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Abstract

Often in neurosurgical planning a dual echo acquisition is performed that yields pro-

ton density (PD) and T2-weighted images to evaluate edema near a tumor or lesion.

The development of vessel segmentation algorithms for PD images is of general interest

since this type of acquisition is widespread and is entirely non-invasive. Whereas ves-

sels are signaled by black blood contrast in such images, extracting them is a challenge

because other anatomical structures also yield similar contrasts at their boundaries.

In this paper we present a novel multi-scale geometric flow for segmenting vasculature

from PD images which can also be applied to the easier cases of MR angiography data

or Gadolinium enhanced MRI. The key idea is to first apply Frangi’s vesselness measure

[8] to find putative centerlines of tubular structures along with their estimated radii.

This multi-scale measure is then distributed to create a vector field which is orthogonal

to vessel boundaries so that the flux maximizing flow algorithm of [27] can be applied
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to recover them. We carry out a qualitative validation of the approach on PD, MR

angiography and Gadolinium enhanced MRI volumes and suggest a new way to visu-

alize the segmentations in 2D with masked projections. We also validate the approach

quantitatively on a data set consisting of PD, phase contrast (PC) angiography and

time of flight (TOF) angiography volumes, all obtained for the same subject. A sig-

nificant finding is that over 80% of the vasculature recovered in the angiographic data

sets is also recovered from the PD volume. Furthermore, over 25% of the vasculature

recovered from the PD volume is not detectable in the TOF angiographic data. Thus,

the technique can be used not only to improve upon results obtained from angiographic

data but also as an alternative when such data is not available.

Keywords: Vessel segmentation, geometric flows, MRI, multi-scale analysis, validation.

1 Introduction

A three-dimensional (3D) representation of cerebral vasculature can be extremely important

in pre-surgical planning, image-guided neurosurgery and clinical analysis. It is unfortunately

often the case that in order to obtain such representations from an MRI volume an expert

has to interact with the data manually, in a slice-by-slice fashion, while coloring regions of

interest and connecting them using image processing operations. This process is extremely

laborious, is prone to human error. Since a technician preparing data for surgical planning

has a limited amount of time, there is a trade-off between the number of manually segmented

structures and the quality of the segmentations. In addition, the significant amount of time

required to properly segment the vasculature from a single brain makes large scale clinical

studies of vasculature infeasible. As a consequence, the computer vision and image analysis

community has paid significant attention to automating the extraction of vessels or vessel

centerlines. Several methods have been shown to give promising results on 2D projection

angiography and 3D CT and MR angiography [28, 14, 3, 22, 20, 19, 27]. However, few

techniques currently exist for the automatic extraction of vessel boundaries in more standard

MRI volumes such as the proton-density (PD) weighted data set in Figure 1(a). Here it is
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(a) PD (b) TOF (c) PC

Figure 1: A mid-sagittal slice of a proton density (PD) weighted MRI volume, a time of

flight (TOF) MR angiogram and a phase contrast (PC) MR angiogram of the same subject

(one of the authors) acquired at our institute.

clear that a signal decrease is present in the vascular regions (the spaghetti-like structures),

but the contrast between blood vessel and surrounding tissue is not as great when compared

to the angiographic sequences (1(b) and 1(c)). Hence, the problem of recovering vessels

from image intensity contrast alone on PD-weighted images is a challenge and requires shape

information to constrain the segmentation. If successful, such a procedure could result in

a vascular model that could be used in surgical planning while eliminating the need for an

additional scan thus saving time during image acquisition and easing the burden on the

patient as well as reducing the amount of time required to segment and prepare data for use

in planning.

In this paper we introduce a novel algorithm for vessel segmentation Which is designed

for the case of PD images, but can be applied as well to angiographic data or Gadolinium

enhanced MRI volumes. The algorithm is motivated in part by the approach of Ostergaard

et al. [24] where Frangi’s vesselness measure [8] is thresholded to find centerlines. In this

technique, tubular fits to vessel boundaries are then obtained using a form of connected com-

ponent analysis and a generalized cylinder model. This latter step typically yields results

that are disconnected. In our approach, rather than threshold the vesselness measure, we

extend it to yield a vector field which is locally normal to putative vessel boundaries. This in

turn allows the flux maximizing geometric flow of [27] to be applied to recover vessel bound-
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aries. This flow has a formal motivation, is topologically adaptive due to its implementation

using level set methods, and finally is computationally efficient. We show qualitative results

on magnetic resonance angiography (MRA) data, as well as on the more challenging cases of

Gadolinium enhanced MRI and proton density (PD) weighted MRI volumes. We also vali-

date the approach quantitatively by comparing the segmentations from PD, PC angiography

and TOF angiography volumes, all obtained for the same subject (Figure 1).

The paper is outlined as follows. In Section 2 we review relevant background literature on

the modeling of tubular structures, vessel segmentation and centerline extraction. We then

develop our multi-scale geometric flow by incorporating Frangi’s vesselness measure [8] in the

flux maximizing flow algorithm of [27] in Section 3. We present qualitative and quantitative

validation results in Section 4. We then conclude with a discussion of the results and present

directions for future work in Section 5.

2 Background

We now review the use of the Hessian as a descriptor for modeling tubular structures and

then provide an overview of vessel segmentation and centerline extraction methods in the

literature. This overview is necessarily not exhaustive; it is based on a selection of represen-

tative techniques. For a more thorough discussion of the relative strengths and weaknesses

of such approaches we encourage the reader to also refer to the recent article by Aylward

and Bullitt [3].

2.1 Modeling vasculature using the Hessian

Several multi-scale approaches to modeling tubular structures in intensity images have been

based on properties of the Eigen values of the Hessian matrix H [18, 25, 8, 3, 14, 16, 24,

22]. For a function f(x1, x2, ..., xn), the Hessian is given by the Jacobian of the derivatives

∂f

∂x1

, ∂f

∂x2

, ... ∂f

∂xn
. This matrix encodes important shape information. In particular, an Eigen

value analysis extracts extremum changes in the normal vector to the iso-intensity level

set passing through a particular point. At locations centered within tubular structures the
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Eigen value conditions local structure examples

λ1 ≈ 0 , λ2 ≈ λ3 >> 0 tube-like vessel, bronchus

λ1 ≈ λ2 ≈ 0 , λ3 >> 0 sheet-like cortex, skin

λ1 ≈ λ2 ≈ λ3 >> 0 blob-like nodule

λ1 ≈ λ2 ≈ λ3 ≈ 0 noise-like noise

Table 1: A classification of local structures based on the Eigen values of the Hessian matrix.

Here, we assume that |λ1| ≤ |λ2| ≤ |λ3|. The sign of the highest Eigen values generally

indicate whether the local structure is dark on a bright background or bright on a dark

background. A positive sign corresponds to a dark structure on a bright background which

is the case for PD weighted MRI volumes.

smallest Eigen value of H is close to zero (reflecting the low curvature along the direction of

the vessel) and the two other Eigen values are high and are close to one another, reflecting

the fact that the cross-section of the vessel is approximately circular. The associated Eigen

vectors span the vessel direction and the cross-sectional plane, respectively. The Eigen

value analysis can be extended to differentiate tube-like, blob-like, sheet-like, and noise-like

structures from one another as summarized in Table 1. Two prominent approaches for

capturing vessel-like or tube-like structures based on the Hessian are the techniques proposed

in [16, 8].

First, Krissian et al. propose a model-based approach to detecting tubular structures

[16]. An Eigen value decomposition of the Hessian matrix is carried out analytically for

each assumed model that is fit to the image data. They report that whereas this analysis

provides a good descriptor at the center of a vessel, its quality decreases at locations close

to vessel boundaries. Hence, they define a vessel detector which combines the highest two

Eigen values of the Hessian matrix and a gradient term which is known to play a significant

role at vessel boundaries. They have recently demonstrated the robustness of this operator

in the context of segmenting the aorta in low contrast 3D ultrasound images [15].

Second, Frangi et al. propose a vesselness measure which incorporates information from
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all three Eigen values and has an intuitive geometric interpretation [8]. This method is close

in spirit to previous work by Lorenz et al. [18] and Sato et al. [25]. Three quantities are

defined to differentiate blood vessels from other structures:

RB =
|λ1|

√

|λ2λ3|
RA =

|λ2|

|λ3|
S =

√

λ2
1 + λ2

2 + λ2
3.

From Table 1, it can be seen that RB is non zero only for blob-like and noisy structures.

The RA ratio differentiates sheet-like from tube-like structures. Finally, S, the Frobenius

norm, is used to ensure that random noise effects are suppressed from the response. For a

particular scale σ the intensity image is first convolved by a Gaussian at that scale, G(σ),

and the following vesselness response function, V (σ), is computed:1

V (σ) =



















0 ifλ2 < 0 orλ3 < 0

(1 − exp
(

−
R2

A

2α2

)

)exp
(

−
R2

B

2β2

)

(1 − exp
(

− S2

2c2

)

)

(1)

This measure is designed to be maximum along the centerlines of tubular structures and

close to zero outside vessel-like regions. The scale σ associated with the maximum vesselness

response provides an estimate of the width of the tubular structure centered at a particular

location and the Eigen vector associated with the smallest Eigen value of the Hessian gives

its local orientation.

2.2 Vessel Segmentation and Centerline Extraction Methods

Statistical Methods Wilson and Noble [28] propose a statistical approach for segmenting

blood vessels from TOF angiography data, such as that shown in Figure 1(b). They introduce

a mixture of three probability distributions which is based on physical properties of blood

and brain tissues. Vessel labels are assumed to arise from a uniform distribution and two

Gaussian distributions are used to model other structures, one for tissue outside the head and

another for eyes, skin, bone and brain tissue. The parameters of these models are estimated

1The vesselness expression is given for the case of a dark tubular structure on a brighter background (as

in PD). In the case of angiographic data, the signs in condition 1 must be changed, i.e. V (σ) = 0 if λ2 > 0

or λ3 > 0.
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using a classical expectation maximization (EM) algorithm. The vasculature tree is then

obtained following a thresholding procedure that is sensitive to signal to noise ratio and

intensity contrast between vessel and non-vessel structure in the data. It is important to

point out that this method does not employ a multi-scale analysis and also has no explicit

model for tubular structures. Hence it cannot be applied to non-angiographic data sets such

as the PD volume of Figure 1(a) or to Gadolinium enhanced MR volumes.

Centerline Extraction Another class of methods attempts to find centerlines of tubular

structures as they are manifest directly in intensity (MR or CT) images, such as those in

Figure 1(c). Aylward and Bullitt [3] present a centerline tracking approach which is based

on a characterization of intensity ridges in 3D data sets. The Eigen vectors of the Hessian

matrix are used to estimate the local orientation of vessels and a normal plane is iteratively

updated to follow the vessel’s cross-section. This idea is also the basis of work by Koller et al.

for the multi-scale detection and traversal of curvilinear structures in intensity images [14].

Aylward and Bullitt pay particular attention to the validation of their method, demonstrating

its robustness under parameter changes, changes in scale and simulated image acquisition

noise. The method is an iterative one, where the centerline is continuously extended in the

estimated direction of its local orientation. As we shall later see, this local Hessian analysis is

similar to the one used in our geometric flow based approach. However, rather than traverse

the ridge at a single scale and compute vessel widths using a multi-scale analysis, we use

multi-scale orientation and scale estimates directly to propagate information from centerlines

to vessel boundaries.

Deschamps and Cohen relate the problem of finding centerline paths to that of finding

paths of least action in 3D intensity images [5]. This leads to a form of the well-known

eikonal equation where a front is propagated in the image with a speed determined by a

scalar potential that depends upon location in the medium. The framework aims to infer the

boundaries of tubular structures in a first stage, using a standard surface evolution method.

The potential function is then designed to take into account a Euclidean distance function

from the boundary, so that the minimal paths are centered. Beyond the requirement that
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the user must specify the starting and end points of a particular path, the algorithm requires

little user interaction. The flow is implemented using fast marching schemes and is hence

computationally efficient.

Wink et al. have recently presented an approach to centerline extraction, applied in the

context of vessel tracking, which combines features of the above two approaches [22]. More

specifically, they use Frangi’s vesselness measure (Eq. 1) to characterize putative vessel

centerline locations [8]. They then formulate the problem of finding paths between user

selected points as a minimum cost path problem which they solve computationally using

wavefront propagation. Their method has been validated qualitatively in the presence of

stenoses and imaging artifacts.

Geometric flows There is a long history on the use of deformable models for segmentation

in the computer vision literature, motivated in large part by the classical parametric snakes

introduced by Kass et al. [11]. These models have also been extended to handle changes

in topology due to the splitting and merging of contours [21]. In the context of geometric

flows for segmenting vasculature using level-set techniques, there are two recent approaches

which are relevant to the development here. First, Lorigo et al. propose a regularization of

a geometric flow in 3D using the curvature of a 3D curve [19]. This approach is grounded in

the recent level set theory developed for mean curvature flows in arbitrary co-dimension [2].

It yields the flow

ψt = λ(∇ψ,∇2ψ) + ρ 〈∇ψ,∇I〉
g

′

g
∇ψ.H

∇I

|∇I|
.

Here ψ is an embedding surface whose zero level set is the evolving 3D curve, λ is the

smaller nonzero Eigen value of a particular matrix [2], g is an image-dependent weighting

factor, I is the intensity image and H is the determinant of its Hessian matrix. For numerical

simulations the evolution of the curve is depicted by the evolution of an ε-level set. Without

the multiplicative factor ρ 〈∇ψ,∇I〉 the evolution equation is a gradient flow which minimizes

a weighted curvature functional. The multiplicative factor is a heuristic which modifies the

flow so that normals to the ε-level set align themselves (locally) to the direction of image

intensity gradients (the inner product of ∇ψ and ∇I is then maximized). The flow is designed
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to recover vessel boundaries signaled by the gradient in angiography data, while under the

influence of a smoothing term driven by the mean curvature of an implied centerline.

Second, Vasilevskiy and Siddiqi derive the gradient flow which evolves a curve (2D) or

a surface (3D) so as to increase the inward flux of a fixed (static) vector field through its

boundary as fast as possible [27]. With S an evolving surface and
−→
V the vector field, this

flow is given by

St = div(
−→
V )

−→
N (2)

where
−→
N is the unit inward normal to each point on S. The motivation behind this flow is

that it evolves a surface to a configuration where its normals are aligned with the vector field.

In the context of segmenting vasculature in angiographic images,
−→
V can be selected to be

the gradient of the intensity image which is expected to be orthogonal to vessel boundaries.

It is important to point out that both of the above approaches are designed specifically for

angiographic data and hence require restrictive assumptions to hold. In particular: 1) both

methods are initialized essentially by thresholding such data, and thus would fail when vessel

boundaries cannot be identified from contrast alone; 2) neither approach has an explicit term

to model tubular structures, but instead relies on the assumption that the gradient of the

intensity image yields a quantity that is significant only at vessel boundaries; and 3) neither

of these methods takes into account explicitly the multi-scale nature of vessel boundaries as

they appear in all modalities. In the following section we argue that several of the above

limitations can be overcome by incorporating a measure of vesselness. The result is a modified

flow which can be applied to a wide range of modalities, and which also offers computational

advantages over other vessel segmentation algorithms due to its implementation using level

set techniques [23].
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3 A Multi-Scale Geometric Flow for Segmenting Vas-

culature

The approach we develop proceeds in two steps. First, we apply Frangi’s vesselness measure

to find putative centerlines of tubular structures along with their estimated radii. Second,

this multi-scale measure is distributed to create a vector field which is orthogonal to vessel

boundaries so that the flux maximizing flow algorithm of [27] can be applied to recover them.

Returning now to Frangi’s vesselness measure (Eq. 1), a subtlety arises when a multi-

scale analysis is employed. The difficulty is that one has to compare the results of the

response function at different scales, while the intensity and its derivatives are decreasing

functions of scale. Hence, each individual response function must be suitably normalized

before the comparison can be done. Fortunately, this can be done quite efficiently by directly

computing the entries which comprise the Hessian matrix by using derivatives of Lindeberg’s

γ-parametrized normalized Gaussian kernels [17]. In our implementation of the vesselness

measure, we set the parameters α, β and c to 0.5, 0.5 and half the maximum Frobenius norm

respectively, as suggested in [8]. In practice we have found these parameter settings to yield

stable results over a wide range of image modalities. At each voxel we compute vesselness

responses using ten log scale increments between σ = 0.2 and σ = 2.5 (in our data the

maximum radius of a vessel is 2.5 voxels) and select the maximum vesselness response along

with its scale. The chosen scale gives the estimated radius of the vessel and the Eigen vector

associated with the smallest Eigen value its local orientation.

This process is illustrated in Figure 2 for a synthetic branching structure and a synthetic

helix. The gray surface coincides with a particular level set of the vesselness measure, which

quickly drops to zero away from centerline locations. Within this surface locations of high

vesselness are indicated by overlaying the Eigen vectors which correspond to the estimated

vessel orientation. It is apparent that locations of high vesselness are close to the expected

centerlines, and that the estimated vessel orientation at these locations is accurate. This

information along with the estimated radius of associated vessels can be used to construct

an appropriate vector field to drive the flux maximizing geometric flow, as we shall now see.
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(a) branching structure (b) helix

Figure 2: A synthetic branching structure and a synthetic helix. For each structure the red

vectors indicate the estimated vessel orientation at locations where the multi-scale vesselness

measure (Eq. 1) is high.

This allows us to lift many of the restrictions on the flow pointed out in Section 2.2, because

an explicit model of a tubular structure is now incorporated along with an appropriate notion

of scale.

3.1 Distributing the vesselness measure to vessel boundaries

The key idea is to distribute the vesselness measure, which is concentrated at centerlines, to

the vessel boundaries which are implied. At each voxel (x, y, z) where the vesselness measure

is a local maximum in a 3x3x3 neighborhood we consider an ellipsoid with its major axis

aligned with the estimated orientation and its two semi-minor axes equal to the estimated

radius. In our implementation the semi-major axis length is chosen to be twice that of the

semi-minor axes. The vesselness measure is then distributed over every voxel (xe, ye, ze) on

the boundary of the ellipsoid by scaling it by the projection of the vector from (x, y, z) to

(xe, ye, ze) onto the cross-sectional plane passing through the semi-minor axes, as illustrated

in Figure 3. If (x, y, z) is taken to be the origin (0, 0, 0) and the xy plane is taken to coincide
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(x_e, y_e, z_e)

(1) (2)

(3) (4)

(5) (6)

Figure 3: Distributing the vesselness measure to the implied boundaries. (1) The vector

from the center of the ellipsoid to the surface voxel (xe, ye, ze), as well as its projection onto

the cross-sectional plane, taken to be the xy plane. (2) We distribute the vesselness measure

to all (xe, ye, ze) on the ellipsoid by scaling it by the magnitude of this projection. The

colour bar indicates the association between brightness and magnitude. (3) A synthetic tube

of radius 2. (4) A view of the vesselness measure in a slice, with brighter regions indicate

stronger vesselness. (5) A view of the φ distribution in the same slice. (6) The divergence of

the vector field in Eq. 4, with transitions between dark and bright indicating zero-crossings.

As expected, we have local maxima of the vesselness measure on the centerline in (4), local

maxima of the φ distribution at the boundaries of the tube in (4) and zero-crossings of the

divergence at the boundaries of the tube in (6).
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with the cross-sectional plane this scale factor works out to be
〈

(xe, ye, ze),
(xe, ye, 0)
√

x2
e + y2

e

〉

=
√

x2
e + y2

e . (3)

This process of distributing the vesselness measure to the implied boundaries clearly favors

voxels in the cross-sectional plane. We define the addition of the extensions carried out

independently at all voxels to be the φ distribution.

The extended vector field is now defined as the product of the normalized gradient of the

original image with the above φ distribution

−→
V = φ

∇I

|∇I|
. (4)

This vector field embodies two important constraints. First, the magnitude of φ is maximum

on vessel boundaries and the ellipsoidal extension performs a type of local integration 2.

Second, ∇I
|∇I|

captures the direction of the gradient, which is expected to be high at boundaries

of vessels as well as orthogonal to them. It is important to normalize the gradient of the

image so that its magnitude does not dominate the measure in regions of very low vesselness.

For example, structures such as white and gray matter boundaries could then get significant

unwanted contributions.

3.2 The multi-scale geometric flow

The extended vector field explicitly models the scale at which vessel boundaries occur, due

to the multi-scale nature of the vesselness measure V (σ) (Eq. 1) as well as the expected

gradient in the direction normal to vessel boundaries. Thus it is an ideal candidate for the

static vector field in the flux maximizing geometric flow (Eq. 2). The surface evolution

equation then works out to be

St = div(
−→
V )

−→
N

=
[〈

∇φ, ∇I
|∇I|

〉

+ φdiv
(

∇I
|∇I|

)]−→
N

=
[〈

∇φ, ∇I
|∇I|

〉

+ φκI

]−→
N .

(5)

2This follows because the local maximum vesselness criterion enforces the condition that the extension is

carried out only from locations as close as possible to vessel centerlines.
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Here κI is the Euclidean mean curvature of the iso-intensity level set of the image. Note that

this is a hyperbolic partial differential equation since all terms depend solely on the vector

field and not on the evolving surface. We now enumerate several properties of this geometric

flow.

1. The first term
〈

∇φ, ∇I
|∇I|

〉

acts like a doublet. ∇φ has a zero-crossing at vessel bound-

aries and ∇I does not change sign. Hence, when the evolving surface overshoots the

boundary slightly, this term acts to push it back toward the boundary. Such dou-

blet terms have also shown to be beneficial in earlier geometric flows for segmentation

[12, 4, 26].

2. The second term behaves like a geometric heat equation since κI is the mean curvature

of the iso-intensity level set of the original intensity image. This equation has been

extensively studied in the mathematics literature and has been shown to have remark-

able anisotropic smoothing properties [9, 10]. It is also the basis for several nonlinear

geometric scale-spaces such as those studied in [1, 13].

3. Combining both terms, it is clear that the flow cannot leak in regions outside vessels

since both φ and ∇φ are zero there. Hence, when seeds are placed at locations where

the vesselness measure V (σ) is high the flow given by Eq. 5 will evolve toward the

closest zero level set of the divergence of the vector field
−→
V .

3.3 Implementation Details

Below we review some of the details of the implementation of our multi-scale geometric flow

(Eq. 5), which is based on level set methods [23].

1. We compute the Hessian operator over 10 log scales and select the maximum vesselness

response as described in Section 2.1. We use Jacobi’s method for symmetric matrices

to find the Eigen values of the Hessian.

2. The φ distribution in Section 3.1 is carried out from voxels at vessel centerlines since

at such locations one has strong confidence in the scale and orientation estimate from
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Frangi’s vesselness measure [8]. This is done using the following procedure

if (V (σ) > threshold && V (σ)
local max

> percentile)

Distribute vesselness over ellipsoid

For most examples we use a vesselness threshold of 0.01 and a percentile of 0.75 and

local max is the maximum vesselness response in a 3x3x3 neighborhood of the voxel.

3. The derivatives in the doublet term
〈

∇φ, ∇I
|∇I|

〉

are computed using central differences

for ∇φ and a second-order essentially non-oscillatory (ENO) scheme for the normalized

gradient of the input image.

4. κI , the mean curvature of each intensity iso-surface is computed using a 3-neighbor

central difference scheme for all derivatives:

κI =
(Iyy + Izz)I2

x + (Ixx + Izz)I2
y + (Ixx + Iyy)I2

z − 2(IxIyIxy − IxIzIxz − IyIzIyz)

(I2
x + I2

y + I2
z )

3

2

(6)

5. A first-order in time discretized form of the level-set version of the evolution equation

is given by

Ψn = Ψn−1 + ∆t ∗ F ∗ ||∇Ψn−1||

where F =
〈

∇φ, ∇I
|∇I|

〉

+ φdiv
(

∇I
|∇I|

)

, Ψ is the embedding hypersurface and ∆t is

the step size. This is now a standard numerical approach for solving partial differ-

ential equations of this type since it allows topological changes to occur without any

additional computational complexity and can be made efficient using a narrow band

implementation.

6. The evolving surface S is obtained as the zero level set of the Ψ function. The numerical

derivatives used to estimate ||∇Ψ|| must be computed with up-winding in the proper

direction as described in [23].

15



4 Validation

We now validate our multi-scale geometric flow for extracting vasculature. We first present

qualitative segmentation results and masked maximum intensity projections (MIPs) on a

variety of modalities. We then carry out a quantitative comparison of the segmentations on

a data set consisting of PD, TOF and PC volumes, all obtained for the same subject.

4.1 Image acquisition

We acquired four different volumes from the same subject (one of the authors) on a Siemens

1.5 Tesla system at the Montreal Neurological Institute (MNI). We first used a PD/T2-

weighted dual turbo spin-echo acquisition with sagittal excitation (2mm thick slices, 50%

overlap 1mm3 isotropic voxels, TE = 0.015s TR = 3.3s). Following this, a 3D axial phase-

contrast (PC) volume (0.47mm x 0.47mm x 1.5mm resolution, TE = 0.0082s TR = 0.071s)

and a 3D axial time-of-flight (TOF) volume (0.43mm x 0.43mm x 1.2 mm resolution, TE

= 0.0069s TR = 0.042s) were acquired. Each data set was registered to a standardized

coordinate system and re-sampled onto a 0.5mm3 isotropic voxel grid to facilitate processing

and comparisons. A mid-sagittal slice of the PD, PC and TOF volumes is depicted in

Figure 1. We supplemented these three data sets with an MRA volume (Figure 4) and a

Gadolinium enhanced MRI volume (Figure 5), both obtained from the MNI.

In the PC data, contrast is determined by tissue motion. Static tissue yields no signal,

and is therefore black. In the TOF data, vessel brightness is proportional to blood flow

velocity. However complex flow or turbulence can cause some signal loss in the vessels in

such images. In the data presented here, vessel/non-vessel contrast is greatest for the PC

data (white on black tissue), intermediate for the PD data (black on gray) and slightly

less for the TOF (white on gray). Resolution also affects vessel detectability. In principle

the angiographic volumes should be able to show smaller vessels, since they have a higher

resolution.
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MIP t = 0

t = 100 t = 200

t = 500 t = 1000

t = 5000 MIP segmentation

Figure 4: An illustration of the multi-scale geometric flow on a 68 x 256 x 256 MRA image.

An MIP of the data is shown at the top left and the other images depict different stages of

the evolution from three seeds. The bottom right figure depicts an MIP of the input MRA

data masked by the binary segmentation.
17



(1) (3) (5)

(2) (4) (6)

Figure 5: An illustration of the flow on a 40 mm x 53 mm x 91 mm cropped region of

a Gadolinium enhanced MRI. An MIP of the sagittal and transverse views of the data is

shown in (1) and (2). Reconstructions obtained by simple thresholding for the same views

are shown in (3) and (4). These are clearly sensitive to noise and result in disconnected or

missing vessels. The results obtained by our multi-scale geometric flow are shown in (5) and

(6). Observe that the flow has connected a section of the callosal arteries which is barely

visible in the MIP (see (1),(3),(5)).

4.2 Qualitative Results

We illustrate our multi-scale geometric flow for segmenting vasculature on a variety of modal-

ities. The same parameters were used throughout, as described in Section 3.3. We should

point out that whereas prior geometric flow based methods [19, 27] could be applied to

the angiographic volumes, they would fail entirely on both the Gadolinium enhanced MRI

volume and the PD data set where high contrast regions are not limited to vessel boundaries.

Figure 4 shows iterations of the flow using three single voxel seeds on an MRA data set

obtained from the MNI, as well as an MIP of the data set masked by the final segmentation.
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PC vesselness of PC PC masked by segmentation

TOF vesselness of TOF TOF masked by segmentation

PD vesselness of PD PD masked by segmentation

(reversed contrast)

Figure 6: Transverse views of (maximum or minimum) intensity projections of the PC, TOF

and PD data sets, the associated vesselness measures and the segmentations obtained by the

multi-scale geometric flow. See the associated text for a discussion.
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In preliminary work we demonstrated that the flow is able to pick up the main vessels

automatically when the original 1mm3 isotropic data is used [6]. In the current experiment

the original data is super-sampled to a 0.5mm3 resolution. This preprocessing strategy allows

us to recover several of the finer vessels which are less than one voxel wide and have low

contrast at their boundaries.

Figure 5 depicts a 40mm x 53mm x 91mm region centered on the corpus callosum from

a Gadolinium enhanced MRI volume obtained at the MNI. The 1mm3 isotropic data was

super-sampled to a resolution of 0.33mm3 using a tricubic interpolation kernel, because

several vessels in the original data set were less than one voxel wide. In the image one can

see the callosal and supra-callosal arteries (the long arching vessels running from left to right).

We show an MIP of a sagittal and a transverse view in the left column. A segmentation

obtained by thresholding is shown in the middle column. This results in many disconnected

vessels as well as artifacts. Our segmentation is shown in the third column and results in

the reconstruction of well connected tubular structures. Observe how the local ellipsoidal

integration scheme is able to connect a section of the supra-callosal arteries which has very

low contrast in the original Gadolinium data set.

Finally, Figure 6 depicts the transverse views of intensity projections of the input data,

the vesselness measures and the segmentations of the PC angiography, TOF angiography and

PD volumes shown in Figure 1. Owing to the large number of short vessels near the surface

of the full brain, the 2D visualization of the 3D segmentations poses a challenge since most

of the vasculature inside the head is occluded when projecting the data in a certain direction.

Hence, we choose to work with a common 259 x 217 x 170 voxel region cropped from the center

of each volume, which has vessels of different widths and contrasts in the three modalities. In

the third column we mask the original volumes with the corresponding binary segmentations

obtained by our algorithm, and show a maximum intensity projection (rows 1 and 2) or

a minimum intensity projection (row 3). This last result is shown in “reversed” contrast

so that it is comparable to the other two. Observe that along each row, the segmentations,

vesselness maps and maximum/minimum intensity projections agree closely, up to some very

small vessels. We also note the resemblance between the PC and PD views, where a majority
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of the vasculature agrees. We carry out a a quantitative study of these segmentation results

in the following section. To our knowledge, this is the first segmentation in the literature of

a PD weighted MRI obtained using a geometric flow.

4.3 Quantitative Results

Figure 7 compares the segmentations obtained on the PC, TOF and PD volumes (Figure 6)

with transverse views in the left column and sagittal views in the right column. To allow

for small alignment errors due to geometric distortions between the different acquisitions, we

consider two locations to be in common if the Euclidean distance between them is no greater

than 3 voxels (1.5 mm). In each figure red labels indicate locations common to the two data

sets, green labels indicate locations present in the ground truth data set but not in the test

data set and blue labels locations in the test data set which are not in the ground truth

data set. It is clear from the first row that most of reconstructed vessels in the PD and PC

data agree. The PC reconstruction has some finer vessels apparent in the transverse view

where small collaterals branch off the posterior aspects of the middle cerebral artery in the

lateral fissure. On the other hand, the PD reconstruction has more vasculature visible in the

sagittal view with vessels branching off the callosal and supra-callosal arteries. Finally, the

second and third rows of Figure 7 indicate that the TOF reconstruction is missing a large

number of vessel labels when compared to the PC and PD reconstructions.

We now carry out a quantitative analysis of these segmentation results by computing a

number of statistics between each pair of modalities, treating one as the ground truth data

set and the the other as the test data set. These comparisons are shown in Table 2 and

include the following measures:

1. The kappa coefficient defined by
2a

2a+ b+ c

where a is the number of red voxels, b is the number of green voxels and c the number

of blue voxels. This measure tests the degree to which the agreement exceeds chance

levels [7].
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PC (truth) vs PD (test)

TOF (truth) vs PD (test)

PC (truth) vs TOF (test)

Figure 7: Each row shows a pair-wise comparison of reconstructions obtained on different

modalities, with transverse views in the left column and sagittal views in the right column.

White labels correspond to the background, red labels to locations common to the ground

truth and test data, green labels to locations in the ground truth only and blue labels to

locations in the test data only.
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Data Sets Validation Measures

Ground Truth Test Data kappa ratio alignment

(voxels) (mm)

PC PD 0.84 0.80 0.95 0.48

TOF PD 0.81 0.89 0.66 0.33

PD PC 0.84 0.89 0.56 0.28

PD TOF 0.81 0.74 0.60 0.30

PC TOF 0.81 0.72 0.82 0.41

TOF PC 0.81 0.94 0.88 0.44

Table 2: A pair-wise comparison between the different modalities, treating one as the ground

truth and the other as the test data.

2. The ratio
a

a+ b

where a and b are as before. This measure indicates the degree to which the ground

truth data is accounted for by the test data.

3. The alignment error, defined by taking the average of the Euclidean distance between

each voxel in the ground truth data set and its closest voxel in the test data set. This

measure also indicates the degree to which the test data explains the ground truth

data, but in terms of an average distance error. In order to avoid measurement bias

when an extracted vessel is longer in one segmentation when compared to another, we

do not include voxels whose closest distance is greater than 3 voxels (this is essentially

the set of red voxels in the figure 7).

It is clear from Table 2 that the vasculature obtained from the PD volume accounts for

80% and 89% of that obtained from the PC and TOF angiographic sequences, respectively.

Furthermore, whereas 89% of the PD vessel voxels are also found in the PC data, a significant

proportion (26%) of PD vessel voxels are not seen in the TOF data. The results also indicate
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very high alignments between vessel labels in all pair-wise comparisons, which indicates that

when segmented, a vessel extracted from the different data sets is indeed similar.

5 Conclusion and Discussion

We have presented what to our knowledge is the first multi-scale geometric flow for segment-

ing vasculature in standard MRI volumes. Whereas the flow is designed for PD weighted

data sets, it can also be applied to a variety of other modalities. We have demonstrated its

applicability with both qualitative and quantitative validation studies. First, the qualitative

results indicate that a significant amount of vasculature can be recovered by initializing the

flow using a few isolated seeds. We have also found that a number of finer vessels can also be

recovered by super-sampling the data and by placing seeds manually along with an adaptive

lowering of the vesselness threshold used in the construction of the extended vector field
−→
V (Eq. 4). We have proposed a method to visualize vasculature by creating maximum or

minimum intensity projections of the original data, but masked by the binary segmentations.

These projections are particularly useful for visualizing vasculature in non-angiographic vol-

umes since artifacts due to the brain surface as well as background structures are removed.

The results in Figure 6 show that the MIPs of the original PC data and the segmented PC

data are very similar, indicating that our geometric flow is successful in segmenting all but

the very finest vessels. The MIPs of the original TOF and the segmented TOF data are even

more similar, although the TOF data contains fewer vessels when compared with the PC vol-

ume. Surprisingly, the minimum intensity projection of the PD data also shows a significant

number of vessels. This information is greatly enhanced in the vesselness of PD image in the

bottom row of Fig. 6. The reversed contrast MIP of the masked PD data demonstrates that

our vessel segmentation procedure is successful and yields a 2D image which is comparable

to the MIP of the segmented PC image and which is almost as informative as the MIP of the

original PC. More importantly, the complex spatial relationships between the vasculature

and surrounding anatomical structures can be made explicit since the segmented PD is a

true three-dimensional structure. A user can interact with the derived model, depending
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upon the task at hand, and can visualize it from arbitrary viewing directions.

Second, an important contribution of our work is the quantitative validation of the algo-

rithm using a data set comprised of PD, PC and TOF volumes obtained for the same subject.

The quantitative results indicate that the vessels segmented from the PD data alone account

for over 80% of the vasculature segmented from either of the angiographic data sets, with

a very small alignment error. We observe also that 26% of the vasculature obtained from

the PD data are not recovered from the angiographic TOF volume. This suggests that our

algorithm can be used to improve upon the results obtained from angiographic data but also

as a promising alternative when such data is not available, since PD-weighted MRI data are

routinely acquired when planning brain tumor surgery.

It is important to point out that all the segmentations were obtained automatically by

initializing the flow with a threshold of the vesselness measure and by stopping the surface

evolution after a fixed (maximum) number of iterations, or when the flow had not hit the

narrow band for several (5000) iterations. In the case of the PD volume the threshold must

be conservative to guarantee that seeds are placed only within vessel regions. It is possible

to place seeds less conservatively in the angiographic volumes in which vessels can be iden-

tified primarily by contrast. Ideally the algorithm could be semi-automatic to improve the

segmentation results. For example, in the event that the automatic reconstruction does not

recover some of the finer vessels, these could be later obtained using a finer manual placement

of seeds along with an adaptive lowering of the vesselness threshold at such locations.

Finally, it is important to note that the method does depend crucially on the choice

of a particular vesselness measure to identify centerlines along with their orientations and

associated vessel widths. Whereas our results indicate that Frangi’s vesselness measure is a

very promising candidate, other choices have also been proposed in the literature [3, 15] and

these would be worth exploring in the context of driving a geometric flow. One issue that

must be faced is the normalization of the responses for such operators so that both thin and

thick vessels yield quantitatively similar values at expected centerline locations.
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