Jacobi's Ideas on Eigenvalue Computation in a modern context

Henk van der Vorst

vorst@math.uu.nl

Mathematical Institute
Utrecht University

General remarks

$$
A x=\lambda x
$$

Nonlinear problem:

for $n>4$ no explicit solution
Essentially iterative methods

General remarks

$$
A x=\lambda x
$$

Nonlinear problem:

for $n>4$ no explicit solution

Essentially iterative methods

Oldest methods:

Leverrier 1840
Jacobi 1845-1846
No matrix notation in that time

General remarks

$$
A x=\lambda x
$$

Nonlinear problem:

for $n>4$ no explicit solution

Essentially iterative methods

Oldest methods:

Leverrier 1840

Jacobi 1845-1846

No matrix notation in that time
Masterthesis of Anjet de Boer, 1991, Utrecht

Early paper by Leverrier (1811-1877)

Sur les Variations sèculaires des Eléments elliptiques
des sept Planètes principales: Mercure, Vénus, la Terre, Mars,
Jupiter, Saturne et Uranus, 1840
based on Laplace's work (1789)

Early paper by Leverrier (1811-1877)

Sur les Variations sèculaires des Eléments elliptiques
des sept Planètes principales: Mercure, Vénus, la Terre, Mars,
Jupiter, Saturne et Uranus, 1840
based on Laplace's work (1789)
Perturbations to the orbits of planets caused by the presence of other planets
linear eigensystem from system of 7 diff. equations

Early paper by Leverrier (1811-1877)

Sur les Variations sèculaires des Eléments elliptiques

des sept Planètes principales: Mercure, Vénus, la Terre, Mars,
Jupiter, Saturne et Uranus, 1840
based on Laplace's work (1789)
Perturbations to the orbits of planets caused by the presence of other planets
linear eigensystem from system of 7 diff. equations
coefficients of characteristic polynomial
He neglected some small elements: factors of degree 3 and 4
\vdots

Über eine neue Auflösungsart der bei der Methode der kleinsten
Quadrate vorkommende lineare Gleichungen, 1845

Papers by Jacobi (1804-1851)

Über eine neue Auflösungsart der bei der Methode der kleinsten

Quadrate vorkommende lineare Gleichungen, 1845

Inspired by work of Gauss (1823)
New method for solution of sym. linear systems;
Jacobi-rotations as "preconditioner" for G-Jacobi method

Papers by Jacobi (1804-1851)

Über eine neue Auflösungsart der bei der Methode der kleinsten

Quadrate vorkommende lineare Gleichungen, 1845

Inspired by work of Gauss (1823)
New method for solution of sym. linear systems;
Jacobi-rotations as "preconditioner" for G-Jacobi method

He announces the application for eigenproblems

Second paper by Jacobi

Über ein leichtes Verfahren, die in der Theory der Säculärstörungen

vorkommenden Gleichungen numerisch aufzulösen, 1846
based on earlier work of Lagrange (1778) and Cauchy (1829)

Second paper by Jacobi

Über ein leichtes Verfahren, die in der Theory der Säculärstörungen

vorkommenden Gleichungen numerisch aufzulösen, 1846

based on earlier work of Lagrange (1778) and Cauchy (1829)

He applied his 1845-method to the system studied by Leverrier
Claim: easier and more accurate method (unsupported) refers to Leverriers work

Second paper by Jacobi

Über ein leichtes Verfahren, die in der Theory der Säculärstörungen

vorkommenden Gleichungen numerisch aufzulösen, 1846

based on earlier work of Lagrange (1778) and Cauchy (1829)

He applied his 1845-method to the system studied by Leverrier
Claim: easier and more accurate method (unsupported) refers to Leverriers work

Bodewig (1951): Jacobi knew his methods before 1840 (inconclusive) evidence: letter of Schumacher to Gauss (1842)

Jacobi method (1)

The Jacobi-rotations appear to be forgotten until ≈ 1950

Jacobi method (1)

The Jacobi-rotations appear to be forgotten until ≈ 1950

Whittaker (1924) described G-Jacobi
Von Mises (1929) described the method without reference to J .

Jacobi method (1)

The Jacobi-rotations appear to be forgotten until ≈ 1950

Whittaker (1924) described G-Jacobi
Von Mises (1929) described the method without reference to J .

The Jacobi (rotation) method was forgotten, but J. described the two methods
as one single algorithm

Jacobi method (2)

In 1951 Goldstine presented the rotation method
 joint work with Murray and Von Neumann

Jacobi method (2)

In 1951 Goldstine presented the rotation method

joint work with Murray and Von Neumann

Ostrowski pointed out that they had reinvented J.'s method

Jacobi method (2)

In 1951 Goldstine presented the rotation method

joint work with Murray and Von Neumann

Ostrowski pointed out that they had reinvented J.'s method
also Runge, Hessenberg, Krylov, Magnier, Bodewig knew the method

Jacobi method (2)

In 1951 Goldstine presented the rotation method

joint work with Murray and Von Neumann

Ostrowski pointed out that they had reinvented J.'s method
also Runge, Hessenberg, Krylov, Magnier, Bodewig knew the method

Bodewig $(1950,1951)$ described the full J-method
He claimed the rediscovery

Jacobi in Matrix Notation

Jacobi in Matrix Notation

(1) First plane rotations to make A diag. dom.

Jacobi in Matrix Notation

(1) First plane rotations to make A diag. dom.
suppose that $a_{1,1}$ is largest element
then $\lambda \approx a_{1,1}$ and $x \approx e_{1}(A x=\lambda x)$

Jacobi in Matrix Notation

(1) First plane rotations to make A diag. dom.
suppose that $a_{1,1}$ is largest element
then $\lambda \approx a_{1,1}$ and $x \approx e_{1}(A x=\lambda x)$
(2) Consider orthogonal complement of e_{1} :

$$
A\binom{1}{w}=\left(\begin{array}{cc}
a_{1,1} & c^{T} \\
c & F
\end{array}\right)\binom{1}{w}=\lambda\binom{1}{w}
$$

Jacobi in Matrix Notation

(1) First plane rotations to make A diag. dom.
suppose that $a_{1,1}$ is largest element
then $\lambda \approx a_{1,1}$ and $x \approx e_{1}(A x=\lambda x)$
(2) Consider orthogonal complement of e_{1} :
$A\binom{1}{w}=\left(\begin{array}{cc}a_{1,1} & c^{T} \\ c & F\end{array}\right)\binom{1}{w}=\lambda\binom{1}{w}$
leads to
$\lambda=a_{1,1}+c^{T} w$
$(F-\lambda I) w=-c$

Jacobi (2)

start with $w=0, \theta=a_{1,1}$
Solve w from $(F-\theta I) w=-c$ with $\mathbf{G}-\mathrm{J}$ iterations

Jacobi (2)

start with $w=0, \theta=a_{1,1}$
Solve w from $(F-\theta I) w=-c$ with G-J iterations
J. applied 10 rotations before switch to G-J

Jacobi (2)

start with $w=0, \theta=a_{1,1}$
Solve w from $(F-\theta I) w=-c$ with $\mathbf{G}-\mathrm{J}$ iterations
J. applied 10 rotations before switch to G-J

He applied 2 G-J steps before updating θ
Both decisions without further comment

Jacobi (2)

start with $w=0, \theta=a_{1,1}$
Solve w from $(F-\theta I) w=-c$ with \mathbf{G}-J iterations
J. applied 10 rotations before switch to G-J

He applied 2 G-J steps before updating θ
Both decisions without further comment
Bodewig (1959) advocated this method (without success?)
Quadratic convergence of J-rotations already fast enough?

Jacobi (2)

start with $w=0, \theta=a_{1,1}$
Solve w from $(F-\theta I) w=-c$ with \mathbf{G}-J iterations
J. applied 10 rotations before switch to G-J

He applied 2 G-J steps before updating θ
Both decisions without further comment
Bodewig (1959) advocated this method (without success?)
Quadratic convergence of J-rotations already fast enough?

Goldstine suggested J's rotations only for proving real eigenvalues

Krylov subspaces (1)

Krylov subspaces (1)

Krylov suggested in 1931 the subspace:
$K_{m}(A ; x)=\operatorname{span}\left\{x, A x, \ldots, A^{m-1} x\right\}$
for some convenient starting vector x
for construction of characteristic polynomial

Krylov subspaces (1)

Krylov suggested in 1931 the subspace:
$K_{m}(A ; x)=\operatorname{span}\left\{x, A x, \ldots, A^{m-1} x\right\}$
for some convenient starting vector x
for construction of characteristic polynomial
illconditioned basis, but in his case: $m=6$
How to make things work for large m ?

Krylov subspaces (2)

In the early 1950s: orthogonal basis

Krylov subspaces (2)

In the early 1950s: orthogonal basis
It does not help to build basis first

Krylov subspaces (2)

In the early 1950s: orthogonal basis
It does not help to build basis first
Start with $v_{1}=x /\|x\|$
Form $A v_{1}$ and orthogonalize w.r.t. v_{1}
Normalize: v_{2} (so far nothing new!)

Krylov subspaces (2)

In the early 1950s: orthogonal basis
It does not help to build basis first
Start with $v_{1}=x /\|x\|$
Form $A v_{1}$ and orthogonalize w.r.t. v_{1}
Normalize: v_{2} (so far nothing new!)
Instead of $A^{2} v_{1}$, compute $A v_{2}$

Krylov subspaces (2)

In the early 1950s: orthogonal basis
It does not help to build basis first

Start with $v_{1}=x /\|x\|$
Form $A v_{1}$ and orthogonalize w.r.t. v_{1}
Normalize: v_{2} (so far nothing new!)

Instead of $A^{2} v_{1}$, compute $A v_{2}$
Orthogonalize w.r.t v_{1}, v_{2} and normalize: v_{3}

Krylov subspaces (3)

The general step is:
Form $A v_{i}$, Orth. w.r.t v_{1}, \ldots, v_{i}, normalize: v_{i+1}

Krylov subspaces (3)

The general step is:
Form $A v_{i}$, Orth. w.r.t v_{1}, \ldots, v_{i}, normalize: v_{i+1}
(modified) Gram-Schmidt orthogonalization

Krylov subspaces (3)

The general step is:
Form $A v_{i}$, Orth. w.r.t v_{1}, \ldots, v_{i}, normalize: v_{i+1}
(modified) Gram-Schmidt orthogonalization

Results in well-conditioned basis (Stewart, SIAM books)

Krylov methods (3)

write $V_{m}=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{m}\right]$

Krylov methods (3)

write $V_{m}=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{m}\right]$
then G-S in matrix notation: $A V_{m}=V_{m} H_{m}+c_{m} v_{m+1} e_{m}^{T}$

Krylov methods (3)

write $V_{m}=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{m}\right]$
then G-S in matrix notation: $A V_{m}=V_{m} H_{m}+c_{m} v_{m+1} e_{m}^{T}$
Note that $H_{m}=V_{m}^{T} A V_{m}$

Krylov methods (3)

write $V_{m}=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{m}\right]$
then G-S in matrix notation: $A V_{m}=V_{m} H_{m}+c_{m} v_{m+1} e_{m}^{T}$
Note that $H_{m}=V_{m}^{T} A V_{m}$

The eigenvalues θ of H_{m} :
approximations for eigenvalues of A

Krylov methods (3)

write $V_{m}=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{m}\right]$
then G-S in matrix notation: $A V_{m}=V_{m} H_{m}+c_{m} v_{m+1} e_{m}^{T}$
Note that $H_{m}=V_{m}^{T} A V_{m}$

The eigenvalues θ of H_{m} :

approximations for eigenvalues of A

$H_{m} y=\theta y, z=V_{m} y$ is approximation for eigenvector of A

Krylov methods (3)

write $V_{m}=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{m}\right]$
then G-S in matrix notation: $A V_{m}=V_{m} H_{m}+c_{m} v_{m+1} e_{m}^{T}$
Note that $H_{m}=V_{m}^{T} A V_{m}$

The eigenvalues θ of H_{m} :

approximations for eigenvalues of A

$H_{m} y=\theta y, z=V_{m} y$ is approximation for eigenvector of A
A symmetric: LANCZOS METHOD (1952)

Krylov methods (3)

write $V_{m}=\left[v_{1}\left|v_{2}\right| \ldots \mid v_{m}\right]$
then G-S in matrix notation: $A V_{m}=V_{m} H_{m}+c_{m} v_{m+1} e_{m}^{T}$
Note that $H_{m}=V_{m}^{T} A V_{m}$

The eigenvalues θ of H_{m} :

approximations for eigenvalues of A

$H_{m} y=\theta y, z=V_{m} y$ is approximation for eigenvector of A
A symmetric: LANCZOS METHOD (1952)
A unsymmetric: ARNOLDI METHOD (1952)

Davidson's subspace

Davidson's subspace

Krylov subspaces popular after 1976 (Paige)

Davidson's subspace

Krylov subspaces popular after 1976 (Paige)

Davidson (1975) suggested other subspace:
Compute residual $r=A z-\theta z$

Davidson's subspace

Krylov subspaces popular after 1976 (Paige)

Davidson (1975) suggested other subspace:
Compute residual $r=A z-\theta z$
Precondition $r(\approx$ inverse iteration):

$$
t=\left(D_{A}-\theta I\right)^{-1} r
$$

Davidson's subspace

Krylov subspaces popular after 1976 (Paige)

Davidson (1975) suggested other subspace:
Compute residual $r=A z-\theta z$
Precondition $r(\approx$ inverse iteration):
$t=\left(D_{A}-\theta I\right)^{-1} r$
orthonormalize t and expand subspace

Davidson's subspace

Krylov subspaces popular after 1976 (Paige)
Davidson (1975) suggested other subspace:
Compute residual $r=A z-\theta z$
Precondition $r(\approx$ inverse iteration):
$t=\left(D_{A}-\theta I\right)^{-1} r$
orthonormalize t and expand subspace
claim: Newton method (?)
preconditioned Arnoldi?

Davidson's subspace

Krylov subspaces popular after 1976 (Paige)
Davidson (1975) suggested other subspace:
Compute residual $r=A z-\theta z$
Precondition $r(\approx$ inverse iteration):
$t=\left(D_{A}-\theta I\right)^{-1} r$
orthonormalize t and expand subspace

claim: Newton method (?)

preconditioned Arnoldi?
Davidson opens ways for other subspaces

Davidson - num. analysis

Davidson - num. analysis

$$
r=(A-\theta I) z
$$

Davidson - num. analysis

$$
\begin{aligned}
& r=(A-\theta I) z \\
& t=\left(D_{A}-\theta I\right)^{-1} r \approx(A-\theta I)^{-1} r=z
\end{aligned}
$$

Davidson - num. analysis

$$
\begin{aligned}
& r=(A-\theta I) z \\
& t=\left(D_{A}-\theta I\right)^{-1} r \approx(A-\theta I)^{-1} r=z
\end{aligned}
$$

With preconditioner $(A-\theta I)^{-1}$ no expansion of subspace

Davidson - num. analysis

$$
\begin{aligned}
& r=(A-\theta I) z \\
& t=\left(D_{A}-\theta I\right)^{-1} r \approx(A-\theta I)^{-1} r=z
\end{aligned}
$$

With preconditioner $(A-\theta I)^{-1}$ no expansion of subspace

Insightful paper by Crouzeix, Philippe, Sadkane (1994)

Analysis for $t=M_{k}^{-1} r$

Davidson - num. analysis

$$
\begin{aligned}
& r=(A-\theta I) z \\
& t=\left(D_{A}-\theta I\right)^{-1} r \approx(A-\theta I)^{-1} r=z
\end{aligned}
$$

With preconditioner $(A-\theta I)^{-1}$ no expansion of subspace

Insightful paper by Crouzeix, Philippe, Sadkane (1994)

Analysis for $t=M_{k}^{-1} r$
M_{k} should not be close to
Suspect! But successful for Chemistry problems

Davidson - num. analysis

$r=(A-\theta I) z$
$t=\left(D_{A}-\theta I\right)^{-1} r \approx(A-\theta I)^{-1} r=z$
With preconditioner $(A-\theta I)^{-1}$ no expansion of subspace

Insightful paper by Crouzeix, Philippe, Sadkane (1994)

Analysis for $t=M_{k}^{-1} r$
should not be close to
Suspect! But successful for Chemistry problems
Idea: apply preconditioner instead of Jacobi rotations and
use Jacobi's idea for new update of z

Jacobi-Davidson

In Jacobi's case: e_{1} is the approximation for x In subspace method we have approximation z

Jacobi-Davidson

In Jacobi's case: e_{1} is the approximation for x
In subspace method we have approximation z
J. computes update in subspace e_{1}^{\perp}

Sleijpen en VDV (1996): compute update in z^{\perp}

Jacobi-Davidson

In Jacobi's case: e_{1} is the approximation for x In subspace method we have approximation z
J. computes update in subspace e_{1}^{\perp}

Sleijpen en VDV (1996): compute update in z

($A-\theta I$) restricted to z^{\perp} is given by
$B=\left(I-z z^{*}\right)(A-\theta I)\left(I-z z^{*}\right)$

Jacobi-Davidson

In Jacobi's case: e_{1} is the approximation for x In subspace method we have approximation z
J. computes update in subspace e_{1}^{\perp}

Sleijpen en VDV (1996): compute update in

($A-\theta I$) restricted to z^{\perp} is given by
$B=\left(I-z z^{*}\right)(A-\theta I)\left(I-z z^{*}\right)$

Expand subspace with (approx.) solution of $B t=r$
Jacobi-Davidson method, SIMAX 1996
Newton method for RQ

Numerical example

$$
\begin{aligned}
& n=100, A=\operatorname{tridiag}(1,2.4,1) \\
& x=(1,1, \ldots, 1)^{T}
\end{aligned}
$$

Numerical example

$$
\begin{aligned}
& n=100, A=\operatorname{tridiag}(1,2.4,1) \\
& x=(1,1, \ldots, 1)^{T}
\end{aligned}
$$

Davidson: $M_{k}=A-\theta_{k} I$: stagnation

Numerical example

$$
\begin{aligned}
& n=100, A=\operatorname{tridiag}(1,2.4,1) \\
& x=(1,1, \ldots, 1)^{T}
\end{aligned}
$$

Davidson: $M_{k}=A-\theta_{k}$ I: stagnation
Jacobi-Davidson: $M_{k}=A-\theta_{k} I$: 5 it's

Numerical example

$n=100, A=\operatorname{tridiag}(1,2.4,1)$
$x=(1,1, \ldots, 1)^{T}$
Davidson: $M_{k}=A-\theta_{k} I$: stagnation
Jacobi-Davidson: $M_{k}=A-\theta_{k} I: 5$ it's
Davidson, prec. with GMRES(5) for $\left(A-\theta_{k} I\right) \tilde{t}=r$:
slow convergence (since $\theta_{k} \approx \lambda$)

Numerical example

$n=100, A=\operatorname{tridiag}(1,2.4,1)$
$x=(1,1, \ldots, 1)^{T}$
Davidson: $M_{k}=A-\theta_{k} I$: stagnation
Jacobi-Davidson: $M_{k}=A-\theta_{k} I: 5$ it's
Davidson, prec. with GMRES(5) for $\left(A-\theta_{k} I\right) \tilde{t}=r$:
slow convergence (since $\theta_{k} \approx \lambda$)
Jac.Dav., GMRES(5) for $F \tilde{t}=r$ with
$F=\left(I-z z^{T}\right)\left(A-\theta_{k} I\right)\left(I-z z^{T}\right): 13$ it's
Note that F has no small eigenvalues

More practical example

Acoustics, attachment line:

$$
A x+\lambda B x+\lambda^{2} C x=0
$$

More practical example

Acoustics, attachment line:
$A x+\lambda B x+\lambda^{2} C x=0$
For problem coming from acoustics:
A, C 19-diagonal, B complex, $n=136161$

More practical example

Acoustics, attachment line:
$A x+\lambda B x+\lambda^{2} C x=0$
For problem coming from acoustics:
A, C 19-diagonal, B complex, $n=136161$
Results for interior isolated eigenvalue (resonance)
on a CRAY T3D
Processors Elapsed time (sec)
16
32
64
206.4
101.3
52.1

More practical example

Acoustics, attachment line:
$A x+\lambda B x+\lambda^{2} C x=0$
For problem coming from acoustics:
A, C 19-diagonal, B complex, $n=136161$
Results for interior isolated eigenvalue (resonance)
on a CRAY T3D
Processors Elapsed time (sec)
$16 \quad 206.4$
32
64
101.3
52.1

For $n=274625$, on 64 processors: 93.3 seconds
1 invert step ≈ 3 hours

