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Abstract

We present a novel hierarchical force-directed method for drawing
large graphs. Given a graph G = (V, E), the algorithm produces an
embedding for G in an Euclidean space E of any dimension. A two or
three dimensional drawing of the graph is then obtained by project-
ing a higher-dimensional embedding into a two or three dimensional
subspace of E. Such projections typically result in drawings that are
“smoother” and more symmetric than direct drawings in 2D and 3D.

In order to obtain fast placement of the vertices of the graph our al-
gorithm employs a multi-scale technique based on a maximal indepen-
dent set filtration of vertices of the graph. While most existing force-
directed algorithms begin with an initial random placement of all the
vertices, our algorithm attempts to place vertices “intelligently”, close
to their final positions. Other notable features of our approach include
a fast energy function minimization strategy and efficient memory man-
agement. Our implementation of the algorithm can draw graphs with
tens of thousands of vertices using a negligible amount of memory in
less than one minute on a 550MHz Pentium PC.

∗This research partially supported by NSF under Grant CCR-9625289, and ARO under

grant DAAH04-96-1-0013.
†A preliminary version of this paper appeared in the Proceedings of the 8th Annual

Symposium on Graph Drawing, 2000.
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1 Introduction

Graphs are common in many applications, from compilers to networks, from
software engineering to databases. Typically, small graphs are drawn man-
ually so that the resulting picture best shows the underlying relationships.
The task of drawing graphs by hand becomes more challenging as the com-
plexity and size of the graphs increases. Graph drawing tools have been
the focus of the graph drawing community for at least the last two decades;
see [11, 30] for comprehensive reviews of the graph drawing field and [44] for
work in information visualization. Numerous algorithms have been devel-
oped for drawing special classes of graphs such as trees and planar graphs.
There are few general purpose graph drawing algorithms, however. Force-
directed methods are often the methods of choice for drawing general graphs.
Substantial interest in force-directed methods stems from their conceptual
simplicity, applicability to general graphs, and typically aesthetically pleas-
ing results.

Automated graph drawing tools can rarely guarantee optimal drawings.
Thus such tools usually attempt to optimize a set of goals which tend to
produce nice drawings. Typical goals include small area, even distribution
of vertices, minimizing edge crossings, etc. Depending on the application,
the goals are ranked in order of importance and often only one or two are
used in the drawing algorithm. It is not uncommon that different aesthetic
criteria can be contradictory.

With few exceptions, current automated systems cannot deal with graphs
of tens of thousands of vertices. Meanwhile, it is common for the graphs to
be visualized to have more vertices than the number of pixels on conventional
displays. Such massive graphs occur naturally in the many areas such as
networking, telecommunications, and databases. The majority of drawing
tools attempt to display an entire graph, with each vertex and edge explicitly
depicted. This approach is impracticable for large graphs, for example when
the number of vertices exceeds the number of pixels on the display device.
In the case of very large graphs different techniques are called for.

In this paper we present a new algorithm which can draw simple undi-
rected graphs with tens of thousands of vertices in under a minute. Even
larger graphs can be displayed using the GRIP system in conjunction with a
fisheye view [21, 31, 40] or the multi-level display algorithms of Eades and
Feng [14]. Large graphs can be visualized using clustering based on a bi-
nary space partition (BSP) together with either fisheye views or multi-level
displays as shown in [12, 32]. The BSP-based clustering approach allows for
the effective visualization of very large graphs. However, the effectiveness
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of the above algorithms depends on a good recursive clustering, which in
turn depends on a good initial embedding of the graph. Creating a good
embedding has been prohibitively expensive using existing algorithms. Our
algorithm allows us to create excellent initial embeddings in very reasonable
times. The key features of the algorithm are:

• intelligent initial placement of vertices

• multi-dimensional drawing

• a simple recursive coarsening scheme

• fast energy function minimization

• space and time efficiency

The rest of this paper is organized as follows: In Section 2 we review
some of the previous work in three dimensional drawing, visualization of
large graphs, and force-directed algorithms for automated graph drawing.
In Section 3 we describe our algorithm and introduce maximal indepen-
dent set filtrations, intelligent placement of vertices, and multi-dimensional
drawing. In Section 4 we discuss possible modifications of the algorithm.
Also included are several drawings obtained by the GRIP layout system [22],
which is based on our algorithm.

2 Previous Work

2.1 Drawing in Three Dimensions

Although the majority of the work in graph drawing is in two dimensional
graph layout, there have been several algorithms and tools designed for three
dimensional graph drawing. The additional degree of freedom sometimes al-
lows for more natural representations, and there is growing evidence which
shows that the human brain can comprehend increasingly complex struc-
tures if they are displayed as objects in three dimensional space [45, 46].
Existing work in three dimensional (3D) graph drawing algorithms focuses
on algorithms for special kinds of graphs, for example the algorithms of
Cohen et al. [7]. Drawing general graphs in 3D using the force-directed ap-
proach is studied by Fruchterman and Reingold [20], and Monien et al. [34].
Other recent 3D drawing algorithms include Bruß and Frick [5], Cruz and
Twarog [9], and Ostry [35].
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In the context of orthogonal drawings, 3D point-drawing algorithms were
developed by Eades, Symvonis, and Whitesides [16] and Papakostas and
Tollis [36]. 3D orthogonal box-drawings were studied by Biedl [2] and multi-
dimensional orthogonal graph drawings are presented by Wood [47].

2.2 Visualization of Large Graphs

Visualizing large graphs presents unique problems and requires unorthodox
solutions. Drawings that display the entire graph have the advantage of
showing the global structure of the graph. For large graphs such drawings
become impractical as the limited resolution of display devices makes de-
tails hard to discern. Partially drawing graphs allows for display of larger
graphs but fails to convey their global structure. Two other approaches to
visualization of large graphs are of particular interest: fisheye views and
multi-level displays. Fisheye views [21, 31, 40] show an area of interest quite
large and detailed while showing peripheral areas successively smaller and in
less detail. Multi-level views [12, 14, 17, 32] allow us to view large graphs at
multiple abstraction levels. A natural realization of such multiple level rep-
resentations is a 3D drawing with each level drawn on a plane at a different
z-coordinate, and with the clustering structure drawn as a tree in 3D.

Multi-level display algorithms are introduced in the context of visualiza-
tion for clustered graphs by Eades and Feng [14] and Feng [17]. Compound
and clustered graphs are studied by Sugiyama and Misue [33, 41], by Eades
et al. [15], and Feng et al. [18]. The above algorithms assume that the
clustering of the graph is given. Creating a graph clustering based on bi-
nary space partitions and using it to display large graphs was introduced by
Duncan et al.[12] and Kobourov [32]. The quality of the resulting multi-level
drawings of [12] often depends on the initial embedding of the graph in the
plane. The algorithm presented in this paper allows us to create excellent
initial embeddings in very reasonable times; hence, it can be used either
by itself or as a preprocessing step to these large-graph layout methods.
Quigley [38] studies the quality of the abstract graph views obtained from
clustering techniques by formally measuring the representational differences
between abstract views and the underlying graph.

2.3 Force-Directed Algorithms

The force-directed placement algorithm of Quinn and Breur [39] and the
spring embedder of Eades [13] are among the first practical algorithms for
the drawing of general graphs. In the latter algorithm the graph is modeled
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as a physical system of rings and springs. Classical force-directed methods
start from a random embedding of a graph and utilize standard optimization
methods to find a minimum of the energy function of their choice. A char-
acteristic feature of force-directed layout algorithms is the use of a cost (or
energy) function E, which assigns to each embedding ρ : G→ R

n of a graph
G in some Euclidean space R

n (typically n = 2 or n = 3) a non-negative
number E(ρ). Force-directed methods are based on the premise that minima
of reasonably chosen energy functions produce aesthetically pleasing graph
drawings. The main differences between force-directed algorithms are in the
choice of energy function and the methods for its minimization.

The energy minimization algorithm of Kamada and Kawai [29] uses the
Newton-Raphson method for improved drawings. The simulated annealing
method of Davidson and Harel [10] is another flexible force-directed algo-
rithm. Fruchterman and Reingold [20] use a slightly different heuristic which
results in a faster algorithm. The algorithms of Bruß and Frick [5] and Frick
et al. [19] add the notion of local temperature to further speed up the draw-
ing process. A force-directed method can also be used to draw graphs with
node labels as shown by Gansner and North [23].

The classic force-directed algorithm produces excellent results for small
graphs. However, the algorithm has two major drawbacks. The first of
these drawbacks is that the force-directed algorithm does not scale well
with size. Large graphs present a problem for even the best existing graph
drawing algorithms because these algorithms generally cannot handle more
than about a hundred vertices. For larger graphs, the basic algorithm often
fails to arrive to a minimum of the energy function and arithmetic precision
also becomes a problem. The second drawback is the poor running time
of force-directed algorithms. A typical implementation of a force-directed
algorithm runs in phases. In each phase new locations are computed for all
the vertices. A phase runs in O(n2 + m) time, where n is the number of
vertices and m the number of edges of the graph. The number of phases is
typically linear in the number of vertices or edges leading to overall running
time of O(n3) or O(n4). This poses serious problems when dealing with
graphs of tens of thousands of vertices.

Several new algorithms for drawing large graphs were presented at the
8th Symposium on Graph Drawing. Harel and Koren [27] present a multi-
scale scheme that computes a simpler graph hierarchy. Walshaw [43] de-
scribes a different multilevel algorithm, based on graph coarsening, refine-
ment of the layout on each layer, and interpolation of the results onto the
next level. The n-body simulation method of Quigley and Eades [37] uses
the Barnes-Hut [1] hierarchical space decomposition method. An earlier
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implementation of the Barnes-Hut method was used for graph drawing by
Tunkelang in JIGGLE [42]. JIGGLE also temporarily increases the degrees
of freedom by starting with layouts in higher dimensional space. A method
similar to our intelligent placement is described in the context of incremental
drawing by Cohen in [6].

When presented with a computationally expensive graph algorithm, a
standard approach is to associate with the graph a hierarchy of graphs.
The needed computation is performed by starting with the smallest graph
in the hierarchy, then proceeding to larger and larger graphs and using at
each stage the results of the previous computation. This strategy has been
brought to the area of force-directed graph drawing from particle physics [3,
4] in the multi-scale algorithm of Hadany and Harel [26]. In [27] Harel and
Koren introduce several simplifications to the previous algorithm resulting in
faster drawings and allowing for larger graphs. With their beautiful drawings
of graphs with 3,000 vertices they mark a new chapter in the area of force-
directed graph drawings.

However, as one of the underlying steps of the algorithm in [27], all-pairs
shortest paths are computed, which is both time and space expensive. Using
a binary heap implementation the all-pairs shortest paths problem can be
solved in O(nm log n) time, and using Fibonacci heaps, in O(n2 log n+ nm)
time, e.g.; see [8]. In addition, the quadratic space complexity incurred by
the matrix of distances between vertices of the graph also quickly becomes
an obstacle for drawing large graphs. Other computationally expensive pro-
cedures include the clustering procedure for a construction of a hierarchy of
graphs and the Newton-Raphson optimization method for scaling the dis-
placement vectors. Finally, the algorithm in [27] creates drawings in 2D and,
as it is based on the Newton-Raphson method, extending it to 3D consider-
ably slows down the algorithm. The algorithm described in the next section
addresses the above problems and introduces several novel features.

3 The Algorithm

3.1 Algorithm Overview

In the remainder of this paper when we refer to a “graph” we assume a
simple, undirected, and unweighted graph, unless specified otherwise. The
algorithm begins by creating a filtration of the set of vertices V of the graph,
V : V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅. Next the vertices in the smallest filtration
set Vk are placed in their initial positions, using their graph distance as an
approximation to their optimal Euclidean distance. Here the graph distance
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Main Algorithm

create a filtration V : V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅
for i = k to 0 do

for each v ∈ Vi − Vi+1 do

find vertex neighborhood Ni(v), Ni−1(v), . . . , N0(v)
find initial position pos[v] of v

repeat rounds times
for each v ∈ Vi do

compute local temperature heat[v]

disp[v]← heat[v] ·
−→
FNi

(v)
for each v ∈ Vi do

pos[v]← pos[v] + disp[v]
add all edges e ∈ E

Figure 1: After creating the vertex filtration and setting up the scheduling function
the algorithm processes each filtration set, starting with the smallest one. Here pos[v]
is a point in R

n corresponding to vertex v and rounds is a small constant. In the
refinement stage heat[v] is scaling factor for the displacement vector disp[v], which
in turn is computed over a restriction Ni(v) of the vertices of G.

between two vertices is defined as the length of the shortest path between
them in the graph. The current positions are then refined using a small
number of force-directed refinement rounds. The same process is repeated
with the vertices in Vk−1, Vk−2, . . . ,V0. Thus, there are k phases in the main
algorithm and each phase has a placement stage and a refinement stage.

The pseudo-code for the algorithm can be seen in Fig. 1. After creating
the vertex set filtration the algorithm starts adding a few vertices at a time.
The main for-loop runs through all levels of the filtration, starting at Vk,
and performs placement and refinement stages. At phase i for each vertex
v ∈ Vi−Vi+1 we find a family of neighborhood sets Ni(v), Ni−1(v), . . . , N0(v).
We use the neighborhood sets to find an initial position pos[v] of v. The
vertices in Ni(v) are the closest neighbors to v from the set Vi. The graph
distances between v and the vertices in Ni(v) are used to determine the
placement for v. The exact methods for determining the neighborhood sets
Ni(v), Ni−1(v), . . . , N0(v) and for determining the initial vertex positions are
in sections 3.3 and 3.4, respectively.

The refinement phase is repeated rounds times, where rounds is a small
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constant1. In the refinement stage vertices are perturbed using a local force-
directed algorithm. The displacement vector disp[v] of v is set to a local

Kamada-Kawai force vector. Here local means that the force vector
−→
FNi

(v)
is computed over v’s vertex neighborhood Ni(v) rather than over all ver-
tices in G. The displacement vector is scaled by a local temperature factor
heat[v]. More details about the process of calculating heat[v] can be found
in Section 3.5. Finally, once all the vertices have been placed, the edges of
the graph are added. Fig. 2 illustrates the drawing stages of the algorithm
for a cycle graph.

3.2 Vertex Set Filtrations

When trying to draw a large graph, it is natural to associate with it a
hierarchy of graphs and produce the drawing starting with the smallest
graph in the hierarchy and drawing larger and larger graphs so that at each
stage we use the previous drawing. Two important properties of such a
hierarchy are:

• the depth of the hierarchy (number of levels)

• the distribution of the vertices in the levels

A shallow hierarchy (e.g. constant depth) implies that as we go from one
level to the next, more than a constant fraction of the vertices are added.
Usually this means that information from the old level is not sufficient to
create a good drawing on the new level. On the other hand, a deep hierarchy
(e.g. linear in the number of vertices) is too time consuming to traverse.
Thus, logarithmic depth in the number of vertices is highly desirable.

The effectiveness of a multi-scale scheme like this also depends on the
uniformity of the distribution of the vertices at all levels of the hierarchy.
The hierarchy of graphs can be thought of as containing different levels of
abstraction of the underlying graph. Uniform distribution of the vertices
implies more accurate levels of abstraction which in turn implies better
drawings on each level.

Hadany and Harel [26] create a hierarchy of graphs based on the cluster
number, the degree number, and the homotopic number. Harel and Ko-
ren [27] use a simpler method to create the hierarchy of graphs, which relies
on the k-clusters problem. Since solving the k-clusters problem or the related
k-centers problem is NP-hard [25, 28], their algorithm uses a straightforward

1In principle, rounds can be set to be a constant function, but our experiments with a

linearly increasing function with values from 5 to 15 yield better results.
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INITIAL PLACEMENT

REFINEMENT

Figure 2: A hierarchy of coarsened graphs for the cycle of 24 vertices, G. Initially
placed vertices are light and vertices that have already been refined are darkly shaded.
The left column shows the drawing at the beginning of each phase, just after the new
vertices were added. Their initial positions are calculated based on the positions of their
nearest neighbors from the previous layer of the filtration V . The right column shows
how the positions of newly added vertices change after applying the force-directed local
refinement. Note that the vertices in the left column are originally placed “close” to
their eventual refined positions.
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V0 V2 V3 4VV1

Figure 3: An example of a MIS filtration. Here the underlying graph G = (V, E) is a
rectangular mesh of size 10× 10. The dark vertices are included in the filtration. Here
V = V0, V1 is a standard maximal independent set, V2 is a maximal subset of V1 so
that the distances between its elements are at least 22 = 4, and so on.

2-approximation algorithm for the k-centers problem to create a GC filtra-
tion. The algorithm begins by producing a graph centers (GC) filtration
V = V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅ of the set V of vertices of the graph G, with
|Vi| = c · xk−i, where x > 1 and c = |Vk| is a constant. A cluster of vertices
closest to each center is created for each center and on every level. A set of
weighted edges is computed between elements of Vi, so that the weights cor-
respond to the number of edges between the elements of the corresponding
clusters. Thus the GC filtration together with the edges forms a hierarchy
of graphs.

The creation of a GC filtration proceeds as follows. Pick a random
element v of V and add it to Vk. Find a vertex farthest away from all the
vertices in Vk and add it to Vk. Continue this process until Vk has c elements.
Suppose we have already found Vi, 1 ≤ i ≤ k. To find the next set Vi−1 let
Vi−1 = Vi and again continue adding to Vi−1 the elements that are farthest
away from Vi−1 until |Vi−1| = c · xk−i+1. When V1 is completed we have a
GC filtration of V .

While having proper graphs on each level is necessary in many appli-
cations utilizing graph hierarchies, in the context of graph drawing we can
save time and space by using just a filtration of the vertex set. Note that in
a filtration there are no edges but only vertices. As we already pointed out,
logarithmic depth and “uniform” filtrations are highly desirable for graph
drawing purposes. We have developed and tested one specific such filtration
that we call a maximal independent set (MIS) filtration and we use it in this
algorithm.

Recall that S ⊂ V is an independent set of a graph G = (V,E) if no
two elements of S are connected by an edge of G. Equivalently, S is an
independent set of G if the graph distance between any two elements of S is
at least two. Recall that the graph distance between two vertices is the length
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of the shortest path between them in the graph. A maximal independent
set filtration of G is a family of sets V = V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅, such that
each Vi is a maximal subset of Vi−1 for which the graph distance between
any pair of its elements is greater than or equal to 2i; see Fig. 3.

Since the maximum independent set problem is NP-hard [24], we use
maximal independent sets instead. Conceptually, MIS filtrations can be
constructed as follows. Let V ∗ = V , take a random vertex v ∈ V ∗ and add
it to V1. Remove v and all of its neighbors from V ∗ and repeat until no more
vertices can be chosen. Suppose we constructed an order i independent set
Vi of G. To construct Vi+1 let V ∗ = Vi and take a random vertex v ∈ V ∗ out
of V ∗, and place it in Vi+1. Next remove from V ∗ all vertices whose graph
distance to v is less than or equal to 2i. This distance factor is important in
ensuring that vertices are well distributed and in guaranteeing small depth
of the filtration. Choose another element w of V ∗, and remove from V ∗ the
chosen vertex and all vertices whose distance to w is less than or equal to
2i. Place w in Vi+1. Repeat this procedure until V ∗ is empty. An example
of a maximal independent set filtration is shown in Fig. 3.

The construction of a MIS filtration stops at level k so that 2k > δ(G),
where δ(G) is the diameter of G. Therefore, each MIS filtration has depth
O(log δ(G)). MIS filtrations provide excellent distribution of the vertices by
construction, a property needed for high quality filtrations.

The three different filtrations considered have their advantages and dis-
advantages. The number of vertices in the MIS filtration sets is controlled
by the topology of the graph, whereas in the graph centers filtration the sizes
are arbitrarily set by the user. While we cannot guarantee sub-quadratic
time and space, MIS filtrations are faster to create and use very little space
compared to GC filtrations.

3.3 Finding Vertex Neighborhoods Ni(v)

One of the key ideas of the hierarchical force-directed graph layout method
is that at each stage of the construction a force-directed position refinement
method is applied to a given layer Vi of a filtration only locally. More pre-
cisely, for a given energy function E and v ∈ Vi, the gradient of E at pos[v]
is computed not for E but for the restriction of E to some neighborhood
Ni(v) of v in Vi. A good filtration of V and an efficient local position refine-
ment strategy are the key means of achieving a sub-quadratic lower bound
for space and time complexity of our method.

This section describes a procedure of constructing the neighborhood sets,
Ni(v), and the definition of the function nbrs(i) which determines the size
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of Ni(v). Intuitively, each stage of the hierarchical graph drawing strategy
should result in a closer approximation of the final drawing of the graph.
Ideally, at the last stage, when we perform a force-directed local refinement
of the position of each vertex v of the graph, it should be enough to take
N0(v) to be the set of adjacent vertices of v. The time complexity of this
last stage calculation is

c ·
∑

v∈V

N0(v) = c · n · avgDeg(G),

where avgDeg(G) is the average degree of G and c is a constant. We would
like to make c · n · avgDeg(G) an upper bound for the complexity of calcu-
lations at each stage of graph drawing construction. Therefore, we set

nbrs(i) = Θ(
avgDeg(G) · n

|Vi|
).

Suppose V is a logarithmic depth filtration of the set V of vertices of
G. The calculation of the sets Nk(v), Nk−1(v), . . . , N0(v) is performed for
each element v ∈ V only once, when it is added to a set of already placed
vertices; see Fig. 1. We require that Ni(v) contains Θ(nbrs(i)) elements for
each i = k, k − 1, . . . , 0. Therefore, the space complexity of this strategy is
bounded above by

k
∑

i=0

|Vi − Vi+1| (nbrs(1) + nbrs(2) + · · ·+ nbrs(i)) . (1)

Since Vi+1 ⊂ Vi, we have |Vi−Vi+1| = |Vi|− |Vi+1|, and after simplifications,
(1) takes the form

k
∑

i=0

|Vi|nbrs(i) ≤ c0

k
∑

i=0

|Vi|
avgDeg(G) · n

|Vi|
=

= c0

k
∑

i=0

avgDeg(G) · n =

= c0avgDeg(G) · (k + 1)n. (2)

Similarly we can show that there exists a positive constant c1 so that equa-
tion (1) is greater than c1avgDeg(G) ·(k+1)n. Thus, the storage complexity
of the above strategy for finding Nk(v), Nk−1(v), . . . , N0(v) for all v ∈ V
is Θ(avgDeg(G)kn). If G is of bounded degree, then Θ(avgDeg(G)kn) =
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Θ(kn), where k = log n for a GC filtration, and k = log δ(G) for a MIS
filtration.

Let the depth of a vertex, depth(v), with respect to V be the largest
d, such that v ∈ Vd. The sets Nk(v), Nk−1(v), . . . , N0(v) are created by
repeated application of a breadth-first search algorithm. A new vertex with
depth d is placed in each of Nj(v), for j ≤ d, if Nj(v) is not already full.
The process stops when all Nj(v)s are full. Note that the running time of
this procedure is bounded above by

k
∑

i=1

|Vi|(1 · nbrs(1) + 2 · nbrs(2) + · · ·+ i · nbrs(i)). (3)

As in the case of the expression (1), (3) is equal to

k
∑

i=0

i|Vi|nbrs(i) ≤ c0

k
∑

i=0

i|Vi|
avgDeg(G) · n

|Vi|
=

= c0

k
∑

i=0

iavgDeg(G) · n =

= c0avgDeg(G) ·
(k + 1)k

2
n. (4)

Similarly we can show that there exists a positive constant c1 so that

equation (3) is greater than c1avgDeg(G) ·
(k + 1)k

2
n. The time complex-

ity of this strategy for finding Nk(v), Nk−1(v), . . . , N0(v) for all v ∈ V is
Θ(avgDeg(G)k2n). If G is of bounded degree, then Θ(avgDeg(G)k2n) =
Θ(k2n), where k = log n for a GC filtration, and k = log δ(G) for a MIS
filtration.

3.4 Initial Placement of Vertices

Most graph drawing algorithms begin by placing all the vertices of the graph
randomly in the plane or in 3D. In this algorithm we have adopted a different
approach in that we add vertices to the current drawing one at a time and
only after we have found a suitable place for them. Here we describe the
process in two dimensional space, but in practice it can be done in any
Euclidean space E. Recall that in the first step of the algorithm we compute
a filtration V = V0 ⊃ V1 ⊃ . . . ⊃ Vk ⊃ ∅. If necessary, we modify the last one
or two sets of the filtration so that the last one has exactly three elements,
Vk = {u, v,w}. We assume that G is connected (if not, each connected
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Figure 4: Initial placement for a new vertex t; darkly shaded vertices have already
been placed. (a) Given two vertices in R

2, there are up to two possible places for t,
based on its graph distance to u and v. (b) Using three vertices in R

2 in a similar
fashion results in a better placement for t.

component can be drawn independently). We start the process of drawing
G by placing u, v, and w as follows: we find a triangle with endpoints given
by pos[u], pos[v], pos[w], so that











dist�2(u, v) = distG(u, v)

dist�2(v,w) = distG(v,w)

dist�2(w, u) = distG(w, u),

where dist�2(u, v) is the Euclidean distance between pos[u] and pos[v], and
distG(u, v) is the graph distance between u and v.

In general, after refining the positions of the vertices in Vi, we need to
find initial positions for the vertices in Vi−1 − Vi. Once all vertices in Vi−1

are placed their positions are refined, and we proceed to the next level. This
two-stage process continues until all vertices have been drawn. A natural
way to place a new vertex given the placement of several others is to use the
graph distance from the new vertex to several of its closest neighbors that
have already been placed. We base our placement strategy on this simple
idea.

Suppose that we are looking for a place for a new vertex t ∈ Vi−1 − Vi.
Furthermore, suppose that we know two vertices u, v ∈ Vi which have already
been placed. Then using their position vectors, pos[u] and pos[v], and the
graph distances distG(u, t) and distG(v, t), it is straightforward to find a
position pos[t] of t in the plane so that

{

dist�2(u, t) = distG(u, t)

dist�2(v, t) = distG(v, t),

14



as shown in Fig. 4(a). This idea can be generalized so that three or more
already placed vertices are used to determine the location of new vertices.
For each vertex t ∈ Vi−1 − Vi we find its three closest neighbors u, v,w ∈ Vi

via a BFS; see Fig. 4. Since u, v and w have already been placed we can
obtain a suitable place for t by solving the following system of equations for
u, v,w, and t











(x− xu)2 + (y − yu)2 = distG(u, t)2

(x− xv)
2 + (y − yv)

2 = distG(v, t)2

(x− xw)2 + (y − yw)2 = distG(w, t)2,

where pos[u] = (xu, yu), pos[v] = (xv, yv), pos[w] = (xw, yw), pos[t] =
(x, y). Since this system of equations is over-determined and may not have
any solutions, we solve the following three pairs of equations instead











































dist�2(u, t) = distG(u, t)

dist�2(v, t) = distG(v, t)

dist�2(v, t) = distG(v, t)

dist�2(w, t) = distG(w, t)

dist�2(u, t) = distG(u, t)

dist�2(w, t) = distG(w, t).

Solving these three systems of quadratic equations we obtain up to six differ-
ent solutions. We choose the three closest to each other, call them t+

1
, t+

2
, t+

3
,

and place t at their barycenter: pos[t] = (t+
1

+ t+
2

+ t+
3
)/3; see Fig. 4(b).

3.5 Local Temperature Calculations

A common problem with most force-directed algorithms is determining the
scaling factor of the displacement vector at each phase. Clearly, in the early
iterations vertices should move farther than in the last iteration, but coming
up with a schedule for scaling the displacement vector that works well for
most graphs is generally difficult. One of the reasons for this difficulty is that
initially the vertices are placed at random and as a result can be arbitrarily
far from their final position. As a result of the intelligent placement of
vertices in our algorithms, this is much less of a problem. This approach is
similar to that used in the GEM system [5]. The local temperature heat[v]
of v is simply a scaling factor of the displacement vector disp[v] of v. One
particular implementation is considered in detail in [22] but regardless of
the specifics of the implementation, the time complexity for updating the
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local temperature for each v is constant and thus the total time complexity
for local temperature calculations is linear.

3.6 Multi-Dimensional Drawing

One of the major advantages of a simple local temperature calculation is that
unlike the Newton-Raphson and the majority of other classical optimization
methods, it works with minor changes in any dimension. In order to obtain
an embedding of a graph in R

n, we can simply make pos[v] an n dimensional
vector. A problem with drawings in dimensions higher than three is that
they cannot be trivially displayed. An obvious solution to this problem is
to find a projection from R

n into R
3 or R

2.
Consider the case in which a four dimensional drawing is projected down

to three dimensions. The projection method described below generalizes to
higher dimensions as well. We begin by taking a random vector e′0 in R

4

and normalizing it e0 =
e
′
0

‖e′
0
‖ . Next we find three vectors e′1, e

′
2, e

′
3 ∈ R

4 so

that e0, e
′
1, e

′
2, e

′
3 are linearly independent in R

4. We find these vectors by
repeatedly choosing a random vector and checking if it is independent from
the previous ones until we have four vectors. We then use the Gram-Schmidt
orthogonalization process to produce an orthonormal basis e0, e1, e2, e3 of
R

4 using e0, e
′
1, e

′
2, e

′
3. The three vectors e1, e2, e3 span a 3 dimensional

subspace S of R
4 which is perpendicular to the vector e0. The orthogonal

projection ρ : R
4 → S from R

4 onto S in the direction of the vector e0 is
given by the formula

ρ(v) = v − (e0, v) ∗ e0,

where (e0, v) is the scalar product between e0 and v. Yet to display v on the
screen using OpenGL, we need the coordinates (v1, v2, v3) of the projection
ρ(v) of v onto S with respect to the basis vectors e1, e2, e3. We get these by
a simple scalar product calculation v1 = (e1, v), v2 = (e2, v), v3 = (e3, v).

The above procedure easily generalizes to higher dimensions. For any
m > 3, we find a projection of R

m onto some three dimensional subspace S of
R

m by specifying m−3 linearly independent vectors e′0, e
′
1, . . . , e

′
m−4 (gener-

alized projection directions), and complete them to a basis e′0, e
′
1, . . . , e

′
m−1

of R
m. Next, using the Gram-Schmidt orthogonalization process we cre-

ate an orthonormal basis e0, e1, . . . , em−1 of R
m. The last three vectors

em−3, em−2, em−1 form a basis of a three dimensional subspace S of R
m, and

the coordinates (v1, v2, v3) of the orthogonal projection of any v ∈ R
m onto

S are given by the formula v1 = (em−3, v), v2 = (em−2, v), v3 = (em−3, v).
Our experiments with four dimensional drawings yield results that are
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Figure 5: Moebius strips on 150, 300, and 1500 vertices drawn in directly 3D. Note
the rough “twists.”

Figure 6: The same Moebius strips as in Fig. 5 but drawn in 4D and projected in 3D.
Note the smooth twists.

noticeably different from regular three dimensional drawings. In particular,
note the problems with the drawings of the Moebius strip directly in 3D in
Fig. 5 and the much better quality drawings of the same graphs drawn in
4D and projected to 3D in Fig. 6.

3.7 Space and Time Complexity

Main Theorem. If G is a graph of bounded degree and V is a GC filtration
or a MIS filtration of the set V of vertices of G, then the time complexity
of our algorithm, after constructing V, is Θ(n · k2) and the space required is
Θ(n · k), where k = log n if V is a GC filtration, and k = log δ(G) if V is a
MIS filtration.

Proof: The proof of the theorem follows from the fact that after building
a filtration V, all parts of the algorithm take linear time and space, except
the procedure for finding Nk(v), Nk−1(v), . . . , N0(v) for each element v of V .
Thus both time and space complexity of the algorithm is determined by the
time and space complexity of the procedure for finding the neighborhood
sets Ni(v). In Section 3.3, we showed that the time required for finding the
sets Ni(v) is Θ(n · k2) and the space required is Θ(n · k), which concludes
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Figure 7: This drawing of the Sierpinski pyramid was created with the GRIP system,
which is based on the algorithm described in this paper. The graph contains 8,194
vertices and the drawing took 22 seconds on a 550Mhz Pentium processor.

the proof.

4 Conclusion and Future Work

We have presented a novel algorithm for drawing large graphs. The al-
gorithm employs a vertex filtration together with intelligent placement of
vertices and fast energy minimization. The algorithm produces drawings in
two, three, and higher dimensions in sub-quadratic time and space. One of
the problems that remains to be addressed concerns the running time and
space complexity for the creation of the maximal independent set filtration.
While our tests indicate that the running time and space required are sub-
quadratic in the number of vertices in the graph, this remains to be proved.
While the algorithm works very well for sparse graphs and graphs of low
degree, it does not produce high quality drawings for all graphs. In particu-
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lar, well-connected graphs and graphs with small diameter pose significant
challenges as the vertex filtrations become very shallow. Also, our algorithm
works best on sparse graphs. While the majority of large graphs that need
to be visualized have low average degree, sometimes the maximum degree
can be as big as O(n). An algorithm for general graphs with sub-quadratic
time and space complexity would be highly desirable.

The algorithm described in this paper is used in the design of the GRIP

system (Graph dRawing with Intelligent Placement) [22] which produced
the drawings in Fig. 5 and Fig. 6. We include one more example of an inter-
esting class of graphs called Sierpinski graphs. The drawing of the Sierpinski
pyramid of the 6th order, which contains 8194 vertices, was produced using
GRIP in 22 seconds on a 550Mhz Pentium processor; see Fig. 7.
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