Design and Implementation of

!'_ Object Oriented Virtual Machines

Lars Bak
Sun Microsystems, Inc.
Ulrik Pagh Schultz
Aarhus University

14/2 Aarhus University 2002

i Agenda for Today

= Dynamically typed systems
= Crash course in SmallTalkd

= Simple Object Machine (SOM)

= Simple virtual machine for SmallTalk
=« Implemented in Java

= Sunil Kothari: peutsch, L. P., Schiffman, A. M.:
Efficient Implementation of the Smalltalk-80 System,
POPL Proceedings, 1984.

14/2 Aarhus University 2002 2

‘-L Object Oriented Languages

= Dynamically-typed (pure OO)
=« Smalltalk
= Self

= Statically-typed (unpure OO)
= Java

= Beta
s C#

14/2 Aarhus University 2002

‘_L Smalltalk & Java Example

SmallTalk
bi ngeEating = (
10 timesRepeat: [self eatLunch]

)

Java
bi ngeEati ng() {
for (int index; index < 10; index++) {
eat Lunch() ;

}

}

14/2 Aarhus University 2002

i Statically-type Languages

= Separation of objects and basic types

= Behavior of basic types is fixed and
usually implemented in special byte
codes

= Generic data types are likely to exclude
basic types

= Believed to have fast predictable
behavior

14/2 Aarhus University 2002 5

i Dynamically-typed Languages

= Everything is an object
= Behavior of all objects can be changed

= Generic data types trivially includes
basic types

= Easy to provide well-defined semantics
for numbers (integer, double, fractions)

= Believed to have slow unpredictable
performance

14/2 Aarhus University 2002 6

i Discussion

= Does this make a difference at all?
= Are the claims about performance valid?

= What are some of the performance and
footprint implications?

= How can integers be be represented
efficiently?

14/2 Aarhus University 2002 7

Efficient Object
i Representation

= Trivial implementation would cause all
integer operations to allocate objects

= Integers must be represented efficiently

14/2 Aarhus University 2002 8

Tagging for Dynamically-typed
i Languages

= All values must be same size

= Need way to distinguish integer from
pointer

= 32 bit implementation
= Use first bit for tagging

= Simplify scanning in garbage collection

14/2 Aarhus University 2002 9

i Tagging for Typed Languages

= Exception for programming languages
for with interface types instead of
implementation types

= Programming language ex. StrongTalk

14/2 Aarhus University 2002 10

i Tagging Consequences

s Prevents support for efficient 32-bit
operations

= Each dispatch (message send) must do
tag checking

= Is it enough to have integers
represented efficiently?

14/2 Aarhus University 2002 11

The SmallTalk Lang

Ry

T

14/2 " ~ Aarhus University 2002

uage

12

i The Simple Object Machine

= Virtual machine and runtime system
written in Java™

= Simple object oriented virtual machine
» Interpreted system with only 16 bytecodes

= Pure object oriented system

« Everything is an object - even integers,
booleans, and classes

14/2 Aarhus University 2002 13

i Running Applications on SOM

= SOM reads classes from class path and
from the system class path

= System class path defaults to the
SmallTalk directory distributed with
SOM

14/2 Aarhus University 2002 14

i Printing

= SOM objects can be printed

= The generic print method is implemented
in the Object class and uses asString to
convert the object to a string

= The generic asString method returns
strings of the form ‘instance of ..." where
... IS replaced by the name of the class of

the object

14/2 Aarhus University 2002 15

i Bootstrapping

= The virtual machine starts by executing
the initialize method on an instance of
the System class

= The initialize method uses dynamic
class loading to load the specified class
= When the specified class has been loaded

it is instantiated and the run method is
called on the new instance

14/2 Aarhus University 2002 16

i Dynamic Types

= SOM has no static type annotations as
found in Java™ and C++

= Any variable can hold a reference to any
kind of object

= Programming is much faster

= Runtime lookup errors (message not
understood) can occur

14/2 Aarhus University 2002 17

i Control Structures

= SOM has no built-in control structures
nif(i<5){i:=16 }else{i:=2}
= While(i<j){i:=i+1}

= SOM uses blocks and virtual dispatch to
implement control structures
s (i<5)ifTrue:[i:=16]ifFalse: [i:=2]
s [i<j]whileTrue: [i:=i+ 1]

14/2 Aarhus University 2002 18

i Micro-Benchmarks

= All benchmarks inherit from the abstract
benchmark class

= The abstract benchmark class shows which
benchmark is running and reports timings

= SOM comes with only two benchmarks
» Dispatch (benchmarks virtual dispatch)
= Fibonacci

14/2 Aarhus University 2002 19

i SOM FAQ

= How do I check out a SOM workspace

CVsS -d<user nane>@m go. dai m . au. dk: /user s/ verdi ch/ cvsr oot
co SO\vtore

= How do I update the workspace

cvs update —Pd

= How do I build the first time

SOvcore\ buil d SOvcor e (after that just type build)

= How do I run a simple program
bi n\som -cp SOMcore/ Exanpl es/Hello Hello

14/2 Aarhus University 2002

20

‘_L SOM Example

= Left shift in integer
= Let's program.....

14/2 Aarhus University 2002

21

i Programming Assignment

14/2

Implement a read-eval-loop

Enhance String behavior

=« Implement equals, length etc.
Implement HashTable

= Needs hashcode primitive in Object
Implement Doubles

Big integer implementation

= Fixes Smalllnterger overflow
Implement proper Time class

Aarhus University 2002

22

i Programming Assignments

= Make the code readable

= Code from the assignments will be
integrated into the CVS root

= Make test code that verifies the correct
behavior

14/2 Aarhus University 2002 23

i Next Week

= Object Model
= Garbage collection

= Read (available on home page):

« Incremental Mature Garbage Collection by
Steffen Grarup & Jacob Seligmann

= Chapter 2 & 3

= Tenuring Policy for Generation-Based
Storage Reclamation by David Ungar &
Frank Jackson (who wants to present?)

14/2 Aarhus University 2002 24

