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CHAPTER XXXIII 
 

ON LINEARITY 
 

The conception of linear transformation thus plays the same part in affine 
geometry as congruence plays in general geometry; hence its fundamental 
importance. (547) HERMANN WEYL 
 

It is instructive to compare the mathematical apparatus of quantum theory with that 
of the theory of relativity. In both cases there is an application of the theory of linear 
algebras. (215) W. HEISENBERG 
 

This “perturbation theory” is the complete counterpart of that of classical 
mechanics, except that it is simpler because in undulatory mechanics we are always 
in the domain of linear relations. (466) E. SCHRÖDINGER 
 

As a result of experimental research on association, in 1904, I was led to show the 
complexity of the factors governing evocation.... And I have often insisted since then 
on this essential idea, in opposition to the simple schema of linear associative 
connection. (411) HENRI PIÉRON 

 

We have already had several occasions to mention the ‘plus’ or additive issues 
as connected with linearity. This problem is of structural and linguistic as well as 
empirical and psycho-logical semantic importance. It is sufficient for our purpose at 
present that we should notice two facts; namely, (1) That in one dimension, linearity 
expresses the relation of proportionality; (2) That the problems of linearity are 
dependent on the relation of additivity. 

The structural notion of additivity is of great antiquity. Being the simplest of 
such notions, it naturally originated very early in our history. The earliest records 
show that the Babylonians and the Egyptians used the additive principle in their 
notation. Our primitive ancestors, long before any records were written, had similar 
structural conditions present, open for investigation and reflection, that we have 
today. That this was the case is not a mere guess. Otherwise we would still be at 
their stage of development. Some beginning had to be made somewhere. There is 
little doubt that the men of remote antiquity presented many types of make-up, as 
we do today. Some, for instance, were more curious than others; some more 
inventive, some more reflective. , which, as we know today, is found even among 
animals. These more gifted individuals were, as usual, the inventors, discoverers, 
and builders of systems and language of their period. They could not long fail to 
recognize the fact that a stone and a stone, or a fruit and a fruit are different from 
one stone or one fruit. For instance, the two stones might have saved the early 
observer’s life in defence, or the two fruits might have satisfied his hunger or thirst, 
where one would not have done so. An accumulation of objects was obviously 
somehow different from a single object. As these problems were often of vital 
importance to their lives, names for such accumulations of objects began to be 
invented, and one and one was called two, two and one was called three, . Number 
and mathematics were born as a structural semantic life-necessity 



for a time-binding class of life. They were an expression of the neurological 
structure and function and of the tendency toward induction. 

In the beginning, names and generalizations were made from the simplest brute 
facts of life, and our primitive ancestors did not realize, that these crude 
generalizations might not have a structural validity, which they seldom doubted that 
they possessed, even as we today, seldom doubt. Those primitive scientists, (and we 
today differ very little from them), having produced terms, objectified them, and 
began to speculate about them. Let us examine some examples of such primitive 
mathematical speculations. Addition, of course, by which we generate numbers,—
one and one make two, two and one make three. , was all-important. They could not 
miss the simple fact that three, which is equal to two and one, by definition, is more 
than two or one. A primitive generalization; namely, that the sum is always more 
than the summands taken separately, was still further generalized to a postulate that 
a part is smaller than the whole. This generalization has hampered mathematics 
almost up to our own day, and for many thousands of years it prevented the 
discovery of the notion of mathematical infinity, which we have already discussed 
in Chapter XIV. 

It must be noticed that such generalizations involve s.r, which are objective and 
un-speakable. If verbally formulated they should have a structure similar to that of 
the facts, otherwise they are fanciful and vicious, because not properly formulated. 
When formulated they become public structural facts (s.r are personal, individual, 
non-transmittable, and un-speakable) and so they may be criticized, improved; 
revised, rejected, . All human history shows that the correct structural formulation of 
a problem is usually as good as the solution of it, because sooner or later a solution 
always follows a formulation. 

After many thousands of years—in fact, practically only the other day—it was 
found that these primitive generalizations were in general not valid. Negative 
numbers were invented, and two plus minus-one was no more three but one, 2 + (-1) 
= 1. The sum was no longer greater than its summands. The usual tragedy takes 
place here also. A few people know the facts, but the old primitive structural s.r 
remain in some of these few, as well as in the great majority of us who did not even 
know the facts. That such structural s.r do not vanish quickly, or generally, is 
proven again and again throughout history. We see it very clearly in the problems of 
‘infinity’, or E  geometries, or N  physics. But the most pathetic sight is to see 
scientists who have rationalized the technique without a deeper re-education of their 
s.r. This is most clearly seen in the case of many writers on the foundations of 
mathematics, the Einstein theory or on the newer quantum mechanics. They feel in 
the old structural way, they rationalize in the new; hence their works are full of self-
contradictions. Readers and students alike feel how ‘difficult’ and messy the whole 
subject is. As a matter of fact, the new theories are neither messy nor difficult. They 
are really much simpler and easier than the old theories, provided our structural s.r 
are purged of the primitive structural tendencies to which every one of us is heir. 
When this semantic re-education of our structural feelings is accomplished 
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it is the old that becomes ‘unthinkable’ and incomprehensible, because it gives such 
a structural mess. 

Something similar might be said about a feeling deep-rooted in all of us namely, 
the ‘plus’ feeling. In all the advances of science we struggle against it. For instance, 
the example of the green man-made leaf given previously shows clearly that man-
made affairs may with some plausibility be considered as ‘plus’ affairs, but not so 
with non-man-made natural leaves, which appear not as ‘plus’, but functional 
affairs, where the greenness was structurally not added but happened, or became. As 
a structural fact, the world around us is not a ‘plus’ affair, and requires a functional 
representation. In chemistry, for instance, does hydrogen ‘plus’ oxygen produce 
water, H2O ? If we mix the two gases, two parts of hydrogen with one of oxygen we 
do not get water. We must first pass a spark through the mixture, when an explosion 
occurs and the result becomes water, a new compound quite different from its 
elements or from a mere mixture of them. Does one gallon of water and one gallon 
of alcohol make two gallons of a mixture ? No, it makes less than two gallons. Does 
light added to light make more light ? Not always. The phenomena of interference 
show clearly that light ‘added’ to light sometimes makes darkness. Four atoms of 
hydrogen, of atomic weight 1.008, produce, under proper conditions, one atom of 
helium, not of atomic weight 4.032, but of atomic weight 4. The 0.032 has somehow 
mysteriously vanished. Such examples could be quoted endlessly. They show 
unmistakably that structurally this world is not a ‘plus’ affair, but that other than 
additive principles must be looked for. 

The struggle against this ‘plus’ feeling is quite evident, but often unsuccessful, 
in scientific literature. Man ‘is’ an animal ‘plus’ something. Life ‘is’ ‘dead matter’, 
‘plus’ some ‘vitalizing principle’, . In scientific literature we find curious 
expressions: as for instance, ‘It is impossible to express the conduct of a whole 
animal as the algebraic sum of the reflexes of its isolated segments’; or, ‘The 
individual represents heredity plus environment’; or, ‘That the abstraction does not 
merely take away from a number of engram groups some components and combine 
the rest into one sum, but forms thereby a new psychic structure is self evident and 
is in no way peculiar to the psyche. Thus a clock work is as little the mere sum of its 
little wheels as a human being is the sum of his cells and molecules’; and later on, 
‘to be exact the ego consists of the engrams of all our experiences plus the actual 
psychism’. There is endless material that might be quoted, but for our purpose these 
few samples will suffice. We do not give them with the purpose of citing 
authoritative examples of the need of non-plus considerations. Far from it. We do it 
to emphasize the astounding fact that, although the best men in their fields have 
vaguely felt this necessity, yet even they become a prey to this very old structural 
linguistic semantic tendency. In all three cases quoted the authors were of the best 
we have. They have fought all their lives against the ‘plus’ tendency and methods; 
and yet, if they succeed in eliminating this tendency from one part of their subject, 
they plant it quite obviously somewhere else. We see that 



we are dealing here with an ingrained psycho-logical tendency which can be 
remedied only by a fundamental, A , structural, semantic investigation. 

Let us analyse these quotations. In the second case, we hear, after a successful 
attack on plus tendencies, a statement that the ‘individual represents heredity plus 
environment’. Is this statement true ? Let us take examples. There are certain fishes 
which are heliotropic and swim toward the light, but if we change the temperature of 
the water they become negatively heliotropic and swim away from the light. Is this 
most complex activity of the organism-as-a-whole a ‘plus environment’ fact, or does 
the change of temperature produce some fundamental functional changes ? When, 
for instance, a good mother rat, having been put on a different though still abundant 
diet, which is deprived of some minute amount of special vitamins, begins to eat her 
litters, is this again a ‘plus’ reaction, or is it a most complex functional change of the 
organism-as-a-whole ? Or when a human being, because he received in childhood 
an ‘emotional’ shock through outside events (action or language of parents, for 
instance) develops a functional disorder, or even a physical ailment, is this again a 
‘plus environment’ problem ? Or, when chickens fed on eggs laid by hens kept 
without sunlight or violet rays, or which have only received sunlight through a glass 
window, develop rickets and soon die, though they do not do so when the glass 
windows are removed and the sunlight is allowed to operate directly upon the hens. 
Is this again a ‘plus environment’ example ? 

One ‘Smith’ and one ‘Smith’ make two ‘Smiths’, as far as theatre or railway 
tickets are concerned, but in life, under proper conditions, they form a family and 
very often many more than two ‘Smiths’ come out of such ‘addition’. How about 
their work ? Is it a mere sum ? In the case of inventors who may have been 
influenced by one or many men directly or indirectly, do their inventions produce a 
sum of the work of as many men ? Surely the steam engine or the dynamo produces 
more work than not only the inventors, but the series of other men who have been 
indirectly responsible for the inspiration of the inventors, could ever have produced. 
So again it is not a ‘plus’ affair. 

In the third case we see the author attacking the ‘plus’ tendency on one page, 
and planting another ‘plus’ a few pages further on, which implies at once some 
objectified additional entity. In this respect it must be noticed that this additive 
tendency represents a partial and important structural and semantic mechanism of 
identification, and to deal successfully with it, we must clear up the problem 
connected with the additive tendency. 

The numberless and endless ‘philosophical’ volumes, for instance, which have 
been written about the ‘body-soul’ problems, show the tremendous structural and 
semantic importance of the clearing up of this ‘plus’ versus ‘non-plus’ issue. The 
reader may recall that the A , the E , and the N  systems have one underlying 
structural metaphysics. The E  systems deal with non-linear equations and with 
curved lines, of which the linear equation and the straight line, (one of zero 
curvature), are only particular cases. And the general theory of Einstein, which is 
the foundation of N  systems, also introduces non-linear equations. Ought we to be 
surprised to find that a A -system must also solve 
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this difficult structural and semantic problem of linearity versus non-linearity, of 
additivity versus non-additivity ? 

Indeed the problems demanding our attention are extremely baffling and 
difficult. Even in such a perfected science as physics, we have great difficulties in 
using non-linear equations, and are still at the stage where we solve few equations 
other than linear ones. To make any progress at all we must start with the simplest 
available problems in this field; namely, mathematical problems. The main point at 
this stage is not a solution of the problem but its formulation. When formulated and 
brought to the attention of mankind, there is no doubt that it will be eventually 
solved. 

To better understand the additive principle, let us consider a group of elements, 
the individuals of which we denote by letters a, b, c, d, . Let us take two or more of 
these elements and produce a synthesis which results in a third or n-th entity. Let 
this synthesis be of such a nature that the characteristics ascribed to the elements are 
also present in the resultant synthesis, in other words, let them have the so-called 
group characteristic. If our elements are, for instance, numbers, the new synthesis is 
also a number and belongs to the original group. We must notice that the problem of 
order is important in the formulation of the additive principle. If a and b are the two 
elements the synthesis of which we define, we must be clear that a first and b 
second, or b first and a second, must be recognized in the synthesis. Let us assume 
also that only the two alternative orders a and b, or b and a, are of importance in this 
case. The commutative law asserts that a plus b is equal to b plus a, a + b = b + a, 
which means that the two possible alternative orders give equivalent results. We 
must notice that this does not mean that order does not enter into this synthesis; in 
such a case the above mentioned commutative law would make no assertion at all. It 
is of importance that order should be involved in the synthesis. It is a matter of 
indifference only as far as equivalence by a commutative law is concerned. 

We should notice for our purpose that the synthesis has the ‘same’ 
characteristics as the elements had. In other words, if we know the characteristics of 
the elements we know the characteristics of the result. For instance, if the elements 
were numbers, the result will be a number, and no characteristic absent in the 
elements will appear in the result. This predictability from the characteristics of the 
elements to those of the result is perhaps one of the most striking characteristics of 
additivity. On the one hand, it allows us to foretell the future; on the other hand, it 
limits considerably the applicability of the additive principle. It is obvious that when 
we combine elements, and the results have new characteristics absent in the original 
elements, the new problems are structurally no more of an additive character, and 
the synthesis must be different. 

Only a few of the simplest entities in physics possess additive characteristics. If 
we take, for instance, ‘weight’ or ‘length’ or ‘time’, we see that these units are 
additive. One pound, or inch, or second, if added respectively to one pound, or inch, 
or second, gives us two pounds, or two inches, or two seconds. 
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Not so, however, with temperature, or density, or many other derived magnitudes, as 
we call them. If we have a body of temperature of one degree and combine it with 
another body of equal temperature the synthesis will not have a temperature of two 
degrees, (as in the case of weight), but of one degree. This applies to density. , two 
bodies of density one each will not give us a body of density two, but of density 
one. 

Before further analysis of the problems of linearity and additivity, it will be well 
to consider a few definitions. 
If an entity u is changed into an entity v by some process, the change may be 
regarded as the result of an operation performed upon u, the operand, which has 
converted it into v. If we denote the operation by f, then the result might be written 
as v = fu. The symbol of the operation f is called the operator. We are familiar with 
many such; indeed the symbols for all mathematical operations may be treated as 
operators. So for instance the symbol √ indicates the operation of extracting the 
square root. If we deal with a range of values for a variable x, what we have defined 
as the function symbol f(x) may be treated as an operator whose operation on x may 
be indicated by the symbol fx. The operation of differentiation may be symbolized 
by D, the result of whose operation on the variable u, Du is the derivative of u. The 
sign of the definite integral integral ∫ba may be taken as indicating an operation 
which converts a function into a number, . 

It is important to know that many of the rules of algebra and arithmetic when 
defined in this way, give rise to a calculus of operations. The fundamental notion in 
such a calculus is that of a product. If u is operated upon by f the result v is indicated 
by fu, or symbolically, v = fu. If v in turn is operated upon by g the result w is 
indicated by gv, or symbolically, w=gv=gfu, whence the operation gf which 
converts u directly into w is called the product of f and g. If this operation is 
repeated several times in succession the usual notation of powers is used, for 
instance ff =f2, fff=f3, . Not applying the operator at all, which we would denote by 
f0, leaves u unchanged, which we indicate symbolically by the equation f0u=u. The 
operator f0 is equivalent to multiplication by 1, f0 = 1, whence f0 may be called the 
idem operator. We see also that the law of indices holds; namely, the fmxfn=fm+n. 

For our purpose we will analyse only one special case; namely, where we have 
u, v and u+v as operands, and such an operator, f, that f(u+v) = fu+fv. Expressed in 
words, this means that the operator applied to the sum of the two operands gives a 
result equal to the sum of the results of operating upon each operand separately. 
Such a special operator is called a linear, or distributive, operator. 

In terms of functions we would have f(x+y) =f(x) + f(y) which may be called a 
functional equation. It has been proved that such a functional equation has one type 
of solutions; namely, when f is equivalent to a multiplication by a constant, or fx 
=cx. This fact is of great importance for us. Many problems in science are stated in 
terms of variation. For purposes of analysis a statement 



that ‘x varies as y’ is written y = kx, where k is called a factor of proportionality, 
which enables us to convert a statement of variation into an equation. If y varies 
inversely as x, we write y=k(1/x) or y=k/x. A multiplication by a constant thus 
introduces a relation of proportionality, hence the importance of proportionality in a 
world where constants are present. 

It must also be noticed that the two fundamental operations of the calculus are 
linear without being equivalent to multiplication by a constant. These are: ‘the 
derivative of the sum is the sum of the derivatives’, that is D(u+v)=Du+Dv; and 
‘the integral of the sum is the sum of the integrals’, that is ∫ (u+v)dx=∫ udx+∫ vdx. 
But as the fundamental notion of the calculus is to substitute for a given function a 
linear function, in other words, to deal with curves as the limits of vanishingly small 
straight lines, this linearity underlies structurally all fundamental assumptions of the 
calculus, and one might say with Weyl that ‘one here uses the exceedingly fruitful 
mathematical device of making a problem linear by reverting to infinitely small 
quantities’.1 

A vector is defined roughly as a line-segment which has a definite direction and 
magnitude, and any quantity which can be represented by such a segment is defined 
as a vector quantity. 

The addition of vectors is defined by the law of the parallelogram, as in the case 
of two forces. It should be noticed that because of this definition the sum of two 
vectors differs in general from the arithmetical sum of the lengths, and only 
collinear, or parallel vectors obey the arithmetical summation law. 

The introduction by definition of mathematical entities which obey different 
laws from the usual arithmetical laws is an important structural and methodological 
innovation. It gives us the useful precedent of defining our operations to suit our 
needs. The vector calculus accepted as the definition of the sum of two-vectors the 
law established experimentally in physics for the sum of two forces; and so the 
vector calculus from the beginning was structurally a particularly useful language in 
physics. Only since Einstein has the value and importance of the vector calculus for 
physics become generally appreciated. 

If we have two vectors, a and b, starting 
from a common origin O and complete the 
parallelogram as in Fig. 1, then the diagonal of 
the parallelogram will be the required sum, 
a+b, by definition. 

If we choose two co-initial vectors of unit 
length, one on the X axis, and the other on the Y 
axis, and call them i and j, we can always 
represent any vector x as the sum of two vectors, one of which is the projection of x 
on the X axis, and the other the projection of x on the Y axis. (See Fig. 2.) Let us call 
these vectors x' and x" respectively. Then x=x'+x", by definition. But x' differs 
from i in length only, hence it can be obtained by multiplying i by 
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an appropriate number, say a. Similarly, x" can be obtained from j by multiplying j 
by b, and so, in symbols, x'=ai, x"=bj, and x=ai+bj. All vectors of the plane can be 
obtained from i and j in this form. The numbers a and 
b are called components of x. 

Now that we know how to express a vector in terms 
of its components; namely, x=ai+bj, let us consider a 
vector function f(x) which satisfies the equation 
f(x+y)=f(x)+f(y). We may take ai=x and bj =y and 
x+y=z then we have f(z)=f(x+y)=f(ai)+f(bj). But since 
a and b are numbers, we have f(ai)=af(i), and likewise, 
f(bj)=bf(j); so that f(z)=af(i)+bf(j). But f(i) is itself a vector and therefore expressible 
in the form a'i+b'j,and,f(j)=ci+dj.Hence, f(z) = a(a'i+b'j) + b(ci+dj) = (aa'+bc)i + 
(ab'+bd)j. In general, the components are the coefficients accompanying i and j, 
and so we have the components of f(z) =f(x+y) in terms of the components of z; and 
we see how the components of a vector are changed into the components of the 
linear vector function of the vector. 

In general terms, a continuous vector function of a vector is said to be a linear 
vector function when the function of the sum of any two vectors is the sum of the 
functions of those vectors; that is, the function f is linear if f(r1+r2)=f(r1)+f(r2), 
whence, if a be any positive or negative number and if f be a linear function then the 
function of a times r is a times the function of r; f(ar) =af(r). 

Linear vector operators are also defined by a similar equation; namely, L(a+b) = 
La +Lb. 

Let us recapitulate. If we take the functional equationf(x+y)=f(x)+f(y), which 
might be used as a definition of linearity, and which is based on additivity, and take 
x=y=1; then we have f(1+1)=f(2) and also f(1)+f(1)=2f(1); and so our original 
equation becomes by substitution f(2)=2f(1). It is obvious that the original equation, 
f(x+y)=f(x)+f(y), is the source of indefinitely many such relations for particular 
numbers. For instance, f(3)=f(2+1)=f(2)+f(1); but, in accordance with what we 
obtained before, f(2)=2f(1); so that f(3)=2f(1)+f(l)=3f(1), and in general, f(x)=xf(1). 
So, if we have an equation f(x+y)=f(x)+f(y) for numbers, we know that we can 
obtain the value of this function for any x if we know it for 1. If we denote the 
function of 1, which is a constant, by f(1)=k, we have the general form of the 
function which satisfied f(x+yi=f(xi+f(y) expressed by f(x)=kx. In words, a 
functional equation of the above type; namely, a function of the sum equal to the 
sum of the functions, has only one possible type of solution; namely, when f is 
equivalent to a multiplication by a constant, or, f(x) =kx. But this last means 
proportionality. The values of the function are proportional to the arguments 
(variables). In fact, let us consider two arguments, that is, two values of the 
independent variables x and y. We have, as shown before, f(x)=kx and 
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f(y)=ky. Dividing the first by the second, we obtain f(x)/f(y)=kx/ky=x/y or, in another 
form, f(x)/x=f(y)/y=k. 

Let us consider an example. We know from elementary geometry that if we take 
an angle α and draw parallels which cut the sides at 
AA', BB', CC', DD'. , the corresponding intercepts 
are proportional. In general, the lengths of the 
segments on the left side are not equal, neither are 
they equal to the segments on the right side. If we 
designate the segment AB as x and BC as y, the 
corresponding segments A'B' and B'C' we may 
designate as f(x) and f(y), respectively, which means 
function of x and function of y. A'B'=f(x)', 
B'C'=f(y). But the above intercepts are proportional, 

which means that AB
A B

BC
B C

AB BC
A B B C' ' ' ' ' ' ' '

= =
+
+

. We 

easily see from Fig. 3, that AB+BC=AC=x+y; and A'B'+B'C'=A'C' and so A'C' on 
the one hand is f(AC)=f(x+y) and on the other hand it is f(x)+f(y) and therefore 
f(x+y)=f(x)+f(y). We could multiply examples by taking relations between central 
angles in a circle and arcs of its circumference. In fact, any problem of measure in E 
geometry could be used as an example. 

In our development we started with definite additive natural tendencies, not only 
in our highest, yet undeveloped, mathematics, which we call our daily and scientific 
language, but also in our lowest, but perfected, language which we call 
mathematics. In this perfected language the notion of additivity is connected with 
linearity, and the methods of approximation are also founded on additivity and 
linearity. 

Yet the world around us in its more fundamental structural aspects is not 
additive; and for adjustment we must find means of passing from additive 
tendencies and formulations to non-additive tendencies and formulations. Modern 
mathematics has developed these methods, and modern physics is beginning to 
apply them. Let us repeat: the importance of linear functions implies the importance 
of ‘straight’ lines. They are important on two counts: first, because they are simpler 
than all other curves, so that naturally we want to study them before we study other 
curves, such as, for instance, circles or the other conic sections in elementary 
geometry; and secondly, because all curves can be approximated by straight lines. 
This point is very important, as approximation is the most powerful method we have 
of handling complicated situations. 

There are two methods of approximating a curve in the vicinity of a point. If we 
are interested in the immediate vicinity of a point we approximate the curve by its 
tangent, as the tangent approximates the curve in the vicinity of a point better than 
any other straight line. If we want to decrease the error which we make in this 
approximation, we have only to decrease the vicinity in which we consider it. If we 
do not want to restrict ourselves to a small 
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neighbourhood we have to use more complicated methods of approximation. We 
inscribe into the curve a broken line which consists of segments of straight lines. 
The beginnings of the study of curves consist in reducing the study of curves to: (1) 
The study of straight lines connected with the curves’ tangents, which is the point of 
departure of the differential calculus; and (2) The study of the inscribed broken 
lines, which is the point of departure of the integral calculus. 

Now curves represent only the simplest dependences. In other cases we have 
more complex kinds of functions; for instance, vector functions; but in every case 
we have linear functions, the simplest of their type; and other functions are studied 
by approximating them in one way or another by linear functions. In using the term 
‘function’, we mean not merely numerical functions but also operators, which are to 
the ordinary functions what ordinary functions are to numbers. A general definition 
of linearity can be connected with that of proportionality in the following manner. If 
two variables are proportional, one to another, then to the sum of any values of the 
first corresponds the sum of the corresponding values of the second. 

The simplest part of any field is the consideration of linear, additive questions; 
linear equations (equations of first degree in algebra), linear differential equations, 
linear integral equations, linear matrices, linear operators, . But sooner or later we 
come to the more difficult and more interesting non-linear problems. Perhaps the 
main importance of the General Theory of Einstein lies in the fact that the equations 
of physics become non-linear. Now, although non-linear equations can be 
approximated by linear equations, the character of a world determined by non-linear 
equations must be entirely different from a world determined by linear equations. In 
a linear world electrons would not repel each other but would travel independently 
of each other, and there could be no relation between the charges of different 
electrons. But we know that electrons do repel each other, and attract protons, and 
that their charges are equal. In physics, if a system can be described by linear 
differential equations, the causal trains started by different events propagate 
themselves without interference, with simple addition of effects. 

The properties of systems which can be described by linear differential equations 
have, as we have already seen, the property of additivity. This means that the result 
of the effects of a number of elements is the sum of the effects separately, and no 
new effects will appear in the aggregate which were not present in the elements. In 
such a universe there is ‘continuity’, fieds are superposable, wave disturbances are 
additive, ‘energy’ and ‘mass’ are indestructible, . In such a universe we can have 
two-valued causality, as causal trains started by different events propagate 
themselves without interference, and with simple addition of effects, and the present 
can be analysed backwards into the sum of elementary events, that is, a two-valued 
causal analysis is possible. 

If our equations are not linear, the effects are not additive and a two-valued 
causal analysis is not possible. 
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The joint effect of two causes working together is not the sum of their effects 
separately2, and we need ∞-valued causality. 

Analytically, if we have linear differential equations and we have one solution 
y1=f(x) and another solution y2=F(x) then their sum is also a solution; namely, 
y3=f(x)+F(x). If the differential equations are non-linear and if y1=f(x) and y2=F(x) 
are two solutions, then f(x)+F(x) is not a solution. 

Linear problems and linear equations play a very important structural role in 
science and there is little doubt that linear equations preponderate enormously, 
although many fundamental events cannot be described by such equations. A 
universe which can be described by linear differential equations of the second order 
has definite structural characteristics—in the main in rough accord with observation. 
As such differential equations give us the tendency of a process, we may use them 
to describe large-scale phenomena by integration, or the statistical phenomena of 
great numbers. 

Unfortunately, the study of non-linear problems is structurally very difficult and 
largely a problem of the future. 

There is one very important point which we should not miss. We know already 
that there is a fundamental difference between different orders of abstractions. 
Physical abstractions have always characteristics left out, and our higher order 
abstractions are further removed from life, but they have all characteristics included. 
The problem of sanity being a problem of adjustment, we must somehow correlate 
these abstractions in which characteristics are left out with those which include all 
characteristics, and so must proceed by approximations. Mathematical methods, 
particularly those of the differential and integral calculus, have evolved the best 
technique of approximation in existence today, which, as we have seen, is strictly 
connected with linearity or additivity. 

A similar urge which prompted us in the expression of our additive tendencies 
and methods in the structure of language, has led to the production of the calculus. 
For organisms which abstract in so numerous and such different orders, the methods 
of the calculus are therefore fundamental psycho-logical devices, conditioning 
sanity. 

In conclusion, we should notice two quite important facts. One of these is that 
the nervous system, being in a state of nervous tension, cannot structurally be a 
simple additive affair in all its functions, a fact which every one of us has 
experienced. Too many stimulations dull, or abolish, or change reaction in an 
enormous variety of ways. Piéron, as a result of experimenting in association, has 
not only shown the complexity of these processes, but also reaches the conclusion 
that the associative connections are non-linear.3 The other most important point is 
that structurally the term ‘and’ implies addition. When we confuse orders of 
abstractions or levels of analysis, the ‘and’ additive implications falsify the issues. 
Thus for instance two atoms of hydrogen and one atom of oxygen and a spark 
produce water. The second ‘and’, at least, is used illegitimately, as it applies to an 
entirely different level (the spark) from that of the atoms. Linguistically we 
introduced additive implications, 
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while empirically we are dealing with most complex non-additive, non-linear 
higher-degree functions. When we confuse orders of abstractions, as we all do, the 
‘and’ is bound to introduce structurally false implications, which it is very difficult 
to avoid—the more so since these semantic problems are generally entirely 
neglected. 


