
PAGE 1 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

ObjectiveView
Objects, Components and e-Business Development for

Software Professionals

Published by

OO consultancy – training – tools –
recruitment

See http://www.ratio.co.uk for back
copies

Sponsored by

http://www.componentsource.com

PAGE 2 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

ObjectiveView
Objects, Components and e-Business Development for

Software Professionals

CCOONNTTEENNTTSS

UML Components

By John Daniels & John
Cheesman

4

Ebiz Components

By Paul Allen

12

Let’s Get Layered

By Mark Collins-Cope & Hubert
Matthews

21

Component Distribution
Patterns

By Philip Eskelin,with Kyle
Brown & Nat Pryce

30

CCOONNTTAACCTTSS

Editor
Mark Collins-Cope
markcc@ratio.co.uk

Production editor
Mei Wong
mei@ratio.co.uk

Free subscription
Email delivery:
objective.view@ratio.co.uk
(subject: subscribe)

Hardcopy delivery:
objective.view.hardcopy@ratio.co.uk
(include full contact details)

Feedback/Comments/Article submission
objective.view.editorial@ratio.co.uk
Or join ObjectiveView @ Yahoo!
Groups

Circulation/Sponsorship Enquiries
objectivew.view.editorial@ratio.co.uk

Web Distribution Partner

http://www.iconixsw.com
Tel: +1 310 4580092
Fax: +1 310 3963454

Email: marketing@iconixsw.com

Web Distribution Partner

http://www.eiffel.com
Telephone: 805-685-1006

Fax: 805-685-6869
E-mail: info@eiffel.com

PAGE 3 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Editorial Introduction

Welcome to issue 6 of ObjectiveView. In this issue we have a
major in-depth focus on component based development
issues. As you'll see from the articles, component based
development is a logical extension of object oriented
development - components being implemented using object
technology.

Two of our articles focus on component development process. John Daniels
(of Syntropy fame) and John Cheesman give an overview of their component
development process as described in their recently published book: UML
Components. Paul Allen (widely recognized as a thought leader in CBD)
discusses an e-business component process framework. Paul's process
differs from the two Johns' in that its focus is on the management process as
opposed to the development process. Taken together, the two articles provide
a thorough insight in the CBD development process.

Moving onto component design and structuring issues, Hubert Matthews and
myself discuss an architectural reference model to help in consideration of
exactly which classes should be in which component. The ideas presented
are a synthesis of many existing software paradigms, patterns and principles.

Last but certainly not least, Philip Eskelin presents a small pattern language
(group of related patterns) based around designing components in a
distributed system environment.

If you'd like to question of discuss any of the ideas presented in these articles
- join the ObjectiveView discussion group. See below for details.

Happy Reading
Mark Collins-Cope

We would like to invite all ObjectiveView readers to join the ObjectiveView discussion group at Yahoo!
Groups.

This discussion forum was created as a tool to encourage communication between ObjectiveView
readers and authors, as well as between readers themselves.

Feel free to ask questions about articles, as well as about object & component technical issues of
general interests.

TWO EASY WAYS:

1. Send an email to objectiveview-subscribe@yahoogroups.com

2. Go to http://groups.yahoo.com/group/objectiveview and click on the ‘Join this Group!’
button.

PAGE 4 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

UML Components

DESPITE rapid growth in the use of component technologies such as EJB
and COM+ there are few published practical processes for designing large-
scale component systems. John Daniels & John Cheesman set out a
development process to take you from a statement of requirements to a
detailed specifications of the components you will need. Alongside the
process, they’ll explain how to support it using standard UML diagrams.

All software development projects follow two
distinct processes at the same time. The
management process schedules work, plans
deliveries, allocates resources and monitors
progress. The development process creates
working software from requirements.
Assuming you have these processes written
down, you would consult your management
process guide if you wanted help with setting
milestones and your development process
guide if you wanted help with allocating
operations to interfaces. This article is
concerned with the development process.

Although it hasn’t always been this way, today
the development process has to be subservient
to the management process. This is because the
management process controls project risk, and
risk control is rightly viewed as paramount,

even if the development process is
compromised as a result. The favored
management process nowadays is one based
on evolution, where the software is delivered
over a number of development iterations, each
refining and building on the one before. The
development process has to fit with that, so it
isn’t possible to specify everything, then
design everything, then code everything, and
so on, even if you wanted to.

Nevertheless, when in this article we describe
the development process we do so without
taking into account the constraints of the
management process. We do this because we
want the development process to be usable
with a variety of management processes. It
also helps to make the development process
understandable.

Workflows

Specification Provisioning Assembly

Test

Requirements

Deployment

Business
requirements

Business Concept
models

Existing
assets

Technical
constraints

Components

Component specs
& architectures

Use Case
models

Applications

Use Case
models

Tested
Applications

Figure 1 – The workflows in the overall development process

Figure 1 shows the overall development
process. The boxes represent workflows, as
found in the Rational Unified Process (RUP).
In his book on RUP, Philippe Kruchten defines
a workflow as “a sequence of activities that
produces a result of observable value”. The
thin arrows represent the flow of artifacts—

deliverables that carry information between
workflows. Comparing the workflows of
Figure 1 to those found in RUP, the
requirements, test and deployment workflows
correspond directly to those with the same
names in RUP. The specification, provisioning
and assembly workflows replace RUP’s

PAGE 5 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

2001
May 14-16, Bergen, Norway

ROOTS (Recent Object-Oriented Trends
Symposium) is a forum for presentation,
debates & study of the latest object-
oriented theories & practices. The
conference is held in Norway, the country
in which the OO technology finds its
roots.

Don’t miss this exciting new format, and
the opportunity for your team to learn the
latest trends in OO techniques,
TOGETHER. Full conference program &
further information is available at
http://roots.dnd.no

Analysis & Design and Implementation
workflows.

The specification workflow takes as its input
from requirements a use case model and a
business concept model. It also uses
information about existing software assets,
such as legacy systems, packages and
databases, and technical constraints, such as
use of particular architectures or tools. It
generates a set of component specifications
and a component architecture. The component
specifications include the interface
specifications they support or depend on, and
the component architecture shows how the
components interact with each other.

These outputs are used in the provisioning
workflow to determine what components to
build or buy, in the assembly workflow to
guide the correct integration of components
and in the test workflow as an input to test
scripts.

The provisioning workflow ensures that the
necessary components are made available,
either by building them from scratch, buying
them from a third-party, or reusing,
integrating, mining or otherwise modifying an
existing component or other software. It is also
responsible for unit testing the component
prior to assembly.

The assembly workflow takes all the

components and puts them together with
existing software assets and a suitable user
interface to form an application that meets the
business need.

Workflow Artifacts
In our process the requirements and
specification workflows are responsible for
producing a number of model artifacts. We
expect the requirements workflow to produce a
Business Concept Model and a Use Case
Model. In specification we produce the
Business Type Model, Interface
Specifications, Component Specifications
and the Component Architecture. Each of
these is described below.

We’ve found it helpful to organize our model
elements into a package structure which
reflects these artifacts (see Figure 2). As we go
we’ll explain how UML is applied to model
each of the artifacts.

Requirements

Business Concept Model

Use Case Model

Specification

Business Type Model

Interface Specifications

Component Specifications

Component Architecture

Figure 2 – Top-level organization of workflow
artifacts

When we use the term “model” for an artifact,
as in business concept model, we are using it
in a general-purpose way simply to mean a
self-contained set of UML model elements.
We do not mean it carries the specific
semantics of a UML model, which is a
complete abstraction of a system.

Requirements Workflow
The purpose of the requirements workflow is
to produce the business concept model and the
use case model.

Business Concept Model
The business concept model is a conceptual
model of the business domain concepts that
need to be understood and agreed. It is not a

PAGE 6 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

A perennial problem with
use cases is deciding
their scope and size.

model of software, but a model of the
information that exists in the problem domain.
It is equivalent to the domain model in RUP.
Its main purpose is to create a common
vocabulary among the business people
involved with the project. For example, if
“Customer” means three different things
within the business then you need to get this
cleared up as early as possible so that everyone
is working to the same set of terms with agreed
meanings.

We use a UML class diagram to represent the
business concept model, but it’s important to
remember that it is a software-independent
model. If you wish you could use a
<<concept>> stereotype for every class in this
model, but since, from a packaging point of
view it’s kept under Requirements, and is quite
separate from the Specification part of the
model, we find in practice that we don’t need
to use a stereotype.
Business concept models typically capture
conceptual classes and their associations.
Association roles may or may not have their
multiplicities specified. The model may con-
tain attributes, if they are significant, but they
need not be typed, and operations would not be
used. Since the emphasis of the model is to
capture domain knowledge, not to synthesize it
or normalize it, you would rarely use gene-
ralization in this model. Similarly, dependency
relationships would typically not be used.

Use Case Model
Love them or hate them, use cases are what the
UML provides for semi-formal
modeling of user-system
interaction. A use case is a way of
specifying certain aspects of the
functional requirements of the system. It
describes interactions between a user (or other
external actor) and the system, and therefore
helps to define what we call the system
boundary. The use case model is the set of use
cases you consider to be representative of the
total functional requirements. You might start
with the key ones, then add others later.

The participants in a use case are actors and
the system. An actor is an entity that interacts
with the system, typically a person playing a
role. It’s possible for an actor to be another
system but, if it is, the details of that system
are hidden to us—we see it simply as a dull
and predictable person. One actor is always
identified as the actor who initiates the use
case; the other actors, if any, are used by the
system (and sometimes the initiating actor) to
meet the initiator’s goal.

In a use case the actors interact with the
system as a whole, not some specific part of it.
The system is viewed as a homogenous black
box that accepts stimuli from actors and
generates responses.

A perennial problem with use cases is deciding
their scope and size. There seems to be no
consensus on this issue but here’s our view: to
a first approximation we can say that a use
case is smaller than a business process but
larger than a single operation on a single
component. The purpose of a use case is to
meet the immediate goal of an actor, such as
placing an order or checking a bank account
balance. It includes everything that can be
done now or nearly-now by the system to meet
the goal. For example, if it is necessary to
perform an electronic credit check with an
agency before accepting an order we would
expect the use case to perform the check and
proceed. On the other hand, if goods need to
be ordered from a supplier to fulfil the order
being placed, the use case would end when the
goods are ordered; it wouldn’t wait for them to
arrive. The subsequent arrival of the goods
would stimulate another use case.

Use case diagrams, with their familiar stick
figures and ellipses, are useful only as a
catalogue or map. Use cases can be defined
with a number of “extension points” to which
extension use cases refer. This approach is
useful for defining the broad structure of the
use case in a diagram, but still leaves the real
detail of the use case to be captured in textual

use case descriptions.

A use case description contains
at least:

• An identifying name and/or number.
• The name of the initiating actor.
• A short description of the goal of the use

case.
• A single numbered sequence of steps that

describe the main success scenario.
Except in the case of an inclusion step as
described below, each step takes the form
“A does X,” where A is an actor or “the
system.” The first step must indicate the
stimulus that initiates the use case (i.e.
what the initiating actor does to indicate to
the system that it wants this goal met).
The combination of initiating actor and
stimulus must be unique across all use
cases.

The main success scenario describes what
happens in the most common case and when
nothing goes wrong. It is broken into a number

PAGE 7 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

of separate use case steps. The assumption is
that the steps are performed strictly
sequentially in the order given—unlike most
business process languages there is no way of
describing parallelism, which is one reason
why a use case is typically smaller than a
business process. Each use case step acts as a
UML use case extension point. It is the anchor
point from which an extend relationship to an
extension use case may be defined.

Use case steps are always written in natural
language. Use cases are a semi-formal
technique and must be understandable by
anyone familiar with the problem domain.

A use case description is a template for
behavior that is instantiated in the environment
of a deployed system each time an actor
generates a stimulus. A use case instance
either succeeds or fails in meeting the goal. A
simple use case consisting only of a main
success scenario is assumed always to succeed.
Use cases can be elaborated by adding
extensions that conditionally change the flow
of the main success scenario to specify
alternatives, and by factoring-out common
parts into included use cases.

Specification Workflow
The specification workflow is rather tricky to
explain since explanations tend to be
sequential, whereas the workflow tasks are
highly iterative. The various workflow artifacts
have clear dependencies, but their develo-
pment is incremental, with additions and
modifications happening at every stage. We
have attempted to summarize the workflow
tasks into three “stages”, as shown in Figure 4.
They are called Component Identification,
Component Interaction and Component
Specification.

Note also that since we are staying
management process neutral, we don’t attempt
to characterize the degree of “completeness”,
or other quality criteria, of these workflow
artifacts. The management process phases will
specify those.

Component forms
To understand the specification workflow it is
necessary to understand how our view of a
component changes during a project life-cycle.
From requirements and specification, through
design and provisioning, to assembly,
deployment and runtime, the characteristics we
want from a “component” vary. We can
identify a number of “component forms,” each
form reflecting some aspect of a component
during the development lifecycle. These
different forms are shown on Figure 3.

Component
Implementation

1

* realization

1

* installation

instance*

1

Component
specification

Installed
Component

Component
Object

Component

Interface

1..* supportedInterface

*

Figure 3 - Component forms

The purpose of each form is summarized in the
following table.

Component Form Description

Component
Specification

The specification of a unit of software that describes the behavior of a set of Component Objects, and
defines a unit of implementation. Behavior is defined as a set of Interfaces. A Component Specification
is realized as a Component Implementation.

Component Interface A definition of a set of behaviors (typically operations) that can be offered by a Component Object.

Component
Implementation

A realization of a Component Specification, which is independently deployable. This means it can be
installed and replaced independently of other components. It does not mean that it is independent of
other components—it may have many dependencies. It does not necessarily mean that it is a single
physical item, such as a single file.

Installed Component An installed (or deployed) copy of a Component Implementation. A Component Implementation is
deployed by registering it with the runtime environment. This enables the runtime environment to
identify the Installed Component to use when creating an instance of the component, or when running
one of its operations.

Component Object An instance of an Installed Component. A run-time concept. An object with its own data and a unique
identity. The thing that performs the implemented behavior. An Installed Component may have multiple
Component Objects (which require explicit identification) or a single one (which may be implicit).

PAGE 8 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

The component specification forms
the contract with the component

implementer, assembler &
tester…on the other hand, the
component interface forms the

contract with the component client.
It tells the client what to expect.

Although at first sight it may not be apparent
why we need both interface and component
specification as separate concepts, they
actually perform quite distinct functions. The
component specification
forms the contract with the
component implementer,
assembler and tester. A
component specification
scopes the implementation
unit, defines the encapsulation
boundary, and consequently
deter-mines the granularity of replaceability in
the system. On the other hand, the interface
forms the contract with the component client.
It tells the client what to expect.

Specification artifacts
The specification workflow produces four
artifacts.
• The business type model is an

intermediate specification artifact, and not
an output of the specification workflow.
Its purpose is to scope and formalize the
business concept model to define the
system’s knowledge of the outside world.
This model is then the basis for initial
component interface identification. While
the business concept model describes the
business domain as the business people
understand it, the business type model
captures exactly those aspects and rules of
the business domain that the system
knows about. The business concept model
may be imprecise, but the business type
model must be precise.

• The interface specifications artifact is a
set of individual component interface
specifications. Each interface specification
is a contract with a client of a component
object. Each interface specification

defines the details of its contract in terms
of the operations it provides, what their
signatures are, what effects they have on
the parameters of the operations and the

state of the component
object, and under what
conditions these effects
are guaranteed. This is
where most of the
detailed system behavior
decisions are pinned
down.

• The component specifications artifact is
a set of individual component
specifications. Each component
specification is defined in terms of
interface specifications and constraints. A
component specification defines the
interfaces it supports, and how their
specifications correspond to each other,
and also includes the interfaces it uses or
consumes. While an interface
specification represents the contract with
the client, the component specification
pulls these disparate client contracts
together to define a single realization
contract. This is where the building blocks
of the system are defined.

• The component architecture describes
how the component specifications fit
together in a given configuration. It binds
the interface dependencies of the
individual component specifications into
component dependencies, and describes
how the component objects interact with
each other. The architecture shows how
the building blocks fit together to form a
system which meets the requirements.

http://www.iconixsw.com
Tel: +1 310 4580092
Fax: +1 310 3963454

Email: marketing@iconixsw.com

ICONIX Software Engineering, Inc.
2800 28th Street, #320

Santa Monica, CA 90405
USA

ICONIX Software Engineering, Inc.
has been a leader in the Object
Technology industry for over 15 years.
Established in 1984, the company has
evolved from its roots as a CASE tool
developer into a leading training and
consulting firm. ICONIX offers on-site
training in all aspects of Object-
Oriented Analysis and Design,
specializing in UML-based JumpStart®
Training which uses a light-weight use-
case-driven process. ICONIX also
offers live training and state-of-the-art
multimedia tutorials in CORBA and
COM.

PAGE 9 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

The component specification
stage assumes a layering of the

application which includes a
separation of system components

and business components…

Component
Interaction

Component
Identification

Business Concept
Model

Use Case
Model

Identify System
Interfaces & Ops

Identify Business
Interfaces

Create Initial
Comp Specs &
Architecture

Existing
Assets

Existing
Interfaces

Architecture
Patterns

Develop Business
Type Model

Business
Type

Model

Component
Specification

Interfaces

Specify Operation
Pre/Post-Conditions

Interfaces

Specify Component-
Interface constraints

Define Interface
Information Models

Discover Business
Operations

Refine
Component Specs

& Architecture

Component Specs
& Architecture

System
Interfaces

Refine
Interfaces & Ops

Component Specs
& Architecture

Business
Interfaces

Component Specs
& Architecture

Figure 4 – The three stages of the specification workflow

Component Identification
The component identification stage takes as
input the business concept model and the use
case model from the requirements workflow. It
assumes a layering of the application which
includes a separation of system components
and business components, where the system
components provide a convenient façade for
the system, based around the use cases, that
simplifies access by the user interface or other
external connections to the core business logic
in the business components. The goal of this
stage in the process is to identify an initial set
of business interfaces for the business compo-
nents and an initial set of system inter-faces for
the system components, and to pull these
together into an initial
component architecture.

The business type model we
mentioned earlier is an
intermediate artifact from
which the initial business interfaces are
formed. It is also used later, in the component
specification stage, as the raw material for the
development of interface information models.

In addition to identifying business interfaces,
the identification stage also makes a first cut at
the operations that need to be supported by the
system, and arranges them into system inter-
faces. These operations are identified at first
only by their name, but signatures and others
details are added at a later stage. The system
operations required are derived by examining

the steps in the different use cases and
deciding what the system’s responsibilities are.

Put simply, the process in this stage is:
1. Copy the business concept model to form

the initial business type model.
2. Scope the business type model by

removing all elements irrelevant to the
software.

3. Determine the core types. These are the
dominant types in the business concept
model. They have no mandatory
associations to other types and have a
business-level identity.

4. Define a business interface as the manager
of each core type and all the non-core

types dependent on the
core.
5. Allocate responsibility
for holding all relationships
that exist between core
types to one or other of the

respective business interfaces.
6. Define one system interface per use case.
7. Examine each use case to identify

operations on the matching system
interface required to support it.

8. For each business interface defines a
component specification that supports it.

9. Define a single component specification
that supports all the system interfaces.

10. Draw a component architecture diagram
that shows the “supports” and “uses”
relationships between component
specifications and interface specifications.

PAGE 10 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

The business type model is drawn using a
UML class diagram, using the <<type>>
stereotype on all the classes. These “types” do
not have behavior.

Interfaces are shown on the class diagram as
classes with the stereotype <<interface type>>.
Standard UML interfaces are not suitable—
assuming your case tool implements them
correctly—because UML interfaces can’t have
associations or attributes.

Component architectures are also drawn using
UML class diagrams. Component speci-
fications are drawn using the class symbol with
a <<component spec>> stereotype.

Component Interaction
The component interaction stage examines
how each of the system operations will be
achieved using the component architecture. It
uses interaction models to discover operations
on the business interfaces. As more
interactions are considered, common
operations and patterns of usage emerge which
can be factored out and reused. Responsibility
choices become clearer and operations are
moved from one interface to another.
Alternative groupings of interfaces into
components can be investigated. It is also the
moment to think through the management of
references between component objects so that
dependencies are minimized and referential
integrity policies are accommodated.

The component interaction stage is where the
full detail of the structure of the system
emerges, with a clear understanding of the
dependencies between components, down to
the individual operation level.

The process in this stage is:

1. For each system interface operation, trace
through the control flow that will result
from its execution.

2. As the control flow is defined, add the
necessary operations to the business
interfaces.

3. Reassess the component architecture.

The traces are drawn using UML sequence or
collaboration diagrams.

Component Specification
The final stage of specification is where the
detailed specification of operations and
constraints takes place. For a given interface it
means defining the potential states of
component objects in an Interface

Information Model, and then specifying pre-
and post-conditions for operations, and
capturing business rules as constraints. The
interface information model is a representation
of the apparent persistent (or more correctly,
remembered) state of each component object
that supports this interface, defined in terms of
types & their associations. We say “apparent”
because the model exists only to support the
specification activities and might to translate
directly into persistent state in an
implementation of the interface. The pre- and
post-conditions and other constraints make
reference to the types in the interface
information model, and the types of the
parameters. In addition to these interface
specification details, this stage also witnesses
the specification of constraints that are specific
to a particular component specification and
independent of each interface. These
component specification constraints determine
how the type definitions in individual
interfaces will correspond to each other in the
context of that component.

For this stage the process is:

1. For each operation on each interface,
define its pre- and post-conditions. As you
do this, add to the interface’s information
model those elements needed to support
the operation definition. The inspiration
for the information model will come from
the business type model, but any types
reused must be copied into a package
specific to the interface.

2. Considering each component specification
as a whole, define any required constraints
about the relationships between elements
of the information models of the separate
interfaces it supports.

3. Specify the particular usage the
component will make of interfaces of
other components when each operation it
supports is invoked. This specification of
usage creates a constraint on implementers
of the component.

Interface information models are drawn using
UML class diagrams. Information model types
can be stereotyped as <<info>> if you so
desire, but it isn’t really necessary. Constraints,
including pre- & post-conditions, can generally
be written in natural language or OCL. Usage
constraints can be more easily defined using
sequence or collaboration diagrams.

PAGE 11 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

TOOLS USA

Santa Barbara, CA,
USA

July 29 - August 3, 2001

The conference theme is Software

Technology for the Age of the Internet,

emphasizing the software engineering

infrastructure necessary to support the

extraordinary development of the

networked society. See the full conference

programme on http://www.tools-

conferences.com/tools/usa/

UML usage

Figure 5 shows a summary of the use we make of UML diagrams.

Requirements

Business Concept Model

Use Case Model

Specification

Business Type Model

Interface Specifications

Component Specifications

Component Architecture

Interface
Responsibility

Diagram

Interface
Specification

Diagrams

Business
Type Model

Diagram

Component
Architecture

Diagram Interactions
Component
Interaction

Diagrams

Component
Specification

Diagrams

Use Case
Diagrams

Business
Concept Model

Diagram

Class
Diagram

Collaboration
Diagram

Use Case
Diagram

Package
Diagram

Class
Diagram

Figure 5 – The Component Modeling Diagrams

What next?
This article has, necessarily, provided only a brief
overview of the process. It has simplified many
issues, perhaps in some cases to the point of
absurdity. But the overriding message we want you
to take away from reading it is this: there can be a
simple, logical and repeatable process for moving
from requirements to detailed specifications of EJB,
COM+ or similar components.

This article is adapted from UML Components,
a book written by John Cheesman and John
Daniels, and published by Addison Wesley.
ISBN 0-201-70851-5. Copyright © Addison-
Wesley 2001.
See www.umlcomponents.com for more
details..

Contact John Daniels: jdaniels@cix.co.uk

PAGE 12 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Oranisations today do not have the luxury of
starting each project from scratch using a clean

white slate

Ebiz Components

CBD for e-business is neither a point solution driven nor a development
process. It is an ongoing change management and integration process. Paul
Allen puts us in the picture…

Organizations today do not have the luxury of
starting each project from scratch using a clean
white slate, as is commonly still assumed.
Many organizations use processes geared to
development of point solutions in the manner
of a linear production line. This does not align
well with today’s needs for hybrid solutions to
support e-business processes that not only
cross divisions and departments, but also
transcend organizational boundaries using the
Internet. There is a growing need to solve
these complex business problems by reusing
and acquiring as much of the functionality as
possible. Traditional software engineering
processes were not designed to do this. New
approaches are needed which are better suited
to the new challenges, while building on
lessons that have been learnt in streamlining
software development in response to business
needs.

This article sets the context for putting
component-based modeling techniques to work
using a practical component oriented process
framework, so conspicuously lacking in most
methods. Most current processes are too
overwhelmingly detailed to be applied in
practical enterprise
settings. Our aim is
rather to provide a
workable project
management framework for applying the
modeling techniques described, largely by
example, in this book. Our focus is on patterns
and checklists, hints and tips.

The CBD Process Framework

Development of e-business systems involves
collaborative work of several different types of
specialist with different areas of expertise; for
example, business process consultants,
software architects, legacy specialists, graphic
designers and server engineers. We’ll need a
coordinating framework for dealing with these
diverse skill sets and introduce a track-based
pattern to help. It’s also important to have a
good idea of the kinds of deliverable that we
can expect to produce. We describe a broad set
of deliverables that work well on CBD
projects. Techniques can then be applied in

flexible fashion within our overall process
framework of track-based pattern plus
deliverables.

A Track-Based Pattern
A track-based pattern provides a coordinating
framework for control of CBD & for organ-
ization of staff according to the roles played.

It’s helpful to consider solution assembly and
component provisioning working in parallel
fashion as indicated in figure 1. This is often
called “twin track development” (Allen and
Frost, 1998). Consumers and producers follow
separate processes geared to their respective
needs of fast business solutions and high
quality components. Solution developers seek
to harvest components produced by the
provisioning track. At the same time
component provisioners seek to sow solutions
as a basis from which to grow components.

Looking at the figure we can see that the twin
track process is triggered in different ways.
The assembly track is triggered by the need to
produce a business solution in the shape of a
timely business solution; for example direct

sales over the
Internet. Assembly
involves searching
for available

components and, where necessary, raising
requirements for new components from the
provisioning track.

In contrast, the provisioning track may be
triggered independently of specific solution
requirements, by business reuse needs that
provide the requirements for reusable
components; for example commonly required
business infrastructure components such as a
product rule engine.

E-business
Solution
Needs

Solution
Assembly

Component
Provisioning

E-business
Solutions

Components
Reuse
Needs

HarvestSow

 Figure 1 The twin track process

PAGE 13 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Increasingly there is pressure to reuse existing
systems, packages and databases. Integration
projects (Linthicum, 2000) use EAI software to
remove data and process redundancy and
introduce consistency across families of

existing systems and packages, often
implemented using diverse technologies. Note
how reuse requirements are effectively filtered
down to make use of legacy software as shown
in figure 2.

E-business
Solution Needs

Solution
Assembly

Component
Provisioning

Integration

E-business
Solutions

ComponentsReuse Needs

HarvestSow

Integrated
Software Assets

Reuse Requirements

Integration Needs

Reused Software Assets

Figure 2 The twin track process and integration

The track-based pattern does not operate in a
vacuum. e-Business process improvement
provides the right business context for CBD, as
shown in figure 3. Of particular importance
for transitioning to e-business using CBD are
the overall e-business improvement plan,
which provides business direction for
architecture planning and the business models,
which focus on understanding specific
processes requiring e-business solutions.

Note that the process is evolutionary and
ongoing. Results from software projects are
fed back to e-business process improvement
for reassessment in the light of experience with
e-business. Change must be managed.
Similarly components are assessed with
respect to architecture planning, in a process of
progressive refinement. Architecture planning
covers the high-level enterprise component
architecture that provides a "big-picture" for
projects to work to.

E-business
Solution Needs

Solution
Assembly

Component
Provisioning

Integration

E-business
Solutions

Components

Reuse
NeedsArchitecture

Planning

Integration Needs

E-business Process
Improvement

Scoping Criteria

Integrated
Software Assets

Figure 3 The track based framework

Underpinning the track-based framework are
effective infrastructure facilities as shown in
figure 4. These include support for component
and Internet standards and configuration
management. Some component management
tools now provide component catalogues that

hold component information within a
repository and provide the ability to browse,
install and register the components in harmony
with model-driven approaches.

PAGE 14 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Solution
Assembly

Component
Provisioning

Integration

Architecture
Planning

e-Business Process
Improvement

COMPONENT INFRASTRUCTURE

Figure 4 The track based framework and component infrastructure

Deliverables
There are many software processes that make
the mistake of identifying prescriptive series of
tasks that at the end of the day bear little
relation to realities of everyday project life.
The reason for this is that these kinds of
process focus on the “how” before
understanding the “what”. Before considering
techniques and activities we need therefore to
focus on expected deliverables. Later in this
article we’ll show which types of models are
expected within each type of deliverable.
Deliverables are needed to provide targets for
projects, to measure progress and to ensure
common understanding along the road to
software delivery. There are “n” number of
deliverable sets and accompanying techniques
that we might identify across different
organizations according to culture and industry
type. Nevertheless we provide a generalized
set in order to provide a context for the
modeling techniques – feel free to adapt these
to fit your own organizational needs. Five
types of deliverables can be identified on
typical CBD projects.
• e-Business process improvement plan
• Software requirements
• Component architecture
• Behavior specification
• Implementation

Implementation covers a number of further
deliverables the details of which are outside
the scope of this book.

Business modeling is used to understand the
business requirements in a way that is easily
understood by business people but at the same

time usable with as little translation or rework
as possible into a set of functional and non-
functional requirements for some new
software. The e-Business process
improvement plan must include the business
case for software requirements projects and
scoping criteria for architecture planning
(enterprise architecture).

Software requirements documents capture
the scope of the proposed software together
with enough information to enable a broad
development schedule to be devised. The
software requirements are usefully prototyped
to facilitate user involvement and verification
of correctness. Existing analysis patterns and
software assets that might be used to meet the
requirements are assessed. The latter includes
existing systems, databases and available
software packages, components, and
interfaces. This is important for early
identification of reuse opportunities and for
understanding requirements and for assessing
integration needs.

Component architecture documents work at
two levels (project and enterprise). The
underlying project & component architectures
are progressively refined in the light of project
experience and software delivery.

Behavior specifications provide a full and
precise definition of the required software
behavior. The externally visible software
behavior is described, without dictating the
internal design. However, constraints on the
internal design are described. Such constraints

PAGE 15 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

can take the shape of interface dependencies,
nonfunctional requirements and invariants.

There are two types of behavior specification.
Interface specifications specify the behavior
of the interface from the point of view of its
consumers. They include contractual
specifications of services offered by the
interface and a catalog of the information that
the interface deals in (an “interface type
model”).

Component specifications specify behavior of
sets of interfaces that provisioners are
contracted to implement as software units.
They include the interface dependencies,
invariants and functional requirements that
constrain the provisioner. The component
specification can be likened to a compliance
document; any implementation must comply
with its component specification.

Interface and component specifications should
be enrolled in catalogs and published using a
component management tool.

Integration
Integration projects may exist at a tactical level
and involve reuse of isolated legacy systems.
Such projects may be non-invasive, seeking
only to identify existing services that can be
wrapped or adapted for use in component
provisioning. On the other hand a legacy
renewal project may be invasive and involve
re-engineering parts of legacy systems in
preparation for exposure of interfaces which
are used in component provisioning projects.

Other integration projects are more strategic.
However, the basic pattern of activities

(planning, requirements, architecture,
specification and implementation) remains the
same. A strategic integration project should be
looking to offer the integrated services for use
in component provisioning projects. Legacy
models may be used to assist in either tactical
or strategic integration work. Tools that
connect modeling capabilities with EAI
middleware are extremely useful here.

Organizing Deliverables within the Track
Based Pattern

Figure 5 shows the relationship between
deliverables and track-based pattern. Software
requirements, project architecture and behavior
specification apply in a project context in any
of the three delivery tracks. However, as we’ll
see a little later, de-scoping may occur at
regular points through the lifecycle, resulting
in hybrid projects. So, for example, a solution
assembly project could branch into separate
smaller assembly, provisioning and integration
projects.

Remember we are describing guidelines
here, not rigid laws of nature.

For example, software requirements
techniques may also be used within a business
process improvement project. They are
especially useful in conjunction with
prototyping, as a means of scouting ahead to
explore different designs. This is particularly
appropriate for e-business systems where
software becomes part of the very fabric of
business and the distinction between business
process improvement and solution assembly
becomes naturally rather blurred.

Solution
Assembly

Component
Provisioning

Integration

Architecture
Planning

Software Requirements

Project Architecture

Behavior Specification

e-Business Process
Improvement

Enterprise Architecture

e-Business Process
Improvement Plan

Implementation

Figure 5 Deliverables within the track based framework

PAGE 16 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Reuse Checkpoints
Rather than the “Should I build or buy
software?” choice that is presented in
traditional processes, the questions in a CBD
process now are:
• Which components should I buy and

which do I develop?
• How do I scope and identify business

components that align with my business
needs?

• Is 80% of the solution (using pre-built
components) at 20% of the cost/time
acceptable to the business?

• Are there software packages that I can
reuse and integrate to solve the problem?

• Are there legacy software assets I can
reuse and integrate to solve the problem?

• Are there legacy models I can use to help
address the problem?

• Are there component frameworks I can
extend to solve the problem?

• Are there opportunities for outsourcing a
component implementation?

• How can I pick and choose the best
products, and integrate them in a mix and
match manner?

It’s useful at this point to consider some
general guidelines for building reuse
checkpoints into the track-based framework as
shown in the table below.

Deliverable Solution Assembly Component Provisioning
e-Business Process
Improvement Plan

Has the business problem been tackled before?
Search for business templates, common business models.

Enterprise Component
Architecture

Are there cost-justified opportunities to reuse or genericize existing
software assets or build frameworks, as part of the overall enterprise
architecture?
Consider architectural fit of identified software assets; consider
architectural patterns. Examine dependencies and investigate overall
feasibility.

Software Requirements Has the software problem been
tackled before?
Search for possible existing models,
and frameworks that might help
solve the problem. List candidates.

Can the problem be stated in more
general terms?
Conduct comparative studies with
similar projects. Identify
opportunities to generalize common
features. Ensure analysis caters for
sufficient diversity of contexts.

Project Component
Architecture

Can existing software assets or
frameworks be used to solve the
problem?
Consider architectural fit of reused
asset. Examine dependencies and
investigate overall feasibility.

Are there further opportunities to
generalize software assets or build
frameworks?
Consider architectural fit of generic
components or frameworks;
consider architectural patterns.
Examine dependencies and
investigate overall feasibility.

Behavior Specification Can existing interfaces be used to
solve the problem?
Extend and specialize interfaces.

Can generalized interfaces be
provided?
Generalize interfaces, consider
analysis patterns.

Implementation (Internal
Design & Acquisition)

Can existing implementations be
used to solve the problem?
Reuse implementation designs.
Purchase implementations.
Outsource implementations.
Subscribe to virtual run-time
services

Is the design flexible enough to
cater for change?
Design, purchase or outsource
implementation for flexibility,
consider design patterns. Ensure test
plans cater for sufficient diversity of
contexts.

CBD Process Themes
Another key feature of e-business systems is
that, unlike traditional systems, they are
subject to rapid change. Charles Schwab, for
example, releases a new version of its

electronic brokerage web site each month and
evolves the underlying infrastructure to meet
the demands of growing traffic. A balance
must therefore be struck between the need for
process guidance and the demands of rapid
solution delivery. An effective process needs
to exploit best practices but not constrain in an

PAGE 17 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

overly bureaucratic way, as is unfortunately
often the case.

Good processes are meant to help, not
hinder.

What is needed is an “adaptive” rather than an
“optimizing” framework (Highsmith, 1999):
“Rather than processes the model needs to
focus on patterns. We need to move from a
20th century ‘Command-Control’ model to a
21st century ‘Leadership-Collaboration’ one.”
In this section we take a look at some themes
of successful software process that help with
the adaptive approach: iterative and
incremental development, hybrid development
and gap analysis.

Iterative and Incremental Integration
Iterative incremental processes are
characteristic of object oriented development
projects and have been well documented
elsewhere (Kruchten, 1998; Jacobson et al,
1999). Our deliverables also evolve in iterative

and incremental fashion as shown in figure 6.
At the same time there is an important gear
shift.

CBD for e-business is neither a point
solution driven nor a development
process. It is an ongoing change

management and integration process.

The process must recognize that architecture
evolves in harmony with changing business
needs. Also, you can only do as much
architecture as the business will tolerate as
reflected in the business case for CBD.
Harvesting and sowing of reuse run right
through the process from requirements to
implementation as described in the previous
section. A diversity of implementation options
are involved, from bespoke design to
outsourcing, from existing system integration
to component purchase, and from framework
extension to service subscription.

S o f t w a r eS o f t w a r e
R e q u i r e m e n t sR e q u i r e m e n t s

B e h a v i o rB e h a v i o r
S p e c i f i c a t i o nS p e c i f i c a t i o n

Im p l e m e n t a t i o nIm p l e m e n t a t i o n

P
ro

je
ct

 A
rc

h
it

ec
tu

re
P

ro
je

ct
 A

rc
h

it
ec

tu
re

E
nt

er
pr

is
e

A
rc

hi
te

ct
ur

e
E

nt
er

pr
is

e
A

rc
hi

te
ct

ur
e

E - b u s i n e s s P r o c e s sE - b u s i n e s s P r o c e s s
Im p r o v e m e n t P l a nIm p r o v e m e n t P l a n

Figure 6 Iteration and de-scoping of CBD activities

e-Business process improvement planning sets
scoping criteria for enterprise architecture and
provides the business case for software
requirements projects. Feedback is assessed on
a regular basis from implementation of e-
business solutions.

Refinement of software requirements,
specification and project architecture is
essentially iterative, with de-scoping at points
of stabilization, providing a new context for
drilling-down. Enterprise architecture provides

an overall context that governs the evolving
project architecture.

Once software requirements have stabilized, it
may be that the project moves directly to
implementation by incremental assembly. This
is sometimes known as “fast-track” and is an
evolution of RAD. Otherwise, specification
moves to more detail, usually on a further
scoped sub-set of requirements.
The refinement of specification and project
architecture is again iterative. Once both have
stabilized, the project then moves to

PAGE 18 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Gap analysis…assess the
difference between stated
requirements & existing

components.

incremental implementation according to the
provisioning strategy.

Hybrid Integration
Let’s look at how the process supports a
particularly key feature of CBD: hybrid
integration. Suppose for example, that the first
iteration of a complex project results in a
software requirements document that gives rise
to two sub-projects (P1 and P2), as illustrated
in figure 7. P1 is a RAD project for fast-track
assembly to serve one sub-set of requirements.
P2 is a specification project to further
investigate the architecture and specify
components. P2 results in five implementation
projects, say one for each of five components:
• P2.1 is another assembly implementation,

though this time to provide a set of
interfaces, in the form a process
component (see 2.3) rather than direct user
facing functionality

• P2.2 involves legacy integration work and
the creation of adaptersm to implement
components

• P2.3 is a straightforward wrapper on to a
small legacy system

• P2.4 involves internal design of a
component that the organization decides
to build itself

• P2.5 is an outsourcing project

Once a component is implemented, further
interfaces may be added or existing interfaces
extended. For example, the fast-track assembly
might be evolved to component status or
further interfaces added to the adapter. This is
an important feature of CBD: it is an
evolutionary approach. Mixed implemen-
tations like this are an increasingly common
feature in software development today.

WrapWrap

DeliverDeliver

TestTestTestTest

AssembleAssemble

“Fast Track”“Fast Track”

TestTest

OutsourceOutsource

P1P1

P2P2

P2.5P2.5

DesignDesign

Code/Code/
TestTest

DeliverDeliver

P2.4P2.4

Adapt/Adapt/
IntegrateIntegrate

DeliverDeliver

TestTest

P2.2P2.2P1, P2.1P1, P2.1 P2.3P2.3

e-Business Process Improvement Planninge-Business Process Improvement Planning

BehaviorBehavior
SpecificationSpecification

ComponentComponent
ArchitectureArchitecture

SoftwareSoftware
RequirementsRequirements

Deliver Deliver

Figure 7 Hybrid Implementations within the CBD Process

We have already seen that
applying CBD for e-
business systems involves
treating the interface as the
unit of analysis and design.
It should now be clear that the interface
provides a natural delivery mechanism for
incremental and parallel development.

Interfaces are also a very convenient means of
evolving an e-business solution. Early
increments might involve incomplete and
tentative interfaces designed largely to kite fly
the solution. New, more complete and
stabilized interfaces can be introduced, as the
requirements become clearer. Client systems

can be switched to the new
versions of interfaces, as they
become ready. Interfaces that
are no longer used can be
phased out. We must also

address configuration management issues as
the number of interfaces grows. Versioning of
interfaces becomes a small discipline in its
own right.

Gap Analysis
An important feature of CBD is the application
of gap analysis to assess the difference
between stated requirements and existing
components. A gap analysis results in a
provisioning strategy: as we saw in the

PAGE 19 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

previous section recommendations that may
include a hybrid of different options.

It is important to understand that the gap
analysis might involve realigning the stated
requirements; making a compromise to
requirements in order to deliver the solution
faster and cheaper. Even in an extreme case
where use of a package is mandated as part of
the e-business improvement plan, a gap
analysis is still important if only at a high level
in order to understand possible shortcomings
of the package and to manage expectations,
particularly of business people. After all the
package may severely constrain the component
architecture forcing integration of business
components around its capabilities as opposed
to those ideally required by the business!

Gap analysis is applied at decreasing levels of
abstraction through the process, not just once
at the specification phase as is sometimes
mistakenly thought. CBD affects software’s
entire lifecycle.

Techniques versus Deliverables
We can now return to our basic set of steps for
an interface based approach. Each step is
addressed by a different family of techniques
that are applied in iterative and incremental
fashion:
• Business Modeling: Understand the

business needs in terms of strategy,
organization, process and information.

• Use Case Modeling: Scope and identify
the business context of the software
behavior.

• Business Type Modeling: Identify and
describe business concepts to be managed
by the software, and evolve to help
identify candidate interfaces.

• Interaction Modeling: Examine dynamic
interplay between software concepts to
realize required behavior. Identify and
partition the behavior to be exhibited by
the software, assign responsibilities to and
evolve candidate interfaces.

• Architecture Modeling: Understand
software dependencies and adjust
responsibilities of interfaces. Verify
technical feasibility. Group interfaces into
components and partition the software into
deployable units.

• Specification Modeling: Specify the
interfaces in terms of behavior and
information. Specify groups of interfaces
to be implemented as components, in the
form of component specifications, include
constraints. Enroll and publish
specifications in catalogs.

• Internal Design Modeling: Develop or
acquire component implementations.

Figure 8 illustrates the overall relationships
between the techniques and shows how
techniques relate to typical project
deliverables. Internal design modeling is not
shown here as it is outside our scope.

e-Business Process
Improvement

Plan

Behavior
Specification

Software
Requirements

Component
Architecture

Use CasesBusiness
Types

Component
Architecture Interactions

Specifications

Business
Models

Figure 8 Technique types in relation to typical project deliverables

Technique Overview
The business models provide a context for
modeling business types and use cases
Business process flow diagrams help to
identify use cases. Business concept models

provide an initial pathway toward developing
business types. The business models help to
scope the component architecture and set a
context for interaction modeling. Conversely
information unearthed as a result of any of the

PAGE 20 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

four software related techniques may result in
a revision to the business models.

Modeling of use cases and business types is
two-way. Both help in understanding software
requirements. The business type model must
support the use cases. Use cases help unearth
new business types, attributes and associations.
At the same time the business type model
should reflect requirements not covered by use
cases, such as business policy, business rules
and information requirements.

Business type modeling drives both interaction
modeling and architecture modeling (and vice-
versa). Interfaces are initially declared by
consideration of the business type model. An
interface should manage cohesive sets of
business types. Dependencies between the
interfaces must be reflected in the component
architecture. Interfaces are declared on
interaction models, which help to further refine
understanding of the interfaces.

Use case modeling drives interaction modeling
(and vice-versa). Use cases are refined into
lower level use case steps and the required
types, and interfaces, declared on interaction
models. (Note: In fact it is possible to proceed
direct to the interactions without prior use case
modeling). Thinking through interactions in
this way may also cause use cases to be
adjusted.

Interaction modeling and use case modeling
drive architecture modeling (and vice-versa).
The architecture provides interfaces that are
declared on the interaction models. Conversely
the interactions (and use cases) are “played
through” and test out the architecture, causing
adjustment of interface responsibilities,
questioning of dependencies and new
interfaces and dependencies to be identified.

Interaction modeling drives specification
modeling (and vice-versa). Operations required
to support the interactions and attributes and
types required by the interactions are declared
in interface specifications. Interaction
modeling also helps identify constraints and
dependencies recorded in component
specifications. Conversely, thinking through
specifications in this way may also cause the
interactions to be adjusted (for example,
perhaps an operation is moved to a different
interface).

Architecture modeling drives specification
modeling (and vice-versa). The interface
specifications and component specifications

must support dependencies identified in the
architecture. Conversely, thinking through
interfaces in this way may also cause the
architecture to be adjusted.

Summary
In this article we have summarized the key
features of an effective process for e-business.
We have not attempted to catalog or structure
this information more comprehensively. This
is partly for reasons of scope and partly
because CBD for e-business is a highly skilled,
creative and adaptive process. Too often
processes are produced for projects that ignore
this fact and attempt to rigidly prescribe the
development process to an extreme level of
detail.

Nevertheless some structure is essential for
planning CBD and for managing the diversity
of potential provisioning routes and skill sets.
A process framework and set of deliverables
provide a good starting point together with
checklists and guidelines such as those we
looked at for reuse. The deliverables also help
to provide a context for using the different
CBD modeling techniques.

References
Allen, P. and Frost, S., Component-Based
Development for Enterprise Systems: Applying
The SELECT Perspective, Cambridge
University Press - SIGS Publications, 1998
DSDM Consortium, DSDM Version 3,
Tesseract Publishing, 1997.
Highsmith, J., Adaptive Management: Patterns
for the e-Business Era, Cutter IT Journal, vol
12 no 9, Sept 1999.
Jacobson, I., Booch, G., Rumbaugh, J., The
Unified Software Development Process,
Addison Wesley Longman, 1999
Kruchten, P., The Rational Unified Process:
An Introduction, Addison Wesley Longman,
1998
Linthicum, D., Enterprise Application
Integration, Addison Wesley Longman, 2000
Martin, J., Rapid Application Development,
Macmillan, New York, 1991.
Stapleton, J., DSDM - The Method in Practice,
Addison Wesley Longman, 1997

This article is adapted from Realizing e-Business
with components, a book written by Paul Allen, the
Principal Component Strategist of Computer
Associates & editor of Cutter’s “Component
Development Strategies” journal, and published by
Addison Wesley. ISBN: 0 201 67520 X.

Copyright © Addison-Wesley 2001

Contact Paul Allen: PAUL.ALLEN@ca.com

PAGE 21 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Let’s Get Layered

Mark Collins-Cope & Hubert Matthews discuss an Architectural
Reference Model for Object & Component Based Development.

THIS article proposes a reference
architecture for object-oriented/component
based systems consisting of five layers. Our
purpose is to show how this model helps us to
understand the overall structure of a system,
how layering helps to clarify our thoughts, and
how it encourages the separation of concerns
such as the technical v. the problem domain,
policy v. mechanism, and the buy-or-build
decision.

Assuming an application is made up of a
number of components, the layering we
propose is based on how specific to the
particular requirements of an application each
component is. More specific (and therefore
less reusable) components are placed in the
higher layers, and the more general, reusable
components are in the lower layers. Since
general non-application components are less
likely to change than application specific ones,
this leads to a stable system as all
dependencies are downward in the direction of
stability, and so changes tend not to propagate
across the system as a whole.

As well as presenting the reference model, this
article also discusses and clarifies in concrete
terms the meaning of one architectural layer
being above another. Perhaps surprisingly, our
background research has shown that the
meaning of the layering metaphor is the
subject of some confusion. Specific examples
of this are given in the article.

The model presented contains five layers,
which are as follows: the interface layer; the
application layer; the domain layer; the
infrastructure layer; and the platform layer.

Introduction
Architectural layering is a visual metaphor
whereby the software that makes up a system
is divided into bands (layers) in an
architectural diagram. Many such diagrams
have been used, and by way of introduction we
show two of these.

Hardware

Device Drivers

O/S

Apps

LIBS

Figure 1 – Layered architecture – Example
from Szyperski

Szyperski [Szperski98] presents a view of a
strictly layered architecture as can be seen in
figure 1. Note that this model has the device
drivers below the operating system - a topic we
will return to discuss later in this article.

Figure 2 shows a type of ad-hoc architecture
diagram [Carlson99] that is not uncommon in
modern technical documentation. The example
shown describes the architecture of the IBM
San Fransisco product.

Platforms

Foundation

Common Business Objects

IB
M

 S
an

 F
ra

ns
is

co
A

pp
lic

at
io

n
B

us
in

es
s

C
om

po
ne

nt
s

L
og

is
tic

s

H
um

an
R

es
ou

rc
es

M
an

uf
ac

tu
ri

ng

C
os

t
A

cc
ou

nt
in

g

O
th

er
 a

pp
lic

at
io

ns

O
th

er
 a

pp
lic

at
io

ns

A
cc

ou
nt

in
g

C
U

ST
O

M
E

R
 S

O
L

U
T

IO
N

Figure 2 - Typical 'ad-hoc' architectural
layering diagram

Some common themes run through these
diagrams:
• that it is possible to identify a number of

layers in the construction of pieces of
software,

• that some layers sit on top of others
(although there may be some question as

PAGE 22 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

The reference model is
intended to encourage

re-use of business
specific (not just

technology)
components.

Layer ordering (highest to
lowest is based on

component compile time
dependencies.

to what one layer being above another
actually means), and

• that one may broadly
categorise layers as
being either horizontal
(applicable across
many, if not all business
domains), and vertical
(applicable across a
subset or only one domain);

Turning to UML class diagrams (a younger
notation), we notice that common convention

usually place subclasses, which are more
specialised, below their parents, which
are more general purpose. This
convention is the exact opposite of the
architectural convention is most
specific, and the cause of a
undoubtedly confusing visual
metaphor mismatch which we discuss
further in our article The Topsy Turvy

World of UML [Collins-Cope+00].

Base

Derived1 Derived2

Typical UML class diagram layout

Base

Derived1 Derived2

Architectural diagram showing layers

more general

more specificmore general

more specific

Figure 3 - Class diagrams and architectural views

This article takes a revised look at application
layering, with a particular focus on clarifying
the unstated assumptions in such diagrams, and
proposes a five layer architectural reference
model for component based OO applications
that can be used to assist in the design of
component based systems.

Proposed model

Motivation
The objectives behind the architectural
reference model presented in this article are as
follows:
• to provide a framework for decision

making during the design of components,
• to support and re-enforce the appropriate

application of good OO design principles,
in particular those concerned with stability
and dependency management,

• to provide an architectural framework to
encourage re-use,

• to encourage re-use of business specific
(not just technology) components,

• to position components as the unifying
concept that tie together different
architectural views of a system, and

• to provide clarification on the meaning of
layering in a component context.

We come back to these motivations in the
conclusions section of this article.

Reference Model
We define the architecture of a system as the
structural relationship between the individual
components that together create an application
as a whole. We define a component as an
(object-oriented) software development
deliverable implementing a well defined
interface that is released at the binary (or
equivalent) level, which may have a number of
well-defined extension points to enable it to be
customised.

Examples of components conforming to this
definition might include '.o' or '.a' files on a
Unix system, '.obj', '.dll' or '.ocx' files on a
Windows based system. Components
developed within a COM or EJB type
environment are, of course, equally within this
definition. Note, however, that in most of the
following discussion we consider the design
view of components, which we represent as
packages in UML notation.

Figure 4 shows our proposed reference model.
Figure 5 shows the same model populated with
a number of classes, components and

PAGE 23 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

relationships between them, taken from an
example banking application. Two external
actors [Jacobson+94] interact with the system:
a bank clerk (using a debit dialog box), and an

external banking system (using an intermediate
file format).

(app l ica t ion) In te r face l ayer

App l i ca t ion (spec i f i c) l aye r

D o m a i n (s p e c i f i c) l a y e r

(t echn ica l) In f ras t ruc tu re l ayer

P la t fo rm (so f tware) l aye r

Appl ica t ion spec i f i c

G e n e r a l p u r p o s e

range o f domains o f app l i cab i l i t y

Figure 4 - Layered architecture reference model

GUIDebit
 DialogBox

clerk central banking system

FileExchange
Manager

DebitControl

DBTransaction
Manager

Account
DebitRule
Checker

AppDebit
Rules

Persistent
Class

Class Component
(<<component subsystem>>)

1-1 directed
association

is a subclass of

*

GUIDialog Other platform services … (e.g. RBDMS)

GUI Environment -
eg. Windows/Motif

Bespoke persistence
component

1-many directed
association

*

Generic account
component

Application specific
use of account
component

... ...

... ...

 Interaction with external world

Figure 5 - Layered architecture populated with an example

The layers presented in this model may be
summarised as follows:
• Highest (and most specific) in the layering

is the application interface layer. This
layer is responsible for managing the
interaction between the 'outside world' and
the lower layers within the application. It
typically consists of components

providing GUI interface functionality -
managing the interface to human users,
and/or components providing external
system interfaces - managing the interface
to external systems. This layer often
contains what Jacobson et al. call
boundary classes [Jacobson+94].

PAGE 24 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Most re-usable of all, is the
platform software layer. This is

comprised of standard or
common-place pieces of

software that are brought in to
underpin the application.

• In the example application shown in figure
6, we can see two classes packaged within
this layer. The GUIDebitDialogBox class
implements an application specific dialog
(to enter a debit). The
FileExchangeManager class reads an
external file format. Both classes use the
application specific DebitControl class to
process the information they receive from
the outside world.

• Below this is the application specific
layer. This layer is comprised
of objects and components
that encapsulate the major
business processes and
associated business rules
automated within an
application. Typically it will
contain many objects akin to
Jacobson’s (use case) 'control' objects
[Jacobson+94]; and often also acts as the
'knowledge' layer in Fowler's
operational/knowledge split [Fowler98]
(another description of this is separating
policy from mechanism.) It may also
contain specialised subclasses
implementing interfaces left 'open' (as in
Open Closed Principle [Meyer97]
[Martin96]) by the more general purpose
components in the layer below, and
typically does not contain persistent
business classes. Most importantly, this
layer contains the “glue” to tie together
components within the domain layer
below.

• In the example application shown in figure
6, we can see two classes packaged within
an application specific debit component.
The DebitControl class takes over
application control when asked to do so by
one of the higher level interface classes. It
then drives the domain level account class
to implement its functionality (which may
involve several method calls on account).
Note that the DebitControl class is derived
from a database transaction management
class defined in the bespoke persistence
component in the infrastructure layer. The
other class - App. debit rules - implements
the debit-rule checker interface (derived
from the lower level account component)
to customise the debit checking rules as
required by this application.

• Next is the business domain specific layer.
This layer is comprised of components
which encapsulate the interface to one or
more business classes, which are specific
to the domain (area of business) of the
application, and are generally used from
multiple places within the application.

They might also be used by a family of
related applications - a software product
line. This layer typically contains the
'entity' classes discussed by Jacobson et al
in [Jacobson+94].

• The example application shown in figure 6
shows an account component in this layer.
The account class is driven by higher level
components to undertake account related
activities such as debiting and crediting of
monies. As part of this, it uses a

DebitRuleChecker
interface (abstract class)
to enable individual
applications to customise
the particular debit
checking rules that may
be applied (e.g. can go
overdrawn, can't go

overdrawn, etc.) This is an example of the
open/closed principle
[Meyer97][Martin96] being used to
implement an operational/knowledge split
[Fowler98]. Note also that, being
persistent, the account class is derived
from the persistence class in the
infrastructure layer.

• Then comes the technical infrastructure
layer. This layer is made up of bespoke
components that are potentially re-usable
across any domain, providing general
purpose 'technical' services such as
persistence infrastructure, general
programming infrastructure (e.g. lists,
collections).

• The example application shown in figure 6
shows a general purpose persistence
component being present in this layer. In
this component, a DBTransactionManager
class keeps tabs on a number of
PersistentClasses, which provide the hook
by which higher level domain classes
many be made persistent.

• Finally, most of all, is the platform
software layer. This is comprised of
standard or common-place pieces of
software that are brought in to underpin
the application (e.g. operating systems,
distribution infrastructure (CORBA\
COM), etc.) The example application
shown in figure 6 shows a relational
database and a GUI class library being
used to build the application.

Associated rules
Some simple rules are associated with this
model:
• there should be a clear and simple

mapping between component structure
and source code structure (the simplest

PAGE 25 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

being a 1-1 mapping), and between the
component structure any other analysis
and design artefacts produced during the
development process (e.g. the design view
of a component, as shown in a package
diagram, or the use case view of a
component, as shown using packages of
use cases);

• the level of a component is the highest
level of any of its constituent classes;

• components should not (and by the above
definition, cannot) cross layers;

• the compile time dependencies between
components within any particular layer
should be to components in either the
same or a lower layer;

• the application and domain layers should
be technology free in the interface
components within them present to the
outside world;

Layering Semantics
Most layering diagrams omit to discuss the
meaning of one layer appearing on top of
another, or any description of the axis of the
diagram. Earlier reviews of this article, and the
example shown in figure 1 have lead us to
believe some further discussion of these
aspects of the layering model presented here is
desirable:
• Vertical axis semantics. The vertical axis

of figure 5 indicates the specificity (how
specific it is to a particular
application/environment) of a component
in the application. The higher it appears in
the layering of the reference model, the
more specific it is. The lower it appears,
the more general purpose it is. This has
lead us to coin the phrase the centre of
gravity of the application - essentially a
way of classifying the overall architectural
feel of a system as being either 'high' (very
application specific, difficult to extend
without substantial modification to
existing components), or 'low' (good
layering applied, likely to have hooks for
extension without any modification to
existing components).

• Layer ordering (highest to lowest) is
based on component compile time
dependencies. In figure 1, Szyperski
shows a layering model in which the
device driver layer is shown below the
O/S layer. Whilst this seems appropriate at
first glance, a deeper examination reveals
the ordering in Szyperski’s example is not
based on the same criteria as the layering
presented in our model. In our model,
layer ordering is based on the compile
time dependencies between the

components that reside within the layer. In
the terms presented in this article, the
device driver interface of an operating
system is an extension point to enable
customisation of the operating system
“component” to a piece of particular
hardware. The operating system is more
generic (general purpose) than the device
drivers it uses (which are tied to particular
hardware). The device drivers are also
dependent upon the operating system for
their definition – their interface must
conform to the calling interface used by
the operating system (they will use the
function prototypes defined in an
operating system header file) – not the
other way round. For this reason, we
would present the middle three layers of
figure 1 in the following manner (with
additional detail to show interface
definitions and instantiation of interface):

Hardware

Device Drivers

O/S O/S CLASSsDEVICE DRIVER INTERFACE

DEVICE DRIVER

LIBS

*

LIB CLASS

Figure 6 – Szyperski’s example using our
layering rules

Summarising, the layering semantics presented
here tie together the concept of the specificity
of a component (how much detail is filled in,
how specific it is) with the notion of compile
time dependencies. The higher a component in
the model, the more specific it is likely to be,
and the more dependent it is likely to be on
other components, and vice versa.

Further notes
A number of additional points are worthy of
brief discussion:
• A component oriented approach. We have

defined our view of architecture as one
being based on the structural inter-
relationships between the binary
components that are used to make up a
system. We adopt this focus because at the
end of the software development process
we would like to have a number of well-
defined and well-structured, loosely
coupled, internally cohesive binary
components that we may, without

PAGE 26 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

All GUI components do not
reside at the interface level.

modification, use again in extending the
current application (or possibly another
application).

• GUI components. All GUI components do
not reside at the interface level. The
interface level may contain application
specific refinements of general purpose
GUI components (e.g. an application
specific dialog box), however the general
purpose elements themselves (e.g. the
generic dialog box from which the
application specific one is derived) live at
the platform level. The same is true for
any general purpose
GUI component
without application
specific customisation
(e.g. a graph drawing widget).

• Substitutability. Many discussions of
architectural layering focus on being able
to replace one whole layer with another –
they are effectively treating the whole
layer as a single component. This is not
the purpose of the model presented here,
which is intended as a guide to
determining the contents of a particular
component by deciding upon within which
layer it is appropriate it reside.
Substitution would take place at the
individual component level, not on a per
layer basis.

• Three-tier architecture. It is interesting to
see how the model presented here maps to
the classical view of a three-tier
architecture (presentation, business logic,
database). The model presented here can
be viewed at a conceptual level as being
independent of detailed deployment
issues. However, it can also be used for
applications deployed across multiple
machines/processes – for example as in
the classic three-tier model. In this case:
• the presentation tier would contain

the interface layer, (possibly) the
application layer (in a thick client
configuration), and some components
of the platform layer (e.g. CORBA
client components, generic GUI
components).

• the business logic tier would
(possibly) contain the application
layer (in a thin client configuration),
the domain layer, the infrastructure
layer, and some components of the
platform layer (e.g. distributed ODBC
client components , CORBA server
components), and

• the database tier would contain the
remainder of the platform components
(e.g. the RDBMS, ODBC server
components, etc.);

• the net result being that the higher
layers are deployed in one particular
machines/process, and that the lower
two layers are often present on
multiple processes/machines.

How the layering helps us understand
design

To see how layers and particularly our visual
metaphor help us, let’s examine the
Adapter pattern from the Gang of
Four’s book [Gamma+95].

Figure 7 shows an adapter being used to allow
two components with incompatible interfaces
to be used together (a common problem in
component design). The billing adapter
implements the Account component’s outward
billing interface and passes on any messages to
the credit card billing component’s inward
billing interface, with possibly modified
parameters. Since both of the components are
reusable and not specific to this application
they belong in the domain layer. The adapter,
on the other hand, is very specific to this
particular configuration and so it is not in
general reusable and so belongs in the
application layer instead – it is acting as
application-level “glue” for the other
components. Note here that the two component
dependencies point downwards – one being

caused by an inheritance relationship, the other
by a directed association.
Figure 7 - Getting an account paid by credit card

For a second example, we show in figure 8 one
of the refactoring patterns from Martin
Fowler’s book [Fowler+99]: Separate Domain
from Presentation.

Account CreditCard
Billing

CreditCard
BillingAdapter

Application layer

Domain layer

PAGE 27 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

<<component
system>>

<<component
system>>

<<component
system>>

OrderWindow

is refactored to

Interface layer

OrderWindow

Application (or domain) layer

Order

Figure 8 - Separate Domain from Presentation

Here we see a GUI dialog class containing
business logic being split into two. Our
architectural overlays add context to this,
showing that in doing so what was previously
an interface layer component has now been
split into two components: one still in the
interface layer, and one in the application
specific (or possibly domain) layer. The
refactoring visibly lowers the centre of gravity
of the application. Two more benefits are that

we have separated the usage of the Order
component from its implementation (in other
words we have separated policy from
mechanism), and that we have separated the
technology-free Order component from the
inherently technology-based OrderWindow,
thereby giving us more portable code and
allowing us more freedom in deployment (for
example in a three-tier system).

Figure 9 - Push Down Method (reworked by us as Pull Up Method!)

In figure 9, Fowler shows us an inheritance
hierarchy with an inappropriately placed
method, which is effectively polluting the
component which contains it by forcing it up
to an inappropriate level. The refactored
version shows the component being split into
two (over two levels), the method having being

moved out the Employee class and into the
Salesman class. This enables the Employee
component to reside at a more general level in
the hierarchy, and again visibly lowers the
centre of gravity of the application.

<<component
subsystem>>

<<component
subsystem>>

<<component
subsystem>>

Salesman Engineer

Employee
GetQuota()

Employee

Engineer Salesman
GetQuota()

Application Layer

is refactored to

PAGE 28 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

One important part of the design of
component based systems is the

identification and allocation of
responsibility for maintaining invariants

across components.

Broader issues
• No name, no discussion

Nowadays we talk about composites and
flyweights [Gamma+95], but this would
not have been possible ten years ago.
Having a standard layering vocabulary
would be of clear benefit in enabling
developers to discuss the level at which
components might lie.

• No architecture, no re-use
An architectural framework is key to
achieving re-use [Jacobson+97]. Re-use
requires a clear understanding of what is
specific and what is general in designing a
set of related components. The reference
model assists in understanding these
separations, whilst also adding clarity to
the layering semantics.

• Architecture adds context
An architectural view adds additional
context to many design patterns. Take the
observer pattern [Gamma+95]. If
packaged together in a single component,
the base classes Subject and Observer can
be seen as providing a low level
(infrastructural) flexible component from
which higher level (domain, application or
interface) concrete observation
mechanisms can be built. The derived
ConcreteSubject and ConcreteObserver
can be seen as application, domain or
interface specific extensions to a general
purpose mechanism.

• Architecture aids (good) design
The layering presented also supports a
number of OO design
principles: the open
closed principle
[Meyer97][Martin96] –
the idea being that
lower layer components
are closed against
modification, and higher layer components
extend the open aspects of them; the stable
dependencies principle [Martin97] - the
layers are organised based on expected
stability of their contents – the lower layer
components being more stable; and the
acyclic dependency principle[Martin97] -
the depend downwards rule supports this
principle.

• Invariants
One important part of the design of
component based systems is the
identification and allocation of
responsibility for maintaining invariants
across (possibly bought in) components. It
may be necessary for two components in
the domain layer to maintain an invariant

relationship - e.g. customer address must
be maintained in both components. The
responsibility for maintaining invaritants
across components resides in a layer
above that in which the components
reside. So in the case of our customer
address invarient, it would be the
responsibility of a component within the
application layer to ensure it was not
violated (perhaps using a change event
generated when the customer address was
changed in either domain layer
component).

A brief philosophical aside
Many classification systems are blurred around
the edges, and our layer classification is no
exception. In his excellent book Darwin's
Dangerous Idea [Dennet96] Dennet describes
how examining the characteristics of a
particular species of gull, starting in Britain
and moving west to east around the globe,
yields a set of gradually evolving changes
until, as the loop closes and the examiner
returns to Britain, a different species of gull is
finally found next to the original! Species
clearly have blurred edges, so we’re in good
company!

Compromises
The model presented here is not perfect, but a
compromise between simplicity and meeting
the stated set of objectives. Some potential
shortcomings of the model are as follows:
• It would have been superficially pleasing

to have a rule that said: you can only
depend on the layer
below you. However,
upon deeper consi-
deration we believe
that the reason for
this is an emphasis
in previous

discussions of layered architectures on
complete substitutability of layers. As
discussed in earlier section
(substitutability) this is not the motivation
behind the model presented here.

• There are clearly times when there will be
sub-layerings within the layers presented,
and we could have made these explicit.
However, we feel the price would have
been too high in terms of additional
complexity. Instead, we prefer to allow the
option of discussing the 'lower application'
layer to resolve such issues.

• We have chosen to separate the
infrastructure and platform layers based on
a buy versus build criteria. Architectural
purists may object to this - why should the

PAGE 29 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

layer in which a particular component
resides be dependent on whether you buy
or build it? Our motivation is simple: we
wanted to put the focus clearly on the
aspects of the application being
developed. For similar reasons we have
been unconcerned with sub-layerings
within the platform layer.

Conclusions
Summarising, in this article we have proposed
a simple five layered reference model and a
number of associated rules to assist the
software designer. We have noted that, by
convention, UML class diagrams are upside
down, at least when considered in parallel with
architectural layering conventions, and that
this is a block to visualising one aspect of what
happens during refactoring. We have shown
that once this is addressed, UML and the
architectural model complement and re-
enforce each other.

We have identified examples from Gamma et
al’s Design Patterns book, and Fowler's
refactoring book that show the reference model
adds context to well known design (and
refactoring) paradigms.

We have discussed how the model supports
good OO design principles, in particular those
concerned with ensuring stable dependency
management, and have emphasised and
clarified the rules on which our layering model
is based (specificity/generality and compile
time dependency).

Coming back to the objectives detailed in
earlier in this article, we believe the
architectural reference model presented here:
• provides a framework for decision making

during component design by providing a
number of layers within which the
developer can position their components,

• supports and re-enforces the appropriate
application of good OO design principles,
by encouraging components to be
extended (customised) by other
components in higher layers, and by
imposing a downwards only dependency
rule,

• encourages re-use by providing a layering
system and associated set of rules that puts
the focus of design on the
specificity/generality of components,
encouraging components contents to be
seperated on the basis of the layering
provided,

• provides clarification on the meaning of
layering in a component context, by

putting the emphasis on compile time
dependency management,

• encourages re-use of business specific
(not just technology) components by
presenting two layers within which
business components may reside. This
encourages more generic functionality to
be in the domain layer, and application
specific customisation/glue type function-
ity to be in the application layer, and

• positions components as the unifying
concept that tie together different
architectural views of a system, by stating
that the package structure of the system
(and associated specification, design or
use case views) should be based on the
target component structure.

References and credits
[Szperski98] Clemens Szyperski, Component Software:
Beyond Object-Oriented Programming, January, Addison
Wesley Longman, 1998.
[Carlson99] Brent Carlson, Design Patterns for Business
Applications, the IBM SanFransisco Approach,
ObjectiveView Issue 3, available at
www.ratio.co.uk/objectiveview.html, 1999.
[Collins-Cope+00] The Topsy Turvy World of UML,
Hubert Matthews and Mark Colllins-Cope, ObjectiveView
Issue 4, available at www.ratio.co.uk/objectiveview.html,
2000.
[Jacobson+94] Ivar Jacobson, Magnus Christerson, Partrik
Jonsson, Gunnar Övergaard, Object Oriented Software
Engineering - A Use Case Driven Approach, Addison-
Wesley, 1994.
[Gamma+95] Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides, Design Patterns - Elements of
Reusable Object-Oriented Software, Addison-Wesley,
1995.
[Fowler98] Martin Fowler, Analysis Patterns - Reusable
Object Models, Addison Wesley, 1998.
[Jacobson+97] Ivar Jacobson, Martin Griss, Patrik
Johsson, Software Reuse - Architecture, Process and
Organization for Business Success, Addison Wesley
Longman, 1997.
[Meyer97] Bertrand Meyer, Object Oriented Software
Engineering (second edition) - Prentice Hall Professional
Technical Reference, Published 1997.
[Martin96] Robert C. Martin, The Open Closed Principle,
C++ Report, Jan 1996.
[Fowler+99] Martin Fowler with contributions from Kent
Beck, John Brant, William Opdyke, and Don Roberts,
Refactoring - Improving the Design of Existing Code,
Addison Wesley, 1999.
[Martin97] Robert C. Martin, Stability, C++ Report, Feb
1997.
[Gamma+95] Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides, Design Patterns - Elements of
Reusable Object-Oriented Software, Addison-Wesley,
1995.
[Dennet96] Daniel C. Dennet, Darwin's Dangerous Idea:
Evolution and the Meanings of Life, Touchstone Books,
1996.

Particular thanks are due to Andy Vautier, Nigel Barnes,
Andris Nestors and Keith Haviland of accenture, upon
whose 1 million line+ C++ project many of the underlying
concepts presented in this paper were formulated. Further
detailed technical discussion this project can be found at
www.ratio.co.uk/techlibrary.html.

PAGE 30 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Component Distribution Patterns - A mini-language for distributed
component design

Philip Eskelin (with Kyle Brown & Nat Pryce) discuss three related patterns for distributed
object and component based application development…

INTRODUCTION
THIS language is an exploration of the
problem of building distributed systems using
component technology. For the purpose of this
language, a component is a reusable software
entity with a well-defined interface that fulfils
a specific purpose. Component frameworks
like Enterprise JavaBeans and COM+ provide
services (e.g., distribution, transaction support,
or persistence support) that can be used by
components.

This language follows the Alexander form
[Alexander], which breaks patterns into the
following elements: a name providing a
descriptive label; a picture providing a
visualization of the theme; a context
description tying it to the patterns that link to it

from their resulting contexts; a problem
statement capturing the essence of the problem
and description elaborating upon it; a solution
statement succinctly communicating the
essence of the solution with a description
providing analysis, illustrations, and known
uses; and a resulting context description tying
it to the patterns flowing from it.

The language is a subset of the Component
Design Patterns language, but can stand on its
own as a micro-architecture for building
software containing distributed components.
Three patterns are included: FAÇADE AT THE

DISTRIBUTION BOUNDARY, REPLICATED

OBJECT, and DISTRIBUTED COMMAND.

F a ç a d e a t t h e

D i s t r i b u t i o n
B o u n d a r y

D i s t r i b u t e d
C o m m a n d

R e p l i c a t e d
O b j e c t

Arrows denote pattern relationships. For
example, REPLICATED OBJECT mentions
DISTRIBUTED COMMAND in its resulting
context description, and DISTRIBUTED

COMMAND mentions REPLICATED OBJECT in
its context description. Since this language is
part of a larger one, other patterns are

mentioned that are not covered in this
language.

Readers of this language should be familiar
with design patterns [Gamma] and the J2EE
[Sun] standard and architectures of distributed
component frameworks from Java application
server vendors such as IBM, BEA, and ATG

REPLICATED OBJECT

N e t w o r k o b j e c t r e p l i c a t e

C l i e n t S e r v e r

A p p l e t

When building distributed applications that
require interactions between remote
components, efficiency and code management
concerns often dictate that alternatives to using
a PROXY for remote interactions is required.

Sometimes an event-driven approach is desired
to provide better efficiency for real-time
notification of changes to remote objects. This
pattern documents a technique that can be used
to efficiently access distributed objects.

PAGE 31 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

A distributed application that uses pass-by-
reference for method invocations via proxy
objects can lead to an excessive number of
network calls for complex data manipulation in
remote objects. Polling methods to provide
updates to the state of a remote object can limit
scalability and lead to inconsistencies.

PROXY is such a useful pattern that many
programmers begin thinking it is the complete
solution to their distribution problems.
However, proxies have the unfortunate side
effect that every call to a proxy crosses the
network. In many situations, this is not only
too costly, but it is unnecessary when taking
into account the desired behavior of the object.
For instance, imagine a simple stock-trading
application.

A c c o u n t

g e t C u s t o m e r N a m e ()
g e t C u s t o m e r A d d r e s s ()
g e t T r a d e s ()
g e t C a s h B a l a n c e ()

T r a d e

g e t T i m e E x e c u t e d ()
g e t V o l u m e ()
g e t T r a d e d P r i c e ()

S t o c k

g e t Q u o t e ()
g e t T i c k e r S y m b o l ()

A l l c l a s s e s s h o w n
h e r e a r e E J B s

t r a d e H i s t o r y

h o l d i n g s e q u i t y

Figure 1: Original Design

In Figure 1, a session EJB is used to represent
a customer Account. Other EJBs contain
information about holdings and the trades that
are made. To display all of this information on
a web page, every single piece of information

that is needed—the customer name, address,
account number, stock ticker symbols and the
amounts of trades—must be obtained through
separate network calls. The following
interaction diagram illustrates this:

Cl ient : A c c o u n t : T r a d e

g e t C u s t o m e r N a m e ()

ge tT rades ()

ge tVo lume()

ge tTradedPr ice ()

ge tT imeExecu ted ()

A l l o f these
m e s s a g e s a r e
sen t remo te l y

Figure 2: Remote Interactions

Figure 2 shows that excessive network calls
occur, especially in the case where there are
specific objects (like a Trade, or a Stock)
that have been completely fetched from a
back-end persistent store and do not vary from
one method invocation made to our Account
EJB to another.
The number of network calls must be
optimized so the client can fetch attributes and
perform other computation-intensive tasks
locally without sacrificing bandwidth or
consistency. By locally replicating the remote

object via a façade, in-process method
invocations can occur as many times as is
required, and the object can be designed to
invoke distributed commands when the remote
object needs to be updated.

Therefore:

Use a pass-by-value approach for business
objects requiring remote interactions in
your distributed application. Serialize a
snapshot of the object on the server so that a

PAGE 32 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

replicate can be reconstituted on the client
end, and propagate updates to the object as
event notifications. Programmers choose
which objects in their system will need to be
manipulated on both ends of a client-server
interaction, and replicate them accordingly.

In the above example, the Trade and Stock
objects would be replicates that are serialized

and sent together from the server (i.e., from the
Account EJB) to the client application that
needs to display them. In EJBs, this can be
done by making the Trade and Stock
serializable beans, rather than making them
full EJBs. The following illustrates Trade and
Stock as JavaBeans:

Account

getCustomerName()
getCustomerAddress()
getTrades()
getCashBalance()

Trade

getTimeExecuted()
getVolume()
getTradedPrice()

Stock

getQuote()
getTickerSymbol()

Now, on ly
Account i s an
EJB

t radeHistory

holdings equity

Serializable

Figure 3: Serializable Objects

This change results in change in the
distribution boundary. Now only some of the
messages from the client to the other objects
are remote calls. Calls to the Trade are local,

and only calls to the Account component are
remote. The following interaction diagram
illustrates this:

C l i e n t : A c c o u n t : T r a d e

g e t C u s t o m e r N a m e ()

g e t T r a d e s ()

g e t V o l u m e ()

g e t T r a d e d P r i c e ()

g e t T i m e E x e c u t e d ()

T h e s e m e s s a g e s
a r e s e n t r e m o t e l y

T h e s e m e s s a g e s
a r e s e n t l o c a l l y

Figure 4: Local and Remote Mixed

Replication is particularly useful when a
complex object net needs to be traversed. If
each call to obtain a new “node” in an object
net required a network call, the overhead from
those calls would be too high to be practical in
most applications. For example, remote
traversal of the DOM tree of an XML
document would be impractical. Even if the
document were parsed remotely before
traversal began, the navigation and retrieval of
all elements and attributes alone would require
hundreds, if not thousands, of network calls.

In addition, by replicating objects, you are not
forced to deal with the cumbersome task of
implementing all features for every remote
object in the component framework. In our
example, since Account is the only
component that is an EJB, and both Trade
and Stock are serializable JavaBeans, only
the EJB needs to worry about the distributed,
thread-safe, and transactional features offered
by EJB containers. The EJB works with each
of the beans internally to maintain consistency
and thread safety, and the solution still benefits
from drastic reduction in network overhead.

PAGE 33 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

However, one consequence that arises is that
replicated objects are not full-fledge
components and do not have the same level of
support in the environment as components do.
An object factory can be created for each type
of replicated object to fill this gap. They
would be responsible for creation, update, and

instance management of these objects, and can
be implemented to participate in managed
transactions and integrate with a façade at the
distribution boundary. The following
illustrates the design of a factory for the
example above:

A c c o u n t F a ç a d e

g e t T r a d e ()

T r a d e F a c t o r y

g e t T r a d e B e a n F o r ()

S t o c k E n t i t y

g e t T i c k e r S y m b o l ()
g e t Q u o t e ()

T r a d e E n t i t y

g e t T i m e E x e c u t e d ()
g e t V o l u m e ()
g e t T r a d e d P r i c e ()
g e t S t o c k ()

T r a d e B e a n

g e t T i m e E x e c u t e d ()
g e t V o l u m e ()
g e t T r a d e d P r i c e ()
g e t T i c k e r S y m b o l ()
s e t T i m e E x e c u t e d ()
s e t V o l u m e ()
s e t T i c k e r S y m b o l ()
s e t T r a d e ()

Figure 5: Object Factory

A TradeFactory is created that responds to
requests from the session EJB to create a
TradeBean for a particular key value. It
would accomplish this by using the homes
(i.e., component factory) of the appropriate
entity EJBs to locate the EJBs that contained
the needed information, and then copy that
information into a new TradeEntity, which
it would return to the session EJB. Likewise,
when an update occurred, the session EJB
would instruct the object factory to carry out
the update. It would locate the appropriate
entity EJBs and update them within a single
transaction regulated by the session EJB.

In essence, an object factory designed to
manage replicated objects could be thought of
as a façade for the relational database access
layer. In fact, a common way of using popular
object-to-relational mapping tools is to use
their built-in object factories to create objects
that can be obtained by clients of a session
EJB acting as a façade at the distribution
boundary.

This pattern first arose in the GemStone
object-oriented database for Smalltalk, which
provided both OODB and application server
functionality. When working with GemStone
programmers had the option of choosing to
execute methods in either the server process

space, or the client process space. This meant
that at runtime an object could be declared to
either be a replicate, or a proxy.

The set of objects that can be passed by value
may be disjoint from the set that can be passed
by reference (the EJB) or may overlap that set
(through Java RMI). For example, the
semantics of Java RMI are such that methods
of remote interfaces may return any primitive
or legal Java class, so long as that class
implements the interface Serializable. In
this way, snapshots of objects are serialized in
the server, and then deserialized on the client
end and returned to the object that initiated the
call to the proxy. So any serializable object
may be a replicate in RMI (and by extension,
EJB).

However, it is not easy to implement this
pattern in all distribution frameworks. For
instance, in CORBA 2.2 [98-07-01], there was
no way to define an object that could be passed
by value. CORBA 2.2 only provides for
structs, analogous to C structures, that are
data-only and do not allow for the definition of
behavior. So if a programmer wishes to ask a
distributed CORBA component for some
information, and then manipulate that
information on the client (receiving) end, he
must first ask for a struct from the local proxy

PAGE 34 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Programmers accessing remote
components through proxies

eventually jam networks and bring
down servers if the designers of their

distributed applications lacked
experience…

to the CORBA component, and then copy the
information from that struct into another object
that can manipulate the information. This
copying must be hand-coded, and is prone to
error and also prone to break when the
definition of the struct changes in IDL.

CORBA supports passing objects by value in
its current specification (a joint submission
[98-01-18] on Objects by Value was approved
in 1998). It does so by
proposing a new IDL
keyword (value) that
allows for the creation
of objects that have
state and methods, but
are not descended from
CORBA::Object
and thus cannot be represented as an IOR.

When you begin to use replicated objects,
there are a number of consequences that you
need to consider. The first is the issue of
synchronization of replicates between the
client and the server. One solution to this is to
use dirty bits to record if the information that
is stored in the replicate has been changed by
the client.

This does not solve the problem of reconciling
differences between client and server when the
information on the server changes, however.
In this case, callbacks may be employed to
update the replicate whenever the server
changes. However, this requires the server to
be aware of what is current on each client –

this can lead to excess memory requirements
on the server, and network overhead in the
number of calls needed to update each client.

To address the drawbacks of addressing this
consequence, a variation could use a
component bus implemented in the façade that
allows the replicate to receive event
notifications each time the remote object has
been updated. Each replicate could subscribe

to a topic dedicated to the
remote object via the
façade's component bus.
Initially, the replicate
receives a serialized
snapshot of the remote
object, and then receives
only delta notifications that

describe only what has changed.

Replicated objects are often returned by the
methods of a FAÇADE AT THE DISTRIBUTION

BOUNDARY. If replicated objects are sent from
client to server and then later returned again to
the server, the overhead of sending multiple
copies of unchanging data can result in
performance problems. This naturally leads to
use of a DISTRIBUTED COMMAND to
encapsulate changes between replicated
objects. Also, if replicates need to stay
consistent with the state of the remote object,
then use of a COMPONENT BUS implemented in
the façade could provide a facility for clients to
receive initial snapshots and subsequent event
notifications sent from the remote object to its
replicates.

FAÇADE AT THE DISTRIBUTION BOUNDARY*

N e t w o r k

Programmers of distributed applications that
use PROXIES or REPLICATED OBJECTS
sometimes need to strike a balance in number
of objects that are made available to remote
components located across the network. It
might be necessary to reduce the number of
remote invocations, or provide a controlled
entry point to business objects located in an
application tier. This pattern helps the

programmer determine the best level of
granularity for creating such an abstraction.

Programmers accessing remote components
through proxies eventually jam networks
and bring down servers if the designers of
their distributed applications lacked
experience when designing remote
interactions. The number of proxies can
become excessive, and many objects within

PAGE 35 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Bind tightly coupled objects
together inside a single process

space. Define a façades between
these new groups that act as gate-
keepers hiding the complexity (and
sheer number) of the objects they

wrap…

the application must become relatively static
and unchanging. Changes to clients and/or
servers can become problematic.

When mainstream programmers moved from
building monolithic applications to building
ones that were distributed across a network and
connected by middleware, many developers
attempted to apply design practices that were
no longer suitable for distributed
environments. Let us consider the following
scenario.

A manufacturing system is being designed for
a car factory. The first object designed is a
Vehicle. In subsequent design discussions,
a BodyStyle is designed to encapsulate
similar properties between Vehicles. As
the team thinks more about what a Vehicle
is composed of, they design more objects. A
Vehicle is refined to contain a list of
Parts, which in turn reference
Specifications. As
designers focus on the
manufacturing process,
multiple WorkOrders
containing
BuildInstructions
facilitate the construction of
a Vehicle with a
particular BodyStyle.

The design – which elicits principles like
polymorphism and encapsulation, and uses the
OBSERVER and COMPOSITE design patterns –
works well in a system running in a single
address space. It implements ad hoc and
canned reporting on the execution status of
build instructions, and allows its users to
determine which vehicles are currently in
production and how many of what body styles
are being built. Managers have the capability
to add and update all of the above objects.

Requirements originally dictated that the
system would only need to run in a single
address space. But when upper management
saw how it benefited one manufacturing plant,
they wanted to deploy it in all plants
worldwide. Also, they wanted the ability to
run certain reports and analyze cycle times
from corporate headquarters in Detroit.

Managers decided it would be relatively
painless to distribute the system using a
popular CORBA middleware product. Client
machines would run the GUI from the standard
corporate web browser, while the centralized
server would handle most of the processing.

Management also determined that it was
required to spit server processing into
assembly (which must never go down) and
reporting (which can go down occasionally).

One of the architects, who had prior
experience with DCE RPCs, said "No problem.
CORBA gives us proxies, so we'll just take our
existing objects and write IDL interfaces for
them." Once the IDL compiler was run against
the IDL file, it would produce proxy classes
providing class methods that would be
virtually identical to the single system version.

But they soon discover that they need to write
CORBA interfaces for nearly every class in the
system. Not just the Vehicle and
BodyStyle, but for all the classes they
associate with such as PaintColor and
Accessory. The IDL becomes large, and
the proxy code generated from the IDL has a
very large footprint. During a test run, the web

browser took several
minutes to load all of the
client-side objects and
proxies that accessed the
server.

Also, they start noticing
that network traffic had
increased substantially,
and that performance and

reliability are unacceptable. During analysis,
they found that objects in one process were
sending hundreds of messages tightly coupled
objects that existed in another process space.
In addition, every change to the system
required a recompilation of the IDL file and of
all classes that use its proxies. Every update
meant users needed to wait for minutes as the
browser re-cached the client-side objects and
proxies. Testing became problematic, since
every test needed to be done over the network.

In scenarios like the one above, the first step to
solving performance, reliability, and scalability
problems is to limit the number of remote
interfaces. Best practices in building dis-
tributed systems are not just trivial extensions
of those used in monolithic systems.
Architects and designers must define a distri-
buted architecture that supports the level of
scalability, flexibility, performance, and relia-
bility required to allow the business to reap the
expected benefits of a distributed application.
Therefore:

Bind tightly coupled objects together inside
a single process space. Define a façades
between these new groups that act as gate-

PAGE 36 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Interactive
Software

Engineering Inc.

http://www.eiffel.com
Tel.: 805-685-1006
Fax: 805-685-6869

E-mail:
info@eiffel.com

keepers hiding the complexity (and sheer
number) of the objects they wrap, and
providing a central abstraction that
indicates which messages are crossing the
network.

A façade located at the distribution boundary
designs fewer and more centralized remote
interfaces, and a clear line between foreign and
domestic interactions. The following benefits
and liabilities apply to using a façade at the
distribution boundary:
• Less flexibility. When a component acts

as a façade containing many smaller
components, one tradeoff can be that
adding new components means you must
update the interface and implementation of
the façade component and test to ensure
that all existing components still work
properly.

• Easier to manage change. A benefit of
the façade is that you are in effect
wrapping what would be separate smaller
physical components with one larger
physical one, then allowing logical access
to each component inside it. You present
a "view" into these components with the
façade. Each of these components can
share a common infrastructure and operate
off of the same framework. They can
reuse standard libraries, and reduce
version discrepancy headaches that
sometimes emerge in less-controlled
development, test, or production
environments.

The IP version 4.0 (IPv4) addressing
architecture is a related example. To address
capacity issues with the antiquated addressing
scheme being used by the Internet in the early

1980s, the Internet Engineering Task Force
(IETF) added addressing standards that
allowed domains to create logical networks
with more hosts than the physical network
would allow.

The problem fundamentally lies in the fact that
Internet routers must be able to route data
grams between every possible host.
Originally, every machine on the Internet had a
unique IP address, so there was a maximum of
232 (or 4,294,967,296) possible hosts, which
seemed extremely excessive. The problem
was that routers would eventually need to
manage very large lookup tables.

Then, the IETF broke addressing down into
classes of IP addresses. This led to the concept
of a network address and a host address.

In a large GemStone project, the problem of
wanting to reduce the distribution cross-section
to minimize network traffic and swapping
between the local and distributed object spaces
(We were using a pass-by-value approach, e.g.
replicated objects for most of our objects)
existed. A façade was applied while
refactoring it to solve it.

This pattern was applied in an options trading
system that where a set of "services" were
developed that each did one key thing, like
"trade options" or "handle quotes". Each
service encapsulated many of domain objects
within a relatively simple façade API that it
published as an interface for other services.

The FAÇADE pattern was previously
documented in Design Patterns: Elements of
Reusable Object-Oriented Software [Gamma],

PAGE 37 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

Encapsulate the user changes as
commands and treat the group of
commands as a single composite
command that executes within a

transaction boundary.

Design Patterns Smalltalk Companion [Alpert]
in the section on the FAÇADE pattern (but not
in pattern form), and in Analysis Patterns
[Fowler] in Chapter 12, "Layered Architecture
for Information Systems."

A façade at the distribution boundary must
interact with the rest of the parts of the
application. It will often create a REPLICATED

OBJECT that also resides on the client. It may
also be able to use and interpret DISTRIBUTED

COMMANDS that are sent to the server to
determine what actions to take within the
server.

DISTRIBUTED COMMAND

When developing a distributed application that
uses REPLICATED OBJECTS, object updates
must be sent in both directions across the
network connection (from client to server and
server to client) to maintain consistency
between the original object and its replicates.
When replicating objects, sending updates
between client and server can lead to
efficiency problems for large objects or make
planning for transactions and other
architectural features overly complex. This
pattern documents a way to encapsulate
changes as composite groups of commands.

For instance, let's suppose you are working on
an application that allows a user to modify a
complex, highly interrelated object model.
Consider a genomics system that tracks genetic
markers through a family tree in order to
pinpoint how genes are inherited. There are at
least three axes of information that users would
be interested in:
• The family tree

itself (who descends
from who)

• The information
about individuals in
the tree (who
showed what symptoms and who's assays
showed them to have what markers)

• Information about the genetic markers
(what markers are used, where they are
found on the genome, etc.)

The problem is that the three axes are
interlocking. Modifications to one object can
have serious ramifications to other parts of the
application. For instance, if a marker is
changed, its relation to the individuals must
change. Likewise, if an individual's genetic
assay is found to be incorrect and changes,
then statistics and calculations about the family
and markers might now be incorrect. There

are two "standard" approaches to maintaining
the consistency of this information on the
entire structure that can be attempted:
• Pessimistic concurrency. In this case, a

large chunk of the object structure is
locked when the first user requests it. This
has the drawback that other users are kept
from modifying the structure at the same
time – something that is not reasonable in
a multi-user environment.

• Optimistic concurrency. In this case,
users are allowed to modify the structure
as they choose, but the first one to
"commit" his changes "wins". Anyone
who had also modified those same
structures would "lose" and find that their
changes were now lost.

A third approach, versioning, can also be tried.
In this case, a new version of the structure is
created for each user. However, this just trades
the current problem for a different, but equally
difficult, version reconciliation problem. A
different solution is required.

Therefore:

Encapsulate the user changes as commands
and treat the group of commands as a single
composite command that executes within a
transaction boundary. Use a strategy like
two-phase commit to merge commands
issued by different users together.

In a distributed system this solution becomes
even more attractive. Imagine that our
hypothetical genomics system was built using
a layered architecture, with the genetic objects
being replicated objects. Further, imagine that

we had a façade at the
distribution boundary to
encapsulate the “real”
interactions of the domain
model so that the GUI front-
end only communicated with
the business model through the

intermediaries of the façade components.

In this case we find that commands not only
help with the concurrency control of the
system, but also provide a significant benefit in
that the changes that are sent from the upper
(presentation) layers of an application to the
lower layers are sent in the form of “deltas” to
objects, rather than full copies of the objects
themselves. This reduces the amount of
network traffic, and reduces the amount of
logic needed on the server side to determine
which parts of the model have changed and
which have not.

PAGE 38 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

A known use of this pattern is information bus
middleware (e.g., TIBCO Rendezvous,
Progress SonicMQ, SoftWired iBus, Talarian
SmartSockets, etc.) software that allows
publishers to send event notifications to subs-
cribers in an efficient, reliable manner. Some
of the vendors conform to the J2EE 2.0 speci-
fication and have designed their software to be
compatible with message-driven beans. While
each vendor has their own internal structure
and implementation for messaging, they
support the JMS standard for Java messaging.

One possible implementation of this pattern is
to encapsulate this information bus middle-
ware with distributed commands that takes
more of an event-driven approach to allowing
message flow between remote objects and their
replicates to occur in real-time.

In addition, object interaction protocols based
on open standards such as XML have emerged.
Among the most popular are Simple Object
Access Protocol (SOAP), XML-RPC, Web
Services Description Language (WSDL), and
Universal Description and Discovery
Integration (UDDI). All of them utilize XML
to describe remote object invocations.

If taking a web services architecture where one
or more of these interaction protocols are being
implemented and operated by application
servers such as IBM WebSphere, another
implementation would be to use distributed
commands to encapsulate use of one or more
of these protocols.

FAÇADE AT THE DISTRIBUTION BOUNDARY can
be used to accept distributed commands and
act as an intermediary that balances load across
multiple servers. COMPONENT BUS could be
applied to implement event-driven behavior in
distributed commands. ABSTRACT FACTORY

can be used for implementations that need to

support multiple strategies for executing
distributed commands.

Acknowledgements
We would especially like to thank our Shepherd,
Robert Hirschfield for all the hard work he put into
commenting and providing great suggestions for
improvement on the patterns in this mini-language
as they were submitted to PLoP'99.

Bibliography
[98-01-18] OMG TC Document orbos/98-01-18,
“Objects By Value” Joint Revised Submission with
Errata, Object Management Group
[98-07-01] OMG TC Document 98-07-01, “The
Complete CORBA/IIOP 2.2 Specification”, Object
Management Group
[Alexander] Christopher Alexander et al, A Pattern
Language: Towns, Buildings, Construction, Oxford
University Press, London, 1977
[Alpert] Sherman R. Alpert, et al, The Design
Patterns Smalltalk Companion, Addison-Wesley
Longman, Reading, MA, 1998
[Buschmann] Frank Buschmann, et al, Pattern-
Oriented Software Architecture: A System of
Patterns, John Wiley and Sons, West Sussex,
England, 1996
[Fowler] Martin Fowler, Analysis Patterns,
Addison-Wesley Longman, Reading MA, 1996
[Gamma] Erich Gamma et.al., Design Patterns:
Elements of Reusable Object-Oriented Software,
Addison-Wesley Longman, Reading MA,1994
[Sun] “EJB Learning Center”;
http://java.sun.com/products/ejb/training.html

This miniature pattern language is part of a
publication titled Component Design Patterns:
A Pattern Language for Component Based
Development, which will be published by
Addison-Wesley in 2001. Therefore, please
note that the publication and contents of this
pattern language are part of a work in progress
and subject to change prior to its publication.

Contact Philip Eskelin: philip@eskelin.com

CBD & Advanced OO Design with
UML

A 3 Days Hands-On Course

Available as both private & public course.

For more information on this course, contact
us on +44 (0)20 8579 7900 or by email at
info@ratio.co.uk

Public Schedule date: 16th – 18th July, 2001

Design Patterns and Advance
Principles of OOD

A 3 Days Hands-On Course

Available as both private & public course.

For more information on this course, contact
us on +44 (0)20 8579 7900 or by email at
info@ratio.co.uk

Public Schedule date: 23rd – 25th July, 2001

PAGE 39 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

FIND OUT HOW TO BUILD AND SELL
SOFTWARE COMPONENTS

ComponentSource and Ratio join forces to bring you
technical and market data content on Component

Based Development (CBD)

This is a rare opportunity to get the full picture on what is happening in the
software industry with regard to reusable software

14th June 2001 - ½ Day Free Seminar – London

REVEALED

Discover

How to designing extensible components and frameworks
How to assemble, test and document components
How to create a layered reference model for CBD

What’s more….

Receive exclusive market research data, source PricewaterhouseCoopers
Find out which business software components are in demand
Discover the route to successful sales of your software components

BOOK NOW!

For more information or to register contact Andrea Graham

andreag@componentsource.com / Telephone +44 (0) 118 982 2102

This free event is open to all and will be held at the Grange Fitzrovia Hotel,
Bolsover Street, London, W1 on the 14th June 2001, 9.30am until 12.30pm

PAGE 40 OBJECTIVEVIEW 6 WWW.RATIO.CO.UK

WeKnow TheObject

WE KNOW THE OBJECT OF

TRAINING

Excellence in Object and Component Training

We offer a variety of both in-house and public schedule OO-related training
courses.

Object-Oriented Analysis &
Design using UML (RAT102)

This 5-day course gives you a practical
understanding of the major techniques of
the UML (Unified Modelling Language)
object-oriented analysis & design notation,
and how these techniques can be applied to
improve quality and productivity during the
analysis and design of computer systems.

CBD & Advanced OO Design
with UML (RAT 111)

This NEW 3-day course gives you a firm
understanding of how to analyse and design
extensible and customisable re-usable
business & technical (domain) components,
and how to assemble such components to
create bespoke applications. The course has
a clear focus on the Advanced Principles of
OOD needed to achieve this end.

Design Patterns &
Advanced Principles of OOD

(RAT160)

After this NEW 3-day course, students will be
able to apply design pattern in their everyday
development work, discuss & communicate
with each other using pattern terminology,
and understand & be able to apply the
Advanced Principles of OOD to create higher
quality, more flexible software in their
everyday work.

XML for Software
Developers (RAT 290)

This recently updated 4-day course gives
you a sound theoretical understanding of
XML & its related specifications, while
providing valuable practical experience in
implementing & applying XML within appli-
cations. It covers a range of tools, tech-
nologies & approaches essential for mana-
ging the data interchange requirements of a
distributed computing environment.

Bespoke Courses

We are committed to meet your needs and
providing a high level of services. We
understand that each and individual client is
different, therefore we tailor our training
services to suit your needs. Contact us for a
customised training course that is specially
designed for you.

Email info@ratio.co.uk or call us on +44 (0)20 8579 7900 for more information.

Java Development
Workshop (RAT220)

This recently updated 5-day course will
give you a practical understanding of the
major features of the Java development
environment and language, both in the
context of web applets, and in the context of
stand-alone applications. Students will leave
the course able to start productive work
immediately.

