

High resolution Instruments for Air- and Spaceborne Application

Dr. Andreas Eckardt, Dr. Anko Börner, Stefan Hilbert, Ingo Walter

Outline

- ➤Camera and System Model
- ➢Physical Basics
- ≻SNR and TDI capabilities
- ➤ADS40 → MFC, KompSat3, LLPC
- ➢ First Step to Camera in Chip Design
- ➢Hybrid Sensor Technology

➤Conclusion

Introduction

✓ 5100 employees working in 27 research institutes and scientific and technical facilities

- → n at 8 sites

- Management Agency)
- Offices in Brussels,
 Paris and Washington.
- → DLR participates in the:
 - ✓ ♦ European Transonien Wind Tunnel (ETW)
 - German-Dutch Wind Tunnels (DNW)

Introduction

DLR Location in Berlin:

Berlin-Adlershof

Former Space Research Institute, Academy of Sciences, GDR (East part of the old Germany) DLR Location in Berlin was founded in 1992

Structure of the DLR Location in Berlin

Institute of Planetary Exploration

Institute of Transportation Research

GDR

DI R

Institute RM Department of Optical Information Systems [48 Scientists] Department of Ecology of Waters (Remote Sensing Technology Institute) Department of System Conditioning (Institute of Structural Mechanics) Project management organisation

Used Models for System Optimisations

Camera Model

$$n_{e} = \frac{\pi}{4 \cdot f_{no}^{2}} \cdot \tau(\lambda) \cdot QE(\lambda) \cdot I_{Ground}(\lambda) \cdot T_{Atmosphere}(\lambda) \cdot \frac{\lambda}{h \cdot c} \cdot \Delta\lambda \cdot A_{det} \cdot fillfactor \cdot \tau_{int}$$

ne	number of generated electrons of a single pixel	
fno	F - number of optics	
topt	transmission of optics	
QE(l)	Quantum efficiency of the Sensor	
Isensor(l)	sensor input radiance in W/m2 μm sr	
Dl	spectral bandwidth of a single spectral line	
Adet	nominal detector area	
fillfactor	factor for effective detector area	
tint	integration time	

System Model

$$I_{Sensor} = T_{Atmosphere} \bullet I_{Ground} + P_{Atmosphere}$$

ISensor : TAtmosphere: PAtmosphere: IGround: at-sensor-radiance (W/m2 sr μm) transmission of atmosphere stray light from atmosphere scene signal

Solar Spectrum

DIN-WS 20.11. 2006, Page 6

Typical Problem

DLR

Diffraction Limit of the Telescope

Problem: α = 1,22 λ / D (in rad)

dPixel = 1,22 λ F# (in m)

SNR Model

------ F#=3, Tint=4.3ms, Albedo 0.3, 30°

Electronically increasing of the aperture

Advantage:

 $Photon _ SNR_{TDI} = Photon _ SNR * \sqrt{Nr _ TDI _ Steps}$

Multispectral Cameras

Multi-/ Hyperspectral Imager

Key Development Airborne Digital Sensor (ADS) 40

ADS40 Airborne Digital Sensor Photogrammetric accuracy and remote sensing insight combined

- 4...6 multispectral CCD lines, each 12,000 pixels

LH Systems

- Pixel size: 6.5µm x 6.5 mm
- Field of view (FoV) or swath angle: 64°
- Focal length: 62.77mm
- Stereo angles: 14°, 28°, 42°

Austin Texas USA 06/2002

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Low Light Panoramic Camera

Designed for basic research of TDI systems has been started:

- 1) Synchronization Issue
- 2) Geometric Calibration of TDI Sensors
- 3) DSNU & PRNU issue in dependency to the temperature
- 4) MTF Measurement
- 5) SNR Measurements
- 6) TDI Sensors for Panoramic Photogrammetry?

Low Light Panoramic Camera

Specification:

Focal length		
Pixel size		
TDI CCD line		
Programmable TDI steps		
Dynamic range		
Radiometric resolution		
TDI Line Rate [max]		
Spectral channels		
Red		

- Green
- Blue
- Near Infrared

62 mm / F 5,6			
13 µm			
2048 pixels			
24, 48, 64, 96			
14 bit			
14 bit			
39.000 lines / s			
620 - 700 nm			
510 - 560 nm			
400 - 500 nm			

780 - 1200 nm

AD-Board

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

IF-Board

Frame Grabber

Old Focal Plane Technology

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

New Focal Plane Technology

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

CEU Development KompSat 3 [EADS Astrium GmbH & DLR]

Nr. of Pixels PAN	24.000
PAN-Sensor	2 x 12.080-TDI
Line Rate PAN	10 kHz +5/-50 %
CCD Output Rate	16 x 15MPixel/s
Data Rate	3,84 Gbit/s
MS-Sensor	8 x 6.000-TDI
Line Rate MS	2,5 kHz +5/-50 %
CCD Outp. Rate/Colour	2 x 7,5 MPixel/s
Data Rate	4 x 240 Mbit/s
Pitch PAN	8,75 μm
Pitch MS	2 x 17,5 μm
Anti Blooming	yes
Operating temperature	10°-25°C
Image Plane dx	22 cm
Dynamic Range	14 Bit
PRNU	yes
DSNU	yes
SNR-PAN	>200
SNR MS	>200
Orbit	685 km
Focal Length	8,6 m
F-#	12
PAN	450 nm-900 nm
NIR	760 nm-900 nm
RED	630 nm-690 nm
GREEN	520 nm-600 nm
BLUE	450 nm-520 nm

DLR is responsible for the Focal Plane and FEE development

Multi Camera Head Concept

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DIN-WS 20.11. 2006, Page 18

Multi functional Camera Head Realization

Modular Focal Plane

Measured Performances of the MFC

- ≻CCD 6 k, 8 k, 10 k, 14 k exchangeable
- ≻Shortest Integration Time
 - **0.6 ms** [6k]; **1.3 ms** [8k]; **2 ms** [10k]; **1.4 ms** [14k]
- >Exchangeable Optics
- Exchangeable IMU
- ≻Internal Mass Memory
- ≻Remote Control if necessary
- ≻MEM-stick[5 x 8GByte] option
- >Image data processing in one Chip as System in Chip Solution
- ≻Weight 5 Line Version 15 kg; Power 200 W / 28 VDC

First Image of the MFC Potsdam, Orangerie Sanssouci Garden -GSD 25 cm -Flight 23.6.2006 -without Platform -IGI IMU 126 -3 x 8 k RGB

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

New Sensor Technologies

Hybrid Low Light Level Applications

- Microscopy 7
 - Live cell fluorescence 7
 - Fixed cell 7
 - Confocal 7
- X-ray Imaging
 - Radiography 7
 - Fluoroscopy 7
 - X-ray crystallography 7
 - → Synchrotron
 - → Laboratory
- Astronomy & Space Research
 - Adaptive optic wave front sensor
 - Startrackers 7
 - Environmental sensing 7
- Night Vision 7
 - Near Term -- aircraft, vehicle, fire control 7
 - Medium Term -- manportable

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

QE[400nm]:>75%

Conclusions Outlook

Conclusions

TDI Sensor Calibration and Application was shown
 Advantage of new TDI Sensor Technologies was shown
 Modular FPA Concepts drives the next Generation of Imager
 MFC the first Step to Camera in Chip Solution
 High Quality Low Cost Photogrammetric Systems are available

Next Steps

Auto Synchronisation of TDI Sensors
 3D Algorithms [Hirschmüller] integration in Hardware
 Real Time On Board Information Extraction inc. DTM
 Real Time On Board Classification and Georeferencing

kyou for your attention

Questions?

1311

DIN-WS 20.11. 2006, Page 24