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CONSTRUCTIVE AND DESTRUCTIVE FACETS OF WEIL

DESCENT ON ELLIPTIC CURVES

P. GAUDRY, F. HESS, AND N.P. SMART

Abstract. In this paper we look in detail at the curves which arise in the

method of Galbraith and Smart for producing curves in the Weil restriction of

an elliptic curve over a �nite �eld of characteristic two of composite degree. We

explain how this method can be used to construct hyperelliptic cryptosystems

which could be as secure as a cryptosystems based on the original elliptic

curve. On the other hand, we show that this may provide a way of attacking

the original elliptic curve cryptosystem using recent advances in the study of

the discrete logarithm problem on hyperelliptic curves.

We examine the resulting higher genus curves in some detail and propose an

additional check on elliptic curve systems de�ned over �elds of characteristic

two so as to make them immune from the methods in this paper.

1. Introduction

In this paper we address two problems: How to construct hyperelliptic cryp-

tosystems and how to attack elliptic curve cryptosystems de�ned over �elds of even

characteristic and of composite degree over F2 .

As explained in [13], there is currently no practical method which generates

cryptographically secure Jacobians of hyperelliptic curves, but which also produces

Jacobians with no special added structure. We shall present a method that will

produce a hyperelliptic Jacobian related to a `random' elliptic curve, which could be

considered to be secure as long as one believes that the discrete logarithm problem

on the elliptic curve is itself hard.

For the second problem we turn our construction of hyperelliptic cryptosystems

on its head and argue that this provides evidence for the weakness of the original

elliptic curve discrete logarithm problem. We stress, this does not provide evidence

for the weakness of elliptic curve systems in general, but only those which are

de�ned over the special �nite �elds considered in this paper. These �elds are those

of characteristic two and of composite degree over the �eld F2 . In particular we

shall show the following

Theorem 1. Let E(Fqn ) denote an elliptic curve de�ned over a �eld of character-

istic two. Then for a signi�cant proportion of all such elliptic curves one can solve

the discrete logarithm problem on E(Fqn ) in time O(q2+�) where the complexity

estimate holds for a �xed value of n � 4 and as q !1.

The complexity in the Theorem should be compared to the complexity of O(qn=2)

for the best general purpose algorithm, namely Pollard's rho method. That the
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result only holds for a signi�cant proportion of such elliptic curves is due to the

fact that we cannot apply our techniques to certain special types of curves, such as

those de�ned over a sub�eld of Fqn .

The implied constant in the O(�) notation of the Theorem contains a dependence

on n. Hence for certain values of n the crossover point between the method of the

Theorem and Pollard's rho method may be at higher values of q than are used

in practical elliptic curve cryptosystems. However, we shall exhibit experimental

evidence that for n = 4, and around 1=q of the elliptic curves de�ned over Fq4 ,

the method of the above Theorem is better than Pollard rho for values of q used

in practice. For other elliptic curves over Fq4 our method is only asymptotically

better than Pollard rho, and further practical experiments need to be carried out

to deduce a similar result.

Our methods are based on the idea of Weil descent on elliptic curves. Hence much

of the following is an extension of the work begun by Frey in [6] and continued in

[8], to which we refer the reader for further details. The details of elliptic curve

cryptosystems which we shall require can be found in [3].

The paper is organized as follows. In Section 2 we give some simple examples of

curves de�ned over a special type of �eld extension, for which hand calculation is

particularly simple. In Section 3 we give proofs that the properties observed in the

hand calculations hold in general. In addition we shall construct an explicit group

homomorphism

� : E(Fqn )! Cl0(H)

where Cl0(H) is the degree zero divisor class group of a hyperelliptic function �eld

over Fq . The kernel of the map � explains the fact that our method only works

for a signi�cant proportion of all elliptic curves over Fqn , since we require that the

discrete logarithm problem we are trying to solve on E(Fqn ) does not lie in the

kernel of �.

In Section 4 we show how our method of producing curves in the Weil restriction

can be used to construct hyperelliptic cryptosystems, whilst in Section 5 we explain

how one could possibly attack the underlying elliptic curve system using the Weil

restriction. In Section 6 we report on an experiment using the index calculus

algorithm of Gaudry on one of the curves of genus four produced by our method;

this is used to help decide which genera should be used in practice for constructing

cryptographic systems and which elliptic curve systems are made weaker by our

methods. Finally in Section 7, we turn our attention to other types of �nite �elds

and discuss why the ideas of this paper are unlikely to work in other cases. In

particular for a large proportion of elliptic curves de�ned over F2p , where p is

prime, we show that the methods of this paper give no decrease in security of the

resulting cryptosystem.

The �rst author would like to thank R. Harley for many fruitful discussions on

the hyperelliptic discrete log; some tricks are due to him. The second author would

like to thank J. Cannon for his support while this work was in preparation. The

third author would like to thank S. Galbraith for various discussions whilst the work

on this paper was carried out. All three authors would like to thank S. Galbraith,

N. Koblitz and K. Paterson who read and commented on an earlier draft of this

paper. The calculations in this paper were made possible by using a variety of

packages including Magma, KASH, LiDIA, PARI/GP and ZEN.
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2. Example Curves in the Weil restriction

Let k = Fq denote some �nite �eld of characteristic two, and let n � 2 denote an

integer. In practice we are thinking of the situation where n is quite small and q is

large enough so that qn > 2160. Let K denote the �eld extension Fqn , with k-basis

f 0;  1; : : : ;  n�1g.
In this section we shall consider elliptic curves, E, overK, given by the equation:

Y 2 +XY = X3 + �;

where � 2 K. We assume E(Fqn ) contains a subgroup of prime order p with p � qn.

We set

� = b0 0 + b1 1 + : : :+ bn�1 n�1;

X = x0 0 + x1 1 + : : :+ xn�1 n�1;

Y = y0 0 + y1 1 + : : :+ yn�1 n�1;

where bi 2 k are given and xi; yi 2 k are variables. Substituting these equations

into the equation for our elliptic curve, and equating coe�cients of  i, we obtain

an abelian variety, A, de�ned over k, of dimension n, the group law on A being

given by the group law on E(K). The variety A is called the Weil restriction, and

the above process is called Weil descent.

The variety A will contain a subvariety, B, with group order divisible by p. In

practice this subvariety will either equal the whole of A or have dimension n�1. We

wish to �nd a curve, C, in A whose Jacobian contains a subgroup isogenous to B.

Recall that B is the part of A which is interesting for cryptographic applications.

Hence we must have g = dimJac(C) � dimB and dimB as stated above will be

either n or n� 1. For the applications we would like the genus of C to be linear in

n, but it is highly unlikely such a curve exists at all.

For the rest of this section we shall look at a special set of �nite �elds for which

it is relatively easy to perform calculations. Our aim is to �x the ideas and provide

a rich set of examples for the reader and for later in the paper. In the next section

we shall show the remarkable properties we observe, in this section, hold in general

for �elds of characteristic two. The method used is a natural extension of the one

presented in [8].

We specialize to those �elds K for which we can take  i = �2
i

in our basis of

K over k where � + �2 + �4 + � � � + �2
n�1

= 1. The reason for choosing such a

basis is so that the curves in the Weil restriction we produce below will have `small'

degree and are easy to write down. One reason for this is that squaring an element

represented by such a basis is simply a cyclic shift of the coe�cients since

�2
n

=
�
�2

n�1
�2

=
�
1 + � + �2 + � � �+ �2

n�2
�2

= 1 + �2 + �4 + � � �+ �2
n�1

= �:

However, such a basis does not always exist, since we require the existence of an

irreducible factor, of degree n, of the polynomial h(x) = x2
n�1

+ � � �+ x4 + x2 + 1

over the �eld k. In addition for a root, �, of such an irreducible factor we require

that the set f�; �2; �4; : : : ; �2n�1g forms a basis of K over k.

Hence we have restricted the choice of q and n, but not in a signi�cant manner.

We clearly require that the degree of k over F2 must be coprime to n, so for the rest

of this section we shall assume this is the case. For n = 2, we can always use the
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element de�ned by �2 + � + 1 = 0 whilst for n = 3 we can always use the element

de�ned by �3 + �2 + 1 = 0. For higher values of n we can obtain many factors of

h(x) of degree n over F2 , and by the coprimality of the degree of k to n we see that

such factors will be irreducible over k. For example if n + 1 is a prime and q is a

generator of the multiplicative group of the �eld Fn+1 then we can take, �, as a

generator of K over k, where �n + �n�1 + � � �+ � + 1 = 0.

To produce a curve of low genus in A one could produce a curve of low degree,

and hence of hopefully low genus. Such a curve of low degree can be obtained by

intersecting A with the hyperplanes given by x0 = x1 = � � � = xn�1 = x. Hence we

look at the subvariety de�ned by restricting X to lie in k. We obtain a curve, C,

de�ned by the equations

C :

8>>><
>>>:

y2
n�1 + xy0 + x3 + b0 = 0;

y20 + xy1 + x3 + b1 = 0;
...

y2
n�2 + xyn�1 + x3 + bn�1 = 0:

That we can obtain such sparse equations is due to our choice of basis of K over k.

On elimination of variables we produce a curve in x and y = y0 of the form

C : y2
n

+ x2
n
�1y +

n�1X
i=0

x2
n+2i + g(x)

where g(x) is a polynomial, depending on b0; : : : ; bn�1, of degree less than or equal

to 2n. The polynomial g(x) is given by the formulae:

g(x) =

nX
i=1

b2
n�i

i x2
n
�2n�i+1 ;

where we make the identi�cation bn = b0. The Jacobians of the irreducible compo-

nents of the curve C are isogenous to abelian varieties which contain subvarieties

of A. Since the `interesting' subvariety, B, of A, in examples of cryptographic in-

terest, has large prime order, and the degree of the isogeny is likely to be coprime

to the order of B, we can expect that the Jacobians actually contain a subgroup

isomorphic to B, unless the genus of the components is too small.

We give the following examples:

n = 2.

C2 : y
4 + x3y + x6 + x5 + b0x

2 + b21:

If the original elliptic curve is de�ned over the base �eld, i.e. b0 = b1, then the

curve C has two irreducible components, each being an elliptic curve. In all other

cases it is irreducible, and experimentally the genus of this curve always seems to

be 2.

n = 3.

C3 : y
8 + x7y + x12 + x10 + x9 + b0x

6 + b22x
4 + b41:

The curve is reducible when b0 = b1 = b2, in other words when the original elliptic

curve is de�ned over the base �eld k. In all other cases it is irreducible, and

experimentally the genus of this curve always seems to be 3 or 4.
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n = 4.

C4 : y
16 + x15y + x24 + x20 + x18 + x17 + b0x

14 + b23x
12 + b42x

8 + b81:

Experimentally, when the curve is irreducible, the genus of this curve always seems

to be at most 8. This curve is reducible when b3 = b0+b1+b2, and when reducible,

one of the components is given by

C4a : y
8 + x4y4 + x6y2 + x7y + x12 + x9 + b0x

6 + (b22 + b21)x
4 + b41:

When C4a is irreducible it experimentally always has genus at most 4.

Note, in all the cases above; when the curve, C, was irreducible it experimentally

had genus equal to 2n�1 or 2n�1 � 1. In addition we experimentally noticed that

the irreducible components were always hyperelliptic. These remarkable properties

we shall prove hold in general in the next section.

3. Hyperellipticity and genus of curves in the Weil restriction

In this section we show that the observations of the previous section about

the genus, irreducibility and hyperellipticity of the curves C hold in general. In

addition we shall show the existence of a computable mapping from E(Fqn ) to the

divisor class group of a hyperelliptic curve. It is this mapping which translates the

hard elliptic curve discrete logarithm problem, into a potentially easier hyperelliptic

discrete logarithm problem.

We shall now let K denote an arbitrary extension, of degree n, of the �eld k,

of characteristic two. We shall make no assumptions about the existence of special

types of bases of K over k as we did in the previous section. In this section, to keep

track of which �elds we are considering, all �xed elements of K will be denoted by

greek letters.

We take an elliptic curve

Y 2 +XY = X3 + �X2 + �

where �; � 2 K. We can form the Weil restriction as in the previous section by

expanding coordinate representations of X and Y with respect to any given basis of

K over k. We intersect the resulting abelian variety, A, with the hyperplanes which

mark out the subvariety of values of X which lie in k. The resulting subvariety of

A will be a curve de�ned over k, in n+1 dimensional space, which we shall denote

by C, as in the previous section.

We wish to study the curves C geometrically, so we consider C de�ned over the

algebraic closure of k. In fact we shall only need to go to the extension K.

By a linear change of variables, de�ned over K, we �nd that C is birationally

equivalent to the curve D, de�ned over K, given by

D :

8><
>:

w2
0 + xw0 + x3 + �0x

2 + �0 = 0;
...

w2
n�1 + xwn�1 + x3 + �n�1x

2 + �n�1 = 0:

where �i = �i(�) and �i = �i(�), with � the Frobenius automorphism of K over

k. Note that if (x; y) 2 E(K), with x 2 k, then wi = �i(y).

Lemma 2. Let Fi be the splitting �eld of the i-th such equation over K(x). We

can form the compositum F = F0 � � �Fn�1 over K(x) without ambiguity. Let [F :

K(x)] = 2m then viewed over K the curve D then has 2n�m irreducible reduced

components having function �elds K-isomorphic to F .
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Proof. In order to generate F we can choose a subset of m equations de�ning the

curve D which de�ne a prime ideal of dimension n+ 1�m in K[x;w0; : : : ; wn�1].

Since x = 0 is the only �nite place of K(x) which rami�es in an Fi, the other

equations, after multiplying by suitable minimal non-negative powers of x, will

factor into linear factors modulo this prime ideal. We have thus 2n�m choices to

enlarge the prime ideal to a prime ideal of dimension one.

If we multiply the equations de�ning D by x�2, substitute wi=x+ �
1=2
i
=x by si

and 1=x by z, we see that another model for our curve D is

F :

8>><
>>:

s20 + s0 + z�1 + �0 + �
1=2
0 z = 0;

...

s2n�1 + sn�1 + z�1 + �n�1 + �
1=2
n�1z = 0:

Then Artin-Schreier theory [2, pp. 22] applied to the above equation implies that

we have

m = dimF2 (U=U \ V ) :(1)

where

U = SpanF2
��
1; �0; �

1=2
0

�
; : : : ;

�
1; �n�1; �

1=2
n�1

�	
;

V =
��
0; x2 + x; 0) : x 2 K

�	
:

Notice that when � = 0 or 1 we have the simpler equation

m = dimF2

�
Span

F2

��
1; �

1=2
0

�
; : : : ;

�
1; �

1=2
n�1

�	�
:

Upon reordering we may assume in the following that F = F0 � � �Fm�1. Adding
the 0-th equation to the i-th equation of F for i = 1; : : : ;m� 1 and substituting ti

for s0 + si, i for �0 + �i and �i for �
1=2
0 + �

1=2
i

we obtain

t2i + ti + �iz + i = 0; i = 1; : : : ;m� 1(2)

These equations de�ne extensions Li of K(z) such that F = F0L with L =

L1 � � �Lm�1. The �eld L is crucial to establishing the hyperellipticity, since it

de�nes a rational sub�eld of index two, as we shall now show.

Lemma 3. The �eld L is an extension �eld of degree 2m�1 of K(z). It is a rational

function �eld L = K(c) having a generator c such that z = �
�1 +

P
m�1
i=0 �ic

2i with

�i 2 K and �0; �m�1 6= 0.

Proof. The extension �eld statement follows from F = F0 � � �Fm�1.
We now apply inductively some further transformations to (2). We wish to

determine a change of variable so that we have equations of the form

t2i + ti + �iti�1 + i = 0; i = 1; : : : ;m� 1:(3)

Suppose after already having done some transformations (with ti, i and �i
substituted properly) we are given equations, for some j 2 [1; : : : ;m� 1],

t2i + ti + �iti�1 + i = 0; i = 1; : : : ; j � 1;

t2
i
+ ti + �iz + i = 0; i = j; : : : ;m� 1;

where t0 = z.
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By substituting tj +(�j=�1)
1=2t1 for tj and using the above equations with i = 1

we obtain

t2
j
+ tj +

 �
�j

�1

�1=2

+
�j

�1

!
t1 +

�j

�1
1 + j = 0;

wherein we write �j for the coe�cient of t1 and j for the constant term. By

eliminating t1 in the same way as done with z = t0 using the equation for i = 2,

and repeating this for t2; t3; : : : we eventually arrive at

t2j + tj + �jtj�1 + j = 0;

as desired. By induction we go on until j = m.

Next, by expressing z = (t21 + t1 + 1)=�1, t1 = (t22 + t2 + 2)=�2, and so on, we

obtain z = �
�1+

Pm�1

i=0 �ic
2i with c = tm�1 and suitable �i 2 K. Since L=K(z) is

separable and [L : K(z)] = 2m�1 we �nally see that none of the �i will be zero in

this process, and that �0; �m�1 6= 0 necessarily.

Lemma 4. F=K is a hyperelliptic function �eld of genus 2m�1 or genus 2m�1� 1

over the exact constant �eld K.

Proof. We have F = F0L and [F : L] = 2. The hyperellipticity is now clear since

L is rational by Lemma 3.

Next we prove the genus statement. In order to get F from L we need to adjoint

a root of the 0-th equation de�ning F to L. We take a closer look at the absolute

coe�cient u = 1=z + a+ �
1=2
0 z, where we think of z as a polynomial in c of degree

2m�1 as in Lemma 3. Since this polynomial is separable it factors into prime

polynomials with exponents one. The valuations of u at the corresponding places

of the rational function �eld L de�ned above z = 0 are thus all �1.
The Artin-Schreier reduced pole valuations coming from the zeros of z have just

been determined, we get mP = 1 for all places P of L such that vP (z) = 0. We

also have
P

vP (z)=0
degP = 2m�1. We need to look at the degree valuation. But

because of the particular structure of each ti in equation (3) we can reduce u to

have degree at most one in c by subtracting elements of L of the form v2 + v, from

which follows m
1

= 1 or m
1

= �1.
Summing up, using [15, p. 115], we obtain �nally g = 2m�1 or g = 2m�1 � 1.

The constant �eld statement follows from L being rational and F having genus

greater than or equal to one.

Up to now we have used the Artin-Schreier nature of the equations de�ning D

(resp. F) in an essential way, in order to obtain the statements on the hyperellip-

ticity and the genus. Next, we need to restrict to a smaller constant �eld, and here

we will use the existence of a Frobenius automorphism on F which is due to the

very construction of D.

Theorem 5. The Frobenius automorphism � on K extends to a k-automorphism

on F . Let F 0 be its �xed �eld. Then F 0 is an hyperelliptic function �eld of genus

2m�1 or 2m�1 � 1 over the exact constant �eld k. The curve C has an irreducible

reduced component having F 0 as its function �eld.

Proof. The Frobenius automorphism � extends to a k-automorphism of K(x) by

leaving x �xed. Since the equations de�ning D are conjugated under � in the

obvious way we see that it extends to a k-automorphism of F of order n mapping
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a root of an equation of D to a root of the next equation. The �xed �eld F 0 of �

thus has index n in F and it is clear that F 0 \K = k holds.

Let L0 := F 0\L. Then � restricts to a k-automorphism of L of order n because it

is the unique sub�eld of F of index 2. Thus also [L : L0] = n and we get [F 0 : L0] = 2,

as desired. Clearly F = F 0K (and also L = L0K) which gives the genus statement.

Besides x, F 0 contains n elements, obtained via linear transformation from the wi
above, which generate F 0 over k and which satisfy the equations of C. We thus

�nally see that C has an irreducible reduced component with function �eld F 0.

Notice that every irreducible reduced component of the curve C will have the

same genus as above, but the corresponding function �elds will in general (except

F 0) contain proper constant �eld extensions of k, making them useless. If the value

of m is too small then none of the irreducible components of C will have a Jacobian

which contains a subvariety isogenous to the subvariety B of A. For example let

E(Fqn ) denote a Koblitz curve, i.e. one de�ned over the �eld F2 . We will then

obtain irreducible components of C of genus one. In this case, the Weil restriction,

A, factors as the product

A = E(Fq )�B

where B is an n� 1-dimensional abelian variety de�ned over Fq . The curve in the

Weil restriction we have constructed has irreducible components whose Jacobians

are isogenous to E(Fq ) and so we obtain no information about the subvariety B

from our curves. This does not mean that one cannot �nd useful curves in A, whose

Jacobian contains a subvariety isogenous to B. It just means that the curves we

have constructed are not useful in this context.

We let H denote the hyperelliptic curve over k which has F 0 as its function �eld.

We next address the question of mapping the discrete logarithm problem on E to

a suitable one in Cl0(F 0), where we again use the function �eld setting. Using

the conorm, ConF=K(E), we map a divisor class in Cl(K(E)) to Cl(F ), and from

there, using the norm NF=F 0 , to Cl(F 0). On composition we thus obtain a group

homomorphism

� : Cl(K(E))! Cl(F 0);

which we can then restrict to degree zero divisors.

Lemma 6. The kernel of ConF=K(E) : Cl(K(E)) ! Cl(F ) can only consist of

2-power torsion elements of Cl(K(E)).

Proof. Let D 2 Cl(E), then we have NF=K(E)(ConF=K(E)(D)) = [F : K(E)]D.

Thus, if ConF=K(E)(D) is principal, then [F : K(E)]D is also principal. But

[F : K(E)] = 2m�1 which means that [D] has 2-power order.

However, the kernel of � can be quite large for small m. But if m is not too

small then the large prime factor of E will be preserved in many instances. Hence

to solve our discrete logarithm problem

P2 = [l]P1

on E(K) we map degree zero divisor classes representing P2 and P1 over to Cl
0(F 0)

using the map �. Setting D1 = �([P1]) and D2 = �([P2]). Providing we do not
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obtainD1 = D2 = 0, which in practice is unlikely unless the elliptic curve is actually

de�ned over a sub�eld ofK, we can attempt to solve the discrete logarithm problem

D2 = [l]D1

in Cl0(F 0).

The computation of images under � is in principle possible by general methods,

such as those used for computations with algebraic number �elds. Nevertheless, we

want to give some indications of how to proceed in our case.

A hyperelliptic equation for F over K can be computed along the lines of the

above proofs where we choose y = w0 2 K(E) � F and c 2 L as generators. Such

an equation is obtained by substituting
�
�
�1+

Pm�1

i=0 �ic
2i
�
�1

for x in the equation

of E, as in Lemma 3.

Let P be a place of K(E) of degree one where x; y 2 K(E) take the values

x(P ); y(P ) 2 K respectively (we assume for simplicity that x(P ) 6= 0;1). Then

ConF=K(E)(P ) can be computed as the greatest common divisor of the principal

divisors (x+ x(P )) and (y + y(P )) in F . It is a divisor of degree 2m�1.

We next have to �nd L0 and F 0 and compute the norm NF=F 0 . By tracing back

the transformations done above we may obtain the conjugates �i(y) = wi 2 F ,

represented as rational functions in c and y. The following Lemma then gives an

explicit construction of F 0.

Lemma 7. Choose � 2 K such that TrK=k(�) = 1 and set ~c := TrL=L0(��0c),

~y := TrF=F 0(�y). We then have L0 = k(~c) and F 0 = k(~y; ~c).

Proof. From the extension structure L=K(z), because z = �
�1 +

Pm�1

i=0 �ic
2i , it is

clear that � maps poles of c to poles of c. Since L is rational we readily see that

there are �; �0 2 K such that �(c) = �c+ �0. Then

�(z) = �

 
�
�1 +

m�1X
i=0

�ic
2i

!

= �(�
�1) +

m�1X
i=0

�(�i)
�
�02

i

+ �2
i

c2
i

�
:

On equating coe�cients in �(z) = z, we obtain for �i 6= 0 and i � 0

�2
i

= �i=�(�i):

For i = 0 we thus obtain

�(�0c) = �(�0)(�c+ �0) = �0c+ �(�0)�
0:

Now ~c = TrL=L0(��0c) = �0c+ �00 for some �00 2 K and thus L0 = k(~c).

Consider the Galois group of F=K(x). It is an elementary abelian 2-group whose

elements send each �i(y) to �i(y) or �i(y) + x. Now let � be the hyperelliptic

involution on F=L. Since � �xes L we have �(�(y)) = �(y) + x = �(�(y)). It

operates by restriction on F 0=L0. We again consider the equations de�ning F.

Since y = xs0 + �1=2 we observe

TrF=F 0(�y) = xTrF=F 0(�s0) + TrK=k(��
1=2):

Let us abbreviate ~s := TrF=F 0(�s0). Then, as �(~s) = ~s+ 1, we have

TrF 0=L0(~s) = ~s+ �(~s) = 1:

9



Using

~s2 = TrF=F 0(�2s20) = TrF=F 0(�2(s0 + 1=z + �+ �1=2z))

we obtain for the norm

NF 0=L0(~s) = ~s(~s+ 1)

= 1=z + TrK=k(�
2�) + TrK=k(�

2�1=2) z

+
�
TrF=F 0(�2s0) + TrF=F 0(�s0)

�
:

Putting together we thus get

~s2 + ~s+ 1=z + TrK=k(�
2�) + TrK=k(�

2�1=2) z(4)

+
�
TrF=F 0(�2s0) + TrF=F 0(�s0)

�
= 0:

This equation is separable in ~s, and by construction it has coe�cients in L0. Looking

at the equations de�ning F gives that the valuation of si at the zeros of z is only half

the valuation of 1=z. The term in the second line of (4) is a K-linear combination

of the si and, as element of L0, has no poles except at ~c = 1. It is therefore

a polynomial in ~c and we can conclude that the left hand side of (4) is indeed

irreducible.

In the case of odd n we can choose � = 1. We then obtain the equation

~y2 + x~y + x3 + TrK=k(�)x
2 + TrK=k(�);

where x is the inverse of the separable polynomial �
�1+

P
m�1
i=0 �i((~c+�

00)=�0)
2i 2

k[~c]. We remark that in this case the genus of F 0=k is 2m�1 � 1 if TrK=k(�) = 0.

Let P be a place of F dividing ConF=K(E)(P1) for some place P1 of K(E) of

degree one. We can represent P as the greatest common divisor of the numerators

of the principal divisors (~y+~y(P )) and (f(~c)) where f is the minimal polynomial of

~c(P ) overK (provided that x(P1) 6= 0, which we assume). In order to determine the

underlying place P 0 = F 0\P of F 0 we need to express the situation \symbolically".

The place L0 \ P is determined by the numerator of ( ~f(~c)), where ~f is the

minimal polynomial of ~c(P ) over k, and the principal divisor is taken in L0. The

place P 0 is obtained as follows: Let h be a bivariate polynomial over k such that

h(�; ~c(P )) is the minimal polynomial of ~y(P ) over k(~c(P )). Then we obtain P 0 by

computing the greatest common divisor of the numerators of ( ~f(~c)) and (h(~y; ~c)),

where the principal divisors are taken in F 0. Finally, NF=F 0(P ) = f(P; P 0)P 0 where

f(P; P 0) = n deg(P )= deg(P 0) is the residue class degree of P over P 0. We will have

that deg
�
NF=F 0(ConF=K(E)(P1))

�
= n2m�1.

A program for computing F 0 and � given E(Fqn ) is planned to be written for

inclusion in the Magma computer algebra system.

4. Constructing Hyperelliptic Cryptosystems

Our method for constructing hyperelliptic cryptosystems is now immediate.

1. Fix a �eld k = Fq and an integer n such that K = Fqn .

2. Using the algorithm of Schoof, [12], determine an elliptic curve, E, over K of

order 2lp where p is a prime and l is a small integer.

3. Construct the Weil restriction and the curve C as we did in Section 3.

4. Find a model, H , of an irreducible component of C in hyperelliptic form.

5. Check that the divisor class group of H over k has a subgroup of order p.

10



The �nal condition is necessary since we only know that a subvariety of A is isoge-

nous to a subvariety of the Jacobian of H .

If in the above algorithm we choose n = 4, b3 = b0 + b1 + b2, with the special

examples of Section 2, we will expect to obtain a hyperelliptic curve of genus 3 or

4, de�ned over k, whose Jacobian will, in general, have order 2lp. If l is chosen

small then we do not expect to obtain genus 3. If we choose n = 2, and a very

small value for l, then we expect to obtain a hyperelliptic curve of genus 2, de�ned

over k, whose Jacobian has order divisible by p.

4.1. Genus Four Example. We consider an example where p � 280. Clearly this

is not large enough for cryptographic use, but it is illustrative for example purposes,

both here and later. Curves with p > 2160 are just as easy to produce, they just

require more paper to write down.

Consider the �eld k = F221 generated over F2 by a root of the polynomial:

w21 + w2 + 1:

Let K = F284 be generated over k by a root of the polynomial

�4 + �3 + �2 + � + 1:

We construct the elliptic curve

E : Y 2 +XY = X3 + b0� + b1�
2 + b2�

4 + b3�
8

where

b0 = 0; b1 = w1127280; b2 = w171398; b3 = w1370436:

Notice that b3 = b0 + b1 + b2, and hence we expect to obtain a hyperelliptic curve

of genus four. The order of E(K) is computed using the algorithm of Schoof [12]

and it is equal to 24p, where

p = 1208925819614311295169073:

Our algorithm for producing a curve of genus four in the Weil restriction produces

the curve C4a, of Section 2. This curve has Jacobian also of order 24p. But the

curve C4a is birationally equivalent to the hyperelliptic curve

H : Y 2 +G(X)Y + F (X)(5)

where G(x) is given by

X4 + w624429X3 + w1248858X2 + w1442662X + w386860

and F (X) is given by

X9 + w1859582X6 + w293124X4 + w1783647X3

+ w1541982X2 + w1370912X + w1888298:

4.2. Genus Two Example. We construct an elliptic curve over the �eld K =

F2162 with group order equal to

5846006549323611672814739995379292203636332479268

which is four times a prime, p. We do not give the details of this elliptic curve here

for reasons of space. The Weil restriction, and our construction of the associated

hyperelliptic curves, produces the following example of a genus two hyperelliptic

curve de�ned over k = F281 .

11



De�ne k by k = F2 [w]=(1 + w4 + w81). The Jacobian of the hyperelliptic curve

of genus two given by

H : Y 2 + (X2 + w2012013793551629036365609X)Y

= X5 +X4 + w1586464037343056940725724X2

+w43334222987849600951547X + w774788345987798314632240

has order divisible by p. Its group structure is given by C2 � C2p and it is not

subject to the Tate-pairing attack [7] since p does not divide qk�1 for small values

of k.

5. Attacking Elliptic Curve Cryptosystems

The question remains as to whether the above construction provides either a

mechanism to attack elliptic curve cryptosystems or whether the hyperelliptic cryp-

tosystems proposed above are strong. In this section we discuss the di�culty of

solving the discrete logarithm problem in the Picard group of the hyperelliptic

curves we have constructed. We shall assume a �xed, small, value of n and we look

at the situation as q tends to in�nity.

For any group, the rho method (with Pohlig-Hellman) provides an algorithm

for computing the discrete logarithm in time O(
p
p) where p is the largest prime

factor of the order of the group. For general elliptic curves, this is the best known

algorithm. For the curves de�ned over Fqn considered in this paper we obtain a

complexity of O(qn=2) in general.

For hyperelliptic curves, we can get a better complexity by using an index-

calculus method. If the curve is de�ned over Fq and the genus is not too high (say

at most 8), we can proceed as follows. We consider a factor base containing all the

prime divisors of the Jacobian of degree one. We can then proceed in two phases. In

the �rst phase, relations are found between the elements of the factor base, whilst

in the second phase we perform sparse linear algebra to solve the original discrete

logarithm problem. The details of this algorithm are in [9], but we give some details

in an example below.

Theorem 8 (Gaudry, [9]). There is an index calculus style algorithm to solve the

hyperelliptic discrete logarithm problem in a hyperelliptic curve of genus g over the

�eld Fq which requires a factor base of size O(q) and which runs in time

O
�
g3g!q log q

�
+O

�
g3q2 log q

�
for some �xed integer .

Hence for �xed values of g the complexity of this algorithm is O(q2+�), which

is better than the rho method for a (almost) cyclic Jacobian of genus at least 5.

However, it is unclear where the exact crossover point between Gaudry's method

and the rho method lies.

The theoretical complexity can be improved by reducing the size of the factor

base. The smoothness bound is already minimal, but we can decide that some

of the prime divisors of degree one are `good' (we keep them in the factor base),

whereas others are rejected. If we set the proportion of `good' divisors to 1=l, then

the time for �nding a relation will be increased by a factor lg. However, we will

need l times less such relations, and the cost of the linear algebra will be reduced

12



by a factor 1=l2. If we try to optimize the choice of l, we get l = �(q1=(g+1)), and

the complexity becomes O(q
2g

g+1
+�), as q !1.

In the following table we give the complexities of the discrete logarithm problem

on the elliptic curves studied in the previous sections and on the corresponding

Jacobians. We only look at the genera which are likely to occur in practice for the

example curves in Section 2 and we ignore the q� term in the complexity estimate.

Notice that for the `interesting' subvariety of Jac(C) in our Weil-descent examples

the complexity of the rho method on Jac(C) is equal to the complexity of the

rho method on E(Fqn ). For a general Jacobian of genus g the rho method has

complexity O(qg=2).

Example Curve C2 C3 C3 C4 C4 C4a

n, g 2,2 3,3 3,4 4,8 4,7 4,4

rho on E(Fqn ) q q3=2 q3=2 q2 q2 q2

Index on Jac(C) q4=3 q3=2 q8=5 q16=9 q7=4 q8=5

We stress that these complexities hold as q tends to in�nity and with n and g �xed.

Hence for g � 4 we obtain a complexity which is better than that of Pollard rho.

In a context where we would like to build a hyperelliptic cryptosystem by a Weil

descent, the Jacobians have to be almost cyclic, which occurs for the cases C2, C3

and C4a. For the �rst two, this seems to be a good way to build a cryptosystem

in genus two or three; however, for the last one the index-calculus provides an

attack with a better theoretical complexity than the rho method, and the security

is asymptotically lower than with an elliptic curve cryptosystem with the same key

size.

On the other hand, if we want to attack an elliptic curve cryptosystem, we

see that for C4 and C4a the complexity of index-calculus is better than for the

rho method. Thus, asymptotically, it is a good way to attack such elliptic curve

cryptosystems by transferring the problem to a hyperelliptic curve.

However experiments have to be done, for each �xed value of n and g, to see

where is the crossover between the two attacks, since the group operations in E(Fqn )

and in Jac(C) will have di�erent complexities. Such an experiment is carried out

in the next section.

6. Solving a hyperelliptic DLOG problem

It is important to decide, not only for the Weil descent attack but also for

our construction of hyperelliptic cryptosystems in genus four, whether Gaudry's

method is practical in genus four. In this section we consider the example given

by the curve in equation (5). The �elds size is q = 221 and the curve has genus

4, so the Jacobian has size approximately 284. We will solve a discrete logarithm

problem in this group using Gaudry's method and then compare the running time

to known e�cient implementations of the rho method in an elliptic curve group of

the same size. Since the rho method applied to a hyperelliptic curve will run slower

than on an equivalently sized elliptic curve, if Gaudry's method runs faster on the

hyperelliptic curve compared to rho on an elliptic curve we will know that

� Genus four systems are less secure than the equivalent elliptic curve system,

for �eld sizes greater than 221. We would then conclude that genus four

hyperelliptic systems should not be deployed in real life.
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� Elliptic curves de�ned over Fqn , with m = 3 and q = 2t, are weaker than

those de�ned over F2p with p prime and of the order of nt.

We attempted to solve the discrete logarithm problem given by

D2 = [l]D1

where

D1 = (X4 + w1277131X3 + w1087066X2 + w1391819X + w1964994;

w1784094X3 + w131164X2 + w1975559X + w2073352);

D2 = (X4 + w895988X3 + w1765969X2 + w1667155X + w1531893;

w110642X3 + w2014036X2 + w927941X + w1063447);

where the divisors are given in the reduced representation as in the paper by Cantor,

[4]. In this notation, the point at in�nity is implicitly subtracted with the correct

multiplicity in order to obtain a divisor of degree zero. The divisor D1, above, is a

generator of the subgroup of prime order p � 280.

The factor base consists of all prime divisors of the form

p = (X + �; �)

where �; � 2 k = Fq , and

�2 +G(�)� + F (�) = 0:

To each � there are two corresponding values of �, but we only choose one of these

to be in our factor base, since the two prime divisors are related by the equation:

(X + �; �) + (X + �;G(�) + �) � 0;

in the divisor class group.

To reduce the factor base even further we only use divisors in the factor base

such that the binary representation of � has a bit representation with its three most

signi�cant bits set of zero. Where the bit representation is in the polynomial basis

with respect to w. Such prime divisors will be called `good'. In our example the

number of such good divisors which make up our factor base, F, is 131294.

Consider the following general reduced divisor

D = (a(X); b(X))

with deg b < deg a � g. A necessary condition for this divisor to factor over our

factor base of `good' divisors will be for the binary representation of adeg a�1, the

(deg a� 1)th coe�cient of a(X), to have its three most signi�cant bits set to zero.

This gives us a simple test to eliminate lots of divisors which are not smooth over

our set of good divisors.

The algorithm proceeds as follows. We compute a set of `random' multipliers

Mi = [ri]D1 + [si]D2; for 1 � i � 20;

for some random integers ri and si. Then setting R1 = M1, say, we compute the

following random walk

Ri+1 = Ri +Mh(Ri)

where h : Jac(H) ! [1; : : : ; 20] is some hash function. Notice that every value Ri

can be written as

Ri = [ai]D1 + [bi]D2:
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We then try to `factor' Ri over our factor base to obtain a relation of the form

Ri =
X
p2F

[tp]p:

Due to our choice of factor base this factorization can be achieved using root ex-

traction techniques over �nite �elds rather than general polynomial factoring tech-

niques. We eliminate many divisors, before we apply root extraction, by our test

for smoothness over the good divisors which we described above. The resulting tp
lie in [�g; : : : ; g], where for our example g = 4. We store the tp in a matrix as

a column, which will have at most g non-zero entries in each column. Almost all

relations we obtain will have tp 2 f�1; 0; 1g and will have exactly g non-zero values

of tp in each column.

After collecting more relations than elements in our factor base we can apply

sparse matrix techniques modulo p, such as the Lanczos method, to �nd a non-

trivial element in the kernel of the matrix. Using the element in the kernel we can

then �nd the solution to the original discrete logarithm problem, with overwhelming

probability, in the standard manner.

We run the above algorithm on the above example. The relation collection phase

took about two weeks of calendar time, using the idle time of a disparate set of

machines. If we had run this task on a single Pentium II 450 MHz, the timing

would have been about 31 weeks. The linear algebra step took 64:4 hours using the

same machine. After which we determined the solution to D2 = [l]D1 was given by

l = 12345678:

An equivalent calculation on an 84 bit elliptic curve, using Pollard's rho method,

would have taken 44 weeks on the same machine, with a program with a similar

level of optimizations applied. Since the crossover point is for a value of q less

than what would be used in practice, we can conclude that genus four hyperelliptic

systems are weaker than an elliptic curve system with the same size group order.

7. Other Types of Finite Fields

7.1. Non-composite Fields Of Even Characteristic. In Section 5 we looked

at what happens when n is �xed and we let q tend to in�nity. In practice the

elliptic curves over even characteristic �elds which are used are ones de�ned over

F2p , with p a prime. Hence we need to look at the situation where q is �xed and n

tends to in�nity.

Let E denote an elliptic curve, de�ned over F2p where p is prime. We expect

that the methods of this paper would produce a hyperelliptic curve of genus 2p�1

over the �eld F2 . It seems unlikely that one would, in general, be able to �nd a

curve of signi�cantly smaller genus in the Weil restriction of E(F2p ) over F2 .

However, using equation (1) one may be able to �nd, in very special circum-

stances, certain elliptic curves which have values of m slightly larger than log2 p

and hence for which there exist curves in the Weil restriction of genus slightly larger

than p, as the following example shows:

Consider K = F2 [w]=(1 + w + w127) and the elliptic curve de�ned by (a; �) =

(0; w), i.e.

E : Y 2 +XY = X3 + w:
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The number points on E(K) is computed to be

#E(F2127 ) = 220 � 32 � 45615671 � 395232781659164075412101:
Along the arguments of Section 3 we computed its Weil restriction for n = 127

down to F2 , obtaining the hyperelliptic curve

H : y2 + (x128 + x64 + x)y + x128 + x64 + x:

The curveH has genus 127 and its Jacobian contains an element of order #E(F2127 )=2.

We constructed this example by trying to makem as small as possible. It appears

that one can obtain very small values of m for � a zero of a polynomial with only

2-power coe�cients. In the above case �128+�2+� = 0. Another similar value for

� may be obtained by a zero of the irreducible factor of degree 127 of x2
10

+x2+x

over F2 .

In general, for random �, a small value of m is very unlikely as we shall now

show.

Lemma 9. We expect at least �fty percent of all the elliptic curves over K = F2p ,

for p prime to produce a value of m equal to p.

Proof. By a change of variables we can put our curve in the form

Y 2 +XY = X3 + �X2 + �

where � = 0 or 1 and � 2 K. Now by the de�nition ofm in (1), if f�; �2; : : : ; �2p�1g
is a normal basis of K over F2 then m = p. But around �fty percent of all elements

of K generate a normal basis, as we shall now show.

By Lemma 3.69 and Theorem 3.73 of [11] the number of elements, � 2 K, which

generate a normal basis over F2 is equal to

2p
tY

i=1

(1� 2�ni)

where ni denotes the degrees of the distinct monic irreducible factors of the poly-

nomial Xp � 1 over F2 . But by Theorem 2.47 of the same book we see that this is

equal to �
2(p�1)=d � 1

�d
= O(2p�1);

where d is the number of distinct factors of the polynomialXp�1+Xp�2+� � �+X+1

over F2 . Hence around �fty percent of all elements inK generate a normal basis.

For general curves, where m = p and g = 2p�1, one needs to bear in mind that

although there is a sub-exponential algorithm for the discrete logarithm problem on

hyperelliptic curves of large genus, it is sub-exponential in the size of the Jacobian,

which will be of the order of

2g = 22
p�1

:

But we are really aiming for a sub-exponential algorithm in the size of the original

elliptic curve, which is 2p. On the other hand, for the very special elliptic curve in

the above example, we indeed obtain a possible subexponential attack. Note that

Gaudry's method should not be used in this case since it is only e�cient for `small'

genera.
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To obtain a sub-exponential algorithm for very large genera the methods from

[1, 8, 10, 14] should be combined after suitable modi�cation for our hyperelliptic

even characteristic case.

Hence for curves de�ned over non-composite �elds of characteristic two, we do

not expect the techniques in this paper to contribute a signi�cant threat to elliptic

curve cryptosystems. This last statement holds assuming curves are either chosen

with values of m of the order of p, or are chosen to be curves which are de�ned over

F2 , i.e. a Koblitz curve.

7.2. Odd Characteristic Fields. The question arises as to whether the process

of Weil descent can be applied to �elds of the form Fpn where p is an odd prime.

Clearly we must have n � 2 and by similar arguments to those above n should not

be too large.

The proofs in Section 3 relied heavily on the Artin-Schreier nature of the ex-

tensions. It appears hard to see how they can be modi�ed to apply in the odd

characteristic case. Indeed in the few examples we have calculated we see that the

resulting curves neither have such nice genera nor are they hyperelliptic in nature.

Hence using odd characteristic �elds does not seem helpful in constructing higher

genus hyperelliptic cryptosystems.

Let us turn to attacking elliptic curve systems based on �elds of the form Fpn .

This is an open problem which we now outline with an example: Consider the �eld

Fp3 = Fp[t]=(t
3 + 3491750t2+ 217412320t+ 795426309)

where p = 1073741839 = 230 + 15. An elliptic curve de�ned over Fp3 is given by

Y 2 = X3 +AX +B

where

A = 787621733t2+ 572191144t+ 6271705;

B = 167167209t2+ 739374709t+ 362095083:

For this curve it is readily veri�ed that the group order is

#E(Fp3 ) = 24 � 59 � 2261143 � 579962087855207501:
Setting

X = x0 + x1t+ x2t
2 and Y = y0 + y1t+ y2t

2

one can construct the Weil restriction.

Suppose the method of Gaudry could be extended to arbitrary Jacobians and

not just hyperelliptic Jacobians with almost prime group orders. This at �rst sight

does not seem too implausible but is the subject of ongoing research, [5]. One would

expect the resulting algorithm to have complexity at best O(p
2g

g+1 ). Hence to beat

the asymptotic complexity of Pollard's rho method on E(Fp3 ) we would require a

curve of genus at most 3.

Naively mimicking our method of Weil descent in characteristic two one forms

the curve, C, de�ned by the hyperplanes x1 = x2 = 0, i.e. specializing to those

x-coordinates which are �xed under the Frobenius automorphism. The resulting

curve has genus 13 and is not hyperelliptic. Trying di�erent types of bases for Fp3

over Fp and di�erent hyperplanes does not appear to result in anything better.

This is an avenue for further work and the construction of a suitably well behaved

curve in the Weil restriction cannot be ruled out at present.
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8. Conclusion

Let E(Fqn ) denote an elliptic curve over a �eld of even characteristic, which is

not de�ned over a sub�eld of Fqn . Then we have shown how the Weil restriction

produces a hyperelliptic Jacobian of genus at most 2n�1 which, for examples of

cryptographic interest, contains a subgroup isomorphic to a subgroup of E(Fqn ).

Using this observation we can construct hyperelliptic cryptosystems by �rst con-

structing elliptic curves using the Schoof algorithm and then determining the asso-

ciated hyperelliptic curve. This appears to be a way to produce secure hyperelliptic

cryptosystems in genus two and three. We recommend against using this method

in genus four and above because of our experiment in solving discrete logarithm

problems in genus four, where we showed that the discrete logarithm problem in

the Jacobian of a curve of genus four was easier than on an elliptic curve of the

same group order, with a security level of at least 80 bits.

However, for �xed values of n � 4, this provides evidence for the weakness of the

original elliptic curve discrete logarithm problem. We have shown that for n = 4

and around 1=q of all such curves the crossover point, between our method and

Pollard rho, is at a value of q less than 221. However, for larger �xed values of n,

say n = 11 or 13, the crossover between our method and Pollard rho will be much

higher. Hence, further experiments are needed in determining the exact crossover

point between the two methods for various values of n.

We have no evidence to suggest that the discrete logarithm problem on general

elliptic curves, de�ned over �elds of the form F2p where p is prime, has complexity

smaller than O(2p=2). Since these are the �elds of characteristic two which are

recommended in the elliptic curve standards, Weil descent does not appear to be a

threat to standards compliant elliptic curve systems in the real world.

We do, however, recommend that elliptic curves de�ned over F2p , for p prime,

should be checked to be sure that they produce a value for m in equation (1) which

is of order around p or equal to one, as in the case of curves de�ned over F2 . Only

curves with these values for m should be deployed in real world cryptosystems. In

practice most elliptic curves over F2p will satisfy such a requirement, but it is worth

adding this check to curve generation programs and to standards documents.

References

[1] L. Adleman, J. De Marrais, and M.-D. Huang. A subexponential algorithm for discrete log-
arithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over
�nite �elds. In ANTS-1: Algorithmic Number Theory, L.M. Adleman and M-D. Huang, edi-
tors. Springer-Verlag, LNCS 877, 28{40, 1994.

[2] E. Artin and J. Tate. Class Field Theory. Benjamin, 1967.
[3] I.F. Blake, G. Seroussi and N.P. Smart. Elliptic Curves in Cryptography. Cambridge Univer-

sity Press, 1999.
[4] D.G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math. Comp., 48, 95{101,

1987.
[5] A. Enge and P. Gaudry. A general framework for the discrete logarithm index calculus. In

Preparation.
[6] G. Frey. Weil descent. Talk at Waterloo workshop on the ECDLP, 1998.

http://cacr.math.uwaterloo.ca/conferences/1998/ecc98/slides.html

[7] G. Frey and H.-G. R�uck. A remark concerning m-divisibility and the discrete logarithm

problem in the divisor class group of curves. Math. Comp., 62, 865{874, 1994.
[8] S.D. Galbraith and N.P. Smart. A cryptographic application of Weil descent. Cryptography

and Coding, 7th IMA Conference, Springer-Verlag, LNCS 1746, 191{200, 1999. The full
version of the paper is HP Labs Technical Report, HPL-1999-70.

18



[9] P. Gaudry. A variant of the Adleman{DeMarrais{Huang algorithm and its application to
small genera. Submitted to EUROCRYPT 2000.

[10] F. He�. Zur Divisorenklassengruppenberechnung in globalen Funktionenk�orpern. Disserta-
tion, TU Berlin, 1999.

[11] R. Lidl and H. Niederreiter. Finite Fields, in Encyclopedia of Mathematics and its Applica-

tions, G.-C. Rota, editor, Addison-Wesley, 1983.
[12] R. Schoof. Elliptic curves over �nite �elds and the computation of square roots mod p. Math.

Comp., 44, 483{494, 1985.
[13] N.P. Smart. On the performance of hyperelliptic cryptosystems. Advances in Cryptology,

EUROCRYPT '99, Springer-Verlag, LNCS 1592, 165{175, 1999.
[14] V. M�uller, A. Stein and C. Thiel. Computing discrete logarithms in real quadratic function

�elds of large genus. Math. Comp., 68, 807{822, 1999.
[15] H. Stichtenoth. Algebraic function �elds and Codes. Springer-Verlag, 1993.

LIX, �Ecole Polytechnique, 91128 Palaiseau, France.

E-mail address: gaudry@lix.polytechnique.fr

School of Mathematics and Statistics F07, University of Sydney NSW 2006, Aus-

tralia.

E-mail address: florian@maths.usyd.edu.au

Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol, BS34 6QZ,

United Kingdom.

E-mail address: nigel smart@hpl.hp.com

19


