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Abstract. In a semigroup, the combinatorial definitions of syndetic, piecewise syn-
detic, and IP are equivalent to their algebraic characterizations in terms of βS. We
introduce the analogous definitions and characterizations of syndetic, piecewise syn-
detic, and IP for an adequate partial semigroup and show that equivalence between
the combinatorial definition and algebraic characterization is lost once we move from
a semigroup to a partial semigroup. Where they exist, we show some of the interrela-
tionships between the notions; and in the case of IP, we give some conditions for when
the algebraic characterization and combinatorial definition are in fact equivalent.

1. Introduction

Given a set S, and a natural binary operation, it is often convenient to define the
operation for only a subset of S × S. Consider for instance the semigroup (Pf (N),∪),
where Pf (N) = {F : F is a finite nonempty subset of N}. If we define
ϕ : (Pf (N),∪) → (N, +) by ϕ(F ) = |F |, then ϕ is not a homomorphism. However, if we
let

A∪∗B =
{

A ∪B if A ∩B = ∅
undefined if A ∩B 6= ∅

then ϕ is a homomorphism on (Pf (N),∪∗), in the sense that ϕ(A∪∗B) = ϕ(A) + ϕ(B)
whenever (A∪∗B) is defined.

Another case in which we may need to restrict the domain of the operation occurs
when the natural operation does not satisfy the closure property. For example, given a
sequence 〈xn〉∞n=1 in the semigroup (S, ·), let

T = FP (〈xn〉∞n=1) = {∏n∈F xn : F ∈ Pf (N)} ,

where the products are taken in increasing order of indices. Then (x1 · x3) · (x2 · x4) is
not likely to be in T unless x2 and x3 commute, and (x1 · x3) · (x3 · x4) is not likely to
be in T at all. On the other hand, if we let if we let (

∏
n∈F xn) ∗ (

∏
n∈G xn) be

{ ∏
n∈F∪G xn if max F < min G

undefined if maxF ≥ min G

Then T is closed under ∗.
(Pf (N),∪∗) and (T, ∗) above, are examples of adequate partial semigroups [1], which

are defined next.
1 The author acknowledges support received from the Woodrow Wilson National Fellowship Foun-

dation (USA).
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1.1 Definition. A partial semigroup is a pair (S, ∗) where ∗ maps a subset of S × S to
S and for all a, b, c,∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c) in the sense that if either side is defined,
then so is the other and they are equal.

There are several notions of size in an arbitrary semigroup, all of which have sim-
ple characterizations in terms of βS, the Stone-Čech compactification of S. Partial
semigroups lead to a natural and interesting subsemigroup of βS, which will be the
focus of much of this paper. Therefore, we remind the reader of the algebraic structure
of βS. For a discrete semigroup S, we take βS to be the set of all ultrafilters on S;
and we identify the principal ultrafilters with the points of S. Given a set A ⊆ S,
A = {p ∈ βS : A ∈ p}. The set {A : A ⊆ S} is a basis for the open sets , as well as a
basis for the closed sets, of βS. We denote by · the natural extension of the operation
on S which makes βS a compact right topological semigroup with S contained in its
topological center. So that, for each p ∈ βS, the function ρp : βS → βS defined by
ρp(q) = q · p, is continuous; and for each x ∈ S, the function λx : βS → βS defined by
λx(q) = x · q, is continuous. The reader is referred to [4] for an elementary introduction
to the algebra of βS.

1.2 Definition. Let (S, ∗) be a partial semigroup.

(a) For s ∈ S, ϕ(s) = {t ∈ S : s ∗ t is defined}.
(b) For H ∈ Pf (S), σ(H) =

⋂
s∈H ϕ(s).

(c) (S, ∗) is adequate iff σ(H) 6= ∅ for all H ∈ Pf (S).

(d) δS =
⋂

x∈S c`βS

(
ϕ(x)

)
=

⋂
H∈Pf (S) c`βS

(
σ(H)

)
.

Notice that adequacy of S is exactly what is required to guarantee that δS 6= ∅.
Also, if S is in fact a semigroup then δS = βS. For an adequate partial semigroup S,
δS is in a natural way a compact right topological semigroup (see [3, Theorem 2.10]).
This fact provides a natural context for the notions of size we wish to consider in an
adequate partial semigroup.

In an arbitrary semigroup the notions of syndetic, piecewise syndetic, and IP all
have simple characterizations in terms of βS, and these characterizations lead to simple
definitions for partial semigroups in terms of δS. The main results of this paper show
that these equivalences are lost, for the most part, for partial semigroups.

In general, notions preceded by “č-”, will refer to the partial semigroup analog of
the combinatorial definition of that notion. After a short section describing the algebra
in δS, the paper is organized by the notions of size we consider. In each section we
begin by giving the definition and characterizations as they are known for a semigroup.
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We then give the analogous definitions for an adequate partial semigroup. We will write
all partial semigroups multiplicatively as (S, ∗), and we assume that S is discrete.

2. Algebra in δS

In this section we introduce some of the basic properties of the operation ∗ in δS. We
will make repeated use of these properties throughout this paper. This section overlaps
with much of [3, Section 2], and the results we use are stated here, without proof, for
the reader’s convenience.

2.1 Definition. Let (S, ∗) be a partial semigroup.

For s ∈ S and A ⊆ S, s−1A = {t ∈ ϕ(s) : s ∗ t ∈ A}.

Note that, as in a semigroup, and even more strongly here, the notation s−1A does
not imply that the element s has an inverse in S. However, we do see that in some sense
the behavior does in fact resemble the case in which s has an inverse.

2.2 Lemma. Let (S, ∗) be a partial semigroup, let A ⊆ S and let a, b, c ∈ S. Then

c ∈ b−1(a−1A) ⇔ b ∈ ϕ(a) and c ∈ (a ∗ b)−1A.

In particular, if b ∈ ϕ(a), then b−1(a−1A) = (a ∗ b)−1A.

Proof. [3, Lemma 2.3].

As a subsemigroup of βS, the members of δS are ultrafilters. The following def-
inition and results show how ∗ behaves on members of δS and how ∗ is extended to
βS.

First recall from [4, Theorem 4.12] that if (S, ·) is a semigroup, A ⊆ S, a ∈ S, and
p, q ∈ βS, then

A ∈ a · q ⇔ a−1A ∈ q

and

A ∈ p · q ⇔ {a ∈ S : a−1A ∈ q} ∈ p.

We have the following analog in the case of an adequate partial semigroup.

2.3 Definition. Let (S, ∗) be an adequate partial semigroup.

(a) For a ∈ S and q ∈ ϕ(a), a ∗ q = {A ⊆ S : a−1A ∈ q}.
(b) For p ∈ βS and q ∈ δS, p ∗ q = {A ⊆ S : {a−1A ∈ q} ∈ p}.
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2.4 Lemma. Let (S, ∗) be an adequate partial semigroup.

(a) If a ∈ S and q ∈ ϕ(a), then a ∗ q ∈ βS.

(b) If p ∈ βS and q ∈ δS, then p ∗ q ∈ βS.

(c) Let p ∈ βS, q ∈ δS, and a ∈ S. Then ϕ(a) ∈ p ∗ q if and only if ϕ(a) ∈ p.

(d) If p, q ∈ δS, then p ∗ q ∈ δS.

Proof. [3, Lemma 2.7].

2.5 Lemma. Let (S, ∗) be an adequate partial semigroup and let q ∈ δS. Then the
function ρq : βS → βS defined by ρq(p) = p ∗ q is continuous.

Proof. [3, Lemma 2.8].

2.6 Lemma. Let p ∈ βS and let q, r ∈ δS. Then p ∗ (q ∗ r) = (p ∗ q) ∗ r.

Proof. [3, Lemma 2.9].

As a consequence of the above results, we have that if (S, ∗) is an adequate partial
semigroup, then (δS, ∗) is a compact right topological semigroup.

3. Syndetic Sets

In this section we present some results about syndetic sets in an arbitrary partial semi-
group. The terminology is, as mentioned in the introduction, borrowed from topological
dynamics. The notion of a syndetic set originated in the context of (N, +) where a set
A is syndetic if and only if it has bounded gaps.

3.1 Definition. Let (S, ·) be a semigroup and let A ⊆ S. The set A is syndetic if and
only if there exists H ∈ Pf (S) such that S ⊆ ⋃

t∈H t−1A.

3.2 Theorem. Let (S, ·) be a semigroup and let A ⊆ S. The set A is syndetic if and
only if for every left ideal L of βS, A ∩ L 6= ∅.

Proof. [2, Theorem 2.9(d)].

The combinatorial definition and the algebraic characterization of syndetic in a
semigroup can both be extended to partial semigroups in a natural way. Since ∗ is
defined for only a subset of S, we are unlikely to find a finite subset H of S such that
S ⊆ ⋃

t∈H ϕ(t). Thus we cannot transfer, verbatim, the definition for syndetic to partial
semigroups. However, a minor adjustment is sufficient.
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3.3 Definition. Let (S, ∗) be an adequate partial semigroup and let A ⊆ S.

(a) The set A is č-syndetic if and only if there exists H ∈ Pf (S) such that
σ(H) ⊆ ⋃

t∈H t−1A.

(b) The set A is syndetic if and only if for every left ideal L of δS, A ∩ L 6= ∅.

Note that the combinatorial definition of syndetic in a partial semigroup,
(č-syndetic), guarantees that S itself is syndetic. Notice also that if S is a semigroup,
Definition 3.3 agrees with our semigroup definition and characterization of “syndetic”.

The notions “syndetic” and and “č-syndetic” are not equivalent, though we shall
see that every syndetic subset of an adequate partial semigroup is also č-syndetic. As
an example of a set which is č-syndetic but not syndetic, we have the following.

3.4 Theorem. There exists an adequate partial semigroup (T, ∗) and a č-syndetic subset
A of T which is not syndetic.

Proof. Let 〈xn〉∞n=1 be a sequence in a semigroup (S, ·) which satisfies uniqueness of
finite products (meaning

∏
n∈F xn =

∏
n∈G xn only when F = G), and (T, ∗) is the

partial semigroup introduced earlier, where

T = FP (〈xn〉∞n=1) = {∏n∈F xn : F ∈ Pf (N)} ,

and products are taken in increasing order of indices, with

(
∏

n∈F xn) ∗ (
∏

n∈G xn) defined as
{ ∏

n∈F∪G xn if max F < min G
undefined if maxF ≥ min G

Then the set A = {∏n∈F xn : F ∈ Pf (N) and 1 ∈ F} is č-syndetic but not syndetic.

To see that A is č-syndetic, let H = {x1}, so that σ(H) = ϕ(x1) = {∏n∈F xn :
F ∈ Pf (N) and min F > 1}. Then σ(H) ⊆ x1

−1A.

To see that A is not syndetic, we show in fact that for any p ∈ δS, A∩ (δS ∗p) = ∅.
Suppose instead that we have q ∈ δS such that A ∈ q ∗ p. Then {x ∈ S : x−1A ∈ p} ∈ q

and ϕ(x1) ∈ q so pick y ∈ ϕ(x1) such that y−1A ∈ p. But y−1A = ∅, a contradiction.
Thus A is not syndetic.

As mentioned earlier, every syndetic set is a č-syndetic set. The proof of this fact
leads to an algebraic characterization of č-syndetic sets in terms of βS. For emphasis,
we state these as two separate results.

5



3.5 Lemma. Let (S, ∗) be an adequate partial semigroup and let A ⊆ S. Then A is
č-syndetic if and only if for all p ∈ δS, A ∩ (βS ∗ p) 6= ∅.

Proof. Assume A is č-syndetic. Let p ∈ δS =
⋂

H∈Pf (S) σ(H). Pick H ∈ Pf (S) such
that σ(H) ⊆ ⋃

t∈H t−1A. Since σ(H) ∈ p,
⋃

t∈H t−1A ∈ p. So there exists t ∈ H such
that t−1A ∈ p. Then t ∗ p ∈ A. Therefore A ∩ (βS ∗ p) 6= ∅.

Assume that for all p ∈ δS, A ∩ (βS ∗ p) 6= ∅. Suppose that for all H ∈ Pf (S),
σ(H) 6⊆ ⋃

t∈H t−1A. Then for all H ∈ Pf (S), σ(H)\⋃
t∈H t−1A 6= ∅. Therefore

{σ(H)\⋃
t∈H t−1A : H ∈ Pf (S)} has the finite intersection property. So pick p ∈ βS

such that {σ(H)\⋃
t∈H t−1A : H ∈ Pf (S)} ⊆ p. Since {σ(H) : H ∈ Pf (S)} ⊆ p we

have that p ∈ δS. So pick q ∈ βS such that A ∈ q∗p. Then {x ∈ S : x−1A ∈ p} ∈ q 6= ∅.
So pick x such that x−1A ∈ p. Since {x} ∈ Pf (S), σ({x})\x−1A ∈ p. But x−1A ∈ p.
This is a contradiction. Therefore A must be č-syndetic.

3.6 Theorem. Let (S, ∗) be an adequate partial semigroup and let A ⊆ S. If A is
syndetic then A is č-syndetic.

Proof. Assume that A ⊆ S is syndetic. Let p ∈ δS, then A ∩ (δS ∗ p) 6= ∅. And
δS ⊆ βS, so A ∩ (βS ∗ p) 6= ∅. So by Theorem 3.6, A is č-syndetic.

Even though the notions of “syndetic” and “č-syndetic” are not equivalent, we see
that they play an identical role in the characterization of members of the smallest ideal.

3.7 Theorem. Let (S, ∗) be an adequate partial semigroup and let p ∈ δS. The following
statements are equivalent:

(a) p ∈ K(δS).

(b) For all A ∈ p, {x ∈ S : x−1A ∈ p} is syndetic.

(c) For all A ∈ p, {x ∈ S : x−1A ∈ p} is č-syndetic.

(d) For all q ∈ δS, p ∈ δS ∗ q ∗ p.

Proof. (b) ⇒ (c). Trivial.

(c) ⇒ (d). [3, Theorem 2.15].

(d) ⇒ (a). Trivial.

(a) ⇒ (b). Let A ∈ p and let B = {x ∈ S : x−1A ∈ p}. Let L be a minimal
left ideal of δS with p ∈ L. We show that for every left ideal L′ of δS, B ∩ L′ 6=
∅. Let L′ be a left ideal of δS. Then L′ ∗ p is a left ideal of δS and L′ ∗ p ⊆ L

because L is a left ideal. So L′ ∗ p = L (by the minimality of L). Pick q ∈ L′
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such that p = q ∗ p. Since A ∈ p = q ∗ p, B = {x ∈ S : x−1A ∈ p} ∈ q and so
q ∈ B.

4. Piecewise Syndetic Sets

In the semigroup (N, +), a set A is piecewise syndetic if and only if there exist a fixed
bound b and arbitrary long intervals in which the gaps of A are bounded by b. The term
piecewise syndetic originated in this context. With respect to βS, piecewise syndetic
sets are of particular importance because they characterize the smallest ideal K(βS).

We begin, again, by reminding the reader of the definition and equivalent charac-
terization of piecewise syndetic for a semigroup.

4.1 Definition. Let (S, ·) be a semigroup and let A ⊆ S. The set A is piecewise
syndetic if and only if there exists H ∈ Pf (S) such that for all T ∈ Pf (S) there exists
x ∈ S such that T · x ⊆ ⋃

t∈H t−1A.

4.2 Theorem. Let (S, ·) be a semigroup and let A ⊆ S. The set A is piecewise syndetic
if and only if A ∩K(βS) 6= ∅.

Proof. [4, Theorem 4.40].

As was the case for the notion of syndetic, the definition and characterization of
piecewise syndeticity in a semigroup extend naturally to partial semigroups.

4.3 Definition. Let (S, ∗) be an adequate partial semigroup and let A ⊆ S.

(a) The set A is č-piecewise syndetic if and only if there exists H ∈ Pf (S) such that
for all T ∈ Pf (S) there exists x ∈ σ(T ) such that

(
T ∩ σ(H)

) ∗ x ⊆ ⋃
t∈H t−1A.

(b) The set A is piecewise syndetic if and only if A ∩K(δS) 6= ∅.

Notice that the references to σ(T ) and σ(H) in the definition of “č-piecewise syn-
detic” are needed to guarantee that the operations occurring therein are defined.

As was the case with “syndetic”, we obtain an algebraic characterization of “č-
piecewise syndetic” which allows us to establish that it is implied by “piecewise synde-
tic”.

4.4 Theorem. Let (S, ∗) be an adequate partial semigroup and let A ⊆ S. A is
č-piecewise syndetic if and only if there exists p ∈ K(δS) such that A ∩ (βS ∗ p) 6= ∅.
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Proof. Assume that A is č-piecewise syndetic and pick H ∈ Pf (S) as guaranteed.
For T ∈ Pf (S) let B(T ) = {x ∈ σ(T ) : (T ∩ σ(H)) ∗ x ⊆ ⋃

t∈H t−1A}. Note that
B(T1∪T2) ⊆ B(T1)∩B(T2) and by assumption each B(T ) 6= ∅. So {B(T ) : T ∈ Pf (S)}
has the finite intersection property. So pick p ∈ βS such that {B(T ) : T ∈ Pf (S)} ⊆ p.
Since for all T ∈ Pf (S), B(T ) ⊆ σ(T ), we have p ∈ δS. Then δS ∗ p is a left ideal of δS

and so we can pick q ∈ K(δS) such that q ∈ δS ∗ p. We claim that A∩ (βS ∗ q ∗ p) 6= ∅.
It suffices to show that there exists t ∈ S such that A ∈ t ∗ q ∗ p. Suppose not.
Then

⋃
t∈H t−1A 6∈ q ∗ p. So {s ∈ S : s−1(

⋃
t∈H t−1A) 6∈ p} ∈ q. Also, σ(H) ∈ q

so pick s ∈ σ(H) such that s−1(
⋃

t∈H t−1A) 6∈ p. Let T = {s}. Then B(T ) ∈ p.
Pick x ∈ B(T )\(s−1(

⋃
t∈H t−1A)

)
. Then x ∈ B(T ) so s ∗ x ∈ ⋃

t∈H t−1A. This is a
contradiction. So

⋃
t∈H t−1A ∈ q ∗ p. Thus A ∩ (βS ∗ q ∗ p) 6= ∅. Since q ∗ p ∈ K(δS),

the result follows.

Now pick p ∈ K(δS) such that A∩ (βS ∗ p) 6= ∅. So pick t ∈ S such that A ∈ t ∗ p.
Let B = {a ∈ S : a−1(t−1A) ∈ p}. By Theorem 3.6, B is č -syndetic, so pick H ∈ Pf (S)
such that σ(H) ⊆ ⋃

s∈H s−1B. Let G = (t ∗H)∪H. Then G ∈ Pf (S). For T ∈ Pf (S),
we show that there exists x ∈ σ(T ) such that

(
T ∩ σ(G)

) ∗ x ⊆ ⋃
t∈G t−1A. Given

y ∈ (T ∩ σ(G)), choose sy ∈ H such that sy ∗ y ∈ B. So (sy ∗ y)−1(t−1A) ∈ p. Pick
x ∈ ⋂

y∈(T∩σ(G))(sy ∗ y)−1(t−1A). Then sy ∗ y ∗ x ∈ t−1A and thus t ∗ sy ∗ y ∗ x ∈ A

and so y ∗ x ∈ (t ∗ sy)−1A. Thus
(
T ∩ σ(G)

) ∗ x ⊆ ⋃
t∈G t−1A and so A is č-piecewise

syndetic.

4.5 Theorem. Let (S, ∗) be an adequate partial semigroup and let A ⊆ S be piecewise
syndetic. Then A is č-piecewise syndetic.

Proof. Pick p ∈ K(δS) such that A ∈ p. Let L be a minimal left ideal of δS containing
p. Then L ∗ p is a left ideal and L ∗ p ⊆ L. So L ∗ p = L. Since p ∈ L ∗ p we have
A ∩ (βS ∗ p) 6= ∅. Thus, by Theorem 4.4 A is č-piecewise syndetic.

The notions of “č-piecewise syndetic” and “piecewise syndetic” are not equivalent
for an adequate partial semigroup. The following example shows this using the adequate
partial semigroup (T, ∗) introduced earlier.

4.6 Theorem. There exists a partial semigroup (S, ∗) and a subset A of S such that A

is č-piecewise syndetic but not piecewise syndetic.

Proof. Let T and A be as in the proof of Theorem 3.4. Then δS ⊆ ϕ(x1) =
FP (〈xn〉∞n=2) and A ∩ FP (〈xn〉∞n=2) = ∅. In particular A ∩ K(δS) = ∅, so A is not
piecewise syndetic.
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To see that A is č-piecewise syndetic, let H = {x1}. Let G ∈ Pf (S) be given. For
each w ∈ G, pick Fw ∈ Pf (N) such that w =

∏
n∈Fw

xn. Let m = max
⋃

w∈G Fw. Then
xm+1 ∈ σ(G). And, since σ(H) = ϕ(x1) = FP (〈xn〉∞n=2), we have that(
G ∩ σ(H)

) ∗ xm+1 ⊆
⋃

t∈H t−1A.

The following theorem shows some of the interrelationships between syndetic sets
and piecewise syndetic sets for an adequate partial semigroup.

4.7 Theorem. Let S be an adequate partial semigroup and suppose A ⊆ S. The fol-
lowing statements are equivalent:

(a) A is piecewise syndetic.

(b) There exists p ∈ K(δS) such that {x ∈ S : x−1A ∈ p} is syndetic.

(c) There exists p ∈ δS such that {x ∈ S : x−1A ∈ p} is syndetic.

(d) There exists p ∈ δS such that {x ∈ S : x−1A ∈ p} is piecewise syndetic.

Proof. (a) ⇒ (b). Pick p ∈ K(δS) ∩A. Then by by Theorem 3.6, {x ∈ S : x−1A ∈ p}
is syndetic.

(b) ⇒ (c). Trivial.

(c) ⇒ (d). Pick p ∈ δS such that B = {x ∈ S : x−1A ∈ p} is syndetic. Then B

intersects every left ideal of δS, so in particular B ∩K(δS) 6= ∅. Thus B is piecewise
syndetic.

(d) ⇒ (a). Pick p as guaranteed. Let B = {x ∈ S : x−1A ∈ p}. Since B is piecewise
syndetic, pick q ∈ K(δS) such that B ∈ q. So {x ∈ S : x−1A ∈ p} ∈ q so A ∈ q ∗ p.
Therefore A ∩K(δS) 6= ∅.

5. IP Sets

The terminology of this section is due to Furstenberg and is commonly used in Topolog-
ical Dynamics. IP sets are of particular interest because of their intimate relationship
with idempotents.

5.1 Definition. Let (S, ·) be a semigroup. A subset A of S is an IP set if and only if
there is a sequence 〈xn〉∞n=1 in S, such that FP (〈xn〉∞n=1) ⊆ A.

5.2 Theorem. Let (S, ·) be a semigroup and let A be a subset of S. Then A is an IP
set if and only if there is some idempotent p ∈ βS such that A ∈ p.
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Proof. [4, Theorem 16.4].

For an adequate partial semigroup we have the following natural extensions of the
definition and algebraic characterization of an IP set.

5.3 Definition. Let (S, ∗) be an adequate partial semigroup and suppose A ⊆ S.

(a) A is IP if and only if there exists an idempotent p ∈ δS such that A ∈ p.

(b) A is č-IP if and only if there exists a sequence 〈xn〉∞n=1 in S such that for all
F ∈ Pf (N),

∏
n∈F xn is defined and

∏
n∈F xn ∈ A.

The following is an example of a subset of an adequate partial semigroup which is
č-IP but not IP .

5.4 Theorem. There exists a partial semigroup (S, ∗) and a subset A of S such that A

is č-IP but not IP .

Proof. Let S = {A ⊆ N : |A\2N| < ω}. So S is the collection of subsets of N with
finitely many odd numbers. Define ∪∗ on S such that

A∪∗B =
{

A ∪B if A ∩B = ∅
undefined if A ∩B 6= ∅

Then (S,∪∗) is an adequate partial semigroup. To see this, let H = {A1, A2, . . . , An} ⊆
S. Then |⋃n

i=1 Ai\2N| < ω. So pick x ∈ N\⋃n
i=1 Ai. Then {x} ∈ ϕ(Ai) for i ∈

{1, 2, . . . , n}. So {x} ∈ ⋂n
i=1 ϕ(Ai) = σ(H). Therefore σ(H) 6= ∅ so (S,∪∗) is adequate.

Let A = Pf (2N). We claim that A is č-IP but not IP .

A is č-IP since A = FP (〈{2n}〉∞n=1). To see A is not IP , suppose there exists p ∈ δS

such that A = Pf (2N) ∈ p. Notice that 2N ∈ S, and ϕ(2N) = Pf (2N − 1) ∪ {∅} ∈ p.
However, Pf (2N) ∩ ϕ(2N) = ∅. This is a contradiction. Thus A is not IP .

Though the notions of “IP” and “č-IP” are not equivalent, we have the following
implication. The proof follows exactly the proof for an ordinary semigroup [4, Theorem
5.8].

5.5 Theorem. Let (S, ∗) be an adequate partial semigroup and suppose A ⊆ S. If A is
IP , then A is č-IP .

Proof. Pick p ∈ δS with p ∗ p = p, such that A ∈ p. Let A1 = A and let B1 =
{x ∈ S : x−1A1 ∈ p}. A1 ∈ p ∗ p (since p = p ∗ p), so {x ∈ S : x−1A1} ∈ p. So
B1 ∈ p. Pick x1 ∈ B1 ∩ A1 and let A2 = A1 ∩ (x−1A1). So A2 ∈ p. Inductively, given
An ∈ p, let Bn = {x ∈ S : x−1An ∈ p}. Then Bn ∈ p, so pick xn ∈ Bn ∩ An, and let
An+1 = An ∩ (x−1

n An). We have produced a sequence 〈xn〉∞n=1 in S.
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We show that if F ∈ Pf (N) and m = minF then
∏

n∈F xn ∈ Am. To see this, if
|F | = 1, then

∏
n∈F xn = xm ∈ Am. If |F | > 1, let G = F\{m}, and let k = min G.

Since k > m, Ak ⊆ Am+1. Then by the induction hypothesis,
∏

n∈G xn ∈ Ak ⊆ Am+1 ⊆
x−1

m Am. So
∏

n∈F xn = xm ∗∏
n∈G xn ∈ Am. Therefore A is č-IP .

The following results provide some conditions that guarantee equivalence of the
notions of č-IP and IP .

5.6 Lemma. Let 〈xn〉∞n=1 be a sequence such that
∏

n∈F xn is defined for all F ∈ Pf (N).
The following are equivalent:

(a) {FP (〈xn〉∞n=m) ∩ σ(H) : m ∈ N,H ∈ Pf (S)} has the finite intersection property.

(b)
⋂∞

m=1 FP (〈xn〉∞n=m) ∩ δS is a semigroup.

Proof. (a) ⇒ (b). Let T =
⋂∞

m=1 FP (〈xm〉∞n=m) ∩ δS =
⋂∞

m=1 FP (〈xm〉∞n=m) ∩⋂
H∈Pf (S) σ(H). T 6= ∅ by assumption. Let p, q ∈ T . To see that p ∗ q ∈ T , let m ∈ N,

H ∈ Pf (S), and let A = FP (〈xn〉∞n=m) ∩ σ(H). We show that A ⊆ {s ∈ S : s−1A ∈ q}
so that A ∈ p ∗ q. To see this, let s ∈ A, and pick F ∈ Pf (N) such that s =

∏
n∈F xn.

Let k = max F + 1, and let L = H ∗ s. (Notice that since s ∈ σ(H), y ∗ s is defined for
all y ∈ H.) We claim that FP (〈xn〉∞n=k) ∩ σ(L) ⊆ s−1A, so that s−1A ∈ q. To see this,
let t ∈ FP (〈xn〉∞n=k) ∩ σ(L). One has immediately that s ∗ t ∈ FP (〈xn〉∞n=m). To see
that s ∗ t ∈ σ(H), let h ∈ H. Then h ∗ s ∈ L, so (h ∗ s) ∗ t is defined. So h ∗ (s ∗ t) is
also defined. Therefore (s ∗ t) ∈ σ(H). Thus, t ∈ s−1A.

(b) ⇒ (a). Since T =
⋂∞

m=1 FP (〈xm〉∞n=m) ∩ δS is a semigroup, T 6= ∅. Given
p ∈ T , {FP (〈xn〉∞n=m) ∩ σ(H) : m ∈ N,H ∈ Pf (S)} ⊆ p.

The following theorem answers the question: “When is a č-IP set IP?”.

5.7 Theorem. Let (S, ∗) be an adequate partial semigroup. The following are equiva-
lent:

(a) For all A ⊆ S, A is č-IP if and only if A is IP .

(b) Whenever 〈xn〉∞n=1 is a sequence in S such that
∏

n∈F xnis defined for all F ∈ Pf (N)
and H ∈ Pf (S), FP (〈xn〉∞n=1) ∩ σ(H) 6= ∅.

(c) Whenever 〈xn〉∞n=1 is a sequence in S such that
∏

n∈F xn is defined for all F ∈
Pf (N), {FP (〈xn〉∞n=m) ∩ ϕ(y) : m ∈ N and y ∈ S} has the finite intersection
property.

Proof. (a) ⇒ (b). Let 〈xn〉∞n=1 be a sequence in S such that for all F ∈ Pf (N),∏
n∈F xnis defined and let A = FP (〈xn〉∞n=1). Let H ∈ Pf (S). Pick p ∈ δS such that
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p = p ∗ p and A ∈ p. Then σ(H) ∈ p since p ∈ δS. Therefore FP (〈xn〉∞n=1)∩ σ(H) 6= ∅.

(b) ⇒ (c). Let F ∈ Pf (N) and let H ∈ Pf (S). Let k = max F . Then (b) applied
to the sequence 〈xn〉∞n=k says that ∅ 6= FP (〈xn〉∞n=k) ∩ σ(H) ⊆ ⋂

m∈F FP (〈xn〉∞n=m) ∩⋂
y∈H ϕ(y).

(c) ⇒ (a). Let A be č-IP and let 〈xn〉∞n=1 be a sequence in S such that
∏

n∈F xn

is defined for all F ∈ Pf (N) and FP (〈xn〉∞n=1) ⊆ A. Then by Lemma 5.6, T =⋂∞
m=1 FP (〈xn〉∞n=m) ∩ δS is a semigroup. So pick p, an idempotent in T . Then

FP (〈xn〉∞n=1) ∈ p and FP (〈xn〉∞n=1) ⊆ A. So A ∈ p. Therefore A is IP . By Theo-
rem 5.5 we know that IP implies č-IP .
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