
SYNTHESIS OF A PARALLEL JPEG DECODER
FROM A FUNCTIONAL SPECIFICATION

John Hawkins and Ali E. Abdallah
Centre For Applied Formal Methods,
South Bank University,
Borough Road,
London, U.K.
John.Hawkins@sbu.ac.uk, A.Abdallah@sbu.ac.uk

Abstract Given the recent emergence of cheap reconfigurable hardware, such as
the FPGA, it is now possible to obtain reconfigurable circuits with up-
wards of one hundred million gates. Although we have such enormously
powerful hardware at our fingertips, we are still somewhat lacking in
techniques to properly exploit this technology to its full potential. We
propose a development strategy commencing with a clear, intuitive and
provably correct specification in a functional language such as Haskell.
We then take this specification, and, applying a set of formal transfor-
mation laws, refine it into a behavioural definition in Handel-C, expos-
ing the implicit parallelism along the way. This definition can then be
compiled onto an FPGA. We apply this technique to a non-trivial, real
world problem - a JPEG decompression algorithm, and achieve a truly
scalable, parallel hardware implementation.

1. Introduction
Greatly increased efficiency in solutions to real world problems can be

achieved through parallelism and implementation in hardware. Unfor-
tunately this comes at a cost; principally in terms of complexity. This
complexity, coupled with the increased consequences of making mistakes,
can make this a very costly process indeed.

A good example of a class of real world problems to illustrate these
issues is that of image compression, particularly the JPEG standard
[10, 11]. JPEG decoders and encoders are widely used, but not nearly
as widely understood. Developers tend, quite naturally, to rely on tried
and tested library code under normal circumstances. However, in some
situations performance requirements force developers to leave behind the
comfort of such libraries and look to new implementations.

2

At this point it is very important to have clear, unambiguous, and
if possible, provably correct specifications to work from. We propose
that functional programming languages [4], such as Haskell [5], facilitate
exactly this. Indeed, we are not the first to consider the functional style
a good foundation for a specification of JPEG decompression [7]. Not
only do functional languages provide a good framework for specifica-
tion, but also they give us scope for transformation and refinement not
present in imperative languages. Such capabilities allow an efficient and
correct implementation to be derived formally, and in part mechanically
from the specification, by exploiting known efficient implementations for
commonly used patterns of computation. This approach is often broadly
referred to as patterns or skeletons [1, 2, 6].

The FPGA chip, coupled with the Handel-C compiler [8] have together
revolutionised hardware design from the exceedingly costly process it
once was, to now being within the grasp of even the smallest company
or academic institution. The Handel-C language has many desirable
features including CSP [9] style communication, and an explicit means
for denoting parallelism. However, it is an imperative language (being
based on C), and as such, we argue, does not necessarily form a good
basis for specifications, nor a good starting point for deriving a parallel
algorithm. In this work, we use Handel-C as a target for implementation,
deriving code in this language from specifications given in a functional
style.

The rest of this work proceeds as follows. In Section 2, we give a brief
overview of the notation used, and introduce the concept of refinement to
explain how behavioural implementations can be derived from functional
specifications. In Section 3 we discuss some issues relevant to the JPEG
decompression process. In Section 4 we provide a functional specficiation
of a JPEG decompressor. Then, in Section 5, we use this specification
to derive a parallel implementation in Handel-C. This paper concludes
in Section 6.

2. Notation and Refinement Concepts
Functional Notation. As already noted, functional languages such
as Haskell provide an extremely good environment for clear specification
of algorithms. Details of functional notation in general can be found in
[4], with more specific information relating to Haskell in [5]. Also, certain
aspects and properties of the particular notation we use in this work are
explored in [1–3].

Handel-C. Handel-C [8] is a C style language, and fundamentally
imperative. Execution progresses by assignment. Communication is

Synthesis of a Parallel JPEG Decoder from a Functional Specification 3

effectively a special form of assignment. As previously noted, commu-
nication in Handel-C follows the style of CSP. The same operators are
used for sending and receiving messages on channels (! and ?), and
communication is synchronous - there must be a process willling to send
and a process willing to receive on a given channel at the same time for
the communication to take place. Additionally, note that channels in
Handel-C are typed - this is so the compiler knows how wide to make
them. Parallelism in Handel-C can be declared with the par keyword.
Handel-C has an equivalent of CSP’s choice operator in the form of the
prialt statement.

Refinement. Having stated our specification environment (Haskell)
and our target environment (Handel-C) it is now necessary to consider
how we are to refine definitions in one to the other. These techniques
are explained in more detail elsewhere [1–3], we shall provide only a very
brief overview here.

Data Refinement. Given that our implementation in Handel-C will
rely on message passing, we need to consider how the types derived from
our specification will be communicated. Most interesting to us are list
types, and we will examine the alternative refinements for these here.
Broadly we have two intuitive strategies for communication of a linear
data structure (i.e. a list) - either sequentially or in parallel. We term
these techniques streams and vectors respectively.

Streams facilitate a functional, or pipeline parallel scheme. To com-
municate a list as a stream, we send each value in order along a channel,
and then signal the end of transmission (EOT). Although there are a
number of possible options for how to signal the end of transmission,
we have found the use of a second single bit channel the most widely
applicable.

Vectors implement a data parallel scheme. To communicate a list as a
vector each item is communicated independently, in parallel, on its own
channel. There may be several variations to the vector, depending on
the type of the items in the list.

These two structures may then be combined together to form refine-
ments for lists of lists. One example of this is the vector of streams,
which is a parallel composition of n streams, each communicating a sub-
list independently as a stream. Another example is the stream of vectors,
in which at each stage an entire sublist is communicated in a single step,
in parallel

4

Process Refinement. Higher-order functions in our specifications
can be refined into Handel-C implementations from a library of pro-
cesses. We may have more than one implementation for any given higher
order function depending on the setting in which we choose to use it (i.e.
with streams or vectors). More detail on higher order process refinement
can be found in [3].

As noted, the composition operator forms an important part of func-
tional definitions. In terms of processes and parallelism, functional com-
position maps on to pipelining. Given a process P that outputs on a
particular channel, and a process Q that takes input of the same type on
a particular channel, we can pipe the result from one to the other simply
by parameterising the name of their respective output and input chan-
nels and composing them together in parallel. This simple but powerful
scheme can apply to both the stream and vector setting. We can pass
in streams and vectors as parameters to processes in exactly the same
way as we would simple channels.

3. JPEG decoding
We shall focus our efforts on a decoder for JPEG’s baseline DCT

method of compression. This is almost certainly the most commonly
used method within the JPEG set of standards.

We shall require the use of restart markers in our compressed data.
A JPEG decoder must maintain a set of predictors. The predictors
will be modified each time a unit of data is decoded, and their values
will affect the decoding of each unit. As such, for every single unit in
the compressed file, we require that the previous unit has been at least
partially decoded before it in turn can be decoded. This makes for a
largely sequential decoding process. Thankfully, the JPEG standard
recognises applications in which JPEG images might be communicated
over unreliable media, and as such, data may have been lost part way
through transmission. To this end, the standard includes the definition
of restart markers. Whenever one of these markers is encountered, the
predictors can be safely reset. This has the effect of defining a number
of sections within the compressed data that can be decoded completely
independently of each other.

It is important to clearly consider the hierarchy within a compressed
JPEG file, when considering writing the specification for a decoder. To
begin with we have a file. This can be split into two areas, the head-
ers and the compressed scan data. The headers contain information
about the compressed data (size, format and so on) as well as tables for
dequantization and Huffman decoding.

Synthesis of a Parallel JPEG Decoder from a Functional Specification 5

Where restart markers are used, the scan can be decomposed into a
number of independent sections which we shall call intervals. An interval
can be further decomposed into one or more minimum coding units
(MCUs). The number of MCUs per interval is defined in the headers.
The MCU is a collection of units. Each unit, when fully decompressed,
will form an 8×8 matrix of samples for a given component (usually one of
Y , Cb or Cr for colour images). Generally, the chromincance components
will be downsampled to achieve better compression. A typical scheme
has an MCU representing a 16× 16 block of pixels in the fully decoded
output image. Within this, there will have been a unique Y (luminance)
value for every pixel. However, each chrominance value will be shared
by a 2 × 2 pixel block. As such, an MCU in this scheme will contain
four units of Y samples, followed by one of Cb samples, and one of Cr
samples.

4. Functional Specification
We may find the following type definitions useful. A unit is an 8× 8

matrix of coefficients (before transformation) or samples (after trans-
formation). An MCU is a list of units. These types may therefore be
defined as follows:

type UnitRow = [Int]
type Unit = [UnitRow]
type MCU = [Unit]

Now, to consider the functions that will comprise our decoder. At the
highest level we require a function that will take in a list of compressed
bytes representing the entire file, and will return an uncompressed image.

decodeJpeg :: [Byte] -> Image
decodeJpeg data = decodeScan hdrInfo scanData
where (scanData,hdrInfo) = decodeHeaders data

An Image here can be considered as a simple two dimensional array of
pixel values. This definition relies on two auxilary defintions. The first
decodes the headers in the data, and returns both a HeaderInfo object
and a list of the remaining data in the file, following the headers.

decodeHeaders :: [Byte] -> ([Byte],HeaderInfo)

The exact definition of decodeHeaders and the HeaderInfo type will
not be shown in full here due to lack of space. Broadly, the header
information should include all the numeric parameters and structures

6

required for decoding. The second function, decodeScan, is where the
bulk of the decoding effort takes place.

decodeScan :: HeaderInfo -> [Byte] -> Image
decodeScan hdrInfo = composeImage hdrInfo .

map (decodeInterval hdrInfo) .
readIntervals

This function is a composition of three stages. In the first, we use
the function readIntervals to split the compressed scan data into a
list of intervals which can be decoded independently of eachother. Next,
we map the function decodeInterval to each interval in the list of de-
coded sections within the image. Finally we apply composeImage to
compose these sections together, a function which we shall keep deliber-
ately vague.

The function readIntervals is simple, but crucial in terms of scope
for parallelism, as we shall see later. It reads through the input list
of bytes, and splits it into sublists based on the occurence of restart
markers. A restart marker will be a single byte with value ff in hex,
followed by a value from d0 up to d7. The encoder will ‘pad’ any byte
values of ff naturally occurring in the compressed data with a single zero
byte to ensure they are never confused with a restart marker. This means
that readIntervals can safely split up the compressed data without any
greater level of detail than simply examining individual byte values. As
such, this task should be very fast.

readIntervals :: [Byte] -> [[Byte]]

The next function, decodeInterval, will take a list of compressed
bytes that form a single interval, and return a list of totally decompressed
MCUs that, when reconstructed, will form the corresponding section of
the output image. The definition is as follows:

decodeInterval :: HeaderInfo -> [Byte] -> [MCU]
decodeInterval hdrInfo
= map (transformMCU) . intervalToMCUs hdrInfo . bytesToBits

Here again we have a composition of three stages. Firstly, given that
Huffman decoding works at the bit rather than byte level (due to the
use of variable length codes), we employ bytesToBits to transform our
input list of bytes into a list of bits. Next we apply intervalToMCUs
which should supply us with a list of MCUs, each, at this stage, con-
taining untransformed coefficients. Finally we map transformMCU, such
that each MCU is transformed from a list of matrices of coefficients

Synthesis of a Parallel JPEG Decoder from a Functional Specification 7

to a list of matrices of samples (Y , Cb, and Cr values). The type of
intervalToMCUs is as follows:

intervalToMCUs :: HeaderInfo -> [Bit] -> [MCU]

We shall have to brush somewhat briefly over the goings on inside this
function due to lack of space. Suffice to say we shall have a repeated
application of a function which reads in an MCU, and maintains the
state of the predictors between calls. Reading an MCU is in turn a
repeated application of a function which reads in units.

Let us return now to the function transformMCU. This takes an MCU,
containing units of untransformed coefficients, and returns an MCU
containing units of fully decoded sample data. It maps the function
transformUnit to each unit in the MCU.

transformMCU :: HeaderInfo -> MCU -> MCU
transformMCU hdrInfo = map (transformUnit)

The transformUnit function performs the familiar stages of trans-
forming an 8 × 8 unit of coefficients into an 8 × 8 unit of output sam-
ple values. Firstly it performs zig-zag reordering, then dequantization
(making use of the appropriate quantization table in the HeaderInfo
structure), and finally applies the inverse discrete cosine transform.

transformUnit :: HeaderInfo -> Unit -> Unit
transformUnit hdrInfo = idct. dequantize hdrInfo . zigzag

5. Implementation
The majority of interesting functionality in the specification is con-

cealed within the function decodeInterval, upon which we shall con-
centrate in this section. Given that an MCU is a list of units, and the
number of units per MCU can be derived from the header information,
it should be straightforward to flatten a list of MCUs into units and
vice verse. This can be achieved with the functions unitsToMCUs and
MCUsToUnits. Thus, with a little simple program transformation, we
can arrive at the following definition:

decodeInterval’ hdrInfo
= unitsToMCUs hdrInfo .
map idct . map (dequantize hdrInfo) . map zigzag .
MCUsToUnits . intervalToMCUs hdrInfo . bytesToBits

We may find the following ‘shortcut’ useful:

8

intervalToUnits hdrInfo
= MCUsToUnits . intervalToMCUs hdrInfo . bytesToBits

This compositional form is now well suited to process refinement. An
overview of the definition of DECODEINTERVAL could therefore proceed as
follows. Communication between intermediate stages of the process (and
indeed the final output of the process) will be in the form of a stream of
vectors. At each stage a whole unit (sixty four values) is communicated
in parallel. We have:

macro proc DECODEINTERVAL (streamin,vectorout)
{

StreamOfVectors (64,Int) vsmida, vsmidb, vsmidc, vsmidd;
par
{

INTERVALTOUNITS (smid,vsmida);
SMAP (vsmida,vsmidb,ZIGZAG);
SMAP (vsmidb,vsmidc,DEQUANTIZE);
SMAP (vsmidc,vsmidd,IDCT);
UNITSTOMCUS (vsmidd,vectorout);

}
}

Now we have a definition for DECODEINTERVAL, we can construct our
overall refinement of decodeScan. Let us consider the three stages of
decodeScan in turn. Firstly we have readIntervals. A process refine-
ment of this function, READINTERVALS, should take a stream of bytes
as input - it needs to process these sequentially. The output, a list of
lists of bytes, can be produced as a vector - each interval can be pro-
cessed independently. At the next stage, we map decodeInterval to
each interval produced by readIntervals. As the input to this stage
will be a vector, we shall choose VMAP to refine the map in the original
specification.

We shall leave the output type of the compose image stage (which
forms the output of the decoder as a whole) deliberately vague - we
may want it in any one of several forms depending on the process that
receives the data. Regardless of the exact structure of the output, the
overall outline for the DECODESCAN process can proceed as in Figure 1.
The implementation is depicted in Figure 2.

6. Conclusion
We have presented a framework in which non-trivial algorithms can

be specified in a clear, well structured environment, and then trans-

Synthesis of a Parallel JPEG Decoder from a Functional Specification 9

macro proc DECODESCAN (streamin,vectorout)
{

VectorOfStreams (n,Byte) vectormida;
StreamOfVectors (n,Byte) vectormidb;
par
{

READINTERVALS (n,streamin,vectormida);
VMAP(n,vectormida,vectormidb,DECODEINTERVAL);
VFOLDR (n,vectormidb,vectorout,ADDINTERVAL);

}
}

Figure 1. The DECODESCAN process.

�����������
	
�� ���� ���

�����������
	
�� ���� ���

�����������
	
�� ���� ���� � �

� � � � � � � � � � � � � � � � � �

�����������
��� ��������� ��� ����	
�� ���� �����

� � � � � �� � � � � �

� ��� � � ��� �!� ��� � � ��� � � ��� � � ��� �

����"$#���� � 	 "%��&��

	 '�() �

� � (* � + 	 � , �

Figure 2. The JPEG decoder process network

formed formally, and in part mechanically, into an efficient behavioural
implementation.

We have illustrated this with the development of a JPEG decoding al-
gorithm, starting from a high level and intuitive specification in Haskell,
and using this to derive a parallel Handel-C program that in turn can
be compiled into a circuit design for an FPGA.

Given that the intervals (defined by the restart markers) in the com-
pressed data are decoded independently of eachother in parallel, our
implementation is scalable, and as we are required to deal with larger
problem sizes (effectively higher resolution images) we simply need to
add more processing elements. Effectively this means we should use an
FPGA with more gates, or combine more than one FPGA together, and

10

the resulting execution time should not be greatly increased. This as-
sumes, of course, that higher resolution images will contain more restart
markers.

It is important to point out that restart markers are optional in the
official JPEG specification, and the benefits of the implementation pre-
sented here on an image encoded without restart markers would be some-
what limited. It is worth noting however, that several newer compres-
sion standards derived from JPEG (including most notably MPEG-2,
the worldwide standard for digital television), have adopted a version of
restart markers which are mandatory.

References
[1] A.E. Abdallah, Derivation of Parallel Algorithms from Functional Specifications

to CSP Processes, in Bernhard Möller, ed., Mathematics of Program Construction,
LNCS 947, (Springer Verlag, 1995) 67-96

[2] A. E. Abdallah, Functional Process Modelling, in K Hammond and G. Michealson
(eds), Research Directions in Parallel Functional Programming, (Springer Verlag,
October 1999). pp339-360.

[3] A. E. Abdallah and J. Hawkins, Calculational Design of Special Purpose Parallel
Algorithms, in Proceedings of 7th IEEE International Conference on Electronics,
Circuits and Systems (ICECS 2000), Lebanon, (IEEE, December 2000). pp261-
267.

[4] R. S. Bird and P. Wadler, Introduction to Functional Programming, (Prentice-
Hall, 1988).

[5] R. S. Bird Introduction to Functional Programming Using Haskell, (Prentice-Hall,
1998).

[6] M. I. Cole, Algorithmic Skeletons: Structured Management of Parallel Computa-
tion, in Research Monographs in Parallel and Distributed Computing, (Pitman
1989).

[7] J. Fokker, Functional Specification of the JPEG algorithm, and an Implementa-
tion for Free, in R.C. Veltkamp and E.H.Blake, (eds), Programming Paradigms in
Graphics, Proceedings of the Eurographics workshop in Maastricht, The Nether-
lands, September 1995. (Wien, Springer 1995). pp. 102-120.

[8] Handel-C Documentation, Available from Celoxica
(http://www.celoxica.com/).

[9] C. A. R. Hoare, Communicating Sequential Processes. (Prentice-Hall, 1985).

[10] International Standards Organisation, Digital Compression and Coding of Con-
tinuous Still Tone Images. Draft International Standard DIS 10918-1.

[11] G. Wallace, The JPEG Still Picture Compression Standard, in Communications
of the ACM, 43, 4, 1991. Draft International Standard DIS 10918-1.

