
CONNECTIONS, CURVATURE, AND p-CURVATURE

BRIAN OSSERMAN

1. Classical theory

We begin by describing the classical point of view on connections, their curvature,
and p-curvature, in terms of maps of sheaves on a scheme.

1.1. Connections and derivations. Let S be a scheme, and X smooth and finite
type over S throughout. We have the rank-n vector bundle Ω1

X/S of 1-forms on

X over S. We also fix some notation in the case that S is of characteristic p:
in this case, we denote by FT the absolute Frobenius map for any scheme T , by
X(p) = X×S S the p-twist of X over S, where the map used in the fiber product is
FS : S → S, and F : X → X(p) the relative Frobenius map. We will also consider
OX(p) as a sub-module of OX , identified with the kernel of d : OX → Ω1

X/S.

Definition 1.1. Given any coherent sheaf E on X, a connection (called S-
connection in case of ambiguity) on E is an OS-linear map ∇ : E → Ω1

X/S ⊗ E

satisfying the connection rule

∇(fs) = f∇(s) + df ⊗ s.

Example 1.2. If E = OX , the map d : OX → Ω1
X/S is a natural connection. More

generally, every connection on OX is of the form f 7→ df + fω, for some ω ∈ Ω1
X/S .

Indeed, because the difference of any two connections is linear, we observe:

Lemma 1.3. The set of S-connections on E naturally form a End(E ) ⊗ Ω1
X/S-

pseudotorsor: i.e., if the set is non-empty, it is a torsor over End(E ) ⊗ Ω1
X/S.

Definition 1.4. We also recall that a derivation on OX is an OS-linear map
θ : OX → OX to itself satisfying the Leibniz rule θ(fg) = θ(f)g + fθ(g).

Associated to θ is a unique OX-linear homomorphism θ̂ from Ω1
X/S to OX , which

gives θ upon precomposition with d : OX → Ω1
X/S (see [1, p. 386]).

If we apply these definitions after restriction to open subsets, we obtain natural
sheaves of connections on E and derivations, which we denote by Conn(E ) and Der
respectively. Note however that although Der is an OX -module (indeed, by the
above it is isomorphic to (Ω1

X/S)∨), Conn(E ) is just a sheaf of sets.

Observe that given ∇ ∈ Conn(E )(U) and θ ∈ Der(U), we obtain a map ∇θ :

E |U → EU defined by ∇θ = (θ̂ ⊗ 1) ◦ ∇.

Example 1.5. Again in the case E = OX , with X = P1
S , let t be a coordinate

for the line, and take θ = d
dt

. A differential form ω may be written as g(t)dt,
so a connection ∇ is of the form ∇(f(t)) = df(t) + f(t)g(t)dt. Then ∇θ(f(t)) =
df(t)

dt
+ f(t)g(t); i.e., it is a 1st-order linear differential operator.
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Definition 1.6. Given a connection ∇ on E , we denote by E ∇ the sheaf of sections
on E which are in the kernel of ∇; these sections are often called horizontal, or
flat.

We remark that connections, and in particular their horizontal sections, are very
different sorts of objects depending on whether or not S is of positive characteristic.

Example 1.7. Consider the connection ∇ on OP
1
S

given by f(t) 7→ df(t) − f(t)dt.

This has no horizontal sections algebraically, but formally locally, in characteristic
0, et is horizontal. However, in characteristic p there are no solutions even formally
locally.

In characteristic 0, E ∇ is very small; a finitely-generated OS-module. But in
positive characteristic, one sees immediately that if s ∈ E ∇, then fs ∈ E ∇ for any
f ∈ OX(p) . Thus, although E ∇ is not an OX -module, it is an OX(p) module. More
generally, although ∇ is not OX-linear, it is OX(p) -linear. Since OX is a finite OX(p)

module, one can sometimes treat ∇ as a linear object in positive characteristic,
and one finds, for instance, that contrary to the case of characteristic 0, it is always
sufficient to check for horizontal sections formally locally.

1.2. Operations on sheaves with connection. We observe that the operations
of tensor product and homomorphism extend naturally to coherent sheaves with
connection.

Given connections ∇i on coherent sheaves Ei for i = 1, . . . , m, one can define a
connection on E1 ⊗ · · · ⊗ Em by the formula ∇1 ⊗ 1 ⊗ · · · ⊗ 1 + 1 ⊗∇2 ⊗ · · · ⊗ 1 +
· · ·+ 1 ⊗ · · · ⊗ ∇m.

For coherent sheaves E ,F with connections ∇,∇′, we have a canonical induced
connection on Hom(E ,F ), given explicitly by ϕ 7→ ∇′◦ϕ−(ϕ⊗1)◦∇, and therefore
its horizontal sections are precisely homomorphisms from E to F which commute
with ∇,∇′.

1.3. Curvature. We now define the notion of curvature of a connection. We first
observe that given a connection ∇ on E , for any i we obtain a map ∇i : Ωi

X/S⊗E →

Ωi+1
X/S ⊗ E given by

∇i(ω ⊗ s) = dω ⊗ s+ (−1)iω ∧∇(s).

Definition 1.8. The curvature K of ∇ is the map

∇1 ◦ ∇ : E → Ω2
X/S ⊗ E .

Even though neither ∇ nor ∇1 is OX-linear, one can check that their composition
is in fact OX -linear, so that K(∇) may be thought of as an element of End(E ) ⊗
Ω2

X/S .

Definition 1.9. We say that a connection ∇ is integrable if K(∇) = 0.

Example 1.10. If E = OX , and ∇ is of the form d+ ω for some ω ∈ Ω1
X/S, then

∇ is integrable if and only if dω = 0; indeed, one can check from the definitions
that K(∇) = dω.

The motivation for the terminology is that if S = Spec C, we have that ∇ is
integrable if and only if there exist a full set of horizontal sections analytically
locally.
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We remark that if we consider ∇ as a map Der → EndOS
(E ) by θ 7→ ∇θ, the

curvature of ∇ measures the failure of ∇ to commute with the Lie bracket operations
on Der and EndOS

(E )

1.4. p-curvature. In this section, we define the p-curvature of an integrable con-
nection, which will function as a measure of the number of horizontal sections of ∇
in the case of positive characteristic; we will make this more precise shortly.

Definition 1.11. If F , G are OX-modules, we also define a map ϕ : F → G to be
p-linear if it is additive, and satisfies ϕ(fs) = fpϕ(s) for s ∈ F (U), f ∈ OX(U),
and all open U ⊂ X.

Now, for any OX-module F , it is easy to see that the natural map πF : F →
F ∗

XF gives a “universal p-linear map”, which is to say, any p-linear map F → G
factors through πF to give a unique OX-linear map F ∗

XF → G.
If ∇ is an integrable connection on E , then there is a notion of p-curvature

associated to ∇ defined as follows: since we are in characteristic p, for any derivation
θ, it is easy to check that θp is another derivation, and we define:

Definition 1.12. The p-curvature of∇ is the map from Der(OX(U)) to EndOS
(E )

given by
ψ∇(θ) = (∇θ)

p −∇(θp).

Thus, just as curvature measures failure of the connection to commute with Lie
bracket, p-curvature measures the failure of the connection to commute with pth
powers.

We extend this to a sheaf morphism ψ∇ : Der(OX) → EndOS
(E ), and it turns

out that it actually takes values in EndOX
(E ), and moreover is p-linear on Der(OX)

(that is, ψ∇(fθ) = fpψ∇(θ)) (see [2, 5.0.5, 5.2.0]). The first result is easy to check,
while the second requires an elementary but rather involved and unenlightening
argument of Deligne.

Also, ψ∇(θ) commutes with ∇θ′ for any θ′ [2, 5.2.3].
Finally, if we pull back a coherent sheaf E on X(p) under F , the sections of F ∗E

on U ⊂ X will be described as f ⊗ s, where f ∈ OX(U), s ∈ E (U), and we have
(F ∗f) ⊗ s = 1⊗ fs. We then see that we can have a canonical connection ∇can

on F ∗E defined by f ⊗ s 7→ s⊗ df .
We already observed that the kernel of ∇ is naturally a OX(p) -module. Moreover,

if we have F on X(p), it is easy to see from the definition that the kernel of ∇can on
F ∗F recovers F , and that ∇can is integrable. We also see that given a derivation
θ, ∇can

θ is given by f ⊗ s 7→ (θf) ⊗ s, so that the p-curvature associated to ∇can is
visibly always 0.

This may seem suggestive, and indeed the Cartier theorem states that given a
coherent sheaf E with a connection ∇ whose p-curvature vanishes, then E is the
pullback of a coherent sheaf on X(p) under Frobenius, with ∇ being the corre-
sponding canonical connection. One can even construct an appropriate categorical
equivalence in this manner:

Theorem 1.13. ([2, 5.1]) Let X be a smooth S-scheme, with S having charac-
teristic p, and let F : X → X(p) be the relative Frobenius morphism. Then pull-
back under Frobenius (together with the associated canonical connection) and taking
kernels of connections are mutually inverse functors, giving an equivalence of cat-
egories between the category of coherent sheaves on X(p) and the full subcategory
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of the category of coherent sheaves with integrable connection on X consisting of
objects whose connection has p-curvature zero.

Thus, the p-curvature of an integrable connection vanishes if and only if the sheaf
E is generated by the subsheaf E ∇ of horizontal sections. However, p-curvature is
not only interesting for the case that it vanishes.

Definition 1.14. An integrable connection ∇ is said to be nilpotent of exponent
≤ n if given any derivations θ1, . . . , θn, we have ψ∇(θ1) · · ·ψ∇(θn) = 0.

Katz showed the following:

Proposition 1.15. An integrable connection ∇ is nilpotent of exponent ≤ n if and
only if there exists a filtration 0 = F n ⊂ F n−1 ⊂ ...F 1 ⊂ F 0 = E such that ∇
induces a connection ∇i on each graded piece F i/F i+1, and each ∇i has vanishing
p-curvature.

In particular, if a connection is nilpotent, then ∇|Fn−1 has vanishing p-curvature,
so E has horizontal sections.

Finally, we discuss p-curvature as a formal object. Since Der(OX) ∼= (Ω1
X/S)∨,

the p-linearity means we can consider φ∇ as an OX-linear map F ∗

X(Ω1
X/S)∨ →

End(E ); compatibility of Ω1
X/S with base change yields π∗

X/SΩ1
X/S

∼= Ω1
X(p)/S

, so

F ∗
XΩ1

X/S
∼= F ∗Ω1

X(p)/S
, and we finally find we can consider p-curvature as giving a

global section

ψ∇ ∈ Γ(X, End(E ) ⊗ F ∗Ω1
X(p)/S).

We claim that in fact, ψ∇ lies in the kernel of the connection ∇ind induced on
End(E ) ⊗ F ∗Ω1

X(p) by ∇ on E (inducing ∇End on End(E )) and ∇can on F ∗Ω1
X(p) .

This follows formally from the fact that ψ∇(θ) commutes with ∇θ′ for all θ, θ′; if one
thinks of ψ∇ as a linear map F ∗ DerX(p) → End(E ), one may use this commutativity
to explicitly write down the actions of ∇can and ∇End, and see that they commute
with ψ∇. We therefore obtain the strengthened statement:

(1.16) ψ∇ ∈ Γ(X, End(E ) ⊗ F ∗Ω1
X(p)/S)∇

ind

,

where ∇ind is the connection induced by ∇ and ∇can.
We conclude with a brief discussion of the Cartier operator and a formula for

p-curvature in rank 1.
We have:

Theorem 1.17. There exists an isomorphism

C : F∗H
1(Ω∗

X/S)
∼
→ Ω1

X(p)/S ,

called the Cartier operator, and with C−1 given by the following formula: if
f ′ ∈ OX(p) is given by π∗f, where π : X(p) → X is the base change of FS, then

C−1(df ′) = [fp−1df ].

Example 1.18. Given the Cartier operator, we have the following formula for p-
curvature of a connection, recalling that we could write any integrable connection
on OX as d+ ω for some closed 1-form ω:

ψ∇(θ) = F ∗(π∗ω − C(ω)).
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2. The Grothendieck perspective

We now discuss Grothendieck’s point of view on algebraic connections, which is
more intrinsically geometric than the standard definition, particularly where the
significance of integrability is concerned. We will also discuss a definition of p-
curvature in this setting due to Mochizuki, and explain some simple applications.

2.1. Connections. Let S be a scheme, and X smooth and finite type over S
throughout.

We consider the diagonal map ∆ : X → X ×S X; ∆(X) is the closed subscheme
corresponding to the ideal sheaf I , which is generated by elements of the form
t⊗ 1 − 1 ⊗ t. We have:

Definition 2.1. The nth infinitesimal neighborhood of ∆ is the closed sub-
scheme X(n) corresponding to I n+1.

Thus, we have

X →֒ X(2) →֒ X(3) →֒ . . .X ×S X.

We will denote by p1, p2 the projection maps X ×S X → X.
Given an object B over X (it could be a sheaf, or a scheme, or anything for

which base change is defined), Grothendieck defines:

Definition 2.2. A connection on B is an isomorphism (p∗1B)|X(2)
∼
→ (p∗2B)|X(2)

which is the identity map when restricted to ∆.

We do not explain why this definition is equivalent to the standard one in the
case that B is a sheaf. However, the relationship comes about largely because
p1∗(I /I 2), then is naturally isomorphic to Ω1

X/S , with dt corresponding to t⊗1−

1 ⊗ t.
We focus instead on discussing the geometry of this definition. As Ishai men-

tioned, it should be thought of as giving “first-order parallel transport”. If we try
to picture what this might mean algebraically, we ought to suppose that S is de-
fined over some field k, and we let (T, x) be any pointed S-scheme. If we have a
map f : (T, x) → (X, x0) (one may imagine this is a closed immersion), we can
also consider the constant map fx0 : (T, x) → (X, x0) sending all of T to x0, it
would make sense to define parallel transport along f(T ) from x0 as an isomor-

phism B|f(T,x)
∼
→ B|f0(T,x) which gives the identity at x0; that is, a trivialization

the restriction of B to the image of T which is given as an isomorphism between
this and the trivial bundle on T having fiber B|x0 everywhere.

In this case, first-order parallel transport could reasonably mean that we have
this sort of parallel transport for any f with T = Spec k[ǫ]/ǫ2, which one ought to
think of as a point together with a tangent vector. A map Spec k[ǫ]/ǫ2 → X gives
a point by composing with the natural map Spec k →֒ Spec k[ǫ]/ǫ2, and a tangent
vector at that point.

To see that we have such data from a connection, take some f and f0, then we
obtain a map Spec k →֒ Spec k[ǫ]/ǫ2 →֒ X×SX. Because the image of Spec k lies in
∆, and ǫ2 = 0, it is easy to check that this map factors through X(2), so we can pull
back the connection to obtain an isomorphism of p∗1B|Spec k[ǫ]/ǫ2

∼
→ p∗2B|Spec k[ǫ]/ǫ2

which restricts to the identity on Spec k. But because of the construction, this is
precisely an identification of B|f(Spec k[ǫ]/ǫ2) with B|f0(Spec k[ǫ]/ǫ2), which is what we
wanted.
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Thus, we can think of a connection as giving us parallel transport along the
shortest possible paths in X – tangent vectors.

2.2. Integrable connections. In this Grothendieckian setting, integrability is ex-
pressed by a cocycle condition:

Definition 2.3. Consider the triple product X×SX×SX, and denote by X
(2)
3 the

first infinitesimal neighborhood of the diagonal in the product. We have projection
maps pi,j to X ×S X. Then given a connection, we obtain isomorphisms ǫi,j :

p∗iB|
X

(2)
3

∼
→ p∗jB|

X
(2)
3

by pulling back the connection under pi,j and restricting.

The connection is integrable if

ǫ1,3 = ǫ2,3 ◦ ǫ1,2.

In characteristic 0, one shows:

Theorem 2.4. If a connection is integrable, it can be lifted to nth-order neighbor-
hoods for any n, that is, it gives (a compatible system of) isomorphisms p∗1B|X(n)

∼
→

p∗2B|X(n) .

By the same argument as above, these give nth-order parallel transport data,
which is to say, given maps Spec k[ǫ]/ǫn+1 → X, we obtain trivializations of
B|Spec k[ǫ]/ǫn+1 as before.

Because these are compatible, we can also pass to limits, obtaining trivializations
of B along formal paths Spec k[[t]]. Indeed, the same argument works to produce
trivializations of B along entire formal neighborhoods of any point in X, which can
then be used to produce a family (formally locally) of horizontal sections of full
rank, as should exist for an integrable connection in characteristic 0.

Unfortunately, one cannot expect such behavior in characteristic p. However,
it turns out that one can still perform such liftings if one slightly modifies the
construction of X(n) using PD-structures. The main object we use is the PD-
scheme X×PD

S X, which is by definition the PD envelope of the map of standard
schemes ∆ : X →֒ X ×S X.

Formally, a PD-scheme is a triple (Y,J , γ) where Y is a scheme, J an ideal
sheaf, and γ is a compatible collection of maps γn : J → OY satisfying the
conditions from Ishai’s talk. One should think of J , γ as additional information
allowing one to consider OY to be containing elements “tn/n!” for any t ∈ J . Note

that this doesn’t make sense purely algebraically, because if we write t[n] for this
element, if p|n the only relations we obtain are along the lines of n! · t[n] = tn, which
forces both sides to be 0. This is reason for the necessity of the additional data γ
to obtain a meaningful theory.

Now, X ×PD
S X is the PD-scheme obtained from X ×S X and the ideal I in

order to include I [n] := (t[n] : t ∈ I ). We can thus define

Definition 2.5. The nth infinitesimal PD-neighborhood of ∆ is the closed PD-
subscheme X[n] of X ×PD

S X cut out by I [n+1].

Given this construction, one can prove the following (rather non-trivial) theorem:

Theorem 2.6. A connection on an OX-module can be lifted compatibly to X[n] for
all n if and only if it is integrable.
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The proof is rather involved, and goes through a correspondence with modules
over the ring of PD-differential operators. This argument relies on the fact that
the connection is on an OX-module. Since Grothendieck’s definition of integrable
connection and the statement on liftability rely only on understanding X/S, and
don’t involve any properties of B beyond the existence of base change, it is natural
to ask:

Question 2.7. Is there an “intrinsic” argument for the above theorem not relying
on any special properties of B?

2.3. Mochizuki’s p-curvature. We outline a construction of p-curvature in the
Grothendieck setting due to Mochizuki. We first give an interpretation of F ∗Ω1X(p)/S
in terms of PD-neighborhoods:

Proposition 2.8. Let (X ×PD
S X,J , γ) be the PD-envelope of the diagonal, and

I the ideal of the standard diagonal ∆, considered inside OX×PD
S

X . Then there is

a natural isomorphism

F ∗Ω1X(p)/S → J /(J [p+1],I ).

The picture is as follows:

X ×PD
S X

��

V (I )

��

?
_oo V (I ,J [p+1])?

_oo

X ×S X X?
_oo

Note that the difference between I and J is that J contains all its PD-powers,
whereas I only contains standard powers. For the proof of this proposition, see
[3, Prop. 1.4]. The proposition implies that the structure sheaf of V (I ,J [p+1])
is isomorphism of OX ⊕ F ∗Ω1

X(p)/S
, with multiplication given by a square-zero

structure on the 2nd summand.
Now we assume we are given an integrable connection. We know from the

theorem that we can lift it to X[p+1], which is V (J [p+1]). If we restrict further

to V (I ,J [p+1]), we obtain an isomorphism of p∗1B with p∗2B which restricts to
the identity on V (J ); we also have the tautological isomorphism obtained by
restricting to I , and composing the first with the inverse of the second, we obtain
an automorphism of p∗1B on V (I ,J [p+1]), which restricts to the identity modulo

J . Because of the square-zero structure on the ideal sheaf of V (I ,J [p+1]), this
gives a section of InfAut(B)⊗Ω1

X(p)/S
, where InfAut(B) is the sheaf of infinitesimal

automorphisms of B.

Definition 2.9. The p-curvature of an integrable connection on B is defined to
be the above-constructed section of InfAut(B) ⊗ Ω1

X(p)/S
.

In the case that B is a locally free OX-module, this is identified with End(B),
and we have the following:

Proposition 2.10. If B is an OX -module, then Mochizuki’s definition of p-curvature
agrees with the usual one.

See [3, Prop. 1.5] for the proof in the general setting.
We remark that this definition of p-curvature has much to recommend it, as

one can see abstractly many properties of p-curvature that are non-trivial in the
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traditional setting. For instance, it is by construction p-linear, and is easily seen to
commute with base change. It also commutes well with operations on bundles, so
it is easy to see that the p-curvature of a tensor product connection is the sum of
the p-curvatures of the original connections, that the p-curvature of a determinant
connection is the trace of p-curvature of the original connection, that the p-curvature
of the projectivization of a connection is the traceless part of the p-curvature of the
original connection, and so forth.

We also remark that vanishing of the p-curvature allows lifting of the connection
to pth-order neighborhoods in the standard, non-PD setting. However, it does not
necessarily allow lifting to all orders, which requires a stronger condition, in some
sense an infinite iteration of the property of having p-curvature zero.
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