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Probability density functions

* For a continuous distribution, probability density
function is defined as

[Prob [X < X(t) < X+ Ax]}
AX

p(x) = lim

AX+0

rwp(x)dx =1

—0Q

p(x) = 0
e If stationary and ergodic, then the estimator from a
single time sample will be unbiased:
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X+ —
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e So,asT —» ~and W — 0, this estimator
approaches the true value

P[x, W] = Prob [(x - VEV

< X(t) <

e Can calculate for discrete time series,

X
P(X) W
* Where N, is number of points in interval centred on
X, of width W. Recall, N is total number of data
points.

 Definitions: histogram is just N,, probability
density estimate (or probability density function)
IS p(x). Can also plot probability per bin

* Note: bins need not be of equal width



Probability density functions

e Gotcha 1: don't make the bins too wide. Often
compare with model distributions: remember that
the probability will not be flat across a bin

» Gotcha 2: probability densities can be above 1.

« Recall that [Zp(x)dx = 1, so if total width of
distribution is <1, p(x) can be >1.

* Example: Gaussian:

_(X - ﬂx)z
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» Peak of probability density function, at x = uy, has
value 1/ (o, 2m). This can be greater than 1!



« Examples, with Ulysses data:
Histogram
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Probability density, dx=0.1 nT
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Moments

e Can calculate an infinite number of moments of
atime series:

m, = fox”p(x)dx or,m, = » X'

 Can calculate from a calculated distribution, or
from each data point individually

« Assuming zero mean,

Moment Name Gaussian value
1 mean 0
2 variance o2
3 skewness 0
4 flatness (kurtosis+3) 30°
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Importance of outliers

« Higher moments emphasise outliers of the
distribution

« Eventually, moment is dominated by a small
number of points

* If we want to calculate high moments, need long,
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Errors on high moments

 When calculating errors in e.g. means, we
usually assume Gaussian statistics

« Similarly, when calculating errors in higher order
moments, can assume that even higher orders are
distributed as a Gaussian

 However, this is usually not the case (that's why
we're looking at higher moments)

» Therefore, error estimation is hard



Distributions in practice

« Often of interest in turbulence to study increments
(more later)

» See progressively more non-Gaussian
distributions, with extended tails higher than for
Gaussians, at smaller scales

» Typically, see non-Gaussian distributions when
turbulent - intermittency



What Iis intermittency?

« Spatial inhomogeneity of fluctuations in turbulent
fluid

 "Burstiness”, e.g. gusts on a windy night

» Extensively studied in hydrodynamics; also in solar
wind

* Related to generation of structures in the fluid

What is turbulence?

Random, chaotic fluid motion

Energy transfer between scales (typically, large to
small)

Inertial range: large separation between input and
output scales, — fully developed turbulence

Energy ‘Energy
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Kolmogorov (1941) theory

e Foundation of our understanding of turbulence

» Scaling argument - almost no physics

Scale |, velocity u(l), energy transfer rate ¢ ()

Steady state: ¢(l) = ¢(I") = e.

Energy transfer time,

E (I
rr(l) o T(); E(l) o U2(1)

Eddy decay, so
I

Tr(l) o< 7e(l) o« ——

u(l)
e SO,

|
2 —
u” (I Ed) o< err(l) 8U(|)

» Therefore, velocity dependence on scale,
ud) o ™
« So, energy, U>(l) « 123,

« In wavenumbers, u?(k) « k?3 - famous K41 power
law!



Experimental verification of K41

5/3

* Observe k™° power spectra in turbulent fluids:

« Example from Frisch - already photocopied (have
2)

Also in solar wind (Ulysses):
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Structure functions

» Use to analyse turbulence

S(r, m) = {x(t + o) - x(®I")
» Other definitions exist (not modulus, etc.)

» This is a high order analysis method

Essentially, take moments of increments (of
velocity, magnetic field, etc.)

In this way, measure levels of fluctuations

We are interested in how these scale

Example, Ulysses:
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Note scaling over range of z:

S(r, m) o 7o
We want to measure the £ (m)...



Comparison with K41

« Recall, u(l) « |¥3

* Therefore, expect

um(l) oc |m/3
« And so S(z, m) « 1™ and,

m
c(m) = =
3
e This is not what is observed - we see a curve!
3.0 A —
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e This is due to intermittency!
* Note: exactresult: £(3) = 1

 This is satisfied experimentally



Structure functions - problems

« Can't use very high moments - they are unreliable
* In previous example, only m < 4 were reliable

 Structure functions have a wide spectral response
- s0 always look nice and smooth and well

behaved:
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* Note wiggle - this is a data rate change issue!

» Data are oversampled - points are not
independent

 Calculating error on gradient from line fitting is
therefore dangerous...

* Error bars can be small, but values can still be
wrong!



Fractals

o Self-similarity
« Examples: clouds, coastlines, turbulence...

* Intermittency is related to scaling, and therefore to
fractals

e Can better understand intermittency (and non-
Gaussian behaviour in many situations) through
fractals - and later, multifractals...

The Cantor set

» Very simple fractal: remove every centre third

« Embedding dimension, Dg = 1

» Topological dimension, Dy = 0 (it's a dust)

« Similarity (fractal) dimension, Ds = 0.63009...



Similarity dimension

How many copies do we need to replicate at a
different scale:

N = r"s
Need N copies to reproduce from a fraction r

Ds = 1for aline (need 2 half metre rulers to cover
1 metre:N = 2, r = 1/2)

Ds = 3 for a cube (need 8 half metre cubes to fill a
1 metre cube: = 8, r = 1/2)

So,
logN

" log (/1)
Cantorset: N = 2, r = 1/3

So, Ds = log 2/log 3=0.6309...

S

D < Ds < Dg for all fractals

Note: can have different N, r choices for Cantor set



The f model

* Frisch et al (1978)
 Fractal model of intermittency

* Only a fractal subset of all space filled with active
turbulent eddies

» Concept of support: a measure (e.g. turbulence)
can be supported on a fractal set

* e.g. Cantor set as a bar with mass: hammering
rather than cutting...

* 3 model: take parent eddy

o Split it up into 2 daughters - but do not put energy
into every eddy, only a fraction f:

Non-I ntermittent I ntermittent
v=I2
V=12
Cooadel) -V =8ls=ls Cascadles)
In+1 /
VTN

Il
= v=88l12,=1>

v=p23 |




The 5 model, contd.

« Atscale | = 152", only a fraction 3" of space is
filled with active eddies

* This is a fractal subset!

logn _ log(23- p)
log(ur) log(v2)

e |ts fractal dimensionis D =

» The fraction of the volume filled with active eddies
atscalelis () = 3P

Only a fraction of space is filled with active eddies:
energy at scale I:

E() « () - u*(l)

Energy flux,

O OLIO RN OT0
20 1 /u(l) |
Since e # &(l),

-D
3

u(ly o 13775
If D=3, we recover K41

» S0, turbulence is supported on a fractal subset of
the whole space at each scale - only parts of the
fluid are "active"

» The fluctuations are intermittent



How can we tell if this is happening?

« High order moments allow us to probe this
behaviour. Structure functions:

S(r, m) =

(Mt + ) = vOI) < @U@

» Since the velocity in active eddies is

U(I) oc 81/3|1/3|_(3_D)/3

« And they exist in only a fraction 1°~P of the space,

S(r, m) oc M3 M3 ~(3-DM3_(3-D)

 Usingu = 3 — D as a measure of the
iIntermittency (5 = 27,

C(m =m/3 + u(l-m/3)
e Ifu = 0,we have K41, and { = m/3
5

10



Testing the 5 model

Can't detect using power spectrum - alters the
spectral index, but still gives power law behaviour

Compare with experimental structure functions:
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Not bad, but observations show a curved ¢ (m)
behaviour, while the g model is straight

» Can't reproduce the observations - need
something more complicated

» Multifractals... (deep breath...)



What 1s a multifractal?

A fractal supporting a measure (e.g. turbulent
energy)

* There are (many) different values of the measure
at the same scale (simple fractal has only one),
distributed with a probability distribution

« Each set with a particular measure is supported on
a fractal set

» Each fractal has a different dimension, and...

» The infinite number of fractal subsets exactly fill all
of the space!

* We can detect different value of the measure by
taking moments: higher moments select high value
measures

* Examine the scalings to detect the "spectrum" of
fractal subsets

* In practice, this gives us curved & (m) behaviour,
which is what we want...



The p model

» Meneveau and Sreenivasan, 1987

» A multifractal intermittency model, which is in good
agreement with structure function observations

» Here, the turbulence fills all of space at every
scale, but the energy in different eddies is different

» Like K41, split each eddy into 2 pieces, but give a
fraction p of the energy to one, and 1 — pto the
E
L | |
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 Then, at each scale, we have a distribution of
energies

» The fraction of energy in each box in given by the
binomial expansion, (rl;l])

* By changing p we can change the intermittency of
the energy: p = 0.5 corresponds to K41

* p > 0.5is more "bursty" - p = 1is the maximally
intermittent case



Which eddies are most important?

« At any given scale n, there is one eddy with the
maximum energy, p" and one with the minimum,

1-p"

* For large n, these eddies have negligible
probability. There is some intermediate energy
which is most probable

By taking different moments, however, we can
become sensitive to different energies

e Taking an infinitely large moment, m—+e, we are
only sensitive to the single eddy with the most
energy

o If we take m — —oo, we are sensitive only to the
large energetic eddy

» Since different parts of the energy distribution have
a different number of eddies at each scale (e.g.
least energy has only one at each scale), their
fractal dimensions are different

» All these sets together constitute a multifractal -
this is what we measure...



Deriving ¢ (m) for the p model

e At scale |,,, we have 2" eddies

Each eddy i has an energy transfer rate

& = é&n - f
where f; is the fraction of energy in eddy i

&n IS the average energy, ¢, = SN e = gL/,

Clearly,

i=2"

Yfi=1=(p+(1-p)
i=1

Taking moments,

N
=

" = (P"+ 1 -p")

=1

N
e = Z Zen (" + (1 - p")

Il
[ —



P model - structure functions

* Energy transfer rate is related to velocity
fluctuations, as before:

Ui3

g o< —
In

» Therefore structure functions,

e Since

(P"+ @ -p") = (

» Therefore,

L
e Wehavel(m) = 1 - Iogz(IOm/3 + (1 - ID)"V?’)

| | —|ng(pm+ (1-p")
sem = 2 7}

» As with f model, the zero intermittency case (here,
p = 0.5) gives us the K41 case



The p model - {(m)

* p model structure function scaling parameters are
curves - this is what we want

5

e p = 05is K41 case

* p = 1lis maximally intermittent case

» As with all intermittency models, £ (2) > 2/3 -
power spectrum is steeper than simple K41 case



Testing the p model

» Agrees well with hydrodynamic turbulence - also
with solar wind:
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» Value of intermittency parameter, p, is typically 0.7-
0.8

e This is similar to values found in neutral fluids

e Does this mean that the intermittency is "the
same" in neutral fluids and plasmas?

« Almost definitely not - more likely, it means that
structure functions aren't good at distinguishing
between different structures, and models like the p
model are just generic multifractals



Other models of intermittency

« 5 and p models contain almost no physics, but
describe how eddies decay in a phenomenological
way

» Other ways of looking at this problem:

e She and Leveque (1994): dimension of dissipation

structures. Using 2D ("current sheet") structures,

good agreement with observations, and no free
parameters:
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» Are structure functions really good enough to
distinguish different fractal structures?

» Other approaches: distributions, e.g. Castaing

* In solar wind, attempt to identify individual

structures which are intermittent (e.g. Bruno et al.)
- they seem to be discontinuities



Summary

e High order moments allow us to probe non-
Gaussian distributions

« Care must be taken in calculating these moments,
however

* In practice, want to study scaling of these
moments

 Measurement of fractal and multifractal
dimensions

Particularly of interest in turbulent fluids

Difficult to distinguish between different models -
we need to do better

Other analysis methods...

Identification of intermittent structures

» Other turbulence properties, e.g. anisotropy



