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• Distributions and moments

• Intermittency

• Structure functions

• Intermittency models

• Fractal and multifractals



Probability density functions

• For a continuous distribution, probability density
function is defined as

p (x) = lim
∆x → 0



Prob [x < x (t) ≤ x + ∆x]

∆x



∫
+∞

−∞
p (x)dx = 1

p (x) ≥ 0
• If stationary and ergodic, then the estimator from a

single time sample will be unbiased:

P [x, W] = Prob 
(x −

W

2 ) ≤ x (t) ≤ (x +
W

2 )
• So, as  and , this estimator

approaches the true value
T → ∞ W → 0

• Can calculate for discrete time series,

p (x) =
Nx

NW
• Where  is number of points in interval centred on

, of width . Recall,  is total number of data
points.

Nx

x W N

• Definitions: histogram is just , probability
density estimate (or probability density function)
is . Can also plot probability per bin

Nx

p (x)

• Note: bins need not be of equal width



Probability density functions

• Gotcha 1: don't make the bins too wide. Often
compare with model distributions: remember that
the probability will not be flat across a bin

• Gotcha 2: probability densities can be above 1.

• Recall that , so if total width of
distribution is <1,  can be >1.

∫
+∞
−∞ p (x)dx = 1

p (x)

• Example: Gaussian:

p (x) =
e
−(x − µx)2

2σ2
x

(σx 2π)
• Peak of probability density function, at , has

value . This can be greater than 1!
x = µx

1/ (σx 2π)



• Examples, with Ulysses data:
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Moments

• Can calculate an infinite number of moments of
a time series:

mn = ∫
+∞

−∞
xnp (x)dx mn = ∑ xn or, 

• Can calculate from a calculated distribution, or
from each data point individually

• Assuming zero mean,

Moment Name Gaussian value

1 mean 0

2 variance σ2

3 skewness 0

4 flatness (kurtosis+3) 3σ2

5 - 0

6 - 15σ2

•

Negative Positive

Skewness

Negative

Positive

Kurtosis



Importance of outliers

• Higher moments emphasise outliers of the
distribution

• Eventually, moment is dominated by a small
number of points

• If we want to calculate high moments, need long,
stationary data sets
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Errors on high moments

• When calculating errors in e.g. means, we
usually assume Gaussian statistics

• Similarly, when calculating errors in higher order
moments, can assume that even higher orders are
distributed as a Gaussian

• However, this is usually not the case (that's why
we're looking at higher moments)

• Therefore, error estimation is hard



Distributions in practice

• Often of interest in turbulence to study increments
(more later)

• See progressively more non-Gaussian
distributions, with extended tails higher than for
Gaussians, at smaller scales

• Typically, see non-Gaussian distributions when
turbulent - intermittency



What is intermittency?

• Spatial inhomogeneity of fluctuations in turbulent
fluid

• "Burstiness", e.g. gusts on a windy night

• Extensively studied in hydrodynamics; also in solar
wind

• Related to generation of structures in the fluid

What is turbulence?

• Random, chaotic fluid motion

• Energy transfer between scales (typically, large to
small)

• Inertial range: large separation between input and
output scales, → fully developed turbulence

•
ENERGY FLOW

Vortices

Small scale

Energy
dissipation

Large scale

Energy
source

Inertial range



Kolmogorov (1941) theory

• Foundation of our understanding of turbulence

• Scaling argument - almost no physics

• Scale , velocity , energy transfer rate l u (l) ε (l)

• Steady state: .ε (l) = ε (l′) = ε

• Energy transfer time,

τT (l) ∝
E (l)

ε
; E (l) ∝ u2 (l)

• Eddy decay, so

τT (l) ∝ τE (l) ∝
l

u (l)
• So,

u2 (l) ∝ E (l) ∝ ετT (l) ∝ ε
l

u (l)
• Therefore, velocity dependence on scale,

u (l) ∝ lm/3

• So, energy, . u2 (l) ∝ l2/3

• In wavenumbers,  - famous K41 power
law!

u2 (k) ∝ k2/3



Experimental verification of K41

• Observe  power spectra in turbulent fluids:k−5/3

•

• Example from Frisch - already photocopied (have
2)

•

•

•

•

• Also in solar wind (Ulysses):
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Structure functions

• Use to analyse turbulence

S (τ, m) = 〈|x (t + τ) − x (t)|m〉
• Other definitions exist (not modulus, etc.)

• This is a high order analysis method

• Essentially, take moments of increments (of
velocity, magnetic field, etc.)

• In this way, measure levels of fluctuations

• We are interested in how these scale

• Example, Ulysses:
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• Note scaling over range of :τ

S (τ, m) ∝ τ
ζ(m)

• We want to measure the ...ζ (m)



Comparison with K41

• Recall, u (l) ∝ l1/3

• Therefore, expect

um (l) ∝ lm/3

• And so  and, S (τ, m) ∝ lm/3

ζ (m) =
m

3
• This is not what is observed - we see a curve!

•
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• This is due to intermittency!

• Note: exact result: ζ (3) = 1

• This is satisfied experimentally



Structure functions - problems

• Can't use very high moments - they are unreliable

• In previous example, only  were reliablem ≤ 4

• Structure functions have a wide spectral response
- so always look nice and smooth and well
behaved:
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• Note wiggle - this is a data rate change issue!

• Data are oversampled - points are not
independent

• Calculating error on gradient from line fitting is
therefore dangerous...

• Error bars can be small, but values can still be
wrong!



Fractals

• Self-similarity

• Examples: clouds, coastlines, turbulence...

• Intermittency is related to scaling, and therefore to
fractals

• Can better understand intermittency (and non-
Gaussian behaviour in many situations) through
fractals - and later, multifractals...

The Cantor set

• Very simple fractal: remove every centre third

• Embedding dimension, DE = 1

• Topological dimension,  (it's a dust)DT = 0

• Similarity (fractal) dimension, DS = 0.6309...



Similarity dimension

• How many copies do we need to replicate at a
different scale:

N = rDS

• Need  copies to reproduce from a fraction N r

•  for a line (need 2 half metre rulers to cover
1 metre: )
DS = 1

N = 2, r = 1/ 2

•  for a cube (need 8 half metre cubes to fill a
1 metre cube: )
DS = 3

= 8, r = 1/ 2

• So,

DS =
N

(1/ r)
log

log
• Cantor set: , N = 2 r = 1/ 3

• So, =0.6309...DS = 2 / 3log log 

•  for all fractalsDT < DS < DE

• Note: can have different N, r choices for Cantor set



The β model

• Frisch et al (1978)

• Fractal model of intermittency

• Only a fractal subset of all space filled with active
turbulent eddies

• Concept of support: a measure (e.g. turbulence)
can be supported on a fractal set

• e.g. Cantor set as a bar with mass: hammering
rather than cutting...

• β model: take parent eddy

• Split it up into 2 daughters - but do not put energy
into every eddy, only a fraction β:

ln+1

nl

ln+2

Non-Intermittent Intermittent

V = 8·8· n+2l 3 = nl
3

V = 8· n+1l 3 = nl
3

V = nl
3

V = nl
3

Cascade

V = nl
3β

V = nl
32β

Cascade



The β model, contd.

• At scale , only a fraction  of space is
filled with active eddies

l = l02
−n βn

• This is a fractal subset!

• Its fractal dimension is D =
N

(1/r)
=

(23 ⋅ β)

(1/2)

log
log

log
log

• The fraction of the volume filled with active eddies
at scale  is l β (l) = l3 − D

• Only a fraction of space is filled with active eddies:
energy at scale :l

E (l) ∝ β (l) ⋅ u2 (l)
• Energy flux,

ε ∝
E (l)

τ (l)
∝

u2 (l)β (l)

l / u (l)
∝

u3 (l)β (l)

l
∝ u3 (l) l3 − Dl−1

• Since ,ε ≠ ε (l)

u (l) ∝ l
1
3 − 3 − D

3

• If D=3, we recover K41

• So, turbulence is supported on a fractal subset of
the whole space at each scale - only parts of the
fluid are "active"

• The fluctuations are intermittent



How can we tell if this is happening?

• High order moments allow us to probe this
behaviour. Structure functions:

S (τ, m) = 〈|v (t + τ) − v (t)|m〉 ∝ β (τ)um (τ)
• Since the velocity in active eddies is

u (l) ∝ ε
1/3l1/3l−(3 − D)/3

• And they exist in only a fraction  of the space,l3 − D

S (τ, m) ∝ ε
m/3

τ
m/3

τ
−(3 − D)m/3

τ
(3 − D)

• Using  as a measure of the
intermittency ( ,

µ = 3 − D
β = 2−µ)

ζ (m) = m / 3 + µ (1 − m / 3)
• If , we have K41, and µ = 0 ζ = m / 3
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Testing the β model

• Can't detect using power spectrum - alters the
spectral index, but still gives power law behaviour

• Compare with experimental structure functions:

•
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=0.15µ

• Not bad, but observations show a curved 
behaviour, while the β model is straight

ζ (m)

• Can't reproduce the observations - need
something more complicated

• Multifractals... (deep breath...)



What is a multifractal?

• A fractal supporting a measure (e.g. turbulent
energy)

• There are (many) different values of the measure
at the same scale (simple fractal has only one),
distributed with a probability distribution

• Each set with a particular measure is supported on
a fractal set

• Each fractal has a different dimension, and...

• The infinite number of fractal subsets exactly fill all
of the space!

• We can detect different value of the measure by
taking moments: higher moments select high value
measures

• Examine the scalings to detect the "spectrum" of
fractal subsets

• In practice, this gives us curved  behaviour,
which is what we want...

ξ (m)



The p model

• Meneveau and Sreenivasan, 1987

• A multifractal intermittency model, which is in good
agreement with structure function observations

• Here, the turbulence fills all of space at every
scale, but the energy in different eddies is different

• Like K41, split each eddy into 2 pieces, but give a
fraction  of the energy to one, and  to the

other:

p 1 − p

/16

L/8

e
1

p
1

p e
1

p
2

p e
1

p
2

p e
2

p
2

p
L/4

e
1

p e
2

p
L/2

e

L

• Then, at each scale, we have a distribution of
energies

• The fraction of energy in each box in given by the

binomial expansion, ( )n
m

• By changing  we can change the intermittency of
the energy:  corresponds to K41

p
p = 0.5

•  is more "bursty" -  is the maximally
intermittent case
p > 0.5 p = 1



Which eddies are most important?

• At any given scale , there is one eddy with the
maximum energy,  and one with the minimum,

n
pn

(1 − p)n

• For large , these eddies have negligible
probability. There is some intermediate energy
which is most probable

n

• By taking different moments, however, we can
become sensitive to different energies

• Taking an infinitely large moment, m→+∞, we are
only sensitive to the single eddy with the most
energy

• If we take , we are sensitive only to the
large energetic eddy

m → −∞

• Since different parts of the energy distribution have
a different number of eddies at each scale (e.g.
least energy has only one at each scale), their
fractal dimensions are different

• All these sets together constitute a multifractal -
this is what we measure...



Deriving  for the p modelζ (m)

• At scale , we have  eddiesln 2n

• Each eddy  has an energy transfer ratei

εi = εn ⋅ f i

• where  is the fraction of energy in eddy f i i

•  is the average energy, εn εn = ∑N
i = 1εi = εLL / ln

• Clearly,

∑
i = 2n

i = 1

f i = 1 = (p + (1 − p))n

• Taking moments,

∑
i = 2n

i = 1

f m
i = (pm + (1 − p)m)n

• So,

∑
i = 2n

i = 1

ε
m

i = ∑
N

i = 1

f m
i ε

m
n = ∑

N

i = 1

ε
m
n ⋅ (pm + (1 − p)m)n



p model - structure functions

• Energy transfer rate is related to velocity
fluctuations, as before: 

εi ∝
ui

3

ln

• Therefore structure functions,

S (τ, m) =
1

Nn
∑

i = 2n

i = 1

|ui|
m

= ∑
i = 2n

i = 1

ε
m/3lm/3

n ln / L

• Since

(pm + (1 − p)m)n = ( ln

L )
− 2(pm + (1− p)m)log

• Therefore,

S (τ, m) =
ln

L
⋅ ( ln

L )
− 2(pm + (1− p)m)log

• We have ζ (m) = 1 − 2 (pm/3 + (1 − p)m/3)log

• As with β model, the zero intermittency case (here,
) gives us the K41 casep = 0.5



The p model - ζ(m)

• p model structure function scaling parameters are
curves - this is what we want

•
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•  is K41 casep = 0.5

•  is maximally intermittent casep = 1

• As with all intermittency models,  -
power spectrum is steeper than simple K41 case

ζ (2) > 2 / 3



Testing the p model

• Agrees well with hydrodynamic turbulence - also
with solar wind:

•
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p=0.79

• Value of intermittency parameter, , is typically 0.7-
0.8

p

• This is similar to values found in neutral fluids

• Does this mean that the intermittency is "the
same" in neutral fluids and plasmas?

• Almost definitely not - more likely, it means that
structure functions aren't good at distinguishing
between different structures, and models like the p
model are just generic multifractals



Other models of intermittency

• β and p models contain almost no physics, but
describe how eddies decay in a phenomenological
way

• Other ways of looking at this problem:

• She and Leveque (1994): dimension of dissipation
structures. Using 2D ("current sheet") structures,
good agreement with observations, and no free
parameters:

•
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• Are structure functions really good enough to
distinguish different fractal structures?

• Other approaches: distributions, e.g. Castaing

• In solar wind, attempt to identify individual
structures which are intermittent (e.g. Bruno et al.)
- they seem to be discontinuities



Summary

• High order moments allow us to probe non-
Gaussian distributions

• Care must be taken in calculating these moments,
however

• In practice, want to study scaling of these
moments

• Measurement of fractal and multifractal
dimensions

• Particularly of interest in turbulent fluids

• Difficult to distinguish between different models -
we need to do better

• Other analysis methods...

• Identification of intermittent structures

• Other turbulence properties, e.g. anisotropy


