
Hypercube Message Routing

in the Presence of Faults

Jesse M. Gordon* and Quentin F. Stout+

Department of Electrical Engineering and Computer Science
The University of Michigan

Ann Arbor, MI 48109-2122 USA

Abstract

We discuss the problem of routing messages on hypercubes which have faulty processors and/or commu-
nication links. We are motivated by the belief that simple algorithms, operating under simple assumptions,
can ensure high probabilities of successful message routing. In this paper, we consider the basic problem
of routing a single message from an arbitrary source to an arbitrary destination. In our study, a fault is
assumed to render the processor or link non-functional for purposes of communicating messages. As such,
we may also consider communications hot spots as node faults, and our results also apply to routing in
congested hypercubes.

A framework for the analysis of fault tolerant routing schemes on a hypercube is presented. This frame-
work includes differing routing schemes, routing information models and fault distribution models. The a
priori probabilities of successful routing of a single, indivisible message under each of our possible sets of
assumptions are calculated. Using random routing, under the one-step local information routing model, we
show that the a priori probability of successful message routing is high even for an exceedingly large number
of faults. We also analyze the behavior of sidetracking, a routing method which combines the concepts of local
information and randomization. Using sidetracking, and in the one-step local information routing model,
a messsage will be routed forward using random routing. If the message reaches a blocked processor (no
non-faulty neighbors along a minimal path to the destination) it will be sent to a non-faulty neighbor, chosen
uniformly at random from the set of non-faulty neighbors. We use simulation experiments to determine the
performance of this routing scheme, analyzing the probability of successful routing and the expected path
length of a routed message. The empirical performance of the sidetracking algorithms indicates strongly that,
in the limit as the cube dimension grows larger and for a fixed probability of node failure, the probability of
successful message routing is 100%.

*Supported in part by NSF Grant No. DCR-85077851 and a Fellowship from the Unisys Corporation.
‘Supported i n p art by NSF Grant No. DCR-85077851 and a DEC Incentives in Excellence Award.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 ACM 1988 0-89791-278-O/88/0007/0318 $1.50

318

1 Introduction and Definitions

Hypercubes have recently emerged as a viable and practical parallel computer architecture ([4], [7],

PI, PI>. A f un d amental problem in implementing a hypercube machine is that of interprocessor
communications. We discuss the problem of finding high performance fault tolerant routing schemes
on hypercubes. We present a notion of faults which is strong enough to model permanent processor
failures as well as processors which become communications hot spots. This is in keeping with
the idea of local information, that is, the idea that effective routing algorithms can be developed
which require only knowledge of the status of a processor’s immediate neighbors. We show that
the combination of local information with randomization is powerful enough to provide us with
the desired routing algorithm. In contrast to the idea of local information is the idea of gEobu2
information, where routing would require knowledge of the status of the entire hypercube. Global
information is the less attractive alternative for two reasons. First, the space overhead per processor
is far greater for global information than for local information. Second, it would be considerably
more difficult and time intensive to maintain the global state information at each processor. In fact,
the problem of maintaining global state information locally is as difficult as the general problem
considered in this paper.

The remainder of this section presents a framework for our subsequent analysis of some proposed
simple fault tolerant routing schemes. The final section introduces the routing method which we
call sidetracking and contains the results which demonstrate its extremely high performance.

1.1 Routing

The general problem of routing is that of routing messages from sources to destinations. A partial
permutation is a routing problem where there is at most one packet initially at a node, each with
distinct destination addresses. We consider routing schemes which are oblivious, or non-adaptive,
i.e. where the path taken by a message depends only upon its source (s) and destination (d) nodes.
We discuss two basic oblivious routing schemes: deterministic routing and random routing. In
deterministic routing, for each (s,d) pair, there is a unique path which any message with s as
source and d as destination must take. In random routing, for each (s,d) pair, there is a fixed
probability distribution (independent of the rest of the permutation) that specifies for each path
from s to d the probability that the path will be taken.

On an n-dimensional hypercube or n-cube (which contains N = 2” nodes), standard deter-
ministic routing is accomplished by correcting differing bits (between the addresses of s and d) in
some fixed order, such as highest dimension bit first. By correcting a differing, or wrong, bit, we
mean routing the message one step along the edge whose dimension is the same as the differing
bit position. This is the same as routing the message in the forward direction, as we are reducing
the remaining routing distance by one step. In contrast, routing in the backward direction moves
a message one routing step farther away from its destination. A minimal length path is a path on
which the message is routed only in the forward direction. Standard deterministic routing is the
simplest approach to routing, and one which is used in practice on existing hypercube machines.
The problem is that bad bottlenecking may occur; in fact, for a full permutation the standard
deterministic routing algorithm has worst case time O(N1i2) ([lo]). In fact, Borodin and Hopcroft
[2] show that in any N node network with in-degree d, the time required in the worst case by
any oblivious routing strategy is R(fi/d3i2). It is an open question whether there is any routing
algorithm on an n-cube that is o(log2N).

Our version of random routing on a hypercube is based upon Phase B of Valiant’s probabilistic
routing scheme (see [lo], and also ill], [12]). With high probability, Valiant’s method requires only

319

O(log N) time for a full permutation. We assign a distribution so that all minimal length paths are
equally likely; this translates into correcting differing bits in a uniformly random order.

In this paper, we consider the case of routing a single (short and indivisible) message. Further,
we shall initially restrict our attention to minimal path routes. Since we are dealing primarily with
minimal path routes, we assume the source and destination nodes are antipodal, i.e. at opposite
corners of the cube.

1.2 Faults

We consider faults to be permanent, as opposed to, say, transient, intermittent or even malicious
faults. As such, we are dealing with issues of fault tolerance. We wish to assess system behavior in
the presence of a set of faults which is fixed for the duration of any routing attempt. In this paper,
we only consider node faults. A node fault can be thought of as implying that all of that node’s
communication links are faulty. In fact, since our notion of fault is intended to capture the idea of
a node which is unavailable to be used in any communications scheme, a faulty node need not be
damaged in the hardware sense but could be a communications or computational hot spot. Lastly,
we assume that the source and destination nodes are both live (not faulty).

1.2.1 Routing Information Models

We model the amount of information available to individual nodes in two ways:

1. Model 1 - No local information. Individual nodes do not know which, if any, of their neighbors
are faulty.

2. Model 2 - Local information. Individual nodes know which, if any, of their neighbors are
faulty. SThis model is also called the one-step local information model. Issues pertaining to
fault diagnosis, however, are not covered in this paper.

1.2.2 Routing Algorithms

Using these routing information models, we have four basic, simple routing algorithms, each of
which can be viewed as making ZocaE decisions. That is to say, at each step of the routing, the next
step is determined from the current position and the destination. This is in contrast to determining
the entire message path at the source node (and carrying this routing ticket along with the message).
Table 1 summarizes the local decisions made by each of the four algorithms.

Model 1
1 Deterministic Random

1 Correct highest dimension Correct a bit at random from

Model 2

wrong bit the set of all wrong bits

Correct highest dimension Correct a bit at random from
non-faulty wrong bit the set of all non-faulty wrong

bits

Table 1: Four Basic Routing Algorithms

320

1.2.3 Fault Distribution Models

To model the distribution of faults, we use ideas based on the theory of random gruphs ([l], [6]).
The two differing models are:

1. Model A - Fix p, the probability that a single node is faulty, 0 5 p 5 1, and let the set of
node faults be distributed binomially with probability p.

2. Model B - Fix f, the number of faults, 0 < f 5 (2” - 2), and let all possible distributions
of f faulty nodes be equally likely. For comparisons with Model A, we set f = (~(2~ - 2)].

As mentioned above, the fault distribution is fixed for the duration of any routing attempt.

1.3 The Problem to be Analyzed

The goal of this study is as follows:

Find a fault tolerant routing scheme which can ensure a high
probability of successful message routing on a hypercube.

In attempting to fulfill this goal, we are motivated by the belief that that the performance of
simple algorithms, operating under simple assumptions, is (already) very good. Our approach is to
determine the performance of these simple algorithms analytically and, if need be, empiricuZZy.

2 Analysis

In this section, we analyze the probability of successfully routing a single message. Routing succeeds
if the message reaches the destination. With no local information (Model l), routing fails if we
attempt to route the message to a faulty node. With one-step local information (Model 2), routing
fails if we reach a blocked node, one which has no non-faulty neighbors along any minimal path
to the destination. Since there are two routing methods, two fault information models and two
fault distribution models, there are eight separate analyses to perform, As is shown is the following
section, by exploiting the relationship between deterministic and random routing in the one message
case, we can reduce the number of analyses to be performed to four. We then derive closed form
answers for the success probabilities in each of the four remaining cases.

2.1 Relating Success Probabilities using Deterministic versus Random Routing

Let us presume we working with Model B, where for fixed cardinality, k, all subsets of size k
are equally likely to occur. Then, for single message routing on a hypercube, the probabilities of
successful routing are the same using deterministic and random routing.

More precisely, let s = 0, d = 2n - 1 and let F c { 1,. . . , 2” - 2) be a subset of faults. If Det(3) =
the probability of successful routing (from 3 to d) using deterministic routing on a hypercube with
all of the nodes in 3 faulty, and if Run(F) = the probability of successful routing (from s to d)
using random routing on a hypercube with all of the nodes in 3 faulty, then the following is true.

Theorem: For both Model 1 and Model 2, in Model B, c .Det(.ZF) = c Ran(T), for
IFI=k I3J=k

O_<k52n-2.

321

In other words, the probabilities are the same for a random set of faults of fixed size Ic. This
result holds in both the no-local information case and in the one-step local information case. The
main idea behind both proofs is that the probabilities of success using each possible (random) path
balance out so that their average is the same as the probability for the deterministic path. In
addition, even though this result was defined in the context of Model B, it is easy to see to that
an analogous result holds for Model A. This is true because all fault sets of fixed cardinality li are
also equiprobable when faults are distributed binomially.

2.2 Deriving Closed Form Success Probabilities

We now have four cases to analyze based only on our fault information and fault distribution
models. Let us call the desired probabilities pi(m,p), pi(n, f), pb(n,p) and p$(~~,f).

2.2.1 Model 1 Analysis

Under the assumptions of Model 1, individual nodes have no local information about the fault
status of their neighbors. Hence, the message can be successfully routed only if there are no faults
on the fixed, deterministic path from the source, s, to the destination, d. Therefore,

gJ(n,p) = (1 -P>“-l

and

Pi3W) = (2n - 2 - (n - 1)

f)/(2”/2)-

(1)

(2)

Theorem: For any 0 _< p i 1, ,llr pL(n, 123(2“ - 2)])/pi(n,p) = 1.

Results of this type are common in random graph theory, In this context, the theorem says
that we can use whichever closed form probability is more convenient for our purposes. In fact,
the proof shows that the ratio converges to 1 quite quickly; specifically, the ratio converges on the
order of exp(n2/2n). Unfortunately, since lim,,, p, - ’ - 0 for fixed p > 0, we see that routing using
no local information is not good at all.

2.2.2 Model 2 Analysis

The case of one-step local information is the more difficult one to analyze. We are able to arrive
at closed form solutions by making some observations. First, we note that the probability of
success using deterministic routing equals the sum over all deterministic paths T of the probability
of successful routing using T times the probability that T is the deterministic path. The Model 1
analysis above tells us what the probability of successful routing using a given deterministic path,
T, is. Second, there are n! possible deterministic paths/routes, each corresponding to the order in
which the n dimensions are traversed. Hence, routes correspond to permutations on n elements.
The third and key insight is that given a specific route, i.e. 0 a permutation on 1. . . n, the number

of faults required for u to be the deterministic path is equal to the number of inversions of u, which
is]{(i,j) : 1 _< i < j 2 n,a(i) > 0(j)}].

Following Knuth [5], let m(k) be the number of permutations on n elements with exactly k
inversions. Note that (y) is the maximum number of inversions for any permutation on n elements.

322

Then, we have shown that:

(3
Ps-bP) = (I- p)“-’ c In(k) -pk . (3)

k=O

Since the generating function for inversions is well-known, we can simplify this result as follows:

(3
PS P) = (I - p)“-’ C In(k) *Pk (4)

kc0

= (1-p)“-ln~~l+P+P2+...+Pk)
k=o

= fJ(l-pp.
k=2

(5)

(6)

(Alternate) Proof; Consider the local routing decision of a node k steps away from the
destination. The probability that all k neighbors in the forward direction are faulty is pk, so the
probability of successfully routing the message this one step is (I - p”). But the overall probability
of successfully routing the message is the probability that we can route the message each step from
k = n steps away down to k = 2 steps away (since the destination is assumed to be Live). Hence,
pi(w) = IIL2<1-Pk>. q

But now, from real analysis, we know that lim n+oo pi(n, p) converges. Of course, so did pi(n, p)
but it converged to 0. Unfortunately, we cannot derive a simpler closed form for this vaIue; but we
can compute and graph its values quite easily. Figure 1 shows the values for pi(n,p) as a function
of p.

Figure 1: lim,,, pi : Random Routing with Local Information

323

Using the same insights that gave us:

p&p) = (1 - p)“-l Cm(k) - Pk
kc0

we see that:

-1 (3 Pi&f) 2n 2 - - - - k = c (n 1)

k=O

Theorem: For any p 0 _< < 1, &nr &(n, b(2% - 2)j)/pi(7z,p) = 1.

(7)

As in the Model 1 case, the proof gives an estimate of the rate of convergence, which here is on
the order of exp(n5/22n). W e see that the ratio converges more quickly in the Model 2 case than
it does in the Model 1 case. Since we have now derived closed form solutions for each of the four
possible model combinations, we conclude that the one message case is fully analyzed.

3 Sidetracking and Empirical Results

The analysis of random routing using one-step local information showed that the probability of
successful message routing is high even for an exceedingly large number of faults. However, since
random routing attempts to route via minimal length paths, it uses only about one half of the
local information presumed available, i.e. only that in the forward direction. We have devised a
method called sidetracking which takes advantage of all of the information available at each node.
Sidetracking, considered as a local decision, first attempts to route the message in the forward
direction using random routing. If the message is blocked, i.e. no non-faulty neighbors along
a minimal path to the destination, then it routes randomly to a live neighbor in the backward
direction. Except at the source node, we are guaranteed to have at least the node which routed
the message to the blocked node as a live backward neighbor.

The problem with implementing sidetracking is to decide when to stop and say that the mes-
sage routing has failed. We would ideally like to carry as little extra information along with the
message as possible. An extra O(n) bits are alright since that much is already required to carry
along the destination address. We simulate this decision by having each message carry with it a
maximum path length (actually a count of length to go) and declaring that routing has failed if the
destination has not been reached within that many routing steps. One problem that may occur
with sidetracking is tunneling. Tunneling arises when we reach a blocked node with only one live
backward neighbor. If the backward node’s only live forward neighbor is the blocked node, then
the message will cycle between these two nodes until the maximum path length limit is reached
and the routing attempt will fail.

At present, the analysis of sidetracking has been carried out using empirical results from simu-
lation experiments. The inputs of the simulation program are the cube dimension n, the node fault
probability p and the maximum path length multiple mpl* (of 72, so that the maximum path length
is mpl* times m). Since the program is calculating a probability, it runs a number of Bernoulli trials
of routing sufficient to ensure that the final answer is within one per cent of the actual value (with
95% confidence). For each experiment, the outputs of the simulation program are the probabil-
ity of successful message routing S(n,p) and the histogram of path lengths of successfully routed
messages from which we compute the average or expected path length (APL).

We have found that the performance of sidetracking is a substantial improvement over random
routing. In fact, the empirical results have led us to the following:

324

Conjecture: For fixed p < 1, Zimn+,,S(~,p) = 1.

Note that the value 1 is attainable only asymptotically since there is a fixed probability, pn, that
the message will be blocked at the source. Not only are we almost assured of routing the message
successfully but the penalty of sidetracking, as measured by path length excess (over n, the length
of a minimal path route) is small. For example, for p = l/2, mpl* = 3, APL/n 5 5/4. Table 2
summarizes the results of using sidetracking for fault probabilies greater than l/2. These results
show that, despite our concern, tunneling rarely occurs.

-
n

20
20
20
20
20
20
20
20
20
20 -

-
n

20
20
20
20
20
20
20
20
20
20 -

P mpl* Pi 76 Shd % APL dn
xi- 20 58.0 100.0 23.99 0.43
.55 20 46.9 99.9 26.43 0.62
.60 20 35.8 99.8 30.48 0.97
.65 20 23.9 98.8 38.12 1.55
.70 20 14.0 95.0 51.29 2.45
.75 20 6.2 81.6 67.57 3.23
.80 20 1.8 50.0 82.99 3.62
.85 20 0.3 12.6 86.76 3.43
.90 20 0.01 0.3 86.44 2.92
.95 20 0.0 0.0 0.00 0.00

APL-n
0.20

0.32
0.52
0.91
1.56
2.37
3.15
3.33
3.32
0.00

Table 2: Sidetracking Results using Model A

P mpl*
.50 20
.55 20
.60 20
.65 20
.70 20
.75 20
.80 20
.85 20
.90 20
.95 20

46.7
35.7
23.9
14.2
6.3
1.8
0.2
0.0
0.0

Shp) 7% APL aln
100.0 22.11 0.20
100.0 23.29 0.27

99.9 25.05 0.38
99.8 28.51 0.64
99.0 34.20 0.99
94.1 44.97 1.60
71.0 61.57 2.36
21.4 69.36 2.50

0.6 48.37 1.41
0.0 0.00 0.00

0.11
0.16
0.25
0.43
0.71
1.24
2.07
2.47
1.41
0.00

Table 3: Backtracking Results using Model A

In addition to sidetracking, we implemented a version of randomized backtracking where when
we reach a blocked node we set that node to faulty before routing backwards. This change to
sidetracking is sufficient to eliminate all tunneling. Note that this method is not that the same as
standard backtracking since the backwards routing is to a random live node and not to the node
from which we came previously. Given enough time, randomized backtracking will find a path (for
the message) between the source and the destination, if any such path exists. Hence, it is useful
for comparisons with sidetracking. On a real machine, however, to implement backtracking would
require far more effort and resources than sidetracking. Such an implementation would require

325

P
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Sidetracking
I ._L -\

Dimensior 1 (mpl” = 5)
5 10

99.9 100.0
99.8 100.0
98.3 99.9
93.4 99.5
80.3 96.7
58.5 84.8
32.0 53.6

9.7 11.9
0.9 0.1

15 20
100.0 100.0
100.0 100.0
100.0 100.0

99.9 99.9
99.4 99.8
94.9 98.4
73.3 85.1
23.7 37.3

0.1 0.3

n- Backtracking
Dimension (mpl* = 5)

5 10 15 20
100.0 100.0 100.0 100.0
99.9 100.0 100.0 100.0
99.2 99.9 100.0 100.0
96.7 99.9 100.0 100.0
87.1 99.3 99.9 100.0
65.7 95.4 99.4 99.9
35.6 72.3 91.8 97.6
11.1 20.8 40.4 61.2
0.9 0.1 0.2 0.6

Table 4: Probability of Success Convergence Rates

large space overhead since each message must carry with it a complete list of all nodes visited by
the message. Transmission of this history information, in turn, would incur large communication
time overhead. Table 3 summarizes the results for backtracking, again with fault probabilities
greater than l/2. The greatest benefit of backtracking is in lowering the average path length of a
successfully routed message but, overall, the improvements over sidetracking are not great. Lastly,
Table 4 shows how fast the probability of success values converge to their asymptotic limits (as
n --+ co) using both sidetracking and randomized backtracking.

4 Conclusions

We have presented a framework for the analysis of fault tolerant routing schemes on a hypercube.
Our notion of faults is extremely versatile. Our results apply not only to systems with permanent
node failures; but since a communications hot spot may be identified as a fault, our methods apply
as well to routing in congested hypercubes.

The basic conclusion to be drawn from our study is that randomization is very effective when it
is applied to routing. In addition, we have shown that simple routing schemes with simple assump-
tions, namely that of local information, work very well. Specifically, the sidetracking algorithm
performs incredibly well. Consider the following asymptotic behavior. Using minimal path random
routing with no local information, the probability of successful message routing is 0%. Using min-
imal path random routing with one-step local information, the probability of successful message is
quite good, but tails off rapidly for a high probability of node failure (see Figure 1). Finally, using
sidetracking (or non-minimal path random routing with one-step local information), the probability
of successful message routing is 100%.

There are many implications of the conjectured asymptotic behavior of sidetracking. Its behav-
ior implies that, given a fixed pair of live antipodal nodes of the hypercube, not only are they in
the same connected component, but that sidetracking algorithm actually finds a path connecting
them. These consequences further the work of Erdlis and Spencer [3] who prove a double jump
threshold for the connectivity of a random n-cube. They show that asymptotically, for p > l/2
the n-cube is disconnected, for p < l/2 the n-cube is connected and for p = l/2 the n-cube is

326

connected with probability l/e. ’ Our results show that, even when p > l/2 and the n-cube is likely
disconnected, sidetracking can almost always successfully route a single message. This success can
be achieved because it is most likely that only singleton nodes are disconnected and, hence, two
randomly chosen live nodes are probably in the same connected component.

References

[I] B. Bollob&, Random Graphs. London:Academic Press, 1985.

[2] A. Borodin and J. E. Hopcroft, “Routing, Merging and Sorting on Parallel Models of
Computation,” Journal of Computer and System Sciences, vol. 30, pp. 130-145, 1985.

[3] P. Erd& and J. Spencer, “Evolution of the n-Cube,” Computers and Mathematics with
Applications, vol. 5, pp, 33-39, 1979.

[4] J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley and J. Palmer, “A Microprocessor-based
Hypercube Supercomputer,” IEEE Micro, pp. 6-17, Oct. 1986.

[5] D. E. Knuth, The Art of Computer Programming, Vol3: Sorting and Searching. Reading,
Massachusetts:Addison-Wesley, 1973.

[6] E. M. Palmer, Graphical Evolution : An Introduction to the Theory of Random Graphs.
New York:John Wiley and Sons, 1985.

[7] M. C. Pease, III, “The Indirect Binary n-Cube Microprocessor Array,” IEEE Transactions
on Computers, vol. C-26, pp. 458-473, May 1977.

[B] C. L. Seitz, “The Cosmic Cube,” Communications of the ACM, vol. 28, pp. 22-33, Jan.
1985.

[9] J. S. Squire and S. M. Pa&s, “Programming and Design Considerations of a Highly Parallel
Computer,” in Proceedings of the Spring Joint Computer Conference, 1963, pp. 395-400.

[lo] L. G. Valiant, “A Scheme for Fast Parallel Communication,” SIAM Journal of Computing,
vol. 11, pp. 350-361, May 1982.

[ll] L. G. Valiant, “Experiments with a Parallel Communication Scheme,” in Proceedings of
the 18th Allerton Conference on Communications, Control and Computing, University of
Illinois, October S-10, 1980, pp. 802-811.

[12] L. G. Valiant and G. J. Brebner, “Universal Schemes for Parallel Communication,” in
Proceedings of the 13th ACM Symposium of Theory of Computing, 1981, pp. 263-277.

‘Even though Erd6s and Spencer model edge faults, the results for the case of node faults are the same, except
for the value at p = l/2.

327

