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General remarks

Ax = λx

Nonlinear problem:

for n > 4 no explicit solution

Essentially iterative methods

Oldest methods:

Leverrier 1840

Jacobi 1845-1846

No matrix notation in that time
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Early paper by Leverrier (1811-1877)

Sur les Variations sèculaires des Eléments elliptiques

des sept Planètes principales: Mercure, Vénus, la Terre, Mars,

Jupiter, Saturne et Uranus, 1840

based on Laplace’s work (1789)

Perturbations to the orbits of planets caused by the

presence of other planets

linear eigensystem from system of 7 diff. equations

coefficients of characteristic polynomial

He neglected some small elements: factors of degree 3 and 4
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Papers by Jacobi (1804-1851)

Über eine neue Auflösungsart der bei der Methode der kleinsten

Quadrate vorkommende lineare Gleichungen, 1845

Inspired by work of Gauss (1823)

New method for solution of sym. linear systems;

Jacobi-rotations as ”preconditioner” for G-Jacobi method

He announces the application for eigenproblems
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Second paper by Jacobi

Über ein leichtes Verfahren, die in der Theory der Säculärstörungen

vorkommenden Gleichungen numerisch aufzulösen, 1846

based on earlier work of Lagrange (1778) and Cauchy (1829)

He applied his 1845-method to the system studied by Leverrier

Claim: easier and more accurate method (unsupported)

refers to Leverriers work

Bodewig (1951): Jacobi knew his methods before 1840

(inconclusive) evidence: letter of Schumacher to Gauss (1842)
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vorkommenden Gleichungen numerisch aufzulösen, 1846
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Jacobi method (1)

The Jacobi-rotations appear to be forgotten until ≈ 1950

Whittaker (1924) described G-Jacobi

Von Mises (1929) described the method without reference to J.

The Jacobi (rotation) method was forgotten, but J. described the two methods

as one single algorithm
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Jacobi method (2)

In 1951 Goldstine presented the rotation method

joint work with Murray and Von Neumann

Ostrowski pointed out that they had reinvented J.’s method

also Runge, Hessenberg, Krylov, Magnier, Bodewig knew the method

Bodewig (1950, 1951) described the full J-method

He claimed the rediscovery
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Jacobi in Matrix Notation

(1) First plane rotations to make A diag. dom.

suppose that a1,1 is largest element

then λ ≈ a1,1 and x ≈ e1 (Ax = λx)

(2) Consider orthogonal complement of e1:

A

(

1

w

)

=

(

a1,1 cT

c F

)(

1

w

)

= λ

(

1

w

)

leads to

λ = a1,1 + cTw

(F − λI)w = −c
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Jacobi (2)

start with w = 0, θ = a1,1

Solve w from (F − θI)w = −c with G-J iterations

J. applied 10 rotations before switch to G-J

He applied 2 G-J steps before updating θ

Both decisions without further comment

Bodewig (1959) advocated this method (without success?)

Quadratic convergence of J-rotations already fast enough?

Goldstine suggested J’s rotations only for proving real eigenvalues
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Krylov subspaces (1)

Krylov suggested in 1931 the subspace:

Km(A; x) = span{x,Ax, . . . , Am−1x}

for some convenient starting vector x

for construction of characteristic polynomial

illconditioned basis, but in his case: m = 6

How to make things work for large m?
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Krylov subspaces (2)

In the early 1950s: orthogonal basis

It does not help to build basis first

Start with v1 = x/‖x‖

Form Av1 and orthogonalize w.r.t. v1

Normalize: v2 (so far nothing new!)

Instead of A2v1, compute Av2

Orthogonalize w.r.t v1, v2 and normalize: v3
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Krylov subspaces (3)

The general step is:

Form Avi, Orth. w.r.t v1, ..., vi, normalize: vi+1

(modified) Gram-Schmidt orthogonalization

Results in well-conditioned basis (Stewart, SIAM books)
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Krylov methods (3)

write Vm = [v1|v2| . . . |vm]

then G-S in matrix notation: AVm = VmHm + cmvm+1e
T
m

Note that Hm = V T
m AVm

The eigenvalues θ of Hm:

approximations for eigenvalues of A

Hmy = θy, z = Vmy is approximation for eigenvector of A

A symmetric: LANCZOS METHOD (1952)

A unsymmetric: ARNOLDI METHOD (1952)
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Davidson’s subspace

Krylov subspaces popular after 1976 (Paige)

Davidson (1975) suggested other subspace:

Compute residual r = Az − θz

Precondition r(≈ inverse iteration):

t = (DA − θI)−1r

orthonormalize t and expand subspace

claim: Newton method (?)

preconditioned Arnoldi?

Davidson opens ways for other subspaces
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Davidson - num. analysis

r = (A − θI)z

t = (DA − θI)−1r ≈ (A − θI)−1r = z

With preconditioner (A − θI)−1 no expansion of subspace

Insightful paper by Crouzeix, Philippe, Sadkane (1994)

Analysis for t = M−1

k r

Mk should not be close to A − θI

Suspect! But successful for Chemistry problems

Idea: apply preconditioner instead of Jacobi rotations and

use Jacobi’s idea for new update of z
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Jacobi-Davidson

In Jacobi’s case: e1 is the approximation for x

In subspace method we have approximation z

J. computes update in subspace e⊥1

Sleijpen en VDV (1996): compute update in z⊥

(A − θI) restricted to z⊥ is given by

B = (I − zz∗)(A − θI)(I − zz∗)

Expand subspace with (approx.) solution of Bt = r

Jacobi-Davidson method, SIMAX 1996

Newton method for RQ
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Numerical example

n = 100, A = tridiag(1, 2.4, 1)

x = (1, 1, . . . , 1)T

Davidson: Mk = A − θkI: stagnation

Jacobi-Davidson: Mk = A − θkI: 5 it’s

Davidson, prec. with GMRES(5) for (A − θkI)t̃ = r:

slow convergence (since θk ≈ λ)

Jac.Dav., GMRES(5) for F t̃ = r with

F = (I − zzT )(A − θkI)(I − zzT ):13 it’s

Note that F has no small eigenvalues
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More practical example

Acoustics, attachment line:

Ax + λBx + λ2Cx = 0

For problem coming from acoustics:

A, C 19-diagonal, B complex, n = 136161

Results for interior isolated eigenvalue (resonance)

on a CRAY T3D
Processors Elapsed time (sec)

16 206.4
32 101.3
64 52.1

For n = 274625, on 64 processors: 93.3 seconds

1 invert step ≈ 3 hours
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