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Abstract

This paper describes a new public-key cryptosystem based
on the hardness of computing higher residues modulo a com-
posite RSA integer. We introduce two versions of our scheme,
one deterministic and the other probabilistic. The determin-
istic version is practically oriented: encryption amounts to
a single exponentiation w.r.t. a modulus with at least 768
bits and a 160-bit exponent. Decryption can be suitably op-
timized so as to become less demanding than a couple RSA
decryptions. Although slower than RSA, the new scheme is
still reasonably competitive and has several specific appli-
cations. The probabilistic version exhibits an homomorphic
encryption scheme whose expansion rate is much better than
previously proposed such systems. Furthermore, it has se-
mantic security, relative to the hardness of computing higher
residues for suitable moduli.

1 Introduction

It is striking to observe that two decades after the discovery
of public-key cryptography, the cryptographer’s toolbox still
contains very few asymmetric encryption schemes. Conse-
quently, the search for new public-key mechanisms remains
a major challenge. The quest appears sometimes hopeless
as new schemes are immediately broken or, if they survive,
are compared with RSA, which is obviously elegant, simple
and efficient.

Similar investigations have been relatively successful in
the related setting of identification, where a user attempts
to convince another entity of his identity by means of an on-
line communication. For example, there have been several
attempts to build identification protocols based on simple
operations (see [33, 35, 36, 26]). Although the question of
devising new public-key cryptosystems appears much more
difficult (since it deals with trapdoor functions rather than
simple one-way functions), we feel that research in this di-
rection is still in order: simple yet efficient constructions
may have been overlooked.

The scheme that we propose in the present paper uses
an RSA integer n which is a product of two primes p and g,
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as usual. However, it is quite different from RSA in many
respects:

1. it encrypts messages by exponentiating them with re-
spect to a fixed base rather than by raising them to a
fixed power

N

it uses a different “trapdoor” for decryption

3. its strength is not directly related to the strength of
RSA

4. it exhibits further “algebraic” properties that may prove
useful in some applications.

We briefly comment on those differences. The first one may
offer a competitive advantage in environments where a large
amount of memory is available: such environments allow
impressive speed-ups in exponentiations that do not have
analogous counterparts in RSA-like operations. The second
is of obvious interest in view of the fact quoted above that
there are very few public-key cryptosystems available. With-
out going into technical details at this point, let us simply
mention that the new trapdoor is obtained by injecting small
prime factors in p—1 and g— 1. In order to understand what
the third difference is, we note that, if the modulus n can
be factored, then both RSA and the proposed cryptosystem
are broken. However, it is an open problem whether or not
RSA is “equivalent” to factoring, which would mean that
breaking RSA allows to factor. For this reason, the hypoth-
esis that RSA is secure has become an assumption of its
own, formally stronger than factoring. Our cryptosystem is
related to another hypothesis, also formally stronger than
factoring and known as the higher residuosity assumption.
This may help to understand how these various hypotheses
are related. Finally, we will explain the algebraic property
of our scheme (called the homomorphic property) by means
of an example: suppose that one wishes to withdraw a small
amount u from the balance m of some account; assume fur-
ther that the balance is given in encrypted form E(m) and
that the clerk performing the operation does not have access
to decryption. The cryptosystem that we propose simply
solves the problem by computing E(m)/E(u) mod n, which
turns out to be the encryption of the new balance m — u.

The ability to perform algebraic operations such as addi-
tions or substractions by playing only with the cryptograms
has potential applications in several contexts. We quote a
few:

1. in election schemes, it provides a tool to obtain the
tally without decrypting the individual votes (see [4])



2. in the area of watermarking, it allows to add a mark
to previously encrypted data (as explained in [25]).

Still, in these contexts, it is often needed to encrypt data
taken from a small set S (e.g. 0/1 votes) and it is well known
that deterministic cryptosystems, such as RSA, fail here: in
order to decrypt E(a), one can simply compare the cipher-
text with the encryptions of all members of S and thus find
the correct value of a. In order to overcome the difficulty,
one has to use probabilistic encryption, where each plaintext
has many corresponding ciphertexts, depending on some ad-
ditional random parameter chosen at encryption time. Such
a scheme should make it impossible to distinguish encryp-
tions of distinct values, even if these are restricted to range
over a set with only two elements. This very strong require-
ment has been termed semantic security ([12]). As a further
difference with RSA, the cryptosystem introduced in this
paper, has a very natural probabilistic version, with proven
semantic security.

The probabilistic homomorphic encryption schemes pro-
posed so far suffer from a serious drawback: they have very
poor bandwith. Typically, they need something like one kilo-
bit to encrypt just a few bits, which is a quite severe expan-
sion rate. This may be acceptable for election schemes but
definitely hampers other applications. The main achieve-
ment of the present paper is to reach a significant band-
with, while keeping the other properties, including semantic
security.

Before we turn to the more technical developments of our
paper, it is in order to compare it with earlier work: it is in-
deed the case that the question of finding trapdoors for the
discrete logarithm problem has been the subject of many pa-
pers. At this point, it is fair to mention that the probabilistic
cryptosystem that we propose is actually quite close to the
most general case of the homomorphic encryption schemes
introduced by Benaloh in his Ph-D thesis [4]. Still, both in
this thesis and in the related work ([5, 6, 7]), the security
and potential applications are only investigated in a setting
where the bandwith remains small. A more recent paper
by Park and Won (see [24])describes a related probabilistic
cryptosystem using a trapdoor based on injecting a single
power of a small odd integer into p — 1 or ¢ — 1 and proves
its security with respect to an ad hoc statement. Thus, our
paper offers the first thorough discussion of the security of
a probabilistic homomorphic encryption scheme with signif-
icant bandwith. After the completion of the present work,
we have been informed that another homomorphic proba-
bilistic encryption scheme, using moduli n of the form p2q,
where p and ¢ are primes, had been found by Okamoto and
Uchiyama (see [22]), achieving an expansion rate similar to
ours. Finally, it should be emphasized that the determinis-
tic version of our scheme is not simply a twist that fixes the
random string in the probabilistic version: considering its
practicality, we believe that, even if it is not intended to be
a direct competitor to RSA, it enters the very limited list of
efficient public-key cryptosystems.

The paper is organized as follows: in the next two sec-
tions, we successively describe the deterministic and the
probabilistic version of our scheme, the former with a prac-
tical approach, the latter in a more complexity-theoretic
spirit. We then discuss applications and end up with a chal-
lenge for the research community.

2 The deterministic version

As was just mentioned, our approach to the deterministic
scheme is practically oriented: we discuss system set-up

and key-generation, encryption and decryption, with per-
formances in mind. We also carry on a security analysis at
the informal level and we derive minimal sugested parame-
ters.

2.1 System set-up and key generation

The scheme that we propose in the present paper can be
described as follows: let o be a squarefree odd B-smooth
integer, where B is small integer and let n = pg be an RSA
modulus such that o divides ¢(n) and is prime to ¢(n)/o.
Typically, we think of B as being a 10 bit integer and we
consider n to be at least 768 bits long. Let g be an element
whose multiplicative order modulo n is a large multiple of
o. Publish n, g and keep p, ¢ and optionally o secret. A
message m smaller than o is encrypted by g™ mod n; de-
cryption is performed using the prime factors of o as will be
seen in the next subsection.

Generation of the modulus appears rather straightfor-
ward: pick a family p; of k small odd distinct primes, with

k even. Set u = Hfﬁpl, v = Hz/2+1pi and 0 = wv =

Hle pi. Pick two large primes a and b such that both
p=2au+1and g = 2bv + 1 are prime and let n = pq.
However, this generation is lengthy especially when the
size of the modulus grows: a has to be chosen in the appro-
priate range and tested for primality as well as p = 2au + 1
until both tests succeed simultaneously. This might be a bit
time-consuming. Instead, we suggest to generate a, b, u and
v first (independently of any primality requirements on p
and q) and use a couple of 24-bit ”tuning primes” p' and ¢
(not used in the encryption process) such that p = 2aup’ +1
and ¢ = 2bvq’ + 1 are primes. To avoid interferences with
the encryption mechanics, we recommend to make sure that
ged(p'q’,0) =1 and p’ # ¢'. In practice, such an approach
is only 9% slower than equivalent-size RSA key-generation.
To select g, one can choose it at random and check
whether or it has order ¢(n)/4. The main point is to ensure

that g is not a p;-th power, for each ¢ < k by testing that
b(n)
g Pi # 1 mod n. The success probability is :

mT =

k
— bi

k
1
1 — —), whose logarithm is : In(7) ~ —
(- g m=-3

i=1

If the p;s are the first k primes, this in turn can be estimated
as —Inln k and results in the quite acceptable overall prob-
ability of 7 22 1/In k. Another method consists in choosing,
for each index ¢ < k, a random g; until it is not a p;-th

power. With overwhelming probability g = Hle ¢7'?% has
order > ¢(n)/4.

2.2 Encryption and Decryption

Encryption consists in a single modular exponentiation: a
message m smaller that o is encrypted by g™ mod n. Note
that it does not require knowledge of 0. A lower bound
(preferably a power of two) is enough but it is unclear how
important for the security of the scheme is keeping o se-
cret. However, if one chooses to keep o secret, necessary
precautions (similar to these applied to Rabin’s scheme [31]
or Shamir’s RSA for paranoids [34]) should be enforced for
not being used as an oracle’.

1For example, an attacker having access to a decryption box can
decrypt g™ mod n for some m > o and get m mod o. This discloses
(by subtraction) a multiple of ¢ and ¢ can then be found by a few re-



Also, there is actually no reason why the p;s should be
prime. Everything goes through, mutatis mutandis, as soon
as the p;s are mutually prime. Thus, for example, they can
be chosen as prime powers, which is a way to increase the
variability of the scheme.

Decryption is based on the chinese remainder theorem.
Let p;, 1 <1 <k, be the prime factors of o. The algorithm
computes the value m; of m modulo each p; and gets the
result by chinese remaindering, following an idea which goes
back to the Pohlig-Hellman paper [27]. In order to find ms,
given the ciphertext ¢ = g™ mod n, the algorithm computes

b(n) m;g(n)

¢; =c¢ Pi mod n, which is exactly ¢ ?i mod n. This fol-
lows from the following easy computations, where y; stands
for —m:ni :

o(n) me(n) (mit+y;p;i)d(n)
c; =c Pi =g F21 =g Py

m;é(n m;b(n
—y zpi( )gyi¢’(n) —y zpi( )

mod n
io(n)

By comparing this result with all possible powers g ?: , it

finds out the correct value of m;. In other words, one loops
io(n)

for j=0top; —1until¢; =g ?i modn.

The cleartext m can therefore be computed by the fol-
lowing procedure :

for 1 =1 to k

{

let ¢; = c?™/Pi modn

for j=0 to p; —1
{if ¢; == ¢/*™/? mod n let m; = j}

}

z = ChineseRemainder({m;}, {p:})

The basic operation used by this (non-optimized) algo-
rithm is a modular exponentiation of complexity log®(n),
repeated less than :

k pr < log(n) pr = log(n) k log(k) < log®(n) loglog(n)

times. Decryption therefore takes log®(n) loglog(n) bit op-
erations.

This is clearly worse than the log®(n) complexity of RSA
but encryption can be optimized if a table stores all possi-

is(n)
ble values of t[i,j] =g ?i ,for1<i<kandl1l<j <
the value m; of the cleartext m modulo p; is found by ta-
#(n)

ble look-up, once ¢ i mod n has been computed. It is not

i¢(n)
really necessary to store all g i . Any hash function that
id(n) i'¢(n)
distinguishes g ?i from g #: , for j # j' will do and, in
practical terms, a few bytes will be enough, for example ap-
proximately 2|p;| bits from each [z, j]. It is even possible to
i¢(n)

use hash functions that do not discriminate values of g 7i :
the proper one is spotted by considering, by table look-up

peated trials and gcds. To prevent such an action, the decryption box
cannot only re-encrypt and check against the ciphertext received, as
this allows a search by dichotomy. It should first check that the clear-
text is in the appropriate range, e.g. < 2* with 2* < m, re-encrypt it
and then check that it matches up with the original ciphertext before
letting anything out.

2lig(n
hashes of g J:i( ), for £ = 1,2, until there is no ambi-
guity. This can be very efficiently implemented by storing
hash values in increasing order w.r.t. ¢ and one single bit
might be enough.

2.3 A toy example

o key generation for £ =6
p21211 =2x 101 x3 x5 X 7+1,

q=928643 =2 x 191 x 11 x 13 x 17+1,

n = 21211 x 928643 = 19697446673 and g = 131 yield the
table:

| [i=1]i=2[¢=3[i=4]i=5]¢=6 |

j= 0 [ 0001 [ 0001 | 0001 [ 0001 | 0001 | 0001
j= 1| 1966 | 6544 | 1967 | 6273 | 6043 | 0372
j= 2 | 9560 | 3339 | 4968 | 7876 | 4792 | 7757
j=3 9400 | 1765 | 8720 | 0262 | 3397
j=4 5479 | 6701 | 7994 | 0136 | 0702
j=5 6488 | 8651 | 6291 | 4586

=6 2782 | 4691 | 0677 | 8135
j=7 9489 | 1890 | 3902
j= 8 8537 | 6878 | 5930
7=09 2312 | 2571 | 6399
j =10 7707 | 7180 | 6592
j=11 8291 | o771
j=12 0678 | 0609
7=13 7337
j=14 6892
j=15 3370
=16 3489

where entry {i,j} contains ¢??™/?" mod n mod 10000.
e encryption of m = 202
¢ = g™ mod n = 131*°? mod 19697446673 = 519690214

e decryption
by exponentiation, we retrieve :

c%yll) mod n mod 10000 = 1966

c%;) mod n mod 10000 = 3339

c%:) mod n mod 10000 = 2782

¢ mod n mod 10000 = 7994

55 mod n mod 10000 = 1890
o (n)

¢ 6 mod n mod 10000 = 3370
wherefrom, by table lookup :

m mod 3 = table(1966) =1
m mod 5 = table(3339) =2

m mod 7 = table(2782) =6
m mod 11 = table(7994) = 4

m mod 13 = table(1890) = 7
m mod 17 = table(3370) =15

and by Chinese remaindering : m = 202.



2.4 Suggested parameters and security analysis

We suggest to take o > 2'%° and we consider |n| = 768 bits

as a minimum size for the modulus.

If the factorization of n is found, then a and b become
known as well as ¢(n). The scheme is therefore broken.
However, the scheme does not appear to be provably equiv-
alent to factoring. Rather, it is related to the question of
having oracles that decide whether or not a random num-
ber z is a p;-th power modulo n, for 4 = 1,... k. This is
known as the higher residuosity problem and is currently
considered unfeasible. Formal equivalence of this problem
and the probabilistic version of our encryption scheme will
be proved in the next session. Considering the basic deter-
ministic version, we have no formal proof but we haven’t
found any plausible line of attack either. Also, the efficient
factoring methods such as the quadratic sieve (QS) or the
number field sieve (NFS) do not appear to take any advan-
tage from the side information that u (resp. v) divides p—1
(resp. g —1). The same is true of simpler methods like
Pollard’s p — 1 since we have ensured that neither p — 1 nor
g — 1 is smooth. Finally, elliptic curve weaponry [18] will
not pull-out factors of n in the range considered. Note that
the requested size of n (768 bits or more) makes factoring n
a very hard task anyway.

We now turn the size of . In order to avoid the com-
putation of discrete logarithms by the baby step-giant step
method, we have to make o large enough. As already stated,
2160 is a minimum. This can be achieved for example by
making o a permutation of the first 30 odd primes, which
yields o ~ 2'6945_ Alternatively, one one can choose a se-
quence of 16 primes with 10 bits. Since there are 75 such
primes, this leads to a = 53-bit entropy. Adding prime pow-
ers, as stated above, will further increase these figures.

There is a further difficulty, when o is known. Note that

dghp— M) _n—p—qg+1

Hf:l bi g
hence 4ab differs from 2 only by ¢ = The nu-
merator is of size |n|/2, hence, if it does not exceed the
denominator by a fairly large number of bits, the value of
ab is basically known and decryption can be performed.

When the exact splitting of the factors of ¢ into u and
v are known as well, the previous analysis can be pushed
further. Reducing the relation n = (2au+1)(2bv+1) modulo
u, we find that n = 2bv + 1 mod u and we can calculate
d = bmodw. Similarly, we learn ¢ = a modv. We let
a =rv+cand b= su+d, with r, s unknown and, using
the fact that o = wv, we obtain:

__ptg-—-1

n = (2rvu + 2cu + 1)(2suv + 2dv + 1) =

4rso” + 20[r(2dv 4+ 1) + s(2cu + 1)] + (2cu + 1)(2dv + 1)

which is of the form
n=4rso” + 20 (ar + Bs) + v

with known «, 8 and . Reducing modulo ¢, this provides
the value ¢ of ar + s mod o. At this point, our analysis be-
comes quite technical and the reader may skip the following
and jump to the conclusion that n >> o*.

For the interested reader, we note that the pair (r, s) lies
in the two-dimensional lattice L defined by

L ={(z,y)|loazx + By = § mod o}

This lattice has determinant o. Also, it is easily seen that
a and § are bounded by 20 and 7y by 40%. From this we get

rsgl <rs+r+s+1l=(r+1)(s+1)
402

Thus, the pair (r,s) is very close to the boundary of the
curve C' with equation zy = ;7. More precisely, the dis-
tance between the pair (r,s) and the curve does not exceed
V2. This defines a geometric area A that includes (r,s).
Now, key generation usually induces constraints that limit
the possible range of the parameters. For this reason, it is
appropriate to replace C by the line z + y = ‘2/—5 in order
to estimate the size of A. This leads to an approximation

which is O(@) The number of lattice points from L in
this area is, in turn, measured by the ratio between the size
of A and the determinant, which is g It is safe to ensure
that this set is beyond exhaustive search, which we express
by n >> a*.

Note that the ratio |n|/|o| is the expansion rate of the
encryption, where |n| denotes, as usual, the size of n in bits.
It is of course desirable to make this rate as low as possible.
On the other hand, as a consequence of the above remarks,
we see that % — |o| should be large. Asymptotically, this
is achieved as soon as we fix an expansion rate which is
> 4. For real-size parameters, we suggest to respect the
heuristic bound % — o > 128, which is consistent with
our minimal parameters. Larger parameters allow a slightly

better expansion rate.

2.5 Performances

Despite its expansion rate, the new cryptosystem is quite ef-
ficient: encryption requires the elevation of a constant 768-
bit number to a 160-bit power. Several batch ([21, 23]) and
pre-processing ([2]) techniques can speed-up such computa-
tions, which might be a small advantage over RSA.
Decryption is slightly more awkward since k exponenti-
ations are needed. But this number can be reduced in a few

ways :
Firstly, while computing ¢®™/?i mod n for each i, it
is possible to first store ¢’ = ¢**® mod n and raise ¢’ to

the successive powers o/p; so that (besides the first one),
the remaining exponentiations involve 160-bit powers. One
can further, in the square-and-multiply algorithm, share
the “square” part of the various exponentiations. A care-
ful bookkeeping of the number of modular multiplications
obtained by setting |n| = 768 and choosing sixteen 10-bit
primes p;, shows that the total number of modular multi-
plications decreases to 2352: 912 for the computation of ¢’
and 1440 for the rest Actually, the “multiply” part can be
somehow amortized as well: we refer to [21] for a proper de-
scription of such an optimized exponentiation strategy. The
resulting computing load is less than what is needed for a
couple of RSA decryptions with a similar modulus.

Unfortunately, there is a drawback in reducing the value
of k: in the 30-prime variant it is necessary to store 1718
different t[i,j] hash values. Hashing on two bytes seems
enough and results in an overall memory requirement of four
kilobytes. In the 16-prime variant, hash values of 3 bytes
are necessary and the table size becomes 2 100 kilobytes.
As observed at the end of section 2.2, the hash table can
be drastically reduced at the cost of a minute computation
overhead.

Another speed-up can be obtained by separately per-
forming decryption modulo p and ¢ so as to take advantage



of smaller operand sizes. This alone, divides the decryption
workfactor by four.

Finally, decryption is inherently parallel and naturally
adapted to array processors since each m; can be computed
independently of all the others.

2.6 Implementation

The new scheme (768-bit n, &k = 30) was actually imple-
mented on a 68HCO05-based ST16CF54 smart-card (4,096
EEPROM bytes, 16,384 ROM bytes and 352 RAM bytes).
The public key is only 96-byte long and as in most smart-
card implementations, n’s storage is avoided by a command
that re-computes the modulus from its factors upon request
(re-computation and transmission take 10 ms). For further
space optimization g’s first 91 bytes are the byte-reversed
binary complement of n’s last 91 bytes. Decryption (a 4,119-
byte routine) takes 3,912 ms. Benchmarks were done with
a b MHz oscillator and ISO 7816-3 T=0 transmission at
115,200 bauds.

3 The probabilistic version

3.1 The setting

We now turn to the probabilistic version of the scheme. As
already explained, we adopt a more complexity-oriented ap-
proach and, for example, we view B as bounded by a polyno-
mial in logn. The probabilistic version replaces the cipher-
text ¢™ mod n by ¢ = g™ mod n, where x is chosen at
random among positive integers < n. Decryption remains
identical. This is due to the fact that the effect of multi-
plying by z? is cancelled by raising the ciphertext to the

various powers %, as performed by the decryption algo-

rithm. Note that this version requires o to be public.

The resulting scheme is homomorphic, which means that
E(m + m’ mod ¢) = E(m)E(m’) mod n. Probabilistic ho-
momorphic encryption has received a lot of applications,
both practically and theoretically oriented. To name a few,
we quote the early work of Benaloh on election schemes ([4])
and the area of zero-knowledge proofs for NP (see [13, 3]).
Known such schemes are the Quadratic Residuosity schemes
of Goldwasser and Micali ([12]) which encrypts only one bit
and its extensions to higher residues modulo a single prime
(see [4]), which encrypts a few bits. As already explained
in section 1, these schemes suffer from a serious drawback:
a complexity theoretic analysis has to view the cleartext as
logarithmic in the size of of ciphertext. In other words,
the expansion rate, i.e. the ratio between the length of
the ciphertext and the length of the cleartext is huge. In

our proposal, this ratio is exactly % Note that that our
assumption that o is B-smooth, for some small B, does
not preclude a linear ratio. The maximum size of o is

Zp < plogp, where p ranges over primes and it is known
that 8(B) = ZP<B Inp ~ B. Thus, even if B is logarithmic

in n, there are enough primes to make |o| a linear propor-
tion of |n|. This is a definite improvement over previous
homomorphic schemes. Note however that, following the

comments in section 2.4, it is safe to take % < 1/4.

3.2 A complexity theoretic approach

We already observed that the security of our proposal is re-
lated to the question of distinguishing higher residues mod-
ulo n, that is integers of the form z” mod n, when p is a

prime divisor of ¢(n). In the rest of this section, we want
to clarify this relationship in the asymptotic setting of com-
plexity theory. In view of the remarks just made, we find

o]

it convenient to assume that the ratio Tl has a fixed value

a < 1/4. We also fix a polynomial B in logn. The parame-
ters which are of interest to us are pairs (n, o) such that o is
squarefree, odd and B-smooth, n is a product of two primes
P, g, o is a divisor of ¢(n) prime to ¢(n)/o and % =a. We
call any integer n that appears as first coordinate of such
a pair (B, a)-dense. Distinguishing higher residues is usu-
ally considered difficult (see [4]). We conjecture that this
remains true when n varies over (B, a)-dense integers. To-
wards a more precise statement, let R,(y,n) be one if y is a
p-th residue modulo n and zero otherwise. Define a higher
residue oracle to be a probabilistic polynomial time algo-
rithm A which takes as input a triple (n,y,p) and returns a
bit A(n,y,p) such that the following holds:

There exists a polynomial Q in |n| such that, for infinitely
many values of |n|, one can find a prime p(|n|) < B, with:

1
Q

where the probability is taken over the random tosses of A
and its inputs, conditionnally to the event that n is (B, a)-
dense and p is a divisor of ¢(n).

Our Intractability Hypothesis is that there is no higher
residue oracle. The constant 1 — 1 comes from the obvious
stategy for approximating R, which consists in constantly
outputting zero. This strategy is successful for a proportion
1-— ]l] of the inputs.

1
Pr{A(n,y,p) = Rp(y: n)} 2 1- 1_7 +

3.3 A security proof

The security of probabilistic encryption scheme has been
investigated in [12]. In this paper, the authors introduced
the notion of semantic security: given two messages mo and
m1, a message distinguisher is a probabilistic polynomial
time algorithm D, which distinguishes encryptions of mg
from encryptions of mi. More, accurately, it outputs a bit
D(n,o,g,y) in such a way that, setting

0; = Pr{D(n,0,9,y) = 1y € E(m:)}

where F(m;) is the set of encryptions of m;, the following
holds:
There exists a polynomial @ in |n| such that, for infinitely
many values of |n|, |§o — 61| > %

Semantic security is the assertion that there is no pair of
polynomial time algorithms F', D such that F' produces two
messages for which D is a message distinguisher.

Theorem 1 Assume that no higher residue oracle erists.
Then, the probabilitic version of the encryption scheme has
semantic security.

The proof of this result uses the hybrid technique for which
we refer to [11]. It is technical in character and we have
chosen to only include a sketch it in an appendix to the
present paper.

4 Applications and variants

Even if we do not expect large scale replacement of RSA by
our scheme, we feel that the latter is worth some academic
interest. Especially, we believe that it opens up new appli-
cations. We have not yet fully investigated those potential
applications but we give some suggestions below.



4.1 Traceability

Our proposal could offer some help in the management of
key escrowing services. Consider the variant of the Diffie-
Hellman key exchange protocol, where a composite modulus
n is used. Such a variant has been studied by various re-
searchers including Mc Curley in [20], where it is shown that
some specific choices lead to a scheme that is at least as dif-
ficult as factoring. Assume further that the modulus » and
the base for exponentiations g are chosen as described in sec-
tion 1. It has been proposed (see e.g [14]) that g and n could
be defined by some kind of TTP (Trusted Third Party).
Now, the user’s public key y and his secret key x are related
by y = g” mod n. It is conceivable to leave the choice of x
to the user with the provision that £ mod o = ID, where
ID is the identity of the user. This can be checked by the
TTP upon registration of the key. Thus, we have reached a
situation where the identity is embedded in the public key
through a trapdoor, although the actual key is not. One
should not however overestimate the resulting functionality.
It could be useful in scenarios where traceability is made
possible via escrowing but where confidentiality cannot be
broken even with the help of the escrowing services. Al-
ternatively, it might be used to split traceability and secret
key recovery between key escrows. Note that the above pro-
posal requests that o is made public: as already observed,
this does not seem to endanger the scheme.

4.2 Variants of the scheme

As is often the case, one can design numerous variants of
the basic scheme. We will mention two because of their
potential applications.

Use of moduli with three prime factors As for RSA) it is
possible to embed three prime factors p, ¢, r in the modu-
lus in place of two. The construction is straightforward: the
small odd primes p; are split into three groups thus yielding,
by multiplication, three integers u, v, w. The three primes
are then sought among integers of the form 2au + 1 (resp.
2bv + 1, resp. 2cw + 1). It seems possible to keep the mini-
mum size of n to 768 bits, which allows a, b, ¢ to be around
200 bits. Following an idea of Maurer and Yacobi ([19]), we
can then have a complete trapdoor for the discrete logarithm
with base g: once the o part has been computed, there re-
mains to compute the logarithm modulo a, b and ¢, which
is not immediate but well within the reach of current tech-
nology, since these numbers are 200 bit integers. Again, the
variant could prove useful in key escrowing scenarios of, say,
Diffie-Hellman keys, where it might be desirable to have a
lengthy recovery of the secret key for consumer’s protection.

Multiplicative encryption In this variant, o is made pub-
lic and encryption applies to messages of length k, m =

Zle m;2°~. In order to encrypt m, one computes e =

Hle p;"¢ and apply probabilistic encryption to e. Of course,
the bandwith of this variant is very low: using a 768 bit mod-
ulus n and choosing the first 30 odd primes for p;s, we obtain
a 30 bit input and a 768 bit output. Allowing a larger input
has drastic consequences in terms of the size of n. The value
of o is close to 2°°° when the first k primes are used with
k = 80 but reaches 2°9%* for k = 128 and 2'3%° for k = 160.
Using the heuristic bound mentioned in section 2.4, we get
for the length of n something beyond 5000 bits if £ is 160.
This goes down to 2400 bits when k = 80.

As a result, the variant just decribed is not really prac-
tical and there is little chance that it can ever be adopted
as an actual encryption scheme. On the other hand, the ci-
phertext ¢(m) can be used in an encryption scheme 4 la El
Gamal. The modulus is not prime since it is an RSA mod-
ulus, but it makes no difference on the user’s size. From
h = ¢(m), he can manufacture a public key y with a corre-
sponding matching secret key x of his choice y = h* mod n
The resulting cryptosystem allows ciphertext traceability in
the sense of Desmedt (see [9]). Our proposal enables to
trace ciphertexts by a technique similar to the one used by
Desmedt, but decreases the size of the modulus from some-
thing like 10000 bits to 2500 bits. The tracing algorithm
goes as follows: extract from an El Gamal encryption the
part v = h" modn and apply the decryption algorithm,
treating w as a ciphertext. The decryption algorithm will
basically find the original message m, which provides the
identity of the user and from which h was built. Several
errors may occur due to the fact that r might have some
of the p;s as divisors: the corresponding decrypted values
of m; will be set to 1, regardless of their original values.
The correct value can be found if a sample of ciphertexts
are available or, alternatively, if an error-correction capacity
has been added to m. Such an error-correction mechanism
is highly advisable anyway in view of the attacks against
software key escrow reported in [15].

Note that, one can further reduce the size of the expo-
nent. This is because 40 bits may be considered enough
for tracing purposes. The value of o goes down to approxi-
mately 22°% and 1088 bits becomes an acceptable minimum
length for the modulus.

5 Challenge

It is a tradition in the cryptographic community to offer
cash rewards for successful cryptanalysis. More than a sim-
ple motivation means, such rewards also express the design-
ers’ confidence in their own schemes. As an incentive to
the analysis of the new scheme, we therefore offer $ |n| to
whoever will decrypt :

c¢= 13370fe62d81fde356d1842fd7e5fc1ae5b9b449
bdd00866597e61af4fb0d939283b04d3bb73£f91f
0d9d61eb0014690e567ab89aa8df4a9164cd4cbe
6d£f80806c7cdcedabcfda97bf7c42cc702512a49
dd196c8746c0e2ef36ca2aee21d4a3baig

g= 0b9cf6a789959ed4f36b701a50651564f7£f4f1517
6d731b4897875d26a9e24415e111479050894ba7
c532ada1903c63a84ef7edc29c208a8ddd3fb5£f7
d43727b730£20d8e12c17cdbcf9ab4358147cb62
a9fb8878bf15204e444babade613274314

n = 1459b9617b8a9df6bd54341307f1256dafa241bd
65b96ed14078e80dc6116001b83c5£88c7bbcb0b
db237daac2e76df5b415d089baa0fd078516e60e
2cdda7c26b858777604c5fbd19£0711bc75ce00a
5c37e2790b0d9d0££9625c5ab9c7511d16

where k£ = 30 (p; is the i-th odd prime) and the message is
Ascr-encoded. The challenger should be the first to decrypt
at least 50% of ¢ and publish the cryptanalysis method but
the authors are ready to carefully evaluate ad valorem any
feedback they get.



Acknowledgements

The paper grew out of a previous version which did not
include the probabilistic case of our scheme. We wish to
thank Julien Stern for suggesting us this alternative mode
of encryption. We also want to thank J. Benaloh for help
in clarifying our respective contributions in the definition
of the probabilistic case. Finally, we are grateful to Adi
Shamir, for helpful comments including the improved de-
cryption algorithm mentioned in section 2.2 and also to one
of the anonymous referees for pointing out the clever trick
that yields the improved security analysis included at the
end of section 2.4.

References

[1] R. Anderson, Robustness principles for public-key pro-
tocols, Advances in Cryptology Crypto’95, Santa Bar-
bara, Lectures Notes in Computer Science 963, pp. 236—
247, Springer-Verlag, 1995.

S
)

E. Brickell, D. Gordon, K. McCurley and D. Wilson,
Fast Exponentiation with Precomputation, Advances
in Cryptology Eurocrypt’92, Balatonfiired, Lectures
Notes in Computer Science 658, pp. 200-207, Springer-
Verlag, 1993.

(3

—_

G. Brassard, D. Chaum and C. Crépeau, Minimum Dis-
closure Proofs of Knowledge, JCSS, Vol. 37(2), Oct.
1988, pp. 156-189.

[4] J. D. Cohen Benaloh, Verifiable Secret-Ballot Elections,
Ph-D thesis, Yale University, 1988.

[5] J. D. Cohen and M. J. Fischer, (1985), A robust
and verifiable cryptographically secure election scheme,
Proc. of 26th Symp. on Foundation of Computer Sci-
ence, 1985, 372-382.

[6] J. D. Cohen Benaloh, Cryptographic Capsules: A Dis-
Jjunctive Primitive for Interactive Protocols, Advances
in Cryptology Crypto’86, Santa Barbara, Lectures
Notes in Computer Science , pp. 213-222, Springer-
Verlag, 1986.

[7

—

J. D. Cohen Benaloh and M. Yung, Distributing the
Power of a Government to Enhance the Privacy of Vot-
ers, Proc. of 5h Symp. on Principles of Distributed
Computing, 1986, 52-62.

[8] D. Denning (Robling), Cryptography and data security,
Addison-Wesley Publishing Company, pp. 148, 1983.

[9] Y. Desmedt, Securing traceability of ciphertexts — To-
wards a secure software key escrow system, Advances in
Cryptology Eurocrypt’95, Saint-Malo, Lectures Notes
in Computer Science 921, pp. 417-157, Springer-Verlag,
1995.

[10] W. Diffie and M. Hellman, New directions in cryptog-
raphy, IEEE Transactions on Information Theory, vol.
1T-22-6, pp. 644-654, 1976.

[11] O. Goldreich, Foundations of cryptography (Fragments
of a book). Weizmann Institut of Science, 1995.

[12] S. Goldwasser and S. Micali, Probabilistic Encryption,
JCSS, 28(2), April 1984, pp. 270-299.

[13] O. Goldreich, S. Micali and A. Wigderson, Proofs that
Yield Nothing but their Validity and a Methodology of
Cryptographic Protocol Design, Proc. of 27th Symp. on
Foundation of Computer Science, 1986, pp.174-187.

[14] N. Jefferies, C. Mitchell and M. Walker, A proposed ar-
chitecture for trusted third party services, Cryptogra-
phy Policy and Algorithms, Queensland, Lecture Notes
in Computer Science 1029, pp. 98-114, Springer-Verlag,
1996.

[15] L. Knudsen and T. Pedersen, On the difficulty of soft-
ware key escrow, Advances in Cryptology Eurocrypt’96,
Saragossa, Lectures Notes in Computer Science 1070,
pp- 237-244, Springer-Verlag, 1996.

[16] P. Kocher, Timing attacks in implementations of Diffie-
Hellman, RSA, DSS and other systems, Advances in
Cryptology Crypto’96, Santa Barbara, Lectures Notes
in Computer Science , pp. 104-113, Springer-Verlag,
1996.

[17] Kaoru Kurosawa, Yutaka Katayama, Wakaha Ogata
and Shigeo Tsujii, General public key residue cryptosys-
tems and mental poker protocols, Advances in Cryptol-
ogy Eurocrypt’90, Aarhus, Lectures Notes in Computer
Science 473, pp. 374-388, Springer-Verlag, 1996.

[18] H. Lenstra Jr., Factoring integers with elliptic curves,
Annals of Mathematics, 126, pp. 649-673, 1991.

[19] U. Maurer and Y. Yacobi, Non-interactive public key
cryptography, Advances in Cryptology Eurocrypt’9l,
Brighton, Lectures Notes in Computer Science 547, pp.
498-507, Springer-Verlag, 1991.

[20] K. McCurley, A key distribution system equivalent to
factoring, Journal of Cryptology, vol. 1, pp. 85-105,
1988.

[21] D. M’Raihi and D. Naccache, Batch exponentiation -
A fast DLP-based signature generation strategy, Pro-
ceedings of the third ACM conference on Computer and
Communications Security, New Delhi, pp. 58-61 , 1996.

[22] T. Okamoto and S. Uchiyama, A new public-key cryp-
tosystem as secure as factoring, Advances in Cryptology
Eurocrypt’98, Helsinki, Lectures Notes in Computer
Science , pp. to appear, Springer-Verlag, 1998.

[23] D. Naccache and J. Stern, A new public-key cryptosys-
tem, Advances in Cryptology Eurocrypt’97, Constance,
Lectures Notes in Computer Science 1233, pp. 27-36,
Springer-Verlag, 1997.

[24] Sung-Jun Park and Dong-Ho Won, A generalization
of public key residue cryptosystem, In Proc. of 1993
KOREA-JAPAN joint workshop on information secu-
rity and cryptology, 202-206.

[25] B. Pfitzmann and M. Schunter, Asymmetric fin-
gerprinting, Advances in Cryptology Eurocrypt’96,
Saragossa, Lectures Notes in Computer Science 1070,
pp. 84-95, Springer-Verlag, 1996.



[26] D. Pointcheval, A new identification scheme based on
the perceptrons problem, Advances in Cryptology Eu-
rocrypt’94, Perugia, Lectures Notes in Computer Sci-
ence 950, pp. 318-328, Springer-Verlag, 1995.

[27] S. C. Pohlig and M. E. Hellman, An improved algorithm
for computing logarithms over GF(p) and its crypto-
graphic significance IEEE Transactions on Information
Theory, vol. IT-24-1, pp. 106-110, 1978.

[28] J. Pollard, Theorems on factorization and primality
testing, Proceedings of the Cambridge Philosophical
Society, vol. 76, pp. 521-528, 1974.

[29] J. Pollard, Factoring with cubic integers, A. Lenstra
and H. Lenstra Jr., The development of the number
field sieve, vol. 1554, LNM, 4-10, Springer-Verlag, 1993.

[30] C.Pomerance, Analysis and comparison of some integer
factoring algorithms, printed in H. Lenstra Jr. and R.
Tijdeman, Computational Methods in Number Theory
I, Mathematisch Centum Tract 154, Amsterdam, pp.
89-139, 1982.

[31] M. Rabin, Digitalized signatures and public-key func-
tions as intractable as factorization, MIT/LCS/TR-
212, MIT Laboratory for Computer Science, 1979.

[32] R. Rivest, A. Shamir and L. Adleman, A method for
obtaining digital signatures and public-key cryptosys-
tems, Communications of the ACM, vol. 21-2, pp. 120-
126, 1978.

[33] A. Shamir, An efficient identification scheme based on
permuted kernels, Advances in Cryptology Crypto’89,
Santa Barbara, Lectures Notes in Computer Science
435, pp. 606-609, Springer-Verlag, 1990.

[34] A. Shamir, RSA for paranoids, CryptoBytes, vol. 1-3,
pp. 14, 1995.

[35] J. Stern, A new identification scheme based on syn-
drome decoding, Advances in Cryptology Crypto’93,
Santa Barbara, Lectures Notes in Computer Science
773, pp. 13-21, Springer-Verlag, 1994 .

[36] J. Stern, Designing identification schemes with keys of
short size, Advances in Cryptology Crypto’94, Santa
Barbara, Lectures Notes in Computer Science 839, pp.
164-173, Springer-Verlag, 1995.

Appendix: Sketch of the Security Proof.

We show that any message distinguisher can be turned into
an algorithm that recognizes higher residues. We let D be a
distinguisher for two messages mo and m; and start from the
fact that, keeping the above notations, 6y and 6; are signif-
icantly distinct. We next use the hybrid technique for which
we refer to [11], pp.91-93. Hybrids consist of a sequence of
random variables Y;, 0 < ¢ < k, such that

1. Extreme hybrids collide with E(mo) and E(m;) re-
spectively.

2. Random values of each hybrid can be produced by a
probabilistic polynomial time algorithm.

3. There are only polynomially many hybrids.

In such a situation, [11] shows that D distinguishes two
neighbouring hybrids. Our hybrids are formed by consid-
ering a message u;, such that

pi =momodp; for j>4 and

pi; =mi modp; for j <4

and letting Y; to be uniformly distributed over the set E(u;)
of encryptions of p;. It is easily seen that conditions 1, 2
and 3 are satisfied. Thus, for some index 4, D significantly
distinguishes Y; and Y;—1. Set g = pi, p = p; and let p/,
1 < j < p, be the unique message such that

¢ =pmodp, for £#4i and g/ =jmodp

We note that, both m; and m;_; appear among the p’s and
we show that D cannot distinguish encryptions of any two
of the y’s. This will yield the desired contradiction.

Let

m; = Pr{D(n,0,9,y) = 1|y € E(u;)}

and assume that some m; significantly exceeds the other

ones. In other words, m; > sup; ;7 + % for some poly-

nomial @ and infinitely many values of |n|. We show how
to predict p-th residuosity: given z, we run D over a large
sample N of inputs (n,o,y) where y = x°2°7/Pg", with
x > n and ¢ < p chosen at random, and we average the
outputs. Now, if z is a p-th residue, then y simply varies
over E(u;), whereas, if z is not a p-th residue, y randomly
varies over the union of all E(u;)s. Thus, in the first case,
the average is close to m;, whereas, in the second case, it is
P
approximately %. It is easily seen that the difference

is bounded from below by %%. Using the law of large

numbers, this is enough to make the proper decision on the
p-th residuosity, with probability as close to 1 as we wish,
by using only polynomially large samples. This finishes the
proof.

Remarks.

1. Turning the previous sketch into a complete proof in-
volves a technical but rather long write-up: especially, a
precise version of the law of large numbers has to be made
explicit, e.g. by using the Chebishev inequality. Also, the

¥

values of 7; and == are not known a priori and should
be approximated as well using the law of large numbers. We
urge the interested reader to consult [11] for similar proofs.
2. The higher residuosity oracle that was built in the proof
for the sake of contradiction uses inputs o and g on top of
n, y and p. Actually, one can check that everything goes
through, mutatis mutandis, if o is replaced by o = Hp<B p.
Thus o is not really needed. As for g, as seen in section 2.1,
it can be chosen at random: a proper choice will be spot-
ted by sampling the corresponding oracle and checking its
correctness.



