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Dorian Shainin

While serving as Chief Inspector of the Hamilton
Standard Division of the United Aircraft Corporation,
Dorian Shainin became more and more concerned about
the lack of sensitive and objective means for the solution
of industrial problems. In his search for an adequate
approach he found himself going back to the notes of a
course in statistics he had taken at the Massachusetts
Institute of Technology.

“Each year that my associates and I combined the
work of others with our own developments, I became
more confident that really difficult problems beyond the
scope of my department - and even the company - would
be considerably simplified by a statistical approach,”
Mr. Shainin explained to the Editors. Consequently he
left United Aircraft some five years ago and joined the
industrial consulting firm of Rath & Strong, Inc., in
order to develop and implement his idea.

The article entitled The Statistically Designed
Experiment: A Tool for Process and Product
Improvement is the direct descendant of Mr. Shainin’s
original ideas, nurtured by his continuing experience
with the concept over the course of the past few years.
He has applied the statistical approach in numerous
industries, including paper, printing, textile, rubber,
silverware, clocks, and nuclear energy, and he has
written extensively. In addition he has played a leading
role in the American Society for Quality Control, and
has received its Brumbaugh Award for outstanding
contribution to the industrial use of quality control.
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A TOOL FOR PROCESS AND
PRODUCT IMPROVEMENT

By Dorian Shainin

•  In a metalworking concern, where a polishing operation
follows plating, 90% of the units pass final inspection, but
10% are rejected. Why?

•  A complex pneumatic device shows exceptional unit-to-
unit variation in performance. Why?

•  Units of a hydromechanical control mechanism vary
widely in performance, even though most of its
components are being kept to close tolerance. Why?

Making improvements in products or processes can
be one of the most challenging - and also one of the most
frustrating - tasks confronting management. To solve a
single problem, numerous hypotheses may be advanced,
tested, and found wanting. Experiments may drag on for
years. After every approach has been exhausted, the
company still seems to be up against a series of endless
and ever-changing variables. If only it were possible to
find the right combination, control the right factors,
maintain the proper balance, so as to achieve continuous,
economical, trouble-free operation!

Is there no better way than trial and error to solve
such problems? Cannot the traditional approach be
bettered? What is needed is a method that gives
assurance that when a change is made in the product or
the process, it will be the right change. The improvement
created should be adequate and lasting. It should not cost
too much or consume too much time.

An approach that fulfills all these requirements is
now available in statistically designed experiments.1
Already

                                                          
1 Sir Ronald a. Fisher laid the foundation for this approach in
Statistical Methods for Research workers (London. Oliver and Boyd,
Ltd., 1925) and in The Design of Experiments (London, Oliver and
Boyd, Ltd., 1935).

Why run the risk of a bad guess about the causes of variations
in quality when the factors in the problem can be persuaded to
tell on themselves?

these have solved a variety of problems in many
industries. The purpose of the present article is to
indicate briefly what this technique is, what advantages
it offers over conventional methods, and what kinds of
problems it can solve.

Basic Features

The essential feature of the most up-to-date
statistically designed experiment is the simultaneous
consideration of a large number (sometimes all) of the
possible causes for a product or process problem. It can
categorically rule out most of the possible causes after a
limited number of experiments. This means that the
major source of trouble can be more and more closely
pinned down until it is finally isolated.

The approach often makes use of but never depends
on hunches and guesses in problem diagnosis. If the
initial hunches happen to be right, the time for the
experiment may be cut down; yet, if the hunches are
wrong, as only too often happens the experimenters’
efforts are not held up until new hypotheses can be
formulated. Because statistical design can impartially
evaluate most or all of the causes of a problem, it is a
completely objective device.

Finally, acceptance or rejection of hypotheses and
consideration of alternatives can be evaluated in terms of
known confidence levels. The risk of wrong decision can
be reduced, for all practical purposes, almost to zero.

Drawbacks & Advantages

Following from these basic features are a number of
pros and cons worth noting. On the adverse side, it must
be admitted that exploiting the new technique is not a
do-it-yourself proposition - at least for companies
without a well-qualified statistical engineering group.

The Statistically Designed
Experiment
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Knowing how to apply these procedures calls for
training; knowing which ones to apply in any particular
situation calls for experience and judgment.
Accordingly, large companies may wish to develop a
group for this activity; smaller ones can get along with
one or two people who could combine statistical work
with other kinds of duties. Consultants could be hired to
do the training.

Granting that the need for specialized help may be a
drawback, what are the countervailing advantages?
These seem substantial, and they should appeal to
businessmen who put a high premium on time as well as
on money:

(1)  Usually the time involved in problem solving by
statistical methods is short. It is not impossible for a
single week’s investigation to come up with an answer
that has been eluding a company for years.

(2)  Quick problem diagnosis, leading to quick cure,
cuts the expenses of a high-cost operation, and the
savings realized quickly pay back the initial costs.

(3)  The process does not disrupt production; only
minor interference is usually necessary. The experiments
can be brief: the tests often involve only a relatively
small number of units: and tinkering with operating
methods on the line and with product specifications is
kept to a minimum.

(4)  Through training concurrent with problem
solving, the company becomes progressively better able
to carry on statistical activity at no extra cost with its
own personnel.

Because this approach is fast and inexpensive, it is
practical not only for well-heeled industrial giants but
also for middle-size and small concerns. Thus, unlike
many current developments in business techniques, the
use of statistical procedures helps rather than hinders the
competitive chances of small firms.

Underlying Logic

The theory and practice of statistical design rest on a
series of simple logical propositions. Although these are
not all self-evident, I think they will strike anyone who
has ever worked on product or process problems as
valid:

(1)  Every effect has one or, more often, a number of
possible causes.

(2)  When there are many possible causes, the major
portion of the effect usually comes from one or, more
likely, just a few causes.

(3)  These few major causes are not constant in their
activity: they produce variation in the end product (the
effect).

(4)  Therefore, if variations in the end product are
analyzed and related to their possible causes, one factor
(or part of the total variation) may be expected to show
up as being more important than the others, and the
unknown cause may be associated with that particular
factor.

On the basis of this reasoning, it is a fairly
straightforward matter to design an experiment that will
enable management to isolate and evaluate the reasons
for undesired deviations from standard in a product or
process. The action - the way the parts of the total
variation show up - is made to “tell on itself.”

A few case examples will serve to illustrate the
possibilities.

A Quality Problem

Let us start with a problem of product quality - one
that had bothered a metalworking firm for years,
although it proved simple and quick to solve once an
objective statistical design procedure was developed:

After a final polishing operation, the company
experienced what was believed to be an excessive rate of
rejects and consequent expenses for reworking.
Polishing followed plating, and too often the hand-held
polishing wheels exposed the base metal. Plant
supervisors were certain that the difficulty stemmed
from variation in skill among the several polishers
and/or some inherent differences in the cloth from which
the polishing wheels were made.

Believing that the supervisors’ hypotheses sounded
reasonable, the statistical engineer assigned to the
problem decided to begin by determining, with a given
statistical confidence level (a fixed per cent of certainty),
who were the least and the most successful workers;
then a study could be made of their different polishing
habits, the results of which would be incorporated into a
training program. In addition, the engineer planned to
compare polishing wheels in order to see if variations in
their material bore any relationship to work quality.

For statistical validity, it was necessary to run a
short test during which a random mixture of different
parts would be issued to each polisher, and each man
would use one polishing wheel. A protective statistical
“level of significance” was chosen so as to distinguish
between chance variations in output and real differences
arising from unequal skills. Interestingly enough, the
results of this test showed no significant difference
among operators. In other words, the major cause or
causes being sought had been distributed about evenly
(randomly) among all the polishers.

This unexpected revelation brought on a decision not
to guess further about the major causes of trouble
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without some really objective evidence to indicate their
nature.

Objective Inquiry

Freeing his mind of all preconceptions about the
problem, and thinking back to the four logical steps
outlined above, the statistical engineer now decided to
look at the plating process (in contrast to the polishing
operation, which had been pretty conclusively proved
innocent); to consider the total variation in plating
thickness in terms of three of its factors; and then to let
the action of these factors tell which one of them was the
most important and thus where the cause of most of the
variation lay.

The engineer divided thickness variation into that
occurring (a) from time to time, (b) from plating tank to
plating tank, and (c) within a tank. Following this line of
inquiry, a simple experiment was performed:

•  Parts were identified for a short period according to
the side of the tank and tank number in which they
were plated, and according to the hour when the
plating was done. A small variation in plating
thickness showed up in the hour-to-hour figures and
in the tank-to-tank figures, but none of the parts
plated on the right-hand side of the tanks had the
plating polished off, while many of those from the
left-hand side had thin plating and had been rejected
for exposure of base metal. Therefore, something
that correlated with “within-tank” variation had to be
controlled to move the variation in thickness toward
zero.

•  Discussion with the plating foreman brought forth
no clues. Anode to cathode distances and electrical
potentials had all been balanced when the tanks had
been installed. It seemed desirable therefore, to
observe the plating procedure. The only
nonsymmetrical feature seen was a hand valve on a
pipe on the right-hand side of each of the 14 tanks.
This pipe carried steam along the length of the tank
at the bottom on the right, across the front, and back
on the left, rising up and out. The steam kept the
plating solution warm, which was necessary for
good results.

•  A reason for polishing difficulty now became clear -
a reason that fitted the observed facts. The steam
must be hotter on entering the tank than on leaving
it, so that the right side of each tank was warmer.
Since warm water rises, a counterclockwise
circulation of the plating solution must have been
created. That meant that the plating particles coming

from the anodes were in a rising current on the right
side and in a falling current on the left. The articles
handing on the left side of each tank, therefore, must
be getting less thickness of plate.

•  The steam valves were then closed. Parts from both
sides of all tanks were polished. None were rejected.

Solution Found

The solution to the problem, therefore, was to
relocate the heating coils in the tanks in order to avoid a
circulation that would affect plating thickness.

Thus, a major quality problem told on itself in less
than one week. The answer unfolded as soon as the
statistical engineer insisted on an entirely objective
approach, unbiased by what the management “knew” to
be the crucial factors - operator skill and/or polishing
wheel differences. As is often the case, the solution to
the problem was almost ridiculously simple once the
components of variation were carefully studied.

A Performance Problem

Solving the polishing problem just outlined was
relatively simple; a slightly more complex statistical
design may have to be worked out for other problems. A
representative case in point involves a manufacturer of a
complicated pneumatic unit:

•  An inexplicable unit-to-unit variation occurred in the
production of this complex item. For proper
operation, some units required considerably higher
supply-line pressure than others. This situation was
unacceptable to the customer and had been under
intensive investigation for months, while company
engineers theorized as to first one, then another,
possible cause. So far, no changes in dimensions,
tolerances, assembly, or test procedures had resulted
in the improvement desired.

•  Feeling that the clue to performance variation lay in
some unknown physical differences among the units,
but having no idea what these differences might be,
the statistical engineer selected two units from a
day’s production which evidenced the greatest
variation in the pressure required for satisfactory
operation. One unit was tagged as the “Low” unit,
the other as the “High” unit.

•  After a discussion with the engineers on the job, two
subassemblies common to both units were selected
as possibly accounting for most of the variation in
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final unit operation. These subassemblies were
removed from the units and identified as “A” and
“B,” while the rest of the unit was identified as “R.”
The six components (“A” from “High” and “Low,”
“B” from “High” and “Low,” and “R” from “High”
and “Low”) were then reassembled and tested in the
following combinations:

A-High with B-Low and R-High
A-Low with B-Low and r-Low
A-High with B-High and R-Low
A-Low with B-High and R-High

•  Tests were run on each combination twice, giving
eight test runs in total. These eight test runs were
performed in random sequence, to minimize the
possibility that chance environmental factors
affecting test conditions could “throw off”
interpretation of results.2

•  Next, the readings for each test run (in pounds per
square inch) were entered on a diagram, known as a
“Latin square,” opposite the test number:

•  By averaging
column, the e
measured.
By averaging
row, the effec
measured.
By averaging
ways, the eff
measured. Th
lower right b

                              
2 For a helpful discus
Harry V. Roberts, St
free Press, 1956), p. 

average of the lower left and upper right boxes
shows the effect of R-Low.

•  Significantly, because of this balanced Latin square
design, each pair of averages reflects the difference
caused by a change in one particular variable. The
effects of the other two variables, while included, are
exactly balanced and are therefore neutralized.

Clues to Solution

For evaluating the results of statistical experiments
such as this one, special methods have been devised to
indicate within a known confidence level (i.e.,
acceptable margin of error), whether the differences
obtained among average figures are large enough to be
significant or not. In this case, on examination of the
data, it was apparent even without a statistical test of
significance that subassembly B was responsible for the
relatively large variation among units. The average
results of B-low and B-High showed too great a
difference to be attributed to chance, or to the influence
of other variables which caused differences among the
results within each box.

The results of this experiment suggested a careful
inspection of the B subassemblies from both the Low
and the High units. A dimensional difference was found
to exist in the length between a fulcrum and an actuating
point on an arm - a difference which could easily be
controlled in future production.

Thus, once more, when variation was broken down
into its components, immediate clues to the nature of the
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Other Possibilities

In this instance, one of the two subassemblies first
selected for investigation turned out to be the source of
the company’s problem. What if this had not been the
case? Under these circumstances, readings from the
diagram would have readily disclosed what the next step
ought to be:

(1)  If the large difference in averages had remained
in R, the test would have been repeated using C and D
subassemblies rather than A and B. Eventually, this
process of elimination would isolate the source of
variation involved.

(2)  If the large difference were found to be “within
box” variations, this would indicate that test equipment
or other conditions of environment were at fault. Such
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“experimental error” would indicate the need for a more
carefully controlled test procedure.

(3)  If only one of the four boxes had results out of
line with any other, and the experimental error was
small, this would be evidence of an interaction among
two or more components. Or if one R-Low box had a
pair of noticeably high readings and the other R-Low
box had a pair of the lowest readings, that also would
point to interaction. To track down a problem caused by
interaction, the “factorial” design of experiment should
be used instead of the Latin square.3 The two methods
are similar in principle, but the factorial design requires
that every possible combination be run at least twice.

A Standardizing Problem

A third statistically designed experiment concerns a
company’s efforts to reduce variation in the output of a
hydromechanical fuel control. In order to use this unit in
a new application, a 50% reduction in output variation
was required, which seemed to present insurmountable
problems.

Most of the critical components and dimensions in
the assembly, of which there were many, were already
being held to closer tolerances than desired for
economical production. Furthermore, trial-and-error
methods had given no clue as to what changes might
lead to the desired reduction of output variation. It
appeared that a major redesign, or a new design
altogether, was needed.

With no indication at all of what might be the cause
of the trouble, the statistical engineer set about to design
an experiment that would unearth it. There were literally
dozens of critical “characteristics” (such as a hole
diameter, a spring load, a concentricity requirement, a
critical length, a radius, a spring rate) in the total unit.
Any one of these might be at fault - or the fault might lie
in an interaction among them. Furthermore, the “value”
of each such characteristic could vary, depending on the
tolerance to which it had been held in production.

In order to run a full-scale factorial experiment,
testing and retesting several values of all these critical
characteristics in every possible combination, the
engineer would have had to make literally thousands of
tests. He chose rather to take a random sample of these
combinations - to conduct a more limited experiment in
the hope of solving the problem faster and with less
expense:

•  He chose to run only 30 tests, randomly assigning to
each a value for every critical characteristic. Not all
combinations would be run; in fact, only a small

                                                          
3 See W. Allen Wallis and Harry V. Roberts, op. Cit., pp. 480-481.

percentage of the total possible would be tested. But
there would be enough to constitute a good sample.

•  For each critical characteristic he chose three
approximate values, “High,” “Medium,” and “Low.”
When the characteristic was physically adjustable
(e.g., a spring load), only one component part was
required to make the tests. When such adjustments
could not be made, available fuel controls often
provided examples close to all three values. In
certain instances, parts had to be manufactured to
specific dimensions.

•  The particular level of each characteristic to be
incorporated into the assembly for each test run was
selected by using a table of random numbers. The
layout is illustrated in EXHIBIT I.

EXHIBIT I - Random Selection of Characteristics for Test Run

•  Test run #1, th
unit be assem
at Medium va
V at Low, and
this control, a
a second one 
requirements 
repeated 30 ti
recorded.

•  To eliminate t
calculations, t
performed gra
group of 30-p
each critical c
value of the c
axis, against f
example:

1 M
2 L
3 L
4 M
5 L
.       
.       
.       
30 L

Test run
sequence
 Critical characteristics

I II III IV V etc.
L  H  H  L . . . . . . .      ______
L  M  L  H . . . . . . .     ______
H  L  M M  . . . . . . .     ______
M  L  H  L . . . . . . .      ______
H  L  M  M. . . . . . .      ______

.  .   .   .   .  . . . . . . .      . . . . . .

.  .   .   .   .  . . . . . . .      . . . . . .

.  .   .   .   .  . . . . . . .      . . . . . .
M  M  H  L . . . . . . .      ______

Fuel flow in
lbs/hr
6

en, would require that a fuel control
bled that would include Characteristic I
lue, II at Low, III at High, IV at High,
 so on. A fuel flow was recorded for

nd then this unit was disassembled and
was assembled to incorporate the
of test run #2. This procedure was
mes, and 30 fuel flow readings were

ime-consuming mathematical
he analysis of the results was
phically on ordinary squared paper. A
oint scatter diagrams - one diagram for
haracteristic - was drawn up, with the
haracteristic plotted on the horizontal
uel flow on the vertical axis. For



© 1957 Harvard

In this instance, obviously, there was no correlation
between the values of the characteristic and fuel flow.
The tolerance specification for this characteristic was
relatively unimportant, therefore. Now here is the
diagram of another characteristic, which works out
differently:

In this instan
wide scatter of p
specification affe
influenced much
which were enter
were the cause o
another character

Here there is a good correlation, with a narrow
scatter about the trend line. The specifications for this
characteristic appeared to have an important effect on
the results. In order to validate the finding, this
correlation (as well as any other that appeared important)
was checked by a few additional test runs in a bona fide
factorial design, in order to establish valid levels of
statistical significance.

•  It was then a straightforward job to determine
statistically the position of two lines, parallel to a
trend line, which would include 95% of the points to
be expected from a far greater number of runs. Next,
from the desired upper and lower limits of fuel flow
on the graph, a pair of horizontal lines were drawn
(see EXHIBIT II).

EXHIBIT II.  Computation of Required Tolerance Limits for
Characteristics VII
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Perpendiculars were then dropped from these
two intersection points. They showed, on the
horizontal scale, the real tolerance limits required
for Characteristic VII to guarantee (with 95%
certainty) compliance with the desired fuel flow
limits.

Solution Made Easy

This study provided the company with a completely
objective evaluation of a highly complex design.
Through careful study of the results of only 30 test runs,
utilizing components from several fuel controls, it
showed where tolerances were too tight, too loose, or
just right - but sometimes out of position. Certain
important and controlling tolerances had to be held
closer in order to avoid the necessity of selective
assembly. In some cases, specifications had to be
changed to flatten the slope f the trend line so as to
provide a practical manufacturing tolerance for those
characteristics.

As a result of this experiment, the company was able
to make the changes needed to bring the fuel flow within
the desired limits without major redesign. In fact, only a
few tolerances had to be tightened, and these were amply
compensated by the discovery that several others were
being held unnecessarily close.

Future Prospects

Statistically designed experiments are increasingly
being used to solve production and process problems.
But these limited uses by no means exhaust the
potentialities of the new technique - potentialities that
are still in the early stages of development and
exploration and only await the passage of time.

A very large number and a wide range of problems
can be attacked by means of techniques based upon the
four logical steps enumerated earlier, i.e., letting the
action tell on itself. For example, I know of two cases
where the unknown but controlling factors in market
activities were revealed; of another one in the paper
industry where the predominant cause of variation
stemmed from the natural, uncontrollable characteristics
of trees (but could be compensated for); and of an
extremely interesting application of the statistical design
approach in the area of medical research.

Finally, it seems particularly significant to note that
the usefulness of statistical designs is not limited to
problem situations. These, after all, are relatively
unusual in many industries. Far more common are
situations where, for example, products and processes
are adequate - but not so efficient or so economical as
they could be. Now, through the use of statistical

designs, companies at last have a relatively quick and
inexpensive way to find out objectively where
improvements can be made and what the specific
improvements ought to be.

So, for the future, the possibilities for savings in cost
and increased efficiency appear to be incalculable.


