GPIO, Power Management

Table A-3. Peripheral Bus Devices Physical Address Memory Map

A.1.1 Device Memory Map

Table A-4 lists all of the devices which are memory mapped to the Au1500 processor core. These devices are all mapped within KSEG1 (non-cached, non-TLB). All 32-bit addresses are translated into 36-bit addresses by changing bits [31:29] to zero and adding bits [35:32] which are set to zero.

Register	KSEG1 Address	Physical Address	Register	KSEG1 Address	Physical Address
AC97 Controller- Se	ection 7.1 on page 10	2	ic0_cfg1set	0xB040 0048	0x0 1040 0048
ac97_config	0xB000 0000	0x0 1000 0000	ic0_cfg1clr	0xB040 004C	0x0 1040 004C
ac97 status	0xB000 0004	0x0 1000 0004	ic0_cfg2rd	0xB040 0050	0x0 1040 0050
ac97_data	0xB000 0008	0x0 1000 0008	ic0_cfg2set	0xB040 0050	0x0 1040 0050
ac97_cmmd	0xB000 000C	0x0 100 0000C	ic0_cfg2clr	0xB040 0054	0x0 1040 0054
ac97 cmmdresp	0xB000 000C	0x0 1000 000C	ic0_req0int	0xB040 0054	0x0 1040 0054
ac97 control	0xB000 0010	0x0 1000 0010	ic0_srcrd	0xB040 0058	0x0 1040 0058
-	er - Section 7.2 on pa		ic0_srcset	0xB040 0058	0x0 1040 0058
	•	•	ic0_srcclr	0xB040 005C	0x0 1040 005C
Open HCI Register Set Base	0xB010 0000	0x0 1010 0000	ic0_req1int	0xB040 005C	0x0 1040 005C
usbh_enable	0xB017 FFFC	0x0 1017 FFFC	ic0_assignrd	0xB040 0060	0x0 1040 0060
	ller - Section 7.3 on	nage 109	ic0_assignset	0xB040 0060	0x0 1040 0060
	-	_	ic0_assignclr	0xB040 0064	0x0 1040 0064
usbd_ep0rd	0xB020 0000	0x0 1020 0000	ic0_wakerd	0xB040 0068	0x0 1040 0068
usbd_ep0wr	0xB020 0004	0x0 1020 0004	ic0_wakeset	0xB040 006C	0x0 1040 006C
usbd_ep1wr	0xB020 0008	0x0 1020 0008	ic0_wakeclr	0xB040 0070	0x0 1040 0070
usbd_ep2wr	0xB020 000C	0x0 1020 000C	ic0_maskrd	0xB040 0070	0x0 1040 0070
usbd_ep3rd	0xB020 0010	0x0 1020 0010	ic0_maskset	0xB040 0074	0x0 1040 0074
usbd_ep4rd	0xB020 0014	0x0 1020 0014	ic0_maskclr	0xB040 0078	0x0 1040 0078
usbd_inten	0xB020 0018	0x0 1020 0018	ic0_risingrd	0xB040 0078	0x0 1040 0078
usbd_intstat	0xB020 001C	0x0 1020 001c	ic0_risingclr	0xB040 007C	0x0 1040 007C
usbd_config	0xB020 0020	0x0 1020 0020	ic0_fallingrd	0xB040 007C	0x0 1040 007C
usbd_ep0cs	0xB020 0024	0x0 1020 0024	ic0_fallingclr	0xB040 0080	0x0 1040 0080
usbd_ep1cs	0xB020 0028	0x0 1020 0028	UART0 - Section 7.5.2 on page 140		L
usbd_ep2cs	0xB020 002C	0x0 1020 002C	uart0_rxdata	0xB110 0000	0x0 1110 0000
usbd_ep3cs	0xB020 0030	0x0 1020 0030	uart0_txdata	0xB110 0004	0x0 1110 0004
usbd_ep4cs	0xB020 0034	0x0 1020 0034	uart0_inten	0xB110 0004	0x0 1110 0004
usbd_ep0rdstat	0xB020 0040	0x0 1020 0040	uart0_intcause	0xB110 0008	0x0 1110 0008
usbd_ep0wrstat	0xB020 0044	0x0 1020 0044			
usbd_ep1wrstat	0xB020 0048	0x0 1020 0048	uart0_fifoctrl	0xB110 0010 0xB110 0014	0x0 1110 0010
usbd_ep2wrstat	0xB020 004c	0x0 1020 004c	uart0_linectrl		0x0 1110 0014
usbd_ep3rdstat	0xB020 0050	0x0 1020 0050		0xB110 0018	0x0 1110 0018
usbd_ep4rdstat	0xB020 0054	0x0 1020 0054	uart0_linestat	0xB110 001C	0x0 1110 001C
usbd_enable	0xB020 0058	0x0 1020 0058		0xB110 0020	0x0 1110 0020
Interrupt Controller	0 - Section 6.2 on pa	age 97	uart0_clkdiv	0xB110 0028	0x0 1110 0028
ic0_cfg0rd	0xB040 0040	0x0 1040 0040	uart0_enable	0xB110 0100	0x0 1110 0100
ic0_cfg0set	0xB040 0040	0x0 1040 0040	UART3 - Section 7	.5.2 on page 140	1
ic0_cfg0clr	0xB040 0044	0x0 1040 0044	uart3_rxdata	0xB140 0000	0x0 1140 0000
ic0_cfg1rd	0xB040 0048	0x0 1040 0048	uart3_txdata	0xB140 0004	0x0 1140 0004

Table A-4. Device Memory Map

Register	KSEG1 Address	Physical Address
uart3_inten	0xB140 0008	0x0 1140 0008
uart3_intcause	0xB140 000C	0x0 1140 000C
uart3_fifoctrl	0xB140 0010	0x0 1140 0010
uart3_linectrl	0xB140 0014	0x0 1140 0014
uart3_mdmctrl	0xB140 0018	0x0 1140 0018
uart3_linestat	0xB140 001C	0x0 1140 001C
uart3_mdmstat	0xB140 0020	0x0 1140 0020
uart3_autoflow	0xB140 0024	0x0 1140 0024
uart3_clkdiv	0xB140 0028	0x0 1140 0028
uart3_enable	0xB140 0100	0x0 1140 0100
Ethernet Controlle	r MAC0 - Section 7.4.2	2 on page 120
mac0_control	0xB150 0000	0x0 1150 0000
mac0_addrhigh	0xB150 0004	0x0 1150 0004
mac0_addrlow	0xB150 0008	0x0 1150 0008
mac0_hashhigh	0xB150 000C	0x0 1150 000C
mac0_hashlow	0xB150 0010	0x0 1150 0010
mac0_miictrl	0xB150 0014	0x0 1150 0014
mac0_miidata	0xB150 0018	0x0 1150 0018
mac0_flowctrl	0xB150 001C	0x0 1150 001C
mac0_vlan1	0xB150 0020	0x0 1150 0020
mac0_vlan2	0xB150 0024	0x0 1150 0024
Ethernet Controlle	r MAC1 - Section 7.4.2	2 on page 120
mac1_control	0xB151 0000	0x0 1151 0000
mac1_addrhigh	0xB151 0004	0x0 1151 0004
mac1_addrlow	0xB151 0008	0x0 1151 0008
mac1_hashhigh	0xB151 000C	0x0 1151 000C
mac1_hashlow	0xB151 0010	0x0 1151 0010
mac1_miictrl	0xB151 0014	0x0 1151 0014
mac1_miidata	0xB151 0018	0x0 1151 0018
mac1_flowctrl	0xB151 001C	0x0 1151 001C
mac1_vlan1	0xB151 0020	0x0 1151 0020
mac1_vlan2	0xB151 0024	0x0 1151 0024
Ethernet Controlle	r Enable - Section 7.4	.3 on page 128
macen_mac0	0xB152 0000	0x0 1152 0000
macen_mac1	0xB152 0004	0x0 1152 0004
Secondary GPIO -	Section 7.6.2 on page	149
gpio2_dir	0xB170 0000	0x0 1170 0000
reserved	0xB170 0004	0x0 1170 0004
gpio2_output	0xB170 0008	0x0 1170 0008
gpio2_pinstate	0xB170 000C	0x0 1170 000C
gpio2_inten	0xB170 0010	0x0 1170 0010

Table A-4. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address			
gpio2_enable	0xB170 0014	0x0 1170 0014			
Interrupt Controller 1 - Section 6.2 on page 97					
ic1_cfg0rd	0xB180 0040	0x0 1180 0040			
ic1_cfg0set	0xB180 0040	0x0 1180 0040			
ic1_cfg0clr	0xB180 0044	0x0 1180 0044			
ic1_cfg1rd	0xB180 0048	0x0 1180 0048			
ic1_cfg1set	0xB180 0048	0x0 1180 0048			
ic1_cfg1clr	0xB180 004C	0x0 1180 004C			
ic1_cfg2rd	0xB180 0050	0x0 1180 0050			
ic1_cfg2set	0xB180 0050	0x0 1180 0050			
ic1_cfg2clr	0xB180 0054	0x0 1180 0054			
ic1_req0int	0xB180 0054	0x0 1180 0054			
ic1_srcrd	0xB180 0058	0x0 1180 0058			
ic1_srcset	0xB180 0058	0x0 1180 0058			
ic1_srcclr	0xB180 005C	0x0 1180 005C			
ic1_req1int	0xB180 005C	0x0 1180 005C			
ic1_assignrd	0xB180 0060	0x0 1180 0060			
ic1_assignset	0xB180 0060	0x0 1180 0060			
ic1_assignclr	0xB180 0064	0x0 1180 0064			
ic1_wakerd	0xB180 0068	0x0 1180 0068			
ic1_wakeset	0xB180 006C	0x0 1180 006C			
ic1_wakeclr	0xB180 0070	0x0 1180 0070			
ic1_maskrd	0xB180 0070	0x0 1180 0070			
ic1_maskset	0xB180 0074	0x0 1180 0074			
ic1_maskclr	0xB180 0078	0x0 1180 0078			
ic1_risingrd	0xB180 0078	0x0 1180 0078			
ic1_risingclr	0xB180 007C	0x0 1180 007C			
ic1_fallingrd	0xB180 007C	0x0 1180 007C			
ic1_fallingclr	0xB180 0080	0x0 1180 0080			
Clock Controller - S	ection 8.1.1 on page	155			
sys_freqctrl0	0xB190 0020	0x0 1190 0020			
sys_freqctrl1	0xB190 0024	0x0 1190 0024			
sys_clksrc	0xB190 0028	0x0 1190 0028			
sys_cpupll	0xB190 0060	0x0 1190 0060			
sys_auxpll	0xB190 0064	0x0 1190 0064			
TOY & RTC - Section	on 8.2.1 on page 164				
sys_toytrim	0xB190 0000	0x0 1190 0000			
sys_toywrite	0xB190 0004	0x0 1190 0004			
sys_matchtoy0	0xB190 0008	0x0 1190 0008			
sys_matchtoy1	0xB190 000C	0x0 1190 000C			
sys_matchtoy2	0xB190 0010	0x0 1190 0010			
-					

Physical Address

0x0 1400 1000

0x0 1400 1004

0x0 1400 1008

0x0 1400 1010

0x0 1400 1014

0x0 1400 1018

0x0 1400 1020

0x0 1400 1024

0x0 1400 1028

0x0 1400 1030

0x0 1400 1034

0x0 1400 1038

0x0 1400 2000

0x0 1400 2000

0x0 1400 2004

0x0 1400 2008

0x0 1400 200C

0x0 1400 2010

0x0 1400 2014

0x0 1400 2018

0x0 1400 2100

0x0 1400 2100

0x0 1400 2104

0x0 1400 2108

0x0 1400 210C

0x0 1400 2110

0x0 1400 2114

0x0 1400 2118

0x0 1400 2200

0x0 1400 2200

0x0 1400 2204 0x0 1400 2208

0x0 1400 220C

0x0 1400 2210

0x0 1400 2214

0x0 1400 2218

Table A-4. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address	Register	KSEG1 Address	Physic
sys_cntrctrl	0xB190 0014	0x0 1190 0014	Static Bus Controll	er - Section 3.2.1 on	page 53
ys_toyread	0xB190 0040	0x0 1190 0040	mem_stcfg0	0xB190 1000	0x0 1
ys_rtctrim	0xB190 0044	0x0 1190 0044	mem_sttime0	0xB190 1004	0x0 1
ys_rtcwrite	0xB190 0048	0x0 1190 0048	mem_staddr0	0xB190 1008	0x0 1
/s_rtcmatch0	0xB190 004C	0x0 1190 004C	mem_stcfg1	0xB190 1010	0x0 1
s_rtcmatch1	0xB190 0050	0x0 1190 0050	mem_sttime1	0xB190 1014	0x0 1
s_rtcmatch2	0xB190 0054	0x0 1190 0054	 mem_staddr1	0xB190 1018	0x0 ⁻
s_rtcread	0xB190 0058	0x0 1190 0058	mem_stcfg2	0xB190 1020	0x0 ⁻
imary GPIO - Se	ction 8.3.2 on page 16	9	mem_sttime2	0xB190 1024	0x0 ⁻
/s_pinfunc	0xB190 002C	0x0 1190 002C	mem_staddr2	0xB190 1028	0x0 1
vs_trioutrd	0xB190 0100	0x0 1190 0100	mem_stcfg3	0xB190 1030	0x0 1
s_trioutclr	0xB190 0100	0x0 1190 0100	mem_sttime3	0xB190 1034	0x0 1
vs_outputrd	0xB190 0108	0x0 1190 0108	mem_staddr3	0xB190 1038	0x0 1
s_outputset	0xB190 0108	0x0 1190 0108	DMA Controller 0 -	Section 5.1 on page	87
/s_outputclr	0xB190 010C	0x0 1190 010C	dma0_moderead	0xB190 2000	0x0 1
s_pinstaterd	0xB190 0110	0x0 1190 0110	dma0_modeset	0xB190 2000	0x0
s_pininputen	0xB190 0110	0x0 1190 0110	dma0_modeclr	0xB190 2000	0x0
ower Manageme	nt - Section 8.4.5 on p	age 175	dma0_peraddr	0xB190 2004	0x0
s_scratch0	0xB190 0018	0x0 1190 0018	dma0_buf0addr	0xB190 2000	0x0 ·
s_scratch1	0xB190 0010	0x0 1190 0010	dma0_buf0size	0xB190 2000	0x0
s_wakemsk	0xB190 0034	0x0 1190 0034	dma0_buf1addr	0xB190 2014	0x0
s_endian	0xB190 0034	0x0 1190 0038	dma0_buf1size	0xB190 2018	0x0
s_powerctrl	0xB190 003C	0x0 1190 003C			
s_wakesrc	0xB190 005C	0x0 1190 005C		Section 5.1 on page	1
s_wakesie	0xB190 0078	0x0 1190 0078	dma1_moderead	0xB190 2100	0x0
/s_sleep	0xB190 0078	0x0 1190 0070	dma1_modeset	0xB190 2100	0x0 ⁻
			dma1_modeclr	0xB190 2104	0x0
DRAM Controlle	r - Section 3.1.2 on page		dma1_peraddr	0xB190 2108	0x0 ⁻
em_sdmode0	0xB190 0000	0x0 1400 0000	dma1_buf0addr	0xB190 210C	0x0 1
em_sdmode1	0xB190 0004	0x0 1400 0004	dma1_buf0size	0xB190 2110	0x0
em_sdmode2	0xB190 0008	0x0 1400 0008	dma1_buf1addr	0xB190 2114	0x0
iem_sdaddr0	0xB190 000C	0x0 1400 000C	dma1_buf1size	0xB190 2118	0x0
em_sdaddr1	0xB190 0010	0x0 1400 0010	DMA Controller 2 -	Section 5.1 on page	87
iem_sdaddr2	0xB190 0014	0x0 1400 0014	dma2_moderead	0xB190 2200	0x0
em_sdrefcfg	0xB190 0018	0x0 1400 0018	dma2_modeset	0xB190 2200	0x0
nem_sdprecmd	0xB190 001C	0x0 1400 001C	dma2_modeclr	0xB190 2204	0x0
nem_sdautoref	0xB190 0020	0x0 1400 0020	 dma2_peraddr	0xB190 2208	0x0 ⁻
nem_sdwrmd0	0xB190 0024	0x0 1400 0024	dma2_buf0addr	0xB190 220C	0x0
nem_sdwrmd1	0xB190 0028	0x0 1400 0028	dma2_buf0size	0xB190 2210	0x0 ⁻
nem_sdwrmd2	0xB190 002C	0x0 1400 002C	dma2_buf1addr	0xB190 2214	0x0
nem_sdsleep	0xB190 0030	0x0 1400 0030	dma2_buf1size	0xB190 2218	0x0
nem_sdsmcke	0xB190 0034	0x0 1400 0034			1

Register	KSEG1 Address	Physical Address	
DMA Controller 3 - Section 5.1 on page 87			
dma3_moderead	0xB190 2300	0x0 1400 2300	
dma3_modeset	0xB190 2300	0x0 1400 2300	
dma3_modeclr	0xB190 2304	0x0 1400 2304	
dma3_peraddr	0xB190 2308	0x0 1400 2308	
dma3_buf0addr	0xB190 230C	0x0 1400 230C	
dma3_buf0size	0xB190 2310	0x0 1400 2310	
dma3_buf1addr	0xB190 2314	0x0 1400 2314	
dma3_buf1size	0xB190 2318	0x0 1400 2318	
DMA Controller 4- S	Section 5.1 on page 8	37	
dma4_moderead	0xB190 2400	0x0 1400 2400	
dma4_modeset	0xB190 2400	0x0 1400 2400	
dma4_modeclr	0xB190 2404	0x0 1400 2404	
dma4_peraddr	0xB190 2408	0x0 1400 2408	
dma4_buf0addr	0xB190 240C	0x0 1400 240C	
dma4_buf0size	0xB190 2410	0x0 1400 2410	
dma4_buf1addr	0xB190 2414	0x0 1400 2414	
dma4_buf1size	0xB190 2418	0x0 1400 2418	
DMA Controller 5 -	Section 5.1 on page	87	
dma5_moderead	0xB190 2500	0x0 1400 2500	
dma5_modeset	0xB190 2500	0x0 1400 2500	
dma5_modeclr	0xB190 2504	0x0 1400 2504	
dma5_peraddr	0xB190 2508	0x0 1400 2508	
dma5_buf0addr	0xB190 250C	0x0 1400 250C	
dma5_buf0size	0xB190 2510	0x0 1400 2510	
dma5_buf1addr	0xB190 2514	0x0 1400 2514	
dma5_buf1size	0xB190 2518	0x0 1400 2518	
DMA Controller 6 -	Section 5.1 on page	87	
dma6_moderead	0xB190 2600	0x0 1400 2600	
dma6_modeset	0xB190 2600	0x0 1400 2600	
dma6_modeclr	0xB190 2604	0x0 1400 2604	
dma6_peraddr	0xB190 2608	0x0 1400 2608	
dma6_buf0addr	0xB190 260C	0x0 1400 260C	
dma6_buf0size	0xB190 2610	0x0 1400 2610	
dma6_buf1addr	0xB190 2614	0x0 1400 2614	
dma6_buf1size	0xB190 2618	0x0 1400 2618	
DMA Controller 7 - Section 5.1 on page 87			
dma7_moderead	0xB190 2700	0x0 1400 2700	
dma7_modeset	0xB190 2700	0x0 1400 2700	
dma7_modeclr	0xB190 2704	0x0 1400 2704	

Table A-4. D	evice Memory Map (Continued)
--------------	------------------------------

Register	KSEG1 Address	Physical Address
-		
dma7_peraddr	0xB190 2708	0x0 1400 2708
dma7_buf0addr	0xB190 270C	0x0 1400 270C
dma7_buf0size	0xB190 2710	0x0 1400 2710
dma7_buf1addr	0xB190 2714	0x0 1400 2714
dma7_buf1size	0xB190 2718	0x0 1400 2718
Ethernet Controller	OMA Channels -Section	on 7.4.4 on page 129
macdma0_tx0stat	0xB190 4000	0x0 1400 4000
macdma0_tx0addr	0xB190 4004	0x0 1400 4004
macdma0_tx0len	0xB190 4008	0x0 1400 4008
macdma0_tx1stat	0xB190 4010	0x0 1400 4010
macdma0_tx1addr	0xB190 4014	0x0 1400 4014
macdma0_tx1len	0xB190 4018	0x0 1400 4018
macdma0_tx2stat	0xB190 4020	0x0 1400 4020
macdma0_tx2addr	0xB190 4024	0x0 1400 4024
macdma0_tx2len	0xB190 4028	0x0 1400 4028
macdma0_tx3stat	0xB190 4030	0x0 1400 4030
macdma0_tx3addr	0xB190 4034	0x0 1400 4034
macdma0_tx3len	0xB190 4038	0x0 1400 4038
macdma0_rx0stat	0xB190 4100	0x0 1400 4100
macdma0_rx0addr	0xB190 4104	0x0 1400 4104
macdma0_rx1stat	0xB190 4110	0x0 1400 4110
macdma0_rx1addr	0xB190 4114	0x0 1400 4114
macdma0_rx2stat	0xB190 4120	0x0 1400 4120
macdma0_rx2addr	0xB190 4124	0x0 1400 4124
macdma0_rx3stat	0xB190 4130	0x0 1400 4130
macdma0_rx3addr	0xB190 4134	0x0 1400 4134
macdma1_tx0stat	0xB190 4200	0x0 1400 4200
macdma1_tx0addr	0xB190 4204	0x0 1400 4204
macdma1_tx0len	0xB190 4208	0x0 1400 4208
macdma1_tx1stat	0xB190 4210	0x0 1400 4210
macdma1_tx1addr	0xB190 4214	0x0 1400 4214
macdma1_tx1len	0xB190 4218	0x0 1400 4218
macdma1_tx2stat	0xB190 4220	0x0 1400 4220
macdma1_tx2addr	0xB190 4224	0x0 1400 4224
macdma1_tx2len	0xB190 4228	0x0 1400 4228
macdma1_tx3stat	0xB190 4230	0x0 1400 4230
macdma1_tx3addr	0xB190 4234	0x0 1400 4234
macdma1_tx3len	0xB190 4238	0x0 1400 4238
macdma1_rx0stat	0xB190 4300	0x0 1400 4300
macdma1_rx0addr	0xB190 4304	0x0 1400 4304
macdma1_rx1stat	0xB190 4310	0x0 1400 4310

Table A-4. Device Memory Map (Continued)

Register	KSEG1 Address	Physical Address
macdma1_rx1addr	0xB190 4314	0x0 1400 4314
macdma1_rx2stat	0xB190 4320	0x0 1400 4320
macdma1_rx2addr	0xB190 4324	0x0 1400 4324
macdma1_rx3stat	0xB190 4330	0x0 1400 4330
macdma1_rx3addr	0xB190 4334	0x0 1400 4334

A.1.2 Programming Tips

A.1.2.1 Memory Mapped Registers

Peripheral, or system device registers should all be marked with the CCA bits to non-cacheable. Access must be on 32-bit boundaries, one 32-bit value at a time. See Section 2.2 "Caches" on page 17 for more information.

30361D

A.2 Data Book Notations

This section addresses some of the terminology used in this book.

A.2.1 Unpredictable and Undefined

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged software can cause UNPREDICTABLE results or operations.

A.2.1.1 Unpredictable

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, or as a function of time on the same implementation or instruction. Software can never depend on results that are UNPREDICT-ABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is generated, it is UNPREDICT-ABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

- Implementations of operations generating UNPREDICTABLE results must not depend on any data source (memory or internal state) which is inaccessible in the current processor mode
- UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in another process
- · UNPREDICTABLE operations must not halt or hang the processor

UNPRED, used to describe the default state of registers, should be taken as meaning UNPREDICATABLE.

A.2.1.2 Undefined

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED operations or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor to an operational state.

A.2.2 Register Fields

In general, fields marked as reserved should be considered UNPREDICTABLE. In other words, these fields should be written zeros and ignored on a read to preserve future compatibility.

A.3 Differences between Au1500[™] and Au1000[™] Processors

A.3.1 Peripherals

The Au1500 processor does not have the following peripherals that are present on the Au1000 processor:

- IrDA
- UART1
- UART2
- SSI
- I²S

The Au1500 processor has added these functions not present on the Au1000 processor:

- PCI 2.2 compliant interface
- General Purpose I/O (GPIO): 39 total, 22 dedicated. (Au1000 has 32 total, 5 dedicated.)

A.3.2 Miscellaneous

The NIC base address has changed from 0x0 1050 0000 to 0x0 1150 0000.

Some inputs to the interrupt controller have changed due to the addition/removal of blocks. Refer to the interrupt controller section for the Au1500 processor interrupt map.

A new CCA encoding has been added to the Au1500 processor. If CCA == 4, all system bus accesses will be cacheline aligned (i.e., no cacheline wrapping is supported). When the PCI Cacheable Memory space is used, it must be mapped to CCA == 4.

JTAG memory overlay of the PCI boot memory is not supported.

A.4 Data Book Revision History

This document is a report of the revision/creation process of the data book for the Au1500 processor. Any revisions (i.e., additions, deletions, parameter corrections, etc.) are recorded in the table(s) below.

Revision (Date)	Description
A	See the AMD Alchemy™ Au1500™ Processor Specification Update (publication ID 27362).
В	
C (June 2005)	
D (March 2006)	Reformatted to bring page count down and correct some minor errors. See Table A-6 for details.

Table A-5. Revision History

Table A-6.	Edits to Current	Revision
------------	------------------	----------

Section	Revisions / Comments
All Sections / General	 Reformatted document for page, figure, table and section titles. — All registers now have either a Heading 3 or 4 associated with it so the electronic PDF will be more useful.
	 Changed active low signals to use "#" instead of an overbar (e.g., ACRST changed to ACRST#).
	Omitted Index and added back cover page.
	Removed "Preliminary" mark.
Section 1.0 "Overview"	 Figure 1-1 "Block Diagram" on page 13: — Changed pages (moved forward to first page of Section 1.0).
	 Section 1.2 "Features" on page 14: - Modified second bullet under HIgh-Bandwidth Memory Buses (removed "with NAND/NOR Flash support").
	 Moved what was Section 1.3 "Data Book Notations" and Section 1.4 "Differences between Au1500[™] and Au1000[™] Processors" in rev c to the Appendix, Sections A.2 and A.3, respec- tively.
Section 5.0 "DMA Controller"	 Table 5-1 "DMA Channel Base Addresses" on page 87: — Corrected cell heading from "KSEG0" to "KSEG1".
	 Section 5.1.4 "DMA Channel Buffer Size Registers" on page 92: — PDF of rev C was messed up and could not be read. Fixed.
Section 8.0 "Sys- tem Control"	 Section 8.4.4 "Device Power Management - Sleep" on page 174: In the second list of steps, corrected physical address in step 2 (i.e., changed from "0x1FC0_0000 to "0x0 1FC0 0000".
	 Section 8.3.1.1 "Pin Function" on page 168: Added active low designator to UART3 signals U3CTS#, U3DSR#, U3DCD#, U3RI#, U3RTS#, U3DTR# in bit 7.
Section 9.0 "Power-up, Reset and Boot"	 Section 9.3 "Boot" on page 182: — Corrected the way KSEG1 and Physical addresses were called out (i.e., changed "0xBFC0_0000" to "0xBFC0 0000" and "0x1FC0_0000" to "0x0 1FC0 0000".

Section	Revisions / Comments
Section 11.0 "Signal Descrip- tions"	 Section 11.0 "Signal Descriptions" on page 200: — Modified "Note" to reflect use of "#" instead of "overbar" to indicate active low signal.
	 Figure 11-1 "External Signals" on page 201: Added active low designator to UART3 signals U3CTS#, U3DSR#, U3DCD#, U3RI#, U3RTS#, U3DTR#.
	 Table 11-3 "Signal Description", "UART3" on page 207: Added active low designator to UART3 signals U3CTS#, U3DSR#, U3DCD#, U3RI#, U3RTS#, U3DTR#.
	 Table 11-3 "Signal Description", "GPIO" on page 210: Added active low designator to UART3 signals mentioned in GPIO9 (U3CTS#), GPIO10 (U3DSR#), GPIO11 (U3DCD#), GPIO12 (U3RI#), GPIO13 (U3RTS#), and GPIO14 (U3DTR#).
Section 12.0 "Electrical and Thermal Specifi- cations"	 Table 12-1 "Absolute Maximum Ratings" on page 216: Updated table to reflect T_{CASE} Commercial and T_{CASE} Industrial.
	 Section 12.5.1 "Power and Voltage for 333, 400, and 500 MHz Rated Parts" on page 218: — This section was three sections (one section for each part), combined into one section.
Section 13.0 "Packaging, Pin Assignments, and Ordering Information"	 Figure 13-2 "Connection Diagram—Top View" on page 240: Added active low designator to UART3 signals U3CTS#, U3DSR#, U3DCD#, U3RI#, U3RTS#, U3DTR#.
	 Table 13-1 "Pin Assignment — Sorted by Pin Number" on page 242: Added active low designator to UART3 signals U3CTS#, U3DSR#, U3DCD#, U3RI#, U3RTS#, U3DTR#.
	 Table 13-2 "Pin Assignment — Sorted Alphabetically by Default Signal" on page 248: Added active low designator to UART3 signals U3CTS#, U3DSR#, U3DCD#, U3RI#, U3RTS#, U3DTR#.
	 Table 13-3 "Pin Assignment — Alternate Signals Sorted Alphabetically" on page 253: — Added active low designator to UART3 signals U3CTS#, U3DSR#, U3DCD#, U3RI#, U3RTS#, U3DTR#.
	 Figure 13-3 "OPN Example" and Table 13-4 "Valid OPN Combinations" on page 254: Updated to reflect T_{CASE} instead of T_A in the Temperature Range description. Added Commerical and Industrial Pb-Free data.

Table A-6. Edits to Current Revision

