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Abstract

BCPL is a simple systems programming language with a small fast compiler

which is easily ported to new machines. The language was first implemented in

1967 and has been in continuous use since then. Its notable features typelessness

and the ability to provide machine independent pointer arithmetic allowing a

simple way to represent vectors and structures. BCPL functions are recursive

and variadic but, like C, do not allow dynamic free variables, and so can be

represented by just their entry addresses. There is no built-in garbage collector

and all input-output is done using library calls.

This document describes the BCPL Cintcode System giving a definition of the

language, its library and running environment. It also describes how to obtain

and install the system on your own machine.
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Preface

The concept for BCPL originated in 1966 and was first outlined in my PhD thesis

[Ric66] later that year. Its first implementation had to wait until 1967 when I was

working at M.I.T. Its heyday was perhaps from the mid 70s to the mid 80s, but

even now it is still continues to be used at some universities, in industry and by

private individuals. It is a useful language for experimenting with algorithms and

for research in optimizing compilers. As might be expected it is beginning to show

its age and is unlikely to be able to compete with modern current day languages

or even C, although in specialist applications where small size, simplicity and

portability are important it may still have a place.

This report is intended to provide a record of the main features of the BCPL

in sufficient depth so that a serious reader may obtain a proper understanding of

philosophy behind the design and use of the language. A complete interpretive

implementation is presented the source of which is freely available from my home

page on the Internet [Ric].

The implementation is reasonably machine independent and will run effi-

ciently on many machines both now and in the indefinite future.

Some of the more significant topics covered by this report are listed below.

• A specification of the BCPL.

• A description of the runtime library.

• The design and implementation of command language interpreter for the

system.

• The design of its portable implementation using the intermediate object

code OCODE.

• The design of Cintcode, the compact byte stream target code used in this

implementation.

• A description of the BCPL Cintcode debugger.

v
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• The efficient implementation of the Cintcode interpreter for several proces-

sors including both RISC and i386/Pentium based machines.

• The profiling and statistics gathering facilities offered by the system.



Chapter 1

The System Overview

This book contains a full description of an interpretive implementation of BCPL

that is supported by an command language and interactive low level debugger.

As an introduction to the system an example console session is now presented to

exhibit some of its key features.

1.1 A Console Session

When the system is started its opening message is as follows:

shep$ cinterp
BCPL Cintcode System
0>

The characters 0> are followed by a space character and is the command

language prompt string inviting the user to type a command. The integer gives

the execution time of the preceeding command. A possible command allowing

the user to type a BCPL program into the file fact.b is as follows:

> input fact.b
GET "libhdr"

LET fact(n) = n=0 -> 1, n*fact(n-1)

AND start() = VALOF
{ FOR i = 1 TO 5 DO writef("fact(%n) = %i5*n", i, fact(i))

RESULTIS 0
}
/*
10>

In this program, the directive GET "libhdr" causes a file of standard library

declarations to be inserted at that position. The text

1
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LET start() = VALOF

is the heading for the declaration of the function start which, by convention, is

the first function to be called when a program is run. The empty parentheses ()

indicate that the routine takes no arguments. The text

FOR i = 1 TO 5 DO

introduces a for-loop whose control variable i successively takes the values from

1 to 5. The body of the for-loop is a call of the library routine writef whose

effect is to output the format string after replacing the format items %n and %i5

by appropriately formatted representations of i and fact(i). Within the string

*n represents the newline character. The statement RESULTIS 0 causes a return

from the VALOF contruct with the value 0 which become the result of start. This

value indicates that the program successfully completed. The text

AND fact(n) =

introduces the definition of the function fact which take one argument (n) and

yields n factorial. This program can be compiled by using the following command:

10> bcpl fact.b to fact

BCPL (14 Dec 1999)
Code size = 96 bytes
10>

This command compiles the source file fact.b creating an executable object

module in the file called fact. The program can then be run by simply typing

the name of this file.

10> fact
fact(1) = 1
fact(2) = 2
fact(3) = 6
fact(4) = 24
fact(5) = 120
0>

The system provides several commands including a text editor edit and var-

ious file utilities such as join, rename and delete. These are described in chap-

ter 7, and will not be demonstrated here. Instead, this console session will be

completed by exhibiting some of the features of the undelying interpretive code

Cintcode and the interactive debugger.

When the BCPL compiler is invoked, it can be given additional arguments

that control various compiler options. One of these is the d1 option that directs

the compiler to output the compiled code in a readable form for the user to

inspect. Using this option on fact.b the following information is generated.
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10> bcpl fact.b to fact d1

BCPL (14 Dec 1999)
0: DATAW 0x00000000
4: DATAW 0x0000DFDF
8: DATAW 0x63616607

12: DATAW 0x20202074
// Entry to: fact
16: L1:
16: JNE0 L4
18: L1
19: RTN
20: L4:
20: LM1
21: AP3
22: LF L1
24: K4
25: LP3
26: MUL
27: RTN
28: DATAW 0x0000DFDF
32: DATAW 0x61747307
36: DATAW 0x20207472

// Entry to: start
40: L2:
40: L1
41: SP3
42: L5:
42: LP3
43: LF L1
45: K9
46: SP9
47: LP3
48: SP8
49: LLL L2920
51: K4G 70
53: L1
54: AP3
55: SP3
56: L5
57: JLE L5
59: L0
60: RTN
64: L2920:
64: DATAW 0x6361660F
68: DATAW 0x6E252874
72: DATAW 0x203D2029
76: DATAW 0x0A356925
80: L3:
80: DATAW 0x00000000
84: DATAW 0x00000001
88: DATAW 0x00000028
92: DATAW 0x00000046

Program size = 96 bytes
20>

This output shows the sequence of CINTCODE instructions compiled for the



4 CHAPTER 1. THE SYSTEM OVERVIEW

two procedures defined in the factorial program. In addition to the instructions,

there are a number of data words holding a string constant, initialisation data

and symbolic information for the debugger. The data word at location 4 holds

a special bit pattern indicating the presence of a procedure name placed just

before the procedure entry point. As can be seen the procedure in this case

is fact. Similar information is packed at location 28 for the function start.

Most Cintcode instructions occupy one byte and perform simple operations on

the registers and memory of the Cintcode machine. For instance, the first two

instructions of start (L1 and SP3 at locations 40 and 41) load the constant 1

into a register called A and then stores it at offset 3 relative to the stack frame

pointer (called P). This corresponds to the initialisation of the for-loop control

variable i. The label L5 marks the start of the for-loop body where fact(i) is

first computed (LP3 loads i, LF L1 loads the entry address of fact and K9 makes

the function call incrementing the P pointer by 9 locations). The result of this

function is returned in A which is then placed in the stack by means of SP9 in the

appropriate position for the third argument of the call of writef that is currently

being setup. The second argument, i, is setup by means of LP3 SP8, and the

first argument which is the format string is loaded by LLL L2920. The next

instruction (K4G 70) causes the routine writef, whose entry point is in global

variable 70, to be called incrementing the stack pointer by 4 words as it does

so. Thus the compilation of the call writef("fact(%n) = %i5*n", i, f(i))

occupies just 11 bytes from location 42 to 52, plus the 16 bytes at location 64

where the format string is packed. The next three instructions (L1 AP3 SP3)

increment i. To test that i is still less than 5, the value 5 is loaded (L5) and a

conditional jump instruction (JNE L5) obeyed, if the jump is not taken control

falls through to the instruction L0 RTN causing a return from the routine with

result 0. As can be seen, each instruction of this routine occupy one byte except

for the LF, LLL, K4G and JNE instructions which each occupy two bytes. The

body of the function fact is even more compact and equally easy to understand.

It starts by testing whether its argument is zero (JNE0 L4). If it is, it loads 1

(L1) and returns (RTN). If not, it computes n-1 by loading -1 (LM1) and adding

n (AP3) before loading the function fact (LF L1) and calling it (K4). The result

of this call is multiplied by n (LP3 MUL) before returning from fact (RTN). The

space occupied by this code is just 12 bytes.

The debugger can be entered using the abort command.

20> abort

!! ABORT 99: User requested
*
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The asterisk is the prompt inviting the user to enter a debugging command. The

debugger provides facilities for inspecting and changing memory as well as setting

breakpoints and performing single step execution of the program. As an example,

a breakpoint is placed at the first instruction of the routine clihook which is used

by the CLI to transfer control to a command. Consider the following commands:

* g4 b1
* b
1: clihook
*

This first loads the entry point of clihook (g4) since it happens to be held in

global variable 4 and sets (b1) breakpoint number 1 at this position. The com-

mand b, without an argument, lists the current breakpoints confirming that the

correct one has been set. Normal execution can continue using the c command.

* c
0>

If we now try to execute the factorial program, we immediately hit the break-

point.

0> fact

!! BPT 1 clihook
A= 0 B= 0 3340: K4G 1

*

This indicates that the breakpoint occured when the Cintcode registera A and

B were both zero, and that the program counter is set to 3300 where the next

instruction to be obeyed is K6G 1. Single Cintcode instructions can now be

executed using the \ command.

* \A= 0 B= 0 24208: L1
* \A= 1 B= 0 24209: SP3
* \A= 1 B= 0 24210: LP3
*

After each single step execution a summary of the current state is printed. In the

above sequence we see that the execution of the instruction L1 loading 1 into the

A register. The execution of SP3 does not have an immediately observable effect

since it updates a local variable held in the current stack frame, but the stack

frame can be displayed using the t command.

* p t4

P 0: 24292 3342 start 1
*
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This confirms that location P3 contains the value 1 corresponding to the initial

value of the for-loop control variable i. At this stage it is possible to change its

value to 3, say.

* 3 sp3
* p t4

P 0: 24092 3302 start 3
*

If single stepping is continued for a while we observe the evaluation of the

recursive call fact(3).

* \A= 3 B= 1 24211: LF 24184
* \A= fact B= 3 24213: K9
* \A= 3 B= 3 24184: JNE0 24188
* \A= 3 B= 3 24188: LM1
* \A= -1 B= 3 24189: AP3
* \A= 2 B= 3 24190: LF 24184
* \A= fact B= 2 24192: K4
* \A= 2 B= 2 24184: JNE0 24188
* \A= 2 B= 2 24188: LM1
* \A= -1 B= 2 24189: AP3
* \A= 1 B= 2 24190: LF 24184
* \A= fact B= 1 24192: K4
* \A= 1 B= 1 24184: JNE0 24188
* \A= 1 B= 1 24188: LM1
* \A= -1 B= 1 24189: AP3
* \A= 0 B= 1 24190: LF 24184
* \A= fact B= 0 24192: K4
* \A= 0 B= 0 24184: JNE0 24188
* \A= 0 B= 0 24186: L1
* \A= 1 B= 0 24187: RTN
* \A= 1 B= 0 24193: LP3
* \A= 1 B= 1 24194: MUL
* \A= 1 B= 1 24195: RTN
* \A= 1 B= 1 24193: LP3
* \A= 2 B= 1 24194: MUL
* \A= 2 B= 1 24195: RTN
* \A= 2 B= 1 24193: LP3
* \A= 3 B= 2 24194: MUL
* \A= 6 B= 2 24195: RTN
* \A= 6 B= 2 24214: SP9
* \A= 6 B= 2 24215: LP3
* \A= 3 B= 6 24216: SP8
* \A= 3 B= 6 24217: LLL 24232
* \A= 6058 B= 3 24219: K4G 70
*

At this moment the routine writef is just about to be entered to print an message

about factorial 3. We can unset breakpoint 1 and continue normal execution by

typing 0b1 c.
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* 0b1 c
fact(1) = 1
fact(4) = 24
fact(5) = 120
30>

Notice that fact(1) is the first to be written since it has already been evaluated,

but the next time round the FOR loop i has value 4 since i was updated during

the debugging session.

As one final example in this session we will re-compile the BCPL compiler.

30> bcpl com/bcpl.b to junk

BCPL (14 Dec 1999)
Code size = 8576 bytes
Code size = 5460 bytes
Code size = 12196 bytes
800>

This shows that the total size of the compiler is 26,232 bytes and that it can

be compiled (on a 450MHz Pentium machine) in 0.8 seconds. Since this in-

volves executing 17,727,220 cintcode instructions, the rate is just over 22 million

instructions per second with the current interpreter.
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Chapter 2

The BCPL Language

The design of BCPL was strongly influenced by the work done jointly by Cam-

bridge and London Universities on a language called CPL (Combined Program-

ming Language) which was conceived at Cambridge to be the main language

to run on the new and powerful Ferranti Atlas computer to be installed back

in 1963. Another Atlas computer was installed in London at about the same

time and it was decided to make the development of CPL a joint project be-

tween Cambridge and London Universities. As a result the name changed from

Cambridge Programming Language to Combined Programming Language. It

could reasonably be called Christopher’s Programming Language in recognition

of Christpher Strachey whose bubbling enthusiasm and talent steered the course

of its development.

CPL was an ambitious language in the ALGOL tradition but with many novel

and significant extensions intended to make its realm of application more general.

These included a greater richness in control constructs such as the now well known

IF, UNLESS, WHILE, UNTIL, REPEATWHILE, SWITCHON statements. It could handle

a wide variety of data types including string and bit patterns and was one of the

first strictly typed languages to provided a structure mechanism that permitted

convenient handling of lists, trees and directed graphs. Work on CPL ran from

about 1961 to 1967, but was hampered by a number of factors that eventually

killed it. It was, for instance, too large and complicated for the machines available

at the time, and the desire for elegance and mathematical cleanliness outweighed

the more pragmatic arguments for efficiency and implementability. Much of the

implementation was done by research students who came and left during the

lifetime of the project. As soon as they knew enough to be useful they had to

transfer their attention to writing their theses. Another problem (that became of

particular interest to me) was that the implementation had to move from EDSAC

II to the Atlas computer about halfway through the project. The CPL compiler

9



10 CHAPTER 2. THE BCPL LANGUAGE

was thus required to be portable. This was achieved by writing it in a simple

subset of CPL which was then hand translated into a sequence of low level macro

calls that could be expanded into the assembly language of either machine by

selecting an appropriate set of macro definitions. The macrogenerator used was

GPM[Str65] which was designed specifically for this task by Strachey. It was a

delightfully elegant work of art in its own right and is well worth study. A variant

of GPM, called BGPM, is included in the standard BCPL distribution.

BCPL was initially similar to the subset of CPL used in the encoding of the

CPL compiler. An outline of BCPL’s main features first appeared in my PhD

thesis [Ric66] in 1966 but it was not fully designed and implemented until early

the following year when I was working at Project MAC of the Massachussetts

Institute of Technology. Its first implementation was written in Doug Ross’s

Algol Extended for Design (AED-0)[D.T64] which was the only language then

available on CTSS, the time sharing system at Project MAC, other than LISP

that allowed recursion.

2.1 Language Overview

A BCPL program is made up of one or more separately compiled sections, each

consisting of a list of declarations that define the constants, static data and

functions belonging to the section. Within functions it is possible to declare

dynamic variables and vectors that exist only as long as they are required. The

language is designed so that these dynamic quantities can be allocated space on

a simple runtime stack. The addressing of these quantities is relative to the base

of the stack frame belonging to the current function activation. For this to be

efficient, dynamic vectors have sizes that are known at compile time. Functions

may be called recursively and their arguments are called by value. The effect

of call by reference can be achieved by passing pointers. Input and output and

other system operations are provided by means of library functions.

The main syntactic components of BCPL are: expressions, commands, and

declarations. These are described in the next few sections. In general, the pur-

pose of an expression is to compute a value, while the purpose of a command is

normally to change the value of one or more variables.

2.1.1 Comments

There are two form of comments. One starts with the symbol // and extends

up to but not including the end-of-line character, and the other starts with the

symbol /* and ends at a matching occurrence of */. Comment brackets (/*
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and */ may be nested, and within such a comments the lexical analyser is only

looking for /* and */. Care is needed when commenting out fragments of program

containing string constants. Comments are equivalent to white space and so may

not occur in the middle of multi-character symbols such as identifiers or constants.

2.1.2 The GET Directive

A directives of the form GET "filename" is replaced by the contents of the named

file. By convention, GET directives normally appear on separate lines.

2.1.3 Conditional Compilation

There is a simple mechanism, whose implementation takes fewer than 20 lines of

code in the compiler’s lexical analyser, that allow conditional skipping of lexical

symbols. It uses directives of the following form:

$$tag

$<tag

$>tag

where tag is conditional compilation tag composed of letters, digits, dots and

underlines. All tags are initially unset, but may be complemented using the $$tag

directive. All the lexical tokens between $<tag and $>tag are skipped (treated as

comments) unless the specified tag is set. The following example shows how this

conditional compilation feature can be used.

$$Linux // Set the Linux conditional compilation tag

$<Linux // Include if the Linux tag is set
$<WinNT $$WinNT $>WinNT // Unset the WinNT tag if set
writef("This was compiled for Linux")

$>Linux
$<WinNT // Include if the WinNT tag is set
writef("This was compiled for Windows NT")

$>WinNT

2.1.4 Section Brackets

Historically BCPL used the symbols $( and $) to bracket commands and decla-

rations. These symbols are called section brackets and are allowed to be followed

by tags composed of letters, digits, dots and underlines. A tagged closing section

bracket is forced to match with its corresponding open section bracket by the au-

tomatic insertion of extra closing brackets as needed. Use of this mechanism is no
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longer recommended since it can lead to obscure programming errors. Recently

BCPL has been extended to allow all untagged section brackets to be replaced

by { and } as appropriate.

2.2 Expressions

Expressions are composed of names, constants and expression operators and may

be grouped using parentheses. The precedence and associativity of the different

expression constructs is given in Section 2.2.9. In the Cintcode implementation

of BCPL all expressions yield values that are 32 bits long, but in some native

code implementations this word length is 64 bits.

2.2.1 Names

Syntactically a name is of a sequence of letters, digits, dots and underlines starting

with a letter that is not one of the reserved words (such as IF, WHILE, TABLE).

A name may be declared to a local variable, a static variable, a global variable,

a manifest constant or a function. Since the language is typeless, the value of a

name is a bit pattern whose interpretation depends on how it is used.

2.2.2 Constants

Decimal numbers consist of a sequence of digits, while binary, octal or hexadeci-

mal hexadecimal are represented, repectively, by #b, #o or #x followed by digits

of the appropriate sort. The o may be omitted in octal numbers. Underlines

may be inserted within numbers to improve their readability. The following are

examples of valid numbers:

1234
1_234_456
#b_1011_1100_0110
#o377
#x_BC6

The constants TRUE and FALSE have values -1 and 0, respectively, which are

the conventional BCPL representations of the two truth values. Whenever a

boolean test is made, the value is compared with with FALSE (=0).
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A question mark (?) may be used as a constant with undefined value. It can

be used in statements such as:

LET a, b, count = ?, ?, 0
sendpkt(P_notinuse, rdtask, ?, ?, Read, buf, size)

Character constants consist of a single character enclosed in single quotes (’).

The character returns a value in the range 0 to 255 corresponding to its normal

ASCII encoding.

Character (and string) constants may use the following escape sequences:

Escape Replacement

*n A newline (end-of-line) character.

*c A carriage return character.

*p A newpage (form-feed) character.

*s A space character.

*b A backspace character.

*t A tab character.

*e An escape character.

*" "

*’ ’

** *

*xhh The single character with number hh (two hexadecimal

digits denoting an integer in the range [0,255]).

*ddd The single character with number ddd (three octal digits

denoting an integer in the range [0,255]).

*f..f* This sequence is ignored, where f..f stands for a se-

quence of one or more space, tab, newline and newpage

characters.

A string constant consists of a sequence of zero or more characters enclosed

within quotes ("). Both string and character constants use the same character

escape mechanism described above. The value of a string is a pointer where the

length and bytes of the string are packed. If s is a string then s%0 is its length

and s%1 is its first character, see Section 2.2.6.

A static vector can be created using an expression of the following form:

TABLE K0, . . . , Kn where K0, . . . , Kn are manifest constant expressions, see Sec-

tion 2.2.10. The space for a static vector is allocated for the lifetime of the

program and its elements are updatable.
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2.2.3 Calls

The only difference between functions and routines is whether their calls return

results. Functions calls are normally made in the context of an expression where

a result is required, while routine calls are made in the context of a command no

requiring a result. If a function is called in the context of a command its result is

thrown away, and if a routine is called in the context of an expression the result

is undefined.

A call is syntactically an expression followed by a list of arguments enclosed

in paretheses.

newline()
mk3(Mult, x, y)
writef("f(%n) = %n*n", i, f(i))
f(1,2,3)
(fntab!i)(p, @a)

The parentheses are required even if no arguments are given. The last exam-

ple above illustrates a call in which the function is specified by an expression.

Section 2.4.8 covers both procedure definition and procedure calls.

2.2.4 Method Calls

Method calls are designed to make an object oriented style of programming more

convenient. They are syntactically similar to a function calls but uses a hash

symbol (#) to separate the function specifier from its arguments. The expression:

E#(E1,..,En)

is defined to be equivalent to:

(E1!0!E)(E1,..,En)

Here, E1 points to the fields of an object, with the convention that its ze-

roth field (E1!0) is a pointer to the methods vector. Element E of this

vector is applied to the given set of arguments. Normally, E is a mani-

fest constant. An example program illustrating method calls can be found in

BCPL/bcplprogs/demos/objdemo.b in the BCPL distribution system (see Chap-

ter 8).
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2.2.5 Prefixed Expression Operators

An expression of the form !E returns the contents of the memory word pointed

to by the value of E.

An expression of the form @E returns a pointer to the word sized memory

location specified by E. E can only be a variable name or an expression with

leading operator !.

Expressions of the form: +E, -E, ABS E, ~E and NOT E return the result

of applying the given prefixed operator to the value of the expression E. The

operator + returns the value unchanged, - returns the integer negation, ABS

returns the absolute value, ~ and NOT return the bitwise complement of the value.

By convention, ~ is used for bit patterns and NOT for truth values.

Expressions of the form: SLCT len:shift:offset pack the three constants len,

shift and offset into a word. Such packed constants are used by the field selection

operator OF described in the next section.

SLCT shift:offset means SLCT 0:shift:offset, and SLCT offset means

SLCT 0:0:offset.

2.2.6 Infixed Expression Operators

An expression of the form E1!E2 evaluates E1 and E2 to yield respectively a

pointer, p say, and an integer, n say. The value returned is the contents of the

nth word relative to p.

An expression of the form E1%E2 evaluates E1 and E2 to yield a pointer, p

say, and an integer, n say. The expression returns a word sized result equal to

the unsigned byte at position n relative to p.

An expression of the form K OF E accesses a field of consecutive bits

in memory. K must be a manifest constant (see section 2.2.10) equal to

SLCT len:shift:offset and E must yield a pointer, p say. The field is contained

entirely in the word at position p+offset. It has a bit length of len and is shift bits

from the right hand end of the word. A length of zero is interpreted as the longest

length possible consitent with shift and the word length of the implementation.

The operator Ä:: is a synonym of OF. Both may be used on right and left hand side

of assignments statements but not as the operand of @. When used in a right hand

context the selected field is shifted to the right hand end of the result with vacated

positions, if any, filled with zeros. A shift to the left is performed when a field is

updated. Suppose p!3 holds the value #x12345678, then after the assignment:

(SLCT 12:8:3) OF p := 1 + (SLCT 8:20:3) OF p

the value of p!3 is #x12302478.
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An expressions of the form E1<<E2 (or E1>>E2) evaluates E1 and E2 to yield

a bit pattern, w say, and an integer, n say, and returns the result of shifting w

to the left (or right) by n bit positions. Vacated positions are filled with zeroes.

Negative shifts or ones of more than the word length return 0.

Expressions of the form: E1*E2, E1/E2, E1 REM E2, E1+E2, E1-E2. E1 EQV E2

and E1 NEQV E2 return the result of applying the given operator to the two

operands. The operators are, respectively, integer multiplication, integer division,

remainder after integer division, integer addition, integer subtraction, bitwise

equivalent and bitwise not equivalent (exclusive OR). MOD and XOR can be used

as synonyms of REM and NEQV, respectively.

Expressions of the form: E1&E2 and E1|E2 return, respectively, the bitwise

AND or OR of their operands unless the expression is being evaluated in a boolean

context such as the condition in a while command, in which case the operands

are tested from from left to right until the value of the condition is known.

An expression of the form: E relop E relop . . . relop E where each relop is one

of =, ~=, <=, >=, < or > returns TRUE if all the individual relations are satisfied and

FALSE, otherwise. The operands are evaluated from left to right, and evaluation

stops as soon as the result can be determined. Operands may be evaluated more

than once, so don’t try ’0’<=rdch()<=’9’.

An expression of the form: E1->E2,E3 first evaluates E1 in a boolean context,

and, if this yields FALSE, it returns the value of E3, otherwise it returns the value

of E2.

2.2.7 Boolean Evaluation

Expressions that control the flow of execution in coditional constructs, such as if

and while commands, are evaluated in a Boolean. This effects the treatment of

the operators NOT, & and |. In a Boolean context, the operands of & and | are

evaluated from left to right until the value of the condition is know, and NOT (or

~) negates the condition.

2.2.8 VALOF Expressions

An expression of the form VALOF C, where C is a command, is evaluated by

executing the command C. On encountering a command of the form RESULTIS E

within C, execution terminates, returning the value of E as the result of the VALOF

expression. Valof expressions are often used as the bodies of functions.
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2.2.9 Expression Precedence

So that the separator semicolon (;) can be omitted at the end of any line, there

is the restriction that infixed operators may not occur as the first token of a line.

So, if the first token on a line is !, + or -, these must be regarded as prefixed

operators.

The syntax of BCPL is specified by the diagrams in Appendix A, but a sum-

many of the precendence of expression operators is given in table 2.1. The prece-

dence values are in the range 0 to 9, with the higher values signifying greater

binding power. The letters L and R denote the associativity of the operators.

For instance, the dyadic operator - is left associative and so a-b-c is equiva-

lent to (v-i)-j, while b1->x,b2->y,z is right associative and so is equivalent to

b1->x,(b2->y,z).

9 Names, Literals, ?, TRUE, FALSE,

(E),

9L Function and method calls

8L ! % OF :: Dyadic

7 ! @ Prefixed

6L * / REM MOD Dyadic operators

5 + - ABS

4 = ~= <= >= < > Extended Relations

4L << >>

3 ~ NOT Bitwise and Boolean operators

3L &

2L |

1L EQV NEQV XOR

1R -> , Conditional expression

0 VALOF TABLE Valof and Table expressions

0 SLCT : Field selector constant

Table 2.1: Operator precedence
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Notice that these precedence values imply that

! f x means ! (f x)

! @ x means ! (@ x)

! v ! i ! j means ! ((v!i)!j)

@ v ! i ! j means @ ((v!i)!j)

x << 1+y >> 1 means (x<<(1+y))>>1)

~ x!y means ~ (x!y)

~ x=y means ~ (x=y)

NOT x=y means NOT (x=y)

b1-> x, b2 -> y,z means b1 -> x, (b2 -> y, z)

2.2.10 Manifest Constant Expressions

Manifest constant expressions can be evaluated at compile time. They may

only consist of manifest constant names, numbers and character constants, TRUE,

FALSE, ?, the operators REM,SLCT, *, /, +, -, ABS, the relational operators, <<,

>>, NOT, ~, &, |, EQV, NEQV, and conditional expressions. Manifest expressions are

used in MANIFEST, GLOBAL and STATIC declarations, the upper bound in vector

declarations and the step length in FOR commands, and as the left hand operand

of :: and OF.

2.3 Commands

The primary purpose of commands is for updating variables, for input/output

operations, and for controlling the flow of control.

2.3.1 Assignments

A command of the form L:=E updates the location specified by the expression

L with the value of expression E. The following are some examples:

cg_x := 1000
v!i := x+1
!ptr := mk3(op, a, b)
str%k := ch
%strp := ’A’

Syntactically, L must be either a variable name or an expression whose leading

operator is ! or %. If it is a name, it must have been declared as a static

or dynamic variable. If the name denotes a function, it is only updatable if the

function has been declared to reside in the global vector. If L has leading operator
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!, then its evaluation (given in Section 2.2.6) leads to a memory location which

is the one that is updated by the assignment. If the % operator is used, the

appropriate 8 bit location is updated by the least significant 8 bits of E.

A multiple assignment has the following form:

L1,..,Ln := E1,..,En

This construct allows a single command to make several assignments without

needing to be enclosed in section brackets. The assignments are done from left

and is eqivalent to:

L1:=E1 ;. . . ; Ln := En

2.3.2 Calls

Both function calls and method calls as described in sections 2.2.3 and 2.2.4 are

allowed to be executed as commands. The only difference is that any results

produced are thrown away.

2.3.3 Conditional Commands

The syntax of the three conditional commands is as follows:

IF E DO C1

UNLESS E DO C2

TEST E THEN C1 ELSE C2

where E denotes an expression and C1 and C2 denote commands. The symbols

DO and THEN may be omitted whenever they are followed by a command keyword.

To execute a conditional command, the expression E is first evaluated. If it yields

a non zero value and C1 is present then C1 is executed. If it yields zero and C2

is present, C2 is executed.

2.3.4 Repetitive Commands

The syntax of the repetitive commands is as follows:

WHILE E DO C

UNTIL E DO C

C REPEAT
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C REPEATWHILE E

C REPEATUNTIL E

FOR N = E1 TO E2 DO C

FOR N = E1 TO E2 bY K DO C

The symbol DO may be omitted whenever it is followed by a command key-

word. The WHILE command repeatedly executes the command C as long as E

is non-zero. The UNTIL command executes C until E is zero. The REPEAT com-

mand executes C indefinitely. The REPEATWHILE and REPEATUNTIL commands

first execute C then behave like WHILE E DO C or UNTIL E DO C, respectively.

The FOR command first initialises its control variable (N) to the value of

E1, and evaluates the end limit E2. Until N moves beyond the end limit, the

command C is executed and N increment by the step length given by K which

must be a manifest constant expression (see Section 2.2.10). If BY K is omitted

BY 1 is assumed. A FOR command starts a new dynamic scope and the control

variable N is allocated a location within this new scope, as are all other dynamic

variables and vectors within the FOR command.

2.3.5 SWITCHON command

A SWITCHON command has the following form:

SWITCHON E INTO { C1 ;. . . ; Cn }

where the commands C1 to Cn may have labels of the form DEFAULT: or CASE K.

E is evaluated and then a jump is made to the place in the body labelled by

the matching CASE label. If no CASE label with the required value exists, then

control goes to the DEFAULT label if it exists, otherwise execution continues from

just after the switch.

2.3.6 Flow of Control

The following commands affect the flow of control.

RESULTIS E

RETURN

ENDCASE

LOOP

BREAK

GOTO E

FINISH
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RESULTIS causes evaluation of the smallest textually enclosing VALOF expres-

sion to return with the value of E.

RETURN causes evaluation of the current routine to terminate.

LOOP causes a jump to the point just after the end of the body of the small-

est textually enclosing repetitive command (see Section 2.3.4). For a REPEAT

command, this will cause the body to be executed again. For a FOR com-

mand, it causes a jump to where the control variable is incremented, and for

the REPEATWHILE and REPEATUNTIL commands, it causes a jump to the place

where the controlling expression is re-evaluated.

BREAK causes a jump to the point just after the smallest enclosing repetitive

command (see Section 2.3.4).

ENDCASE causes execution of the commands in the smallest enclosing SWITCHON

command to complete.

The GOTO command jumps to the command whose label is the value of E. See

Section 2.4.1 for details on how labels are declared. The destination of a GOTO

must be within the currently executing function or routine.

FINISH only remains in BCPL for historical reasons. It is equivalent to the

call stop(0, 0) which causes the current program to stop execution. See the

description of stop(code, res) page 48.

2.3.7 Compound Commands

It is often useful to be able to execute commands in a sequence, and this can be

done by writing the commands one after another, separated by semicolons and

enclosed in section brackets. The syntax is as follows:

{ C1 ;. . . ; Cm }

where C1 to Cm are commands.

Any semicolon ocurring at the end of a line may be omitted. For this rule to

work, infixed expression operators may never start a line (see Section 2.2.9).

2.3.8 Blocks

A block is similar to a compound command but may start with some declarations.

The syntax is as follows:

{ D1 ;. . . ; Dn; C1 ;. . . ; Cm }
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where D1 to Dn are delarations and C1 to Cm are commands. The declarations

are executed in sequence to initialise any variables declared. A name may be used

on the right hand side of its own and succeeding declarations and the commands

(the body) of the block.

2.4 Declarations

Each name used in BCPL program must in the scope of its declaration. The

scope of names declared at the outermost level of a program include the right

hand side of its own declaration and all the remaining declarations in the section.

The scope of names declared at the head of a block include the right hand side of

its own declaration, the succeeding declarations and the body of the block. Such

declarations are introduced by the keywords MANIFEST, STATIC, GLOBAL and LET.

A name is also declared when it occurs as the control variable of a for loop. The

scope of such a name is the body of the for loop.

2.4.1 Labels

The only other way to declare a name is as a label of the form N:. This may

prefix a command or occur just before the closing section bracket of a compound

command or block. The scope of a label is the body of the block or compound

command in which it was declared.

2.4.2 Manifest Declarations

A MANIFEST declaration has the following form:

MANIFEST { N1=K1 ;...; Nn=Kn }

where N1,..,Nn are names (see Section 2.2.1) and K1,..,Kn are manifest con-

stant expressions (see Section 2.2.10). Each name is declared to have the constant

value specified by the corresponding manifest expression. If a value specification

(=Ki) is omitted, the a value one larger than the previously defined manifest

constant is implied, and if =K1 is omitted, then =0 is assumed. Thus, the decla-

ration:

MANIFEST { A; B; C=10; D; E=C+100 }

declares A, B, C, D and E to have manifest values 0, 1, 10, 11 and 110, respectively.
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2.4.3 Global Declarations

The global vector is a permanently allocated region of store that may be directly

accessed by any (separately compiled) section of a program (see Section 2.5. It

provides the main mechanism for linking together separately compiled sections.

A GLOBAL declaration allows a names to be explicitly associated with elements

of the global vector. The syntax is as follows:

GLOBAL { N1:K1 ;...; Nn:Kn }

where N1,..,Nn are names (see Section 2.2.1) and K1,..,Kn are manifest con-

stant expressions (see Section 2.2.10).

Each constant specifies which global vector element is associated with each

variable.

If a global number (:Ki) is omitted, the next global variable element is im-

plied. If :K1 is omitted, then :0 is assumed. Thus, the declaration:

GLOBAL { a; b:200; c; d:251 }

declares the variables a, b, c and d occupy positions 0, 200, 201 and 251 of the

global vector, respectively.

2.4.4 Static Declarations

A STATIC declaration has the following form:

STATIC { N1=K1 ;...; Nn=Kn }

where N1,..,Nn are names (see Section 2.2.1) and K1,..,Kn are manifest con-

stant expressions (see Section 2.2.10). Each name is declared to be a statically

allocated variable initialised to the corresponding manifest expression. If a value

specification (=Ki) is omitted, the a value one larger than the previously defined

manifest constant is implied, and if =K1 is omitted, then =0 is assumed. Thus,

the declaration:

STATIC { A; B; C=10; D; E=C+100 }

declares A, B, C, D and E to be static variables having initial values 0, 1, 10, 11

and 110, respectively.
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2.4.5 LET Declarations

LET declarations are used to declare local variables, vectors, functions and rou-

tines. The textual scope of names declared in a LET declaration is the right hand

side of its own declaration (to allow the definition of recursive procedures), and

subsequent declarations and the commands.

Local variable, vector and procedure declarations can be combined using the

word AND. The only effect of this is to extend the scope of names declared forward

to the word LET, thus allowing the declaration of mutually recursive procedures.

AND serves no useful purpose for local variable and vector declarations.

2.4.6 Local Variable Declarations

A local variable declaration has the following form:

LET N1 ,..., Nn = E1 ,..., En

where N1,..,Nn are names (see Section 2.2.1) and E1,..,En are expressions.

Each name, Ni, is allocated space in the current stack frame and is initialized

with the value of Ei. Such variables are called dynamic variables since they are

allocated when the declaration is executed and cease to exist when control leaves

their scope. The variables N1,..,Nn are allocated consecutive locations in the

stack and so, for instance, the variable Ni may be accessed by the expression

(@N1)!(i− 1). This feature is a recent addition to the language.

The query expression (?) should be used on the right hand side when a

variable does not need an initial value.

2.4.7 Local Vector Declarations

LET N = VEC K

where N is a name and K is a manifest constant expression. A location is

allocated for N and initialized to a vector whose lower bound is 0 and whose

upper bound is K. The variable N and the vector elements (N!0 to N!K) reside

in the runtime stack and only continue to exist while control remains within the

scope of the declaration.

2.4.8 Procedure Declarations

A procedure declaration has the following form:
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LET N ( N1 ,..., Nn ) = E

LET N ( N1 ,..., Nn ) BE C

where N is the name of the function or routine being declared, N1,..,Nn are

its formal parameters. A function is defined using = and returns E as result.

A routine is defined using BE and executes the command C withou returning a

result.

Some example declarations are as follows:

LET wrpn(n) BE { IF n>9 DO wrpn(n/10)

wrch(n REM 10 + ’0’)

}

LET gray(n) = n NEQV n>>1

LET next() = VALOF { c := c-1

RESULTIS !c

}

If a procedure is declared in the scope of a global variable with the same name

then the global variable is given an initial value representing the procedure (see

section 2.5).

A procedure defined using equals (=) it is called a function and yields a result,

while a procedure defines by BE is called a routine and does not. If a function is

invoked as a routine its result in thrown away, and if a routine is invoked as a

function its result is undefined. Functions and routines are otherwise similar. See

section 2.2.3 for information about the syntax of to function and routine calls.

The arguments of a procedure behave like named elements of a dynamic vector

and so exist only for the lifetime of the procedure call. This vector has as many

elements as there are formal parameters and they receive their initial values

from the actual parameters at the moment of call. Procedures are variadic; that

is, the number of actual parameters need not equal the number of formals. If

there are too few actual parameters then the missing higher numbered ones are

left uninitialized, and if there are too many actual parameters, the extra ones

are evaluated but their values discarded. Notice that the ith argument can be

accessed by the expression (@v)!i, where v is the first argument. The scope of

the formal parameters is the body of the procedure.

Procedure calls are cheap in both space and execution time, with a typical

space overhead of three words of stack per call plus one word for each formal

parameter. In the Cintcode implementation, the execution overhead is typically

just one executed insruction for the call and one for the return.
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There are two important restrictions concerning procedures. One is that a

GOTO command cannot make a jump to a label not declared within the current

procedure, although such non local jumps can be made using the library proce-

dures level and longjump, described on page 43. The other is that dynamic free

variables are not permitted.

2.4.9 Dynamic Free Variables

Free variables of a procedure are those that are used but not declared in the

procedure, and they are restricted to be either manifest constants, static variables,

global variables, procedures or labels. This implies that they are not permitted to

be dynamic variables (ie local variables of another procedure). There are several

reasons for this restriction, including the need to be able to represent a procedure

in a single word, the ability to provide a safe separate compilation facility with

the related ability to assign procedures to variables. It also allows the procedure

calling to be efficient. Programmers used to languages such as Algol or Pascal

will find that they need to change their programming style somewhat; however,

most experienced BCPL users agree that the restriction is well worthwhile. One

should note that C adopted the same restriction, although in that language it is

imposed by the simple expedient of insisting that all procedures are declared at

the outermost level, thus making dynamic free variables syntactically impossible.

A style of programming that is often be used to avoid the dynamic free variable

restriction is exemplified below.

GLOBAL { var:200 }

LET f1(...) BE

{ LET oldvar = var // Save the current value of var

var := ... // Use var during the call of f1

...

f2(...) // var may be used in f2

...

IF ... DO f1(...) // f1 may be called recursively

var := oldvar // restore the original value of var

}

AND f2(...) BE // f2 uses var as a free variable

{ ... var ... }
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2.5 Separate Compilation

Large BCPL programs can be split up into sections that can be compiled sepa-

rately. When loaded into memory they can communicate with each other using

a special area of store called the Global Vector. This mechanism is simple and

machine independent and was put into the language since linkage editors at the

time were so primitive and machine dependent.

Variables residing in the global vector are declared by GLOBAL declarations

(see section 2.4.3). Such variables can be shared between separately compiled

sections. This mechanism is similar to the used of BLANK COMMON in Fortran,

however there is an additional simple rule to permit access to procedures declared

in different sections.

If the definition of a function or routine occurs within the scope of a global

declaration for the same name, it provides the initial value for the corresponding

global variable. Initialization of such global variables takes place at load time.

The three files shown in Table 2.1 form a simple example of how separate

compilation can be organised.

File demohdr File demolib.b File demomain.b

GET "libhdr" GET "demohdr" GET "demohdr"

GLOBAL { f:200 } LET f(...) = VALOF LET start() BE

{ ... { ...

} f(...)

}

Table 2.1 - Separate compilation example

When these sections are loaded, global 200 is initialized to the entry point of

function f defined in demolib.b and so is can be called from the function start

defined in demomain.b.

The header file, libhdr, contains the global declarations of all the resident

library functions and routines making all these accessible to any section that

started with: GET "libhdr". The library is described in the next chapter. Global

variable 1 is called start and is, by convention, the first function to be called

when a program is run.

Automatic global initialisation also occurs if a label declared by colon (:)

occurs in the scope of a global of the same name.

Although the global vector mechanism has disadvantages, particularly in the

organisation of library packages, there are some compensating benefits arising
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from its extreme simplicity. One is that the output of the compiler is available

directly for execution without the need for a link editing step. Sections may

also be loaded and unloaded dynamically during the execution of a program

using the library functions loadseg and unloadseq, and so arbitrary overlaying

schemes can be organised easily. An example of where this is used is in the

implementation of the Command Language Interpreter described in Chapter 4.

The global vector also allows for a simple but effective interactive debugging

system without the need for compiler constructed symbol tables. Again, this

was devised when machines were small and disc space was very limited; however,

some of its advantages are still relevant today.



Chapter 3

The Library

This chapter describes the resident library functions, routines and manifest con-

stants that are declared in the standard library header file libhdr and defined in

either SYSLIB or sys/BLIB.b.

3.1 The Standard Header File libhdr

The file libhdr contains the global and manifest declarations of all the proce-

dures, variables and constants belonging to the standard resident library. Global

variables 0 to 199 are reserved for use by the system. Of these, globals 0 to

99 mainly belong to BLIB and SYSLIB, while tose between 133 and 149 belong

to the Command Language Interpreter described in Chapter 4. The first global

available to the user is numbered 200. For convenience this is declared as the

manifest constant ug.

The size of the global vector is held in globsize (global 0) and, by convention,

the global result2 is used by some functions to return a second result. Global

variable 1 is called start and is special since it must be defined by the user

because it is the first function to be called when a program is run. Global 4

(called clihook is also special since it is useful when debugging programs, see

page 47.

3.1.1 Architecture Constants

This constant B2Wsh holds the shift required to convert a BCPL pointer into a

byte address. On 32 bit machines it is set to 2 while on some 64 bit implemen-

tations it is set to 3. The constant bytesperword is defined to be 1<<B2Wsh and

indicates how many bytes can be packed into a word. The constant bitsperbyte

is set to 8 indicating the size of a byte. The constants minint and maxint hold

29
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the largest negative and positive numbers that can be represented by a word in

this implementation.

3.1.2 Other Manifest Constants

The constants t hunk, t bhunk and t end are used in the representation of Cint-

code Object Modules. Constants whose names start with co are used in the

implementation of the coroutine mechanism (see Section 3.3.11), and constants

starting with rtn denote offsets in the rootnode (see Section 3.3.1). The con-

stants InitObj(=0) and CloseObj(=1) are the positions in the methods vector

of the routines to initialise and close an object. See mkobj described on page 46.

3.2 SYSLIB

This module contains the definitions of the functions sys, chgco and muldiv.

These functions are hand written in Cintcode because they need to execute the

Cintcode instructions (SYS, CHGCO and MDIV) that cannot be generated by the

BCPL compiler. The instruction SYS provides an interface with the host operat-

ing system, CHGCO is used in the implementation of coroutines (see Section 3.3.11),

and MDIV performs the operation required by muldiv(see Section 3.3.13).

To understand the purpose of sys it is necessary to known some how the Cint-

code System in implemented. It is mainly implemented in C and can be found in

the files sys/cintmain.c, sys/cinterp.c, sys/kblib.c and sys/nrastlib.c.

There is also a header file sys/cinterp.h that contains architecture specific dec-

larations. The file sys/cintmain.c contains the main program and includes the

definition dosys which provide access to I/O functions and other operating sys-

tem primitives. The file sys/cinterp.c contains the C implementation of the

Cintcode interpreter and there is usually a more efficient interpreter. See, for

instance, sys/LINUX/cintasm.s. cintasm is faster than the C version because

it has fewer built-in debugging aids and because it is carefully hand written in

assembly language taking advantage of knowledge not available to a C compiler.

The BCPL function sys provides an interface between BCPL and dosys, and

can also control which version of the interpreter is used.

3.2.1 sys

The sys function is defined by hand in SYSLIB and just invokes the SYS Cintcode

instruction. When SYS is encountered by the interpreter, it normally just calls

dosys passing the BCPL P and G pointers as arguments. But when sys(0,code)
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is executed, the interpreter saves the Cintcode registers in a vector and returns

with the result code to the (C) program that called this invocation of the in-

terpreter. This is normally used to exit from the Cintcode system, but can also

be used to return from recursive invocations of the interpreter (see sys(1,regs)

below).

A typical call of sys is as follows:

res := sys(op,...)

The action performed by this call depends on op. Some actions concern the

management of the interpreter, some are concerned with input and output, while

others provide access to functions implemented in C.

3.2.2 Interpreter Management

The Cintcode System normally has two resident interpreters. One is called

cinterp and is implemented in C and the other is called cintasm and is normally

implemented by hand in assembly language. The assembly language version runs

faster but provides no way of counting instruction executions or profiling program

execution. It is possible to select dynamically which interpreter is running by set-

ting a value in the Cintcode count register. A positive value causes cinterp to

run. Each time cinterp executes a Cintcode instruction it decrements count

and returns with an error code of 3 when count reaches zero. If the value in

count is -1, cintasm is invoked and runs without changing count. With some

debugging versions of cintasm, setting count to -2 causes cintasm to execute

just one instruction and then return with error code 10. This feature is provided

to assist the debugging of a new version of cintasm. The Cincode count register

can be set by means of the sys(-1,...) call described below.

A second version of the BCPL Cintcode system called rasterp. It uses just

one interpreter implemented in C, and can be called upon to generate raster image

data. For more information, see the description of sys(27,...) on page 35 and

the raster and rast2ps commands on page 63.

oldcount := sys(-1, newcount)

Under normal conditions when the interpreter is running under the control of

code in BOOT, this sets the Cintcode count register to newcount and returns the

previous value. If the count register is now less than 0, interpretation continues

using the fast interpreter (cintasm), but if it is greater than 0, interpretation

continues using the slow interpreter (cinterp). The code to make this selection

can be found in the execution loop occuring at the end of the function start

defined in sys/BOOT.b.
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For some (debugging) versions of cintasm a count of -2 causes the (fast)

interpreter to execute just one Cintcode instruction before returning with an

error code of 10.

The sys(-1,...) function is used by the CLI command interpreter to

select which interpreter is to be used (see Section 4.2). It is also used by the

instrcount function defined in BLIB.b (see page 48).

sys(0, code)

This will cause a return from the the interpreter yielding code as the return

code. A code of zero denotes successful completion and, if invoked at the outer-

most level, causes the BCPL Cintcode System to terminate.

res := sys(1, regs)

This function enters the Cintcode interpreter recursively with the Cintcode

registers set to values specified in the vector regs. The elements of regs are as

follows:

regs!0 A register – work register

regs!1 B register – work register

regs!2 C register – work register

regs!3 P register – the stack frame pointer

regs!4 G register – the base of the global vector

regs!5 ST register – the status register (unused)

regs!6 PC register – the program counter

regs!7 Count register – see below

When cinterp is active, the count register is decremented every time an

instruction is interpreted. When the count goes negative the interpreter saves

the registers and returns with a result (=3) to indicate what has happened. If

the count register is positive it indicates how many Cintcode instructions should

be executed before the interpreter returns. A count of -1 is treated as infinity

and causes the fast interpreter cintasm to be used.

Either interpreter returns when a fault, such as division by zero, occurs or

when a call of sys(0,...) or sys(-1,...) is made. When returning, the current

state of the Cintcode registers is saved back into regs. The returned result is

either the second argument of sys(0,...) or one of the builtin return codes in

the following table:
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-1 Re-enter the interpreter with a new value in the the count register

0 Normal successful completion (by convention)

1 Non existant Cintcode instruction

2 BRK instruction encountered

3 Count has reached zero

4 PC set to a negative value

5 Division by zero

10 Single step interrupt from the fast interpreter (debugging)

sys(2) – Turn on tracing of the Cintcode instruction execution.

sys(3) – Turn off tracing.

sys(4) – Clear the tally vector and start tallying.

sys(5) – Stop tallying.

When running under cinterp, the calls sys(2) and sys(3) provide a primi-

tive trace facility to aid debugging the cinterp itself and are not normally of use

to ordinary users. When running under cinterp, the calls sys(4) and sys(5)

provide the profiling facility that was used to obtain execution statistics. It uses

the tally vector to hold frequency counts of Cintcode instructions executed. When

tallying is enabled, the ith element of the tally vector is incremented every time

the instruction at location i of the Cintcode memory is executed. The upper

bound (normally 80000) of the tally vector is implementation dependent but is

stored in the zeroth element of the vector. The location of the tally vector can

be found by evaluating the expression rootnode!rtn tallyv. Note this profiling

facility is only available when running under cinterp. Statistics of the execution

of a program can be gathered and analysed using the CLI command stats (see

Section 4.2).

3.2.3 Primitive I/O Operations

ch := sys(10)

Return the next character from the keyboard. The character is echoed to

standard output (normally the screen).

sys(11, ch)

Send character ch to the standard output (normally the screen). the character

linefeed is transmitted as carriage return followed by linefeed.

n := sys(12, fp, buf, len)

Read upto len bytes from the file specified by the file pointer fp into the byte
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buffer buf. The file pointer must have been created by a call of sys(14,...).

The number of bytes actually read is returned as the result.

n := sys(13, fp, buf, len)

Write len bytes to the file specified by the file pointer fp from the byte buffer

buf. The file pointer must have been created by a call of sys(15,...). The result

is the number of bytes transferred, or zero if there was an error.

fp := sys(14, name)

This opens for reading the file whose name is given by the string name. It

returns 0 if the file cannot be opened, otherwise it returns the file pointer for the

opened file. See page 43 for information about the treatment of file names.

fp := sys(15, name)

This opens for writing the file whose name is given by the string name. It

returns 0 if the file cannot be opened, otherwise it returns the file pointer for the

opened file. See page 43 for information about the treatment of file names.

res := sys(16, fp)

This closes the file whose file pointer is fp. It return 0 if successful.

res := sys(17, name)

This deletes the file whose name is given by name. See page 43 for information

about the treatment of file names.

res := sys(18, old, new)

This renames file old to new. It return 0 if successful.

res := sys(21, upb)

This allocates a vector whose lower bound is 0 and whose upper bound is upb.

It return zero if the request cannot be satified.

sys(22, ptr)

If ptr is zero it does nothing, otherwise it returns the space pointed to by ptr

that must have previously been allocated by sys(21,...).

res := sys(23, name)

This loads a Cintcode module from file name. It return a pointer to the loaded

module if sucessful. Otherwise it returns zero.

res := sys(24, seg)

This initializes the global variables define in the loaded module pointed to by

seg. It returns zero is there is an error.
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res := sys(25, seg)

This unloads the the loaded module given by seg. If seg is zero it does nothing.

res := sys(26, a, b, c)

This invoke the C implementation of muldiv. It returns the result of dividing

c into the double length product of a and b. It sets result2 to the remainder.

res := sys(27, n, arg)

This invokes the setraster primitive used in the rastering version of the

Cintcode interpreter (rasterp). It is used to control the collection of data for

time-memory raster images. If n=3, it returns 0 if rastering is available and -1

otherwise. If n=2, the memory granularity is set to arg bytes per pixel. The

default is 12. If n=1, the number of Cintcode instructions per raster line is set to

arg. The default is 1000.

If n is zero and arg is non-zero then rastering is activated to send its output to

file name (the rastering data file). Raster information is collected for the duration

of the next CLI command. If n and arg are both zero the rastering data file is

closed.

The raster data file is an ASCII file that encodes the raster lines using run

length encoding. Typical output is as follows:

K1000 S12 1000 instruction per raster line, 12 bytes per pixel

W10B3W1345B1N 10 white, 3 black, 1345 white, 1 black, newline

W13B3W12B2N etc

...

See the CLI commands raster and rast2ps on page 63 for more information

on how to use the rastering facility.

res := sys(28)

This returns TRUE if the program is being interrupted by the user. On many

systems this is not implemented and just returns FALSE.

res := sys(30)

This returns the CPU time in milliseconds since the Cintcode system was

entered.

res := sys(31, name)

This returns time of last modification of the file given by name.
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res := sys(32, prefix)

This is primarily a function for the Windows CE version of the BCPL Cintcode

System for which there is no current working directory mechanism. It sets the

prefix that is prepended to all future relative file names. See Sections 3.3.5 and

the CLI prefix command described on page 63.

str := sys(33)

This returns the current prefix string. See sys(32,...) above.

res := sys(34,...)

This is currently only useful on the Windows CE version of the BCPL Cint-

code system. It performs an operation on the graphics window. The graphics

window is a fixed size array of 8-bit pixels which can be written to and whose

visibility can be switched on and off.

res := sys(35)

This returns TRUE if a character is ready to be read from the keyboard. This

function is currently only available in the Windows CE implementation.

3.3 BLIB

BLIB contains the main part of the standard library. It is implemented in BCPL

and its source code can be found in sys/BLIB.b.

3.3.1 Initialization

When the Cintcode System is started, a region of store is allocated for the Cint-

code memory. This is where Cintode stacks, global vectors, program code and

system data is placed. Within it there is a vector called the rootnode that al-

lows running programs to locate components of the system data structure. The

global variable rootnode holds a pointer to the rootnode and there are manifest

constants (define in libhdr) to ease access to its various elements. For instance,

the pointer to the start of the memory block chain can be obtained by evaluat-

ing rootnode!rtn blklist. Ten elements are defined in the rootnode as shown
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below.

Expression Value

rootnode!rtn membase Pointer to the start of the Cintcode memory.

rootnode!rtn memsize The size of the Cintcode memory in words.

rootnode!rtn blklist The start of the chain of memory blocks.

rootnode!rtn tallyv The tally vector.

rootnode!rtn syslib The SYSLIB code segment.

rootnode!rtn blib The BLIB code segment.

rootnode!rtn boot The BOOT code segment.

rootnode!rtn cli The CLI code segment.

rootnode!rtn keyboard The stream control block for the keyboard.

rootnode!rtn screen The stream control block for the screen.

v := getvec(upb)

freevec(v)

Allocation and release of space is performed by getvec and freevec, which

use a first fit algorithm based on a list of blocks chained together in memory

order. Word zero of each block in the chain contains a flag in its least significant

bit indicating whether the block is allocated or free. The rest of the word is an

even number giving the size of the block in words. A pointer to the first block in

the chain is held in the rootnode which is used to hold system wide information.

getvec allocates a vector with upper bound upb from the first large enough

free block on the block list. If no such block exists it returns zero. A vector previ-

ously allocated by getvec can be freed by the above call of freevec. Coalescing

of adjacent free blocks is performed by getvec.

ch := sardch()

sawrch(ch)

sawritef(format, a, b, ...)

These functions provide standalone input and output designed primarily as

an aid for debugging the system before the full stream based I/O mechanism is

available.

The function sardch returns the next character from the keyboard as soon as

it is available, echoing the character to the screen. It is implemented by means

of sys(10), described above.

The call sawrch(ch) outputs the character ch to the screen. It is implemented

by means of sys(11,ch), described above. The function sawritef is similar to

writef but performs its output using sawrch.



38 CHAPTER 3. THE LIBRARY

3.3.2 Stream Input/Output

BCPL uses streams as a convenient method of obtaining device independent input

and output. All the information needed to process a stream is held in a vector

called a stream control block (SCB) whose structure is shown in figure 3.1.

The elements pos and end hold positions within the byte buffer, file holds

a file pointer for file streams or -1 for streams connected to the console. The

element id indicates whether the stream is for input or output and work is private

work space for the action procedures rdfn, wrfn which are called, repectively,

when the byte buffer becomes empty on reading or full on output. The procedure

endfn is called to close the stream.

The byte buffer
scb

pos end file id work rdfn wrfn endfn

Figure 3.1: Stream control block structure

Input is read from the currently selected input stream whose SCB is held

in the global variable cis. For an input stream, the SCB element pos holds

the byte offset of the position of the next character to be read, and end holds

the offset of the position just past the last character currently available in the

buffer. Characters are read using rdch whose definition is given in figure 3.2. If

a character is available in the byte buffer this is returned after incrementing pos,

otherwise the element rdfn is called to replenish the buffer and return its first

character.

LET rdch() = VALOF
{ LET pos = cis!scb_pos

IF pos < cis!scb_end DO { cis!scb_pos := pos+1
RESULTIS cis%pos

}
RESULTIS (cis!scb_rdfn)(cis)

}

Figure 3.2: The definition of rdch

The buffer always contains the previously read character whenever possible.

This is to allow for a clean and simple implementation of unrdch whose purpose

is to step input back by one character position. Its definition if given in figure 3.3.
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LET unrdch() = VALOF
{ LET pos = cis!scb_pos
IF pos<=scb_bufstart RESULTIS FALSE // Cannot UNRDCH past origin.
cis!scb_pos := pos-1
RESULTIS TRUE

}

Figure 3.3: The definition of unrdch

Output is sent to the currently selected output stream whose SCB is held in

the global variable cos. For an output stream, the SCB element pos holds the

byte offset of the position of the next character to be written, and end holds

the offset of the position just past the end of the buffer. Characters are written

using the function wrch whose definition is given in figure 3.4. The character ch

is copied into the byte buffer and pos incremented. If the buffer is now full, it is

emptied and reset by calling the element wrfn. If writing fails it return FALSE,

causing wrch to abort.

LET wrch(ch) BE
{ LET pos = cos!scb_pos
cos%pos := ch
cos!scb_pos := pos+1
IF pos>=cos!scb_end UNLESS (cos!scb_wrfn)(cos) DO abort(189)

}

Figure 3.4: The definition of wrch

The SCB for the screen has a buffer size of one to ensure that each call of

wrch transmits its character to the screen. The size of the other stream buffers

is 2048 bytes.

3.3.3 Input Functions

scb := findinput(name)

scb := findinput(name, pathname)

selectinput(scb)

ch := rdch()

flag := unrdch()

scb := input()

endread()

n := readn()
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The call findinput(name) opens an input stream. If name is the string "*"

then it opens the standard input stream which is normally from the keyboard,

otherwise name is taken to be a device or file name. If the stream cannot be

opened the result is zero. See Section 3.3.5 for information about the treatment

of filenames.

The call findinput(name, pathname) opens an input stream. If name is

the string "*" then input comes from the keyboard, otherwise name is taken

to be a filename. If the stream cannot be opened the file directories specified

by the shell variable pathname are searched. If the file is not found in any of

these directories, the result is zero. The shell variable BCPLPATH is used by the

Command Language Intepreter (see Chapter 4) when searching for commands,

and by the BCPL compiler when processing GET directives.

The call selectinput(scb) selects scb as the currently selected input stream.

It aborts (with code 186) if scb is not an input stream.

The call rdch() reads the next character from the currently selected input

stream. If the stream is exhausted, it returns the special value endstreamch.

Input from the keyboard is buffered until the ENTER (or RETURN) key is

pressed to allow simple line editing in which the backspace key may be used to

delete the most recent character typed.

The call unrdch() attempts to step the current input stream back by one

character position. It returns TRUE if successful, and FALSE otherwise. A call

of unrdch will always succeeds the first time after a call of rdch. It is useful in

functions such as readn (described below) where single character lookahead is

necessary.

The call input() returns the currently selected input stream.

The call endread() closes the currently selected input stream. If there is an

error it aborts (with code 190).

The call readn() reads an optionally signed decimal integer from the currently

selected input stream. Leading spaces, tabs and newlines are ignored. If the

number is syntactically correct, readn returns its value with result2 set to zero,

otherwise it returns zero with result2 set to -1. In either case, it uses unrdch

to replace the terminating character.

3.3.4 Output Functions

scb := findoutput(name)

This function opens an output stream specified by the device or file name

name. If name is the string "*" then it opens the standard output stream which
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is normally to the screen. If the stream cannot be opened, the result is zero. See

Section 3.3.5 for information about the treatment of filenames.

selectoutput(scb)

This routine selects scb as the currently selected output stream. It aborts

(with code 187) if scb is not an output stream.

wrch(ch)

This routine writes the character ch to the currently selected output stream.

If output is to the screen, ch is transmitted immediately. It aborts (with code

189) if there is a write failure.

scb := output()

This function returns the SCB of the currently selected output stream.

endwrite()

This routine closes the currently selected output stream. If there is an error

it aborts with code 189 (trouble with writing) or code 191 (trouble with closing).

newline()

newpage()

These two routines simply output the newline character (’\n’) or the new-

page (form-feed) character (’\p’), respectively, to the currently selected output

stream.

writed(n, d)

writeu(n, d)

writen(n)

These routines output the integer n in decimal to the currently selected output

stream. For writed and writeu, the output is padded with leading spaces to fill

a field width of d characters. If writen is used or if d is too small, the number is

written without padding. If writeu is used, n is regarded as an unsigned integer.

writehex(n, d)

writeoct(n, d)

writebin(n, d)

These routines output, repectively, the least significant d hexadecimal, octal

or binary digits of the integer n to the currently selected output stream.
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writes(str)

writet(str, d)

These routines output the string str to the currently selected output stream.

If writet is used, trailing spaces are added to fill a field width of d characters.

writef(format,a,b,c,d,e,f,g,h,i,j,k)

The first argument (format) is a string that is copied character by character

to the currently selected output stream until a substitution item such as %s or

%i5 is encountered when a value (usually the next argument) is output in the

specified format. The substitution items are given in table 3.5.

Item Substitution

%s Write the next argument as a string using writes.

%tn Write the next argument as a left justified string in a

field width of n characters using writet.

%c Write the next argument as a character using wrch.

%bn Write the next argument as a binary number in a field

width of n characters using writebin.

%on Write the next argument as an octal number in a field

width of n characters using writeoct.

%xn Write the next argument as a hexadecimal number in a

field width of n characters using writehex.

%in Write the next argument as a decimal number in a field

width of n characters using writed.

%n Write the next argument as a decimal number in its

natural field width using writen.

%un Write the next argument as an unsigned decimal number

in a field width of n characters using writeu.

%$ Skip over the next argument.

%% Write the character %.

Figure 3.5: writef substitution items

When a field width (denoted by n in the table) is required, it is specified by

a single character, with 0 to 9 being represented by the corresponding digit and

10 to 35 represented by the letters A to Z. Format characters are case insensitive

but field width characters are not.
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The implementation of writef (in sys/BLIB.b) is a good example of how a

variadic function can be defined.

3.3.5 The Filing System

BCPL uses the filing system of the host machine and so such details as the

maximum length of filenames or what characters they may contain are machine

dependents. However, within a file name the characters slash (/) and backslash

(\) are regarded as a file separators and are converted into the appropriate sep-

arator for the operating system being used. For Unix systems this is a slash,

for MS-DOS, WINDOWS and OS/2 it is a backslash, and on the Apple Macin-

tosh it is a colon. Thus, under MS-DOS, findoutput can be given a file name

such as "tmp/RASTER" and it will be treated as if the name "tmp\RASTER" had

been given. This somewhat ad hoc feature greatly improves portability between

systems.

A file name prefix feature is available primarily for systems such as Windows

CE where there is no concept of a current working directory. The system main-

tains a prefix that is prepended to any non absolute file name before it is passed

to the operating system. A file name is absolute if it starts with a slash or back-

slash or, on Windows systems, if it starts with a letter followed by a colon. A

separator is placed between the prefix and the given file name.

The current prefix can be inspected and changed using the calls:

sys(32,prefix) and sys(33), or the CLI command prefix described on page 63.

3.3.6 File Deletion and Renaming

flag := deletefile(name)

flag := renamefile(oldname, newname)

The call deletefile(name) deletes the file with the given name. It re-

turns TRUE if the deletion was successful, and FALSE otherwise. The call

renamefile(oldname, newname) renames the file oldname as file newname,

deleting newname if necessary. Both oldname and newname are strings. The

function returns TRUE if the renaming was successful, and FALSE otherwise.

3.3.7 Non Local Jumps

P := level()

longjump(P, L)
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The call level() returns the current stack frame pointer for use in a later

call of longjump. The call longjump(P, L) causes execution to resume at label

L in the body of a procedure that owns the stack frame given by P . Jumps to

labels within the current procedure can be performed using the GOTO command,

so level and longjump are only needed for non local jumps.

3.3.8 Command Arguments

This implementation of BCPL incorporates a command language interpreter

which is described in Chapter 4. Most commands require argument and these are

most easily read using the functions: rditem, rdargs, findarg and str2numb.

kind := rditem(v, upb)

The function rditem reads a command argument from the currently selected

input stream. After ignoring leading spaces and tab characters, it packs the item

into the vector v whose upper bound is upb and returns an integer describing

the kind of item read. Table 3.6 gives the kinds of item that can be read and

corresponding item codes.

Example items Kind of item Item code

; 4

carriage return 3

"from"

"\ntwo words\n" Quoted string 2

abc

123-45*6 Unquoted string 1

end-of-stream Terminator 0

An error -1

Figure 3.6: rditem results

It is possible to include newline characters within quoted strings using the

escape sequence *n.

res := rdargs(keys, argv, upb)

The first argument (keys) is a string specifying a list of argument keywords

with possible qualifiers. The second and third arguments provide a vector (argv)

with a given upper bound (upb) in which the decoded arguments are to be placed.
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If rdargs is successful, it returns the number of words used in argv to represent

the decoded command arguments, and, on failure, it returns zero.

Command arguments are read from the currently selected input stream using

a decoding mechanism that permits both positional and keyed arguments to be

freely mixed. A typical use of rdargs occurs in the source of the input command

as follows:

UNLESS rdargs("FROM/A,TO/K,N/S", argv, 50) DO
{ writef "Bad arguments for INPUT\n"
...

}

In this example, there are three possible arguments and their values will be

placed in the first three elements of argv. The first argument has keyword FROM

and must receive a value because of the qualifier /A. The second has keyword TO

and its qualifier /K insists that, if the argument is given, it must be introduced

by its keyword. The third argument has the qualifier /S indicating that it is a

switch that can be turned on by the presence of its keyword. If an argument is

supplied, the corresponding element of argv will be set to -1, if it is a switch

argument, otherwise it will be set to a string containing the characters of the

argument value. The elements of argv corresponding to unset arguments are

cleared. Table 3.7 shows the values in placed in argv and the result when the

call:

rdargs("FROM/A,TO=AS/K,N/S", argv, 50)

is given various argument strings. This example illustrates that keyword syn-

onyms can be defined using = within the key string. Positional arguments are

those not introduced by keywords. When one is encountered, it becomes the

value of the lowest numbered unset non-switch argument.

Arguments argv!0 argv!1 argv!2 Result

abc TO xyz "abc" "xyz" 0 >0

to xyz from abc "abc" "xyz" 0 >0

as xyz abc n "abc" "xyz" -1 >0

abc xyz - - - =0

"from" to "to" "from" "to" 0 >0

Figure 3.7: rdargs("FROM/A,TO=AS/K,N/S", argv, 50)

n := findarg(keys, item)

The function findarg was primarily designed for use by rdargs but since it
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is sometimes useful on its own, it is publicly available. Its first argument, keys, is

a string of keys of the form used by rdargs and item is a string. If the result is

positive, it is the argument number of the keyword that matches item, otherwise

the result is -1.

n := str2numb(str)

This function converts the string str into an integer. Characters other than 0

to 9 and - are ignored.

n := randno(upb)

This function returns a random integer in the range 1 to upb. Its implemen-

tation is as follows:

STATIC { seed=12345 }

LET randno(upb) = VALOF
{ seed := seed*2147001325 + 715136305

RETURN ABS(seed/3) REM upb + 1
}

oldseed := setseed(newseed)

The current seed can be set to newseed by the call setseed(newseed). This

function returns the previous seed value.

obj := mkobj(upb, fns, a, b, c, d, e, f, g, h, i, j, k)

This function creates and initialises an object. It definition is as follows:

LET mkobj(upb, fns, a, b, c, d, e, f, g, h, i, j, k) = VALOF
{ LET obj = getvec(upb)

UNLESS obj=0 DO
{ !obj := fns

InitObj#(obj, @a) // Send the init message to the object
}
RETURN obj

}

As can be seen, it allocates a vector for the fields of the object, initialises its

zeroth element to point to the methods vector and calls the initialisation method

that is expected to be in element InitObj of fns. The result is a pointer to the

initialised fields vector. If it fails, it returns zero. As can be seen the initialisation

method receives a vector of up to 11 initialisation arguments.
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3.3.9 Program Loading and Control

In this implementation, the BCPL compiler generates a file of hexadecimal num-

bers for the compiled code. For instance the compiled form of the logout com-

mand:

SECTION "logout"
GET "libhdr"
LET start() BE abort(0)

is

000003E8 0000000C
0000000C 0000FDDF 474F4C07 2054554F 0000DFDF
61747307 20207472 7B1F2310 00000000 00000001
0000001C 0000001F

The first two words indicate the presence of a “hunk” of code of size

12(000000C) words which then follow. The first word of the hunk (000000C),

is again the length. The next two words (0000FDDF and 474F4C07) contain the

SECTION name "logout". These are followed by the two words 0000DFDF and

61747307 which identify the procedure name "start". The body of start is

compiled into one word (7BF1F2310) which correspond to the Cintcode instruc-

tion:

L0 Load A with 0

K3G 31 Call the function in global 31, incrementing the stack by 3

RTN

The remaining 4 words contains global initialisation data indicating that global 1

is to be set to the entry point at position 28 (0000001C) relative to the start of

the hunk, and that the highest referenced global number is 31 (0000001F).

code := start(a1, a2, a3, a4)

This function is, by convention, the main procedure of a program. If it is called

from the command language interpreter (see section 4), its first argument is zero

and its result should be the command completion code; however, if it is the main

procedure of a module run by callseg, defined below, then it can take up to 4

arguments and its result is up to the user. By convention, a command completion

code of zero indicates successful completion and larger numbers indicate errors

of ever greater severity

clihook()

This procedure is defined in BLIB and simply calls start. Its purpose is to
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assist debugging by providing a place to set a breakpoint in the command lan-

guage interpreter (CLI) just before a command in entered. Its is also permissible

for the user to override the standard definition of clihook with a private version.

stop(code)

This function is provided to stop the execution of the current command run-

ning under control of the CLI. Its argument code is the command completion

code.

count:= instrcount(fn,a,b,c,d,e,f,g,h,i,j,k)

This procedure returns the number of Cintcode instruction executed when

evaluating the call: fn(a,b,c,d,e,f,g,h,i,j,k).

Counting starts from the first instruction of the body of fn and ends when its

final RTN instruction is executed. Thus when f was defined by LET f(x) = 2*x+1,

the call instrcount(f, 10) returns 4 since its body executes the four instruc-

tions: L2; MUL; A1; RTN. The value returned by fn(a,b,c,d,e,f,g,h,i,j,k) is

saved by instrcount in the global variable result2.

abort(code)

This procedure causes an exit from the current activation of the interpreter,

returning code as the fault code. If code is zero execution leaves the Cintcode

system altogether, if code is -1 execution resumes using the faster version of the

interpreter (cintasm). If code is positive, under normal conditions, the interactive

debugger is entered.

flag := intflag()

This function provides a machine dependent test to determine whether the

user is asking to interrupt the normal execution of a program. On the Apple

Macintosh flag will be set to TRUE only if the COMMAND, OPTION and SHIFT

keys are simultaneously pressed.

segl := loadseg(name)

This function loads the compiled program into memory from the specified file

name. It return the list of loaded program modules if loading was successful and

zero otherwise. It does not initialise the global variables defined in the program.

res := globin(segl)

This function initialises the global variables defined in the list of program

modules given by its argument segl. It returns zero if the global vector was too

small, otherwise it returns segl.
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unloadseg(segl)

This routine unloads the list of loaded program modules given by segl.

res := callseg(name,a1,a2,a3,a4)

This function loads the compiled program from the file name, initialises its

global variables and calls start with the four arguments a1,...,a4. It returns

the result of this call, after unloading the program.

3.3.10 Character Handling

ch := capitalch(ch)

This function converts lowercase letters to uppercase, leaving other characters

unchanged.

res := compch(ch1, ch2)

This function compares two characters ignoring case. It yields -1 (+1) if ch1

is earlier (later) in the collating sequence than ch2, and 0 if they are equal.

res := compstring(s1, s2)

This function compares two strings ignoring case. It yields -1 (+1) if s1 is

earlier (later) in the collating sequence than s2, and 0 if they the strings are

equal.

3.3.11 Coroutines

BCPL uses a stack to hold function arguments, local variables and anonymous

results, and it uses the global vector and static variables to hold non-local quani-

tities. It is sometimes convenient to have separate runtime stacks so that different

parts of the program can run in pseudo parallelism. The coroutine mechanism

provides this facility.

In this implementation, they have distinct stacks but share the same global

vector, and it is natural to represent a coroutine by a pointer to its stack. At

the base of each stack there are six words of system information as shown in

figure 3.8.

The resumption point is P pointer belonging to the procedure that caused

the suspension of the coroutine. It becomes the value of the P pointer when the

coroutine next resumes execution. The parent link points to the coroutine that

called this one, or is zero if the coroutine not active. The outermost coroutine
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sz c P1 L1fn

suspended
stack frame

resumption point

coroutine chain

parent link
cptr

Figure 3.8: A coroutine stack

(or root coroutine) is marked by the special value -1 in its parent link. As a

debugging aid, all coroutines are chained together in a list held in the global

colist. The values fn and sz hold the main function of the coroutine and its

stack size, and c is a private variable used by the coroutine mechanism.

changeco

PC

CHGCOP

aL1P1

P1 L1 a

currco PPC

stack frame
currco

resumption point

resumption point

cptr

Figure 3.9: The effect of changeco(a, cptr)

At any time just one coroutine (the current coroutine) has control, and all

the others are said to be suspended. The current coroutine is held in the global

variable currco, and the P pointer points to a stack frame within its stack.

Passing control from one coroutine to another involves saving the resumption

point in the current coroutine, and setting new values for the program counter

(PC), the P pointer and currco. This is done by changeco(a,cptr) as shown

in figure 3.9. The function changeco is defined by hand in SYSLIB and its body

consists of the single instruction CHGCO and as can be seen its effect is somewhat

subtle. The only uses of changeco are in the definitions of createco, callco,

cowait and resumeco, and its effect, in each case, is explained below. The only

functions that can cause coroutine suspension are callco, cowait and resumeco.

res := callco(cptr, arg)

This call suspends the current coroutine and transfers control to the coroutine
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pointed to by cptr. It does this by resuming execution of the function that caused

its suspension, which then immediately returns yielding arg as result. When

callco(cptr,arg) next receives control it yields the result it is given.

res := cowait(arg)

This call suspends the current coroutine and returns control to its parent by

resuming execution of the function that caused its suspension, yielding arg as

result. When cowait(arg) next receives control it yields the result it is given.

res := resumeco(cptr, arg)

The effect of resumeco is almost identical to that of callco, differing only in

the treatment of the parent. With resumeco the parent of the calling coroutine

becomes the parent of the called coroutine, leaving the calling coroutine sus-

pended and without a parent. Systematic use of resumeco reduces the number

of coroutines having parents and hence allows greater freedom in organising the

flow of control between coroutines.

cptr := createco(fn, size)

This function creates a new coroutine leaving it suspended in the call of

cowait in the following loop.

c := fn(cowait(c)) REPEAT

When control is next transfered to the new coroutine, the value passed be-

comes the result of cowait and hence the argument of fn. If fn(..) returns

normally, its result is assigned to c which is returned to the parent coroutine by

the repeated call of cowait. Thus, if fn is simple, a call of the coroutine convert

the value passed, val say, into fn(val). However, in general, fn may contain

calls of callco, cowait or resumeco, and so the situation is not always quite so

simple.

In detail, the implementation of createco uses getvec to allocate a vector

with upper bound size+6 and initialises its first seven locations ready for the

call of changeco(0,c) that follows. The state just after this call is shown in

figure 3.10. Notice that cowait(c) is about to be executed in the environment

of the new coroutine, and that this call will cause a return from createco in the

original coroutine, passing back a pointer to the new coroutine as a result.

deleteco(cptr)

This call takes a coroutine pointer as argument and, after checking that the

corresponding coroutine has no parent, deletes it by returning its stack to free

store.
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P2 L2 fn sz c P1 L1 0 c

K9G 24     cowait(c)
LP3

J -7     } REPEAT

K6         fn( ... )

LP5      {PC

P
The new coroutine

coroutine chain

fn sz c

stack frame
createco

stack frame
changeco

colist

currco

SP5        c := ...

Figure 3.10: The state just after changeco(0,c) in createco

cptr := initco(fn, size, a,...)

This function is defined in BLIB to provide a convenient method of creating

and intialising coroutines. It definition is as follows:

LET initco(fn, size, a, b, c, d, e, f, g, h, i, j, k) = VALOF
{ LET cptr = createco(fn, size)

UNLESS cptr=0 DO callco(cptr, @a)
RESULTIS cptr

}

A coroutine with main function fn and given size is created and, if successful,

it is initialised by callco(cptr, @a). Thus, fn should expect a vector containing

up to 11 values. Once the coroutine has initialised itself, it should return control

to initco by means a call of cowait. Examples of the use of initco can be

found in the example that follows.

3.3.12 Hamming’s Problem

A following problem permits a neat solution involving coroutines.

Generate the sequence 1,2,3,4,5,6,8,9,10,12,... of all

numbers divisible by no primes other than 2, 3, or 5”.

This problem is attributed to R.W.Hamming. The solution given here shows how

data can flow round a network of coroutines. It is illustrated in figure 3.11 in
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which each box represents a coroutine and the edges represent callco/cowait

connections. The end of a connection corresponding to callco is marked by c,

and end corresponding to cowait is marked by w. The arrows on the connec-

tions show the direction in which data moves. Notice that, in tee1, callco is

sometimes used for input and sometimes for output.

MAIN

BUF1 TEE1

X2 X3 X5

MER1 MER2

BUF2 TEE2 BUF3
w w w w w

w

w

w

ww

w

w c c c c

w
c

cc
c c

cc

c c

Figure 3.11: Coroutine data flow

The coroutine buf1 controls a queue of integers. Non-zero values can be

inserted into the queue using callco(buf1,val), and values can be extracted

using callco(buf1,0). The coroutines buf2 and buf3 are similar. The coroutine

tee1 is connected to buf1 and buf2 and is designed so that callco(tee1) will

yield a value extracted from buf1, after sending a copy of it to buf2. tee2

similarly takes values from buf2 passing them to buf3 and x3. Values passing

through x2, x3 and x5 are multiplied by 2, 3 and 5, repectively. mer1 merges

two monotonically increasing streams of numbers produced by x2 and x3. The

resulting stream is then merged by mer2 with the stream produced by x5. The

stream produced by mer2 is the required Hamming sequence, each value of which

is printed by main and then inserted into buf1.

The BCPL code for this solution is as follows:

GET "libhdr"

LET buf(args) BE // Body of BUF1, BUF2 and BUF3
{ LET p, q, val = 0, 0, 0
LET v = VEC 200

{ val := cowait(val)
TEST val=0 THEN { IF p=q DO writef("Buffer empty*n")

val := v!(q REM 201)
q := q+1

}
ELSE { IF p=q+201 DO writef("Buffer full*n")

v!(p REM 201) := val
p := p+1

}
} REPEAT

}
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LET tee(args) BE // Body of TEE1 and TEE2
{ LET in, out = args!0, args!1

cowait() // End of initialisation.

{ LET val = callco(in, 0)
callco(out, val)
cowait(val)

} REPEAT
}

AND mul(args) BE // Body of X2, X3 and X5
{ LET k, in = args!0, args!1

cowait() // End of initialisation.

cowait(k * callco(in, 0)) REPEAT
}

LET merge(args) BE // Body of MER1 and MER2
{ LET inx, iny = args!0, args!1

LET x, y, min = 0, 0, 0
cowait() // End of initialisation

{ IF x=min DO x := callco(inx, 0)
IF y=min DO y := callco(iny, 0)
min := x<y -> x, y
cowait(min)

} REPEAT
}

LET start() = VALOF
{ LET BUF1 = initco(buf, 500)

LET BUF2 = initco(buf, 500)
LET BUF3 = initco(buf, 500)
LET TEE1 = initco(tee, 100, BUF1, BUF2)
LET TEE2 = initco(tee, 100, BUF2, BUF3)
LET X2 = initco(mul, 100, 2, TEE1)
LET X3 = initco(mul, 100, 3, TEE2)
LET X5 = initco(mul, 100, 5, BUF3)
LET MER1 = initco(merge, 100, X2, X3)
LET MER2 = initco(merge, 100, MER1, X5)

LET val = 1
FOR i = 1 TO 100 DO { writef(" %i6", val)

IF i REM 10 = 0 DO newline()
callco(BUF1, val)
val := callco(MER2)

}

deleteco(BUF1); deleteco(BUF2); deleteco(BUF3)
deleteco(TEE1); deleteco(TEE2)
deleteco(X2); deleteco(X3); deleteco(X5)
deleteco(MER1); deleteco(MER2)
RESULTIS 0

}
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3.3.13 Scaled Arithmetic

The library function muldiv makes full precision scaled arithmetic convenient.

res := muldiv(a, b, c)

The result is the value obtained by dividing c into the double length product

of a and b, the remainder of this division is left in the global variable result2.

The result is undefined if it is too large to fit into a single length word or if c is

zero. In this implementation, the result is also undefined if any of a, b or c is the

largest negative integer. As an example, the function defined below calculates

the cosine of the angle between two unit vectors in three dimensions using scaled

integers to represent numbers with 6 digits after the decimal point.

MANIFEST { Unit=1000000 } // Scaling factor for numbers of the
// form ddd.dddddd

FUN inprod(v, w) = muldiv(v!0, w!0, Unit) +
muldiv(v!1, w!1, Unit) +
muldiv(v!2, w!2, Unit)

On some processors, such as the Pentium, muldiv can be encoded very effi-

ciently in assembly language.



56 CHAPTER 3. THE LIBRARY



Chapter 4

The Command Language

The Command Language Interpreter (CLI) is a simple interactive interface be-

tween the user and the system. It is implemented in BCPL and its source code

can be found in cintcode/sys/CLI.b. It loads and executes previously compiled

programs that are held either in the current directory or a directory specified by

the shell variable BCPLPATH. The source of the system provided commands can be

found in cintcode/com. These commands are described in below in Section 4.2.

Since any compiled program can be regarded as a command and the command

language can be extended easily by the user.

4.1 Bootstrapping

When the Cintcode System is started, control is passed to the interpreter which,

after a few initial checks, allocates vectors for the memory of the cintcode abstract

machine and the tally vector available for statistics gathering. The cintcode

memory is initialised suitably for sub-allocation by getvec, which is then used

to allocate space for the root node, the initial stack and the initial global vector.

The initial state shown in figure 4.1 is completed by loading the object modules

SYSLIB, BLIB and BOOT, and initialising the root node, the stack and global vector.

Interpretation of cintcode instructions now begins with the Cintcode register PC,

P and G set as shown in the figure, and Count set to -1. The other registers are

cleared. The first Cintcode instruction to be executed is the first instruction of

the body of the routine start defined in sys/BOOT.b. Since no return link has

been stored into the stack, this call of start must not attempt to return in the

normal way; however, its execution can still be terminated using sys(0,0).

The global vector and stack shown in figure 4.1 are used by start and form the

running environment both during initialization and while running the debugger.

57
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The CLI, on the other hand, is provided with a new stack and a separate global

vector, thus allowing the debugger to use its own globals freely without interfering

with the command language interpreter or running commands. The global vector

of 1000 words is allocated for CLI and this is shared by the CLI program and its

running commands. The stack, on the other hand, is used exclusively by the

command language interpreter since it creates a coroutine for each command it

runs.

stack globals

P Grootnode

0

PC

Entry to start

Tally vector

blklist

MSYSLIB MLIB MBOOT

Figure 4.1: The initial state

Control is passed to the CLI by means of the call sys(1,regs) which recur-

sively enters the intepreter from an initial Cintcode state specified by the vector

regs in which that P and G are set to point to the bases of a new stack and a

new global vector for CLI, respectively, PC is the location of the first instruction

of startcli, and count is set to -1. This call of sys(1,regs) is embedded in

the loop shown below that occurs at the end of the body of start.

{ LET res = sys(1, regs) // Call the interpreter
IF res=0 DO sys(0, 0)
debug res // Enter the debugger

} REPEAT

At the moment sys(1,regs) is first called, only globsize, sys and rootnode

have been set in the CLI global vector and so the body of startcli must be coded

with care to avoid calling global functions before their entry points have be placed

in the global vector. Thus, for instance, instead of calling globin to initialise the

globals defined in SYSLIB and BLIB, the following code is used:

sys(24, rootnode!rtn_syslib)
sys(24, rootnode!rtn_blib)

If a fault occurs during the execution of CLI or a command that it is running,

the call of sys(1,regs) will return with the fault code and regs will hold the
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dumped Cintcode registers. A result of zero, signifying successful completion,

causes execution of the Cintcode system to terminate; however, if a non zero

result is returned, the debugger in entered by means of the call debug(res).

Note that the Cintcode registers are available to the debugger since regs is a

global variable. When debug returns, the REPEAT-loop ensures that the com-

mand language interpreter is re-entered. The debugger is briefly described in the

section 5.

On entry to startcli, the coroutine environment is initialised by setting

currco and colist to point to the base of the current stack which is then setup

as the root coroutine. The remaining globals are the initialised and the standard

input and output streams opened before loading the CLI program by means of

the following statement:

rootnode!rtn_cli := globin(loadseg("CLI"))

The command language interpreter is now entered by the call start().

4.2 Commands

This section describes the commands whose source code can be found in

cintcode/com. Each command is introduced by its name and rdargs argument

format string.

abort NUMBER

The command: abort n calls the BLIB function abort with argument n. If

n = 0, this will cause a successful return from the Cintcode system. If n is non

zero, the interactive debugger is entered with fault code n. The default value for

n is 99. A brief description of the debugger is given in section 5.

bcpl FROM/A,TO/K,VER/K,SIZE/K,TREE/S,NONAMES/S,

D1/S,D2/S,OENDER/S,EQCASES/S,BIN/S:

This invokes the BCPL compiler. The FROM argument specified the name of

the file to compile. If the TO argument is given, the compiler generates code to the

specified file. Without the TO argument the compiler will just output the OCODE

intermediate form to the file OCODE. This is used for compiler debugging and cross

compilation. The VER argument redirects the standard output to a named file.

The SIZE argument specified the size of the compiler’s work space. The default is

40000 words. If the NONAMES switch is given the compiler will not include section

and function names in the compiled code. These are only useful for debugging.

The switches D1 and D2 control compiler debugging output. D1 causes a readable
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form of the compiled cintcode to be output. D2 causes a trace of the internal

working of the codegenerator to be output. D1 and D2 together causes a slightly

more detailed trace of the internal working of the codegenerator to be output.

OENDER causes code to be generated for a machine with the opposite endianess

of the machine on which the compiler is running. EQCASES causes all identifiers

to be converted to uppercase during compilation. This allows very old BCPL

programs to be compiled. BIN causes the target cintcode to be in binary rather

than ASCII encoded hexadecimal. This is primarily for Windows CE machines

where reducing the size of code modules may be important.

bcplxref FROM/A,TO/K,PAT/K

This command outputs a cross reference listing of the program given by the

FROM argument. This consists of a list of all identifiers used in the program each

having a list of line numbers where the identifier was used and a letter indicating

how the identifier was declared. The letters have the following meanings:

V Local variable

P Function or Routine

L Label

G Global

M Manifest

S Static

F FOR loop variable

The TO argument can be used to redirect the output to a file, and the PAT

argument supplies a pattern to restrict which names are to be cross referenced.

Within a pattern an asterisk will match any sequence of characters, so the pattern

a*b* will match identifiers such as ab, axxbor axbyy. Upper and lower case letters

are equated.

c command-file arguments

The c command allows a file oc commands to be executed as though they

had just been typed in. The argument command-file gives the name of the file

containing the command sequence.

Unless explicitly changed, the characters ’=’, ’<’, ’>’, ’$’ and ’.’ have special

meanings within a command command. A dot ’.’ at the start of a line starts a

directive which can specify the command command’s argument format, or replace

one of the special character with an alternative. There are six possible directives

as follows:
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.KEY or .K str argument format string

.DEFAULT or .DEF key value give key a default value

.BRA ch use ch instead of <

.KET ch use ch instead of >

.DOLLAR ch use ch instead of $

.DOT ch use ch instead of .

All directives must occur at the start of the command file. The .KEY directive

specifies a format string of the form used by rdargs (see page 45) that describes

what arguments can follow the command file name. The .DEFAULT directive

specifies the default value that a specified key should have if the corresponding

argument was omitted. The remaining directives allow the special characters to

be changed.

The command sequence occurs after all the directives and may contain items

of the form <key$value> or <key> where key is one of the keys in the format

string and value is a default value. Such items are textually replaced by its

corresponding argument or a default value. If $value is present, this overrides (for

this item only) any default that might have been given by a .DEFAULT directive.

casech FROM/A,TO/A,DICT/K,U/S,L/S,A/S

This command systematically processes a BCPL program converting all re-

served words to upper case and changing all identifiers to upper case (U), lower

case (L, or in the form given by a specified dictionary (DICT).

checksum FROM/A,TO/K

This command calculates a check sum for the file specified by the FROM argu-

ment, sending the result to the file specified by the TO argument.

delete ,,,,,,,,,

This command will delete up to ten given files.

detab FROM/A,TO/K,SEP/K

This command copies the file give by the FROM argument to the file given by

the TO argument replacing all tab characters by spaces. The tabs are separated

by a distance specified by the SEP argument. The default is 8.

echo TEXT,N/S

This command will output its first argument TEXT, if given. The text will be

followed by a newline unless the switch N is set.



62 CHAPTER 4. THE COMMAND LANGUAGE

edit FROM/A,TO,WITH/K,VER/K,OPT/K

This command is meant to provide a simple line editor. It used to run on

the Tripos Portable Operating System but has not been modified to run on this

system.

fail CODE

KThis command just returns to the CLI with a completion code given by

CODE. The default code is 20.

input TO/A,TERM/K

This command will copy text from the current input sending it the the file

specified by the AS argument. The input is terminated by a line starting with /*

or the value of the TERM argument if given.

interpreter FAST/S,SLOW/S

This command allows the user to select the fast (cintasm) or the slow

(cinterp) version of the interpreter. If no arguments are given the fast one

is selected. It is implemented using sys(0,-1) or sys(0,-2) as described on

page 32.

join ,,,,,,,,,,,,,,,AS/A/K,CHARS/S

This command will concatenat several files sending the result to the file spec-

ified by the AS argument. If the CHARS switch is given the files are treated as text

files, otherwise they are copied in binary.

logout

This command causes an exit from the BCPL Cintcode System, typical re-

turning to an operating system shell.

map BLOCKS/S,NAMES/S,CODE/S,MAPSTORE/S,TO/K,PIC/S

This command outputs the state of the Cintcode memory in a form that

depends on the arguments given. The output goes to the screen unless a filename

is given using the TO keyword.

nlconv FILE,TOUNIX/S,TODOS/S,Q/S

Thus command replaces the specified file with one in which line endings have

been replaced by those appriate for the desination system which is specified by

the switches TOUNIX (the default) or Windows systems (TODOS). The Q argument

quietens the command.
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prefix PREFIX,UNSET/S

If the first argument is given, it becomes the current prefix string. If UNSET is

specified, the prefix string is unset, and if no argument is given the current prefix

is output. This command is implemented using sys(32,prefix) and sys(33)

described on page 36. See also Section 3.3.5.

preload ,,,,,,,,,

This command will preload up to 10 commands into the Cintcode memory.

Without arguments it outputs the list of preloaded commands. Preloading im-

proves the efficiency of command execution and is also useful in conjunction with

the stats command, see below.

procode FROM,TO/K

This command converts an OCODE (intermediate code) file specified by FROM

to a more readable form. If FROM is missing it reads from the file OCODE. If the

TO argument is missing it send the result to the screen.

prompt PROMPT

This command allows the user to change the prompt string. The prompt is

output by the CLI using code of the form:

writef(prompt, msecs)

where prompt is the prompt format string and msecs is the time in milliseconds

used by the previous command. The default prompt format is: "%d> ".

raster COUNT,SCALE,TO/K,HELP/S

This command controls the collection of rastering information but only works

when the BCPL Cintcode system is running under the rastering interpreter

rasterp. The implementation uses sys(27,...) calls that are described on

page 35. If raster is given an argument it activates the rastering mechanism.

Once rastering is activated information will be written to a raster data file for

the duration of the next CLI command. The format of this file is also outlined

on page 35.

The COUNT argument allows the user to specify how many Cintcode instruc-

tions to obey for each raster line. The default is 1000. The SCALE argument

gives the raster line granularity in bytes per pixel. The default being 12. The TO

argument specifies the name of the raster data file to be written. The default file

name is RASTER.

If raster is called without any arguments, it closes the raster data file. The

raster data file can be processed and converted to Postscript using the rast2ps
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command described below. Typical use of the raster command is following

script:

raster count 1000 scale 12 to RASTER
bcpl com/bcpl.b to junk
raster
rast2ps fh 18000000 mh 301000

This will create the Postscript file RASTER.ps for the BCPL compiler compiling

itself, similar to that shown in Figure 4.2.

rast2ps FROM,SCALE,TO/K,ML,MH,MG,FL,FH,FG,

DPI/K,INCL/K,A4/S,A3/S,A2/S,A1/S,A0/S

This commands converts a raster data file (written using the raster command

described above) into a postscript file suitable for printing. There are parameters

to control the region to convert, the output paper size and other parameters. It

is also possible to posible to include anotations in the resulting picture.

The FROM parameter specifies the name of the raster data file. RASTER is the

default. SCALE specifies a magnification as a percentage. The default is 80. The

TO parameter specifies the name of the postscript file to be generated. RASTER.ps

is the default. The parameters ML and MH specify the low and high limits of the

address space to be processed. MG specifies the separation of the grid line on

the memory axis. The defaults are ML=0 MH=300100 and MG=100000. The units

are in bytes. The parameters FL and FH specify the low and high limits of the

instruction count axis to be processed. FG specifies the separation of the grid line

on the memory axis. The defaults are FL=0 FH=20000000 and FG=1000000. DPI

specified the approximate number of dots per inch used by the output device.

The default is 300. An specified the output page size. The default is A4. The

INCL parameter specifies the name of a file to be copied into the postscript file.

The default is psincl. This file allows annotations to be made in the picture.

The file cintcode/psincl was used to annotate the memory time graph shown

in Figure 4.2. This file contains lines such as:

F2 setfont
(SYN) 1.1 35 2 PDL
(TRN) 8.1 30 1.7 PUL
(CG) 15.3 36 2.1 PUR
(GET Stream) 0.45 270 1.7 PUL
...
(OCODE Buffer) 13.9 245 2 PDR
% 8.5 150 MVT (HELLO WORLD) SC
F3 setfont
(Self Compilation of the Cintcode BCPL Compiler) TITLE

The postscript macros PDL, PUL, PUR and PDR draw arrows with specified

labels, byte address, instruction count and arrow lengths. The arrow directions
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are respectively: down left, Up left, up right and down right. The macro MVT

moves to the specified position in the graph and SC draws a string centered at

that position. The TITLE macro draws the graph title and F2 and F3 are fonts

suitable for the labels and title. The resulting postscript file can, of course, be

further editied by hand.

rename FROM/A,TO=AS/A/K

This will rename the file given by FROM to that specified by the AS argument.

stack SIZE

The command stack n causes the size of the coroutine stack allocated for

subsequent commands to be n words long. If called without an argument stack

outputs the current setting.

stats TO/K,PROFILE/S,ANALYSIS/S

This command controls the tallying facility which counts the execution of

individual Cintcode instructions. If no arguments are given, stats turns on

tallying by clearing the tally vector and causing tallying to be enabled for the

next command to be executed. Subsequent commands are not tallied, making it

possible to process the tally vector while it is in a static state. Typical usage of

the stats command is illustrated below:

preload queens Preload the program to study

stats Enable stats gathering on next command

queens Execute the command to study

interpreter Select the fast interpreter (cintasm)

stats automatically selects the slow one

stats to STATS Send instruction frequencies to file

or

stats profile to PROFILE Send detailed profile info to file

or

stats analysis to ANALYSIS Generate statistical analysis to file

type FROM/A,TO,N/S

This command will output the file given by the FROM argument, sending it to

the screen unless the TO argument is given. The swirch argument N causes line

numbers to be added.

typehex FROM/A,TO/K

This will convert the file specified by FROM in hexadecimal and send the result

to the TO file if this argument is given.
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unpreload ,,,,,,,,,,ALL/S

This command will remove preloaded commands from the Cintcode memory.

The ALL switch will cause all preloaded commands to be removed.
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Chapter 5

The Debugger

When the Cintcode system starts up, control first passes to BOOT which initialises

the system and creates a running environment for the command language inter-

preter (CLI). This is run by a recursive invocation of the interpreter and so when

faults occur control returns to BOOT which then enters an interactive debugger.

This allows the user to inspect the state of the registers and memory, and perform

other debugging operations on the faulted program. The debugger can also be

entered using the abort command, as follows:

560> abort

!! ABORT 99: User requested
*

The asterisk (*) is the debugger’s prompt character. A brief description of the

available debug commands can be display using the query (?) command.

69
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* ?
? Print list of debug commands
Gn Pn Rn Vn Variables
G P R V Pointers
n #b101 #o377 #x7FF ’c Constants
*e /e %e +e -e |e &e Dyadic operators
< > ! Postfixed operators
SGn SPn SRn SVn Store in variable
= Print current value
Tn Print n consecutive locations
$c Set print style C, D, F, B, O, S, U or X
LL LH Set Low and High store limits
I Print current instruction
N Print next instruction
Q Quit
B 0Bn eBn List, Unset or Set breakpoints
C Continue execution
X Equivalent to G4B9C
Z Equivalent to P1B9C
\ Execute one instruction
, Move down one stack frame
. Move to current coroutine
; Move to parent coroutine
[ Move to first coroutine
] Move to next coroutine
*

The debugger has a current value that can be loaded, modified and displayed.

For example:

* 12 Set the current value to 12
* -2 Subtract 2
* *3 Multiply by 3
* = 30 Display the current value
* < Shift left one place
* = 60 Display the current value
* 12 -2 *3 < = 60 Do it all on one line
*

Four areas of memory, namely: the global vector, the current stack frame, the

Cintcode register, and 10 scratch variables are easily accessed using the letters G,

P, R, V, respectively.
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* 10sv1 11sv2 Put 10 and 11 in variables 1 and 2
* vt5 Display the first 5 variables

V 0: 0 10 11 0 0
*
* v1*50+v2= 511 A calculation using variables
* g0= 1000 Display global zero (globsize)
* g= 3615 Display the address of global zero
* ! = 1000 Indirect and display
* gt10 Display the first 10 globals

G 0: 1000 start stop sys clihook
G 5: GLOB 5 changec 6081 6081 52
*

Notice that values that appear to be entry points display the first 7 characters

of the function’s name. Other display styles can be specified by the commands

$C, $D, $F, $B, $O, $S, $U or $X. These respectively display values as characters,

decimal number, in function style (the default), binary, octal, string, unsigned

decimal and hexadecimal.

It is possible to display Cintcode instructions using the commands I and N.

For example:

* g4= clihook Get the entry to clihook
* n 3340: K4G 1 Call global 1, incremeting P by 4
* n 3342: RTN Return from the function
*

A breakpoint can be set at the first instruction of clihook and debugged program

re-entered by the following:

* g4= clihook Get the entry to clihook
* b9 Set break point 9
* c Resume execution
20>

The X command could have been used since it is a shorhand for G4B9C. The

function clihook is defined in BLIB and is called whenever a command is invoked.

For example:

10> echo ABC Invoke the echo command

!! BPT 9: clihook Break point hit
A= 0 B= 0 3340: K4G 1

*

Notice that the values of the Cintcode registers A and B are displayed, followed

by the program counter PC and the Cintcode instruction at that point. Single

step execution is possible, for example:
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* \A= 0 B= 0 24228: LLP 4
* \A= 6097 B= 0 24230: SP3
* \A= 6097 B= 0 24231: SP 89
* \A= 6097 B= 0 24233: L 80
* \A= 80 B= 6097 24235: SP 90
* \A= 80 B= 6097 24237: LLL 24272
* \A= 6068 B= 80 24239: LG 78
* \A= rdargs B= 6068 24241: K 85
* \A= 6068 B= 6068 5480: LP4
*

At this point the first instruction of rdargs is about to be executed. Its return

address is in P1, so a breakpoint can be set to catch the return, as follows:

* p1b8
* c

!! BPT 8: 24243
A= createc B= 1 24243: JNE0 24254

*

A breakpoint can be set at the start of sys, as follows:

* g3b1 Set breakpoint 1
* b Display the currently set of breakpoints
1: sys
8: 24243
9: clihook
* 0b8 0b9 Unset breakpoints 8 and 9
* b Display the remaining breakpoint
1: sys
*

The next three calls of sys will be to write the characters ABC. The following

example steps through these and displays the state of the runtime stack just

before the third call, before leaving the debugger.
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* c

!! BPT 1: sys
A= 11 B= 65 21188: SYS

* c
A
!! BPT 1: sys

A= 11 B= 66 21188: SYS
* c
B
!! BPT 1: sys

A= 11 B= 67 21188: SYS
* . 42844: Active coroutine clihook Size 20000 Hwm 127

43284: sys 11 67 312 43228
* , 43268: cnslwrf 37772
* , 43248: wrch 67 32
* , 43228: writes 42915 67
* , 42888: start 42904 42912 0 4407873
* , 42872: clihook 0
* , Base of stack
* 0b1c Clear breakpoint 1 and resume
C
210>

The following debugging commands allow the coroutine structure to be ex-

plored.

Command Effect

. Select current coroutine

, Display next stack frame

; Select parent coroutine

[ Select first coroutine

] Select next coroutine

Finally, the command Q causes a return from the Cintcode system.
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Chapter 6

The design of OCODE

BCPL was designed to be a portable language with a compiler that is easily

transferred from machine to machine. To help to achieve this, the compiler is

structured as shown in figure 6.1 so that the codegenerator (CG), which is inher-

ently machine dependent, is separated from the rest of the compiler. The front

end of the compiler performs syntax analysis producing a parse tree (Tree) which

is then translated by the translation phase (TRN) to produce an intermediate

form (OCODE) suitable for code generation.

LEX SYN Tree TRN OCODE CG Target
code

BCPL

Figure 6.1: The structure of the compiler

6.1 Representation of OCODE

Since OCODE is output by TRN to be read in by CG, there is little need for it to

be readable by humans and so is encoded as a sequence of integers which, in the

current Cintcode implementation the OCODE is buffered in memory, however

the compiler can be made to output a text version to file.

The numerical representation of OCODE can be transformed to the more

readable mnemonic form using the procode commands, described on page 63.

As an example, if the file test.b is the following:

GET "libhdr"

LET start() BE { LET a, b, c = 1, 0, -1
writef("Answer is %n*n", a+b+c)

}

then the command: bcpl test.b ocode test.ocd would write the following
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file:

85 2 94 1 5 115 116 97 114 116 95 3 42 1 42 0 42 -1 92 91 9 43
13 65 110 115 119 101 114 32 105 115 32 37 110 10 40 4 40 3 14
40 5 14 41 74 51 6 97 91 3 103 91 3 90 2 92 76 1 1 1

These numbers encode the OCODE statements in a natural way as can be verified

by comparing them with the following more readable form of the same statements,

generated by the command: procode test.b.

JUMP L2
ENTRY L1 5 ’s’ ’t’ ’a’ ’r’ ’t’
SAVE 3 LN 1 LN 0 LN -1 STORE STACK 9
LSTR 13 ’A’ ’n’ ’s’ ’w’ ’e’ ’r’ ’ ’ ’i’ ’s’ ’ ’ ’%’ ’n’ 10
LP 4 LP 3 PLUS LP 5 PLUS LG 74 RTAP 6 RTRN STACK 3
ENDPROC STACK 3 LAB L2 STORE GLOBAL 1 1 L1

6.2 The OCODE Abstract Machine

OCODE was specifically designed for BCPL and is a compromise between the

desire for simplicity and the conflicting demands of efficiency and machine inde-

pendence. OCODE is an assembly language for an abstract stack based machine

that has a global vector and an area of memory for program and static data as

shown in figure 6.2.

G
S

P

Li Lj

Memory for program and static data

Global vector Current stack frame

Figure 6.2: The BCPL abstract machine

The global vector is pointed to by the G pointer and the current stack frame

is pointed to by the P pointer. S is the size of the current stack frame, and so

P!S is the first free element of the stack. The value of S is always known during

compilation and so is not held in a register of the OCODE abstract machine

machine. Any assignments to S in the description of OCODE statements should

be regarded as a specification of S for the subsequent statement.

Static variables, tables and string constants are allocated space in the program

area and are referenced using labels such as L36 and L92. All global, local and
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static variables are of the same size and, on most modern implementations, they

hold 32 bit values.

OCODE is normally encoded as a sequence of integers, but for human con-

sumption a more readable form is available. The command procode translates

the numeric OCODE into this mnemonic form. An OCODE statement consists

of a function or directive code possibly followed by operands that are either op-

tionally signed integers, quoted characters or labels of the form Ln where n is a

label number. The following are examples of mnemonic OCODE statements:

LSTR 5 ’H’ ’e’ ’l’ ’l’ ’o’
LP 3
GETBYTE
SL L36

There are OCODE statements for loading and storing values, for applying

expression operators, for procedure handling and flow of control. There are also

directives for the allocation of storage and to allow information to be passed to

the codegenerator.

6.3 Loading and Storing values

A variables may be local, global or static, and may be accessed in three ways

depending on its context, and so there are 9 statements for accessing variables as

shown in the following table.

Statement Meaning

LP n P!S := P!n; S := S+1

LG n P!S := G!n; S := S+1

LL Ln P!S := Ln; S := S+1

LLP n P!S := @P!n; S := S+1

LLG n P!S := @G!n; S := S+1

LLL Ln P!S := @Ln; S := S+1

SP n P!n := P!S; S := S-1

SG n G!n := P!S; S := S-1

SL Ln Ln := P!S; S := S-1

The following tables shows the six statements for loading constants.
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Statement Meaning

LF Ln P!S := entry point Ln; S := S+1

LN n P!S := n; S := S+1

TRUE P!S := TRUE; S := S+1

FALSE P!S := FALSE; S := S+1

QUERY P!S := ?; S := S+1

LSTR nC1 . . . Cn P!S := "C1 . . . Cn"; S := S+1

The statements TRUE and FALSE are present to improve portability between

machines that use different representations for the integers. For instance, on

machines using ones complement or sign and modulus arithmetic, TRUE is not

equivalent to LN -1.

Indirect assignments and assignments to elements of word and byte arrays use

the statements STIND and PUTBYTE whose meanings are given in table 5.3.

Statement Meaning

STIND !(P!(S-1)) := P!(S-2); S := S-2

PUTBYTE (P!(S-2))%(P!(S-1)) := P!(S-3); S := S-3

Assuming ptr is in global 200, the following assignments:

!ptr := 12; ptr!3 := 99; ptr%3 := 65

translate into the following OCODE:

LN 12 LG 200 STIND
LN 99 LG 200 LN 3 PLUS STIND
LN 65 LG 200 LN 3 PUTBYTE

6.4 Expression operators

The monadic expression operators only affect the topmost item of the stack and

do not change the value of S. They are shown in the next table.

Statement Meaning

RV P!(S-1) := ! P!(S-1)

ABS P!(S-1) := ABS P!(S-1)

NEG P!(S-1) := - P!(S-1)

NOT P!(S-1) := ∼ P!(S-1)

All dyadic expression operators take two operands from stack replacing them

the result and decrementing S by 1. These operators are shown in the following

table.
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Statement Meaning

GETBYTE P!(S-2) := P!(S-2) % P!(S-1)

MULT P!(S-2) := P!(S-2) * P!(S-1)

DIV P!(S-2) := P!(S-2) / P!(S-1)

REM P!(S-2) := P!(S-2) REM P!(S-1)

PLUS P!(S-2) := P!(S-2) + P!(S-1)

MINUS P!(S-2) := P!(S-2) - P!(S-1)

EQ P!(S-2) := P!(S-2) = P!(S-1)

NE P!(S-2) := P!(S-2) ∼= P!(S-1)

LS P!(S-2) := P!(S-2) < P!(S-1)

GR P!(S-2) := P!(S-2) > P!(S-1)

LE P!(S-2) := P!(S-2) <= P!(S-1)

GE P!(S-2) := P!(S-2) >= P!(S-1)

LSHIFT P!(S-2) := P!(S-2) << P!(S-1)

RSHIFT P!(S-2) := P!(S-2) >> P!(S-1)

LOGAND P!(S-2) := P!(S-2) & P!(S-1)

LOGOR P!(S-2) := P!(S-2) | P!(S-1)

EQV P!(S-2) := P!(S-2) EQV P!(S-1)

NEQV P!(S-2) := P!(S-2) NEQV P!(S-1)

Vector subscription (E1!E2 is implemented using plus and RV.

6.5 Procedures

The design of the OCODE statements for procedure call, save and return have

been designed with care to allow code generators as much freedom as possible.

The mechanism allows some arguments to be passed in registers if this is required,

and the distribution of work between the code for a call and the code at the entry

point of a procedure is up to the implementer. In a typical program there are

about five calls for each procedure and so there is some incentive to keep the size

of the call small by transferring some of the work to the save sequence.

The compilation of a procedure definition generates an OCODE sequence of

the following form:

ENTRY Li n C1 . . . Cn

SAVE s

body of procedure

ENDPROC
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Li is the label allocated for the procedure entry point. As a debugging aid,

the length of the procedure name is given by n and its characters by the C1. . . Cn.

The SAVE statement specifies the initial setting of S, which is just the save space

size (=3) plus the number of formal parameters. The state of the stack just after

procedure entry is shown in figure 6.3.

A1 A2 An

S
P

Save space Procedure arguments

Figure 6.3: The stack frame on procedure entry

The save space is used to hold the previous value of P, the return address and

the function entry address. Thus, the first argument of a function is always at

position 3 relative to the P pointer. On some older versions of BCPL the size of

the save space was different.

The end of the procedure is marked by the ENDPROC statement which is non

executable but allows the code generator to keep track of nested procedure def-

initions. In early versions of OCODE, the first two arguments of ENTRY were

interchanged and ENDPROC was given a numerical argument.

The language insists that arguments are laid out in consecutive locations on

the stack and that there is no limit to their number. This suggests that a good

strategy is to place the values of procedure arguments in the locations they must

occupy when the procedure is entered. Thus, a typical call E(E1, . . . , En) is

compiled by first incrementing S to leave room for the save space in the new

stack frame, then generate code to evaluate the arguments E1, . . . , En before

generating code for E. The state is then as shown in figure 6.4. Finally, either

FNAP k or RTAP k is generated, depending on whether a function or routine call

is being compiled. Notice that k is the distance between the old and new stack

frames.

E1 E2 En E

S
P

Old stack frame New stack frame

k

Figure 6.4: The moment of calling E(E1,E2,...En)

The return from a routine is performed by RTRN which restores the previous

value of P and resumes execution from the return address. The return from a
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function is performed by FNRN just after the function result has been evaluated

on the top of the stack. FNRN performs the same action as RTRN, after placing the

function result in a special register (A) ready for FNAP to store it in the required

location in the previous stack frame.

6.6 Control

The statement LAB Ln set the value of label Ln to the current position in the

OCODE program. An unconditional transfer to this label can be performed by

the satement JUMP Ln. Conditional jumps inspect the value on the top of the

stack P!(S-1). JT Ln will make the jump if it is TRUE, and JF Ln will jump if

FALSE. The translation of the command GOTO E is the translation of E followed

by the OCODE statement GOTO. It thus takes the destination address from the

top of the stack.

If the command RESULTIS E occurs in a context where the value of E is im-

mediately returned as the result of a function, it uses FNRN; but in other contexts,

its translation is code to evaluate E followed by a statement of the form RES Ln.

This will place the result in the special register (A) and jump to the label Ln,

where a statement of the form RSTACK k will be present to accept the value and

place it in P!k while setting S to k + 1.

The OCODE statement:

SWITCHON n LdK1L1 . . . KnLn

is used in the compilations of switches. It makes a jump determined by the value

on the top of the stack. Its first argument (n) is the number of cases in the switch

and the second argument (Ld) is the the default label. K1 to Kn are the case

constants and L1 to Ln are the corresponding labels.

The FINISH statement is the compilation of the BCPL FINISH command. It

is converted into code equivalent to stop(0) by the code generator.

6.7 Directives

Sometimes the size of the stack frame changes other than in the course of expres-

sion evaluation. This happens, for instance, when control leaves a block in which

local variables were declared. The statement STACK s informs the code generator

that the size of the current stack frame is now s.

The STORE statement is used to inform the code generator that the point

separating the declarations and body of a block has been reached and that any



82 CHAPTER 6. THE DESIGN OF OCODE

anonymous results on the stack are actually initialised local variables and so

should be stored in their true stack locations.

Static variables and tables are allocated space in the program area using

statements of the form ITEMN n, where n is the initial value of the static cell.

The elements of table are placed in consecutive locations by consective ITEMN

statements. A label may be set to the address of a static cell by preceding the

ITEMN statement by a statement of the form DATALAB Ln. In earlier versions of

OCODE, there was an ITEML statement used in the compilation of non global

procedures and labels.

The SECTION and NEEDS directives in a BCPL program translate into SECTION

and NEEDS statements of the form:

SECTION nC1 . . . Cn NEEDS nC1 . . . Cn

where C1 to Cn are the characters of the SECTION or NEEDS name and n is the

length.

The end of an OCODE module is marked by the GLOBAL statement which

contains information about global procedures and labels. The form of the GLOBAL

statement is as follows:

GLOBAL nK1L1 . . . KnLn

where n is the number of items in the global initialisation list. Ki is the global

number and Li is its label. When a module is loaded its global entry points must

be initialised.

6.8 Discussion

A very early version of OCODE used a three address code in which the operands

were allowed to be the sum of up to three simple values with a possible indirec-

tion. The intention was that reasonable code should be obtainable even when

codegenerating one statement at a time. It was soon found more convenient to use

an intermediate code that separates the accessing of values from the application

of operators. This improved portability by making it possible to implement very

simple non optimising codegenerators. Optimising codegenerators could absorb

several OCODE statements before emitting compiled code.

The TRUE and FALSE statements were added in 1968 to improve portability to

machines using sign and modulus or one’s complement arithmetic. Luckily two’s

complement arithmetic has now become the norm. Other extension to OCODE,
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notably the ABS, QUERY, GETBYTE and PUTBYTE statements were added as the

corresponding constructs appeared in the language.

In 1980, the BCPL changed slightly to permit position independent code to

be compiled. This change specified that non global labels and procedures were

no longer variables, and the current version of OCODE reflects this change by

the introduction of the LF statement and the removal of the old ITEML statement

that used to allocate static cells for such entry points.

Another minor change in this version of OCODE is the elimination of the

ENDFOR statement that was provided to fix a problem on 16-bit word addressed

machines with more than 64 Kbytes of memory.
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Chapter 7

The Design of Cintcode

The original version of Cintcode was a byte stream interpretive code designed to

be both compact and capable of efficient interpretation on small 16 bit machines

machines based on 8 bit micro processors such as the Z80 and 6502. Versions that

ran on the BBC Microcomputer and under CP/M were marketed by RCP Ltd

[JR83]. The current version of Cintcode was extended for 32 bit implementations

of BCPL and mainly differs from the original by the provision of 32 bit operands

and the removal of a size restriction of the global vector.

The Cintcode machine has eight registers as shown in figure 7.1.

B

C

P

G

ST

PC

Count

A

Stack frame Global vector Program area

Registers

Figure 7.1: The Cintcode machine

The registers A and B are used for expression evaluation, and C is used in in

byte subscription. P and G are pointers to the current stack frame and the global

vector, respectively. ST was intended as a status register but is currently not used,

and PC points to the first byte of the next Cintcode instruction to execute. Count

is a register used by the debugger. While it is positive, Count is decremented on

85
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each instruction execution, raising an exception (code 3) on reaching zero. When

negative it causes a second (faster) interpreter to be used.

Cintcode encodes the most commonly occurring operations as single byte

instructions, using multi-byte instructions for rarer operations. The first byte of

an instruction is the function code. Operands of size 1, 2 or 4 bytes imediately

follow some function bytes. The two instructions used to implement switches

have inline data following the function byte. Cintcode modules also contains

static data for stings, integers, tables and global initialisation data.

7.1 Designing for Compactness

To obtain a compact encoding, information theory suggests that each function

code should occur with approximately equal frequency. The self compilation of

the BCPL compiler, as shown in figure 4.2, was the main benchmark test used to

generate frequency information and a summary of how often various operations

are used during this test is given in table 7.1. This data was produced using the

tallying feature controlled by the stats command, described on page 65.

The statistics from different programs vary greatly, so while encoding the

common operations really compactly, there is graceful degradation for the rarer

cases ensuring that even unusual programs are handled reasonably well. There

are, for instance, several one byte instructions for loading small integers, while

larger integers are handled using 2, 3 and 5 byte instructions. The intention is

that small changes in a source program should cause small small changes in the

size of the corresponding compiled code.

Having several variant instructions for the same basic operation does not

greatly complicate the compiler. For example the four variants of the AP instruc-

tion that adds a local variable into register A is dealt with by the following code

fragment taken from the codegenerator.

TEST 3<=n<=12 THEN gen(f_ap0 + n)
ELSE TEST 0<=n<=255

THEN genb(f_ap, n)
ELSE TEST 0<=n<=#xFFFF

THEN genh(f_aph, n)
ELSE genw(f_apw, n)

It is clear from table 7.1 that accessing variables and constants requires special

care, and that conditional jumps, addition, procedure calls and indirection are

also important. Since access to local variables accounts for about a quarter

of the operations performed, about this proportion of codes were allocated to

instructions concerned with local variables. Local variables are allocated words
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Operation Executions Static count

Loading a local variable 3777408 1479

Updating a local variable 1965885 1098

Loading a global variable 5041968 1759

Updating a global variable 796761 363

Using a positive constant 4083433 1603

Using a negative constant 160224 93

Conditional jumps (all) 2013013 488

Conditional jumps on zero 494282 267

Unconditional direct jump 254448 140

Unconditional indirect jumps 152646 93

Procedure calls 1324206 1065

Procedure returns 1324204 381

Binary chop switches 43748 12

Label vector switches 96461 17

Addition 2135696 574

Subtraction 254935 111

Other expression operations 596882 74

Loading a vector element 1356315 429

Updating a vector element 591268 137

Loading a byte vector element 476688 53

Updating a byte vector element 405808 29

Table 7.1: Counts from the BCPL self compilation test

in the stack starting at position 3 relative to the P pointer and, as one would

expect, small numbered locals are used far more frequently than the others, so

operations on low numbered locals often have single byte codes.

Although not shown here, other statistics, such as the distribution of relative

addressing offsets and operand values, influenced the design of Cintcode.

7.1.1 Global Variables

Global variables are referenced as frequently as locals and therefore have many

function codes to handle them. The size of the global vector in most programs is

less than 512, but Cintcode allows this to be as large are 65536 words. Each op-
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eration that refers to a global variable is provided with three related instructions.

For instance, the instructions to load a global into register A are as follows:

LG

LG1

LGH

b

h

B := A; A := G!(b+256)

B := A; A := G!b

B := A; A := G!h

b

Here, b and h are unsigned 8 and 16 bit values, respectively.

7.1.2 Composite Instructions

Compactness can be improved by combining commonly occurring pairs (and

triples) of operations into a single instructions. Many such composite instruc-

tions occur in Cintcode; for instance, AP3 adds local 3 to the A register, and L1P6

will load v!1 into register A, assuming v is held in local 6.

7.1.3 Relative Addressing

A relative addressing mechanism is used in conditional and uncoditional jumps

and the instructions: LL, LLL, SL and LF. Al these instructions refer to locations

within the code and are optimised for small relative distances. To simplify the

codegenerator all relative addressing instructions are 2 bytes in length. The first

being the function code and the second being an 8 bit relative address.

Direct

Indirect

J a

J$ b hh

x

PC x

PC

dest = q + hh

dest = x + a

q = (x & #xFFFFFFFE) + 2*b

Figure 7.2: The relative addressing mechanism

All relative addressing instructions have two forms: direct and indirect, de-

pending on the least significant bit of the function byte. The details of both

relative address calculations are shown in figure 7.2, using the instructions J and

J$ as examples. For the direct jump (J), the operand (a) is a signed byte in the

range -128 to +127 which is added to the address (x) of the operand byte to give

the destination address (dest). For the indirect jump, J$, the operand (b) is an

unsigned byte in the range 0 to 255 which is doubled and added to the rounded
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version of x to give the address (q) of a 16 bit signed value hh which is added to

q to give the destination address (dest).

The compiler places the resolving half word as late as possible to increase

the chance that it can be shared by other relative addressing instructions to the

same desination, as could happen when several ENDCASE statements occur in a

large SWITCHON command. The use of a 16 bit resolving word places a slight

restriction on the maximum size of relative references. Any Cintcode module of

less than 64K bytes will have no problem.

7.2 The Cintcode Instruction Set

The resulting selection of function codes is shown in Table 7.2 and they are

described in the sections that follow. In the remaining sections of this chapter

the following conventions hold:

Symbol Meaning

n An integer encoded in the function byte.

Ln The one byte operand of a relative addressing instruction.

b An unsigned byte, range 0 ≤ b ≤ 255.

h An unsigned halfword, range 0 ≤ h ≤ 65535.

w A signed 32 bit word.

filler Optional filler byte to round up to a 16 bit boundary.

A The Cintcode A register.

B The Cintcode B register.

C The Cintcode C register.

P The Cintcode P register.

G The Cintcode G register.

PC The Cintcode PC register.

7.2.1 Byte Ordering and Alignment

A Cintcode module is a vector of 32 bit words containing the compiled code and

static data of a section of program. The first word of a module holds its size

in words that is used as a relative address to the end of the module where the

global initialisation data is placed. The last word of a module holds the highest

referenced global number, and working back, there are pairs of words giving the

global number and relative entry address of each global function or label defined

in the module. A relative address of zero marks the end of the initialisation data.

See section 6.3 for more details.
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0 32 64 96 128 160 192 224

0 - K LLP L LP SP AP A
1 - KH LLPH LH LPH SPH APH AH
2 BRK KW LLPW LW LPW SPW APW AW
3 K3 K3G K3G1 K3GH LP3 SP3 AP3 L0P3
4 K4 K4G K4G1 K4GH LP4 SP4 AP4 L0P4
5 K5 K5G K5G1 K5GH LP5 SP5 AP5 L0P5
6 K6 K6G K6G1 K6GH LP6 SP6 AP6 L0P6
7 K7 K7G K7G1 K7GH LP7 SP7 AP7 L0P7
8 K8 K8G K8G1 K8GH LP8 SP8 AP8 L0P8
9 K9 K9G K9G1 K9GH LP9 SP9 AP9 L0P9

10 K10 K10G K10G1 K10GH LP10 SP10 AP10 L0P10
11 K11 K11G K11G1 K11GH LP11 SP11 AP11 L0P11
12 LF S0G S0G1 S0GH LP12 SP12 AP12 L0P12
13 LF$ L0G L0G1 L0GH LP13 SP13 XPBYT S
14 LM L1G L1G1 L1GH LP14 SP14 LMH SH
15 LM1 L2G L2G1 L2GH LP15 SP15 BTC MDIV
16 L0 LG LG1 LGH LP16 SP16 NOP CHGCO
17 L1 SG SG1 SGH SYS S1 A1 NEG
18 L2 LLG LLG1 LLGH SWB S2 A2 NOT
19 L3 AG AG1 AGH SWL S3 A3 L1P3
20 L4 MUL ADD RV ST S4 A4 L1P4
21 L5 DIV SUB RV1 ST1 XCH A5 L1P5
22 L6 REM LSH RV2 ST2 GBYT RVP3 L1P6
23 L7 XOR RSH RV3 ST3 PBYT RVP4 L2P3
24 L8 SL AND RV4 STP3 ATC RVP5 L2P4
25 L9 SL$ OR RV5 STP4 ATB RVP6 L2P5
26 L10 LL LLL RV6 STP5 J RVP7 L3P3
27 FHOP LL$ LLL$ RTN GOTO J$ ST0P3 L3P4
28 JEQ JNE JLS JGR JLE JGE ST0P4 L4P3
29 JEQ$ JNE$ JLS$ JGR$ JLE$ JGE$ ST1P3 L4P4
30 JEQ0 JNE0 JLS0 JGR0 JLE0 JGE0 ST1P4 -
31 JEQ0$ JNE0$ JLS0$ JGR0$ JLE0$ JGE0$ - -

Table 7.2: The Cintcode function codes
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The compiler can generate code for either a big- or little-endian machine.

These differ only in the byte ordering of bytes within words. For a little endian

machine, the first byte of a 32 bit word is at the least significant end, and on

a big-endian machine, it is the most significant byte. This affect the ordering

of bytes in 2 and 4 byte immediate operands, 2 byte relative address resolving

words, 4 byte static quantities and global initialisation data. Resolving words

are aligned on 16 bit boundaries relative to the start of the module, and 4 byte

statics values are aligned on 32 bit boundaries. The 2 and 4 byte immediate

operands are not aligned.

For efficiency reasons, the byte ordering is chosen to suit the machine on which

the code is to be interpreted. The compiler option OENDER causes the BCPL

compiler to compile code with the opposite endianess to that of the machine

on which the compiler is running, see the description of the bcpl command on

page 59.

7.2.2 Loading values

The following instructions are used to load constants, variables, the addresses of

variables and function entry points. Notice that all loading instructions save the

old value of register A in B before updating A. This simplifies the translation of

dyadic expression operators.

Ln 0 ≤ n ≤ 10 B := A; A := n
LM1 B := A; A := -1
L b B := A; A := b
LH h B := A; A := h
LMH h B := A; A := -h
LW w B := A; A := w

These instructions load integer constants. Constants are in the range -1 to 10

are the most common and have single byte instructions. The other cases use

successively larger instructions.

LPn 3 ≤ n ≤ 16 B := A; A := P!n
LP b B := A; A := P!b
LPH h B := A; A := P!h
LPW w B := A; A := P!w

These instructions load local variables and anonymous results addressed relative

to P. Offsets in the range 3 to 16 are the most common and use single byte

instructions. The other cases use succesively larger instructions.
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LG b B := A; A := G!b
LG1 b B := A; A := G!(b+ 256)
LGH h B := A; A := G!h

LG loads the value of a global variables in the range 0 to 255, LG1 load globals

in the range 256 to 511, and LGH can load globals up to 65535. Global numbers

must be in the range 0 to 65535.

LL Ln B := A; A := variable Ln
LL$ Ln B := A; A := variable Ln
LF Ln B := A; A := entry point Ln
LF$ Ln B := A; A := entry point Ln

LL loads the value of a static variable and LF loads the entry address of a function,

routine or label in the current module.

LLP b B := A; A := @P!b
LLPH h B := A; A := @P!h
LLPW w B := A; A := @P!w
LLG b B := A; A := @G!b
LLG1 b B := A; A := @G!(b+ 256)
LLGH h B := A; A := @G!h
LLL Ln B := A; A := @(variable Ln)
LLL$ Ln B := A; A := @(variable Ln)

These instructions load the BCPL ponters to local, global and static variables.

7.2.3 Indirect Load

GBYT A := B%A
RV A := A!0
RVn 1 ≤ n ≤ 6 A := A!n
RVPn 3 ≤ n ≤ 7 A := P!n!A
L0Pn 3 ≤ n ≤ 12 B := A; A := P!n!0
L1Pn 3 ≤ n ≤ 6 B := A; A := P!n!1
L2Pn 3 ≤ n ≤ 5 B := A; A := P!n!2
L3Pn 3 ≤ n ≤ 4 B := A; A := P!n!3
L4Pn 3 ≤ n ≤ 4 B := A; A := P!n!4
LnG b 0 ≤ n ≤ 2 B := A; A := G!b!n
LnG1 b 0 ≤ n ≤ 2 B := A; A := G!(b+256)!n
LnGH h 0 ≤ n ≤ 2 B := A; A := G!h!n

These instructions are used in the implementation of byte and word indirection

operators % and ! in right hand contexts.
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7.2.4 Expression Operators

NEQ A := -A
ABS A := ABS A
NOT A := ~A

These instructions implement the three monadic expression operators.

MUL A := B * A
DIV A := B / A
REM A := B REM A
ADD A := B + A
SUB A := B - A
LSH A := B << A
RSH A := B >> A
AND A := B & A
OR A := B | A
XOR A := B NEQV A

These instructions provide for all the normal arithmetic and bit pattern dyadic

operators. The instructions DIV and REM generate exception 5 if the divisor is zero.

Evaluation of relational operators in non conditional contexts involve conditional

jumps and the FHOP instruction, see page 96. Addition is the most frequently

used arithmetic operation and so there are various special instructions improve

its efficiency.

An 1 ≤ n ≤ 5 A := A + n
Sn 1 ≤ n ≤ 4 A := A - n
A b A := A + b
AH h A := A + h
AW w A := A + w
S b A := A - b
SH h A := A - h

These instructions implement addition and subtraction by a constant integer

amounts. There are single byte instructions for incrementing by 1 to 5 and

decremented by 1 to 4. For other values longer instructions are available.

APn 3 ≤ n ≤ 12 A := A + P!n
AP b A := A + P!b
APH h A := A + P!h
APW w A := A + P!w
AG b A := A + G!b
AG1 b A := A + G!(b+1)
AGH h A := A + G!b
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These instructions allow local and global variables to be added to A. Special

instructions for addition by static variables are not provided, and subtraction by

a variable is not common enough to warrant special treatment.

7.2.5 Simple Assignment

SPn 3 ≤ n ≤ 16 P!n := A
SP b P!b := A
SPH h P!h := A
SPW w P!w := A
SG b G!b := A
SG1 b G!(b+256) := A
SGH h G!h := A
SL Ln variable Ln := A
SL$ Ln variable Ln := A

These instructions are used in the compilation of assignments to named local,

global and static variables. The SP instructions are also used to save anonymous

results and to layout function arguments.

7.2.6 Indirect Assignment

PBYT B%A := C
XPBYT A%B := C
ST A!0 := B
STn 1 ≤ n ≤ 3 A!n := B
ST0Pn 3 ≤ n ≤ 4 P!n!0 := A
ST1Pn 3 ≤ n ≤ 4 P!n!1 := A
STPn 3 ≤ n ≤ 5 P!n!A := B
S0G b G!b!0 := A
S0G1 b G!(b+256)!0 := A
S0GH h G!h!0 := A

These instructions are used in assignments in which % or ! appear as the leading

operator on the left hand side.

7.2.7 Procedure calls

At the moment a function or routine is called the state of the stack is as shown

in figure 7.3. At the entry point of a function or routine the first argument, if

any, will be in register A and in memory P!3.
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E2 En

P

Old stack frame New stack frame

k

Figure 7.3: The moment of calling E(E1,E2,...En)

Kn 3 ≤ n ≤ 11
K b
KH h
KW w

These instructions call the function or routine whose entry point is in A and whose

first argument (if any) is in B. The new stack frame at position k relative to P

where k is n, b, h or w depending on which instruction is used. The effect of

these instructions is as follows:

P!k := P // Save the old P pointer
P := P+k // Set its new value
P!1 := PC // Save the return address
PC := A // Set PC to the entry point
P!2 := PC // Save it in the stack for debugging
A := B // Put the first argument in A
P!3 := A // Save it in the stack

As can be seen, three words of link information (the old P pointer, the return

address and entry address) are stored in the base of the new stack frame.

KnG b 3 ≤ n ≤ 11
KnG1 b 3 ≤ n ≤ 11
KnGH h 3 ≤ n ≤ 11

These instructions deal with the common situation where the entry point of the

function is in the global vector and the stack increment is in the range 3 to 11.

The global number gn is b, b+256 or h depending on which function code is used

and stack increment k is n. The first argument (if any) is in A. The effect of these

instructions is as follows:

P!k := P // Save the old P pointer
P := P+k // Set its new value
P!1 := PC // Save the return address
PC := G!gn // Set the new PC value from the global value
P!2 := PC // Save it in the stack for debugging
P!3 := A // Save the first argument in the stack
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RTN

This instruction causes a return from the current function or routine using the

previous P pointer and the return address held in P!0 and P!1. The effect of the

instruction is as follows:

PC := P!1 // Set PC to the return address
P := P!0 // Restore the old P pointer

When returning from a function the result will be in A.

7.2.8 Flow of Control and Relations

The following instructions are used in the compilation of conditional and uncon-

ditional jumps, and relational expressions. The symbol rel denotes EQ, NE, LS,

GR, LE or GE indicating the relation being tested.

J Ln PC := Ln
J$ Ln PC := Ln
Jrel Ln IF B rel A DO PC := Ln
Jrel$ Ln IF B rel A DO PC := Ln
Jrel0 Ln IF A rel 0 DO PC := Ln
Jrel0$ Ln IF A rel 0 DO PC := Ln

The destinations of these jump instructions are computed using the relative ad-

dressing mechanism described in section 7.1.3. Notice than when the comparison

is with zero, A holds the left operand of the relation.

GOTO PC := A

This instruction is only used in the compilation of the GOTO command.

FHOP A := 0; PC := PC+1

The FHOP instruction is only used in the compilation of relational expressions in

non conditional contexts as in the compilation. The assignment: x := y < z is

typically compiled as follows:

LP4 Load y
LP5 Load z
JLS 2 Jump to the LM1 instruction if y<z
FHOP A := FALSE; and hop over the LM1 instruction
LM1 A := TRUE
SP3 Store in x
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7.2.9 Switch Instructions

The instructions are used to implement switches are SWL and SWB, switching on

the value held in A. They both assume that all case constants are in the range

0 to 65535, with the compiler taking appropriate action when this constraint is

not satisfied.

SWL filler n dlab L0 . . .Ln−1

This instruction is used when there are sufficient case constants all within a

small enough range. It performs the jump by selecting an element from a vector

of 16 bit resolving half words. The quantities n, dlab, and L0 to Ln−1 are 16 bit

half words, aligned on 16 bit boundaries by the option filler byte. If A is in the

range 0 to n− 1 it uses the appropriate resolving half word LA, otherwise it uses

the resolving half word dlab to jump to the default label. See Section 7.1.3 for

details on how resolving half words are interpreted.

SWB filler n dlab K1 L1 . . .Kn Ln

This instruction is used when the range of case constants is too large for SWL to be

economical. It performs the jump using a binary chop strategy. The quantities n,

dlab, K1 to Kn and L1 to Ln are 16 bit half words aligned on 16 bit boundaries by

the option filler byte. This instruction successively tests A with the case constants

in the balanced binary tree given in the instruction. The tree is structured in a

way similar to that used in heapsort with the children of the node at position

i at positions 2i and 2i + 1. References to nodes beyond n are treated as null

pointers. Within this tree, Ki is greater than all case constants in the tree rooted

at position 2i, and less than those in the tree at 2i + 1. The search starts at

position 1 and continues until a matching case constant is found or a null pointer

is reached. If A is equal to some Ki then PC is set using the resolving half word

Li, otherwise it uses the resolving half word dlab to jump to the default label.

See Section 7.1.3 for details on how resolving half words are interpreted.

The use of this structure is particularly good for the hand written machine

code interpreter for the Pentium where there are rather few central registers.

Cunning use can be made of the add with carry instruction (adcl). In the

following fragment of code, %esi points to n, %eax holds i and A is held in %eab.
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There is a test elsewhere to ensure that A is in the range 0 to 65535.

swb1: cmpw (%esi,%eax,4),%bx ; { compare A with Ki
je swb3 ; Jump if A=Ki
adcl ; IF A>Ki THEN i := 2i

; ELSE i := 2i+1
cmpw (%esi),%ax ;
jle swb1 ; } REPEATWHILE i<=n

The compiler ensures that the tree always has at least 7 nodes allowing the code

can be further improved by preceeding this loop with two copies of:

cmpw (%esi,%eax,4),%bx ; compare Ki with A
je swb3 ; Jump if match found
adcl ; IF A>Ki THEN i := 2i

; ELSE i := 2i+1

The above code is a great improvement on any straightforward implementation

of the standard binary chop mechanism.

7.2.10 Miscellaneous

XCH Exchange A and B
ATB B := A
ATC C := A
BTC C := B

These instructions are used move values between register A, B and C.

NOP

This instruction has no effect.

SYS

This instruction is used in body of the hand written library routine sys. If A is

zero then the interpreter returns with exception code P!4.

If A is -1 it set register count to P!4, setting A to the previous value of count.

Changing the value of count may change which of the two interpreters is used.

For more details see Section 3.2.2.

Otherwise, it performs a system operation returning the result in A. In the C

implementation of the interpreter this is done by the following code:
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c = dosys(p, g);

MDIV

This instruction is used as the one and only instruction in the body of the hand

written library routine muldiv, see Section 3.3.13. It divides P!5 into the double

length product of P!3 and P!4 placing the result in A and the remainder in the

global variable result2. It then performs a function return (RTN). Its effect is as

follows:

A := <the result>
G!Gn_result2 := <the remainder>
PC := P!1 // PC := P!1
P := P!0 // P := P!0

CHGCO

This instruction is used in the implementation of coroutines. It is the one and

only instruction in the body of the hand written library routine chgco. Its effect,

which is rather subtle, is as follows:

G!Gn_currco!0 := P!0 // !currco := !P
PC := P!1 // PC := P!1
G!Gn_currco := P!4 // currco := cptr
P := P!4!0 // P := !cptr

BRK

This instruction is used by the debugger in the implementation of break points.

It causes the interpreter to return with exception code 2.

7.2.11 Undefined Instructions

These instructions have function codes 0, 1, 232, 254 and 255, and they each

cause the interpreter to return with exception code 1.

7.2.12 Corruption of B

To improve the efficiency of some hand written machine code interpreters, the

following instructions are permitted to corrupt the value held in B:

K KH KW Kn KnG KnG1 KnGH

SWL SWB MDIV CHGCO

All other instructions either set B explicitly or leave its value unchanged.
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7.2.13 Exceptions

When an exception occurs, the interpreter saves the Cintcode registers in its

register vector and yields the exception number as result. For exceptions caused

by non existent instructions, BRK, DIV or REM the program counter is left

pointing to the offending instruction. For more details see the description of

sys(1, regs) on page 32.
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Installation

The implementation of BCPL described in this report is is available free via my

Home Page [Ric] to individuals for private use and to academic institutions. If

you install the system, please send me a message (to mr@cl.cam.ac.uk) so I can

keep a record of who is interested in it.

This implementation is designed to be machine independent being based on

an interpreter written in C. There are, however, hand written assembly language

versions of the interpreter for several architectures (including i386, MIPS, AL-

PHA and Hitachi SH3). For Windows 95/98/NT and Windows CE there are

precompiled .exe files, but for all the other architectures it is necessary to re-

build the system.

The simplest installation is for Linux machines.

8.1 Linux Installation

This section describes how to install the BCPL Cintcode System on an IBM PC

running Linux.

• First create a directory named BCPL and copy either bcpl.targz or

bcpl.zip into it. They are available (free) via my home page [Ric] and

both contain the same set of packed files and directories.

• Either unpack bcpl.targz by:

tar zxvf bcpl.targz

or unpack bcpl.zip using:

unzip -v bcpl.zip

101
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This will create the directories cintcode, bcplprogs and natbcpl. The di-

rectory cintcode contains all the source files of the BCPL Cintcode System,

bcplprogs contains a collection of demonstration programs, and natbcpl

contains a version of BCPL that compiles into native code (for Intel and

ALPHA machines.

• Now change directory to cintcode.

cd cintcode

• Re-build enter the BCPL system:

make

This should generate output that ends with:

BCPL Cintcode System
0>

indicating that the Command Langage Interpreter has been successfully

entered.

• It is now necessary to recompile all the system software and commands.

This is done by typing:

c compsys

• Now try out a few commands, eg:

echo hello
bcpl com/echo.b to junk
junk hello
map pic
logout
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• The BCPL programs that are part of the system are: BOOT.b, BLIB.b and

CLI.b. These reside in BCPL/cintcode/sys and can be compiled by the

following commands (in the BCPL Cintcode System).

c bs BOOT
c bs BLIB
c bs CLI

The standard commands are in BCPL/cintcode/com may be compiled using

bc.

c bc echo
c bc abort
c bc logout
c bc stack
c bc map
c bc prompt

Read the documentation in cintcode/doc and any README files you can

find. A log of recent changes can be found in cintcode/doc/changes. A

postscript version of the current version of this BCPL manual is available

from my home page. There is a demonstration script of commands in

cintcode/doc/notes.

• In order to use the BCPL Cintcode System from another directory it is

necessary to define the shell variable BCPLPATH to be the absolute file name

of the cintcode directory and add this directory to your PATH, before entering

the BCPL Cintcode system. On Linux, this can be done by:

export BCPLPATH=/home/mr/distribution/BCPL/cintcode
export PATH=$PATH:$BCPLPATH

The shell variable BCPLPATH is used when loading Cintcode object mod-

ules, reading BCPL header files and command-command files read by the

c command.

• To compile and run a demo program such as bcplprogs/demos/queens.b:

cd ../bcplprogs/demos
cinterp
c b queens
queens
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8.2 Command Line Arguments

The command cinterp that invokes the Cintcode interpreter can be given argu-

ments to control memory allocation. These are:

-m n Set the cintcode memory size to 1000n words

-t n Set the tally vector size to 1000n words

-h Output some help information

The rastering version of the interpreter rasterp can receive the same arguments.

8.3 Installation on Other Machines

Carry out steps 1 to 4 above. In the directory BCPL/cintcode/sys you will

find directories for different architectures, e.g. ALPHA, MIPS, SUN4, SPARC,

MSDOS, MAC, OS2, BC4, Win32, CYGWIN32 and shWinCE. These contain

files that are architecture (or compiler) dependent, typically including cintasm.s

(or cintasm.asm). For some old versions of Linux, it is necessary to change

_dosys to dosys (or vice-versa) in the file sys/LINUX/cintasm.s.

Edit Makefile (typically by adding and removing comment symbols) as neces-

sary for your system/machine and then execute make in the cintcode directory,

e.g:

make

Variants of the above should work for the other architectures running Unix.

8.4 Installation for Windows 95/98/NT

The files cinterp.exe and rasterp.exe are included in the standard distribution

and should work under these operating systems just by typing the command:

cinterp

I recommend using the GNU development tools and util-

ities for Windows 95/98/NT/etc that are available from

http://sourceware.cygnus.com/cygwin/.
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Edit the cintcode/Makefile to comment out the LINUX version

#CC = gcc -O9 -DforLINUX
#SYSM = ../cintcode/sys/LINUX
#CINTASM = cintasm.o
#ENDER = LITENDER

and enable the CYGWIN32 version

CC = gcc -O9 -DforCYGWIN32
CINTASM = cintasm.o
SYSM = ../cintcode/sys/CYGWIN32
ENDER = LITENDER

Then type:

make

This should recompile the system and create the executable cinterp.exe.

Remember to include the cintcode directory in your PATH and BCPLPATH shell

variables, so that the cintcode system can be run in any directory.

Careful inspection of the Makefile and directories in cintcode/sys will show

that versions also exist that use Microsoft C++ 5.0 and Borland C4.0, but these

are likely to be out of date and their use is not recommended.

8.5 Installation for Windows CE2.0

A version of the BCPL Cintcode System is available for handheld ma-

chines running Windows CE version 2.0. For instalaation details see the file

cintcode/sys/shWinCE/README. This system provides ascrollable window for

interaction with the CLI. It also provides a simple graphical facilities using a

graphics window. The system has only been tested on an HP 620LX handheld

machine.

8.6 The Native Code Version

A BCPL native mode system for 386/486/Pentium based machines is in direc-

tory MCPL/native. It can be re-built and test by changing to the directory

BCPL/natbcpl and running make.

A version (64 bit) for the DEC Alpha is also available. To re-build this it is

necessary to comment out the lines for LINUX and uncomment the lines for the

ALPHA in Makefile, before running make.
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Chapter 9

Example Programs

9.1 Coins

The following program prints out how many different ways a sum of money can

be composed from coins of various denominations.

GET "libhdr"

LET coins(sum) = c(sum, (TABLE 200, 100, 50, 20, 10, 5, 2, 1, 0))

AND c(sum, t) = sum<0 -> 0,
sum=0 -> 1,
!t=0 -> 0,
c(sum, t+1) + c(sum-!t, t)

LET start() = VALOF
{ writes("Coins problem*n")
t(0); t(1); t(2); t(5); t(21); t(100); t(200)
RESULTIS 0

}

AND t(n) BE writef("Sum = %i3 number of ways = %i6*n", n, coins(n))

107



108 CHAPTER 9. EXAMPLE PROGRAMS

9.2 Primes

The following program prints out a table of all primes less than 1000, using the

sieve method.

GET "libhdr"

GLOBAL { count: ug }

MANIFEST { upb = 999 }

LET start() = VALOF
{ LET isprime = getvec(upb)

count := 0
FOR i = 2 TO upb DO isprime!i := TRUE // Until proved otherwise.

FOR p = 2 TO upb IF isprime!p DO
{ LET i = p*p

UNTIL i>upb DO { isprime!i := FALSE; i := i + p }
out(p)

}

writes("*nend of output*n")
freevec(isprime)
RESULTIS 0

}

AND out(n) BE
{ IF count REM 10 = 0 DO newline()

writef(" %i3", n)
count := count + 1

}

9.3 Queens

The following program calculates the number of ways n queens can be placed on

a n×n chess board without any two occupying the same row, column or diagonal.

GET "libhdr"

GLOBAL { count:200; all:201 }

LET try(ld, row, rd) BE TEST row=all

THEN count := count + 1

ELSE { LET poss = all & ~(ld | row | rd)
UNTIL poss=0 DO
{ LET p = poss & -poss

poss := poss - p
try(ld+p << 1, row+p, rd+p >> 1)

}
}
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LET start() = VALOF
{ all := 1

FOR i = 1 TO 12 DO
{ count := 0

try(0, 0, 0)
writef("Number of solutions to %i2-queens is %i5*n", i, count)
all := 2*all + 1

}

RESULTIS 0
}

9.4 Fridays

The following program prints a table of how often the 13th day of the month lies

on each day of the week over a 400 year period. Since there are an exact number

of weeks in 4 centuries, program shows that the 13th is most of a Friday!

GET "libhdr"

MANIFEST { mon=0; sun=6; jan=0; feb=1; dec=11 }

LET start() = VALOF
{ LET count = TABLE 0, 0, 0, 0, 0, 0, 0

LET daysinmonth = TABLE 31, ?, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31

LET days = 0

FOR year = 1973 TO 1973+399 DO
{ daysinmonth!feb := febdays(year)

FOR month = jan TO dec DO
{ LET day13 = (days+12) REM 7

count!day13 := count!day13 + 1
days := days + daysinmonth!month

}
}
FOR day = mon TO sun DO

writef("%i3 %sdays*n",
count!day,
select(day,

"Mon","Tues","Wednes","Thurs","Fri","Sat","Sun")
)

RESULTIS 0
}

AND febdays(year) = year REM 400 = 0 -> 29,
year REM 100 = 0 -> 28,
year REM 4 = 0 -> 29,
28

AND select(n, a0, a1, a2, a3, a4, a5, a6) = n!@a0
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9.5 Lambda Evaluator

The following program is a simple parser and evaluator for lambda expressions.

GET "libhdr"

MANIFEST {
// selectors
H1=0; H2; H3; H4

// Expression operators and tokens
Id=1; Num; Pos; Neg; Mul; Div;Add; Sub
Eq; Cond; Lam; Ap; Y
Lparen; Rparen; Comma; Eof
}

GLOBAL {
space:200; str; strp; strt; ch; token; lexval
}

LET lookup(bv, e) = VALOF
{ WHILE e DO { IF bv=H1!e RESULTIS H2!e

e := H3!e
}

writef("Undeclared name %c*n", H2!bv)
RESULTIS 0

}

AND eval(x, e) = VALOF SWITCHON H1!x INTO
{ DEFAULT: writef("Bad exppression, Op=%n*n", H1!x)

RESULTIS 0
CASE Id: RESULTIS lookup(H2!x, e)
CASE Num: RESULTIS H2!x
CASE Pos: RESULTIS eval(H2!x, e)
CASE Neg: RESULTIS - eval(H2!x, e)
CASE Add: RESULTIS eval(H2!x, e) + eval(H3!x, e)
CASE Sub: RESULTIS eval(H2!x, e) - eval(H3!x, e)
CASE Mul: RESULTIS eval(H2!x, e) * eval(H3!x, e)
CASE Div: RESULTIS eval(H2!x, e) / eval(H3!x, e)
CASE Eq: RESULTIS eval(H2!x, e) = eval(H3!x, e)
CASE Cond: RESULTIS eval(H2!x, e) -> eval(H3!x, e), eval(H4!x, e)
CASE Lam: RESULTIS mk3(H2!x, H3!x, e)

CASE Ap: { LET f, a = eval(H2!x, e), eval(H3!x, e)
LET bv, body, env = H1!f, H2!f, H3!f
RESULTIS eval(body, mk3(bv, a, env))

}
CASE Y: { LET bigf = eval(H2!x, e)

// bigf should be a closure whose body is an
// abstraction eg Lf Ln n=0 -> 1, n*f(n-1)
LET bv, body, env = H1!bigf, H2!bigf, H3!bigf
// Make a closure with a missing environment
LET yf = mk3(H2!body, H3!body, ?)
// Make a new environment including an item for bv
LET ne = mk3(bv, yf, env)
H3!yf := ne // Now fill in the environment component
RESULTIS yf // and return the closure

}
}
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// *************** Syntax analyser ***********************

// Construct Corresponding Tree

// a ,.., z --> [Id, ’a’] ,.., [Id, ’z’]
// dddd --> [Num, dddd]
// x y --> [Ap, x, y]
// Y x --> [Y, x]
// x * y --> [Times, x, y]
// x / y --> [Div, x, y]
// x + y --> [Plus, x, y]
// x - y --> [Minus, x, y]
// x = y --> [Eq, x, y]
// b -> x, y --> [Cond, b, x, y]
// Li y --> [Lam, i, y]

LET mk1(x) = VALOF { space := space-1; !space := x; RESULTIS space }

AND mk2(x,y) = VALOF { mk1(y); RESULTIS mk1(x) }

AND mk3(x,y,z) = VALOF { mk2(y,z); RESULTIS mk1(x) }

AND mk4(x,y,z,t) = VALOF { mk3(y,z,t); RESULTIS mk1(x) }

AND rch() BE
{ ch := Eof
IF strp>=strt RETURN
strp := strp+1
ch := str%strp

}

AND parse(s) = VALOF
{ str, strp, strt := s, 0, s%0
rch()
RESULTIS nexp(0)

}
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AND lex() BE SWITCHON ch INTO
{ DEFAULT: writef("Bad ch in lex: %c*n", ch)

CASE Eof: token := Eof
RETURN

CASE ’ ’:
CASE ’*n’ :rch(); lex(); RETURN

CASE ’a’:CASE ’b’:CASE ’c’:CASE ’d’:CASE ’e’:
CASE ’f’:CASE ’g’:CASE ’h’:CASE ’i’:CASE ’j’:
CASE ’k’:CASE ’l’:CASE ’m’:CASE ’n’:CASE ’o’:
CASE ’p’:CASE ’q’:CASE ’r’:CASE ’s’:CASE ’t’:
CASE ’u’:CASE ’v’:CASE ’w’:CASE ’x’:CASE ’y’:
CASE ’z’:

token := Id; lexval := ch; rch(); RETURN

CASE ’0’:CASE ’1’:CASE ’2’:CASE ’3’:CASE ’4’:
CASE ’5’:CASE ’6’:CASE ’7’:CASE ’8’:CASE ’9’:

token, lexval := Num, 0
WHILE ’0’<=ch<=’9’ DO
{ lexval := 10*lexval + ch - ’0’

rch()
}
RETURN

CASE ’-’: rch()
IF ch=’>’ DO { token := Cond; rch(); RETURN }
token := Sub
RETURN

CASE ’+’: token := Add; rch(); RETURN
CASE ’(’: token := Lparen; rch(); RETURN
CASE ’)’: token := Rparen; rch(); RETURN
CASE ’**’: token := Mul; rch(); RETURN
CASE ’/’: token := Div; rch(); RETURN
CASE ’L’: token := Lam; rch(); RETURN
CASE ’Y’: token := Y; rch(); RETURN
CASE ’=’: token := Eq; rch(); RETURN
CASE ’,’: token := Comma; rch(); RETURN

}
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AND prim() = VALOF
{ LET a = TABLE Num, 0
SWITCHON token INTO
{ DEFAULT: writef("Bad expression*n"); ENDCASE

CASE Id: a := mk2(Id, lexval); ENDCASE
CASE Num: a := mk2(Num, lexval); ENDCASE
CASE Y: RESULTIS mk2(Y, nexp(6))
CASE Lam: lex()

UNLESS token=Id DO writes("Id expected*n")
a := lexval
RESULTIS mk3(Lam, a, nexp(0))

CASE Lparen: a := nexp(0)
UNLESS token=Rparen DO writef("’)’ expected*n")
lex()
RESULTIS a

CASE Add: RESULTIS mk2(Pos, nexp(3))
CASE Sub: RESULTIS mk2(Neg, nexp(3))

}
lex()
RESULTIS a

}

AND nexp(n) = VALOF { lex(); RESULTIS exp(n) }

AND exp(n) = VALOF
{ LET a, b = prim(), ?

{ SWITCHON token INTO
{ DEFAULT: BREAK

CASE Lparen:
CASE Num:
CASE Id: UNLESS n<6 BREAK

a := mk3(Ap, a, exp(6)); LOOP
CASE Mul: UNLESS n<5 BREAK

a := mk3(Mul, a, nexp(5)); LOOP
CASE Div: UNLESS n<5 BREAK

a := mk3(Div, a, nexp(5)); LOOP
CASE Add: UNLESS n<4 BREAK

a := mk3(Add, a, nexp(4)); LOOP
CASE Sub: UNLESS n<4 BREAK

a := mk3(Sub, a, nexp(4)); LOOP
CASE Eq: UNLESS n<3 BREAK

a := mk3(Eq, a, nexp(3)); LOOP
CASE Cond: UNLESS n<1 BREAK

b := nexp(0)
UNLESS token=Comma DO writes("Comma expected*n")
a := mk4(Cond, a, b, nexp(0)); LOOP

}
} REPEAT
RESULTIS a

}
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AND try(expr) BE
{ LET v = VEC 2000

space := v+2000
writef("Trying %s*n", expr)
writef("Answer: %n*n", eval(parse(expr), 0))

}

AND start() = VALOF
{ try("(Lx x+1) 2")

try("(Lx x) (Ly y) 99")
try("(Ls Lk s k k) (Lf Lg Lx f x (g x)) (Lx Ly x) (Lx x) 1234")
try("(Y (Lf Ln n=0->1,n**f(n-1))) 5")
RESULTIS 0

}

9.6 Fast Fourier Transform

The following program is a simple demonstration of the algorithm for the fast

fourier transform. Instead of using complex numbers, it uses integer arithmetic

modulo 65537 with an appropriate Nth root of unity.

GET "libhdr"

MANIFEST {
modulus = #x10001 // 2**16 + 1

$$ln10 // Set condition compilation flag to select data size
//$$walsh

$<ln16 omega = #x00003; ln = 16 $>ln16 // omega**(2**16) = 1
$<ln12 omega = #x0ADF3; ln = 12 $>ln12 // omega**(2**12) = 1
$<ln10 omega = #x096ED; ln = 10 $>ln10 // omega**(2**10) = 1
$<ln4 omega = #x08000; ln = 4 $>ln4 // omega**(2**4) = 1
$<ln3 omega = #x0FFF1; ln = 3 $>ln3 // omega**(2**3) = 1

$<walsh omega=1 $>walsh // The Walsh transform

N = 1<<ln // N is a power of 2
upb = N-1
}

STATIC { data=0 }
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LET start() = VALOF
{ writef("fft with N = %n and omega = %n modulus = %n*n*n",

N, omega, modulus)

data := getvec(upb)

UNLESS omega=1 DO // Unless doing Walsh tranform
check(omega, N) // check that omega and N are consistent

FOR i = 0 TO upb DO data!i := i
pr(data, 7)

// prints -- Original data
// 0 1 2 3 4 5 6 7

fft(data, ln, omega)
pr(data, 7)

// prints -- Transformed data
// 65017 26645 38448 37467 30114 19936 15550 42679

fft(data, ln, ovr(1,omega))
FOR i = 0 TO upb DO data!i := ovr(data!i, N)
pr(data, 7)

// prints -- Restored data
// 0 1 2 3 4 5 6 7

RESULTIS 0
}

AND fft(v, ln, w) BE // ln = log2 n w = nth root of unity
{ LET n = 1<<ln
LET vn = v+n
LET n2 = n>>1

// First do the perfect shuffle
reorder(v, n)

// Then do all the butterfly operations
FOR s = 1 TO ln DO
{ LET m = 1<<s

LET m2 = m>>1
LET wk, wkfac = 1, w
FOR i = s+1 TO ln DO wkfac := mul(wkfac, wkfac)
FOR j = 0 TO m2-1 DO
{ LET p = v+j

WHILE p<vn DO { butterfly(p, p+m2, wk); p := p+m }
wk := mul(wk, wkfac)

}
}

}

AND butterfly(p, q, wk) BE { LET a, b = !p, mul(!q, wk)
!p, !q := add(a, b), sub(a, b)

}
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AND reorder(v, n) BE
{ LET j = 0

FOR i = 0 TO n-2 DO
{ LET k = n>>1

// j is i with its bits is reverse order
IF i<j DO { LET t = v!j; v!j := v!i; v!i := t }
// k = 100..00 10..0000..00
// j = 0xx..xx 11..10xx..xx
// j’ = 1xx..xx 00..01xx..xx
// k’ = 100..00 00..0100..00
WHILE k<=j DO { j := j-k; k := k>>1 } //) "increment" j
j := j+k //)

}
}

AND check(w, n) BE
{ // Check that w is a principal nth root of unity

LET x = 1
FOR i = 1 TO n-1 DO { x := mul(x, w)

IF x=1 DO writef("omega****%n = 1*n", i)
}

UNLESS mul(x, w)=1 DO writef("Bad omega**%n should be 1*n", n)
}

AND pr(v, max) BE
{ FOR i = 0 TO max DO { writef("%I5 ", v!i)

IF i REM 8 = 7 DO newline()
}

newline()
}

AND dv(a, m, b, n) = a=1 -> m,
a=0 -> m-n,
a<b -> dv(a, m, b REM a, m*(b/a)+n),
dv(a REM b, m+n*(a/b), b, n)

AND inv(x) = dv(x, 1, modulus-x, 1)

AND add(x, y) = VALOF
{ LET a = x+y

IF a<modulus RESULTIS a
RESULTIS a-modulus

}

AND sub(x, y) = add(x, neg(y))

AND neg(x) = modulus-x

AND mul(x, y) = x=0 -> 0,
(x&1)=0 -> mul(x>>1, add(y,y)),
add(y, mul(x>>1, add(y,y)))

AND ovr(x, y) = mul(x, inv(y))
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Appendix A

BCPL Syntax Diagrams

The syntax of BCPL is specified using the transition diagrams given in figures

A.1, A.2, A.3 and A.4. Within the diagrams the syntactic categories program,

section, declaration, command and expressionn are represented by the rounded

boxes: program , section , D , C and En , respectively.

The rectangular boxes are called test boxes and can only be traversed if the

condition labelling the box matches the current input. When the label is a token,

as in WHILE and := , it must match the next input token for the test to

succeed. The test box eof is only satisfied if the end of file has been reached.

Sometimes the test box contains a side condition, as in REM  n<6 , in which case

the side condition must also be satisfied. The only other test boxes are is call

and is name which are only satified if the most recently read expression is

syntactically a function call or a name, respectively. By setting n successively

from 0 to 8 in the definition of the category En , we obtain the definitions of

E0 to E8 . Starting from the definition of program , we can construct

an infinite transition diagram containing only test boxes by simply replacing all

rounded boxes by their definitions, recursively. The parsing algorithm searches

through this infinite diagram for a path with the same sequence of tokens as the

program being parsed. In order to eliminate ambiguities, the left hand branch at

a branch point is tried first. Notice how this rule causes the command

IF i>10 DO i := i/2 REPEATUNTIL i<5

to be equivalent to

IF i>10 DO { i := i/2 REPEATUNTIL i<5 }

and not
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{ IF i>10 DO i := i/2 } REPEATUNTIL i<5

A useful property of these diagrams is that, once a test box has been successfully

traversed, previous branching decisions need not be reconsidered and so the parser

need never backtrack.

eof

.

section

program

section

SECTION string ;

NEEDS string ;

name

STATIC

MANIFEST { = E0 ; } ;

{ E0 ;GLOBAL name : }

nameLET ( name

,

)

= E0

BE E0

AND

Figure A.1: Program, Section
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name

STATIC

MANIFEST { = E0 ; }

{ E0 ;GLOBAL name : }

LET ( name

,

)

= E0

BE

AND

D

name

VEC= E0

,

= E0

,

,

C

name

Figure A.2: Declarations
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C

BREAK

LOOP

GOTO

RETURN

FINISH

TEST

FOR name THEN

$(

UNLESS

IF

E0

;

INTO

,

E0 ,

:=

:=E0

E0

is call

is name : C

CASE

DEFAULT

E0

E0 TO E0 BY E0

DO

C

E0 THEN

DO

C ELSE C

E0

REPEATWHILE

REPEATUNTIL

REPEAT

E0

E0

;D

ENDCASE

RESULTIS

=

WHILE

UNTIL

SWITCHON

E0

,

C

{

}

Figure A.3: Commands
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TRUE

En

?

FALSE

name

number

character

string

!

@

+

-

ABS

(

NOT

TABLE

,

E0

E8

E5

E4

E3

E2

E1

E0 , E0

C

E0

,

E3

E5

E7

)

)

E0

VALOF

E4

(    n<9

!    n<8

*    n<6

/    n<6

REM  n<6

+    n<5

-    n<5

=    n<4 =    n<4

~=   n<4 ~=   n<4

<    n<4 <    n<4

>    n<4 >    n<4

<=   n<4 <=   n<4

>=   n<4 >=   n<4

<<   n<4

>>   n<4

&    n<3

|    n<2

EQV  n<1

NEQV n<1

->   n<1

E6

%    n<8

OF   n<8

SLCT E0

E0

E0

:

:

Figure A.4: Expressions
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