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Abstract 

We discuss the problem of routing messages on hypercubes which have faulty processors and/or commu- 
nication links. We are motivated by the belief that simple algorithms, operating under simple assumptions, 
can ensure high probabilities of successful message routing. In this paper, we consider the basic problem 
of routing a single message from an arbitrary source to an arbitrary destination. In our study, a fault is 
assumed to render the processor or link non-functional for purposes of communicating messages. As such, 
we may also consider communications hot spots as node faults, and our results also apply to routing in 
congested hypercubes. 

A framework for the analysis of fault tolerant routing schemes on a hypercube is presented. This frame- 
work includes differing routing schemes, routing information models and fault distribution models. The a 
priori probabilities of successful routing of a single, indivisible message under each of our possible sets of 
assumptions are calculated. Using random routing, under the one-step local information routing model, we 
show that the a priori probability of successful message routing is high even for an exceedingly large number 
of faults. We also analyze the behavior of sidetracking, a routing method which combines the concepts of local 
information and randomization. Using sidetracking, and in the one-step local information routing model, 
a messsage will be routed forward using random routing. If the message reaches a blocked processor (no 
non-faulty neighbors along a minimal path to the destination) it will be sent to a non-faulty neighbor, chosen 
uniformly at random from the set of non-faulty neighbors. We use simulation experiments to determine the 
performance of this routing scheme, analyzing the probability of successful routing and the expected path 
length of a routed message. The empirical performance of the sidetracking algorithms indicates strongly that, 
in the limit as the cube dimension grows larger and for a fixed probability of node failure, the probability of 
successful message routing is 100%. 
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1 Introduction and Definitions 

Hypercubes have recently emerged as a viable and practical parallel computer architecture ([4], [7], 

PI, PI>. A f un d amental problem in implementing a hypercube machine is that of interprocessor 
communications. We discuss the problem of finding high performance fault tolerant routing schemes 
on hypercubes. We present a notion of faults which is strong enough to model permanent processor 
failures as well as processors which become communications hot spots. This is in keeping with 
the idea of local information, that is, the idea that effective routing algorithms can be developed 
which require only knowledge of the status of a processor’s immediate neighbors. We show that 
the combination of local information with randomization is powerful enough to provide us with 
the desired routing algorithm. In contrast to the idea of local information is the idea of gEobu2 
information, where routing would require knowledge of the status of the entire hypercube. Global 
information is the less attractive alternative for two reasons. First, the space overhead per processor 
is far greater for global information than for local information. Second, it would be considerably 
more difficult and time intensive to maintain the global state information at each processor. In fact, 
the problem of maintaining global state information locally is as difficult as the general problem 
considered in this paper. 

The remainder of this section presents a framework for our subsequent analysis of some proposed 
simple fault tolerant routing schemes. The final section introduces the routing method which we 
call sidetracking and contains the results which demonstrate its extremely high performance. 

1.1 Routing 

The general problem of routing is that of routing messages from sources to destinations. A partial 
permutation is a routing problem where there is at most one packet initially at a node, each with 
distinct destination addresses. We consider routing schemes which are oblivious, or non-adaptive, 
i.e. where the path taken by a message depends only upon its source (s) and destination (d) nodes. 
We discuss two basic oblivious routing schemes: deterministic routing and random routing. In 
deterministic routing, for each (s,d) pair, there is a unique path which any message with s as 
source and d as destination must take. In random routing, for each (s,d) pair, there is a fixed 
probability distribution (independent of the rest of the permutation) that specifies for each path 
from s to d the probability that the path will be taken. 

On an n-dimensional hypercube or n-cube (which contains N = 2” nodes), standard deter- 
ministic routing is accomplished by correcting differing bits (between the addresses of s and d) in 
some fixed order, such as highest dimension bit first. By correcting a differing, or wrong, bit, we 
mean routing the message one step along the edge whose dimension is the same as the differing 
bit position. This is the same as routing the message in the forward direction, as we are reducing 
the remaining routing distance by one step. In contrast, routing in the backward direction moves 
a message one routing step farther away from its destination. A minimal length path is a path on 
which the message is routed only in the forward direction. Standard deterministic routing is the 
simplest approach to routing, and one which is used in practice on existing hypercube machines. 
The problem is that bad bottlenecking may occur; in fact, for a full permutation the standard 
deterministic routing algorithm has worst case time O(N1i2) ([lo]). In fact, Borodin and Hopcroft 
[2] show that in any N node network with in-degree d, the time required in the worst case by 
any oblivious routing strategy is R(fi/d3i2). It is an open question whether there is any routing 
algorithm on an n-cube that is o(log2N). 

Our version of random routing on a hypercube is based upon Phase B of Valiant’s probabilistic 
routing scheme (see [lo], and also ill], [12]). With high probability, Valiant’s method requires only 
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O(log N) time for a full permutation. We assign a distribution so that all minimal length paths are 
equally likely; this translates into correcting differing bits in a uniformly random order. 

In this paper, we consider the case of routing a single (short and indivisible) message. Further, 
we shall initially restrict our attention to minimal path routes. Since we are dealing primarily with 
minimal path routes, we assume the source and destination nodes are antipodal, i.e. at opposite 
corners of the cube. 

1.2 Faults 

We consider faults to be permanent, as opposed to, say, transient, intermittent or even malicious 
faults. As such, we are dealing with issues of fault tolerance. We wish to assess system behavior in 
the presence of a set of faults which is fixed for the duration of any routing attempt. In this paper, 
we only consider node faults. A node fault can be thought of as implying that all of that node’s 
communication links are faulty. In fact, since our notion of fault is intended to capture the idea of 
a node which is unavailable to be used in any communications scheme, a faulty node need not be 
damaged in the hardware sense but could be a communications or computational hot spot. Lastly, 
we assume that the source and destination nodes are both live (not faulty). 

1.2.1 Routing Information Models 

We model the amount of information available to individual nodes in two ways: 

1. Model 1 - No local information. Individual nodes do not know which, if any, of their neighbors 
are faulty. 

2. Model 2 - Local information. Individual nodes know which, if any, of their neighbors are 
faulty. SThis model is also called the one-step local information model. Issues pertaining to 
fault diagnosis, however, are not covered in this paper. 

1.2.2 Routing Algorithms 

Using these routing information models, we have four basic, simple routing algorithms, each of 
which can be viewed as making ZocaE decisions. That is to say, at each step of the routing, the next 
step is determined from the current position and the destination. This is in contrast to determining 
the entire message path at the source node (and carrying this routing ticket along with the message). 
Table 1 summarizes the local decisions made by each of the four algorithms. 

Model 1 
1 Deterministic Random 

1 Correct highest dimension Correct a bit at random from 

Model 2 

wrong bit the set of all wrong bits 

Correct highest dimension Correct a bit at random from 
non-faulty wrong bit the set of all non-faulty wrong 

bits 

Table 1: Four Basic Routing Algorithms 
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1.2.3 Fault Distribution Models 

To model the distribution of faults, we use ideas based on the theory of random gruphs ([l], [6]). 
The two differing models are: 

1. Model A - Fix p, the probability that a single node is faulty, 0 5 p 5 1, and let the set of 
node faults be distributed binomially with probability p. 

2. Model B - Fix f, the number of faults, 0 < f 5 (2” - 2), and let all possible distributions 
of f faulty nodes be equally likely. For comparisons with Model A, we set f = (~(2~ - 2)]. 

As mentioned above, the fault distribution is fixed for the duration of any routing attempt. 

1.3 The Problem to be Analyzed 

The goal of this study is as follows: 

Find a fault tolerant routing scheme which can ensure a high 
probability of successful message routing on a hypercube. 

In attempting to fulfill this goal, we are motivated by the belief that that the performance of 
simple algorithms, operating under simple assumptions, is (already) very good. Our approach is to 
determine the performance of these simple algorithms analytically and, if need be, empiricuZZy. 

2 Analysis 

In this section, we analyze the probability of successfully routing a single message. Routing succeeds 
if the message reaches the destination. With no local information (Model l), routing fails if we 
attempt to route the message to a faulty node. With one-step local information (Model 2), routing 
fails if we reach a blocked node, one which has no non-faulty neighbors along any minimal path 
to the destination. Since there are two routing methods, two fault information models and two 
fault distribution models, there are eight separate analyses to perform, As is shown is the following 
section, by exploiting the relationship between deterministic and random routing in the one message 
case, we can reduce the number of analyses to be performed to four. We then derive closed form 
answers for the success probabilities in each of the four remaining cases. 

2.1 Relating Success Probabilities using Deterministic versus Random Routing 

Let us presume we working with Model B, where for fixed cardinality, k, all subsets of size k 
are equally likely to occur. Then, for single message routing on a hypercube, the probabilities of 
successful routing are the same using deterministic and random routing. 

More precisely, let s = 0, d = 2n - 1 and let F c { 1,. . . , 2” - 2) be a subset of faults. If Det(3) = 
the probability of successful routing (from 3 to d) using deterministic routing on a hypercube with 
all of the nodes in 3 faulty, and if Run(F) = the probability of successful routing (from s to d) 
using random routing on a hypercube with all of the nodes in 3 faulty, then the following is true. 

Theorem: For both Model 1 and Model 2, in Model B, c .Det(.ZF) = c Ran(T), for 
IFI=k I3J=k 

O_<k52n-2. 
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In other words, the probabilities are the same for a random set of faults of fixed size Ic. This 
result holds in both the no-local information case and in the one-step local information case. The 
main idea behind both proofs is that the probabilities of success using each possible (random) path 
balance out so that their average is the same as the probability for the deterministic path. In 
addition, even though this result was defined in the context of Model B, it is easy to see to that 
an analogous result holds for Model A. This is true because all fault sets of fixed cardinality li are 
also equiprobable when faults are distributed binomially. 

2.2 Deriving Closed Form Success Probabilities 

We now have four cases to analyze based only on our fault information and fault distribution 
models. Let us call the desired probabilities pi(m,p), pi(n, f), pb(n,p) and p$(~~,f). 

2.2.1 Model 1 Analysis 

Under the assumptions of Model 1, individual nodes have no local information about the fault 
status of their neighbors. Hence, the message can be successfully routed only if there are no faults 
on the fixed, deterministic path from the source, s, to the destination, d. Therefore, 

gJ(n,p) = (1 -P>“-l 

and 

Pi3W) = ( 2n - 2 - (n - 1) 

f )/(2”/2)- 

(1) 

(2) 

Theorem: For any 0 _< p i 1, ,llr pL(n, 123(2“ - 2)])/pi(n,p) = 1. 

Results of this type are common in random graph theory, In this context, the theorem says 
that we can use whichever closed form probability is more convenient for our purposes. In fact, 
the proof shows that the ratio converges to 1 quite quickly; specifically, the ratio converges on the 
order of exp(n2/2n). Unfortunately, since lim,,, p, - ’ - 0 for fixed p > 0, we see that routing using 
no local information is not good at all. 

2.2.2 Model 2 Analysis 

The case of one-step local information is the more difficult one to analyze. We are able to arrive 
at closed form solutions by making some observations. First, we note that the probability of 
success using deterministic routing equals the sum over all deterministic paths T of the probability 
of successful routing using T times the probability that T is the deterministic path. The Model 1 
analysis above tells us what the probability of successful routing using a given deterministic path, 
T, is. Second, there are n! possible deterministic paths/routes, each corresponding to the order in 
which the n dimensions are traversed. Hence, routes correspond to permutations on n elements. 
The third and key insight is that given a specific route, i.e. 0 a permutation on 1. . . n, the number 

of faults required for u to be the deterministic path is equal to the number of inversions of u, which 
is ]{(i,j) : 1 _< i < j 2 n,a(i) > 0(j)}]. 

Following Knuth [5], let m(k) be the number of permutations on n elements with exactly k 
inversions. Note that (y) is the maximum number of inversions for any permutation on n elements. 
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Then, we have shown that: 

(3 
Ps-bP) = (I- p)“-’ c In(k) -pk . (3) 

k=O 

Since the generating function for inversions is well-known, we can simplify this result as follows: 

(3 
PS P) = (I - p)“-’ C In(k) *Pk (4) 

kc0 

= (1-p)“-ln~~l+P+P2+...+Pk) 
k=o 

= fJ(l-pp. 
k=2 

(5) 

(6) 

(Alternate) Proof; Consider the local routing decision of a node k steps away from the 
destination. The probability that all k neighbors in the forward direction are faulty is pk, so the 
probability of successfully routing the message this one step is (I - p”). But the overall probability 
of successfully routing the message is the probability that we can route the message each step from 
k = n steps away down to k = 2 steps away (since the destination is assumed to be Live). Hence, 
pi(w) = IIL2<1-Pk>. q 

But now, from real analysis, we know that lim n+oo pi( n, p) converges. Of course, so did pi( n, p) 
but it converged to 0. Unfortunately, we cannot derive a simpler closed form for this vaIue; but we 
can compute and graph its values quite easily. Figure 1 shows the values for pi(n,p) as a function 
of p. 

Figure 1: lim,,, pi : Random Routing with Local Information 
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Using the same insights that gave us: 

p&p) = (1 - p)“-l Cm(k) - Pk 
kc0 

we see that: 

-1 (3 Pi&f) 2n 2 - - - - k = c (n 1) 

k=O 

Theorem: For any p 0 _< < 1, &nr &(n, b(2% - 2)j)/pi(7z,p) = 1. 

(7) 

As in the Model 1 case, the proof gives an estimate of the rate of convergence, which here is on 
the order of exp(n5/22n). W e see that the ratio converges more quickly in the Model 2 case than 
it does in the Model 1 case. Since we have now derived closed form solutions for each of the four 
possible model combinations, we conclude that the one message case is fully analyzed. 

3 Sidetracking and Empirical Results 

The analysis of random routing using one-step local information showed that the probability of 
successful message routing is high even for an exceedingly large number of faults. However, since 
random routing attempts to route via minimal length paths, it uses only about one half of the 
local information presumed available, i.e. only that in the forward direction. We have devised a 
method called sidetracking which takes advantage of all of the information available at each node. 
Sidetracking, considered as a local decision, first attempts to route the message in the forward 
direction using random routing. If the message is blocked, i.e. no non-faulty neighbors along 
a minimal path to the destination, then it routes randomly to a live neighbor in the backward 
direction. Except at the source node, we are guaranteed to have at least the node which routed 
the message to the blocked node as a live backward neighbor. 

The problem with implementing sidetracking is to decide when to stop and say that the mes- 
sage routing has failed. We would ideally like to carry as little extra information along with the 
message as possible. An extra O(n) bits are alright since that much is already required to carry 
along the destination address. We simulate this decision by having each message carry with it a 
maximum path length (actually a count of length to go) and declaring that routing has failed if the 
destination has not been reached within that many routing steps. One problem that may occur 
with sidetracking is tunneling. Tunneling arises when we reach a blocked node with only one live 
backward neighbor. If the backward node’s only live forward neighbor is the blocked node, then 
the message will cycle between these two nodes until the maximum path length limit is reached 
and the routing attempt will fail. 

At present, the analysis of sidetracking has been carried out using empirical results from simu- 
lation experiments. The inputs of the simulation program are the cube dimension n, the node fault 
probability p and the maximum path length multiple mpl* (of 72, so that the maximum path length 
is mpl* times m). Since the program is calculating a probability, it runs a number of Bernoulli trials 
of routing sufficient to ensure that the final answer is within one per cent of the actual value (with 
95% confidence). For each experiment, the outputs of the simulation program are the probabil- 
ity of successful message routing S(n,p) and the histogram of path lengths of successfully routed 
messages from which we compute the average or expected path length (APL). 

We have found that the performance of sidetracking is a substantial improvement over random 
routing. In fact, the empirical results have led us to the following: 

324 



Conjecture: For fixed p < 1, Zimn+,,S(~,p) = 1. 

Note that the value 1 is attainable only asymptotically since there is a fixed probability, pn, that 
the message will be blocked at the source. Not only are we almost assured of routing the message 
successfully but the penalty of sidetracking, as measured by path length excess (over n, the length 
of a minimal path route) is small. For example, for p = l/2, mpl* = 3, APL/n 5 5/4. Table 2 
summarizes the results of using sidetracking for fault probabilies greater than l/2. These results 
show that, despite our concern, tunneling rarely occurs. 

- 
n 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 - 

- 
n 

20 
20 
20 
20 
20 
20 
20 
20 
20 
20 - 

P mpl* Pi 76 Shd % APL dn 
xi- 20 58.0 100.0 23.99 0.43 
.55 20 46.9 99.9 26.43 0.62 
.60 20 35.8 99.8 30.48 0.97 
.65 20 23.9 98.8 38.12 1.55 
.70 20 14.0 95.0 51.29 2.45 
.75 20 6.2 81.6 67.57 3.23 
.80 20 1.8 50.0 82.99 3.62 
.85 20 0.3 12.6 86.76 3.43 
.90 20 0.01 0.3 86.44 2.92 
.95 20 0.0 0.0 0.00 0.00 

APL-n 
0.20 

0.32 
0.52 
0.91 
1.56 
2.37 
3.15 
3.33 
3.32 
0.00 

Table 2: Sidetracking Results using Model A 

P mpl* 
.50 20 
.55 20 
.60 20 
.65 20 
.70 20 
.75 20 
.80 20 
.85 20 
.90 20 
.95 20 

46.7 
35.7 
23.9 
14.2 
6.3 
1.8 
0.2 
0.0 
0.0 

Shp) 7% APL aln 
100.0 22.11 0.20 
100.0 23.29 0.27 

99.9 25.05 0.38 
99.8 28.51 0.64 
99.0 34.20 0.99 
94.1 44.97 1.60 
71.0 61.57 2.36 
21.4 69.36 2.50 

0.6 48.37 1.41 
0.0 0.00 0.00 

0.11 
0.16 
0.25 
0.43 
0.71 
1.24 
2.07 
2.47 
1.41 
0.00 

Table 3: Backtracking Results using Model A 

In addition to sidetracking, we implemented a version of randomized backtracking where when 
we reach a blocked node we set that node to faulty before routing backwards. This change to 
sidetracking is sufficient to eliminate all tunneling. Note that this method is not that the same as 
standard backtracking since the backwards routing is to a random live node and not to the node 
from which we came previously. Given enough time, randomized backtracking will find a path (for 
the message) between the source and the destination, if any such path exists. Hence, it is useful 
for comparisons with sidetracking. On a real machine, however, to implement backtracking would 
require far more effort and resources than sidetracking. Such an implementation would require 
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P 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

Sidetracking 
I ._L -\ 

Dimensior 1 (mpl” = 5) 
5 10 

99.9 100.0 
99.8 100.0 
98.3 99.9 
93.4 99.5 
80.3 96.7 
58.5 84.8 
32.0 53.6 

9.7 11.9 
0.9 0.1 

15 20 
100.0 100.0 
100.0 100.0 
100.0 100.0 

99.9 99.9 
99.4 99.8 
94.9 98.4 
73.3 85.1 
23.7 37.3 

0.1 0.3 

n- Backtracking 
Dimension (mpl* = 5) 

5 10 15 20 
100.0 100.0 100.0 100.0 
99.9 100.0 100.0 100.0 
99.2 99.9 100.0 100.0 
96.7 99.9 100.0 100.0 
87.1 99.3 99.9 100.0 
65.7 95.4 99.4 99.9 
35.6 72.3 91.8 97.6 
11.1 20.8 40.4 61.2 
0.9 0.1 0.2 0.6 

Table 4: Probability of Success Convergence Rates 

large space overhead since each message must carry with it a complete list of all nodes visited by 
the message. Transmission of this history information, in turn, would incur large communication 
time overhead. Table 3 summarizes the results for backtracking, again with fault probabilities 
greater than l/2. The greatest benefit of backtracking is in lowering the average path length of a 
successfully routed message but, overall, the improvements over sidetracking are not great. Lastly, 
Table 4 shows how fast the probability of success values converge to their asymptotic limits (as 
n --+ co) using both sidetracking and randomized backtracking. 

4 Conclusions 

We have presented a framework for the analysis of fault tolerant routing schemes on a hypercube. 
Our notion of faults is extremely versatile. Our results apply not only to systems with permanent 
node failures; but since a communications hot spot may be identified as a fault, our methods apply 
as well to routing in congested hypercubes. 

The basic conclusion to be drawn from our study is that randomization is very effective when it 
is applied to routing. In addition, we have shown that simple routing schemes with simple assump- 
tions, namely that of local information, work very well. Specifically, the sidetracking algorithm 
performs incredibly well. Consider the following asymptotic behavior. Using minimal path random 
routing with no local information, the probability of successful message routing is 0%. Using min- 
imal path random routing with one-step local information, the probability of successful message is 
quite good, but tails off rapidly for a high probability of node failure (see Figure 1). Finally, using 
sidetracking (or non-minimal path random routing with one-step local information), the probability 
of successful message routing is 100%. 

There are many implications of the conjectured asymptotic behavior of sidetracking. Its behav- 
ior implies that, given a fixed pair of live antipodal nodes of the hypercube, not only are they in 
the same connected component, but that sidetracking algorithm actually finds a path connecting 
them. These consequences further the work of Erdlis and Spencer [3] who prove a double jump 
threshold for the connectivity of a random n-cube. They show that asymptotically, for p > l/2 
the n-cube is disconnected, for p < l/2 the n-cube is connected and for p = l/2 the n-cube is 
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connected with probability l/e. ’ Our results show that, even when p > l/2 and the n-cube is likely 
disconnected, sidetracking can almost always successfully route a single message. This success can 
be achieved because it is most likely that only singleton nodes are disconnected and, hence, two 
randomly chosen live nodes are probably in the same connected component. 
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