The Dimension of the Symmetric k-tensors

Cesar O. Aguilar
1.1 Proposition: Let V be a n-dimensional vector space. The dimension of the symmetric k-tensors on V is

$$
\operatorname{dim} S_{k}(V)=\binom{n+k-1}{k}
$$

Proof: Let $\sigma \in S_{k}(V)$ and write $\sigma=\sigma_{i_{1} \cdots i_{k}} \varepsilon^{i_{1}} \otimes \cdots \otimes \varepsilon^{i_{k}}$ for some basis $\left\{\varepsilon^{1}, \ldots, \varepsilon^{n}\right\}$ of V^{*}. By definition of a symmetric tensor, the coefficients $\sigma_{i_{1} \cdots i_{k}}$ are unchanged by any permutation of the indices i_{1}, \ldots, i_{k}. Thus we need to determine the number of k combinations, with possible repetitions, of the integers $\{1,2, \ldots, n\}$.
1.2 Lemma: Let A be an alphabet containing k distinct letters. The first letter will be denoted by 1, the second letter will be denoted by 2, etc. The number of all possible words of length n containing n_{1} times the first letter, n_{2} times the second letter, ..., n_{k} times the k th letter is

$$
P\left(n ; n_{1}, n_{2}, \ldots, n_{k}\right):=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

where $n=n_{1}+n_{2}+\cdots+n_{k}$ (the length of the word). In other words, the number of permutations of n elements with repetitions as described above is $P\left(n ; n_{1}, n_{2}, \ldots, n_{k}\right)$.
Proof: Let w be a word and let us distinguish the different copies of a letter in w with subscripts, that is, write $w=1_{1} 1_{2} \cdots 1_{n_{1}} 2_{1} 2_{2} \cdots 2_{n_{2}} \cdots k_{1} k_{2} \cdots k_{n_{k}}$. Let us generate the number of permutations of this n letter word as follows: 1) choose the position of each kind of letter, then 2) choose an ordering of the subscripts of the first letter, then 3) choose an ordering of the subscripts of the second letter, ..., and finally $k+1$) choose an ordering of the subscripts of the k th letter. The first step can be done in $P\left(n ; n_{1}, \ldots, n_{k}\right)$ ways, the second step in n_{1} ways, the third in n_{2} ways, \ldots, the last step in n_{k} ! ways. Thus,

$$
n!=P\left(n ; n_{1}, \ldots, n_{k}\right) n_{1}!n_{2}!\cdots n_{k}!.
$$

1.3 Lemma: The number of combinations of n objects taken k at a time with repetition is

$$
P(n+k-1 ; k, n-1)=\binom{n+k-1}{k} .
$$

Proof: The number of combinations of n objects taken k at a time with repetition is equal to the number of ways k identical objects can be distributed among n distinct containers. The latter is equal to the number of non-negative integer solutions to $x_{1}+x_{2}+\cdots+x_{n}=k$. Write a solution to $x_{1}+x_{2}+\cdots+x_{n}=k$ as

$$
\underbrace{\|\|\cdots\|}_{x_{1} \text { times }}+\underbrace{\| \| \cdots \|}_{x_{2} \text { times }}+\cdots+\underbrace{\| \| \cdots \|}_{x_{n} \text { times }} .
$$

The number of such solutions is an arrangements of k "bars" \mid and $(n-1)$ " + " signs, which is equal to $P(n+k-1 ; k, n-1)=\frac{n+k-1}{k!(n-1)!}=\binom{n+k-1}{k}$.
Using the above lemmas, the proof of Proposition 1.1 is now easy. The number of distinct coefficients $\sigma_{i_{1} \cdots i_{k}}$ is exactly the number of combinations from n objects taken k at a time with repetition, which is the number we claim to be.

