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Abstract. A proof is given of a conjecture [6] in the theory of certain Hilbert spaces of
entire function [1-4] which implies the Riemann hypothesis. Weighted Hardy spaces, whose

elements are functions analytic in the upper half–plane, are defined using analytic weight
functions which have no zeros in the upper half–plane. The analytic weight function admits

an analytic extension without zeros to a larger half–plane when the weighted Hardy space

admits a maximal dissipative transformation which is a shift. A Hilbert space, whose elements
are entire functions and which is contained isometrically in the weighted Hardy space, is

constructed which inherits a maximal dissipative transformation which is a shift. The defining

function of the Hilbert space of entire functions admits no pair of distinct zeros which are
symmetric about the boundary of the half plane of analyticity determined by the maximal

dissipative transformation. The Riemann hypothesis for Hilbert spaces of entire functions
denies the existence of paired zeros for the defining functions of Hilbert spaces of entire

functions which inherit a maximal dissipative transformation other than a shift. The spaces

are constructed from a weighted Hardy space using an Euler product. The factors in an Euler
product are determined by entire functions of Pólya class. Although the product converges

only in the upper half–plane, the Hilbert spaces of entire functions constructed from the factors

converge in the complex plane to a Hilbert space of entire functions [7]. Maximal dissipative
transformations are inherited in the approximating spaces of entire functions and in the limit

space. Although the maximal dissipative transformations are compressions of shifts, they
approximate shifts in a sense determined by the Euler product. The maximal dissipative

transformations in the limit spaces deny the existence of paired zeros as conjectured.

The proof of the Riemann hypothesis is an application of the theory [5] of Hilbert spaces
whose elements are entire functions and which have these properties:

(H1) Whenever an element F (z) of the space has a nonreal zero w, the function

F (z)(z − w−)/(z − w)

belongs to the space and has the same norm as F (z).

(H2) A continuous linear functional on the space is defined by taking F (z) into F (w)
for every nonreal number w.

(H3) The function
F ∗(z) = F (z−)−
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belongs to the space whenever F (z) belongs to the space, and it always has the same norm
as F (z).

If an entire function E(z) satisfies the inequality

|E∗(z)| < |E(z)|

when z is in the upper half–plane, then the entire function

K(w, z) =
E(z)E(w)− − E∗(z)E(w−)

2πi(w− − z)

of z has a positive value at w when w is not real. A Hilbert space H(E) exists whose
elements are entire functions F (z) such that the integral

‖F‖2 =

∫ +∞

−∞
|F (t)/E(t)|2dt

is finite and such that the inequality

|F (w)|2 ≤ ‖F‖2K(w,w)

holds for all complex numbers w. The function K(w, z) of z belongs to the space for every
complex numbers w and acts as reproducing kernel function for function values at w. A
Hilbert space, whose elements are entire functions, which satisfies the axioms (H1), (H2),
and (H3), and which contains a nonzero element, is isometrically equal to a space H(E).

Related Hilbert spaces appear whose elements are functions analytic in the upper half–
plane. An analytic weight function is a function W (z) which is analytic and without zeros
in the upper half–plane. The weighted Hardy space F(W ) defined by an analytic weight
function W (z) is the set of entire functions F (z) such that the least upper bound

‖F‖2 = sup

∫ +∞

−∞
|F (x+ iy)/W (x+ iy)|2dx

taken over positive numbers y is finite. The function

W (z)W (w)−

2πi(w− − z)

belongs to the space as a function of z when w is in the upper half–plane and acts as
reproducing kernel function for function values at w.

The defining function E(z) of a space H(E) is an example of an analytic weight function.
The space H(E) is contained isometrically in the space F(E). The space H(E) is the set
of entire functions F (z) such that F (z) and F ∗(z) belong to the space F(E).

Examples of analytic weight functions are constructed from the gamma function, dis-
covered by Euler, who applied it in the functional identity for the zeta function which he
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discovered. Although the gamma function was conceived as the solution of a recurrence
relation, it is characterized by positivity properties.

A relation T , whose domain and range are contained in a Hilbert space, is said to be
maximal dissipative if

(T − w)(T + w)−1

is an everywhere defined and contractive transformation in the space for some, and hence
every, complex number w in the right half–plane. The relation is said to be dissipative
if a partially defined contractive transformation is obtained for some, and hence every,
complex number w in the right half–plane. A dissipative transformation admits a maximal
dissipative extension, which need not be a transformation.

An Euler weight function is an analytic weight function W (z) such that a maximal
dissipative transformation in the weighted Hardy space F(W ) is defined when h is in the
interval [0, 1] by taking F (z) into F (z + ih) whenever F (z) and F (z + ih) belong to the
space.

Maximal dissipative relations in Hilbert spaces of analytic functions permit the con-
struction of derived Hilbert spaces of analytic functions. The derived spaces of a weighted
Hardy space F(W ) are spaces of functions analytic in the upper half–plane. A derived
space is constructed for some h in the interval [0, 1] from the graph of the adjoint of the
maximal dissipative transformation which takes F (z) into F (z + ih). An element of the
graph is written as a pair

(F (z), G(z + ih))

of elements F (z) and G(z + ih) of the space F(W ) such that the adjoint takes F (z) into
G(z + ih). The scalar product of elements

(F1(z), G1(z + ih))

and

(F2(z), G2(z + ih))

of the graph is defined as a sum

〈F1(t), G2(t+ ih)〉+ 〈G1(t+ ih), F2(t)〉

of scalar products in the space F(W ). Scalar self–products are nonnegative since the
adjoint of a maximal dissipative relation is a maximal dissipative relation. Elements of
the graph are considered equivalent if the scalar self–product of their difference is zero.
The quotient space is a vector space which inherits a nondegenerate scalar product. A
fundamental example of an element of the graph is determined by a complex number w
such that w− 1

2 ih belongs to the upper half–plane since the adjoint takes the reproducing
kernel function

W (z)W (w − 1
2 ih)

−

2πi(w− + 1
2 ih− z)
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for function values at w − 1
2
ih into the reproducing kernel function

W (z)W (w + 1
2
ih)−

2πi(w− − 1
2 ih− z)

for function values at w+ 1
2 ih. An isometric transformation exists of the quotient space of

the graph onto a dense subspace of a derived Hilbert space whose elements are functions
analytic in the upper half–plane. The transformation takes an element

(F (z), G(z + ih))

of the graph into the analytic extension of the function

F (z + 1
2 ih) +G(z + 1

2 ih)

to the upper half–plane. The transformation is defined on the quotient space since the
value of the function at w is a scalar product with the element of the graph determined
by w when w − 1

2
ih is in the upper half–plane. The derived space contains the analytic

function
W (z − 1

2 ih)W (w + 1
2 ih)

− +W (z + 1
2 ih)W (w − 1

2 ih)
−

2πi(w− − z)
of z in the upper half–plane as reproducing kernel function for function values at w.
These conclusions are initially obtained when w − 1

2 ih is in the upper half–plane, but the
extension to the upper half–plane follows from characteristic properties of functions which
are analytic and have nonnegative real part in the upper half–plane.

If F (z) and G(z + ih) are elements of the space F(W ) such that the adjoint of the
maximal dissipative transformation in the space takes F (z) into G(z + ih) and if the
functions F (z+ 1

2 ih) and G(z+ 1
2 ih) have a common zero in the half–plane h < iw−− iw,

then the adjoint of the maximal dissipative transformation in the space takes the element

F (z)(z − 1
2
ih− w−)/(z − 1

2
ih− w)

of the space into the element

G(z + ih)(z + 1
2
ih− w−)/(z + 1

2
ih− w)

of the space.

If F (z) and G(z + ih) are elements of the space F(W ) such that the adjoint of the
maximal dissipative transformation in the space takes F (z) into G(z + ih) and if the sum

〈F (t), G(t+ ih)〉+ 〈G(t+ ih), F (t)〉

of scalar products in the space F(W ) vanishes, then

F (z) +G(z)
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vanishes identically. When a nonzero element F (z) of the space F(W ) exists such that the
adjoint of the maximal dissipative transformation in the space takes F (z) into −F (z+ ih),
then

H(z)(z − w−)/(z − w)

is an element of the derived space which has the same norm as H(z) in the derived space
whenever H(z) is an element of the derived space which has a zero w in the upper half–
plane. It follows that the functions W (z) and W (z + ih) are linearly dependent.

The derived space is more structured when the functions W (z) and W (z + ih) are
linearly independent. If w is in the upper half–plane, continuous linear functionals H(z)
into H+(w) and H(z) into H−(w) on the derived space exist which take the element

H(z) = F (z + 1
2 ih) +G(z + 1

2 ih)

of the space into
H+(w) = G(w + 1

2
ih)

and
H−(w) = F (w + 1

2
ih)

whenever the adjoint of the maximal dissipative transformation in the space F(W ) takes
F (z) into G(z+ih). The upper value H+(w) and the lower value H−(w) at w of an element
H(z) of the derived space are otherwise defined by continuity. Analytic functions H+(z)
and H−(z) are obtained which decompose an element

H(z) = H+(z) +H−(z)

of the derived space. When H(z) is equal to the reproducing kernel function

[W (z − 1
2 ih)W (w + 1

2 ih)
− +W (z + 1

2 ih)W (w − 1
2 ih)

−]/[2πi(w− − z)]

for function values at w with w in the upper half–plane, then H+(z) is equal to

W (z − 1
2
ih)W (w + 1

2
ih)−/[2πi(w− − z)]

and H−(z) is equal to

W (z + 1
2 ih)W (w − 1

2 ih)
−/[2πi(w− − z)].

When H+(z + 1
2 ih) and H−(z − 1

2 ih) belong to the space F(W ) for an element H(z) of
the derived space, then the adjoint of the maximal dissipative transformation in the space
F(W ) takes H−(z − 1

2 ih) into H+(z + 1
2 ih).

When the functions W (z) and W (z + ih) are linearly dependent, the identity

W (z + ih) = ωW (z)
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holds for a nonzero number ω whose real part is nonnegative. The adjoint of the maximal
dissipative transformation in the space F(W ) takes F (z) into ω−F (z+ ih) whenever F (z)
and F (z + ih) belong to the space. When the real part of ω vanishes, the maximal
dissipative transformation in the space is skew–adjoint and the derived space of the space
F(W ) contains no nonzero element. When the real part of ω is positive, every element
H(z) of the derived space admits a decomposition

H(z) = H+(z) +H−(z)

with
H+(z) = (1 + ω)−1H(z)

and
H−(z) = (1 + ω−)−1H(z)

elements of the space such that

H+(z) = ω−H−(z).

A characterization of Euler weight functions results which is an elementary analogue of
the Riemann hypothesis [7]. An analytic weight function W (z) is an Euler weight function
if, and only if, for every h in the interval [0, 1] the function

W (z − 1
2
ih)/W (z + 1

2
ih)

admits an analytic extension to the upper half–plane whose real part is nonnegative in the
half–plane.

An entire function E(z) is said to be of Pólya class if it has no zeros in the upper
half–plane, if the inequality

|E∗(z)| ≤ |E(z)|

holds when z is in the upper half–plane, and if the modulus of E(z) is a nondecreasing
function of distance from the real axis on every vertical line in the upper half–plane.
A polynomial is of Pólya class if it has no zeros in the upper half–plane. Every entire
function of Pólya class is a limit, uniformly on compact subsets of the upper half–plane,
of polynomials which have no zeros in the upper half–plane.

The pervasive nature of the Pólya class is due to its stability under perturbations which
are of bounded type [5]. Assume that the modulus of an analytic weight function W (z) is
a nondecreasing function of distance from the real axis on every vertical line in the upper
half–plane. If F (z) is a nontrivial entire function such that

F (z)/W (z)

and
F ∗(z)/W (z)
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are of bounded type in the upper half–plane, then an entire function G(z) of Pólya class
exists such that the identity

F ∗(z)F (z) = G∗(z)G(z)

is satisfied, such that

F (z)/G(z)

and

F ∗(z)/G(z)

are bounded by one in the upper half–plane, and such that at least one of the functions
has zero mean type in the half–plane.

If W (z) is an analytic weight function such that the modulus of W (z) is a nondecreasing
function of distance from the real axis on every vertical line in the upper half–plane, then
the set of entire functions F (z) such that F (z) and F ∗(z) belong to the space F(W )
contains a nonzero element. The space is a space H(E) which is contained isometrically
in the space F(W ) and whose defining function E(z) is of Pólya class.

If W (z) is an analytic weight function such that the modulus of W (z) is a nondecreasing
function of distance from the real axis on every vertical line in the upper half–plane and if
S(z) is an entire function of Pólya class, then the set of entire functions F (z) such that

S(z)F (z)

and

S(z)F ∗(z)

belong to the space F(W ) is a Hilbert space of entire functions which satisfies the axioms
(H1), (H2), and (H3) in the scalar product such that multiplication by S(z) is an isometric
transformation of the space into the space F(W ). The space of entire functions is iso-
metrically equal to a space H(E) such that E(z) is of Pólya class if it contains a nonzero
element. If W (z) is an Euler weight function and if h is in the interval [0, 1], a maximal
dissipative relation in the space H(E) is defined by taking F (z) into G(z + ih) whenever
F (z) and G(z+ ih) are elements of the space for which elements Fn(z) of the space F(W )
exist such that Fn(z + ih) belongs to the space for every positive integer n, such that

S(z)G(z + ih)

is the limit in the metric topology of the space of the elements Fn(z + ih), and such that

S(z)F (z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in
the image of the space H(E). The adjoint of the maximal dissipative relation in the space
H(E) takes F (z) into G(z+ih) if, and only if, F (z) and G(z+ih) are elements of the space
for which elements Fn(z) and Gn(z+ ih) of the space F(W ) exist such that the adjoint of
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the maximal dissipative transformation in the space takes Fn(z) into Gn(z+ ih) for every
positive integer n, such that

S(z)G(z + ih)

is the limit in the metric topology of the space of the elements Gn(z + ih), and such that

S(z)F (z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in
the image of the space H(E).

An Euler space of entire functions is a space H(E) such that a maximal dissipative
transformation in the space is defined for h in the interval [0, 1] by taking F (z) into
F (z + ih) whenever F (z) and F (z + ih) belong to the space.

A construction of Euler spaces of entire functions is made from Euler weight functions.

Theorem 1. The set of entire functions F (z) such that F (z) and F ∗(z) belong to a space
F(W ) is an Euler space of entire functions which is contained isometrically in the space
F(W ) if W (z) is an Euler weight function.

Proof of Theorem 1. If h is in the interval [0, 1], the transformation which takes F (z) into
F (z + ih) whenever F (z) and F (z + ih) belong to the space H(E) is dissipative since it is
the restriction of a dissipative transformation in the space F(W ). The maximal dissipative
property of the transformation is proved by showing that every element of the space H(E)
is a sum F (z) +F (z+ ih) with F (z) and F (z+ ih) in the space. Since the transformation
in the space F(W ) is maximal dissipative, every element of the space F(W ) is a sum
F (z) + F (z + ih) with F (z) and F (z + ih) in the space F(W ). It will be shown that
F (z) and F (z+ ih) belong to the space H(E) if their sum belongs to the space. Since the
elements of the space H(E) are entire functions, F (z) and F (z + ih) are entire functions.

Since the space H(E) satisfies the axiom (H3), the identity

F ∗(z) + F ∗(z − ih) = G(z) +G(z + ih)

holds for an element G(z) of the space F(W ) such that G(z + ih) belongs to the space.
The entire functions F (z) and G(z) are shown to belong to the space H(E) be showing
that each side of the identity

F ∗(z)−G(z + ih) = G(z)− F ∗(z − ih)

vanishes.

The inequalities
|F (z)|2 ≤ ‖F‖2|W (z)|2/[2π(iz− − iz)]

and
|G(z)|2 ≤ ‖G‖2|W (z)|2/[2π(iz− − iz)]
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apply when z is in the upper half–plane. Since the inequality

|G∗(z − ih)|2 ≤ ‖G‖2|W ∗(z − ih)|2/[2π(2h− iz− + iz)]

follows when z is in the half–plane iz− − iz < 2h, the inequality

|F (z)−G∗(z − ih)|2

≤ ‖F‖2|W (z)|2/[π(iz− − iz)] + ‖G‖2|W ∗(z − ih)|2/[π(2h− iz− + iz)]

applies when z is in the strip 0 < iz− − iz < 2h. Since z and z− + ih are closer to the real
axis than z + ih when z is in the strip, the inequality

|[F (z)−G∗(z − ih)]/W (z + ih)|2

≤ ‖F‖2/[π(iz− − iz)] + ‖G‖2/[π(2h− iz− + iz)]

holds when z is in the strip. Since the modulus of the function

F (z)−G∗(z − ih)

is periodic of period h, the function

[F (z)−G∗(z − ih)]/W (z + ih),

whose modulus has a subharmonic logarithm, is bounded in the upper half–plane. Since
the entire function

F (z)−G∗(z − ih)

vanishes at 1
2 ih and since the modulus of the function is periodic of period ih, the function

vanishes at
1
2 ih+ ihn

for every integer n. It follows that the function vanishes identically.

This completes the proof of the theorem.

An entire function S(z) is said to be associated with a space H(E) if the entire function

[F (z)S(w)− S(z)F (w)]/(z − w)

belongs to the space for all complex numbers w whenever F (z) belongs to the space.

The derived space of a space H(E) is a Hilbert space of entire functions which is con-
structed from a maximal dissipative transformation in the space. The construction is now
made when the transformation is defined for some h in the interval [0, 1] by entire func-
tions P (z) and Q(z) which are associated with the space. The transformation is defined by
taking F (z) into G(z + ih) whenever F (z) and G(z + ih) are elements of the space which
satisfy the identity

G(w) = 〈F (t), [Q(t)P (w−)− P (t)Q(w−)]/[π(t− w−)]〉



10 LOUIS DE BRANGES July 19, 2006

for all complex numbers w. The derived space is constructed from the graph of the adjoint
of the transformation which takes F (z) into G(z + ih). An element of the graph is a pair

(F (z), G(z + ih))

of elements F (z) and G(z + ih) of the space H(E) such that the adjoint takes F (z) into
G(z + ih). The scalar product of elements

(F1(z), G1(z + ih))

and

(F2(z), G2(z + ih))

of the graph is defined as a sum

〈F1(t), G2(t+ ih)〉+ 〈G1(t+ ih), F2(t)〉

of scalar products in the spaceH(E). Scalar self–products are nonnegative since the adjoint
is dissipative. Elements of the graph are considered equivalent if the scalar self–product of
their difference is zero. The quotient space is a vector space which inherits a nondegenerate
scalar product. A fundamental example of an element of the graph is determined by a
complex number w since the adjoint takes the reproducing kernel function

E(z)E(w− 1
2 ih)

− − E∗(z)E(w− + 1
2 ih)

2πi(w− + 1
2 ih− z)

for function values at w − 1
2 ih into the reproducing kernel function

Q(z)P (w− − 1
2 ih)− P (z)Q(w− − 1

2 ih)

π(z + 1
2
ih− w−)

for the function value of a transformed function at w + 1
2
ih. If F (z) is an element of the

space H(E), the entire function F∼(z) is defined by the scalar product

F∼(w) = 〈F (t), [Q(t)P (w−)− P (t)Q(w−)]/[π(t− w−)]〉

in the space for all complex numbers w. An isometric transformation of the quotient space
onto a dense subset of the derived space is defined by taking an element

(F (z), G(z + ih))

of the graph into the entire function

F∼(z + 1
2 ih) +G(z + 1

2 ih).
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The transformation is defined on the quotient space since the value of the function at w is
a scalar product with the element of the graph defined by w. The derived space contains
the entire function

Q(z − 1
2 ih)P (w− − 1

2 ih)− P (z − 1
2 ih)Q(w− − 1

2 ih)

π(z − w−)

+
Q∗(z + 1

2
ih)P (w − 1

2
ih)− − P ∗(z + 1

2
ih)Q(w − 1

2
ih)−

π(z − w−)

of z as reproducing kernel function for function values at w for all complex numbers w.

If F (z) and G(z + ih) are elements of the space H(E) such that the adjoint of the
maximal dissipative transformation in the space takes F (z) into G(z + ih) and if the
functions F (z + 1

2 ih) and G(z + 1
2 ih) have a common nonreal zero w, then the adjoint of

the maximal dissipative transformation in the space takes the element

F (z)(z − 1
2
ih− w−)/(z − 1

2
ih− w)

of the space into the element

G(z + ih)(z + 1
2 ih− w−)/(z + 1

2 ih− w)

of the space.

If F (z) and G(z + ih) are elements of the space H(E) such that the adjoint of the
maximal dissipative transformation in the space takes F (z) into G(z + ih) and if the sum

〈F (t), G(t+ ih)〉+ 〈G(t+ ih, F (t)〉

of scalar products in the space H(E) vanishes, then

F (z) +G(z)

vanishes identically. When a nonzero element F (z) of the space F(W ) exists such that the
adjoint of the maximal dissipative transformation in the space takes F (z) into −F (z+ ih),
then

H(z)(z − w−)/(z − w)

is an element of the derived space which has the same norm as H(z) in the derived space
whenever H(z) is an element of the derived space which has a nonreal zero w. It follows
that some nontrivial linear combination S(z) of P (z) and Q(z) satisfies the identity

S(z − ih) = S∗(z).

The derived space is more structured when no nontrivial linear combination S(z) of
P (z) and Q(z) satisfies the identity. Continuous linear functionals H(z) into H+(w) and
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H(z) into H−(w) on the derived space exist for every complex number w which take the
element

H(z) = F (z + 1
2 ih) +G(z + 1

2 ih)

of the space into
H+(w) = G(w + 1

2 ih)

and
H−(w) = F (w + 1

2 ih)

whenever the adjoint of the maximal dissipative transformation in the space H(E) takes
F (z) into G(z+ih). The upper value H+(w) and the lower value H−(w) at w of an element
H(z) of the derived space are otherwise defined by continuity. Entire functions H+(z) and
H−(z) are obtained which decompose an element

H(z) = H+(z) +H−(z)

of the derived space. When H(z) is equal to the reproducing kernel function

[Q(z − 1
2
ih)P (w− − 1

2
ih)− P (z − 1

2
ih)Q(w− − 1

2
ih)]/[π(z − w−)]

+ [Q∗(z + 1
2 ih)P (w − 1

2 ih)
− − P ∗(z + 1

2 ih)Q(w − 1
2 ih)

−]/[π(z − w−)]

for function values at w for some complex number w, then H+(z) is equal

[Q(z − 1
2 ih)P (w− − 1

2 ih)− P (z − 1
2 ih)Q(w− − 1

2 ih)]/[π(z − w−)]

and H−(z) is equal to

[Q∗(z + 1
2 ih)P (w − 1

2 ih)
− − P ∗(z + 1

2 ih)Q(w − 1
2 ih)

−]/[π(z − w−)].

When H+(z + 1
2
ih) and H−(z − 1

2
ih) belong to the space H(E) for some element H(z)

of the derived space, then the adjoint of the maximal dissipative transformation takes
H−(z − 1

2
ih) into H+(z + 1

2
ih).

A contractive transformation is defined from the derived space of the space H(E) into
the derived space of the space F(W ) which leaves upper components fixed. If F (z) and
G(z+ ih) are elements of the space H(E) such that the adjoint of the maximal dissipative
transformation in the space take F (z) into G(z+ ih), then elements Fn(z) and Gn(z+ ih)
of the space F(W ) exist such that the adjoint of the maximal dissipative transformation
in the space takes Fn(z) into Gn(z + ih), such that

n−1F (z) + nG(z + ih) = n−1Fn(z) + nGn(z + ih)

and such that

nG(z + ih)− n−1F (z) = nGn(z + ih)− n−1Fn(z)−Hn(z)
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with Hn(z) orthogonal to the space H(E) for every positive integer n. The identity

〈Fn(t), Gn(t+ ih)〉+ 〈Gn(t+ ih), Fn(t)〉
−〈F (t), G(t+ ih)〉 − 〈G(t+ ih), F (t)〉 = 〈Hn(t), Hn(t)〉

is then satisfied. The element G(z+ih) of the space H(E) is the limit in the weak topology
of the space F(W ) of the elements Gn(z+ ih). The element F (z) of the space H(E) is the
orthogonal projection in the space of the element Fn(z + ih) for every positive integer n.
The existence of the desired contractive transformation follows. If G(z+ ih) is an element
of the space H(E) such that G(z + 1

2 ih) is the upper component of an element of the

derived space of the space F(W ), then G(z + 1
2
ih) is the upper component of an element

of the derived space of the space H(E).

When some nontrivial linear combination S(z) of P (z) and Q(z) satisfies the identity

S(z − ih) = S∗(z),

then the identity

[Q(z − ih)P (w−)− P (z − ih)Q(w−)]/[π(z − ih− w−)]

= [Q∗(z)P (w − ih)− − P ∗(z)Q(w − ih)−]/[π(z − ih− w−)]

holds for all complex numbers z and w. The maximal dissipative transformation in the
space H(E) is self–adjoint. Every element H(z) of the derived space of the space H(E)
admits a decomposition

H(z) = H+(z) +H−(z)

with
H+(z) = 1

2H(z)

and
H−(z) = 1

2
H(z)

elements of the space such that
H+(z) = H−(z).

An inductive construction of Hilbert spaces of entire functions and of maximal dissi-
pative transformations in the spaces is applied in the theory of Euler products in Hilbert
spaces of entire functions. Assume that a maximal dissipative transformation in a space
H(E) is defined for some h in the interval [0, 1] by entire functions P (z) and Q(z), which
are associated with the space, by taking F (z) into G(z+ ih) whenever F (z) and G(z+ ih)
are elements of the space which satisfy the identity

G(w) = 〈F (t), [Q(t)P (w−)− P (t)Q(w−)]/[π(t− w−)]〉

for all complex numbers w. If the reproducing kernel function

[E(z)E(λ)− −E∗(z)E(λ−)/[2πi(λ− − z)]
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for function values at λ is a constant multiple of an entire function S(z), then a partially
isometric transformation of the space H(E) onto a Hilbert space of entire functions which
satisfies the axioms (H1), (H2), and (H3) is defined by taking F (z) into

[F (z)S(λ)− S(z)F (λ)]/(z − λ).

The space is isometrically equal to a space H(Eλ) with

Eλ(z) = [E(z)S(λ)− S(z)E(λ)]/(z − λ)

if it contains a nonzero element. If S(z) has value one at λ, multiplication by z − λ is an
isometric transformation of the space H(Eλ) into the space H(E). A maximal dissipative
transformation in the space H(Eλ) is defined by entire functions Pλ(z) and Qλ(z), which
are associated with the space, by taking F (z) into G(z+ ih) whenever F (z) and G(z+ ih)
are elements of the space which satisfy the identity

G(w) = 〈F (t), [Qλ(t)Pλ(w
−)− Pλ(t)Qλ(w−)]/[π(t− w−)]〉

for all complex numbers w, with the scalar product taken in the space H(Eλ). The
functions Pλ(z) and Qλ(z) are defined by the equations

(λ+ ih− λ−)Pλ(z) = κP (λ)[Q(z)P (λ− − ih)− P (z)Q(λ− − ih)]/(z + ih− λ−)

−κP (λ− − ih)[Q(z)P (λ)− P (z)Q(λ)]/(z − λ)

and

(λ+ ih− λ−)Qλ(z) = κQ(λ)[Q(z)P (λ− − ih)− P (z)Q(λ− − ih)]/(z + ih− λ−)

−κQ(λ− − ih)[Q(z)P (λ)− P (z)Q(λ)]/(z − λ)

when λ+ ih− λ− is nonzero and the equation

κ[Q(λ)P (λ− − ih)− P (λ)Q(λ− − ih)]/(λ+ ih− λ−) = 1

has a solution κ. The functions are defined by continuity otherwise. The identities

(z − λ)Pλ(z) = P (z)− κP (λ)[Q(z)P (λ− − ih)− P (z)Q(λ− − ih)]/(z + ih− λ−)

and

(z − λ)Qλ(z) = Q(z)− κQ(λ)[Q(z)P (λ− − ih)− P (z)Q(λ− − ih)]/(z + ih− λ−)

and the identities

(w− + ih− λ−)Pλ(w
−) = P (w−)− κP (λ− − ih)[Q(w−)P (λ)− P (w−)Q(λ)]/(w− − λ)

and

(w− + ih− λ−)Qλ(w
−) = Q(w−)− κQ(λ− − ih)[Q(w−)P (λ)− P (w−)Q(λ)]/(w− − λ)



A PROOF OF THE RIEMANN HYPOTHESIS 15

imply the identity

(z − λ)(w− + ih− λ−)[Qλ(z)Pλ(w
−)− Pλ(z)Qλ(w−)]/[π(z − w−)]

= [Q(z)P (w−)− P (z)Q(w−)]/[π(z − w−)]

−πκ[Q(z)P (λ− − ih)− P (z)Q(λ− − ih)]/[π(z + ih− λ−)]

×[Q(w−)P (λ)− P (w−)Q(λ)]/[π(w− − λ)].

Multiplication by z − λ is an isometric transformation of the space H(Eλ) into the
space H(E). The maximal dissipative transformation in the space H(Eλ) takes F (z)
into G(z + ih) if, and only if, F (z) and G(z + ih) are elements of the space for which
elements Fn(z) and Gn(z + ih) of the space H(E) exist such that the maximal dissipative
transformation in the space takes Fn(z) into Gn(z + ih) for every positive integer n, such
that

(z − λ)G(z + ih)

is the limit in the metric topology of the space of the elements Gn(z + ih), and such that

(z − λ)F (z)

is the limit is the same topology of the orthogonal projections of the elements Fn(z) in the
image of the space H(Eλ). The adjoint of the maximal dissipative transformation in the
space H(Eλ) takes F (z) into G(z + ih) if, and only if, F (z) and G(z + ih) are elements of
the space for which elements Fn(z) and Gn(z + ih) of the space H(E) exist such that the
adjoint of the maximal dissipative transformation in the space takes Fn(z) into Gn(z+ ih)
for every positive integer n, such that

(z − λ)G(z + ih)

is the limit in the metric topology of the space of the elements Gn(z + ih), and such that

(z − λ)F (z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in the
image of the space H(Eλ). Since (z−λ)G(z+ ih) belongs to the range of the adjoint of the
maximal dissipative transformation in the space H(E), the elements Fn(z) and Gn(z+ ih)
of the space H(E) can be chosen independently of n.

The adjoint of the maximal dissipative transformation in the space H(E) takes the
reproducing kernel function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

for function values at w into the function

[Q(z)P (w− − ih)− P (z)Q(w− − ih)]/[π(z + ih− w−)]
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for all complex numbers w. The function

[Q(z)P (w− − ih)− P (z)Q(w− − ih)]/[π(z + ih− w−)]

−πκ[Q(z)P (λ− − ih)− P (z)Q(λ− − ih)]/[π(z + ih− λ−)]

×[Q(w− − ih)P (λ)− P (w− − ih)Q(λ)]/[π(w− − ih− λ)]

belongs to the range of the adjoint of the maximal dissipative transformation in the space
H(E) and is equal to

(z − λ)(w− − λ−)[Qλ(z)Pλ(w
− − ih)− Pλ(z)Qλ(w− − ih)]/[π(z + ih− w−)].

The function

(w− − λ−)[Qλ(z)Pλ(w
− − ih)− Pλ(z)Qλ(w− − ih)]/[π(z + ih− w−)]

belongs to the range of the adjoint of the maximal dissipative transformation in the space
H(Eλ) and is obtained from the element

(w− − λ−)[Eλ(z)Eλ(w)− −E∗λ(z)Eλ(w−)]/[2πi(w− − z)]

whose product by z − λ is the orthogonal projection of

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

in the image of the space H(Eλ).

If F (z) andG(z+ih) are elements of the spaceH(E) such that the adjoint of the maximal
dissipative transformation in the space takes F (z) into G(z + ih), then the adjoint of the
maximal dissipative transformation in the space takes the element

F (z)[Q(λ)P (λ− − ih)− P (λ)Q(λ− − ih)]/[π(λ+ ih− λ−)]

−G(λ+ ih)[E(z)E(λ)− −E∗(z)E(λ−)]/[2πi(λ− − z)]

of the space into the element

G(z + ih)[Q(λ)P (λ− − ih)− P (λ)Q(λ− − ih)]/[π(λ+ ih− λ−)]

−G(λ+ ih)[Q(z)P (λ− − ih)− P (z)Q(λ− − ih)]/[π(z + ih− λ−)]

of the space, which belongs to the image of the space H(Eλ). The adjoint of the maximal
dissipative transformation in the space H(Eλ) takes the product of

[Q(λ)P (λ− − ih)− P (λ)Q(λ− − ih)]/[π(λ+ ih− λ−)]

and the element

{F (z)[E(λ)E(λ)− − E∗(λ)E(λ−)]/[2πi(λ− − λ)]

−F (λ)[E(z)E(λ)− −E∗(z)E(λ−)]/[2πi(λ− − z)]}/(z − λ)
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of the space into the product of

[E(λ)E(λ)− − E∗(λ)E(λ−)]/[2πi(λ− − λ)]

and the element

{G(z + ih)[Q(λ)P (λ− − ih)− P (λ)Q(λ− − ih)]/[π(λ+ ih− λ−)]

−G(λ+ ih)[Q(z)P (λ− − ih)− P (z)Q(λ− − ih)]/[π(z + ih− λ−)]}/(z − λ)

of the space.

If F (z) and G(z + ih) are elements of the space H(Eλ) such that the adjoint of the
maximal dissipative transformation in the space takes F (z) into G(z + ih) and if Fn(z)
and Gn(z + ih) are elements of the space H(E) such that the adjoint of the maximal
dissipative transformation in the space takes Fn(z) into Gn(z + ih) for every positive
integer n, such that

(z − λ)G(z + ih)

is the limit in the metric topology of the space of the elements Gn(z + ih), and such that

(z − λ)F (z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in
the image of the space H(Eλ), then the scalar product

〈F (t), G(t+ ih)〉

in the space H(Eλ) is the limit of the scalar products

〈Fn(t), Gn(t+ ih)〉

in the space H(E).

A partially isometric transformation of the derived space of the space H(E) onto the
derived space of the spaceH(Eλ) is implied by the relationship between adjoints of maximal
dissipative transformations in the spaces. A dense set of elements of the derived space of
the space H(E) are obtained from elements F (z) and G(z + ih) of the space H(E) such
that the adjoint of the maximal dissipative transformation in the space takes F (z) into
G(z + ih). The corresponding element of the derived space has G(z + 1

2 ih) as upper
component and has scalar self–product equal to the sum

〈F (t), G(t+ ih)〉+ 〈G(t+ ih), F (t)〉

of scalar self–products in the space H(E). A corresponding element of the derived space
of the space H(Eλ) is constructed by elements U(z) and V (z + ih) of the space H(Eλ)
such that the adjoint of the maximal dissipative transformation in the space takes U(z)
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into V (z + ih). The corresponding element of the derived space has V (z + 1
2
ih) as upper

component and has scalar self–product equal to the sum

〈U(t), V (t+ ih)〉+ 〈V (t+ ih), U(t)〉

of scalar products in the space H(Eλ). The identities

(z − λ)V (z + ih)[Q(λ)P (λ− − ih)− P (λ)Q(λ− − ih)]/[π(λ+ ih− λ−)]

= G(z + ih)[Q(λ)P (λ− − ih)− P (λ)Q(λ− − ih)]/[π(λ+ ih− λ−)]

− G(λ+ ih)[Q(z)P (λ− − ih)− P (z)Q(λ− − ih)]/[π(z + ih+ λ−)]

and
(z − λ)U(z)[E(λ)E(λ)− − E∗(λ)E(λ−)]/[2πi(λ− − λ)]

= F (z)[E(λ)E(λ)− − E∗(λ)E(λ−)]/[2πi(λ− − λ)]

− F (λ)[E(z)E(λ)− − E∗(z)E(λ−)]/[2πi(λ− − z)]

define the elements of the space H(Eλ). Since multiplication by z − λ is an isometric
transformation of the space H(Eλ) into the space H(E), the scalar product

〈U(t), V (t+ ih)〉[Q(λ)P (λ− − ih)− P (λ)Q(λ− − ih)]/[π(λ+ ih− λ−)]

in the space H(Eλ) is equal to the difference

〈F (t), G(t+ ih)〉[Q(t)P (λ− − ih)− P (t)Q(λ− − ih)]/[π(λ+ ih− λ−)]

− G(λ+ ih)−〈F (t), [Q(t)P (λ− − ih)− P (t)Q(λ− − ih)]/[π(t+ ih− λ−)]〉

of scalar products in the space H(Eλ). The sum

〈U(t), V (t+ ih)〉+ 〈V (t+ ih), U(t)〉

of scalar products in the space H(Eλ) is equal to the sum

〈F (t), G(t+ ih)〉+ 〈G(t+ ih), F (t)〉

of scalar products in the space H(Eλ) when λ+ ih is a zero of G(z). The sum

〈U(t), V (t+ ih)〉+ 〈V (t+ ih), U(t)〉

of scalar products in the space H(Eλ) is equal to zero when

F (z) = [E(z)E(λ)− −E∗(z)E(λ−)]c/[2πi(λ− − z)]

and
G(z) = [Q(z)P (λ− − ih)− P (z)Q(λ− − ih)]G/[π(z + ih− λ−)]
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for a complex number c. The adjoint of the partially isometric transformation of the
derived space of the space H(E) onto the derived space of the space H(Eλ) is an isometric
transformation of the derived space of the space H(Eλ) into the derived space of the space
H(E) which satisfies the identity

G+(z) = (z − 1
2 ih− λ)F+(z)

for upper components when the transformation takes F (z) into G(z). If G(z + ih) is an
element of the space H(Eλ) such that

(z − 1
2 ih− λ)Gt(z + 1

2 ih)

is the upper component of an element of the derived space of the space H(E), G(z + 1
2 ih)

is the upper component of an element of the derived space of the space H(Eλ).

An inductive construction of maximal dissipative transformations is made in subspaces.
Assume that a maximal dissipative transformation is defined in a space H(E) for some
h in the interval [0, 1] by entire functions P (z) and Q(z), which are associated with the
space, by taking F (z) into G(z + ih) whenever F (z) and G(z + ih) are elements of the
space which satisfy the identity

G(w) = 〈F (t), [Q(t)P (w−)− P (t)Q(w−)]/[π(t− w−)]〉

for all complex numbers w. Assume that a polynomial Sr(z) has no zeros in the upper
half–plane. If a nonzero entire function F (z) exists such that Sr(z)F (z) belongs to the
space H(E), then the set of entire functions F (z) such that Sr(z)F (z) belongs to the space
H(E) is a space H(Er) such that multiplication by Sr(z) is an isometric transformation of
the space H(Er) into the space H(E). A maximal dissipative transformation in the space
H(Er) is defined by taking F (z) into G(z+ ih) whenever F (z) and G(z+ ih) are elements
of the space for which elements Fn(z) and Gn(z + ih) of the space H(E) exist such that
the maximal dissipative transformation in the space H(E) takes Fn(z) into Gn(z+ ih) for
every positive integer n, such that

Sr(z)Q(z + ih)

is the limit of the elements Gn(z+ ih) in the metric topology of the space H(E), and such
that

Sr(z)F (z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in
the image of the space H(Er). Entire functions Pr(z) and Qr(z), which are associated
with the space H(Er), exist such that the maximal dissipative transformation in the space
takes F (z) into G(z + ih) whenever F (z) and G(z + ih) are elements of the space which
satisfy the identity

G(w) = 〈F (t), [Qr(t)Pr(w
−)− Pr(t)Qr(w−)]/[π(t− w−)]〉
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for all complex numbers w with the scalar product taken in the space H(Er). The adjoint
of the maximal dissipative transformation in the space H(Er) takes F (z) into G(z + ih)
if, and only if, F (z) and G(z + ih) are elements of the space for which elements Fn(z)
and Gn(z + ih) of the space H(E) exist such that the adjoint of the maximal dissipative
transformation in the space takes Fn(z) into Gn(z + ih) for every positive integer n, such
that

Sr(z)G(z + ih)

is the limit in the metric topology of the space of the elements Gn(z + ih), and such that

Sr(z)F (z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in
the image of the space H(Er). The scalar product

〈F (t), G(t+ ih)〉

in the space H(Er) is the limit of the scalar products

〈Fn(t), Gn(t+ ih)〉

in the space H(E). A partially isometric transformation of the derived space of the space
H(E) onto the derived space of the space H(Er) is defined as the composition of the
partially isometric transformations of the derived space of the space H(En−1) onto the
derived space of the space H(En) for every n = 1, . . . , r with the space H(E0) isometrically
equal to the space H(E). The adjoint is an isometric transformation of the derived space
of the space H(Er) into the derived space of the space H(E) which satisfies the identity

G+(z) = Sr(z − 1
2 ih)F+(z)

for upper components when the transformation takes F (z) into G(z). The image of the
derived space of the space H(En) in the derived space of the space H(E) is contained in
the image of the derived space of the space H(En−1) in the derived space of the space
H(E) for every n = 1, . . . , r. If G(z + ih) is an element of the space H(Er) such that

Sr(z − 1
2 ih)G(z + 1

2 ih)

is the upper component of an element of the derived space of the space H(E), G(z + 1
2
ih)

is the upper component of an element of the derived space of the space H(Er).

A Riemann space of entire functions is a Hilbert space H(E) whose defining function
E(z) is constructed from an Euler weight function W (z) using an Euler product. The
partial products in an Euler product are entire functions Sr(z) of Pólya class, which are of
bounded type and of mean type at most τr in the upper half–plane, such that the function

S∗r (z)/Sr(z)
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is of zero mean type in the upper half–plane. The ratio

Sr+1(z)/Sr(z)

is assumed to be an entire function of Pólya class for every positive integer r. The inequality

τr ≤ τr+1

is assumed for every positive integer r. The analytic weight function

W (z) = lim exp(iτrz)Sr(z)E(z)

is assumed to be obtained as a limit uniformly on compact subsets of the upper half–plane.
It is also assumed that nontrivial entire functions F (z) exist such that F (z) and F ∗(z)
belong to the space F(W ).

An Euler product for a Riemann space of entire functions can be rearranged so that
the partial products Sr(z) are polynomials. The properties of Riemann spaces of entire
functions are derived from the properties of Euler spaces of entire functions when the
partial products are polynomials.

An Euler space of entire functions H(E′r) is defined for every positive integer r as the
set of entire functions F (z) such that

exp(iτrz)F (z)

and
exp(iτrz)F

∗(z)

belong to the Euler space F(W ). The scalar product is defined in the space H(E) so that
multiplication by Sr(z) is an isometric transformation of the space into the Euler space
H(E′r). A scalar product is defined in the space of entire functions so that multiplication
by

exp(iτrz)

is an isometric transformation of the space H(E′r) into the space F(W ). The image of the
space H(E′r) in the space F(W ) is contained in the image of the space H(E′r+1) in the
space F(W ) for every positive integer r. The union of the images of the spaces H(E′r) in
the space F(W ) is dense in the space F(W ) when the numbers τr are unbounded.

The Euler spaces of entire functions can be assumed to have infinite dimension when
the numbers τr are unbounded. A space H(Er) is defined for every positive integer r as
the set of entire functions F (z) such that

Sr(z)F (z)

and
Sr(z)F

∗(z)
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belong to the Euler space H(E′r). The scalar product in the space H(Er) is defined so that
multiplication by Sr(z) is an isometric transformation of the space into the Euler space
H(E′r). An entire function F (z) belongs to the space H(Er) if, and only if,

exp(iτrz)Sr(z)F (z)

and
exp(iτrz)Sr(z)F

∗(z)

belong to the space F(W ). Multiplication by

exp(iτrz)Sr(z)

is an isometric transformation of the space H(Er) into the space F(W ).

Multiplication by
W (z)/E(z) = lim exp(iτrz)Sr(z)

is an isometric transformation of the space H(E) into the space F(W ). An element F (z)
of the space F(W ) belongs to the image of the space H(E) if, and only if, it is a limit
in the metric topology of the space F(W ) of elements Fr(z) in the image of the spaces
H(Er). The image in the space F(W ) of the reproducing kernel function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

for function values at w in the space H(E) is the limit in the metric topology of the space
F(W ) of images in the space of reproducing kernel functions

[Er(z)Er(w)− − E∗r (z)Er(w−)]/[2πi(w− − z)]

for function values at w in the spaces H(Er). The function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

of z is the limit of the functions

[Er(z)Er(w)− − E∗r (z)Er(w−)]/[2πi(w− − z)]

of z uniformly on compact subsets of the complex plane for every complex number w. The
defining functions Er(z) of the spaces H(Er) are chosen so that the defining function

E(z) = limEr(z)

of the space H(E) is obtained uniformly on compact subset of the complex plane.

A maximal dissipative transformation in the space F(W ) is defined by taking F (z) into
F (z + ih) whenever F (z) and F (z + ih) are elements of the space. A maximal dissipative
transformation in the Euler space H(E′r) is defined by taking F (z) into G(z+ih) whenever
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F (z) and G(z+ ih) are elements of the space for which elements Fn(z) of the space F(W )
exist such that Fn(z + ih) belongs to the space for every positive integer n, such that

exp(iτrz)G(z + ih)

is the limit in the metric topology of the space of the elements Fn(z + ih), and such that

exp(iτrz)F (z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in the
image of the space H(E′r). The maximal dissipative transformation in the space H(E′r)
takes F (z) into G(z+ ih) if, and only if, F (z) and G(z+ ih) are elements of the space such
that

G(z) = exp(−τrh)F (z).

The adjoint of the maximal dissipative transformation in the space H(E′r) takes F (z) into
G(z + ih) if, and only if, F (z) and G(z + ih) are elements of the space for which elements
Fn(z) and Gn(z + ih) of the space F(W ) exist such that the adjoint of the maximal
dissipative transformation in the space takes Fn(z) into Gn(z + ih) for every positive
integer n, such that

exp(iτrz)G(z + ih)

is the limit in the metric topology of the space of the elements Gn(z + ih), and such that

exp(iτrz)F (z)

is the limit in the same topology of the orthogonal projection of the elements Fn(z) in the
image of the space H(E′r).

A maximal dissipative transformation in the space H(Er) is defined by taking F (z) into
G(z+ ih) whenever F (z) and G(z+ ih) are elements of the space for which elements Fn(z)
and Gn(z+ ih) of the space H(E′r) exist such that the maximal dissipative transformation
in the space takes Fn(z) into Gn(z + ih) for every positive integer n, such that

Sr(z)G(z + ih)

is the limit in the metric topology of the space of the elements Gn(z + ih), and such that

Sr(z)F (z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in the
image of the space H(Er). The adjoint of the maximal dissipative transformation in the
space H(Er) takes F (z) into G(z + ih) if, and only if, F (z) and G(z + ih) are elements of
the space for which elements Fn(z) and Gn(z+ ih) of the space H(E′r) exist such that the
adjoint of the maximal dissipative transformation in the space takes Fn(z) into Gn(z+ ih)
for every positive integer n, such that

Sr(z)G(z + ih)
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is the limit in the metric topology of the space of the elements Gn(z + ih), and such that

Sr(z)F (z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in
the image of the space H(Er).

A maximal dissipative relation in the spaceH(E) is defined by taking F (z) into G(z+ih)
whenever F (z) and G(z + ih) are elements of the space for which elements Fn(z) of the
space F(W ) exist such that Fn(z + ih) belongs to the space for every positive integer n,
such that

W (z)G(z + ih)/E(z)

is the limit in the metric topology of the space of the elements Fn(z + ih), and such that

W (z)F (z)/E(z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in
the image of the space H(E). The maximal dissipative transformation in the space H(Er)
takes F (z) into G(z + ih) if, and only if, F (z) and G(z + ih) are elements of the space for
which elements Fn(z) of the space F(W ) exist such that Fn(z + ih) belongs to the space
for every positive integer n, such that

exp(iτrz)Sr(z)G(z + ih)

is the limit in the metric topology of the space of the elements Fn(z + ih), and such that

exp(iτrz)Sr(z)F (z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in
the image of the space H(Er). The maximal dissipative relation in the space H(E) takes
F (z) into G(z+ ih) if, and only if, F (z) and G(z+ ih) are elements of the space for which
elements Fr(z) and Gr(z+ ih) of the space H(Er) exist such that the maximal dissipative
transformation in the space takes Fr(z) into Gr(z + ih) for every positive integer r, such
that

W (z)G(z + ih)/E(z)

is the limit in the metric topology of the space F(W ) of the elements

exp(iτrz)Sr(z)Gr(z + ih),

and such that
W (z)F (z)/E(z)

is the limit in the same topology of the elements

exp(iτrz)Sr(z)Fr(z).
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Entire functions Pr(z) and Qr(z), which are associated with the space H(Er), exist such
that the maximal dissipative transformation in the space takes F (z) into G(z+ ih) if, and
only if, F (z) and G(z + ih) are elements of the space which satisfy the identity

G(w) = 〈F (t), [Qr(t)Pr(w
−)− Pr(t)Qr(w)]/[π(t− w−)]〉

for all complex numbers w. The derived space of the space H(Er) is a Hilbert space of
entire functions which contains the function

[Qr(z − 1
2
ih)Pr(w

− − 1
2
ih)− Pr(z − 1

2
ih)Qr(w

− − 1
2
ih)]/[π(z − w−)]

+ [Q∗r(z + 1
2
ih)Pr(w − 1

2
ih)− − P ∗r (z + 1

2
ih)Qr(w − 1

2
ih)−]/[π(z − w−)]

of z as reproducing kernel function for function values at w for all complex numbers w.

The adjoint of the maximal dissipative relation in the space H(E) takes F (z) into
G(z + ih) if, and only if, F (z) and G(z + ih) are elements of the space for which elements
Fr(z) and Gr(z + ih) of the space H(Er) exist such that the adjoint of the maximal
dissipative transformation in the space takes Fr(z) into Gr(z + ih) for every positive
integer r, such that

W (z)G(z + ih)/E(z)

is the limit in the metric topology of the space F(W ) of the elements

exp(iτrz)Sr(z)Gr(z + ih),

and such that
W (z)F (z)/E(z)

is the limit in the same topology of the elements

exp(iτrz)Sr(z)Fr(z).

The Riemann hypothesis for Hilbert spaces of entire functions denies the existence of
paired zeros in the defining function of a Riemann space of entire functions.

Theorem 2. The defining function

E(z) = lim exp(−iτrz)W (z)/Sr(z)

of a Riemann space H(E) admits no distinct zeros w− ih and w− when h is in the interval
(0, 1] and no double zero w − ih equal to w− when h is in the interval (0, 1).

Proof of Theorem 2. If a zero w− of E(z) satisfies the inequality

iw− − iw ≥ h,

then multiplication by
W (z)/E(z)
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is an isometric transformation of the space H(E) into the space F(W ) which takes the
reproducing kernel function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

for function values at w in the space H(E) into the product of

[E(w)/W (w)]−

and the reproducing kernel function

W (z)W (w)−/[2πi(w− − z)]

for function values at w in the space F(W ).

The sequence of numbers τr has a finite limit τ∞ if it is bounded, in which case an entire
function S∞(z) of Pólya class exists which is a limit of the entire functions Sr(z) of Pólya
class. Since the identity

W (z) = exp(iτ∞z)S∞(z)E(z)

is satisfied and since the Euler weight function W (z) has no zeros in the half–plane

−1 < iz− − iz,

w − ih is not a zero of E(z) when the sequence of numbers τr is bounded. The same
conclusion will be obtained when the sequence of numbers τr is unbounded.

Multiplication by
exp(iτrz)

is an isometric transformation of the Euler space H(E′r) into the space F(W ) for every
positive integer r. Elements of the space F(W ) which belong to the image of the Euler
space are the reproducing kernel function Fr(z) for function values at w − ih and the
reproducing kernel function Gr(z + ih) for function values at w in the image of the Euler
space. The maximal dissipative transformation in the image of the Euler space takes
F (z) into F (z + ih) whenever F (z) and F (z + ih) belong to the image. The adjoint of
the maximal dissipative transformation in the image of the Euler space takes Fr(z) into
Gr(z + ih). A contractive transformation of the derived space of the Euler space H(E′r)
into the derived space of the space F(W ) exists which satisfies the identity

G+(z) = exp( 1
2τrh+ iτrz)F+(z)

for upper components whenever it takes F (z) into G(z). The image of the derived space
of the Euler space H(E′r) in the derived space of the space F(W ) is a Hilbert space in the
scalar product for which the transformation is isometric. The reproducing kernel function
for function values at w − 1

2 ih in the image space has

Gr(z + 1
2 ih)
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as its upper component. The reproducing kernel function

[W (z − 1
2 ih)W (w)− +W (z + 1

2 ih)W (w − ih)−]/[2πi(w− + 1
2 ih− z)]

for function values at w − 1
2 ih in the derived space of the space F(W ) is the limit in the

metric topology of the space of the reproducing kernel functions for function values at
w − 1

2 ih in the image spaces of the derived spaces of the Euler spaces H(E′r).

Multiplication by
exp(iτrz)Sr(z)

is an isometric transformation of the space H(Er) into the space F(W ). The element Ur(z)
of the space H(Er) such that

exp(iτrz)Sr(z)Ur(z)

is the orthogonal projection of Fr(z) in the image of the space H(Er) of the product of

exp(τrh− iτrw−)Sr(w − ih)−

and the reproducing kernel function

[Er(z)Er(w − ih)− − E∗r (z)Er(w− + ih)]/[2πi(w− + ih− z)]

for function values at w − ih in the space H(Er). The adjoint of the maximal dissipative
transformation in the space H(Er) takes Ur(z) into an element Vr(z + ih) of the space
H(Er) which is the product of

exp(τrh− iτrw−)Sr(w − ih)−

and the reproducing kernel function

[Qr(z)Pr(w
−)− Pr(z)Qr(w−)]/[π(z − w−)]

for the values of transformed functions at w in the spaces H(Er). The element U∼r (z) of
the space H(Er) is the product of

exp(τrh− iτrw−)Sr(w − ih)−

and the element

[Q∗r(z)Pr(w − ih)− − P ∗r (z)Qr(w − ih)−]/[π(z + ih− w−)]

A contractive transformation of the derived space of the space H(Er) into the derived
space of the space F(W ) exists which satisfies the identity

G+(z) = exp( 1
2τrh+ iτrz)Sr(z − 1

2 ih)F+(z)
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for upper components whenever it takes F (z) into G(z). The transformation maps the
derived space of the space H(Er) isometrically into the Hilbert space which is the image in
the derived space of the space F(W ) of the derived space of the Euler space H(E′r). The
element

U∼r (z + 1
2
ih) + Vr(z + 1

2
ih)

of the derived space of the space H(Er) is the product of

exp(τrh− iτrw−)Sr(w − ih)−

and the reproducing kernel function

[Qr(z − 1
2
ih)Pr(w

−)− Pr(z − 1
2
ih)Qr(w

−)]/[π(z − 1
2
ih− w−)]

+ [Q∗r(z + 1
2
ih)Pr(w − ih)− − P ∗r (z + 1

2
ih)Qr(w − ih)−]/[π(z − 1

2
ih− w−)]

for function values at w − 1
2
ih in the derived space of the space H(Er). The isometric

transformation of the derived space of the space H(Er) into the image in the derived space
of the space F(W ) of the derived space of the Euler space H(E′r) takes the element

U∼r (z + 1
2
ih) + Vr(z + 1

2
ih)

of the derived space of the space H(Er) into the orthogonal projection of

Fr(z + 1
2 ih) +Gr(z + 1

2 ih)

in the image of the derived space of the space H(Er).

The reproducing kernel function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

for function values at w in the space H(E) is the limit uniformly on compact subsets of
the complex plane of the reproducing kernel functions

[Er(z)Er(w)− − E∗r (z)Er(w−)]/[2πi(w− − z)]

for function values at w in the spaces H(Er). The product of

W (z)/E(z)

and the reproducing kernel function for function values at w in the space H(E) is the limit
in the metric topology of the space F(W ) of the products of

exp(iτrz)Sr(z)

and the reproducing kernel function for function values at w in the spaces H(Er).
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If w − ih is not a zero of E(z), the factors

exp(τrh− iτrw−)Sr(w − ih)−

converge to
[W (w − ih)/E(w − ih)]−.

The adjoint of the maximal dissipative transformation in the space H(E) then takes the
reproducing kernel function

[E(z)E(w − ih)− − E∗(z)E(w− + ih)]/[2πi(w− + ih− z)]

for function values at w − ih in the space H(E) into the product of

[E(w − ih)/W (w − ih)]−[W (w)/E(w)]−

and the reproducing kernel function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

for function values at w in the space H(E). The conclusion which is obtained when w− ih
is not a zero of E(z) holds by continuity when w−ih is a zero. The computation of adjoints
denies w − ih as a zero of E(z) distinct from w− or as a double zero equal to w−.

This completes the proof of the theorem.

A Hilbert space of entire functions which satisfies the axioms (H1), (H2), and (H3) is
said to be symmetric about the origin if an isometric transformation of the space into
itself is defined by taking F (z) into F (−z). A sufficient condition for a space H(E) to
be symmetric about the origin is that the defining function E(z) of the space satisfies the
symmetry condition

E(−z) = E∗(z).

If a Hilbert space of entire functions, which satisfies the axioms (H1), (H2), and (H3) and
contains a nonzero element, is symmetric about the origin, then the space is isometrically
equal to a space H(E) whose defining function E(z) satisfies the symmetry condition.

A variant of the Riemann hypothesis for Hilbert spaces of entire functions applies when
the Euler weight function W (z) satisfies the symmetry condition

W (−z) = W ∗(z)

and the partial products Sr(z) in the Euler product satisfy the symmetry condition

Sr(−z) = S∗r (z).

It is again assumed that nontrivial entire function F (z) exist such that F (z) and F ∗(z)
belong to the weighted Hardy space F(W ). The partial products Sr(z) in the Euler product
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are again assumed to be entire functions of Pólya class, which are of bounded type and of
mean type at most τr in the upper half–plane, such that the function

S∗r (z)/Sr(z)

is of zero mean type in the upper half–plane. The ratio

Sr+1(z)/Sr(z)

is again assumed to be an entire function of Pólya class for every positive integer r and
the inequality

τr ≤ τr+1

is again assumed for every positive integer r. But the entire function constructed from
the Euler product now contains an additional factor of z/i to destroy a singularity which
would otherwise occur.

Theorem 3. The defining function E′(z) of a space H(E′), which is obtained as a limit

iE′(z) = lim exp(−iτrz)zW (z)/Sr(z)

uniformly on compact subsets of the upper half–plane, admits no distinct zeros w− ih and
w− when h is in the interval (0, 1] and no double zero w− ih equal to w− when h is in the
interval (0, 1).

Proof of Theorem 3. When the sequence of numbers τr is bounded, it has a finite limit
τ∞, an entire function S∞(z) of Pólya class exists which is a limit of the entire functions
Sr(z) of Pólya class, and the identity

zW (z) = exp(iτ∞z)S∞(z)iE′(z)

is satisfied. Since the Euler weight function W (z) has no zeros in the half–plane

−1 < iz− − iz,

the function E′(z) has no zeros in the half–plane other than a possible zero at the origin.

When the sequence of numbers τr is unbounded, the Euler product is rearranged so
that the partial products Sr(z) are polynomials which satisfy the symmetry condition

Sr(−z) = S∗r (z).

The Euler space H(E′r) is defined for every positive integer r as the set of entire functions
F (z) such that

exp(iτrz)F (z)

and
exp(iτrz)F

∗(z)
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belong to the space F(W ). The scalar product in the Euler space is defined so that
multiplication by

exp(iτrz)

is an isometric transformation of the space into the space F(W ). The Euler spaces H(E′r)
are symmetric about the origin and can be assumed to have infinite dimension. The image
of the Euler space H(E′r) in the space F(W ) is contained in the image of the Euler space
H(E′r+1) in the space F(W ) for every positive integer r. The union of the images of the
Euler spaces H(E′r) is dense in the space F(W ).

A space H(Er) is defined for every positive integer r as the set of entire functions F (z)
such that

Sr(z)F (z)

and
Sr(z)F

∗(z)

belong to the Euler space H(E′r). The scalar product is defined in the space H(Er) so that
multiplication by Sr(z) is an isometric transformation of the space into the Euler space
H(E′r). The space H(Er) is symmetric about the origin since the Euler space is symmetric
about the origin and since the entire function Sr(z) satisfies the symmetry condition

Sr(−z) = S∗r (z).

The defining function Er(z) of the space H(Er) is chosen to satisfy the symmetry condition

Er(−z) = E∗r (z)

and is normalized to have value one at the origin. The space H(Er) is the set of entire
functions F (z) such that

exp(iτrz)Sr(z)F (z)

and
exp(iτrz)Sr(z)F

∗(z)

belong to the space F(W ). Multiplication by

exp(iτrz)Sr(z)

is an isometric transformation of the space H(Er) into the space F(W ).

The space H(E′) is symmetric about the origin since the Euler weight function W (z)
satisfies the symmetry condition

W (−z) = W ∗(z)

and since the partial products Sr(z) in the Euler product satisfy the symmetry condition

Sr(−z) = S∗r (z).
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When every element of the space vanishes at the origin, division by z is an isometric
transformation of the space H(E′r) onto a Riemann space H(E) of entire functions whose
defining function is

E(z) = E′(z)/z.

Since E(z) admits no pair of distinct zeros w− and w − ih with h in the interval [0, 1),
E′(z) admits no pair of distinct zeros w− and w − ih with h in the interval [0, 1). When
some element of the space H(E′) has a nonzero value at the origin, division by z is an
isometric transformation of the set of elements of the space H(E′) which vanish at the
origin onto a Hilbert space of entire functions which satisfies the axioms (H1), (H2), and
(H3). If the space constructed contains no nonzero element, the function E′(z) admits
only one nonreal zero. The function admits no pair of distinct zeros w− and w − ih with
h in the interval [0, 1). If the space constructed contains a nonzero element, it contains
an element which has a nonzero value at the origin. The space is isometrically equal to a
space H(E) which is symmetric about the origin. The defining function E(z) of the space
is chosen to satisfy the symmetry condition

E(−z) = E∗(z)

and is normalized to have value one at the origin.

An entire function F (z) belongs to the space H(E) if, and only if,

zW (z)F (z)/E′(z)

and
zW (z)F ∗(z)/E′(z)

belong to the space F(W ). The image in the space F(W ) of an entire function F (z) which
belongs to the space H(E) is the limit in the metric topology of the space F(W ) of the
images in the space F(W ) of entire functions Fr(z) which belong to the spaces H(Er).
The image in the space F(W ) of the reproducing kernel function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

for function values at w in the space H(E) is the limit in the metric topology of the space
F(W ) of the images in the space F(W ) of the reproducing kernel functions

[Er(z)Er(w)− − E∗r (z)Er(w−)]/[2πi(w− − z)]

for function values at w in the spaces H(Er) when w is in the upper half–plane. The
reproducing kernel function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]

for function values at w in the space H(E) is the limit uniformly on compact subsets of
the complex plane of the reproducing kernel functions

[Er(z)Er(w)− − E∗r (z)Er(w−)]/[2πi(w− − z)]



A PROOF OF THE RIEMANN HYPOTHESIS 33

for function values at w in the spaces H(Er) for all complex numbers w. The defining
function

E(z) = limEr(z)

of the space H(E) is the limit uniformly on compact subsets of the complex plane of the
defining functions Er(z) of the spaces H(Er).

Since the Euler weight functions W (z) satisfies the symmetry condition

W (−z) = W ∗(z),

the maximal dissipative transformation in the space F(W ), which takes F (z) into F (z+ih)
whenever F (z) and F (z+ih) belong to the space, commutes with the transformation which
takes F (z) into F ∗(−z). The adjoint of the maximal dissipative transformation in the space
F(W ) commutes with the transformation which takes F (z) into F ∗(−z). The maximal
dissipative transformation in the Euler space H(E′r), which takes F (z) into G(z + ih)
whenever elements F (z) and G(z + ih) of the space satisfy the identity

G(z) = exp(−τrh)F (z),

commutes with the transformation which takes F (z) into F ∗(−z). The adjoint of the
maximal dissipative transformation in the Euler space H(E′r) commutes with the trans-
formation which takes F (z) into F ∗(−z).

A maximal dissipative transformation in the space H(Er) is defined by taking F (z)
into G(z + ih) whenever F (z) and G(z + ih) are elements of the space for which elements
Fn(z) and Gn(z + ih) of the Euler space H(E′r) exist such that the maximal dissipative
transformation in the space takes Fn(z) into Gn(z + ih) for every positive integer n, such
that

Sr(z)G(z + ih)

is the limit in the metric topology of the space of the elements Gn(z + ih), and such that

Sr(z)F (z)

is the limit in the same topology of the orthogonal projections of the elements Fn(z) in
the image of the space H(Er). Since Sr(z) satisfies the symmetry condition

Sr(−z) = S∗r (z),

the maximal dissipative transformation in the space H(Er) and its adjoint commute with
the transformation which takes F (z) into F ∗(−z). Entire functions Pr(z) and Qr(z), which
are associated with the space H(Er) and which satisfy the symmetry conditions

Pr(−z) = P ∗r (z)

and
Qr(−z) = −Q∗r(z),
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exist such that the maximal dissipative transformation in the space takes an element F (z)
of the space into an element G(z + ih) of the space whenever F (z) and G(z + ih) satisfy
the identity

G(w) = 〈F (t), [Qr(t)Pr(w
−)− Pr(t)Qr(w−)]/[π(t− w−)]〉

for all complex numbers w with the scalar product taken in the space.

An isometric transformation of the derived space of the space F(W ) into itself is defined
by taking F (z) into F ∗(−z). An isometric transformation of the derived space of the Euler
space H(E′r) into itself is defined for every positive integer r by taking F (z) into F ∗(−z).
An isometric transformation of the derived space of the space H(Er) into itself is defined
for every positive integer r by taking F (z) into F ∗(−z).

If F (z) and G(z) are elements of the derived space of the space F(W ) which satisfy the
identity

G(z) = F ∗(−z),

then the identities
G+(z) = F ∗+(−z)

and
G−(z) = F ∗−(−z)

are satisfied. If F (z) and G(z) are elements of the derived space of the Euler space H(E′r)
which satisfy the identity

G(z) = F ∗(−z),

then the identities
G+(z) = F ∗+(−z)

and
G−(z) = F ∗−(−z)

are satisfied.

The isometric transformation of the derived space of the Euler space H(E′r) into the
derived space of the space F(W ), which satisfies the identity

G+(z) = exp( 1
2τrh+ iτrz)F+(z)

for upper components whenever it takes F (z) into G(z), takes F ∗(−z) into G∗(−z) when-
ever it takes F (z) into G(z). The isometric transformation of the derived space of the
space H(Er) into the derived space of the Euler space H(E′r), which satisfies the identity

G+(z) = Sr(z − 1
2 ih)F+(z)

for upper components whenever it takes F (z) into G(z), takes F ∗(−z) into G∗(−z) when-
ever it takes F (z) into G(z).
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Multiplication by z is an isometric transformation of the set of elements F (z) of the
space H(E) which satisfy the symmetry condition

F (−z) = F ∗(z)

onto the set of elements G(z) of the space H(E′) which satisfy the symmetry condition

G(−z) = −G∗(z).

Since the defining function E′(z) of the space H(E′) satisfies the symmetry condition

E′(−z) = E∗(z),

multiplication by
iW (z)/E′(z)

is an isometric transformation of the set of elements G(z) of the space H(E′) which satisfy
the symmetry condition

G(−z) = −G∗(z)

into the set of elements H(z) of the space F(W ) which satisfy the symmetry condition

H(−z) = H∗(z).

Multiplication by
izW (z)/E′(z)

is an isometric transformation of the set of elements F (z) of the space H(E) which satisfy
the symmetry condition

F (−z) = F ∗(z)

into the set of elements H(z) of the space F(W ) which satisfy the symmetry condition

H(−z) = H∗(z).

If a zero w− of E′(z) satisfies the inequality

iw− − iw > h,

then −w is a zero of E′(z) which satisfies the inequality. The function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]
+ [E(z)E(w)−E∗(z)E∗(w)]/[2πi(−w− z)]

of z is the reproducing kernel function for function values at w in the space of elements
F (z) of the space H(E) which satisfy the symmetry condition

F (−z) = F ∗(z).
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The function
zw−[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]
+zw−[E(z)E(w)− E∗(z)E∗(w)]/[2πi(−w− z)]

of z is the reproducing kernel function for function values at w in the space of elements
G(z) of the space H(E′) which satisfy the symmetry condition

G(−z) = −G∗(z).

Multiplication by
iW (z)/E′(z)

takes the element of the space H(E′) into the product of

iE′(w)−/W (w)−

and the reproducing kernel function

W (z)W (w)−/[2πi(w− − z)] +W (z)W (w)/[2πi(−w − z)]

for function values at w in the space of elements H(z) of the space F(W ) which satisfy
the symmetry condition

H(−z) = H∗(z).

It follows that multiplication by
izW (z)/E′(z)

takes the reproducing kernel function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]
+ [E(z)E(w)−E∗(z)E∗(w)]/[2πi(−w− z)]

for function values at w in the space of elements F (z) of the space H(E) which satisfy the
identity

F (−z) = F ∗(z)

into the product of
iw−E′(w)−/W (w)−

and the reproducing kernel function

W (z)W (w)−/[2πi(w− − z)] +W (z)W (w)/[2πi(−w − z)]

for function values at w in the space of elements H(z) of the space F(W ) which satisfy
the symmetry condition

H(−z) = H∗(z).

Multiplication by
exp(iτrz)



A PROOF OF THE RIEMANN HYPOTHESIS 37

is an isometric transformation of the Euler space H(E′r) into the space F(W ) for every
positive integer r. Elements of the space F(W ) which belong to the image of the Euler
space are the reproducing kernel function Fr(z) for function values at w − ih and the
reproducing kernel function Gr(z+ ih) for function values at w in the subspace of elements
H(z) of the space F(W ) which belong to the image of the Euler space and which satisfy
the symmetry condition

H(−z) = H∗(z).

The maximal dissipative transformation in the subspace takes F (z) into F (z + ih) when-
ever F (z) and F (z + ih) belong to the subspace. The adjoint of the maximal dissipative
transformation in the subspace takes Fr(z) into Gr(z + ih).

The contractive transformation of the derived space of the Euler space H(E′r) into the
derived space of the space F(W ), which satisfies the identity

G+(z) = exp( 1
2τrh+ iτrz)F+(z)

for upper components whenever it takes F (z) into G(z), takes F ∗(−z) into G∗(−z) when-
ever it takes F (z) into G(z). The image of the derived space of the Euler space H(E′r) in
the derived space of the space F(W ), which is a Hilbert space in the scalar product for
which he transformation is isometric, is invariant under an isometric transformation which
takes F (z) into F ∗(−z). The reproducing kernel function for function values at w − 1

2 ih
in the subspace of elements of the image, which satisfy the symmetry condition

F (−z) = F ∗(z),

has
Gr(z + 1

2 ih)

as its upper component. The reproducing kernel function

[W (z − 1
2
ih)W (w)− +W (z + 1

2
ih)W (w − ih)−]/[2πi(w− + 1

2
ih− z)]

+ [W (z − 1
2
ih)W (w) +W (z + 1

2
ih)W (w − ih)]/[2πi(w− + 1

2
ih− z)]

for function values at w− 1
2
ih in the subspace of elements F (z) of the derived space of the

space F(W ), which satisfy the symmetry condition

F (−z) = F ∗(z),

is the limit in the metric topology of the space of the reproducing kernel functions for
function values at w − 1

2 ih in the subspace of elements of the image of the derived space
of the Euler space H(E′r) which satisfy the symmetry condition.

Multiplication by
exp(iτrz)Sr(z)

is an isometric transformation of the spaceH(Er) into the space F(W ) which takes F ∗(−z)
into G∗(−z) whenever it takes F (z) into G(z). The element Ur(z) of the space H(Er) such
that

exp(iτrz)Sr(z)Ur(z)
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is the orthogonal projection of Fr(z) in the image of the space H(Er) is the product of

exp(τrh− iτrw−)Sr(w − ih)−

and the reproducing kernel function

[Er(z)Er(w − ih)− −E∗r (z)Er(w− + ih)]/[2πi(w− + ih− z)]
+ [Er(z)Er(w − ih)− E∗r (z)E∗r (w − ih)]/[2πi(w− + ih− z)]

for function values at w − ih in the subspace of elements F (z) of the space H(Er) which
satisfy the symmetry condition

F (−z) = F ∗(z).

The adjoint of the maximal dissipative transformation in the space H(Er) takes Ur(z) into
the element Vr(z + ih) of the space H(Er) which is the product of

exp(τrh− iτrw−)Sr(w − ih)−

and the reproducing kernel function

[Qr(z)Pr(w
−)− Pr(z)Qr(w−)]/[π(z − w−)]

+ [Qr(z)Pr(w) + Pr(z)Qr(w)]/[π(z + w)]

for the value of transformed functions at w in the subspace of elements of the space H(Er)
which satisfy the symmetry condition. The element U∼r (z) of the space H(Er) is the
product of

exp(τrh− iτrw−)Sr(w − ih)−

and the element

[Q∗r(z)Pr(w − ih)− − P ∗r (z)Qr(w − ih)−]/[π(z − ih− w−)]

+ [Q∗r(z)P
∗
r (w − ih)− P ∗r (z)Q∗r(w − ih)]/[π(z − ih− w)]

The contractive transformation of the derived space of the space H(Er) into the derived
space of the space F(W ), which satisfies the identity

G+(z) = exp( 1
2τrh+ iτrz)Sr(z − 1

2 ih)F+(z)

for upper components whenever it takes F (z) into G(z), takes F ∗(−z) into G∗(−z) when-
ever it takes F (z) into G(z). The transformation maps the derived space of the space
H(Er) isometrically into the Hilbert space which is the image in the derived space of the
space F(W ) of the derived space of the Euler space H(E′r). The element

U∼r (z + 1
2 ih) + Vr(z + 1

2 ih)
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of the derived space of the space H(Er) is the product of

exp(τrh− iτrw−)Sr(w − ih)−

and the reproducing kernel function with upper component

[Qr(z − 1
2 ih)Pr(w

−)− Pr(z − 1
2 ih)Qr(w

−)]/[π(z − 1
2 ih− w−)]

+ [Qr(z − 1
2
ih)Pr(w) + Pr(z − 1

2
ih)Qr(w)]/[π(z − 1

2
ih+ w)]

and with lower component

[Q∗r(z + 1
2 ih)Pr(w − ih)− − P ∗r (z + 1

2 ih)Qr(w − ih)−]/[π(z − 1
2 ih− w−)]

+ [Q∗r(z + 1
2 ih)P

∗
r (w − ih) + P ∗r (z + 1

2 ih)Q
∗
r(w − ih)]/[π(z − 1

2 ih+ w)]

for function values at w− 1
2
ih in the subspace of elements of the derived space of the space

H(Er) which satisfy the symmetry condition. The isometric transformation of the derived
space of the space H(Er) into the image in the derived space of the space F(W ) of the
derived space of the Euler space H(E′r) takes the element

U∼r (z + 1
2 ih) + Vr(z + 1

2 ih)

of the derived space of the space H(Er) into the orthogonal projection of

Fr(z + 1
2
ih) +Gr(z + 1

2
ih)

in the image of the derived space of the space H(Er).

The reproducing kernel function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]
+ [E(z)E(w)−E∗(z)E∗(w)]/[2πi(−w− z)]

for function values at w in the subspace of elements of the space H(E), which satisfy the
symmetry condition

F (−z) = F ∗(z),

is the limit uniformly on compact subsets of the complex plane of the reproducing kernel
functions

[Er(z)Er(w)− − E∗r (z)Er(w−)]/[2πi(w− − z)]
+ [Er(z)Er(w)− E∗r (z)E∗r (w)]/[2πi(−w− z)]

for function values at w in the subspace of elements F (z) of the space H(Er) which satisfy
the symmetry condition

F (−z) = F ∗(z).

The product of
−izW (z)/E′(z)
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and the reproducing kernel function for function values at w in the subspace of elements of
the space H(E) which satisfy the symmetry condition is the limit in the metric topology
of the space F(W ) of the product of

exp(iτrz)Sr(z)

and the reproducing kernel functions for function values at w in the subspaces of elements
of the spaces H(Er) which satisfy the symmetry condition.

If w − ih is not a zero of E′(z), the factors

exp(τrh− iτrw−)Sr(w − ih)−

converge to

i[(w − ih)W (w − ih)/E′(w − ih)]−.

The adjoint of the maximal dissipative transformation in the space H(E) then takes the
reproducing kernel function

[E(z)E(w− ih)− − E∗(z)E(w− + ih)]/[2πi(w− + ih− z)]
+ [E(z)E(w − ih)−E∗(z)E∗(w − ih)]/[2πi(−w + ih− z)]

for function values at w in the subspace of elements of the space H(E) which satisfy the
symmetry condition into the product of

[−w−/(w − ih)][E′(w − ih)/W (w − ih)][W (w)/E(w)]−

and the reproducing kernel function

[E(z)E(w)− − E∗(z)E(w−)]/[2πi(w− − z)]
+ [E(z)E(w)−E∗(z)E∗(w)]/[2πi(−w− z)]

for function values at w in the subspace of elements of the space H(E) which satisfy the
symmetry condition. The conclusion which is obtained when w− ih is not a zero of E′(z)
holds by continuity when w − ih is a zero. The computation of adjoints denies w − ih as
a zero of E′(z) distinct from w− or as a double zero equal to w−.

This concludes the proof of the theorem.

The author thanks Dr. Yashowanto Ghosh for predoctoral participation in courses
preparing the proof of the Riemann hypothesis and for postdoctoral participation in a
seminar in which the proof was presented at Purdue University in the academic year 2004-
2005. The author thanks Professor Victor Katsnelson of the Weizmann Institute of Science
for participation in a continuation of the seminar during the fall semester 2005.
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