
XML Programming:
Web Applications
and Web Services
with JSP and ASP

ALEXANDER NAKHIMOVSKY
TOM MYERS

031fmat.qxp 5/10/02 2:24 PM Page i

XML Programming: Web Applications and Web Services with JSP and ASP
Copyright ©2002 by Alexander Nakhimovsky and Tom Myers

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-003-1

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Slava Paperno
Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore, Karen
Watterson, John Zukowski
Managing Editor: Grace Wong
Project Manager: Erin Mulligan
Copy Editor: Tom Gillen, Gillen Editorial, Inc.
Production Editor: Kari Brooks
Compositor: Impressions Book and Journal Services, Inc.
Artist: Kurt Krames
Indexer: Carol Burbo
Cover Designer: Kurt Krames
Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc.,175 Fifth
Avenue, New York, NY, 10010
and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112
Heidelberg, Germany.
In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress at 2560 9th Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the authors nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section. You will need to answer questions pertaining to this book in order to successfully down-
load the code.

031fmat.qxp 5/10/02 2:24 PM Page ii

To the memory of my parents. —ADN

To my great 8 grandfather, Daniel Shipp (1634–1711). —TJM

031fmat.qxp 5/10/02 2:24 PM Page iii

031fmat.qxp 5/10/02 2:24 PM Page iv

Contents

About the Authors .ix
About the Technical Reviewer .x
Acknowledgments .xi
Introduction .xiii

Chapter 1 Welcome to XML .1

What Is XML? .2
XML Examples .15
XSLT Programs and XPath Expressions .20
Stylesheet Languages and Browsers .30
Conclusion .39

Chapter 2 Well-Formed Documents and Namespaces . .41

HTML, XML, and XHTML .41
XML Documents Without a DTD .48
Names and Namespaces .52
XLink Attributes and XLink Graphs .60
An XLink Example .65
Namespace Controversies and RDDL .74
Conclusion .79

Chapter 3 DTDs and Validation .81

DTDs and Validation .81
DTD Syntax and Examples .88
General and Parameter Entities .93
DTD Modification and Reuse .102
XHTML Modularization and XHTML Basic .107
What’s Wrong with the DTD? .120
The DTD, the XML Document, and the Infoset .120
Conclusion .123

v

031fmat.qxp 5/10/02 2:24 PM Page v

Chapter 4 XML Parsing .125

Basic SAX Programming .126
SAX Filters .143
SAX Parsing for Non-XML Data .157
DOM Programming .169
Traversal Interfaces .182
Book Picker as DOM Builder .186
Conclusion .193

Chapter 5 XPath, XSLT, and XLink Processing 195

An XLink Application: Creating and Using a Linkbase 196
The XPath Language and Data Model .198
XPath Data Model and the Node-Set Data Type 208
Path Expressions .214
XSLT Processing Model .223
Parameters, Variables, and Result Tree Fragments 234
Named Templates and Recursion .236
The Code of the XLink Application .242
Conclusion .253

Chapter 6 More XSLT: Algorithms and Efficiency . . .255

Specific Patterns and Timing .256
Distinct Nodes and Keys .259
Grouping and Tables .263
Converting Flat to Hierarchical Structure .273
List Processing and Recursion Depth .280
Generating Large Data Sets .284
Extension Functions .293
The Longest Verse, Revisited .297
Conclusion .307

vi

Contents

031fmat.qxp 5/10/02 2:24 PM Page vi

Chapter 7 XML Repository .309

The Structure of XML Data .310
The Structure of the Database .319
The Structure of the Application .320
Driver, Database, Connection, and Statement 331
Query Implementations 1: UPDATE Queries .339
Query Implementations 2: Refset Actions .353
Conclusion .358

Chapter 8 RELAX NG and XML Schema .361

RELAX NG History and Current Condition .362
RELAX NG Overview .369
Modularity and Reuse .383
The datatypeLibrary and XML Schema Data Types 392
XML Schema Part 1: Structures .401
Conclusion .424

Chapter 9 Web Services .425

What’s a Web Service? .425
An Example .431
Client Variations .448
Overview of SOAP 1.2 .456
XML Encoding and RPC Conventions .462
The Office Equipment Web Service .467
Publish-Find-Bind with UDDI .479
Conclusion .489

Appendix A Installation Guide .491

Version Updates .492
The Java Framework .492
The Windows Framework .495
If Space Is at a Premium .498
Database Connectivity .498
Large Data Files .499
Web Services Examples (Chapter 9) .499
Additional Platforms .500

vii

Contents

031fmat.qxp 5/10/02 2:24 PM Page vii

Appendix B Web Applications .501

General Framework .501
CGI .502
Improvements to Backend Processing .503
ASPs .503
Java Servlets and JSPs .505

Appendix C HTTP Protocol .509

URIs, URLs, and URNs .509
Overall Operation .510
Request Commands (Methods) .513
Server Response Codes .514

Appendix D Online Resources .517

Standards .517
Sources of Information .519
Sources of Software .522
Keep Looking .523

Appendix E Troubleshooting in JSP .525

Looking at Servlet Code for JSP .525
Error Pages .527
Writing Modular JSPs .529
Classpath Problems in Java/JSP .530

Index .531

viii

Contents

031fmat.qxp 5/10/02 2:24 PM Page viii

About the Authors

Alexander Nakhimovsky

Alexander Nakhimovsky received an M.A. in mathematics from Leningrad
University in 1972 and a Ph.D. in linguistics from Cornell in 1979, with a graduate
minor in computer science. He has been teaching computer science at Colgate
University since 1985. He is the author (jointly with Tom Myers) of several books
and book chapters, including JavaScript Objects (1999), Professional Java
XML Programming (1999), and three chapters in Professional JavaServer
Programming, J2EE edition (2000) (all three from WROX), as well as books and
articles on linguistics and AI.

Tom Myers

Tom Myers studied physics in Bogota and Buenos Aires before receiving his B.A.
from St. John’s College, Santa Fe (1975) and a Ph.D. in computer science from the
University of Pennsylvania (1980). A software developer and consultant, he has
been working mostly on Java/XML projects for the past few years; some earlier
research in parallelism and in functional programming languages seems to be
coming back to life, within XSLT. In addition to joint publications with Alexander
Nakhimovsky, he is the author of a book and several articles on theoretical com-
puter science.

ix

031fmat.qxp 5/10/02 2:24 PM Page ix

About the Technical
Reviewer

Slava Paperno

Slava Paperno has a degree in English from a major university in Russia, and
a degree in Russian from an ivy league school in the United States. He has pub-
lished translations, textbooks, and dictionaries, and has produced television
documentaries. He teaches IT seminars for librarians and is the principal author
and programmer at his multimedia company, http://www.lexiconbridge.com.

x

031fmat.qxp 5/10/02 2:24 PM Page x

Acknowledgments

WE WOULD LIKE TO THANK the team of Apress professionals who guided this book
from conception to completion: Gary Cornell, Jason Gilmore, Erin Mulligan,
Grace Wong, and Tom Gillen—the meticulous stylist. Special thanks go to our
technical reviewer, Slava Paperno, who was relentless in his determination to
make us do our best. Emory Creel helped with testing the code on the Linux plat-
form. We are solely responsible for the remaining errors in judgment and
execution.

xi

031fmat.qxp 5/10/02 2:24 PM Page xi

031fmat.qxp 5/10/02 2:24 PM Page xii

Introduction

What Is This Book About?

THIS IS A BOOK about XML technologies. It does not assume any previous knowl-
edge of XML, and it does not spend much time on how XML can be displayed in
the browser or in other media. Our interests are in how XML is used within dis-
tributed applications. The big themes of the book are as follows:

• data representation with XML and XLink

• programming in XSLT

• using DOM and SAX APIs

• using XML data with relational databases

• building distributed applications with SOAP, WSDL, and UDDI

One thing to notice is that none of these depend on any specific program-
ming language as substructure: DOM and SAX are available in many languages,
XSLT processors are written in (at least) Java and C++, and SOAP is for sending
XML messages between endpoints that can be programmed in anything
whatsoever.

Who Is This Book For?

This book is for programmers—people who are used to reading, writing, and
debugging code. We assume that you have programmed in Java, Visual Basic, C,
or C++. We assume some familiarity with HTML/CSS; if you don’t have experi-
ence in any of these areas, look over a quick tutorial. We assume that you have
seen, if not written, JavaScript (ECMAScript, JScript) code. Finally, we assume
that you are used to dealing with more than one language: if you mostly write in
VB, you can read a commented piece of Java or C++ code and understand what is
going on. Reading is easier than writing: even if you have not done much of it,
reading code in a less-familiar language is a learnable skill, and it’s a skill worth
developing because techniques and algorithms are frequently transferable from
one language to another. We have written Java code based on VB examples as well

xiii

031fmat.qxp 5/10/02 2:24 PM Page xiii

as the reverse, and we spend a lot of time reading through open-source XML sys-
tems. You’ll be downloading quite a few of these to work with our examples, and
you can simply take the binaries but the source is right there for you to study. (It
helps in debugging, too.)

To avoid dependence on any one programming language, we have provided
several possible frameworks for working with XML. The same XML-processing
task can frequently be performed using any of the following:

• JavaScript code within an HTML page.

• a command-line program.

• a Web application using Apache Tomcat and JavaServer Pages (JSPs).

• a Web application using IIS/PWS and Active Server Pages (ASPs), written
either in VBScript or JScript. (In one case, we use VB compiled into an
ActiveX object invoked from the browser.)

Most of our code consists of Web applications. It is distributed as two zip
archives that unzip into the wwwroot directory of the IIS web server and the
webapps directory of the Tomcat Web server. (Appendix A contains detailed
installation instructions.) Once you have set up the Web servers, you can click
your way through the book’s examples, seeing code listings, XML data, and active
examples; you can then see how ideas work in different contexts. You don’t have
to understand all the details of the programs that run the examples, but we are
confident that you will understand the essentials of all of those programs, and at
least several will be completely understandable so you will be able to experiment
with them.

What Do You Need to Use This Book?

In quick summary, here is what you need:

• The Java platform, that is, Java Development Kit (JDK) version 1.3 or later.
(The book’s code was developed with 1.3.1; the current version as we write
this introduction is 1.4.)

• The Tomcat Web server that runs servlets and JSPs.

• On Windows, an IIS Web server that comes with ASP support.

xiv

Introduction

031fmat.qxp 5/10/02 2:24 PM Page xiv

• An XML parser and an XSLT processor.

• For SOAP, a SOAP framework; for UDDI, a Web services development
toolkit.

Appendix A provides complete and detailed installation instructions for all
the programs used in the book. We suggest that you do at least the basic instal-
lation (for the first six chapters) before you start reading.

The Book’s Contents in Brief

The book consists of nine chapters. The first three chapters introduce the basic
notions and main XML technologies: XML as a framework for defining markup
languages, well-formed documents, DTDs and validation, and the infoset as the
XML data model. The first chapter includes a small sample of XPath and XSLT,
the second chapter introduces namespaces and develops examples with XLink
and XPointer, and the third chapter goes into more-advanced uses of DTDs and
the XHTML modularization framework.

Chapters 4 and 5 go into programming with XML data. Chapter 4 shows
DOM and SAX, the two APIs for working with XML in general-purpose program-
ming languages. Within the SAX section, we show how to build pipelines of SAX
filters and how to use SAX for converting non-XML data to XML. Within the DOM
section, we show both the basic DOM interfaces and the more recent Traversal
interfaces. Finally, we show DOM and SAX working together, with SAX pruning
the data before a DOM tree can be built in memory.

Chapter 5 gives an in-depth introduction to XPath and XSLT, including the
XPath data model, the XSLT processing model, push-and-pull programming pat-
terns, and the use of recursion. In the end, it builds a substantial XSLT
application that processes XLink graph structures in a general way.

Chapter 1 through 5 should probably be read in order. The rest of the book
goes into three different directions that can be pursued independently. They
are more-advanced uses of XSLT (Chapter 6), XML and relational databases
(Chapter 7), and Web Services (Chapter 9). Chapter 8 introduces two grammar
formalisms to replace DTDs: RELAX NG and XML Schema. The XML Schema
material is needed for the Web services material of Chapter 9; otherwise,
Chapters 6 through 9 can be read in any order.

Chapter 6 shows more-advanced uses of XSLT (use of keys, grouping and
forming tables, and generating large data sets). Throughout the chapter, we show
techniques for writing efficient XSLT code, and provide tools for measuring code
efficiency.

Chapter 7 shows how XML data can be stored in a relational database and
retrieved using a combination of SQL and XPath queries. It develops a substantial

xv

Introduction

031fmat.qxp 5/10/02 2:24 PM Page xv

application, the largest in the book, whose XML data consists of base-level
records and annotations on those records and other annotations. The base-
level records are descriptions of resources in RDF and Dublin Core; annotations
are constructed with XLink.

Chapter 8 presents two recent formalisms for specifying XML languages:
RELAX NG and XML Schema. We contrast the layered approach of RELAX NG,
which cleanly separates validation from augmenting the infoset of a document
with additional information from the grammar, with the more monolithic
approach of XML Schema. An important part of the chapter is a section on XML
Schema Part 2 that defines a system of simple (without internal parts) data
types. That system of data types is completely separable from XML Schema
Part 1 (structured types) and used in other contexts. For instance, it is used in
Web services, and specifically SOAP, for defining the data types of arguments
and returned values in a remote procedure call (RPC).

Finally, Chapter 9 introduces and builds examples of Web Services. We
explain what they are and what they are not, and we present SOAP in consider-
able detail. We walk through the steps of converting a Java class into a SOAP
server, and we show how SOAP clients for that server can be generated from
a WSDL description of the service. We show three different clients for the same
server: a Java client, a Microsoft-specific JScript client, and a standard
ECMAScript client that invokes the service via a JSP. A more complex service
shows the SOAP XML encoding of structured data (using SOAP-specific struct
and array constructs). In conclusion, we introduce UDDI and show how to regis-
ter a service with the local UDDI registry, and retrieve and modify its properties.

On the Horizon

If we were to write this book again a year from now, we would make the following
changes:

• We would shorten the first three chapters, because the knowledge of basic
XML will be more widespread.

• We would keep the XSLT material pretty much as is, except updating for
later versions of the specifications. (XPath 2 and XSLT 2 are in the works.)

• We would keep the SAX and DOM material pretty much as is, except
updating for later versions of the specifications. We would also add mate-
rial on “pull” processing in .NET and in Java, and more generally on .NET
XML processing.

xvi

Introduction

031fmat.qxp 5/10/02 2:24 PM Page xvi

• We would significantly expand database material, adding native XML data-
bases and, possibly, XQuery (the XML Query Language) currently under
development at W3C.

• We would also significantly expand Web services material, reflecting all the
changes between now and then. As we explain in Chapter 9, this area is
likely to undergo big changes before it settles into a stable set of standards.

• We would add material on the Semantic Web and uses of AI (artificial intel-
ligence) in organizing the Web. In particular, we would spend more time on
RDF (currently undergoing significant revisions), and add material on
ontologies and Topic Maps.

In terms of software frameworks, this book has much more Java/JSP code
than it does VB, VBScript, and ASP code, reflecting two factors: Java dominance in
XML processing and the added value of the open-source frameworks, where we
find our own productivity often improved by access to the system’s inner work-
ings. The added value of open source will remain a factor, but, otherwise, a year
from now Java and .NET would receive more equal time and space.

About Java Code in the Book

Java code of the book mostly consists of JSPs. Purists may criticize us for putting
too much code into JSPs instead of Java classes that much shorter JSPs instanti-
ate. Our response is three-fold. First, none of our JSPs is longer than 200 lines of
code. Second, all the longer ones are found in a prototype system (the rdb exam-
ple of Chapter 7) that uses an RDBMS to store XML data. Although we agree with
the principle of information hiding in a mature system, a prototype system such
as rdb may actually benefit from a more open framework in which all decisions
for future modification can be made in one place. Third, we do divide up the
code into classes and methods, using method and class definitions within JSPs
extensively. (Note for the Java programmer: classes defined in a JSP end up as
local classes of the resulting servlet, but this is immaterial to how the class is writ-
ten or used within the JSP.)

In addition to easy visibility, the advantage of using JSPs is that they serve as
a rapid application development framework: no manual recompilation by the
programmer is needed. The development cycle is (1) change code, (2) save, and
(3) reload the page in the browser. We have found this to be an excellent environ-
ment for developing and experimenting with the book examples.

Using JSPs as a development environment does present specific issues in
debugging. We discuss them in Appendix E, “Java/JSP Troubleshooting.”

xvii

Introduction

031fmat.qxp 5/10/02 2:24 PM Page xvii

The Book’s Code and Customer Support

The book’s code is downloadable from http://www.apress.com. As we said, it con-
sists of two zip archives that unzip into the wwwroot directory of the IIS Web
server and the webapps directory of the Tomcat Web server. Appendix A has
detailed installation instructions.

Most of our code consists of Web applications, all of them reachable from
index.html. Some of the links show code listings, and others actually run the
examples. If you encounter any problems either installing or running the exam-
ples of the book, you can send email to the mail list for the readers of this book.
Instructions on joining that list will be included in the readme.htm file that’s dis-
tributed with the book’s code.

Formatting Conventions Used in the Book

To ease the reader’s burden, this book employs several typographical con-
ventions:

• Filenames and directory paths appear in the regular chapter font.

• All items of code appear in a monospaced font, as do all other code-related
items, such as attributes, key combinations, elements, functions, parame-
ters, tag names, and the like.

• URIs, URLs, and other Internet addresses appear in this same code font.

• Keywords, queries, and the names of content models appear in all
uppercase.

xviii

Introduction

031fmat.qxp 5/10/02 2:24 PM Page xviii

CHAPTER 1

Welcome to XML

XML IS THE CENTRAL TECHNOLOGY of the Internet. When it first emerged in 1997 to
immediate and massive media attention, reasonable people could disagree as to
whether it was for real or just another overhyped acronym. Those disagreements
are over: XML is for real. Initially intended as a technology for structured and
linked documents, it has embedded itself deeply into the fabric of distributed
Internet applications: XML is used to describe data formats, data types, data
transformations, data linking, data transfer, and data processing.

Although the world of XML is large and growing, its foundations remain
unchanged. These foundations are set down in two documents—XML 1.0 and
XML Namespaces—both of which are recommendations issued by W3C, the
World Wide Web Consortium. W3C, in case you have not visited their Web site yet,
is the organization that is primarily responsible for the infrastructure of the Web,
including XML. Its recommendations are de facto standards. All of the W3C rec-
ommendations, together with working drafts and other kinds of technical
reports, can be found at www.w3c.org/TR.

In the first three chapters of this book, we’ll cover the foundations of XML
and much more. Although introductory, they will feature examples that you can
test and experiment with. These examples will go beyond the foundations, but
we’ll try to make them readable and self-explanatory. All examples are presented
within a framework that makes it possible to experiment with them even before
the framework is completely explained.

In outline, this chapter proceeds as follows:

• XML and W3C

• XML document as linear text and tree-structured data

• navigating XML trees with XPath and transforming them with XSLT

• displaying XML in the browser

1

031ch01.qxp 5/10/02 2:40 PM Page 1

What Is XML?

It is customary to start a book on XML with a brief definition that packs a lot of
wisdom into a few well-chosen words. Here is our version. We will spend the rest
of this section explaining what it means.

XML (which stands for eXtensible Markup Language) is not really a language
but a framework for defining and using markup languages. Markup languages are
used for creating units of information called XML documents, which have two
standard representations: as a linear text with markup and as a tree data
structure.

The interpretation of XML languages is unconstrained by XML itself: they
can be used for describing data, programs that process data, communication
protocols for transmitting data, or anything else under the sun. The interpre-
tation of an XML language is entirely up to the application that uses it.

Now we have to explain why XML is not a language and what a tree looks like.

XML Languages and Documents

Any language has two components:

• vocabulary: What are the words of the language?

• syntax: How do those words hang together?

If the definition of the language does not say anything about interpretation
(“What does it mean?”), then we have a formal or uninterpreted language.
Human languages and programming languages are interpreted, whereas XML
languages are formal languages.

Different XML languages have different vocabularies and different syntax,
but they all share some general constraints. These constraints mostly serve to
ensure that an XML document, in any XML language, describes a piece of tree-
structured data. They also ensure that it is easy for an XML processor (also known
as an XML parser) to check the document for correctness and construct the cor-
responding tree structure in a standard form.

What’s a Tree?

A tree is a connected set of nodes and a parent-child relationship defined on
them. One special node is called the root. Every node except the root has exactly
one parent node, and the root is the only node that doesn’t have a parent. In
computer science (as in genealogy), trees are always drawn upside down, with

2

Chapter 1

031ch01.qxp 5/10/02 2:40 PM Page 2

the root on top and leaves at the bottom. If you start from any node that is not
a root, go up to its parent, and continue up the tree, sooner or later you get to the
root. The nodes you encounter along the way are called the ancestors of the node
you started from. The root is an ancestor of all nodes in the tree, and all nodes in
the tree are its descendants. If node P is the parent of node C, then C is usually
called a child of P. Children of the same node are called siblings. Nodes that have
no children are called leaves.

Grammars, Parsers, and Syntax Diagrams

To define a language is to define its vocabulary and syntax. Defining a vocabulary
is easy: just list all the words. Syntax is defined by writing down rules, and a col-
lection of syntactical rules is called a grammar. Several standard notations are
commonly used for writing grammar rules, and XML uses a notation called DTD
(Document Type Definition). We will see examples shortly.

A program that takes a text and checks the correctness of its syntax is called
a parser. A parser does not simply return a Boolean answer (“correct” or “not cor-
rect”): if the text is grammatically correct, it builds an internal representation of
its syntactical structure. Such internal representations are called syntax
diagrams. For XML documents (as well as computer programs), syntax diagrams
form a tree structure.

An English-Language Example

Here is a simple example from English, to illustrate some of these concepts. The
first sentence below is grammatically correct and easy to interpret; the second
uses English syntax but is nonsensical; the third has its syntax scrambled; and the
fourth uses nonexistent words but is still recognizably a sentence because it
begins with a capital letter and ends with a period.

• Healthy well-fed children sleep peacefully.

• Colorless green ideas sleep furiously.

• Well-fed sleep children peacefully healthy.

• Kannerva poniiatikka oferaduli sarenaa.

The last item on this list points to a feature of (written) languages that is easy
to miss: they have delimiters (punctuation marks and spaces) that separate
words, sentences, and paragraphs. Given a text in any European language, you

3

Welcome to XML

031ch01.qxp 5/10/02 2:40 PM Page 3

can easily identify the beginning and end of every sentence and paragraph,
because the delimiters are the same. If somebody asked you to “parse” such a text
and build a tree structure of paragraphs and sentences (paragraphs are children
of the root, and sentences are children of paragraphs), you could do it without
ever consulting the grammar or the dictionary. This assumes certain rules: para-
graphs don’t overlap, and no sentence starts in one paragraph and ends in
another.

The XML 1.0 document is very much about delimiters, defined so that you
can parse an XML document into a tree structure even if you don’t know the
vocabulary and the concrete grammar of that particular XML language. However,
unlike the punctuation conventions of western languages, XML gives you unlim-
ited flexibility in defining the shape and depth of your tree, and the labels you
can put on its nodes.

XML Documents and Markup Languages

An XML document consists of text data and markup. The markup indicates the
syntactical structure of the document. Listing 1-1 shows a simple example.

Listing 1-1. Hello, XML
<!-- Our first example (and this is a comment) -->

<encounter>

<greeting>Hello, XML!</greeting>

<response>Hello, what can I do for you?</response>

</encounter>

This XML document contains three elements: encounter, greeting, and
response. Here is the greeting element:

<greeting>Hello, XML!</greeting>

An element consists of a start tag, the element’s content (which can be
empty), and an end tag. A start tag minimally consists of the “<” character, a tag
name, and the “>” character. The tag name can be followed by attribute decla-
rations. An end tag consists of the character sequence “</”, followed immediately
by the tag name and the closing bracket. (See Figure 1-1.)

4

Chapter 1

031ch01.qxp 5/10/02 2:40 PM Page 4

What is the tree structure of the document shown in Figure 1-1? In XML, the
parent-child tree relationship corresponds to how elements are nested within
each other in the linear text. In our example, encounter properly contains
greeting and response; therefore, in the tree, encounter is the parent of greeting
and response, whereas greeting and response are children of encounter and sib-
lings to each other. Leaf elements are either empty or contain only text.

Figure 1-2 is a syntactical diagram for Listing 1-1. It follows two conventions:

• There is a root node that is parent to the root of the element tree and to
top-level comments, if there are any.

• The text content of an element is wrapped in a text node.

The conventions of these diagrams come from the XPath specification,
which is one of several standards that specify how XML trees are represented and
used in computer programs.

5

Welcome to XML

Figure 1-1. An element and its tags

Figure 1-2. Tree diagram for Listing 1-1

031ch01.qxp 5/10/02 2:40 PM Page 5

Tree Representations of XML

XPath is a language for navigating a tree and selecting a set of nodes for pro-
cessing. Using XPath, it is easy to say such things as “Give me the text content of
the second child of my next sibling in the tree” or “Give me all the element nodes
in the tree whose tag name is section and whose parent’s tag name is chapter.”
XSLT (eXtensible Stylesheet Language for Transformations) uses XPath expressions
to access sets of nodes in an XML tree and use them for building an output struc-
ture. Neither XPath nor XSLT modify their XML data source in any way.

DOM (Document Object Model) is a set of APIs that provide both for access
and modification of the input tree from a programming language. DOM has been
implemented in many programming languages including Java, ECMAScript, C,
C++, Python, and Visual Basic. DOM APIs include such functions as getParent()
or getChildren(). There is considerable overlap between what you can do in
DOM and in XPath+XSLT, but XPath is a higher-level language: it is easier to
select a set of nodes in XPath than in DOM.

Both XPath and DOM represent tree structures. Because they were developed
independently and in parallel, their current versions (XPath 1.0 and DOM 2.0)
disagree in minor ways in their tree models of XML data. To eliminate such dis-
crepancies in the future, a new standard called infoset specifies what information
items from XML text must be preserved in parsing and how they relate to each
other. In other words, the DOM tree, the XPath tree, and the text+markup docu-
ment will represent the same infoset. All future XML standards will conform to
the infoset specification, including DOM 3 and XPath 2.0. We will explain shortly
how and by whom these standards are developed.

6

Chapter 1

NOTE When DOM and XPath are synchronized, a standard will be devel-
oped for using XPath expressions within DOM so that DOM functions can
operate on sets of nodes selected by XPath expressions. Some DOM imple-
mentations currently provide this functionality in vendor-specific ways.

Grammar Rules of XML Languages

Grammar rules of XML languages specify for each element whether it contains
text or children elements, or both, and what attributes, if any, it may or must
have. For instance, to specify that encounter must have two children, greeting
and response, in that order, we would say:

<!ELEMENT encounter (greeting, response)>

031ch01.qxp 5/10/02 2:40 PM Page 6

To specify that the greeting element contains only text, we would use the
keyword PCDATA (Parsed Character DATA):

<!ELEMENT greeting (#PCDATA)>

A complete set of such rules forms a grammar (a DTD) for an XML language.

Types of Element Content (Content Models)

The element content can be of four kinds called content models: text-only,
elements-only, a mix of text and elements, and empty. The greeting and response
elements have text-only content, and the encounter element has element-only
content.

Text and elements can be mixed together as in

<p>This is an example of text broken into long <keyword> paragraphs</keyword>,

with some <keyword>words</keyword> and <keyword>phrases</keyword>

marked up for special treatment (perhaps displayed in bold face,

like this), and some

<keyword>items</keyword> provided with comments.</p>

An element’s content can be empty as in

</br>

Even empty XML elements must have an end tag or else be written in a spe-
cial form that clearly indicates the beginning and end of the element:
. This
may seem like a trivial detail, but in fact it has very important consequences: it
makes the parser’s task much easier.

Parsing XML

A parser for a programming language knows only that one programming lan-
guage: a Java parser cannot do C++. Moreover, to parse a program, the parser has
to consult the grammar of the language. But XML parsers are different on both
counts: the same parser can do all XML languages, and, to parse a document, the
parser does not need to know the grammar of its markup language. A general
XML requirement is that the elements of an XML document must form a tree and
that the tree structure of elements must be clearly shown in markup.

7

Welcome to XML

031ch01.qxp 5/10/02 2:40 PM Page 7

In practice, it means that tree conditions must be met:

• There must be an element that contains all other elements. This is the root
of the element tree (encounter in our example).

• Start and end tags must be properly nested; overlapping elements are not
allowed.

• All elements, including empty elements, must have both the start tag and
the end tag.

Thanks to these requirements, all the parser needs to construct the syntacti-
cal tree is a stack to push a start tag on and pop it off when the matching end tag
is found. If in the end the stack is empty, the document is well formed. More pre-
cisely, the procedure would be as follows:

1. Start by creating the root node and make it the current node.

2. When a start tag is encountered, create a child of the current node and
make it the current node. Put the start tag name on stack.

3. When an end tag is encountered, check to see that its tag name is the
same as the name on top of the stack. If it is not the same, declare failure
and exit. If it is the same, close the current node (that is, pop the tag
name off the stack) and make its parent the current node.

4. If in the end the stack is empty, declare success, and return the tree. If it
is not empty, declare failure and exit.

XML parsers within XML-aware browsers follow this procedure. A useful
exercise is to create a document with a missing end tag and open it in such
a browser. Try to predict, using the procedure, what error it will report.

Well-Formed Documents and Parser Attitudes

The three requirements of the preceding section are some of the “well-
formedness” conditions that are listed in XML 1.0 and XML Namespaces. An
XML document must satisfy all of these conditions. Documents that satisfy all
well-formedness conditions are said to be well formed. Documents that are
not well formed must be flatly rejected by the parser. A standard battery of tests
has been designed to make sure that parsers catch all well-formedness errors;
a parser that does poorly on the tests receives a bad grade and bad press.

8

Chapter 1

031ch01.qxp 5/10/02 2:40 PM Page 8

Why Is XML Great?

At this point, we are in a position to offer a couple of reasons why XML is great.
One reason is that XML makes it easy to agree on a common language or data
format. A common language is the main prerequisite for cooperation.

Another reason why XML is great is because it is very easy to switch between
the linear text and the syntax tree view of an XML document. XML parsers are
standard, high quality, ubiquitous, and free, and they can perform the switch
both ways without any loss of significant information. (What’s significant? We will
explain in Chapter 2.)

The reason we may want to switch from text to tree and back is because
a tree data structure is easy to work with but linear text is easy to send over the
network. With XML, it is easy to construct networks of cooperating computer
programs that receive XML text over the network, parse it into its internal repre-
sentation, perform some computations on it, convert it back into linear text and
send it over the network to another program for further processing.

Adding the two together, we can say that XML is a major enabling technology
for cooperation, both between human agents and between computer programs
(interoperability).

More on Parsing: XML vs. Programming Languages

Converting linear text to a binary is, of course, nothing new: this is what happens
every time we parse a program. It is useful to compare and contrast parsing
a program and parsing XML.

• Parsers for programming languages are difficult to write.

• The resulting binary objects are parser and platform specific.

• Transition from binary to textual form (disassembly) is hard and frequently
illegal; certainly, no standard APIs are available for doing that.

By contrast, simple XML parsers that only check for well-formedness and
construct a syntax tree are easy to write, and their output is standard, platform
independent, and easy to convert back to linear text form.

9

Welcome to XML

NOTE The test suite is developed and maintained by OASIS (Organization
for the Advancement of Structured Information Standards,
www.oasis-open.org). Other valuable resources are available at that site.

031ch01.qxp 5/10/02 2:40 PM Page 9

XML Is Just Syntax, No Interpretation

We have already mentioned another important point of contrast between a pro-
gramming language and an XML language. Expressions in a programming
language have predefined meaning (interpretation). A programming language
parser is usually part of a larger program (compiler) that applies rules of interpre-
tation to the syntactical tree produced by the parser. On the other hand, the role
of an XML parser is more modest: it produces a tree and submits it to an appli-
cation. In other words, XML itself doesn’t mean anything until it is processed by
some application that “interprets” XML data. This is XML’s great strength: differ-
ent applications can assign different meanings to the same XML data. (As one
example of this general principle, different rendering engines can render the
same XML data in completely different ways.)

To illustrate this point, compare the following two expressions. The first is
a LISP expression, which the language processor parses to build a syntax tree. But
it doesn’t stop there: it proceeds to evaluate the expression according to the pre-
defined semantics of operators and arguments. The meaning of this LISP
expression is 12.

(times

(+ 3 1) ; evaluates to 4

(- 5 2) ; evaluates to 3

) ; evaluates to 12

Now consider an XML document of a very similar structure:

<times>

<plus><num>3</num> <num>1</num> </plus>

<minus><num>5</num> <num>2</num> </minus>

</times>

Any XML parser will parse it, build its syntax tree, and pass it on to whatever
application invoked the parser. This document has no predefined meaning out-
side the application. XML is just syntax.

XML Data, the Parser, and the Application

The XML parser mediates between XML data and the application that interprets
and uses the data. Their mutual relationship can be described in a diagram, as
shown in Figure 1-3.

10

Chapter 1

031ch01.qxp 5/10/02 2:40 PM Page 10

The behavior of an XML parser is heavily regulated on both sides of Figure 1-3.
Its treatment of the XML document is precisely specified in XML 1.0, in the
section on Conformant Processors (enforced by OASIS conformance tests). Its
obligations towards the application are precisely specified in two standard APIs:
DOM and SAX (Simple API for XML). SAX is yet another way to represent an XML
tree—as a sequence of events and callbacks. We will expand on this in great detail
in Chapter 4.

XML As a Serialization Format

Because it is easy to go back and forth between the linear text and the tree-
structured view of XML, it is difficult to say which one is more important or pri-
mary. Some people think of XML documents as marked-up texts and syntactical
trees as supporting machinery for working with texts; others think of XML docu-
ments as tree structures of a special kind and linear text as a serialization format
for XML data. The first view is more common among those who work with XML
documents created by humans for humans, and use markup for publishing or
display. The second view is more common among those who work with XML gen-
erated by programs for programs; such XML can go through a long and
productive life cycle never encountering an angle bracket. A true XML profes-
sional can switch between those two views with the same ease as an XML parser
switching from text to tree and back.

To make such distributed processing possible, we need standards, both for
text representation and for (working with) tree structure. The next section pre-
sents some of those standards and explains who writes them.

XML Standards and W3C

XML as text is defined in XML 1.0 and XML Namespaces, the two standards that
are the untouchable foundation of XML. Each remains in its initial release
version (XML 1.01 is a minor edit), and no new versions are in the works. By
contrast, XML as tree has been defined several times in different standards (we

11

Welcome to XML

Figure 1-3. XML data, the parser, and the application

031ch01.qxp 5/10/02 2:40 PM Page 11

have already mentioned XPath, DOM, and infoset), each of which is undergoing
further development. This is not surprising: XML tree representations are used in
programming and evolve in response to programming needs. (See Figure 1-4.)

XSLT uses XPath expressions to access sets of nodes in an XML tree and uses
them for building an output structure. XPath is also used within the XML Pointer
specification (XPointer) to specify the source and target of an XML Link (XLink).

If XML data is used by an application written in a general-purpose program-
ming language (rather than XSLT), the application uses either DOM or SAX
standard interfaces. Of all specifications we have mentioned, SAX is the only one
that has not been developed by W3C.

The Essence and Alternative Views of XML

This may be a good point to repeat yet again an important idea that we have
already introduced and to which we will return many times throughout the book:
The essence of XML is that it is hierarchical (tree-structured) data. Its structure
can be represented textually as markup, by tree structures in computer memory,
or in some other way. As we proceed, we will learn several ways to represent XML
data: XPath, DOM, infoset, and SAX. The main point is that they are all alternative
views of the same hierarchical data, and they are all regulated by open standards.
As a result, computer programs that work with XML data can use any of these
alternative representations as input and output, even if the data comes from or
goes to a completely unknown agent on the Internet. This creates rich possibili-
ties for constructing distributed Web applications—provided the standards are
indeed developed and enforced.

12

Chapter 1

Figure 1-4. Standards for XML text and XML tree

031ch01.qxp 5/10/02 2:40 PM Page 12

W3C

Who develops the standards? The answer is (mostly) W3C, the World-Wide Web
Consortium. W3C was initially created to standardize HTML, a markup language
that predates XML markup languages. HTML was defined by Tim Berners-Lee,
using SGML (Standard Generalized Markup Language). It is an international
standard approved by ISO (ISO 8879:1986). Like XML, SGML is not itself a lan-
guage but rather a framework for defining and using markup languages. It was
created for the publishing industry without any Internet applications in mind.
Another way to define XML is to say that it is a simplified and Internet-ready
descendant of SGML.

Initially, HTML was maintained in the same way as other Internet standards:
published as an RFC (request for comments) and eventually approved by the
IETF (Internet Engineering Task Force). That was okay as long as there was little
or no money in it. When HTML became big business, the main browser vendors
started pulling it apart, adding proprietary tags and rules, and IETF procedures
proved to be too slow to keep up with browser releases. The Web was in danger of
fracturing into incompatible browser domains. In response, a group of good
people led by Berners-Lee and Michael Dertouzos of MIT created the W3C con-
sortium that has taken upon itself to keep the Web whole. Its first great success
was to impose a uniform HTML standard on competing browsers: HTML 3.2 fol-
lowed by HTML 4.0 and 4.01. Its second great success was to invent XML. One
side effect of this invention is that there will be no further releases of HTML: it is
superceded by XHTML, a reformulation of HTML in XML. We will compare and
contrast HTML and XHTML in the next chapter.

W3C’s Procedures and Recommendations

W3C is not a standards body; rather, it is a consortium whose members come
from industry, academia, and national governments. The documents issued by
W3C are called recommendations and, theoretically, can be ignored. However, the
high technical quality of its work, its elaborate procedures for consensus build-
ing, the combined weight of its members, and the authority of its director make
W3C recommendations de facto standards. Because W3C is the custodian of XML
and XML has become the definitive technology of the Web, the evolution of the
Web is to a great extent determined by the documents moving through the W3C
pipeline.

The pipeline is organized as follows. First, a certain area of activity (for
instance, XML Query Language) has to be adopted for development by W3C,
and a W3C working group is formed. The group’s first task is to issue a require-
ments specification and, where appropriate, a list of use cases. These are
followed by a sequence of working drafts (WDs) that culminate in a candidate

13

Welcome to XML

031ch01.qxp 5/10/02 2:40 PM Page 13

recommendation (CR). The release of a CR is a signal to developers that the spec-
ification is feature-complete and ready for implementation. The next stage is
a proposed recommendation (PR) that takes into account the experience accu-
mulated during implementation and testing. After a final round of comment and
revision—and if all goes well—the proposed recommendation is signed by the
director and becomes an official recommendation (R). Table 1-1 shows a selected
list of XML specifications.

14

Chapter 1

Table 1-1. Some XML Specifications

SPECIFICATION STATUS DATE DESCRIPTION

HTML 4.01 R December 1999 The last HTML; XHTML is taking over.

XML 1.0 R February 1998 The foundation on which everything rests.

Includes DTD, a language for defining markup

languages.

Namespaces in XML R January 1999 An important addition to the foundation.

XML Schema R May 2001 Language for defining markup languages, to

replace or complement DTD.

XPath 1.0 R November 1999 A language of tree paths to navigate XML data.

XSLT 1.0 R November 1999 XML Transformation language.

XHTML 1.0 R January 2000 HTML 4.01 revised to conform to XML 1.0.

XHTML Basic R December 2000 A subset of XHTML for small devices.

DOM Level 2 R November 2000 Standard API for working with XML data.

Infoset CR May 2001 Information content of XML trees.

XLink R December 2000 Language for linking documents, including

multidirectional and third-party links.

XPointer WD January 2001 Language to specify locations and ranges within

an XML document; uses XPath; itself used by

XLink.

XQuery WD February 2001 Language for querying XML data repositories,

patterned after SQL.

031ch01.qxp 5/10/02 2:40 PM Page 14

In the next section, we will look at a series of examples to show the compo-
nents of XML documents and introduce the common terminology. The section
after that will show a small selection of XPath expressions, to be used in exercises
within simple XSLT programs. (XSLT is a language for transforming XML data;
we will have more to say about it in the next section, and much more later in
the book.)

XML Examples

This section presents a rapid succession of different kinds of XML documents,
starting with the very simple and moving on to documents that include DTDs
and use namespaces. They will introduce the terminology and serve as a preview
for the next two chapters.

Examples Without a DTD

A complete and correct XML document can be as short as

<q>What’s up?</q>

This XML document consists of a single element, but most of them have more
structure. Our next example has three elements, one of which has an attribute:

<exchange><q tone=”informal”>What’s up?</q><a>The parent node.</exchange>

XML examples are usually divided into several variously indented lines to
indicate their tree structure. We show this one on a single line to emphasize that
it is just a linear sequence of characters.

Declaration and Encoding

Many XML documents start with an optional declaration:

<?xml version=”1.0” encoding=”utf-8”?>

<q>What’s up?</q>

The optional encoding attribute tells the parser how the Unicode characters
are encoded as bytes. The problem of byte encoding does not arise with ASCII
characters because there are only 128 ASCII characters and each fits within a sin-
gle byte. The Unicode standard contains 65,536 characters, and at least some of

15

Welcome to XML

031ch01.qxp 5/10/02 2:40 PM Page 15

them have to be encoded as more than one byte. The two most common encod-
ings that all XML parsers are required to support are UTF-8 and UTF-16. (UTF
stands for Unicode Transfer Format.) UTF-16 encodes all characters as
a sequence of two bytes, and UTF-8, the default, is a variable-length encoding
that uses one, two, or three bytes to encode a character. It is designed so that the
ASCII range of characters looks exactly the same in ASCII and in UTF-8; in other
words, UTF-8 is backward compatible with ASCII.

Comments and Processing Instructions

XML documents can contain comments and processing instructions (PIs). These
can be inserted anywhere in the document except before the declaration or
inside tags. (See Listing 1-2.)

Listing 1-2. A Document with a Comment and a PI
<?xml version=”1.0”?>

<!-- This is a comment. The next line is a PI -->

<?xml-stylesheet href=”exchange.css” type=”text/css”?>

<exchange tone=”informal”>

<q>What’s up?</q><a>Nothing much.

</exchange>

Theoretically, PIs can be used to invoke an application from within an XML
document, but in practice they are used only to refer to a stylesheet (which is
explained later in this chapter), as in this example.

XPath Tree Model

We’ll use this short document to remind you of the XPath tree view of XML,
also known as the XPath Tree Model. (See Figure 1-5.) Recall two important
conventions:

• There is a root node that is parent to the root of the element tree and to
top-level comments and processing instructions, if any.

• The text content of an element is wrapped in a text node.

16

Chapter 1

031ch01.qxp 5/10/02 2:40 PM Page 16

Attributes and a DTD

The next example brings in attributes and a DTD. XML attributes work exactly
the same way as HTML attributes: they are name-value pairs that are listed in the
start tag of an element right after the tag name. Attribute values must be quoted,
as in Listing 1-3.

Listing 1-3. A Document with Attributes
<?xml version=”1.0” encoding=”utf-8”?>

<exchange tone=”polite”>

<q>What would you like to drink?</q>

<a>Whatever you have is fine.

</exchange>

This is a well-formed XML document, but so is the one shown in Listing 1-4.

Listing 1-4. Same Document, Rearranged
<?xml version=”1.0” encoding=”utf-8”?>

<exchange tone=”cloudy with occasional rain showers”>

<a>Whatever you have is fine.

<q>What would you like to drink?</q>

</exchange>

17

Welcome to XML

Figure 1-5. An XPath tree for Listing 1-2

031ch01.qxp 5/10/02 2:40 PM Page 17

If you want to make sure that questions precede answers, you need a DTD, as
shown in Listing 1-5.

Listing 1-5. A Document with a DTD
<?xml version=”1.0” encoding=”utf-8”?>

<!DOCTYPE exchange [

<!ELEMENT exchange (q, a)>

<!ELEMENT q (#PCDATA)>

<!ELEMENT a (#PCDATA)>

<!ATTLIST exchange tone (friendly|polite| cold|rude) “friendly”>

]>

<exchange tone=”polite”><!-- same as Listing 1-3 --></exchange>

This declares a document type called exchange and defines its elements. The
root element is exchange. (The name of the document type and the name of the
root element don’t have to be the same, but it’s common practice to have them
so.) The exchange element’s content model is children-only, q and a, in that order.
Both q and a are text-only, which in DTD-speak comes out as PCDATA. The
exchange element has a tone attribute whose possible values are listed in the
declaration, with “friendly” being the default: if your document does not contain
the attribute, the parser will insert tone=”friendly”. (You can test this in an XML-
aware browser. For instance, in Windows, save Listing 1-5 (with the attribute
removed) in a file with the .xml extension and open it in Internet Explorer 6. You
will see the default inserted.)

External DTDs

You can put the DTD in a separate file and refer to it from the document, as
shown in Listing 1-6.

Listing 1-6. A Document with an External DTD
<?xml version=”1.0” encoding=”utf-8”?>

<!DOCTYPE exchange SYSTEM “exdtd.dtd”>

<exchange><!-- same as Listings 1-3 and 1-5 --></exchange>

The contents of exdtd.dtd would be as follows:

<!ELEMENT exchange (q, a)>

<!ELEMENT q (#PCDATA)>

<!ELEMENT a (#PCDATA)>

<!ATTLIST exchange tone (friendly|polite| cold|rude) “friendly”>

18

Chapter 1

031ch01.qxp 5/10/02 2:40 PM Page 18

Valid Documents and Validating Parsers

If you have a DTD and your parser knows how to use it and you configure your
parser so that it does indeed check your documents against the DTD, then
the parser will accept Listing 1-3 but reject Listing 1-4. A document that checks
out correctly against its DTD is called valid with respect to that DTD, and a parser
that understands the DTD language is called a validating parser.

DTDs are good at design time, and they are useful as a concise description of
a shared language. At production time, you frequently do not want to validate
because the DTD may not be available or it may reside on a remote server and
take an indefinite period of time to download. Even if there is a local DTD, vali-
dation is an extra processing step that incurs a performance penalty. For these
reasons, validating parsers typically have a settable Boolean flag that turns vali-
dation on and off. (We will cover validation in Chapter 3.) As you know, you do
not need validation to use XML data because XML processors can parse a docu-
ment and construct its tree without a grammar.

Document-Oriented vs. Data-Oriented XML

XML documents tend to one of two extremes. At one extreme are documents that
are primarily text, with markup inserted occasionally to bring out the text struc-
ture and select some text ranges for special treatment. A typical feature of this
kind of XML is that its elements frequently have a mixed-content model: text and
elements mixed together as siblings (children of the same element).

The other kind looks as if it comes out of a relational database, and fre-
quently it does. It is highly structured, with repeating elements of the same
internal content. Text in this kind of XML appears only in the leaf elements of the
tree, never at the same level as children elements. See Listing 1-7.

Listing 1-7. Data-Oriented XML
<?xml version=”1.0”?>

<!-- personal data for people and other kinds of personalities -->

<pdata>

<person id=”CM123” access-level=”customer”>

<name>

<title>Mr.</title>

<last>Monster</last>

<first>Cookie</first>

<middle>C</middle>

</name>

<address>

<street>123 Sesame Street</street>

19

Welcome to XML

031ch01.qxp 5/10/02 2:40 PM Page 19

<city>New York</city>

<state>NY</state>

<zip>10023</zip> <!-- the zip code is real -->

</address>

<bdate>

<year>1969</year>

<month>11</month>

<day>2</day>

<!-- Official birthday November 2nd; first show was 11/10/69 -->

</bdate>

<email>cookie@sesamestreet.com</email>

<!-- we made that up, but telly@sesamestreet.com is “real” -->

<favorites>

<color>red</color>

<drink>cookie juice</drink>

</favorites>

</person>

<!-- possibly many more persons -->

</pdata>

We’ll be working with this document in the following XPath and XSLT
examples.

XSLT Programs and XPath Expressions

XSLT (eXtensible Stylesheet Language for Transformations) is a programming
language for transforming XML data. For historical reasons, it is called
a stylesheet language, and XSLT programs are frequently called stylesheets. In this
section, we introduce simple XSLT programs that will help you explore the tree
structure of XML data. In addition to presenting new theoretical material, this
section is the first hands-on section in the book. It is best read in front of a com-
puter that is set up to explore and experiment with the book’s code.

20

Chapter 1

031ch01.qxp 5/10/02 2:40 PM Page 20

Prerequisites and Setups

As explained in the introduction, all our code runs in the context of a Web appli-
cation. The setup for working with it consists of two parts: the basic setup for
a Web application plus XML tools. The best way for you to get everything ready
for hands-on work depends on your background.

• If you have worked with ASP Web applications before, review the section
on JSP in Appendix B and proceed to the installation instructions in
Appendix A.

• If you have worked with JSP Web applications before, review the section
on ASP in Appendix B and proceed to the installation instructions in
Appendix A.

• If you have worked with servlet-based Web applications but not with ASP
or JSP, review the appropriate sections in Appendix B and proceed to the
installation instructions in Appendix A.

• If you have never worked with ASP, JSP, or servlets but are familiar with
CGI-based Web applications, review Appendix B in its entirety and proceed
to the installation instructions in Appendix A.

• If you have never worked with Web applications of any kind, start with
Appendix C, proceed to Appendix B, and finally proceed to the installation
instructions in Appendix A.

XSLT Setups

To run XSLT programs, you need an XSLT processor. In Web applications, your
choice of processor depends on the server, the operating system, and the pro-
gramming language used. Here and throughout the book, we primarily work with
two combinations of software:

• Apache Tomcat (a combined Web server and JSP processor), Apache Xalan
(an XSLT processor), and Apache Xerces (an XML parser)

• Microsoft IIS/PWS (a combined Web server and an ASP processor) and
MSXML 3.0 or later (a combined XML parser and XSLT processor)

21

Welcome to XML

031ch01.qxp 5/10/02 2:40 PM Page 21

Running XSLT Programs

An XSLT processor receives an XML data source and an XSLT program on input
and produces a result as specified by the XSLT. The result is usually XML, HTML,
or plain text. A very common use of XSLT is to convert XML data to HTML or
XHTML for display in the browser. All XSLT examples and exercises in this
chapter belong to this last category.

In a Web application, references to an XML source and a stylesheet can be
entered from an HTML form or typed into the address window. The output is sent
back to the browser in the usual way. Assuming that we run IIS/PWS on port 80,
the page xx.asp is in wwwroot\xmlp, and the two inputs—hello.xml and
hello.xsl—are in wwwroot\xmlp\helloXSL, we invoke the XSLT processor on
them using this URL (split into two lines):

http://localhost/xmlp/xx.asp?

xmlUri=helloXSL/hello.xml&xslUri= helloXSL/hello.xsl

This, of course, further assumes that xx.asp expects request parameters
xmlUri and xslUri. (See Listing 1-9). Similarly, if we use Tomcat on port 8080, the
page xx.jsp is in webapps\xmlp and the two inputs, hello.xml and hello.xsl, are in
webapps\xmlp\helloXSL, we invoke the XSLT processor on them using this URL:

http://localhost:8080/xmlp/xx.jsp?

xmlUri= helloXSL /hello.xml&xslUri= helloXSL /hello.xsl

with hello.xml being

<greeting>Hello, XML world!</greeting>

and hello.xsl as in Listing 1-8.

22

Chapter 1

NOTE Microsoft and Apache are two major sources for standard XML soft-
ware (partly because much XML software produced by IBM and Sun ends
up at Apache). Their world views and business philosophies are, of course,
very different: Apache is open source and primarily Java, whereas
Microsoft is closed source and no Java at all. It is all the more remarkable
that XML standards clearly show through both frameworks, so that skills
learned in one of them are easily transferable to the other—not to mention
the even more remarkable fact that, given the same XSLT program and the
same XML data, both frameworks produce identical results with a high
and growing degree of reliability.

031ch01.qxp 5/10/02 2:40 PM Page 22

Listing 1-8. The First XSLT Program
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:template match=”/”>

<html><head><title>First XSLT Program</title></head>

<body>

<h1 align=”center”><xsl:value-of select=”greeting”/></h1>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

The output is shown in Figure 1-6.

As you can see, an XSLT program is an XML document of a special kind. We
will explain every detail of our first XSLT program shortly, but first take a look at
the code that invokes it.

ASP Code

In outline, xx.asp (Listing 1-9) proceeds as follows:

1. Retrieve the XML file name from Request.

2. Find its absolute path to server root.

3. Create an XML tree (DOM) object called xmlObj.

4. Parse (“load”) the XML file to create a tree.

5. Repeat these actions for the XSLT program. (An XSLT program is an XML
document.) The program is loaded into an XML tree object called xslObj.

6. Transform xmlObj using the program stored in xslObj; send output to
Response.

23

Welcome to XML

Figure 1-6. Hello, XML world!

031ch01.qxp 5/10/02 2:40 PM Page 23

Listing 1-9. ASP Code to Run XSLT
<%@ LANGUAGE=”VBSCRIPT” %>

<%

Dim xmlFile,xmlObj,xslFile,xslObj

xmlFile = Request.QueryString(“xmlUri”)

xmlFile = server.MapPath(xmlFile)

Set xmlObj = CreateObject(“MSXML2.DOMDocument”)

xslFile = Request.QueryString(“xslUri”)

xslFile = server.MapPath(xslFile)

Set xslObj = CreateObject(“MSXML2.DOMDocument”)

xmlObj.load xmlFile

xslObj.load xslFile

Response.write(xmlObj.transformNode(xslObj.documentElement))

%>

JSP Code

The JSP version, xx.jsp, is quite similar, except there are data types, and
exceptions get thrown (as shown in Listing 1-10).

Listing 1-10. JSP Code to Run XSLT
<%@ page errorPage=”error.jsp”

import=”javax.xml.transform.TransformerFactory,

javax.xml.transform.Transformer,

javax.xml.transform.stream.StreamSource,

javax.xml.transform.stream.StreamResult,

java.io.File”

%><%

// get directory paths to XML and XSLT files

String xml=application.getRealPath(request.getParameter(“xmlUri”));

String xsl=application.getRealPath(request.getParameter(“xslUri”));

// check that files exist

if(!new File(xml).exists()) throw new Exception(“no file “+xml);

if(!new File(xsl).exists()) throw new Exception(“no file “+xsl);

// obtain a transformer object that implements the XSLT program

TransformerFactory tFactory = TransformerFactory.newInstance();

Transformer transformer = tFactory.newTransformer(new StreamSource(xsl));

// apply the transformer to given XML; send output to the out stream

transformer.transform(new StreamSource(xml), new StreamResult(out));

%>

24

Chapter 1

031ch01.qxp 5/10/02 2:40 PM Page 24

You can use either or both of these pages to work with examples and exer-
cises of this chapter. With a framework in place, we can proceed to the
XML-XSLT-XPath substance of the matter.

XPath Expressions

XSLT programs operate by selecting a set of nodes in the input and using the
material of selected nodes to construct the output. XPath is a language for select-
ing sets of nodes.

XPath expressions, by design, look very much like Unix directory paths. We
will illustrate them using the XML of Listing 1-7. The expression “/” refers to the
root of the document tree. The expression /pdata refers to the <pdata> element.
The expression /pdata/person refers to all the children elements of the pdata ele-
ment whose tag name is person. To refer specifically to the first such element
(Cookie Monster), we use /pdata/person[1]. To refer to Cookie Monster’s last
name, we use /pdata/person[1]/name/last.

Attributes in XPath

We refer to attributes in a similar way but insert the “@” character before the
name of the attribute. To refer to Cookie Monster’s id attribute, we say
/pdata/person[1]/@id. To refer to Cookie Monster himself by his ID, we
say /pdata/person[@id=’CM123’]. Read this as “person such that its id attribute
equals ‘CM123’”. In general, the expression in square brackets is a predicate;
/pdata/person[1] is a convenient shorthand for /pdata/person[position()=1]. In
this expression, position() is a function that returns the position of the node in
the currently selected set of nodes. The list selected by /pdata/person is, as we
just said, all the children elements of the pdata element whose tag name is
person, in their document order.

An XSLT Program

An XSLT program is an XML document. As such, it has a programmatic core and
the surrounding XML supports. Take a look at the programmatic core first
(Listing 1-11). Our purpose is to produce an HTML page that says “Hello, Mr.
Monster”, using Listing 1-7 as XML data input.

25

Welcome to XML

031ch01.qxp 5/10/02 2:40 PM Page 25

Listing 1-11. An XSLT Program, helloXSL/helloSelect.xsl
<xsl:template match=”/” >

<html><head><title>Hello1</title></head><body>

Hello,

<xsl:value-of select=”/pdata/person[1]/name/title” />

<xsl:text> </xsl:text>

<xsl:value-of select=”/pdata/person[1]/name/last” />.

</body></html>

</xsl:template>

You will notice that some elements in this code have tag names that start
with xsl:. These are instructions to the XSLT processor. The first of them,
<xsl:template>, establishes the context in which its content is instantiated. The
context is specified by the match attribute whose value is an XPath expression.

The content of our xsl:template element consists of an HTML page with
occasional insertions from our XML data file. We extract the data using the
xsl:value-of element. The select attribute, whose value is an XPath expression,
indicates the data to be extracted. To output whitespace between “Mr.” and
“Monster”, we use xsl:text.

All elements whose tag name does not start with xsl: are passed through to
output without change. We end up with:

<html><head><title>Hello1</title></head><body>

Hello, Mr. Monster.

</body></html>

An Improvement with xsl:variable

We will do a lot more XSLT and XPath in the chapters to come, but we’ll present
a few details here, so you can do simple experiments. Listing 1-11 repeats the
same XPath expression (/pdata/person[1]/name/) twice. We can remove that inef-
ficiency by using xsl:variable, as in the highlighted lines of Listing 1-12.

Listing 1-12. Same, Using an XSLT Variable
<xsl:template match=”/” >

<html><head><title>Hello2</title></head><body>

Hello,

<xsl:variable name=”nm” select=”/pdata/person[1]/name” />

<xsl:value-of select=”$nm/title” />

<xsl:text> </xsl:text>

<xsl:value-of select=”$nm/last” />.

</body></html>

</xsl:template>

26

Chapter 1

031ch01.qxp 5/10/02 2:40 PM Page 26

As we explained in the section on XPath expressions, we’ll get the same result
if, instead of using /pdata/person[1], we use /pdata/person[@id=’CM123’]. In
fact, in this case we’ll get the same result if we simply use /pdata/person because
there is only one person on the selected list of nodes.

Processing a Set of Nodes

How do we select and work with more than one node? Selecting is easy: the
expression /pdata/person selects all the person nodes that are children of pdata
nodes (of which there is only one) that are children of the root. To work with each
of them, we use xsl:for-each. Let’s say hello to every person in our file, as shown
in Listing 1-13.

Listing 1-13. Working with Multiple Nodes
<xsl:template match=”/” >

<html><head><title>Hello Everybody</title></head><body>

<xsl:variable name=”plist” select=”/pdata/person” />

<xsl:for-each select=”$plist”>

Hello,

<xsl:value-of select=”name/title” />

<xsl:text> </xsl:text>

<xsl:value-of select=”name/last” />

</xsl:for-each>

</body></html>

</xsl:template>

Note that the select expressions in the body of xsl:for-each use relative path
expressions that do not begin with a “/”. This is quite similar to how we refer to
directory paths.

Conditional Processing

Suppose some people don’t have a title listed because they prefer to be called by
their first name. As we go through the list, we want to make our output condi-
tional on whether the title is present. The highlighted code in Listing 1-14 shows
how we do it.

27

Welcome to XML

031ch01.qxp 5/10/02 2:40 PM Page 27

Listing 1-14. An XSLT Program with Conditional Expressions
<xsl:template match=”/” >

<html><head><title>Hello Everybody</title></head><body>

<xsl:variable name=”plist” select=”/pdata/person” />

<xsl:for-each select=”$plist”>

Hello,

<xsl:variable name=”title” select=”name/title” />

<xsl:choose>

<xsl:when test=”$title”> <!-- true if non-empty -->

<xsl:value-of select=”$title”/><!-- same output as before -->

<xsl:text> </xsl:text>

<xsl:value-of select=”name/last” />

</xsl:when>

<xsl:otherwise><!-- output just the first name -->

<xsl:value-of select=”name/first” />

</xsl:otherwise>

</xsl:choose>

</xsl:for-each>

</body></html>

</xsl:template>

This should be a fairly understandable (if a bit verbose) way of saying
if-then-else.

Outputting Attributes with Computed Values

Suppose we want to format the output so the name of the favorite drink appears
in the favorite color. The recommended way to do this in HTML is by using a style
attribute, as in

cookie juice

The obvious (but wrong) thing to do would be to insert the desired HTML
into the XSLT stylesheet as we have done in the preceding examples. However, in
this case, we have to place an XSLT expression inside the attribute value:

<span style=”color:<xsl:value-of select=”favorites/color”/>”>

28

Chapter 1

031ch01.qxp 5/10/02 2:40 PM Page 28

This violates several rules of XML syntax (as we explain in the next chapter),
but, even if we fix the syntax, the basic problem is that our XSLT expression is in
quotes and will remain unevaluated by the XSLT processor. This problem has two
solutions: one using more XSLT and the other using a special notation to evaluate
XSLT within attributes. In either case, we start by creating an XSLT variable,
styleOut, whose value will be the string “color:red”:

<xsl:variable name=”styleOut”>

<xsl:text>color:</xsl:text>

<xsl:value-of select=”favorites/color”/>

</xsl:variable>

One way to use this would be within an xsl:attribute element that con-
structs an output attribute:

We have yummy

<xsl:element name=”span”>

<xsl:attribute name=”style”><xsl:value-of select=”$styleOut”/></xsl:attribute>

cookie juice

</xsl:element>

Alternatively, we can simply enter the output HTML in the XSLT stylesheet
and use special notation for XSLT expressions within attribute values to get them
evaluated. The special notation is curly brackets placed around XSLT variable
that needs to be evaluated:

We have yummy

<xsl:value-of select=”favorites/drink”/>

The Framework Around the Code

The XML framework in which Listings 1-11 to 1-14 operate is shown in
Listing 1-15. Its first line is the XML declaration because an XSLT program is an
XML document. Its second line is the start tag of the root element whose tag
name is xsl:stylesheet. Its attributes declare the XSLT namespace and specify
the current version.

29

Welcome to XML

031ch01.qxp 5/10/02 2:40 PM Page 29

Listing 1-15. The Outer Shell of an XSLT Program
<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<!-- The programmatic core is inserted here -->

</xsl:template>

</xsl:stylesheet>

The notion of an XML namespace is not an easy one, and we will spend quite
a bit of time on it in the next chapter. For now, just note that the namespace dec-
laration associates a prefix (xsl) with a unique URL. In the rest of the program, the
prefix indicates that the name after the prefix (such as template or value-of)
belongs to the namespace identified by that URL. In this case, this serves as a sig-
nal to the XSLT processor that the element with the prefix-qualified name is an
XSLT instruction. (In general, the “meaning” of a namespace is completely deter-
mined by the application that receives XML data from the parser.) Although the
xsl prefix is traditionally used, it is, in fact, arbitrary; any prefix would do as long
as it is associated with the right namespace.

Stylesheet Languages and Browsers

We have shown how XSLT can be run on the server to produce HTML to be dis-
played in the browser. There are other ways to apply an XSLT program to XML
data, and other ways to display XML in the browser. In this section, we will try to
sort out the messy relationships among browsers, stylesheet languages, and XML.

To display an XML document in the browser, it needs to be associated with
a stylesheet. If you don’t provide a stylesheet of your own and open the document
in the browser as a local file, it will be displayed using a default stylesheet that
preserves the markup and shows the tree structure of the document. If you want
to provide a stylesheet of your own, you can choose from three stylesheet lan-
guages: CSS, XSLT, and XSL-FO (working individually or in combinations). To
understand and evaluate the possibilities, we need to clarify what those lan-
guages are and how well they are supported.

Stylesheet Languages: A Brief History

Cascading Stylesheets (CSS) is the oldest stylesheet language for the Web. First
developed for use with HTML, it is a very simple, intuitive language with some-
what limited capabilities. A CSS stylesheet consists of a set of rules. Each rule
consists of a selector and a declaration in curly brackets. The simplest selector is

30

Chapter 1

031ch01.qxp 5/10/02 2:40 PM Page 30

a tag name, but a selector can also be a list of tag names or a tag name in context.
A declaration is a set of property-value pairs separated by semicolons, and within
each pair the property is separated from its value by a colon. For instance, the fol-
lowing rule centers <p> elements in the page, gives them a solid brown border
three pixels wide, and sets the background color to blue:

p {

margin-left:5%; width:90%;

border: solid 3px brown;

background-color:blue

}

That’s the essence of CSS; the rest is a multitude of detail. In particular, you
need to know the following details:

• the syntax of selectors

• names of properties and their possible values

• absolute and relative units of measurement

• color representations

• simple rules of inheritance

All of these can be found at www.w3.org/Style/CSS/ and multiple excellent
tutorials on the Web and in print. All the major browsers (Internet Explorer,
Netscape, Mozilla, and Opera) support CSS for HTML quite well.

CSS for XML

CSS can also be used with XML. Consider the simple schematic XML document
shown in Listing 1-16 (in which r stands for root, and c stands for child):

Listing 1-16. Simple XML Document, xml4css.xml
<?xml version=”1.0” encoding=”UTF-8”?>

<?xml-stylesheet href=”style0.css” type=”text/css”?>

<r>

<c a1=”attr1” a2=”attr2”> First child, two attributes</c>

<c>Second child, no attributes</c>

<d>A deviant child</d>

</r>

31

Welcome to XML

031ch01.qxp 5/10/02 2:40 PM Page 31

The second line of this document (technically a processing instruction) asso-
ciates a CSS stylesheet with it. The stylesheet looks like Listing 1-17.

Listing 1-17. Simple CSS Stylesheet, style0.css
r {background-color:#ffffef}

c, d { display:block}

c {padding:5;margin:5;

border:solid 3px;

width:200;

text-align:center;

font-family:verdana;

font-size:14;

color:maroon

}

d {background-color:lightblue;

margin-left:50;

border:solid 3px;

width:200;

text-align:center;

font-family:verdana;

font-size:36;

color:green

}

If you place xml4css.xml and style0.css in the same folder and open the XML
file in Internet Explore 6 or another XML- and CSS-aware browser, the result will
look like Figure 1-7.

32

Chapter 1

Figure 1-7. XML with CSS in the browser

031ch01.qxp 5/10/02 2:40 PM Page 32

XSL, XSLT, and XSL-FO

For all its simplicity and effectiveness, CSS has the following limitations:

• CSS syntax is not XML and so requires a different parser.

• CSS lacks facilities for selecting, sorting, and otherwise rearranging data.

• CSS lacks high-end layout capabilities, such as multiple column layout,
footnote placement, and conditional formatting.

When XML was invented, work immediately started on a new stylesheet lan-
guage to accompany XML. Initially, there was a single XSL language whose design
closely followed DSSSL, the stylesheet language for SGML created by James Clark
(who was also the technical lead in creating XML). The goal was to produce
a stylesheet language for specifying how an XML document is to be displayed in
multiple media, including the Web browser. Although that goal has not yet been
reached, two other specifications—XSLT and XPath (both having to do with
transforming rather than formatting XML)—became W3C recommendations in
November 1999, even though they did not exist as independent projects until
fairly late in that year. As the XSL project unfolded, different parts of it grew at dif-
ferent speeds, and their relative importance and state of preparedness were
changing. Eventually, XSLT and XPath were carved out into separate projects and
completed, whereas the document formatting part spent another two years
before it became Recommendation in October 2001.

That a style sheet language was needed for XML to function was obvious
from the beginning: if users can define their own elements, they have to be able
to specify how those elements will look when displayed in the browser window or
other media. Also, from the beginning, the intent was to give XSL the ability to
add, remove, and reorder the elements of the document tree, so that, for
instance, the stylesheet could handle multiple reports from a database table,
showing different fields and sorting records in different ways. As part of this func-
tionality, XSL needed a way of referring to nodes and sets of nodes in the tree to
select them for processing.

Initially, the tree-transformation part of XSL was just an aid to the formatting
part, but it proved to be easier to develop and build a consensus about. As XML’s
role was evolving from a tool for document markup to (also being) a tool for data
interchange among applications and components of applications, the transfor-
mation “module” was developing an independent significance, totally unrelated
to formatting and display. At some point, a single XSL split into XSL for format-
ting and XSL for transformation (XSLT). The XSLT part was taken over by James
Clark who brought it to a swift completion while at the same time producing xt,
an open-source reference implementation of the XSLT processor.

33

Welcome to XML

031ch01.qxp 5/10/02 2:41 PM Page 33

As XSLT was taking shape, it was realized that the ability to select sets of
nodes in a systematic way was needed not only for tree transformations but also
for linking. As a result, that project also developed an independent existence
under the name of XPath, and it was completed (on the same date as XSLT) by
James Clark and Steve DeRose.

The use of XSLT spread rapidly. Several excellent implementations are now
available from Microsoft, Apache (based on work initially done at Lotus and Sun),
Oracle, and Michael Kay. Of all the XML technologies that have been developed
since 1997, XSLT and XPath are unquestionably the most successful and
important.

XSL-FO

The formatting part of XSL took much longer to develop: it became a W3C rec-
ommendation only in October 2001. Its target area of application is high-end
publishing, not necessarily in the browser, and not even necessarily in electronic
form. To quote the specification: “Given a class of arbitrarily structured XML doc-
uments or data files, designers use an XSL stylesheet to express their intentions
about how that structured content should be presented; that is, how the source
content should be styled, laid out, and paginated onto some presentation
medium, such as a window in a Web browser or a handheld device, or a set of
physical pages in a catalog, report, pamphlet, or book”
(www.w3.org/TR/xsl/slice1.html#section-N629-Introduction-and-Overview).

To use XSL-FO, you need, in effect, two programs: an XSLT processor that
converts XML to be displayed into an XSL-FO document and a rendering engine.
In practice, the XSLT program operating as part of XSL-FO will typically perform
two operations: a “pure” transformation to create the desired view of XML data
(filter, rearrange, and add content as needed) and the XSL-FO transformation, to
produce the desired display description. In this book, we concentrate on pure
transformations, but we will show how to arrange multiple XSLT programs in
a processing pipeline.

34

Chapter 1

NOTE James Clark has since discontinued support for XT. It is supported
and further developed by http://4xt.org.

031ch01.qxp 5/10/02 2:41 PM Page 34

Displaying XML on the Client

With the relationships among formatting languages clarified, we can list possible
ways to display XML in the browser. Background information follows Table 1-2.

Table 1-2. Approaches to Displaying XML in the Browser

APPROACH BROWSER REQUIREMENTS

Display XML directly, using CSS XML- and CSS-aware browser

Transform XML into (X)HTML on the XML- and XSLT-aware browser

client using XSLT and display

Transform XML into (X)HTML on the server Any HTML browser

using XSLT or programmatic APIs and display

Use XSLT to transform XML into an XSL-FO Any browser with a PDF plugin

document on the server; further transform

into a displayable format such as PDF

XML+CSS

The latest versions of Internet Explorer (IE), Netscape, Mozilla, and Opera imple-
ment XML parsing and the basics of CSS styling quite well; so, for very simple
cases, the first approach is workable. Opera and Mozilla are pushing this
approach further by implementing CSS2 support for XML (in addition to HTML).
With CSS2, one can display bulleted lists and tables directly in XML without
transforming it into HTML. However, IE lags in this respect, and there are reports
that Microsoft does not consider XML+CSS an important feature to support
(http://lists.xml.org/archives/xml-dev/200109/msg00194.html).

XML+XSLT on the Client, and More on Processing Pipelines

The idea is to be able to give the browser the URL of an XML document that con-
tains another URL for the stylesheet (which is also an XML document), and the
browser displays the output of the transformation:

<?xml version=”1.0”?>

<?xml-stylesheet href=”URL for stylesheet” type=”text/xsl”?>

<!-- the rest of the XML document -->

35

Welcome to XML

031ch01.qxp 5/10/02 2:41 PM Page 35

Consider the steps involved in this processing chain:

• As the document is loaded as a stream of characters, the XML parser within
the browser parses it into a tree and identifies the processing instruction
for the stylesheet.

• The stylesheet is also loaded as a stream of characters and parsed into
a tree.

• The XSLT processor within the browser applies the stylesheet to the input
tree; the browser renders the result using either a default stylesheet for
HTML or a stylesheet for XML.

The salient features of the process are as follows.

• Both the input document and the stylesheet can be anywhere on the
Internet.

• The software involved—the XML parser and the XSLT processor—is stan-
dard and free.

• The output of the process can be either displayed in the browser, piped
into another processor, or both.

At this point, we would like to recapitulate, with more background than
before, the reasons why XML has been so quickly and widely accepted.

• It is easy to switch between the character-sequence view of XML and the
tree-structured-data view of XML. The software to perform that switch
(the XML parser) is standard, of high quality, ubiquitous, and free.

• Character sequences are easy to send over the network using standard pro-
tocols.

• Tree-structured data is easy to work with. In particular, it is easy to trans-
form one tree into another, changing either the text content, the markup,
or both. The software that performs these tasks (the XSLT processor) is
standard, of high quality, ubiquitous, and free. The APIs for working with
XML tree data are open and widely supported standards.

• Because XML can encode both data and metadata, applications that
communicate using XML can discover each other and establish a com-
munication channel without prior arrangements.

36

Chapter 1

031ch01.qxp 5/10/02 2:41 PM Page 36

• It is easy to construct pipelines of XML processors in which each processor
receives XML data, does some transformation and/or computation on it,
and sends the result as XML to the next processor. (See Figure 1-8.)

Four adjectives are repeated in this list of features: easy, standard, ubiquitous,
and free. These are the key to XML’s success. XML is based on several simple ideas
involving free software and wide acceptance. They combine to make XML
a major enabling technology for interoperable distributed applications, them-
selves an enabling technology for commerce and cooperation.

Browser Support

XSLT support on the client side is, as of this writing, available for IE on the
Windows platform, Mozilla, and Netscape. Mozilla and Netscape offer less sup-
port, but continue to improve. IE support follows a complex trajectory that
deserves a separate section.

37

Welcome to XML

Figure 1-8. XML processing pipeline

031ch01.qxp 5/10/02 2:41 PM Page 37

XSLT, Internet Explorer, and MSXML

Microsoft released a browser with XSLT support (IE5) before XSLT was finalized
as a W3C recommendation. IE5, with MSXML 2 as XML parser and XSLT proces-
sor, supported a working draft of XSLT that was very different from the eventual
standard. This resulted in great confusion among IE5 users and a great deal of
indignation among the experts who had to explain in many forums why XSL files
that work perfectly well in Internet Explorer do not work properly with other
processors.

MSXML 3 has implemented a fully conformant version of both the XML
parser and XSLT processor. Although the browser continued to ship with the old
nonconformant version, it is possible to download MSXSML 3 and install it with
IE5.5. (See Appendix A for installation instructions.) The result is that you can
indeed test XSLT programs on XML data by simply opening an XML file in the
browser (assuming the file has a link to an XSLT stylesheet).

MSXML 4 further improves both the parser and the XSLT processor, but, some-
what paradoxically, IE6 does not ship with MSXML 4. It does ship with the
fully-conformant MSXML3. As for MSXML 4, it cannot be used with a browser at all,
except via a script that creates the appropriate object and calls its methods. (You
will see examples in later chapters.) In summary, XSLT support in major browsers
(IE, Netscape, Mozilla) continues to improve. The strategy of transforming XML into
XHTML for display in the browser may soon become a viable option, if you don’t
mind additional computational load on your client machine.

XML+XSLT => HTML on the Server

This approach puts minimal requirements on the client and also reduces its
computational load. Its drawback is that the client receives a document stripped
of its metadata tags, which are replaced by the generic tags of HTML: even
in a well-designed HTML or XHTML document, it is not easy to distinguish
between a table of books and ISBNs and a table of last names and email
addresses.

XML+XSLT => XSL-FO on the Server

This approach, as we mentioned, is not quite ready for prime time: the XSL-FO
specification has been released as a W3C recommendation very recently
(October 17, 2001), and rendering engines for browsers are not even mentioned
in the list of features for the next release. (However, it is possible to transform
XSL-FO into PDF and display using an Adobe plugin.) In general, XSL-FO intends
to compete with professional formatting languages and tools such as TeX,
QuarkXPress, and FrameMaker. For Web page display in the browser, CSS in com-
bination with XSLT is completely adequate.

38

Chapter 1

031ch01.qxp 5/10/02 2:41 PM Page 38

Conclusion

In this chapter, we have covered the very basics of XML: what it is, how it evolves,
who is in charge, and why it is great. The key concepts we introduced involve lan-
guage, markup language, syntax (grammar), parsing, and interpretation. We
explained how an XML parser converts a well-formed XML document into a tree
structure. We presented the basics of XSLT. In the end, we had enough back-
ground to make the case that XML is the key technology of the Internet because
it enables interoperability among programs and cooperation among people and
organizations.

39

Welcome to XML

031ch01.qxp 5/10/02 2:41 PM Page 39

031ch01.qxp 5/10/02 2:41 PM Page 40

CHAPTER 2

Well-Formed Documents
and Namespaces

WITH BASIC DEFINITIONS and examples behind us, we can move on to a detailed
discussion of the specifications. In this chapter, we concentrate on documents
without DTDs because they have a simpler structure. Although occasionally
mentioned in this chapter, DTDs and other approaches to validation (such as
XML Schema and RELAX NG) will be introduced in Chapter 3.

In outline, this chapter proceeds as follows:

• HTML vs. XHTML

• XHTML modularization and XHTML Basic

• well-formed XML documents

• names and namespaces

• global attributes and XLink

• namespace URI and RDDL (XHTML Basic + XLink)

We will start with a comparison of HTML and XHTML.

HTML, XML, and XHTML

HTML is by far the most familiar markup language. We will review its main fea-
tures in comparison with XHTML to emphasize, one last time, the following basic
facts.

• HTML is a specific language defined in the SGML framework.

• XML is not a language but a framework for defining languages.

• XML is a revision of SGML.

41

031ch02.qxp 5/10/02 2:39 PM Page 41

The main difference between XML languages and HTML and other SGML
languages is that XML documents can be parsed without a DTD, whereas
SGML documents (whether in HTML or any other SGML language) can be parsed
only with the help of the DTD. This is because, in SGML languages, the end tag of
an element can frequently be omitted even if the element is not empty: in HTML,
you don’t have to close off your <p>s with a </p>. For HTML empty elements, the
end tag is always optional: nobody puts
</br> in a Web page.

HTML vs. XHTML

Listing 2-1 provides an example of a perfectly grammatical HTML document
(paralist.htm); it uses CSS within a style attribute to specify the font properties
for the first <p> element:

Listing 2-1. An HTML Document
<html>

<head><title>HTML Example</title></head>

<body bgcolor=”#ffffef”>

<h1>Heading</h1>

<p style=”color:maroon;font-size:2em”>a paragraph with italics

followed by a list

item one

item two

<p>Another paragraph with a line break
 in the middle.

</body>

</html>

What would the element tree for this document look like? Figure 2-1 shows
one possibility.

42

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 42

Is this the only possible tree? Note that the <p> elements don’t have an end
tag, so it would be consistent with the markup to make the element a child
of the first <p>. In fact, we could even make the second <p> a child of the first. Is
there a “correct” structure among these possibilities? The question is not aca-
demic because the page uses CSS, and a CSS style defined on an element is
inherited by the element’s children. If is a child of <p>, its font will be large
and maroon; otherwise, it will be small and black. Obviously, we can’t leave this
decision to the browser’s parser: we need a rule. There is, indeed, such a rule; in
fact, for every HTML element, there is a rule that stipulates which elements it can
contain. The rule for <p> lists many possible children, but is not among
them. As Figure 2-2 shows, the browser knows and obeys the rule.

43

Well-Formed Documents and Namespaces

Figure 2-1. Element tree of an HTML document

Figure 2-2. HTML document in the browser

031ch02.qxp 5/10/02 2:39 PM Page 43

The rules of HTML are stated in the HTML DTD, which is part of the W3C
HTML recommendation. (The latest and final version is 4.01.) HTML DTDs are
very similar to XML DTDs, and we are not going to discuss their minor differ-
ences. The essential point is that, to process an HTML document and build its
tree, the browser’s parser needs to know the grammar of HTML (the HTML DTD).
The corresponding XML document terminates each element with an end tag and
can be parsed without a grammar. (Empty elements consist of a single tag termi-
nated with the “/>” sequence, as in
.) Modified in this way, HTML becomes
XHTML, officially described by W3C as “a Reformulation of HTML 4 in XML 1.0”.

To parse the document shown in Listing 2-2, the browser wouldn’t need the
grammar anymore.

Listing 2-2. An XHTML Document
<html>

<head><title>HTML Example</title></head>

<body bgcolor=”#ffffef”>

<h1>Heading</h1>

<p style=”color:maroon;font-size:2em”>a paragraph with italics

followed by a list</p>

item one

item two

<p>Another paragraph with a line break
 in the middle.</p>

</body>

</html>

HTML As a Language

In Chapter 1, we defined a language as consisting of a vocabulary and a grammar.
Is HTML a language in the sense of this general definition? It most certainly is
because it has a fixed vocabulary of element and attribute names whose usage is
controlled by specific grammar rules. Is HTML a formal language or an inter-
preted one? This question is a little trickier: HTML itself does not define the
meaning of its expressions, but they are always given a meaning in a stylesheet
(either the default stylesheet that comes with the browser or a custom style-
sheet supplied by the user). For instance, the meaning of the <h1> tag in the fol-
lowing line is something like: “display the text ‘Heading’ in a large font, bold face”
(for example, 24 point Times New Roman).

<h1>Heading </h1>

44

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 44

As an HTML author who is also well versed in CSS, you can change that
meaning by redefining the style as in the following line of code.

<h1 style=”font-family:algerian;color:red;font-size:4em”>Heading</h1>

Figure 2-3 shows the resulting document, paralist2.htm, in the browser.

However, your creativity has limits: all possible meanings are about how
the text within the tags is to be displayed in the browser. This is what HTML
expressions within the body are mostly about. The important point here is that
the meaning of HTML tags and attributes is determined by a stylesheet and
a specific application—the browser—that interprets it.

By contrast, XML is not a language. It doesn’t have a specific markup
vocabulary or a specific grammar. Instead, it has a DTD language for defining
vocabularies and grammars. In addition, XML makes no assumptions at all about
the meaning of its markup languages. They can be intended for any application,
and the application alone determines the meaning of the markup.

SGML/HTML = XML/XHTML

In a sense, it is unfair to compare HTML to XML: it’s like comparing a cookie to
a cookie cutter. Or, to change the metaphor, XML is not HTML’s sibling but more
like its (youthful and vigorous) uncle. Figure 2-4 illustrates the relationship.

45

Well-Formed Documents and Namespaces

Figure 2-3. HTML Document with a different stylesheet

031ch02.qxp 5/10/02 2:39 PM Page 45

A good comparison would be between HTML and XHTML. More precisely,
we want to compare an HTML document with the corresponding XHTML docu-
ment; Listing 2-1 and 2-2 give us material for comparison. The most important
difference between them, from which more-specific differences follow, is that an
XHTML document can be checked for well-formedness and parsed in the
absence of a grammar. We have expressed this difference by saying that elements
must form a tree in all SGML languages as well as in all XML languages, but, in
XML languages, additionally, the document’s markup must explicitly show the
tree structure.

HTML and XHTML have several other, less important differences, such as
XML is case sensitive and XHTML tags are defined to be in lowercase. (A good
place to look for a summary of all such differences is Section 4 of the XHTML
spec that lists its differences with HTML 4.0, www.w3.org/TR/xhtml1/#diffs.)
However, most remaining differences between XHTML and HTML pages result
from the behavior of the parser that processes them rather than from any differ-
ences in their grammar and underlying framework.

Parsers with Attitude

HTML parsers are famously tolerant of ungrammatical Web pages: they will dis-
play a page without complaint even if it lacks the <html> and <head> elements,
has unquoted attribute values, and shows other violations of HTML rules. For
instance, the page shown here (paralistbad.htm) will display correctly in both IE
and Netscape browsers, possibly with differences in whitespace:

<p style=color:maroon;font-size:2em>a paragraph followed by a list

item one

item two

46

Chapter 2

Figure 2-4. SGML and XML

031ch02.qxp 5/10/02 2:39 PM Page 46

As you can imagine, this means a lot of work both for parser writers, and for
parsers themselves. All SGML parsers are complex, but HTML parsers are even
more so because they try to anticipate and correct users’ mistakes. XML is more
economical on all counts. (One of XML’s design goals was that it shall be easy to
write programs that process XML documents.) XML parsers, especially nonvali-
dating ones, are small and relatively easy to write both because XML is simpler
than SGML and because XML’s attitude to syntax errors is totally negative.

Error handling by XML parsers is not only strict, it is also uniform. The W3C
XML recommendation, in a section on conformant processors, precisely specifies
what a processor must do in response to different kinds of errors. There is, as we
mentioned in Chapter 1, a test suite that is designed to test the parser’s compli-
ance with the XML specification, especially in its error handling. (See
http://oasis-open.org/committees/xml-conformance/xml-test-suite.shtml.)

There are two main reasons for this strict attitude. First, XML parsers are fre-
quently used to mediate between computer applications or components within
an application. XML data is often generated by a program and consumed by
another program that performs computations on it. In this sort of configuration,
ill-formed data must be inadmissible. (In particular, it must be inadmissible to
feed the same XML data into two different browsers and see one of them succeed
and the other fail to parse it.) Second, XML was developed from the start in anti-
cipation of small mobile devices. A parser sitting in a cell phone, wristwatch, or
remote sensor cannot afford the megabytes of memory that are needed to anti-
cipate and accommodate grammatical error.

47

Well-Formed Documents and Namespaces

NOTE Dave Raggett, a longtime staff member at W3C, wrote a remarkable
program called Tidy (http://www.w3.org/People/Raggett/tidy/). It per-
forms several functions on HTML documents: fixes grammatical errors,
points out deprecated features, and converts the HTML document to
XHTML. We will use Tidy in Chapter 7.

Why XHTML?

Why use XHTML instead of HTML? The main reason is that the entire array of
XML technologies becomes available to you. If you want your Web page to be
produced by an XSLT program, you have to make your template HTML material
conformant to XML rules because an XSLT program is an XML document, and if
you enter, for example,
 instead of
, the parser will object.

Since 1999, HTML has been in effect mothballed while XHTML has been an
area of active development. A quick look at the list of W3C recommendations
shows XHTML 1.1—Module-Based XHTML (May 2001) and XHTML Basic for

031ch02.qxp 5/10/02 2:39 PM Page 47

Small Devices (December 2000). If you look inside MathML 2.0 (February 2001),
you will see that “it is designed to be used as a module in documents marked up
with the XHTML family of markup languages” (Appendix A2). Outside W3C,
XHTML has been used to define RDDL (Resource Directory Description
Language), a promising new idea that we will introduce in the section on name-
spaces.

48

Chapter 2

NOTE All new XHTML-based or XHTML-related languages rely on
XHTML modularization, a framework for dividing the large vocabulary of
HTML into small modules that can be independently reused in various
ways. We present XHTML modularization in Chapter 3.

XML Documents Without a DTD

XML documents have logical and physical structure. Logically, a document con-
sists of elements, attributes, and other less important items, such as comments.
Some types of items are processed away in parsing, and the rest are represented
as a tree of nodes. The Infoset recommendation regulates what gets preserved in
the tree.

Physically, a document is a unit of storage (such as a file or a string) for char-
acter data and markup that can include other such units by reference. A generic
name for “units of storage” is “entity.” Most entities have to be declared in a DTD
before they can be used, but two groups of entities can appear in documents
without a DTD. We explain about entities and CDATA sections before presenting
a complete summary and outline of an XML document without a DTD.

Character Entities and Five Predeclared Entities

Character entities represent individual characters by their Unicode numbers,
either decimal or hexadecimal. They are used for markup characters and charac-
ters that are difficult to enter from the keyboard. To refer to a character entity
within a document, place it between an ampersand and a semicolon. For
instance, the copyright symbol (©), whose Unicode number is x00A9, can be
entered into your document in three ways:

© © ©

The ampersand itself can also be entered as a character reference (&),
but it has a special name in addition to the numeric code. Such special names are

031ch02.qxp 5/10/02 2:39 PM Page 48

predeclared for five characters. (See Table 2-1.) To refer to a character by its spe-
cial predeclared name, place it between an ampersand and a semicolon.

Table 2-1. Five Predeclared Entities

CHARACTER ENTITY NAME REFERENCE DECIMAL CODE HEX CODE

& amp & & &

< lt < < <

> gt > > >

" quot " " "

' apos ' ' '

CDATA Sections

If you have a section in your document that contains a great number of markup
characters (such as XML source or Java code), you may want to enter the entire
section as a CDATA section that is not parsed by the processor. The syntax is as
follows,

<![CDATA[“<” & “>” are “angle brackets”]]>

Within XHTML, it is common to put the contents of <script> and <style>
elements in CDATA sections.

The markup of CDATA sections is removed in parsing. The boundaries of
CDATA sections leave no trace in the XPath tree model but may be preserved in
DOM. They are not preserved in the document’s infoset, and the next version
of DOM will conform to the Infoset recommendation and align itself with XPath.

Summary, Outline, and EBNF Productions

In summary, documents without a DTD can contain the following kinds of
material,

• Declaration: Optional but highly recommended, as in

<?xml version=”1.0” encoding=”utf-8”?>

49

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 49

• Elements and attributes: This is the informational core of the document.

• Comments:

<!-- this is a comment -->

• Processing instructions (PIs) (in XML, they are rarely used except to pro-
vide a stylesheet reference):

<?xml-stylesheet href=”style0.css” type=”text/css”?>

• Character entity references.

• References to five predeclared entities: lt, gt, quot, apos, and amp.

• CDATA sections: A document without a DTD follows this outline.

<![CDATA[if(a<b && b<c) return;]]>.

• XML declaration: Nothing can precede it, not even a comment or white-
space.

• Miscellaneous optional material: Comments and PIs, whitespace as
desired. (In a document with a DTD, the DTD or a DTD reference would
appear here.)

• The start tag of the root element.

• All other material, well formed.

• The end tag of the root element.

It is actually easier to say this in EBNF (Extended Backus-Naur Form) than
in English. EBNF is a formal notation for describing the syntax of programming
languages, and it is also used in many XML specifications. In XML 1.0, it is used
to define the well-formedness and validity rules of XML documents. The entire
XML 1.0 boils down to 89 EBNF rules, or “productions” as they are called. It is
useful to be able to read EBNF productions because they pack a lot of infor-
mation in very few lines of text. Here is a small sample, numbered as in XML 1.0,
with brief comments. As you read the rules, remember that the characters ?, +,
and * indicate the number of repetitions: ? stands for 0 or 1, + stands for 1 or
more, and * stands for 0 or more.

50

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 50

Production 1 specifies the structure of a document:

[1] document ::= prolog element Misc*

This says that a document is composed of a prolog, followed by a single ele-
ment (the root of the element tree), followed by optional miscellaneous material.

Prolog is composed of optional elements, as follows: an optional XML decla-
ration, followed by Misc*, followed by an optional DTD, again with Misc*
thrown in:

[22] prolog ::= XMLDecl? Misc* (doctypedecl Misc*)?

Misc* is any sequence of whitespace, comments, and PIs. Here’s the Misc
production (S stands for whitespace, and the vertical bar means “OR”):

[27] Misc ::= Comment | PI | S

[3] S ::= (#x20 | #x9 | #xD | #xA)+

We will show more EBNF in the namespace section later in the chapter.

A “Kitchen Sink” Example

Listing 2-3 shows everything you can find in a DTD-less document (ksink.xml).
Note that, to display escape sequences in the browser, we have to escape the
escapes: for instance, to display < we have to enter &amp;lt;. Because
CDATA sections cannot be nested, we have to enter its closing character
sequence outside the section itself, using entity references. The document is fol-
lowed by a modest CSS stylesheet (ksink.css, Listing 2-4) and a screenshot
(Figure 2-5).

Listing 2-3. All You Can Find in an XML Document Without a DTD
<?xml version=’1.0’ encoding=’utf-8’?>

<!-- The line above is the XML declaration. Nothing can precede it,

not even comments or whitespace.

The line below is a PI. It associates a stylesheet with the document.

In XML, PIs are rarely used for any other purpose.

-->

<?xml-stylesheet href=”ksink.css” type=”text/css”?>

<root_elt>

<h1>Document without a DTD</h1>

<non_empty_element>

This is element content, parsed character data (PCDATA).

To insert a markup character here, such as <, you have to use a reference

51

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 51

to a pre-declared general entity, &amp;lt;

or a character entity, &amp;#60;.

If you have many such characters, you can put them all into a

<![CDATA[CDATA section: <[CDATA[(a<b && b>c)]]>.]]>.

CDATA sections cannot be nested.

You can also use character entities to insert characters that are not easy

to enter from the keyboard, such as the copyright character ©.

(In this case, we used the character’s hexadecimal code, &#38;#xA9;.)

</non_empty_element>

</root_elt>

Listing 2-4. A Minimalist Stylesheet
rootElement, h1, non_empty_element, br {

display: block; margin-bottom: .6em;

}

h1 {font-weight:bold;font-size:large;text-align:center;}

em {font-weight:bold;font-style:italic}

Names and Namespaces

A markup language is a vocabulary of names: the names of elements and attri-
butes. The names of attributes must be unique within an element, but different
elements can have attributes of the same name. We can describe this by saying
that attributes of different elements belong in different namespaces. The notion
of a namespace is very familiar from programming: an object in C++ or Java is
a namespace for its variables and methods; a package in Java is a namespace for

52

Chapter 2

Figure 2-5. XML document without a DTD

031ch02.qxp 5/10/02 2:39 PM Page 52

its class names; a database is a namespace for the names of its tables; and a data-
base table is a namespace for the names of its fields. The ability to partition the
names in your program or database into different namespaces is essential for
preventing name conflicts.

The initial XML 1.0 specification has no provisions for partitioning element
names within a document into different namespaces. This could potentially
result in name conflicts when two different vocabularies are merged in a single
document. The danger is real for XML languages—such as XSLT, SVG, XML
Schema, or JSP—that are designed for use with a great many other languages. It
would be reckless to leave the vocabularies of such languages unprotected. XML
Namespaces (1998) was primarily developed to protect the vocabularies of such
widely used XML languages.

Namespaces and Prefixes

A common way to create a globally unique name is by forming a pair that con-
sists of a namespace prefix and a local name. The namespace prefix uniquely
identifies the namespace, the local name must be unique within that namespace,
and the combination of the two creates a globally unique name. This is how Java
classes and packages operate: the name of a package is globally unique (or at
least has a good chance of being so), class names are unique within a package,
and a fully qualified class name consists of the package name as a prefix, fol-
lowed by a period and the class name. Reversed URLs are often used as package
names: a good deal of Sun’s software is in the com.sun package or its subpack-
ages, for instance:

com.sun.xml.parser.Resolver res = new com.sun.xml.parser.Resolver();

Here, Resolver is a local name, com.sun.xml.parser is both the name of the
package and a unique namespace prefix, and the combination of the two is
a fully qualified, globally unique name of Sun’s Resolver class.

The designers of XML Namespaces had a well-known source of globally
unique names ready at hand: the URL, or its generalization, the URI. It was a nat-
ural decision to make it a source of unique namespace prefixes, so that a unique
element name would consist of a URI prefix to identify the namespace and
a local name that is unique within that namespace. Conceptually, if our company
URL is http://www.n-topus.com, and we want to put our Address element in
a protected namespace, we would say that its fully qualified globally unique
name is something like {http://www.n-topus.com/elemnames}Address.

The problem is that this name, as written, is not a legal XML name, and it’s
also extremely long. The solution of XML Namespaces is to use a two-step proce-
dure for establishing a namespace. In the first step, a unique namespace URI is

53

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 53

declared and mapped to a prefix that contains only legal characters. In the scope
of that declaration, the prefix serves as a proxy for the namespace URI. Here is an
example that you have already seen as Listing 1-15:

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<!-- The rest of the program goes here -->

</xsl:template>

</xsl:stylesheet>

The second line of this code contains a namespace declaration that maps the
URI to a prefix. (The prefix for this particular namespace is usually xsl, but any
prefix would do as long as it is associated with the right URI.) Syntactically, the
declaration is an attribute. The name of the attribute consists of a reserved
sequence of characters, xmlns, followed by a colon and the prefix to which the
namespace URI is mapped; the value of the attribute is the namespace URI. The
scope of the declaration includes the element whose start tag contains that dec-
laration and all the descendants of that element (unless there is another
declaration with more local scope, as discussed shortly).

The XML 1.0 Perspective vs. the XML Namespaces Perspective

A namespace declaration is an attribute only from the “naive” perspective of the
pre-namespace XML 1.0 recommendation. From the perspective of namespace-
aware specifications (such as XPath, DOM, or the infoset), this is not an attribute
at all but a namespace declaration: it is not an attribute node in the DOM or
XPath tree, and it is not an “attribute information item” in the document’s infoset.

A related fact of some importance is that the following two documents are
the same from the XML Namespaces perspective but different from the XML 1.0
perspective:

<a:doc xmlns:a=”http://a.b.c.d.com”><a:p>some text</a:p></a:doc>

<b:doc xmlns:b=”http://a.b.c.d.com”><b:p>some text</b:p></b:doc>

Because DTDs originate with XML 1.0, they are namespace unaware and use
the XML 1.0 perspective. This creates validation problems discussed in the next
chapter.

54

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 54

The Syntax of Names and EBNF Productions

The same colon character (:) that separates xmlns from the prefix being declared
is used to separate the prefix from the local name. Here again, there was a change
from XML 1.0 to XML Namespaces. In XML 1.0, a colon could appear anywhere in
the name except as the first character, any number of times. In the XML
Namespaces recommendation, a colon can appear at most once, as a separator
between the namespace prefix and the local name. In the following EBNF pro-
ductions, NCName is a “No-Colon Name” that does not contain a colon.

[6] QName ::= (Prefix ‘:’)? LocalPart

[7] Prefix ::= NCName

[8] LocalPart ::= NCName

Most of today’s parsers will reject as non-well-formed any documents with
names containing more than one colon.

Scope of Declarations

Namespace declarations are inherited: the scope of a namespace declaration is
the element to which it is attached, together with all its descendants, except
those that declare their own namespaces. Everywhere within that scope, the
names qualified by the prefix belong to the declared namespace. (In the previous
XSLT example, these tag names are stylesheet, output, and template.)
Conversely, if an element’s name has a prefix but no namespace declaration, the
parser will go up its line of ancestors until a declaration for that prefix is found. If
no such declaration is found, the parser must return an error.

Because namespace declarations are inherited, it is possible (and recom-
mended) to declare all namespaces on the root element, as in the example shown
in Listing 2-5.

Listing 2-5. The Root Element of a Document with Three Namespaces
<citeDB

xmlns:dc=”http://purl.org/dc/elements/1.1/”

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:xlink=”http://www.w3.org/1999/xlink”

>

The three namespaces declared on this element are all well known. One of
them is for XLink elements and attributes that will be the subject of much dis-
cussion and an extended example later in this chapter. The other two are for

55

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 55

Resource Description Framework (RDF) and Dublin Core Metadata that are dis-
cussed in detail in Chapter 7.

The same prefix can be mapped to different namespaces within the same
document. It is therefore possible to shadow one declaration with another one in
an embedded element. We have never seen a convincing case for using this func-
tionality, but here is a contrived example (the quotes, however, are real):

<prfx:bk xmlns:prfx=”http://chairman.mao.sayings.org.red”>

<prfx:saying>

The world is progressing, the future is bright

and no one can change this general trend of history.

</prfx:saying>

<prfx:bk xmlns:prfx=”http://chairman.greenspan.sayings.org.green”>

<prfx:saying>

History provides excellent lessons for banking institutions

with regard to appropriate pricing, underwriting, and diversification.

</prfx:saying>

</prfx:bk>

</prfx:bk>

The first prfx:saying element in this example is in the mao.sayings.org.red
namespace, but the second such element is in the more local
greenspan.sayings.org.green namespace. We can prove this by writing an
XSLT that will extract the inherited namespace URI from both of those elements
and color the text content red or green accordingly. In the process, we will see how
namespace URIs are accessed in the XPath tree (not as attributes).

Namespaces in XPath and XSLT

Listing 2-6 is the stylesheet that colors Mao’s sayings red and Greenspan’s green.
It is done in the so-called “push” style of multiple independent templates. We will
discuss and use it extensively in Chapter 5. Our interest here is in the XPath
functions that have to do with namespaces. (Both XPath and DOM have functions
that extract the local name, the qualified name (with the prefix), and the name-
space URI from a given element or attribute node in the tree.) Some of those
functions are used in the highlighted part of the second template. Outside the
second template, there may be details that have not yet been explained: please
suspend your curiosity until Chapter 5.

56

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 56

Listing 2-6. Namespace Handling in XSLT and XPath
<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

version=”1.0”

>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<html><head><title>Two Chairmen’s Wisdom</title></head><body>

<xsl:apply-templates />

</body></html>

</xsl:template>

<xsl:template match=”*[local-name()=’saying’]”>

<xsl:variable name=”color”>

<xsl:choose>

<xsl:when test=”contains(namespace-uri(),’red’)”>red</xsl:when>

<xsl:when test=”contains(namespace-uri(),’green’)”>green</xsl:when>

<xsl:otherwise>blue</xsl:otherwise>

</xsl:choose>

</xsl:variable>

<div style=”{concat(‘color:’,$color)}”>

<xsl:apply-templates/>

</div>

</xsl:template>

</xsl:stylesheet>

The match attribute of that template matches all element nodes (that’s what
the asterisk stands for) such that their local name is saying. As you can see, XPath
has a local-name() function and (a few lines farther down) a namespace-uri()
function. Both return strings that you can work with using XPath string functions,
such as contains(). To compute the color name, we use xsl:choose (the XSLT
equivalent of the switch statement in C and derived languages).

If all namespace URIs contained the color name right after the substring
sayings.org, we could replace the xsl:choose expression with code that extracts
the color name from the namespace URI:

<xsl:variable name=”color”

select=”substring-after(namespace-uri(),’.sayings.org.’)”

>

This would generate different colors from different data without any changes
in the stylesheet.

57

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 57

Default Namespaces

You can save yourself a little typing by creating a default namespace that is not
mapped to a prefix. The syntax is as follows.

<doc xmlns=”http://a.b.c.d.com”><p>some text</p></doc>

From the namespace perspective, this element is equivalent to

<a:doc xmlns:a=”http://a.b.c.d.com”><a:p>some text</a:p></a:doc>

Put differently, prefix-less element names within the scope of a default
namespace declaration belong to the declared namespace. This is very different
from prefix-less names that belong to no namespace at all. For any namespace-
aware program, the two preceding single-line documents are completely
different from

<doc><p>some text</p></doc>

Note that prefix-less attribute names remain in no namespace. The only way
for an attribute to be in a namespace is by having a prefix that is mapped to that
namespace. (See the next section.)

Default namespaces are useful when you have some XML data that you want
to cut and paste into a new XML context. If name conflicts are a possible con-
cern, you can create a default namespace for the data to be pasted in:

<insertFromData xmlns=”http://www.n-topus.com/ns/temp”>

<!-- inserted prefixless data goes here -->

</insertFromData>

To override a default namespace declaration (that is, put an element in its
scope into no namespace), you have to use a special form of the namespace
declaration:

<doc xmlns=”http://a.b.c.d.com”>

<p>this element is in the “http://a.b.c.d.com” namespace</p>

<nons xmlns=””>this element is in no namespace</nons>

</doc>

This facility may also be useful in a cut-and-paste situation.

58

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 58

Namespaces and Attributes

Attributes and elements are treated differently by XML Namespaces because attri-
butes have a natural namespace (their owner element) and don’t need extra
protection. It makes no sense to put attributes in the same namespace as their
owner element instead of simply leaving them in no namespace at all. Attributes
are like local variables in a procedure that don’t need fully qualified names to pre-
vent name conflicts. In XSLT, the attributes of XSLT elements (such as match or
select) remain local:

<xsl:template match=”/”>

It does make sense to put attributes in a namespace of their own that is dif-
ferent from the containing element’s namespace, especially if the attributes come
from an XML language of wide application. Later in this chapter, you will see
examples of XLink attributes that are used to describe links within XML data.
Their (reserved) names are quite common: type, title, href, and so on. To pro-
tect them from conflict with unrelated attributes of the same name, they are
placed into a namespace and are always used with a prefix. (It can be any prefix,
but traditionally xlink: is used.) For examples, see the XLink section that is com-
ing up shortly.

Attributes that are placed in a separate namespace become, in effect, “global
attributes” that can be added to any element in any document to provide specific
functionality. Two important groups of global attributes are those with the fixed
xml: prefix and XLink attributes that usually are mapped to the xlink: prefix. We
introduce them in the remainder of this section.

Attributes with the xml: Prefix

The xml: prefix is reserved by W3C and cannot be used by anybody else. It is
declared in the XML Namespaces recommendation and bound to
www.w3.org/XML/1998/namespace. Several attributes always appear with the xml:
prefix and have a fixed meaning. We mention two: xml:lang and xml:base.

The xml:lang attribute can be added to any element to specify the language
of that element’s content. The value of the attribute is either a two-letter
language code as defined in ISO 639, Codes for the Representation of Names of
Languages, or a language identifier registered with IANA (Internet Assigned
Numbers Authority), or user defined. The two-letter codes cover the most famil-
iar languages, and some of them can be extended to indicate a regional variant:
fr-ca, fr-be, and fr-ch stand for the French dialects of Canada, Belgium, and
Switzerland, respectively. IANA-registered names start with “i-”: i-navajo. User-
defined names start with “x-”: x-esperanto. For an in-depth treatment of

59

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 59

language identifiers in XML, see Robin Cover’s Web page at
http://xml.coverpages.org/languageIdentifiers.html.

A recent newcomer to the xml: family is xml:base. Its purpose is to define
a base URI for resolving relative URIs in parts of XML documents. The value of an
xml:base attribute must be an absolute URI; its scope is the element on which it
is defined and its descendants, unless a descendant defines its own. The most
common use for xml:base will be within xlink:href attributes, to resolve relative
links to images, applets, form-processing programs, style sheets, and other exter-
nal resources.

XLink (XML Linking Language) is a recent (June 2001) W3C recommen-
dation, released together with XBase. It defines several global attributes in the
XLink namespace. The namespace is usually mapped to the xlink: prefix, which
we will use throughout the rest of the book. Although small, the XML Linking
Language is quite intricate and conceptually complex because it overlays a graph
structure over a collection of XML and non-XML resources. It is also a very
important member of the XML family of specifications.

XLink Attributes and XLink Graphs

The purpose of XLink is to establish connections between and among resources.
A resource, as usual, is anything that can be addressed with a URI. It doesn’t have
to be an XML resource; if it is, it does not have to be a complete document
because the URI can be extended with a fragment identifier to select a document
part. A very common kind of fragment identifier is an XPath expression, as you
will see in a moment.

A structure that consists of nodes connected by arcs is called a graph. XLink
is about directed graphs of resources. A graph is called directed if its arcs have
a direction from source to target. In the case of XLink graphs, both source and
target are resources. The nodes and arcs of an XLink graph can also have labels
attached to them.

The most important XLink attribute is xlink:type. It can have several possi-
ble values, including simple and extended. An element that has an xlink:type
attribute with one of those two values is called a link element. A link element
can have any tag name whatsoever: it’s the xlink:type attribute that defines it as
a link element.

Link elements can be simple or extended, depending on the value of
xlink:type. It is important to understand from the start that a link element
describes an entire graph of resources, not just the arcs. The word link is used in
its general meaning, meaning a connection or as a synonym for arc, but a link
element is an XML element that has an xlink:type attribute whose value is
simple or extended. From the XLink perspective, it describes a graph.

60

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 60

Let’s take a look at a simple link element, in comparison with the HTML <a>
element.

A Simple XLink “Link Element” and an HTML
Hyperlink

If you think about it, the HTML <a> element describes a directed labeled arc
between two resources: the source of the arc is the <a> element itself, the target of
the arc is specified in the href attribute, and the label is the content of the <a>
element:

cs303 class list

The closest XLink analog would look like this:

<somePrefix:someElement

xlink:type=”simple”

xlink:href=”classList.xml”

xlink:title=”cs303 class list”

xlink:actuate=”onRequest”>

<!-- wait for user request to traverse the arc -->

xlink:show=”replace”

<!-- upon traversal, replace the current document with the target -->

>

Any text with any non-xlink markup.

</somePrefix:someElement>

The two links show the usual contrast between the fixed appearance and
behavior of HTML and the flexibility of XML. The name of the HTML link ele-
ment is fixed. Links created by that element are for human users. Their labels are
automatically highlighted; even if they are not blue and underlined, which is the
most common way to style them in Web pages, they have to be visible to perform
their function, which is to provide a hypertext jump from the source to the target.
(Such links are called hypertext links.) By default, the jump replaces the source
document with the target in the browser window.

By contrast, an XML simple link element can have any tag name; its content
doesn’t have to be highlighted; it may be intended for human users or programs;
and the behavior of the link is up to the application that processes it. XLink pro-
vides “behavioral attributes” that supply hints about the intended behavior, as
indicated by code comments, but these are just hints and they can be ignored.
Even if they are followed, the hints say nothing about blue underline, the raised
cursor finger, or a single click.

61

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 61

For all the differences between the HTML hypertext link and the XLink sim-
ple link element, they have two important similarities:

• They describe a graph that involves just two resources and a single arc.

• The arc is outbound: its source is local (the link element itself, not speci-
fied by a URI) and its target is remote (specified by a URI).

XLink extended link elements do not have either of these restrictions. An
extended link element can

• describe a complex graph containing multiple sources, targets, and arcs.

• describe arcs that are inbound (local target, remote source) or third-party
(both source and target are remote).

In other words, you can create links from and between resources for which
you don’t have a write permission.

The natural question is: “What does one do with those links?” Hypertext links
are very intuitive: you click on them, and they take you there. If there are multiple
targets, though, where does the click take you? The answer, as always, is that it’s
up to the application to decide what to do with different kinds of links, and as of
today nobody has yet come up with a killer app for multiple-target or third-party
links. All we have is a flexible and powerful language to describe them.

Extended Link Element and Its XLink Graph

To specify a graph, an extended link needs to specify resources and arcs between
them. These are defined by children elements of the extended link element. The
names and namespaces of those elements are completely unconstrained, but
they must all have an xlink:type attribute to indicate their role in the graph. The
possible values of xlink:type for children elements of an extended link element
are as follows:

• locator for “locator elements” that specify remote resources

• resource for “resource elements” that specify local resources

• arc for “arc elements” that specify arcs

The notion of a local resource is a tricky one. A local resource is an XML ele-
ment that satisfies three conditions:

62

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 62

• It is a child of an extended link element or the link element itself.

• It has an xlink:type attribute whose value is resource.

• It does not have an xlink:href attribute.

A remote resource, by contrast, is a resource specified by a URI that is the
value of an xlink:href attribute of a locator element. Put differently, for locator
elements an xlink:href attribute is required, whereas for resource elements an
xlink:href attribute is not allowed. The same exact XML element can be either
a local or a remote resource depending on whether it is specified by a URI refer-
ence or by its position with respect to the link element.

Both locator elements and resource elements must have an xlink:label
attribute that contains an identifying label. The label has to be an NCName; that
is, it cannot have a prefix and a colon. Arc elements (the children of an extended
link element that have xlink:type=”arc”) refer to their source and target
resources using those labels. In summary, the XML structure of an extended link
element looks as shown below. In the outline, elt stands for an arbitrary tag
name, uri for an arbitrary URI, and lbl for an arbitrary label. There have to be
two or more resources and at least one arc. The order of children is not con-
strained by XLink itself but can be constrained by a DTD or some other type of
schema or grammar.

<elt xlink:type=”extended” . . . ><!-- possibly other attributes -->

<!-- external resources / locator elements -->

<elt xlink:type=”locator”

xlink:href=”uri”

xlink:label=”lbl”/>

<!-- local resources / resource elements -->

<elt xlink:type=”resource”

xlink:label=”lbl”/>

<!-- arcs / arc element -->

<elt xlink:type=”arc” xlink:from=”lbl” xlink:to=”lbl” />

</elt>

This outline contains only structural markup that defines the graph. XLink
also has behavioral and semantic markup.

Behavioral and Semantic Markup

You have already seen behavioral attributes, xlink:show and xlink:actuate. Their
values are largely self-explanatory. The specification spells out in some detail

63

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 63

what the conformant applications should do in the presence of behavioral
markup. There are no required actions, only recommended ones:

show: “new”, “replace”, “embed”, “other”, and “none”

actuate: “onLoad”, “onRequest”, “other”, and “none”

Semantic attributes are xlink:title, xlink:role, and xlink:arcrole. The
title attribute can appear on any element to provide a brief description.
The role attribute can appear on extended, simple, locator, and resource ele-
ments. The arcrole attribute can appear on simple and arc elements. Both
xlink:role and xlink:arcrole must be absolute URI, perhaps with a fragment
identifier attached. Their intended use is rather vaguely defined, but see the fol-
lowing RDDL section for an example.

In addition to the xlink:title attribute, extended link-, locator-, and arc-
elements can have any number of children elements of type title, that is, ele-
ments with xlink:type=”title”. Their purpose is to provide a more structured
and extensive annotation or a series of annotations, perhaps in different lan-
guages. (The value of an attribute can only be CDATA.)

Summary of XLink Attributes

Table 2-2, quoted from the XLink specification, shows all XLink attributes and
how they coexist with different values of xlink:type, listed as column headers.
Now that you have seen them all, this table may actually be useful. (R stands for
required, O stands for optional, and the N/A stands for not applicable.)

Table 2-2. Summary of XLink Attributes

ATTRIBUTE SIMPLE EXTENDED LOCATOR ARC RESOURCE TITLE

type R R R R R R

href O N/A R N/A N/A N/A

role O O O N/A O N/A

arcrole O N/A N/A O N/A N/A

title O O O O O N/A

show O N/A N/A O N/A N/A

actuate O N/A N/A O N/A N/A

label N/A N/A O N/A O N/A

from N/A N/A N/A O N/A N/A

to N/A N/A N/A O N/A N/A

64

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 64

An XLink Example

The following document shows an extended link element with third-party arcs.
For our examples, we chose a Bible commentary. The Bible itself, as you know,
contains many more-or-less obvious cross-references within itself, from later to
earlier books. It also contains elaborate rhetorical and narrative patterns that
take time and study to discover, and Bible commentaries point out those cross-
references and patterns. These commentaries also contain cross-references to
themselves and other commentaries, making it all a very tangled graph indeed.

We will do a simple example of a narrative pattern within the Bible itself,
primarily because we couldn’t find any XML-marked Bible commentaries. As
XML source, we use ot.xml, the King James Version marked up by Jon Bosak and
distributed as part of his Religious Works package (www.ibiblio.org/bosak/). The
package contains tstmt.dtd, which defines the markup structure. Both the XML
source and the DTD can be downloaded from this book’s Web site, but the follow-
ing XPath expressions (within XLinks) should be self-explanatory without the
DTD: the root element is tstmt, which contains bookcoll elements (book col-
lections), which contain book elements, which contain chapter elements, which
contain v elements (verses). To select verses 5 through 11, we say [position()>4
and position()<12]. In an XML file, we encode “>” and “<” as > and <.

We assume two namespaces, one for XLink mapped to xlink: and the other
for the text of the commentary, mapped to c:. We do a single extended link ele-
ment, c:comm, but you should think of it as a child of the root element,
c:commentary, that contains an arbitrary number of c:comm extended link ele-
ments. Such collections of third-party links are called linkbases, and we can say
that we show (and process) a minimal linkbase.

An Extended Link

Our example (see Listing 2-7) comes from the story of Joseph (Genesis 37-49) that
contains three dream sequences, each consisting of two dreams. We will describe
this by an extended link element that has three locator elements (one for each
dream sequence) and six arcs, connecting each dream sequence to the other two.

Because the code is quite repetitious, we show only one locator element and
one arc element. All namespaces are declared on the root element. The value of
the xlink:href attribute is a very long string that, on the printed page, has to be
broken into three lines.

65

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 65

Listing 2-7. An Extended Link Example from dreams.xml
<c:comm xlink:type=”extended” xlink:title=”Dreams in the story of Joseph”>

<c:txt>There are three dream sequences in the story of Joseph,

Joseph’s dreams, Prisoners’ dreams and Pharaoh’s dreams.</c:txt>

<c:node type=”narrativePattern”

xlink:type=”locator”

xlink:title=”Joseph’s dreams”

xlink:label=”Jdreams”

xlink:href=

“http://localhost:8080/xmlp/dat/jb/ot.xml

#xpointer(/tstmt/bookcoll/book[bktshort=’Genesis’]

/chapter[37]/v[position()>4 and position()<12])”>

Joseph tells his brothers about his dreams. The dreams predict that the brothers

will bow to Joseph and become subservient to him. The brothers are not happy.

</c:node>

<!-- two more nodes like this -->

<c:crossRef xlink:type=”arc” from=”Jdreams” to=”Pdreams” </crossref>

<!-- five more arcs like this -->

</c:comm>

The new material in this example is the fragment identifier that follows the
URI in the multiline xlink:href attribute. It is a single string that is again broken
into three lines on the printed page:

“http://localhost:8080/xmlp/dat/jb/ot.xml

#xpointer(/tstmt/bookcoll/book[bktshort=’Genesis’]

/chapter[37]/v[position()>4 and position()<12])”

The fragment identifier consists of two parts: a URI and an XPointer
expression. (XPointers are defined in www.w3c.org/tr/xptr.) The
XPointer expression is the function xpointer() whose argument is an XPath
expression. Together, the URI and the XPath expression uniquely identify a node
set on the Internet. In our example, the expression says

at the top-level, pick the “tstmt” element; within that look for a “bookcoll”
which contains a “book” whose “bktshort” (book-title-short) subelement is
“Genesis”; from this book take the 37th “chapter” element; within this chapter
take every verse whose position is > 4 and < 12.

Note that predicates that constrain the set of nodes selected by an XPath
or XPointer expression appear in square brackets after the tag name, as in

66

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 66

[bktshort=’Genesis’] or v[position()>4 and position()<12]. Because
this is an XML document, angle brackets are encoded as > and <.

Note on XPointers

XPointer expressions are mostly XPath expressions, with two additions:

• Expressions that refer to a specific point between two characters in the text
content of the document, and

• Expressions that refer to character ranges within the text content of the
document.

All of the XPointers in this chapter are also XPaths.
It is anticipated that XPointers will typically be used in XLink elements to

indicate link endpoints. When used that way, the XPointer expression is given as
an argument to the xpointer() function, as in our example.

An XLink Application

Our first XLink application does not do much; it does not even output any blue
underlined links to click on. However, it does process an extended link in a gen-
eral way, extracting all the information it contains, including XML data
referenced by XPointers. It is a Web application that uses Java Server Pages (JSPs)
and XSLTs and runs in Tomcat. The XSLTs it uses introduce some useful general-
purpose techniques.

The application assumes that there is a source of XML data that is not subject
to change (the King James Bible). A separate “linkbase” file contains extended
links that are cross-references within the source. The entry page to the appli-
cation is the familiar xx.jsp that expects, as you recall, two arguments: an XML file
and an XSLT to apply to it. In this application, the XML file is our linkbase and the
XSLT is a data-specific program, dreams.xsl. It incorporates, by inclusion, a data
independent, general purpose XLink application called linkTransform.xsl. This is
a fairly complex program that is partially discussed in the next section; a com-
plete explanation will have to wait until Chapter 5. We use it in this chapter to
provide an interesting example of XLink processing. You can experiment with
dreams.xsl and the linkbase even if you skip the next section altogether.

Schematically, the application consist of components shown in Figure 2-6.
The components above the broken line are completely explained in this chapter
and can be experimented with. The components underneath the broken line are
briefly explained in the next section and completely explained in Chapter 5.

67

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 67

The data-specific dreams.xsl is quite readable:

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

version=”1.0”>

<xsl:output method=”html”/>

<xsl:include href=”linkTransform.xsl”/><!-- include another file -->

<xsl:template match=”v”>

<p><xsl:value-of select=”.”/></p>

</xsl:template>

</xsl:stylesheet>

Remember that our task is to understand the syntax and semantics of XLink
and the general outlines of the XSLT that processes it. The complete details of
XSLT are quite involved, but the general outlines are clear. In dreams.xsl, just
note that the code expects to receive some material from linkTransform.xsl that
contains v elements in it. (This is the import of <xsl:template match=”v”>) All it
does is outputs those elements as XHTML <p> elements.

linkTransform.xsl

All the real work is done in linkTransform.xsl, which knows nothing about the
data source. In outline, this is what’s happening. The linkTransform.xsl file
extracts information from the linkbase, including the xlink:href attributes.
These attributes, as we just discussed, contain the data source URI and an

68

Chapter 2

Figure 2-6. An XLink application with extended links

031ch02.qxp 5/10/02 2:39 PM Page 68

XPointer. After some fairly elaborate footwork (which is discussed in detail in the
next section), the XSLT sends both the URI and the XPointer to another JSP appli-
cation. That other JSP, xpn.jsp, returns the data referenced by the XPointers. The
data consists of v elements that contain Biblical verses. Eventually, that data ends
up in dreams.xsl that converts verses to paragraphs.

For example, with Tomcat running and all the files in the right places, this
URL (shown broken over two lines)

http://localhost:8080/xmlp/xx.jsp?

xmlUri=helloXLink/dreams.xml&xslUri=helloXLink//dreams.xsl

results in the screenshot shown in Figure 2-7.

The Code of linkTransform.xsl

This XSLT can be classified as advanced: it goes beyond what we have so far cov-
ered and can be skipped on first reading. We don’t discuss all of it but we do
address two details that concern calling xpn.jsp and sending parameters to it.
First, we introduce the XPath document() function. Its main use is to include
another XML document for processing. So, for instance, if you have an XML doc-
ument additionalData.xml and you want to store its XPath tree in a variable in
your XSLT program, you would say

<xsl:variable name=”moreData” select=”document(‘additionalData.xml’)” />

69

Well-Formed Documents and Namespaces

Figure 2-7. XLink processed with XSLT (Joseph’s Dreams)

031ch02.qxp 5/10/02 2:39 PM Page 69

The document() function takes any URI as argument, including URIs that connect
to JSPs and are followed by a query string. In other words, the document()
function is perfectly happy to connect to a JSP application and send it some
arguments. For instance, at some point in linkTransform.xsl, we say

<table border=”1”><tr><td>

<xsl:apply-templates select=”document(concat($uri,$qstring))/*” />

</td></tr></table>

This results in the following sequence of events.

• The values of two variables, uri and qstring, are concatenated.

• The result is an argument to a document() call that in turn is a call on
xpn.jsp.

• The call returns some material—a single element called <nodeset>—from
the XML data source using an XPath expression. (Both are specified in the
qstring.)

All children elements of the extracted element are processed by whatever
templates will match them in the containing stylesheet that knows about the
structure of the data. In our case, it’s dreams.xsl that outputs the Bible text in
the bordered box in the screenshot.

The two concatenated variables are declared as follows.

<xsl:variable name=”uri” select=”’http://localhost:8080/xmlp/xpn.jsp?’”/>

<xsl:variable name=”qstring” select=”concat(‘x=’,$x-enc,’&p=’,$p-enc)”/>

The first declaration is straightforward, but note the single quotes within
double quotes: the double quotes enclose the XML attribute, and the single
quotes enclose the constant string that becomes the value of the variable.
Without single quotes, the XSLT processor would try to evaluate the string as an
XPath expression.

The qstring declaration concatenates some constant strings and variable
values. Its purpose is to produce the following query string, shown broken over
two lines.

x=ot.xml&p=/tstmt/bookcoll/book[bktshort=’Genesis’]/chapter[37]

/v[position()>4 and position()<12]

Before this string can be sent to the server, it has to be appropriately
encoded. What does appropriately encoded mean? As you know, one can add

70

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 70

parameters to a URI, separated by a question mark, as you saw in Chapter 1 with
xx.jsp (the URI is divided into two lines):

http://localhost:8080/tryXSL/xx.jsp?

xmlUri=helloXSL/hello.xml&xslUri=helloXSL/hello.xsl

The technical name for the part of the URI that follows the question mark is
query string, because it is intended for sending queries to Web applications. The
problem with the query string is that it can contain only characters that are
allowed in a URI. The forbidden characters (including, for instance, square brack-
ets) have to be URL-encoded. The URL encoding of a character consists of a “%”
followed by two hexadecimal digits showing the UTF-8 code for the character.
Because these are single-byte characters, UTF-8 codes are the same as ASCII
codes: space comes out as %20, left bracket as %5B, and right bracket as %5D.

XSLT/XPath Extension Functions

Instead of doing URL encoding by hand, we call a function to do that. XPath itself
does not have such a function but most XSLT processors have a facility for adding
your own extension functions. This facility will be standardized in the next
release of XSLT, but even now it works pretty much the same way in different
implementations. Follow these two steps if you want to call a static method of
a Java class:

1. Declare a namespace which, for Xalan, is
xmlns:java=”http://xml.apache.org/xslt/java”. Note that this is a spe-
cialized use of namespaces, completely unrelated to their use in
general-purpose XML documents, as opposed to XSLT programs.

2. Within XPath, put the namespace prefix before your function call:

java:java.net.URLEncoder.encode().

Because we use a built-in Java function, we don’t have to write any code. The
function is a public static method of the java.net.URLEncoder class.

This is how we extract the XPointers from dreams.xml and encode them:

<xsl:variable name=”h” select=”@xlink:href”/>

<xsl:variable name=”x” select=”substring-before($h,’#xpointer’)”/>

<xsl:variable name=”p” select=”substring-after($h,’#xpointer’)”/>

<xsl:variable name=”x-enc” select=”java:java.net.URLEncoder.encode($x)”/>

<xsl:variable name=”p-enc” select=”java:java.net.URLEncoder.encode($p)”/>

71

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 71

The preceding section shows how x-enc and p-enc are used to construct
qstring. The entire linkTransform.xsl file is shown in Listing 2-8, with the part we
have discussed highlighted. We’ve also highlighted the beginning of every tem-
plate, of which there are several. The stylesheet uses the xsl:apply-templates
construct extensively. We will discuss the construct and the programming style
based on it in Chapter 5. In the meantime, you can experiment by simply chang-
ing the XML file that contains your XLinks.

Listing 2-8. XSLT Stylesheet to Process XLinks
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:c=”http://n-topus.com/ns/jdreams”

xmlns:xlink=”http://www.w3.org/1999/xlink”

xmlns:java=”http://xml.apache.org/xslt/java”

version=”1.0”>

<xsl:output method=”html”/>

<xsl:template match=”/”><-- match root, apply templates to its children -->

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”c:comm”>

<xsl:variable name=”title” select=”@xlink:title”/>

<html> <head> <title> <xsl:value-of select=”$title”/> </title>

</head>

<body >

<h1><xsl:value-of select=”$title”/></h1>

<xsl:apply-templates/>

</body>

</html>

</xsl:template>

<xsl:template match=”c:txt”>

<p><xsl:apply-templates/></p>

</xsl:template>

<xsl:template match=”c:node”>

<h2><xsl:value-of select=”@xlink:title”/></h2>

<p>

<xsl:apply-templates/>

<xsl:variable name=”h” select=”@xlink:href”/>

<xsl:variable name=”x” select=”substring-before($h,’#xpointer’)”/>

<xsl:variable name=”p” select=”substring-after($h,’#xpointer’)”/>

<xsl:variable name=”x-enc” select=”java:java.net.URLEncoder.encode($x)”/>

<xsl:variable name=”p-enc” select=”java:java.net.URLEncoder.encode($p)”/>

<xsl:variable name=”qstring” select=”concat(‘x=’,$x-enc,’&p=’,$p-enc)”/>

<xsl:variable name=”uri” select=”’http://localhost:8080/xmlp/xpn.jsp?’”/>

72

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 72

<table border=”1”><tr><td>

<xsl:apply-templates select=”document(concat($uri,$qstring))/*” />

</td></tr></table></p>

</xsl:template>

</xsl:stylesheet>

The last three lines before the closing tag basically say “get the XPointer-
referenced stuff out of the data source, apply whatever templates apply to it in
the containing XSLT, and put the result in a box on screen.” In our minimal
stylesheet, there is only one simple template, but the document-specific pro-
cessing can be as complex as it needs be. This is the signature feature of the
apply-templates processing model.

The JSP Page

The remaining software module is the JSP that uses XPath to extract a node-set.
Its operation consists of these steps:

1. Parse the data source.

2. Obtain a DOM object.

3. Call a selectNodeList() method to extract the list of nodes that satisfies
the XPath/XPointer condition. The method takes two arguments: the
root of the subtree to apply XPath to and the XPath expression to use.

Because the data source remains unchanged, an obvious optimization is to
parse it once and cache the resulting DOM tree in an object that persists from
one application call to another. Listing 2-9, xpn.jsp, illustrates this idea. In JSP,
a simple way to obtain a persistent object is to make it “application scope.”
Similar functionality is available in ASP.

Listing 2-9. JSP Page with XPath
%@ page errorPage=”error.jsp”

import=”org.apache.xalan.xslt.*,org.apache.xerces.parsers.*,

org.w3c.dom.*,org.apache.xml.serialize.*”

%><jsp:useBean id=”cache” class=”java.util.Hashtable” scope=”application”/><%

String xPath=request.getParameter(“p”);

String xml=request.getParameter(“x”);

if(0>xml.indexOf(“:”)) xml=”file:///”+application.getRealPath(xml);

Document doc=(Document) cache.get(xml);

if(doc==null){ // has not been parsed yet

73

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 73

DOMParser parser=new DOMParser();

parser.parse(xml);

doc=parser.getDocument();

cache.put(xml,doc);

}

NodeList ndList=org.apache.xpath.XPathAPI.

selectNodeList(doc.getDocumentElement(),xPath);

if(ndList==null){ // format and display an error message, see the code file

} else {

OutputFormat outputFormat=new OutputFormat();

outputFormat.setOmitXMLDeclaration(true);

// this XML data is a fragment, no declaration,

// can be spliced into another document

XMLSerializer ser= new XMLSerializer(out,outputFormat);

%><nodeList><%

for(int i=0;i<ndList.getLength();i++)

ser.asDOMSerializer().serialize((Element)ndList.item(i));

%></nodeList><%

}

%>

A similar Web application can be made using ASP: both JScript and VBScript
have all the relevant functionality, including querying DOM trees with XPath
expressions. This feature will become standard in DOM Level 3, currently under
development.

Namespace Controversies and RDDL

Unlike other early XML recommendations (XML 1.0, DOM Level 1, XSLT, and
XPath), XML Namespaces provoked a lot of discussion and argument. Until XML
Schema came along, it was easily the most controversial of XML specifications. It
also provoked a good deal of confusion because XML namespaces were very dif-
ferent from the familiar programming language namespaces, sometimes in
counterintuitive ways.

Namespace Explanations

Fortunately, in response to confusions and controversy, many illustrious people
wrote perceptively about namespaces, including Tim Bray, David Megginson,
and James Clark. All their contributions are online, together with an excellent

74

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 74

FAQ by Ronald Bourret, who also wrote a separate piece exploding namespace
myths. Here is a list of resources from which our own summary is synthesized.

• XML Namespaces by James Clark (www.jclark.com/xml/xmlns.htm)

• XML Namespaces by Example by Tim Bray
(www.xml.com/pub/1999/01/namespaces.html)

• 19 Short Questions about Namespaces (with Answers) by David Megginson
(www.megginson.com/docs/namespaces/namespace-questions.html)

• Namespace Myths Exploded by Ronald Bourret
(www.xml.com/pub/2000/03/08/namespaces/index.html)

• Namespaces FAQ by Ronald Bourret
(www.rpbourret.com/xml/NamespacesFAQ.htm)

A Brief List of Confusions and Controversies

Of the many items that have come up in multiple discussions, we have chosen
three that we think are the most important.

• Unlike in programming languages, the names of XML namespaces are dif-
ferent from the prefixes that qualify local names. Those prefixes (with the
exception of xml:) are arbitrary. The same prefix can map to different
namespaces within the same document, and the same namespace can
map to different prefixes.

• XML 1.0 pre-dates XML Namespaces. It treats namespace declarations as
any other attribute; it treats qualified names as monolithic strings with no
internal structure, and it knows nothing about the relationship between
namespace prefixes and namespace URIs. One consequence of this is that
DTDs and later specifications such as DOM or XPath have different ideas
about element names and document identity.

• Programming language namespaces are real and contain information
about their names. A Java or C++ class contains declarations and defi-
nitions of the names that its own name qualifies. If your class is called
Address, and you have a variable named postalIndex, then the qualified
name of this variable is Address.postalIndex; but, also, the definition of the
Address class declares that variable and specifies some of its properties

75

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 75

(such as data type and initial value). By contrast, XML namespace URI,
contrary to its name (Resource Identifier) does not identify any resource.
There is no commitment whatsoever that de-referencing that URI will get
you to any place reasonable, or any place at all. According to the name-
space recommendation, the namespace URI has no intended meaning: it’s
just a unique string of characters that protects against name conflicts.

This last feature of XML namespaces has been especially difficult to accept.
A number of people argued that a namespace URI should point to a DTD, or an
XML schema, or some such resource that would provide information about the
syntax of the names that belong to that namespace, and perhaps also about their
intended meaning. However, it proved impossible to build a consensus on what
such an authoritative resource would be, and many argued that XML’s unique
decentralized strength is in having its intended interpretation left unconstrained
by anything authoritative.

RDDL to the Rescue

In the end of 2000, Jonathan Borden and Tim Bray developed a compromise pro-
posal that seems to be gaining acceptance. Instead of a specific resource, they
proposed that the namespace URI should point to a resource-description docu-
ment that would describe standard resources (such as stylesheets, schemas, and
so on) in a standard format. They called the format RDDL (Resource Directory
Description Language) (For more information, visit www.rddl.org.)

By design, an RDDL document is human-readable and machine-
processable. For humans, RDDL looks just like XHMTL. To give machines some-
thing to do, RDDL has a single additional element called resource. The resource
element of RDDL is also a simple link element in the XLink sense: it has
a required xlink:type attribute whose value, in the current version of the specifi-
cation, can only be simple. (However, when extended link processors are widely
available, it will probably be common to find an RDDL resource element that is
an extended link element and has XLink resource elements as its children.)

Here is an RDDL example, a document describing resources for the
pdata.xml example of Listing 1-7. We repeat here the beginning of that example,
with a default namespace declaration added.

<?xml version=”1.0”?>

<!-- personal data for people and other kinds of personalities -->

<pdata xmlns=”http://csproj.colgate.edu/xmlp/ns/pdata/”>

...

</pdata>

76

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 76

The namespace URI points to an existing directory,
http://csproj.colgate.edu/xmlp/ns/pdata/, within which the RDDL file,
index.html, is the default. The RDDL file, shown in Listing 2-10, follows this
outline:

• root element with namespace declarations

• introductory prose

• validating resources (DTD, XML Schema, RELAX NG)

• display resources (CSS)

Listing 2-10. An RDDL Example
<!DOCTYPE html PUBLIC “-//XML-DEV//DTD XHTML RDDL 1.0//EN”

“http://www.rddl.org/rddl-xhtml.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”

xmlns:xlink=”http://www.w3.org/1999/xlink”

xmlns:rddl=”http://www.rddl.org/”>

<head><title>PData Resources</title></head><body>

<h1>PData Resources</h1>

<p>

This is a resource file for the <tt>pdata</tt> example of chapters 1 and 2 of

<cite>XML for Programmers</cite> by Alexander D. Nakhimovsky and Tom Myers.

The standard namespace for this example is

http://csproj.colgate.edu/xmlp/ns/pdata/

and that directory’s default,

http://csproj.colgate.edu/xmlp/ns/pdata/index.html,

should be the URL of the current version of this file.

</p>

<h2>Validation</h2>

<p>You can validate a <tt>pdata</tt> document with a dtd,

http://csproj.colgate.edu/xmlp/ns/pdata/pdata.dtd.

</p>

<rddl:resource

xlink:title=”DTD for pdata validation”

xlink:href=”http://www.csproj.colgate.edu/xmlp/ns/pdata/pdata.dtd”

xlink:role=”http://www.isi.edu/in-notes/iana/assignments/media-types/text/xml-

dtd”

xlink:arcrole=”http://www.rddl.org/purposes#validation”

>

77

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 77

<p>A sample DOCTYPE would be</p>

<pre><tt><!DOCTYPE pdata PUBLIC “-//Nakhimovsky-Myers//DTD pdata 0.05//EN”

“http://www.csproj.colgate.edu/xmlp/ns/pdata/pdata.dtd”>

</tt></pre>

</rddl:resource>

<p>You can also validate a <tt>pdata</tt> document with a RELAX NG grammar.</p>

<rddl:resource

xlink:title=”RELAX NG grammar for pdata validation”

xlink:href=”http://csproj.colgate.edu/xmlp/ns/pdata/pdata.rng”

xlink:role=”http://www.rddl.org/#resource”

xlink:arcrole=”http://www.rddl.org/purposes#validation”

>

<p>Such a grammar is available at

http://csproj.colgate.edu/xmlp/ns/pdata/pdata.rng

</p>

</rddl:resource>

<h2>Display</h2>

<rddl:resource

xlink:title=”CSS Style Sheet for pdata display”

xlink:href=”http://csproj.colgate.edu/xmlp/ns/pdata/pdata.css”

xlink:role=

“http://www.isi.edu/in-notes/iana/assignments/media-types/text/css”

>

<p>

There is a simple CSS1 style sheet for pdata documents at

http://csproj.colgate.edu/xmlp/ns/pdata/pdata.css

</p>

</rddl:resource>

</body>

</html>

As you can see, each resource element is a simple link element with
xlink:role and xlink:arcrole attributes on it (in addition to the required
xlink:href). Guidelines on how to use these two attributes (to specify the nature
and purpose of the resource, respectively) can be found at www.rddl.org. Some of
the common natures and purposes are also listed there. The intent is to provide
enough information to make RDDL documents processable by machines.

Some of the required processing is fairly straightforward. Consider DTD vali-
dation. The “RDDL standard” values for the nature and purpose attributes are as
follows.

78

Chapter 2

031ch02.qxp 5/10/02 2:39 PM Page 78

xlink:role=

“ http://www.isi.edu/in-notes/iana/assignments/media-types/text/xml-dtd”

xlink:arcrole=”http://www.rddl.org/purposes#validation”

Given a namespace URI, we extract the document at the end of it (with the
document() function in XSLT) and select an RDDL resource element with the “val-
idation” arcrole. The XPath expression would be

//rddl:resource[@xlink:arcrole=’http://www.rddl.org/purposes#validation’]

If we can confirm that this element has the DTD nature as well, then
xlink:href must be a link to a DTD that can be used for validation in ordinary
ways, as presented in the next chapter.

Similarly, we can look for other standard resources with other standard roles.
It seems plausible that systems of such roles will be developed: with XML used to
describe commercial objects, we can expect a “purchase” role for a resource that
helps you link to software for buying one of whatever it is, and a “complaints-
department” role that helps you link to software to say that what you bought
wasn’t what you thought you were buying.

Conclusion

We’ve covered a lot of ground in this chapter. The most important notion is
a well-formed document, and the second most important notion is a namespace.
We have seen several XML languages, including XHTML, XLink, and RDDL. What
we have not done in this chapter is pose a question such as “How do we check
that a particular XHTML document is not only well formed but also contains only
the markup that is expected in XHTML?” This is the question of validity or con-
formance to a specific grammar, and we take it up in the next chapter.

79

Well-Formed Documents and Namespaces

031ch02.qxp 5/10/02 2:39 PM Page 79

031ch02.qxp 5/10/02 2:39 PM Page 80

CHAPTER 3

DTDs and Validation

THIS CHAPTER WILL DISCUSS DTDs in considerable detail. We start with three frame-
works for testing before proceeding to examples and discussion. Most of the
chapter covers “advanced” topics having to do with the use of entities, name-
space handling, and modularization. Throughout the chapter, we compare
specific features of DTDs with more-recent approaches to validation (RELAX NG
and XML Schema). By the end of the chapter, having covered the foundations
(XML 1.0 and XML Namespaces), we review the infoset, which is currently a W3C
candidate recommendation.

In outline, the chapter proceeds as follows:

• DTDs and validation

• What else do DTDs do? Macros, inclusions, and XHTML modularization

• What’s wrong with DTDs?

• summary of XML 1.0, XML Namespaces, and Infoset

DTDs and Validation

XML inherited DTDs from SGML and simplified their notation but preserved
most of their functions. The main function of a DTD (and the task from which it
derives its name) is to define a document type together with its elements and
attributes. This part of DTD is a grammar for the XML language it defines. As an
example, consider again the DTD of Chapter 1’s Listing 1-5.

<!DOCTYPE exchange [

<!ELEMENT exchange (q, a)>

<!ELEMENT q (#PCDATA)>

<!ELEMENT a (#PCDATA)>

<!ATTLIST exchange tone (friendly|polite|cold|rude) “friendly”>

]>

81

031ch03.qxp 5/10/02 2:37 PM Page 81

Also in Chapter 1, we showed two documents (Listing 1-3 and 1-4), both well
formed, but with one conforming to this DTD and the other violating its rules. In
Listing 1-4, the order of <q> and <a> is reversed, and the tone attribute has a value
that is not listed in the definition. Remembering the terminology, a well-formed
document that also checks out against its DTD is called valid with respect to that
DTD. A parser that understands the DTD language is called a validating parser.
Because you frequently don’t want to validate (because the DTD is not available
or to avoid performance penalty), validating parsers typically have a settable
Boolean flag that turns validation on and off. Unfortunately, XML-aware
browsers, even if they carry a validating parser, do not provide such a flag, and
simply do not support validation as part of displaying the file. If you want to vali-
date and display, validation has to be done from within a program.

Running a Validating Parser

We provide three applications that validate and display either the document or
an error message:

• Windows/IE-specific client-side application using JScript

• Web application using JSP and Tomcat

• Web application using ASP and PWS/IIS

The client-side application is the simplest. To run it, open TestValidityJS.htm
as a local file, enter an XML filename, and click on the Test button. Either the file
source or an error message will be displayed in the text area of TestValidityJS.htm
(as seen in Figure 3-1).

82

Chapter 3

NOTE If you are using IE5.5 with MSXML 3.0, you have to enable the secu-
rity option “Initialize and script ActiveX controls not marked as safe” on
the local intranet domain.

031ch03.qxp 5/10/02 2:37 PM Page 82

To run the Web applications (ASP or JSP), you enter this URL, with a filename
in the end. The first line (shown here divided into two lines for display purposes)
calls IIS on port 80, and the second line (also shown divided) calls Tomcat on
port 8080.

http:// localhost/xmlp/helloDTD/Validate.asp?

xml=TestValidity-Yes.xml

http:// localhost:8080/xmlp/helloDTD/validom.jsp?

xml=helloDTD/TestValidity-Yes.xml

Although the screens look nearly identical for either server and the file layout
is identical for the two servers, the invocations are not quite identical. The ASP is in
the same directory as the XML file, in this case inetpub\wwwroot\xmlp\helloDTD,
and the JSP is in the same directory as a copy of the same XML file,
TOMCAT_HOME\webapps\xmlp\helloDTD, so you would expect the file refer-
ences to be identical, but ASP relative file reference starts at the ASP’s location
whereas JSP relative file reference starts at the JSP’s “webapp,” in this case xmlp
itself. It shouldn’t be a major issue, but it’s worth remembering that these are
almost—but not quite—equivalent setups. If the order of elements is wrong, you
get the error message shown in Figure 3-2.

83

DTDs and Validation

Figure 3-1. Error message from the client-side validator

031ch03.qxp 5/10/02 2:37 PM Page 83

Here is the code for all three programs, to show similarities and differences.
The JScript code is the most compact and goes first.

validateJs.js

This program (shown in Listing 3-1) consists of two pieces, an HTML file with
a form and a JScript file that performs parsing and validating. The HTML file
includes the JScript file by reference. The form within the file has an input box for
the name of the file to be validated, and a text area to show that file if it is valid or
an error message if it is invalid.

Listing 3-1. HTML File for Client-Side Validation
<html><head>

<title>TestValidityJS.htm</title>

<script language=”JScript” src=”validateJs.js”></script>

</head><body>

<form>

fileName=<input type=”text” name=”fileName” value=”TestValidity-Yes.xml”>

result=<textarea name=”result” rows=”10” cols=”80”>

</textarea>

<input type=”button” value=”Test”

onclick=”with(this.form) result.value=returnValidXML(fileName.value)”>

</form>

</body></html>

84

Chapter 3

Figure 3-2. Error message from Web application validator

031ch03.qxp 5/10/02 2:37 PM Page 84

The JScript code returns either an error message or the XML source to the
text area. It seems impossible to display the returned XML document with
a stylesheet (default or otherwise). If it were an HTML document, we could
display it in a separate frame or insert it into the current file using
innerHTML=”some string”. Neither of these options is available for XML
documents.

The code consists of two functions: the main function does the parsing and
validation, and a supporting function constructs an error message. The main
function proceeds as follows: obtain a parser object, set its validation flag to True,
parse, and return either the serialized document or an error message.

function returnValidXML(fileName){

var xmlObj = new ActiveXObject(“MSXML2.DOMDocument”);

xmlObj.validateOnParse = true;

xmlObj.load(fileName); // parse!

var res=getParseErrorXML(xmlObj);

if(res==””) return xmlObj.xml.toString(); // serialize!

else return res;

}

The error-message function extracts various pieces of information from the
error object and concatenates them, together with markup, into a message to be
displayed.

function getParseErrorXML(xmlObj) { // construct error message

with(xmlObj.parseError){

if(errorCode == 0)return “”;

var res=

“<parseError code=’”+errorCode+”’>\n”+

“ <line>”+line+”</line>\n”+

“ <pos>”+linepos+”</pos>\n”+

“ <reason>”+reason+”</reason>\n”+

“</parseError>”;

return res;

}

}

Validate.asp

An ASP-based Web application that validates on the server does recognizably the
same things, except it gets the XML filename from Request and writes the result
to Response. A separate function constructs an error message, as shown in
Listing 3-2.

85

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 85

Listing 3-2. ASP File for Validation
<%@ LANGUAGE=”VBSCRIPT” %>

<%

Function errorXML(xmlDoc)

If xmlObj.parseError.errorCode = 0 Then

errorXML = “”

Else

errorXML = _

“<error type=’”& xmlObj.parseError.errorCode & “‘>” _

& “ <line>” & xmlObj.parseError.line & “</line>” _

& “ <pos>” & xmlObj.parseError.linepos & “</pos>” _

& “ <reason>” & xmlObj.parseError.reason & “</reason>”_

& “</error>”

End If

End Function

With an error function in place, we get the filename from Request, obtain an
instance of the parser, set validation to True, and parse. If there is an error mes-
sage, we parse the XML string produced by the errorXML() function. Either the
parsed error message or the parsed file gets written to Response.

Response.contentType=”text/xml”

Dim xmlFile,xmlObj

xmlFile = Request.QueryString(“xml”)

xmlFile = server.MapPath(xmlFile)

Set xmlObj = CreateObject(“MSXML2.DOMDocument”)

xmlObj.validateOnParse = true

xmlObj.load xmlFile ‘ parse!

If(xmlObj.parseError.errorCode <> 0) Then

xmlObj.loadXML(errorXML(xmlObj))

End If

Response.write(xmlObj.xml)

%>

validom.jsp

This JSP page (shown in Listing 3-3) is almost entirely Java code that is very simi-
lar to ASP in outline. After importing a few classes, it sets up an error handler for
the parser it uses. (The parser has a default error handler but it just silently sup-
presses all error messages.) Note that, in the case of Apache Xerces and many
other parser packages, two parsers are involved: a DOM parser that returns
a DOM document object and a SAX parser that does the actual work of parsing

86

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 86

the text and identifying elements, attributes, the text content, and so on. The out-
put of the SAX parser is used to construct a DOM object. This will be further
explained in the chapters on XML parsing.

Listing 3-3. JSP File for Validation
<%@ page errorPage=”error.jsp” contentType=”text/xml”

import=”org.apache.xerces.parsers.*, org.apache.xerces.dom.*,org.xml.sax.*,

org.apache.xml.serialize.XMLSerializer”

%><%

ErrorHandler errorHandler=new org.xml.sax.ErrorHandler() { // echo errors

public void warning(SAXParseException ex)throws SAXException{throw ex;}

public void error(SAXParseException ex)throws SAXException{throw ex;}

public void fatalError(SAXParseException ex)throws SAXException{throw ex;}

};

String outputString=””; // for error message

With the error handler in place, we obtain an instance of the parser, set its
error handler to the one we’ve just constructed, and set its validation feature to
True. We obtain the filename from the request object and construct a complete
local file URI out of it. At this point, we are ready to say parser.parse(xml). If the
parse is successful, we get a DOM document object and serialize it using an
Apache-specific XMLSerializer class. (This is another facility that will probably be
integrated into the next release of DOM.) If the parse is not successful, we con-
struct an error message and display it. The highlighted comments in the code
indicate the boundaries of the two branches of execution.

DOMParser parser=new DOMParser();

parser.setErrorHandler(errorHandler);

parser.setFeature(“http://xml.org/sax/features/validation”, true);

String xml=”file:///”+application.getRealPath(request.getParameter(“xml”));

try{ // parse and serialize

parser.parse(xml);

org.w3c.dom.Document doc=parser.getDocument();

XMLSerializer ser=new XMLSerializer(out,null);

ser.serialize(doc);

} catch(SAXParseException ex){ // construct error message

outputString=”<?xml version=’1.0’ encoding=’utf-8’?>\n”+ “<error>\n”+

“ <src>”+ex.getSystemId()+”</src>\n”+

“ <line>”+ ex.getLineNumber()+”</line>\n”+

“ <pos>”+ ex.getColumnNumber()+”</pos>\n”+

“ <reason>”+ ex.getMessage()+”</reason>\n”+ “</error>”;

} catch(Exception ex){outputString=”<error>”+ex.getMessage()+”</error>”;}

%><%= outputString %>

87

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 87

DTD Syntax and Examples

Now that we can test and experiment, here is a systematic overview of DTD
syntax, beginning with element declarations and content models.

Element Declarations and Content Models

Element declarations have the following form:

<!ELEMENT element-name (content-model) >

For example:

<!ELEMENT exchange (q,a)>

An element’s name must be a legitimate namespace-aware name as specified
in the qName production of XML Namespaces. (See the section “Syntax of Names
and EBNF Productions” in Chapter 2.) The content model defines the internal
syntax of the element. Five content models can be distinguished: ANY, EMPTY,
children-only, text-only, and mixed (text and children).

ANY and EMPTY

The ANY content model places no restriction on the element’s content. It is not
very useful because everything within that content still has to be declared. For
instance, if you declare

<!ELEMENT anyContent ANY>

and, then, in your document instance, write

<anyContent>

<child>c</child><orphan>o</orphan><waywardChild>w</waywardChild>

</anyContent>

you still have to declare child, orphan, and waywardChild in the DTD for your doc-
ument to be valid. By contrast, recent alternatives to DTD—XML Schema and
RELAX NG—allow element declarations that really place no restrictions on the
element’s content in document instances. Such elements can be given any well-
formed content in an instance document, and the document will remain valid
(assuming that the rest of it is valid).

88

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 88

Here are the EBNF productions. They come from two W3C recommen-
dations: XML 1.0 (46, 47, 49, and 50) and XML Namespaces (14 and 15). The XML
Namespace productions supercede productions 45 and 50 of XML 1.0.

For readability, we have removed multiple occurrences of S? that indicate
where optional whitespace may appear. The cp symbol stands for “content
particle”.

[14] elementdecl ::= ‘<!ELEMENT’ S QName S contentspec ‘>’

[46] contentspec ::= ‘EMPTY’ | ‘ANY’ | Mixed | children

[47] children ::= (choice | seq) (‘?’ | ‘*’ | ‘+’)?

[15] cp ::= (QName | choice | seq) (‘?’ | ‘*’ | ‘+’)?

[49] choice ::= ‘(‘ cp (‘|’ cp)* ‘)’

[50] seq ::= ‘(‘ cp (‘,’ cp)* ‘)’

Here are some examples of children-only content models.

<!ELEMENT p (a,b,c)>

<!ELEMENT p ((a|b),c,d*)>

<!ELEMENT p ((a|b),c?,d*,((e|f),g)+)>

The EMPTY content model is for empty elements, such as
 or
.

Children-Only

The children-only content model allows combinations of choice and sequence
“content particles” that can be of arbitrary depth. The comma is the
sequence separator, and the pipe character (|) is the choice separator. In addition,
the familiar single-character operators (?, *, and +) indicate how many times an
element, a sequence, or a choice may appear. Exactly the same operators and the
pipe character (but not the comma) are used in the EBNF productions that
define the syntax of DTD declarations. So we have a meta-language (EBNF) that
shares some vocabulary with its object language (DTD), which is itself a meta-
language for XML languages.

89

DTDs and Validation

NOTE EBNF, first introduced in Chapter 2, stands for Extended Backus-
Naur Form.

031ch03.qxp 5/10/02 2:37 PM Page 89

The last example says the content model of the p element is a or b, followed
by an optional c, followed by 0 or more d’s, followed by 1 or more of (e or f fol-
lowed by g).

Mixed and Text-Only

The mixed-content model must be specified as a choice whose first element is
#PCDATA, repeated an arbitrary number of times. Here is the EBNF production.

[16] Mixed ::= ‘(#PCDATA’ (‘|’ QName)* ‘)*’ | ‘(#PCDATA)’

Here is an example of a declaration and a matching element within a docu-
ment instance.

<!ELEMENT mix ((#PCDATA|em|strong)*)>

<mix>Text with emphasis and some boldness, too.</mix>

A mixed-content declaration says, in effect, to repeat #PCDATA or the other
possible choices any number of times in any order. The consequence of this way
of declaring mixed content is that it is impossible to specify the order of children
elements within the text or to make some elements required. If, for instance, you
want to allow freeform bug reports with markup for system specification and
program version, the DTD gives you no way to ensure that those elements always
appear in a specific order. By contrast, both XML Schema and RELAX NG allow
you to express these constraints.

If you review productions 46 and 16, you will see that XML 1.0 treats text-only
as a special case of mixed, with the number of children equal to 0. Formally, it
makes sense, but the usage is different enough to justify a distinction: the text-
only content model is common in data-oriented XML in leaf elements of
a regularly structured tree, whereas the mixed-content model is characteristic of
document-oriented XML, in which markup is commonly inserted in long
stretches of text.

Attribute Declarations

Attribute declarations have the following format (this time we’ll start with EBNF):

[17] AttlistDecl ::= ‘<!ATTLIST’ S QName AttDef* ‘>’

[18] AttDef ::= S (QName | NSAttName) S AttType S DefaultDecl

90

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 90

Production 17 says that an attribute declaration consists of a constant string
<!ATTLIST followed by a qName (the name of the element that owns the attri-
butes) and any number of attribute definitions. An attribute definition starts with
a name (a qName for a real attribute, an xmlns: name for a namespace decla-
ration) and proceeds with a type and a default declaration. The “default
declaration” (DefaultDecl in production 18) can indeed be the default value of
the attribute, or it can be one of three constants: #REQUIRED, #IMPLIED, #FIXED.
Their meaning is that the attribute is required, optional, or has a fixed value,
respectively.

Listing 3-4 provides an example.

Listing 3-4. Attribute Declarations
<!ATTLIST someElement

name CDATA #REQUIRED

ISBN ID #REQUIRED

ref2id IDREF #IMPLIED

penname NMTOKEN #IMPLIED

authors NMTOKENS #REQUIRED

answer (YES|NO) “NO”

dessert CDATA “strawberries with icecream”

method CDATA #FIXED “GET”

>

As you can see, the value of an attribute can be of several different types
(unlike the text content of an element, which can be of only one possible type,
PCDATA). The most general attribute type is CDATA (Character DATA). It is
not PCDATA because attribute values are quoted and thus not parsed. However,
to make the parser’s life easier, you still have to encode the < and > characters as
< and >.

In addition to CDATA, an attribute value can be

• NMTOKEN: a string that matches the Name production; no whitespace

• ID: a NMTOKEN that is unique within a document. An attribute of type ID
doesn’t have to be named id, as Listing 3-4 shows.

• IDREF: the value of an attribute of type IDREF must be the value of an
attribute of type ID in the same document. This is a validity constraint that
is checked by a validating parser.

• NMTOKENS, IDREFS: whitespace-separated lists of NMTOKEN and IDREF

Finally, an attribute type can be a vertical-bar-separated enumeration of pos-
sible values, as in YES|NO in Listing 3-4.

91

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 91

Attribute Defaults

The third item in an attribute declaration is a mixed bag of possibilities. It can be
one of two literals, #REQUIRED or #IMPLIED, the second meaning “optional.”
Alternatively, it can provide a default value. This is perhaps the most controver-
sial feature of DTDs because it has nothing to do with validation: instead of
constraining the document, the DTD adds information to it. Many think that this
is a bad idea, both philosophically (because it’s not the DTD’s business to add
information to the document) and practically, because the document will be dif-
ferent depending on whether the parser has access to the DTD and is configured
to consult it. This is not a problem in SGML for which the DTD is always available
and needed, but attribute defaults are problematic in XML.

The behavior of the parser with respect to attribute defaults is not com-
pletely specified. If the parser is validating and validation is on, then, of course,
the default value will be supplied; if the validation is not on or the parser is not
a validating parser at all, then it is not required to consult the DTD, but most of
them do anyway. The parser in Internet Explorer does not validate but supplies
default attribute values.

If the default is the only possible value, you can insert the #FIXED keyword
before it. This is a minor optimization feature.

Infoset Augmentations

In technical language, if a DTD adds an attribute default to its document
instance, we say that it “augments the document’s infoset” by adding an attribute
information item. In addition to default attributes, DTDs can change the docu-
ment’s infoset by modifying whitespace. Suppose, you have an attribute as
follows:

<someElement attr=” words with whitespace “

If the DTD says that the attribute type is CDATA, all whitespace should
be preserved. If the attribute type is NMTOKENS, then the whitespace should be
normalized: leading and trailing whitespace removed, and all other sequences of
whitespace characters replaced by a single space character, #x20. A similar dis-
tinction applies to an element that contains children elements and whitespace: if
the element’s content model is children-only, the whitespace should be removed;
if it’s mixed (text and children), then the whitespace should be preserved.

RELAX NG and XML Schema have diametrically opposite attitudes to infoset
augmentation: RELAX NG avoids it completely whereas XML Schema augments
the infoset much more aggressively than does the DTD. A special term,

92

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 92

Post-Schema-Validation Infoset (or PSVI) has been coined for the result of XML
Schema infoset augmentations.

Consistently minimalist, RELAX NG does not even specify how an XML docu-
ment is to refer to its RELAX NG grammar. Both the XML 1.0 and XML Schema
recommendations do provide such specifications.

A Document and Its DTD

A DTD can be internal, external, or consist of an internal and an external subset.
Our examples so far have shown internal DTDs. External DTD references are
given as part of the document type declaration, as follows:

<!DOCTYPE tstmt SYSTEM “../common/tstmt.dtd”>

<!DOCTYPE wml SYSTEM “http://www.wapforum.org/DTD/wml12.dtd”>

As you can see, a DTD reference is a relative or absolute URI that is preceded
by the SYSTEM keyword. Parts of the document content can also be placed in an
external file and referred to in the same way. Such included external material is
called an external general parsed entity. External entities other than the DTD
have to be named and referred to by name; external DTDs are, in effect,
unnamed external entities. We will show external DTDs and DTDs containing
both an internal and an external subset after we discuss entities.

General and Parameter Entities

Entities are physical units such as characters, strings, and files. Entity references
are syntactic constructs that refer to those units. Entity declarations associate
a name with an entity. An entity reference is formed from an entity name by pre-
fixing it with & (for character entities and general entities) or % (for parameter
entities) and adding a semicolon in the end. See Table 3-1.

Table 3-1. Entity, Entity Name, and Entity Reference

ENTITY ENTITY NAME ENTITY REFERENCE

< lt (pre-declared) <

Parameter entity references can appear only in the DTD, serving, for
instance, as a macro name. General entity references are mostly intended for use
in the document, although they can appear in the DTD as well. In Chapter 2, we
saw the five predeclared general entity names: lt, gt, quot, apos, and amp. All

93

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 93

other general entity names, including those that are predeclared in most HTML
parsers (such as nbsp) have to be declared in the DTD before they can be used in
an XML document.

General entities can be parsed or unparsed. General parsed entities are
XML data (perhaps with no markup), whereas general unparsed entities
are non-XML data: either binary data such as a JPEG image or non-XML
character data such as LaTeX. General unparsed entities have to be external
files referenced by a URI. General parsed entities can be external or internal.
Parameter entities can also be internal or external. Here is a summary list of
entities, followed by examples.

• character entities

• five predeclared single-character general parsed entities

• parsed general entities: internal/external (XML)

• unparsed general entities, external only, non-XML data; must be accompa-
nied by a NOTATION declaration to describe the format of the data

• parameter entities, internal/external

The following examples show parsed general entities and parameter entities.
Unparsed general entities are rarely used, and we will leave them alone, together
with notation declarations. To include unparsed material, you can use, for
instance, XLink and the material’s MIME type to indicate how it should be
processed by your application.

Parsed General Entities

The syntax for declaring general entities is as follows:

<!ENTITY name “string value or URI reference”>

For example (divided into two lines):

<!ENTITY standardDisclaimer

“<disclaimer>We are not liable for anything ever.</disclaimer> “>

The next example shows two general parsed internal entity references: one
within the DTD itself, the other in the document. There is also a character entity
reference.

94

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 94

<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE r [

<!ELEMENT r (c+)><!—r has one or more c children -->

<!ELEMENT c (#PCDATA|d)*><!—c has “mixed” content model -->

<!ELEMENT d (#PCDATA)><!—d is text only, a leaf node -->

<!ENTITY rights “All rights reserved.”>

<!--entity can contain markup and include other entities by reference,

including character references and previously declared entities -->

<!ENTITY standardDisclaimer

“<d>We are not liable for anything ever.

Disclaimer © 1998. &rights;</d> “>

]>

<r><c>

As always, our standard disclaimer applies: &standardDisclaimer;

</c></r>

With the default IE stylesheet, this comes out as shown in Figure 3-3.

The process of replacing an entity with its value is called entity resolution.
Two internal general parsed entities are declared in the DTD: rights and
standardDisclaimer. The first of them is referenced within the DTD itself as part
of the declaration of the second one. Both the reference to rights and the
character entity reference are resolved as part of the second entity declaration.
(Even though the entity value is quoted, it is parsed and entity references within
it are resolved.) The second entity reference is in the document itself. The entity
can contain markup, but it must be balanced: an element cannot start in one
entity and end in another.

95

DTDs and Validation

Figure 3-3. Internal general entities

031ch03.qxp 5/10/02 2:37 PM Page 95

External General Parsed Entities

General entities can be external to the document, referenced by an absolute or
relative URI. We can modify our example by placing the text of the references into
separate files in the entities subdirectory and rewriting the declarations as shown
in Listing 3-5.

Listing 3-5. DTD with External Parsed Entities
<?xml version=”1.0” encoding=”UTF-8”?>

<!DOCTYPE r [

<!ELEMENT r (c+)>

<!ELEMENT c (#PCDATA|d)*>

<!ELEMENT d (#PCDATA)>

<!ENTITY company “N-topus &#38; son.”>

<!-- to output the & character in the document instance,

we have to escape it twice:

the first escape is removed while processing the DTD,

the second is removed in parsing the document

-->

<!-- the next two declarations use external entities, specified by URIs preceded

by the keyword SYSTEM.

The first is specified by an absolute URI, the second by a relative URI -->

<!ENTITY rights SYSTEM

“http://localhost:8080/xslp/helloDTD/entities/rights.txt”>

<!ENTITY standardDisclaimer SYSTEM “entities/stdd.xml”>

]>

<r> <c>Our standard disclaimer applies: &standardDisclaimer;</c>

Your rights are as follows: &rights;

</r>

To have external entities resolved correctly, the document has to be viewed
over HTTP, not as a local file. It comes out as shown in Figure 3-4.

96

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 96

Now that we have introduced and provided examples of external entities,
let’s look in detail at how they are referenced.

External Entity References (Including DTD References)

The external entity declarations in our example are system declarations: they
consist of the keyword SYSTEM followed by an absolute or relative URI:

<!ENTITY rights SYSTEM

“http://localhost:8080/xmlp/helloDTD/entities/rights.txt”>

<!ENTITY standardDisclaimer SYSTEM “entities/stdd.xml”>

The same syntax is used for external DTDs, which are, in effect, external enti-
ties without a name:

<!DOCTYPE tstmt SYSTEM “../common/tstmt.dtd”>

<!DOCTYPE wml SYSTEM “http://www.wapforum.org/DTD/wml12.dtd”>

System declarations identify an entity or DTD by its URI, which is its
absolute or relative address on the Web. This is not a very good way to identify
entities because Web addresses change and sometimes disappear, and the same
entity may be found at different addresses. With much-used DTDs such as
XHTML or WML (Wireless Markup Language), it is a common practice to validate
using a local copy, but SYSTEM identifiers do not provide any way to link your
local copy to the authoritative one. In the world of SGML, there were public iden-
tifiers, preceded by the PUBLIC keyword, that provided that functionality via

97

DTDs and Validation

Figure 3-4. External general entities

031ch03.qxp 5/10/02 2:37 PM Page 97

locally maintained registries. SGML public identifiers follow a precisely defined
syntax and are technically known as Formal Public Identifiers (FPIs). The FPI syn-
tax is as follows. A public identifier consists of four fields separated by the “//”
delimiter:

• The first field is “ISO” for ISO-approved documents, “+” for documents
approved by some other standards body, and “–” for everything else. (W3C
uses “–” for itself because it is not a standards body but rather an industry
consortium.)

• The second and third are owner and title fields, which contain text.

• The last field is the language code, a two-letter string specified in the ISO-
639 standard. (This standard is also used elsewhere in XML, as values of
the lang and xml:lang attributes, for instance.)

XML inherited SGML public identifiers, and many well-known DTDs have
them, as in

<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.2//EN”

“http://www.wapforum.org/DTD/wml12.dtd”>

As you can see, the PUBLIC identifier is here followed by a SYSTEM identifier,
without the SYSTEM keyword. This is actually a requirement specified in XML 1.0
because, in the absence of an established and standard registry structure, PUB-
LIC identifiers are not very useful. However, there is an effort at OASIS to develop
a standard for a network of authoritative registries, similar in their function to
domain name servers. In anticipation, many DTDs start with a comment that
spells out the recommended usage. This is especially true about DTDs produced
by large organizations and consortia, such as W3C. Here is an example from WML
DTD. (As you may know, WML is a display language for mobile devices. It is
part of WAP, the Wireless Application Protocol, developed by WAPForum
[www.wapforum.org]. Later in the chapter, we will show the DTD for XHTML Basic,
which will probably replace WML within the next few years.)

<!--

Wireless Markup Language (WML) Document Type Definition.

WML is an XML language. Typical usage:

<?xml version=”1.0”?>

<!DOCTYPE wml PUBLIC “-//WAPFORUM//DTD WML 1.2//EN”

“http://www.wapforum.org/DTD/wml12.dtd”>

<wml>

98

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 98

...

</wml>

Terms and conditions of use...

-->

The WML public identifier follows the syntax of SGML’s Formal Public
Identifiers, out of respect for SGML legacy and for possible future use. An OASIS
technical committee is working on a system of Internet-wide registries for public
identifiers, tentatively called XML catalogs.

What Are General Entities Good For?

Internal general parsed entities are, in effect, macros or global constants. Like
macros or global constants, they are useful as a shorthand for repeating material.
It is not clear that putting them in a DTD is a good idea because, if the DTD is not
read, the references will remain unresolved. It is probably better to store the
repeating material as XML and include it using XLink/XPointer. (An XInclude
specification is also working its way through the pipeline, although it is still in
a very tentative stage.)

External general entities are for including boilerplate material or creating
modular documents. It certainly feels good to be able to have a document
like this:

<ns:book>&frontMatter; &intro; &ch01; &ch02; &concs; </ns:book>

External general entities are obviously replaceable by XLinks. The goal is to
reference some resource using a local name that is mapped to a URI; declaring
the mapping directly in the document is better than putting the entity definition
in a grammar that may or may not be available. In the case of unparsed entities,
this is pretty much the consensus: to include unparsed content, use an XLink or
have the application process the URI declared as an attribute:

<image src=”images/anImage.jpg”/>

Neither XML Schema nor RELAX NG has anything analogous to general enti-
ties, and, if you are not an SGML pro who is addicted to them, it may be wise to
stay away.

99

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 99

Parameter Entities

Parameter entities (PEs) do have analogs in both XML Schema and RELAX NG
but with a more narrow and focused range of uses. In this section, we present the
syntax and give simple examples. More-complex uses of PEs having to do with
DTD modification and reuse will follow in a separate section.

PE Declaration and Reference; PEs as Macros

Both the declaration and reference contain the percentage (%) symbol. In the
declaration, a space must separate the percentage symbol from the entity’s
name. This example is an excerpt from WML1.2 DTD:

<!-- Task types -->

<!ENTITY % task “go | prev | noop | refresh”>

...

<!ELEMENT do (%task;)>

<!ELEMENT onevent (%task;)>

This example shows a PE whose value is a content model for two different
elements. Instead of repeating it twice, a PE is declared and used.

In a similar way, the XHTML DTD declares a PE called coreattrs that is used
in attribute declarations for many elements:

<!ENTITY % coreattrs

“id ID #IMPLIED

class CDATA #IMPLIED

style %StyleSheet; #IMPLIED

title %Text; #IMPLIED”

>

<!ATTLIST br

%coreattrs;

>

PEs as Documentation

WML1.2 DTD opens with these three declarations:

<!ENTITY % length “CDATA”>

<!-- [0-9]+ for pixels or [0-9]+”%” for percentage length -->

<!ENTITY % vdata “CDATA”>

<!-- attribute value possibly containing variable references -->

100

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 100

<!ENTITY % HREF “%vdata;”>

<!-- URI, URL or URN designating a hypertext node.

May contain variable references -->

All three declare synonyms for CDATA, a quoted character string used as an
attribute value. Their only purpose is to document the intended meaning of the
attribute; for instance, in declaring the img element’s attributes, the WML
DTD says:

<!ATTLIST img

alt %vdata; #REQUIRED

src %HREF; #REQUIRED

localsrc %vdata; #IMPLIED

vspace %length; “0”

hspace %length; “0” . . . >

This is better than declaring src, vspace, and hspace as CDATA, but, of
course, DTD validation does not enforce the intended meaning by checking that
%HREF; is indeed syntactically a URL or that %length; is a length specified as an
integer or a percentage. Similarly, the following two declarations are just syntacti-
cal sugar for human readers:

<!ENTITY % boolean “(true|false)”>

<!ENTITY % number “NMTOKEN”> <!-- a number, with format [0-9]+ -->

Virtually all large, production-quality DTDs from W3C or industry groups
contain multiple declarations of this sort. These are unnecessary in XML Schema
and RELAX NG in which an extensive system of data types is available.

PEs are heavily involved in DTD modification, modularization, and reuse.
This is because, in a DTD, you cannot redefine an element or an attribute, but
you can redefine a PE. The syntax of DTD modularization and reuse is quite com-
plex. We will show it, with examples, in a separate section. Our immediate task is
to bring together everything that can be found in a DTD and a (serialized) XML
document. After that, the Infoset specification will make sense, and we will take
a brief look at it. (As you recall, the Infoset recommendation is intended to har-
monize tree models used in other recommendations, such as DOM, XPath,
XPointer, and (forthcoming) XML Query Language.)

101

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 101

DTD Modification and Reuse

To have an example to experiment with, we’ll write down a DTD for the pdata
(personal data) documents of Chapter 1. Listing 3-6 shows the simplest version.

Listing 3-6. A DTD Example, pdata0.dtd
<!ELEMENT pdata (person*)>

<!ELEMENT person (name,address,bdate,email,favorites)>

<!ATTLIST person

id ID #REQUIRED

access-level CDATA #REQUIRED

>

<!ELEMENT name (title?,last,first,middle?)>

<!ELEMENT address (street,city,state,zip)>

<!ELEMENT bdate (year,month,day)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT favorites (color,drink)>

<!-- everything else is #PCDATA: title, first, last, middle, street, city, etc -->

We can use this DTD to validate pdata documents of Chapter 1. We can also
use to it to validate documents that consist of a single person element or a single
address element. In other words, the document type doesn’t have to be the maxi-
mal element declared in the DTD; this document will validate correctly:

<?xml version=”1.0”?>

<!DOCTYPE person SYSTEM “../dtd/pdata0.dtd”>

<person id=”Prof123” access-level=”teacher”><!-- one person’s data --></person>

Reuse with an Internal Subset in a Document

Suppose we have to deal with different kinds of persons who have different sets
of favorites. Here are the basic facts:

• You cannot redefine elements or attributes, but you can redefine PEs.

• If a PE has more than one definition, the first one wins and the rest are
ignored.

• If a DTD has an internal and an external subset, the internal subset is
processed first, so its definitions override those in the external subset.

102

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 102

So, in order to reuse a DTD, first we go through the following steps:

1. Declare what needs to be modified (for example, an element’s content
model) as a PE.

2. Make the DTD an external subset.

3. Redefine the PE in the internal subset.

In our case (see pdata.dtd), we replace the line

<!ELEMENT favorites (color,drink)>

with

<!ENTITY % favoritesContModel “color,drink”>

<!ELEMENT favorites (%favoritesContModel;)>

This will still validate all those people who have a favorite drink. For a person
who has a favorite book instead, we proceed as shown in Listing 3-7.

Listing 3-7. Overriding Content Models
<?xml version=”1.0”?>

<!DOCTYPE person SYSTEM “../dtd/pdata.dtd” [

<!ENTITY % favoritesContModel “color,book”>

<!ELEMENT book (#PCDATA)>

]>

<person id=”Prof123” access-level=”teacher”>

...

<favorites>

<color>red</color>

<book>Wisdom Book</book>

</favorites>

</person>

This will validate correctly.

Validating Namespaced Documents

A similar technique can be used to validate qNames in documents with name-
spaces. Remember that DTDs predate XML Namespaces and have the XML 1.0
view of names. This results in two problems.

103

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 103

• For DTDs, a namespace declaration is just an attribute and needs to be
declared as such.

• If the namespace declaration is declared as an attribute with a specific pre-
fix mapping and you later change the prefix, the document will no longer
be DTD valid.

Certain risks are associated with declaring a specific prefix in the DTD; for
instance, parts of your document may be pasted into a different document where
they may be in the scope of a different namespace declaration with the same pre-
fix. If it is safe to hardwire the prefix into the DTD, then the xmlns attribute should
be declared FIXED. If such an attribute has a value that is different from its fixed
value, the validating parser will catch that as a parsing error. (Some namespace-
aware parsers insist that xmlns attributes are declared FIXED.)

If you want to preserve the flexibility of changing the prefix mapping in indi-
vidual documents, declare two PEs: suff and pref, one for the suffix that follows
the string xmlns and the other for the prefix. For documents with a different pre-
fix, you redefine suff and pref in the internal subset. So, for instance, your
nsdtdexample.dtd might look as shown in Listing 3-8.

Listing 3-8. Namespaces and DTDs
<!ENTITY % pref “” >

<!ENTITY % suff “” >

<!ENTITY % example.qname “%pref;example” >

<!ENTITY % nsdecl “xmlns%suff;” >

<!ELEMENT %example.qname; (#PCDATA) >

<!ATTLIST %example.qname;

%nsdecl; CDATA #IMPLIED

>

This will validate a document that uses a default namespace. To validate
a document that has the namespace URI mapped to a prefix, redefine suff and
pref in the internal subset, as shown in Listing 3-9.

Listing 3-9. Namespace Suffix Redefined in the Internal Subset of DTD
<!DOCTYPE example SYSTEM “nsdtdexample.dtd” [

<!ENTITY % pref “a:” >

<!ENTITY % suff “:a” >

]>

<a:example xmlns:a=”http://my.namespace.location.net/example”>

Hello, Namespace!

</a:example>

104

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 104

This technique is used in several W3C DTDs, including Modularized XHTML
and MathML.

Reuse Within Another DTD

We can also reuse a DTD within another DTD: for people who like books, we pro-
duce a separate DTD that looks like this (profdata.dtd):

<!ENTITY % favoritesContModel “color,book”>

<!ENTITY % pdatadtd SYSTEM “pdata.dtd”><!—make the old DTD a PE —>

%pdatadtd; <!— include it by reference —>

<!ELEMENT book (#PCDATA)><!— add new element(s) as needed —>

The new DTD includes the original DTD as a PE reference and adds decla-
rations for the new element.

Elements vs. Attributes and Attribute Modifications

Listing 3-10 is an example of the color element redefined as EMPTY and color
values placed in an attribute (pdatac.dtd).

Listing 3-10. An Element Redefined
<!ELEMENT email (#PCDATA)>

<!ENTITY % favoritesContModel “color,drink”>

<!ELEMENT favorites (%favoritesContModel;)>

<!-- name, address and date elements declared here -->

<!ELEMENT color EMPTY>

<!ENTITY % mincolors “red|blue|green”>

<!ENTITY % morecolors “”>

<!ENTITY % colorattr “favcolor (%mincolors;%morecolors;) #REQUIRED”>

<!ATTLIST color

%colorattr;

>

<!ELEMENT drink (#PCDATA)>

This validates the following document:

<?xml version=”1.0”?>

<!DOCTYPE person SYSTEM “../dtd/pdatac.dtd”>

<person id=”Prof123” access-level=”teacher”>

105

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 105

<!-- person data: name, address, etc -->

<favorites>

<color favcolor=”red”/>

<drink>cookie juice</drink>

</favorites>

</person>

To add more colors, we redefine morecolors, as before.

<!ENTITY % favoritesContModel “color,book”>

<!ENTITY % morecolors “|maroon|cyan”>

<!ENTITY % pdatadtd SYSTEM “pdatac.dtd”>

%pdatadtd;

<!ELEMENT book (#PCDATA)>

More favorite colors are now available. Note that, to be reusable, a DTD must
contain a “hook,” that is, a parameter entity that can be redefined. Note also that
the redefined morecolors PE has to start with the pipe character (|). In general,
the reuse is not done by reusing structure but by modifying strings of characters,
because that is what the value of a PE is: a string of characters. A system of code
reuse that is all built around macros and character strings is bound to be awk-
ward to use, prone to error, and difficult to maintain. This is the primary reason
why it makes sense to switch to an XML language for XML grammars: not
because XML syntax is better for human users (DTDs are quite compact and easy
to read), but because its content models and attribute values become structured
entities that are easy to work with.

Conditional Sections

Conditional sections make it possible to include some portions of the DTD con-
ditionally, depending on the value of the conditional section’s keywords. The
keywords are INCLUDE and IGNORE. In the following code, if we replace INCLUDE
with IGNORE, the editorial comment element will no longer be defined.

<![INCLUDE [

<!ELEMENT proofreaderComment (#PCDATA)>

]]>

As you can see, conditional sections are syntactically similar to CDATA
sections but appear in the DTD and not in the document.

How is this useful? If you want something included, why can’t you just
include it? And, if you want something ignored, why can’t you simply comment it

106

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 106

out? Conditional sections are useful because the keywords can be defined (and
redefined) as PEs:

<!ENTITY % editing “INCLUDE”>

<![%editing; [

<!ELEMENT proofreaderComment (#PCDATA)>

]]>

Once the editorial process is over, redefine editing as IGNORE, and the vali-
dating parser will throw an error if there are any proofreaderComment elements
left in the document (because the element is no longer defined). Because editing
is a PE, it can be redefined in the internal subset within a document instance,
without changing the DTD.

You can define the same element in two conditional sections, provided that
they are not both included at the same time. In this example, the q element’s con-
tent model within practiceExam includes answers whereas it doesn’t for realExam:

<!ENTITY % practiceExam ‘INCLUDE’ >

<!ENTITY % realExam ‘IGNORE’ >

<![%practiceExam;[<!ELEMENT q (text, hint*, answer)>]]>

<![%realExam;[<!ELEMENT q (text, hint*)>]]>

For a practice exam, we declare PEs as before. For a real exam, we switch
them around.

XHTML Modularization and XHTML Basic

XHTML modularization is central to client-side display of XML. The vision has
always been to remain with the broadly known vocabulary of HTML but to divide
it into small, independently reusable modules that each provide specific func-
tionality. Modules can be combined into precisely targeted languages that would
require much smaller parsers to validate than would the entire XHTML. (Without
some such capability, XHTML could not be used on small devices, and there was
a danger that the wired and wireless Webs would have difficulty communicating.)
The module mechanism can be used to create new modules that are easy to
combine with XHTML modules. Primary candidates for such new modules
would be MathML (to display mathematical expressions) and SVG (Scalar Vector
Graphics) to add XML-based graphics to Web pages.

It was fairly obvious from the beginning that implementing a modularization
framework as DTDs is possible but awkward. Part of the original vision was to
develop an XML Schema language that would be much better suited for modu-
larization and reuse. That part of the vision failed. XML Schema took much

107

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 107

longer than expected to develop. As its details started taking final shape, it turned
out, somewhat embarrassingly, that it was not very well suited for XHTML modu-
larization. Because its release could no longer be delayed due to the pent-up
pressure of other projects that were dependent upon it, the entire sequence of
XHTML specifications was released with DTD implementations only. They
include, in reverse chronological order:

• XHTML 1.1—Module-Based XHTML (May 31, 2001)

• Ruby Annotation (May 31, 2001)

• Modularization of XHTML (April 10, 2001)

• Mathematical Markup Language (MathML)Version 2.0 (February 21, 2001)
(implements MathML as a module)

• XHTML Basic (December 19, 2000) (depends on Modularization of XHTML
and XHTML 1.1)

Modularization of XHTML defines the overall framework for modularization.
Ruby Annotation defines a small module for “short runs of text alongside the base
text, used in East Asian documents to indicate pronunciation or to provide
a short annotation.” XHTML 1.1 defines the XHTML document type as a col-
lection of modules implemented as a DTD. XHTML Basic is a subset of XHTML
1.1 defined within the modularization framework. MathML Version 2.0 defines
the MathML DTD as a module and provides a combined MathML+XHTML DTD.

108

Chapter 3

NOTE As of this writing, both Modularization of XHTML and XHTML
Basic have empty appendices promising Schema Module
Implementations. XHTML 1.1 has been released without such an appen-
dix. There is a working draft of an implementation published in March
2001 at www.w3.org/TR/xhtml-m12n-schema/. (Note also the newly fashion-
able shortening of modularization to m12n, with the number 12
representing the twelve internal letters that are thus omitted. The first
instance of this odd notational shorthand, as far as we know, was i18n,
for internationalization, used in the HTML DTD recommendation.)

031ch03.qxp 5/10/02 2:37 PM Page 108

XHTML Basic and Wireless Devices

You will notice that XHTML Basic was released before the two recommendations
on which it depends. This is because the release of XHTML Basic could not be
delayed, either. A display language for small devices was one of the main moti-
vations for the modularization framework. XML was from the beginning created
with small devices in mind; XML 1.0 mentions them as one of the reasons why
XML documents should be parsable without a grammar. To preserve the unity of
the Web, it was clearly desirable to give them a display language that is a proper
subset of XHTML.

Developing a general modularization framework using DTDs took a long
time, and developing XML Schema took even longer. In the meantime, two other
display languages for mobile devices were spreading rapidly: WML, developed by
WAP Forum, and cHTML (Compact HTML) that was adopted, with extensions, by
NTT’s DoCoMo in their iMode wireless service. The Web seemed in danger of
splintering into the wired and wireless domains, but the danger was averted after
W3C released XHTML Basic. Both WAP Forum and NTT (in alliance with AOL)
quickly expressed public support for it. WML and cHTML are likely to persist
until devices that support them are phased out, which may take a few years.

Background: Evolution of HTML and XHTML

HTML 3.2 was to a great extent a codification of existing practice, which included
many questionable features. Particularly offensive to the spirit of SGML and XML
were purely presentational tags, such as center or font, that violated the princi-
ple of separating structure from presentation. (Presentation must be provided by
a stylesheet.) HTML 4.0 contains four DTDs: strict, transitional, lax, and frames.
The first three are alternative definitions of head-body documents that differ in
their degree of tolerance for “legacy” HTML: the strict DTD prohibits legacy ele-
ments altogether, the transitional one deprecates them, and the lax one lets them
all in. The frames DTD defines head-frameset documents. XHTML 1.0 drops the
legacy DTD but otherwise is a straight XML rewrite of HTML 4.0. XHTML 1.1 is
a modularized reformulation of XHTML 1.0 strict.

109

DTDs and Validation

NOTE A separate frames DTD is a historical relic. (See James Clark’s
discussion in http://lists.w3.org/Archives/Public/www-html-editor/
2001JanMar/0039.html). It could be quite simply integrated in the other
DTDs by redefining the content model of the HTML element as (head,
(body|frameset)). For some reason, neither XHTML 1.0 nor 1.1 chose to
make the change.

031ch03.qxp 5/10/02 2:37 PM Page 109

Modularization Goals and Use Cases

The goal of modularization is to support the following use cases:

• subset: Specify a language that is a subset of XHTML. XHTML Basic is an
example.

• extend: Add elements and/or attributes to XHTML or its subset. RDDL is
an example: it adds a single element and several XLink attributes to
XHTML.

• embed: Reuse (parts of) XHTML vocabulary within another language.

To support these use cases and ensure interoperability, XHTML modulari-
zation breaks the large vocabulary of HTML into small modules. The operation of
subsetting is done on modules and not individual elements or attributes. To add
another vocabulary, such as MathML, it is also packaged as a module and added
in the same way that XHTML modules are added to a subset of XHTML.

Abstract Modules and Implementations

The framework is organized in two layers: abstract modules, each providing spe-
cific functionality, and implementations of those modules (currently, DTD only).
The modules are divided into three groups, as follows:

The first group consists of a single module that defines common sets of attri-
butes used by many elements in different modules; it also contains definitions of
attribute data types, such as NMTOKEN.

The core group of modules contains modules that are required to be present
in any document type that conforms to the XHTML family. The idea is to ensure
a certain level of interoperability even between different XHTML-based lan-
guages. The core group contains four modules: structure, text, hypertext, and list.
The structure module defines the following elements: html, head, title, and
body. The other three modules of the core group support specific functionalities,
as their names suggest.

The rest of the modules, too numerous to list here, are also functionality spe-
cific, with names such as Applet, Image, Client-side Image Map, and so on.
Forms and tables modules, in addition to regular (X)HTML versions, have
reduced versions for XHTML Basic.

110

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 110

Using an XHTML language without validation is trivial: just use the vocabu-
laries you want. Validation, however, is another story: it requires a careful
“packaging” of modules so that they can be reused and extended in other gram-
mars. In other words, abstract modules have to be implemented in a grammar
formalism in a way that supports the use cases. The remainder of this chapter
shows the DTD implementation, released by W3C as part of XHTML Basic.

The Framework

The DTD implementation of the modularization framework is based on exten-
sive use of PEs, especially conditional sections and the techniques of reuse that
we have seen in the last two sections. It mostly consists of files that implement
shared material, such as the definitions of core attributes and their data types.
These files have a .mod extension. A “qname” file contains the machinery to sup-
port namespaces. The “framework” file includes (using conditional sections) all
the general-purpose modules and also the required modules that all XHTML-
based languages must include.

PE Naming Conventions

The framework is not easy to use. To make it more manageable, we are given an
elaborate system of PE naming conventions, both for modules themselves and
for their content. Consider the list module for creating definition lists, ordered
(numbered) lists and unordered (bulleted) lists. It contains these elements: dl, dt,
dd, ol, ul, and li. Supporting the module are two PEs named xhtml-list.module
and xhtml-list.mod. The .module PE is declared to be INCLUDE or IGNORE and
used as the keyword of a conditional section. The .mod PE is declared to be the
URI of the file that contains the actual declarations. (All such files have names
with the .mod extension.) In the DTD, the MOD file is included by reference,
within a conditional section controlled by the value of the .module PE, as shown
in Listing 3-11.

111

DTDs and Validation

NOTE A complete list of modules can be found at www.w3.org/TR/
xhtml-modularization/abstract_modules.html#s_xhtmlmodules.

031ch03.qxp 5/10/02 2:37 PM Page 111

Listing 3-11. Example of .module and .mod PEs
<!-- Lists Module (required)-->

<!ENTITY % xhtml-list.module “INCLUDE” >

<![%xhtml-list.module;[

<!ENTITY % xhtml-list.mod

PUBLIC “-//W3C//ELEMENTS XHTML Lists 1.0//EN”

“http://www.w3.org/TR/xhtml-modularization/DTD/xhtml-list-1.mod” >

%xhtml-list.mod;

]]>

Each XHTML and XHTML Basic module has such a .module PE and
a .mod PE. In Listing 3-11 (which is quoted from the W3C recommendation),
xhtml-list.mod is defined as a URI pointing to the xhtml-list-1.mod file on the
W3C site. It is common practice to have a local copy and use a relative URI. It
becomes your responsibility to update it when a new version comes out.

PE Naming Conventions Within a Module

Within modules are the following standard PE names for individual elements and
attributes and for groups of elements or attributes:

• .qname: to deal with namespace issues (qname PEs contain prefix and
suffix PEs as in our Listing 3-8 and 3-9 in the section on DTD validation of
namespaced documents)

• .content: to represent the content model of an element type

• .class: to represent elements of similar meaning (the W3C recommen-
dation calls them “elements of the same class”)

• .mix: to represent a collection of element types from different classes

Common Attributes

The .attrib suffix is used to represent a group of PEs that themselves represent
one or more complete attribute specifications. For instance, the frequently used
Common.attrib is defined as follows:

112

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 112

<!ENTITY % Common.attrib

“%Core.attrib;

%I18n.attrib;

%Events.attrib;

%Common.extra.attrib;”

>

The first three entities correspond to the coreattrs, i18n, and events PEs of
the HTML 4.0 DTD. Common.extra.attrib is the empty string that serves as a hook
for possible customizations. Three more .extra PEs are declared for customizing
element content models: Inline.extra, Block.extra, and Misc.extra. They
appear as the last choice within some content models; to customize those mod-
els you redefine the .extra entity as a string that begins with the pipe character.
(Compare our Listing 3-10 in the section on DTD reuse.) You have to do it in the
right place, to make sure that your definition overrides the original one.

Inside the List Module

If we look inside the list module, we’ll find all those PEs and more: everything
down to each individual element’s name, content model, and attribute decla-
ration is parameterized. Listing 3-12 is the section of the list module that defines
unordered list, ul. Brief explanations have been inserted in the listing, and more-
detailed explanations follow it. We want to make it clear that, to actively use the
modularization framework (and relatively few people will have a need to do that),
you will have to spend more time with the W3C recommendation and examples.

Listing 3-12. An Excerpt from the List Module
<!-- ul: Unordered List (bullet styles)-->

<!ENTITY % ul.element “INCLUDE” >

<![%ul.element;[

<!ENTITY % ul.content “(%li.qname;)+” >

<!ELEMENT %ul.qname; %ul.content; >

<!-- both the qname and the content model of each element are PEs,

so they can be modified: qname, to modify the prefix; content model,

to extend the definition as needed -->

<!-- end of ul.element -->]]>

<!ENTITY % ul.attlist “INCLUDE” >

<![%ul.attlist;[

<!ATTLIST %ul.qname;

%Common.attrib;

>

<!-- end of ul.attlist -->]]>

113

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 113

<!-- li: List Item-->

<!ENTITY % li.element “INCLUDE” >

<![%li.element;[

<!ENTITY % li.content

“(#PCDATA | %Flow.mix;)*”

><!-- .mix PEs combine block and inline content models -->

<!ELEMENT %li.qname; %li.content; >

<!-- end of li.element -->]]>

<!ENTITY % li.attlist “INCLUDE” >

<![%li.attlist;[

<!ATTLIST %li.qname;

%Common.attrib;

>

Notice how each element’s name is a .qname PE and each element’s content is
a .content PE so that each element’s declaration has the following form:

<!ELEMENT %li.qname; %li.content; >

Because the element’s name is a PE that starts with a prefix PE, the DTD is
namespace ready. Because its content is a PE, it can be extended or overridden.
To see how it all works together, let’s take a look at XHTML Basic, an XHTML sub-
set for mobile devices.

XHTML Basic DTD

The DTD consists of the driver file (xhtml-basic10.dtd), the content model file
(xhtml-basic10-model-1.mod), and a number of MOD files for individual mod-
ules. The driver file defines “globals,” such as the namespace prefix, and includes
XHTML modules. The content model file overrides selective content models in
the included modules. To customize, you include what you want and create your
own content model file.

The entire modularization framework package of DTD, module, and entity-
definition files can be downloaded as a zipped archive from the W3C Web site.

The Driver File

Because in DTDs the first definition overrides later ones, the content model file is
the first to be included. It is followed by the xhtml-framework module that has to

114

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 114

be included in a DTD for any XHTML-modules language because the module
contains PE definitions for the basic things such as data types, notations, and
namespace-qualified names. Because of complex interdependencies that should
not concern us here, the content model for the pre element must be redefined at
this point. (The HTML pre element, as you recall, serves much the same function
as the CDATA section of XML.)

The next three items include three out of four required modules (text, hyper-
text, and list) that must be included in any language that aspires to belong to the
XHTML modularization family. The bulk of the rest is taken up by including
the other modules, not required for all XHTML-based languages but required for
XHTML Basic. The file concludes with the remaining required module, the struc-
ture module, which defines such elements as html, head, and body.

We show the driver file with almost all comments, a few obscure lines, and
repetitive material removed, as indicated by our comments. The code that
includes modules and our own comments are highlighted. Listing 3-13 shows the
first part, up to the xhtml-text module, and Listing 3-14 shows the second part.

Listing 3-13. The First Part of the Driver File, xhtml-basic10.dtd
<!ENTITY % XHTML.version “-//W3C//DTD XHTML Basic 1.0//EN” >

<!ENTITY % NS.prefixed “IGNORE” >

<!ENTITY % XHTML.prefix “” >

<!-- Reserved for use with the XLink namespace: -->

<!ENTITY % XLINK.xmlns “” >

<!ENTITY % XLINK.xmlns.attrib “” >

<!-- a few lines removed; the content model module is next,

followed by the framework module -->

<!ENTITY % xhtml-model.mod

PUBLIC “-//W3C//ENTITIES XHTML Basic 1.0 Document Model 1.0//EN”

“xhtml-basic10-model-1.mod” >

<!ENTITY % xhtml-framework.mod

PUBLIC “-//W3C//ENTITIES XHTML Modular Framework 1.0//EN”

“xhtml-framework-1.mod” >

%xhtml-framework.mod;

<!ENTITY % pre.content

“(#PCDATA

| %InlStruct.class;

%InlPhras.class;

%Anchor.class;

%Inline.extra;)*”

>

<!ENTITY % xhtml-text.mod

PUBLIC “-//W3C//ELEMENTS XHTML Text 1.0//EN”

“xhtml-text-1.mod” >

%xhtml-text.mod;

115

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 115

This is followed by two more required modules: hypertext and list. They are
“required” in the sense that they are included unconditionally and cannot be eas-
ily removed in languages that are derived from XHTML Basic. By contrast, the
“optional” modules are included conditionally and can be turned off by simply
redefining the .module PE. We show the first three out of eight optional modules
to point out the difference between the tables and forms modules on the one
hand and the rest of them, exemplified by the image module. If you look at the
FPIs within their .mod PE definitions, you will see that the image module is
adopted unchanged from the general XHTML framework but that the tables and
forms modules have been hand crafted for XHTML Basic. It would be more in the
spirit of modularization of XHTML to derive the Tables and Forms modules from
Basic Tables and Basic Forms modules, as it is done in RELAX NG. (An XML
Schema framework for modularization has not yet been implemented.)

Listing 3-14. The Second Part of the Driver File, xhtml-basic10.dtd
<!-- Image Module ...-->

<!ENTITY % xhtml-image.module “INCLUDE” >

<![%xhtml-image.module;[

<!ENTITY % xhtml-image.mod

PUBLIC “-//W3C//ELEMENTS XHTML Images 1.0//EN”

“xhtml-image-1.mod” >

%xhtml-image.mod;]]>

<!-- Tables Module ...-->

<!ENTITY % xhtml-table.module “INCLUDE” >

<![%xhtml-table.module;[

<!ENTITY % xhtml-table.mod

PUBLIC “-//W3C//ELEMENTS XHTML Basic Tables 1.0//EN”

“xhtml-basic-table-1.mod” >

%xhtml-table.mod;]]>

<!-- Forms Module ...-->

<!ENTITY % xhtml-form.module “INCLUDE” >

<![%xhtml-form.module;[

<!ENTITY % xhtml-form.mod

PUBLIC “-//W3C//ELEMENTS XHTML Basic Forms 1.0//EN”

“xhtml-basic-form-1.mod” >

%xhtml-form.mod;]]>

<!-- followed by the link, meta, base, param, and object modules,

same as in XHTML -->

Finally, in the very end, the structure module is included, unconditionally:

116

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 116

<!ENTITY % xhtml-struct.mod

PUBLIC “-//W3C//ELEMENTS XHTML Document Structure 1.0//EN”

“xhtml-struct-1.mod” >

%xhtml-struct.mod;

<!-- end of XHTML Basic 1.0 DTD...-->

The Content Model File

The content model file, xhtml-basic10-model-1.mod, consists of four sections.
The brief first section defines the optional elements within the head element and
the misc.class entity that is a placeholder for future extensions. Recall that all
the .qname entities are declared in the qname module, which is included in the
framework module:

<!ENTITY % HeadOpts.mix “(%meta.qname; | %link.qname; | %object.qname;)*” >

<!ENTITY % Misc.class “” >

The bulk of the content model module is taken up by entities for inline and
block elements. Listing 3-15 shows the inline elements section.

Listing 3-15. The Content Model File, xhtml-basic10-model-1.mod
<!ENTITY % InlStruct.class “%br.qname; | %span.qname;” >

<!ENTITY % InlPhras.class

“| %em.qname; | %strong.qname; | %dfn.qname; | %code.qname;

| %samp.qname; | %kbd.qname; | %var.qname; | %cite.qname;

| %abbr.qname; | %acronym.qname; | %q.qname;” >

<!ENTITY % InlPres.class “” >

<!ENTITY % I18n.class “” >

<!ENTITY % Anchor.class “| %a.qname;” >

<!ENTITY % InlSpecial.class “| %img.qname; | %object.qname;” >

<!ENTITY % InlForm.class

“| %input.qname; | %select.qname; | %textarea.qname;

| %label.qname;”

>

<!ENTITY % Inline.extra “” >

<!ENTITY % Inline.class

“%InlStruct.class;

%InlPhras.class;

%Anchor.class;

%InlSpecial.class;

%InlForm.class;

%Inline.extra;”

>

<!ENTITY % InlNoAnchor.class

117

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 117

“%InlStruct.class;

%InlPhras.class;

%InlSpecial.class;

%InlForm.class;

%Inline.extra;”

>

<!ENTITY % InlNoAnchor.mix

“%InlNoAnchor.class;

%Misc.class;”

>

<!ENTITY % Inline.mix

“%Inline.class;

%Misc.class;”

>

As we said, a complete active mastery of this material requires careful read-
ing of the specification and examples. Within the constraints of this chapter, we
can provide a couple of details that may help understanding.

Entities that get concatenated with InlStruct start with the pipe character,
just as the morecolors PE in our Listing 3-10. When a hook is needed for possible
future customizations, we declare an entity whose value is the empty string; this
is the role of Inline.extra and Misc.class. In customizations, the values of those
entities will also have to start with the pipe character. This is, in effect, how we
express in our “modularization language” the difference between choice and
sequence in content models: PEs for those elements that appear as part of
a sequence start with the pipe, except the first one, chosen more or less arbi-
trarily.

The section of block elements follows the same structure. We will show
a small portion of it:

<!ENTITY % Heading.class

“%h1.qname; | %h2.qname; | %h3.qname;

| %h4.qname; | %h5.qname; | %h6.qname;”

>

<!ENTITY % List.class “%ul.qname; | %ol.qname; | %dl.qname;” >

<!ENTITY % Table.class “| %table.qname;” >

<!ENTITY % Form.class “| %form.qname;” >

<!ENTITY % BlkStruct.class “%p.qname; | %div.qname;” >

118

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 118

As before, entities that get added to other entities start with the pipe
character.

The final section declares “flow” entities, which are catch-all entities that
include all content elements, both block and inline. Because tables are not
appropriate for many small screens, two versions of flow are declared, with and
without tables:

<!ENTITY % FlowNoTable.mix

“%Heading.class;

| %List.class;

| %BlkStruct.class;

%BlkPhras.class;

%Form.class;

%Block.extra;

| %Inline.class;

%Misc.class;”

>

<!ENTITY % Flow.mix

“%Heading.class;

| %List.class;

| %Block.class;

| %Inline.class;

%Misc.class;”

>

<!-- end of xhtml-basic10-model-1.mod -->

Summary: Is This Worth Doing?

Modularization of XHTML is careful to note that “most users of XHTML are not
expected to be DTD authors.” Indeed, developing a custom DTD within the
XHTML modularization framework is an intricate and time-consuming affair. If
you want to try your hand at it, study XHTML Basic or the RDDL DTD at
http://www.rddl.org. Another example is the MathML 2.0 recommendation that
comes with a ready-made DTD for combined XHTML and MathML. Our own
practice is that if you need an XHTML-based language and you need to validate it
and none of the existing DTDs fits your needs, then use RELAX NG and save
yourself a good deal of aggravation.

119

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 119

What’s Wrong with the DTD?

Collecting the observations we have accumulated so far, we have this list of DTD
grievances:

• They have non-XML syntax.

• Element content models and attribute lists can be modified only as PE val-
ues that are unstructured strings of characters.

• They are namespace unaware.

• They have a very primitive system of data types.

Both RELAX NG and XML Schema address all of these issues, in very different
ways, as we will see in Chapter 8.

The DTD, the XML Document, and the Infoset

At this point, we have shown or mentioned everything that can be found
in a DTD:

• element and attribute definitions

• general and parameter entity declarations and definitions

• notation declarations and definitions (mentioned only)

• general and parameter entity references

Here is a summary of everything that can found in an XML document:

• XML declaration

• document type declaration

• internal DTD

• elements and attributes

• comments, PIs

• general entity references and character references

120

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 120

• whitespace that is not part of any of the above (for example, between ele-
ments)

• irrelevant whitespace elsewhere (such as within the end tag of an element)

• CDATA sections

How much of this should be preserved in the document tree? Obviously, ele-
ments and attributes, but what about CDATA sections or comments? If a general
entity is resolved before the tree is constructed, should its boundaries be pre-
served in the tree? The Infoset specification gives the authoritative answers to all
these questions. As you recall, the Infoset recommendation is intended to harmo-
nize tree models used in other recommendations, such as DOM, XPath, XPointer,
and the forthcoming XML Query Language.

The Infoset Overview

Everybody is in agreement that infoset is abstract; the disagreement is over
whether this is good or bad. In infoset’s view, an XML document consists of
abstract information items, of which there are eleven kinds. We get a complete
list from the table of contents for Section 2 of the W3C recommendation:

• the document information item

• element information items

• attribute information items

• processing instruction information items

• unexpanded entity reference information items

• character information items

• comment information items

• the document type declaration information item

• unparsed entity information items

• notation information items

• namespace information items

121

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 121

We notice that unexpanded entity references are information items but the
boundaries of expanded references are not. Appendix D of the recommendation
lists “what is not in the Information Set” (but warns that the list does not claim to
be exhaustive):

• the content models of elements, from ELEMENT declarations in the DTD

• the grouping and ordering of attribute declarations in ATTLIST dec-
larations

• the document type name

• whitespace outside the document element

• whitespace immediately following the target name of a PI

• whether characters are represented by character references

• the difference between the two forms of an empty element: <foo/> and
<foo></foo>

• whitespace within start tags (other than significant whitespace in attribute
values) and end tags

• the difference between CR, CR-LF, and LF line termination

• the order of attributes within a start tag

• the order of declarations within the DTD

• the boundaries of conditional sections in the DTD

• the boundaries of parameter entities in the DTD

• comments in the DTD

• the location of declarations (whether in internal or external subset or
parameter entities)

• any ignored declarations, including those within an IGNORE conditional
section, as well as entity and attribute declarations ignored because previ-
ous declarations override them

122

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 122

• the kind of quotation marks (single or double) used to quote attribute
values

• the boundaries of general parsed entities

• the boundaries of CDATA marked sections

• the default value of attributes declared in the DTD

Future specifications (such as XQuery) and future versions of existing specifi-
cations (XPath and DOM in particular) will be defined in terms of information
items and comply with the infoset requirements.

Conclusion

In this chapter, we covered DTDs and validation, asking both the practical pro-
grammer’s question (how do you validate?) and more-analytical questions (What
is validation for? What else are DTDs good and not good for? How are DTDs
extended and reused?). An important distinction that applies both to DTDs and
other validation tools (XML Schema, RELAX NG) is between validating a docu-
ment and adding information to a document as a side effect of validation. (This
is usually described as “augmenting the infoset of the document.”) DTD can aug-
ment the infoset in several ways: general entities, attribute defaults, and
ID/IDREFs constraints.

We have not talked nearly enough (if at all) about the role of DTDs in human
affairs rather than within programs. The most important consumers of DTDs
may not be validating parsers but human readers, for DTDs frequently
function as:

• a human-readable model of some subject domain

• a design document

• a piece of documentation

• a contract between a group of people or organizations to use the same
document format

Many industries and fields of knowledge have created (or are in the process
of creating) their DTDs. See Robin Cover’s pages at http://xml.coverpages.org
for a comprehensive list. Some of these have started the process of conversion to
XML Schema. When RELAX NG becomes standardized and better known, we
expect its use to spread as well.

123

DTDs and Validation

031ch03.qxp 5/10/02 2:37 PM Page 123

Another important use of DTDs and validation has to do with security. As
XML is increasingly used to exchange information between programs, including
parameters for remote procedures, the issue of XML security is becoming
increasingly important. Validation is an important component of XML security.
(However, like all security precautions, it does incur a performance penalty.) We
will come back to the issue of security and validation in the chapter on Web ser-
vices and SOAP.

124

Chapter 3

031ch03.qxp 5/10/02 2:37 PM Page 124

CHAPTER 4

XML Parsing

THE PURPOSE OF PARSING an XML document is to expose some interfaces to an appli-
cation that needs to work with the document’s data. The XML parser sits in the
middle between an XML document and an application that uses it. This is shown
in Figure 4-1, which is repeated from Figure 1-3 of Chapter 1.

As you know, the main reason for using XML is interoperability. There would
be no interoperability if different parsers treated the same data differently or if
they provided different interfaces. The behavior of an XML parser is heavily regu-
lated on both ends of Figure 4-1. Its treatment of the XML document is precisely
specified in XML 1.0, in the section on conformant processors. Its obligations
towards the application are precisely specified in two APIs that form the subject
matter of this chapter: the DOM (Document Object Model) and SAX (Simple API
for XML).

The reasons there are two APIs have to do with space-time tradeoffs, which
are so common in programming. DOM lays out the document in (memory) space
as a tree data structure that is available to the application all at once. You can tra-
verse and edit the tree, as long as there is enough memory to store it. (Several
estimates suggest that a DOM tree needs at least three times as much memory as
the XML document.) SAX requires a modest amount of memory (which is pro-
portional to the depth of the document tree) because SAX lays out the document
in time and as a sequence of events. It associates an event with each tag (opening
or closing) and with each block of text. You just write the event handlers (also
known as callbacks) and sit back to watch the document pass by. SAX is a very
efficient and flexible tool, but it becomes awkward to use if the way you process
a given element depends upon earlier or later elements in the document.

125

Figure 4-1. The document, the parser, and the application

031ch04.qxp 5/10/02 2:35 PM Page 125

Note that either of the two packages could be implemented using the other
one. You could generate SAX events by traversing a DOM data structure; later in
the chapter, we will show how and explain why you would want to do such
a thing. Conversely, you could build the DOM data structure by appropriate SAX
event handlers. (Many XML parsers work this way, which is why, in Java code, you
will see a DOM parser throw SAX exceptions.) Another way for DOM and SAX to
work together is to apply a SAX parser to a very large document, filter the output
to a smaller document, and convert that to DOM for further processing. DOM,
SAX, and XSLT are well suited for processing chains or pipelines of that nature,
and you will see many of them in the remainder of the book.

Although DOM is easy to understand, SAX may appear puzzling at first, even
if you have done a good deal of GUI programming. (A recent discussion on the
xml-dev list, http://lists.xml.org/archives/xml-dev/200111/msg00180.html,
suggests that SAX is underappreciated and underused.) We will present it first. In
outline, the chapter will proceed as follows:

• SAX overview

• obtaining a parser and setting its properties

• simple example

• more-advanced uses (SAX filters)

• JAXP transformer objects and SAX-to-document conversion

• SAX parsing for non-XML data

• DOM programming, including traversal interfaces

• DOM and SAX working together

Long before we get to the last item of this outline, we want to emphasize that
a sequence of SAX events is just another representation of XML data, equivalent
to text with markup or a DOM tree. All three are standard representations of XML.
In this chapter, we will see a general-purpose tool for converting among the three
representations.

Basic SAX Programming

Unlike most other languages and APIs used in working with XML, SAX does not
come from W3C. W3C standardized DOM very soon after releasing XML 1.0

126

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 126

because a need for standard parser interfaces was clear. As people started using
it, some drawbacks of the DOM approach became obvious: it takes a good deal of
time and a lot of memory to construct a representation for a very large docu-
ment; until it is constructed, you cannot do anything with it; and, if you want to
filter the document’s data and output only a small part of it, you have to parse the
entire document and construct its entire DOM tree before you can start running
your filter.

SAX came about in response to these and similar criticisms that were fre-
quently voiced on the xml-dev list. The person who actually got it done was
David Megginson (http://www.megginson.com). When SAX2 (with support for
namespaces) was released, the project moved to SourceForge
(http://sax.sourceforge.net). SAX is even less of a formal standard than W3C
recommendations—it is not backed by any consortia—but it is very widely
accepted, both by individual developers and by the likes of Sun and IBM, and so
its stability is ensured, at least on the Java platform.

127

XML Parsing

NOTE The .NET platform does not provide a SAX implementation.
Instead, it implements a “pull” interface that allows the programmer
to read in, or skip, the next element. The pull model has some
advantages over SAX and has been implemented in Java also. (See
http://www.kvmworld.com/articles/techtalk/kxml.)

SAX, Java, and Other Languages

The FAQ at sax.sourceforge.net contains this exchange:

Where’s the formal language-independent SAX2 Specification?

There isn’t any, and probably there won’t ever be one. SAX2 in Java is defined
by its interfaces and by the base of running code—it’s more like English
Common Law than the heavily codified Civil Code of ISO or W3C specifi-
cations. Outside of Java, SAX is whatever programmers in that language
decide it should be.

Despite this warning, there are a number of SAX implementations in lan-
guages other than Java, including Microsoft’s MSXML 3.0 and later. (See the FAQ
for links.) However, in describing SAX functionality, we will have to make use of
Java interfaces, even if the implementation is in Visual Basic. (There is an inter-
face definition in Microsoft IDL, but it is specific to COM/ActiveX.) We will
present Microsoft’s SAX implementation as used in VB 6 later in the chapter, in an
application that uses DOM and SAX together.

031ch04.qxp 5/10/02 2:35 PM Page 127

The SAX Trio: Parser, Input Source, and Content
Handler

A SAX application uses at least three objects that work closely with each other:
a parser, a source of XML input, and a “handler” that processes the input in
application-specific ways. The application creates a parser instance and provides
it with two pieces of information: where the XML content is coming from (the
input source) and who is going to process it (content handler). This can be done
in a couple of different ways, depending on the framework in which the parser is
instantiated. Suppose the names of the variables are parser, input, and handler,
respectively. In the original SAX2 framework, the application would have these
two lines of code:

parser.setContentHandler(handler); // register the handler with the parser

parser.parse(input);

In Sun’s JAXP framework (JAVA API for XML Processing), the application
would have this line:

parser.parse(input, handler);

Whatever the setup code, after the parse() method is called, control is
passed to the parser. The parser goes through the input data and passes pieces of
information to the handler (the start tag name, attributes, text content, and so
on) as they are encountered. How do the parser and the content handler commu-
nicate? The answer is that the content handler defines certain agreed-upon
methods, and the parser calls them. The contract between the parser and the
handler (enforced by SAX interfaces) is that if the parser, for instance, discovers
the end tag of an element, it will call the handler’s endElement() method with the
tag name of the element as argument.

This is usually described in the terminology of events and callbacks. A call-
back, in case you are unfamiliar with the term, is a function that you implement
but don’t call: it gets called by the system or framework in response to some
event. Callbacks are common in GUI programming: the user clicks on a button
and in response some onclick() function, written specifically for this occasion,
gets called. In the case of the parser and the handler, the events received by the
handler are not GUI events but the important events in parsing an XML docu-
ment: the document has started, an element has started, an element has ended,
the character content of an element has been found, and so on. SAX provides
standard names for callback functions that are triggered by these events. Writing
a SAX application usually consists of implementing those callbacks.

128

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 128

Callback Illustration

Consider the document of Listing 1-5 (back in Chapter 1):

<exchange><q>What’s up?</q><a>Nothing much.</exchange>

Assuming, as before, that the name of the content handler variable is
handler, the following calls will be made by the parser, in the order shown in
Listing 4-1.

Listing 4-1. Sequence of SAX Callbacks
handler.startDocument()

handler.startElement("exchange")

handler.startElement(“q”)

handler.characters(“What’s up?”)

handler.endElement(“q”)

handler.startElement(“a”)

handler.characters(“Nothing much.”)

handler.endElement(“a”)

handler.endElement("exchange")

handler.endDocument()

This is a simplified and slightly inaccurate picture: the reality is a bit more
complex because of namespaces, attributes, and the limited size of character
buffer. Specifically:

• If the parser is configured to be namespace aware, then it calls
startElement() with three String arguments: local name, namespace URI,
and qName (qualified name).

• Whether the parser is namespace aware or not, startElement() also has an
Attributes argument. If there are no attributes, the argument is null.

• There is no commitment that the text content of an element will be deliv-
ered in a single characters() call. If the text content of an element is large,
it may be spread over several calls on the characters() method.

We will present complete APIs shortly.

129

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 129

Other Handlers, InputSource, and the Locator

In addition to a content handler, the application can register several other han-
dlers with the parser. They are defined in org.xml.sax and org.xml.sax.ext.

• DTDHandler is of limited use because it reports only notations and non-
XML entities. Because we never use either of those, we never use
DTDHandler.

• DeclHandler exposes individual declarations in the DTD. The methods are
internalEntityDecl(), externalEntityDecl(), elementDecl(), and
attributeDecl().

• LexicalHandler provides access to lexical material other than element con-
tent and attribute values. Its methods are comment(), start/endDTD(),
start/endCDATA(), and start/endEntity().

• ErrorHandler allows the programmer to write custom handlers for both
errors and warnings generated by the parser.

• EntityResolver is useful when you know that your document contains
external entities and you want to make sure that they are processed cor-
rectly, rather than relying on the parser’s default behavior.

EntityResolver

EntityResolvers must implement exactly one method:

public InputSource

resolveEntity(java.lang.String publicId, java.lang.String systemId)

throws SAXException, java.io.IOException

The method, and the entire EntityResolver object, is useful in several typical
situations:

• You use a PUBLIC identifier, perhaps resolved by accessing a local registry.

• You use a URI that is not a URL and requires special treatment.

• Your entity content is formatted in a specific way that requires preprocess-
ing before it is submitted to the standard parser.

130

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 130

Whatever the reason, the object returned by resolveEntity() is an
InputSource object, something the parser understands and knows how to
parse. InputSource is a class (not an interface), and InputSource objects can be
delivered to the parser in one of two ways: as the output of the EntityResolver
that is registered with the parser, or directly as an argument to the parse()
method.

InputSource and Other Sources of Input

In SAX2, the interface that declares the methods of a parser object, including the
parse() method, is called XMLReader. Two versions of parse() are declared:

void parse(java.lang.String systemId)

void parse(InputSource input)

In other words, you can give the parser a URL (which must be fully resolved),
or you can give it an InputSource object. An InputSource object, in turn, can be
created from a URL, a local file name, or a stream (text or binary). So, if your
source is specified by a URL, you can give it to the parser in two equivalent ways:

parse(myUrl); // myUrl is a String

parse(new InputSource(myUrl));

If your input comes from a stream, whether character or binary, then you
don’t have a choice: you have to wrap the stream into an InputSource object. If
your input comes from a byte stream, the code may look like this:

InputSource input=new InputSource(myStreamSource);

input.setEncoding(myEncoding); // myEncoding is a String such as “utf-8”

input.setSystemID(baseURI); // baseURI is for resolving relative URLs within input

parse(input);

If your input comes from a (fully qualified) URL and you have a relative URL
within it (for example, <!DOCTYPE contacts SYSTEM “contacts.dtd”>), then your
relative URLs are resolved relative to the absolute URL of the document. If
your input comes from a stream of bytes or characters, then there is a problem:
there is no way to determine from the input how relative URIs are to be resolved,
unless you provide a base URI as a property of the InputSource object.

131

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 131

Input from a File

If your input comes from a local file, you have to convert the file name to a URL.
In Java, this is easily done using the File and URL classes: a File object knows how
to convert itself to a URL object, and a URL object knows how to convert itself to
its string name:

parse((new File(fileName)).toURL().toString());

where fileName is an absolute filename such as C:\data\test.xml.

Creating a Parser

As we said, a SAX application consists of two parts. In the first part, we set
things up:

1. Create a parser instance.

2. Register a content handler with it and possibly other handlers.

3. Obtain an input source.

This part ends when we say parser.parse() (and catch the exceptions). The
second part defines callbacks (that is, the content handler’s methods). They are
contained in a class that implements the ContentHandler interface. The SAX dis-
tribution contains a package of “helper” classes, including DefaultHandler,
a class that provides a default, do-nothing implementation for all the methods of
ContentHandler. Usually, ContentHandler is not implemented directly, but rather
the DefaultHandler is extended to provide definitions of those callbacks that our
application needs to use. You will see how this works in our example.

In this section, we concentrate on the setup part. Java has two main
approaches: SAX2-specified interfaces and Sun’s JAXP (Java APIs for XML
Processing).

132

Chapter 4

NOTE The recent XML Base recommendation
(http://www.w3.org/TR/xmlbase) defines an xml:base attribute that can
be used within a document to specify its base URI for resolving relative
URIs. Its use is not yet common and cannot be relied on.

031ch04.qxp 5/10/02 2:35 PM Page 132

The SAX2 Way

If you don’t mind hardwiring a specific parser into your application, you can sim-
ply say

XMLReader myReader =

new org.apache.xerces.parsers.SAXParser(); // or another parser of your choice

A better way is to use the XMLReaderFactory class that is included in SAX2
distribution. The class has a public static method for creating parser instances:

String parserClass=”org.apache.xerces.parsers.SAXParser”;

// or another parser of your choice

try {

XMLReader myReader =

XMLReaderFactory.createXMLReader(parserClass);

} catch (SAXException e) {

System.err.println(e.getMessage());

}

The method can also be called with no argument, in which case the factory
class will look for the value of the System property org.xml.sax.driver. Your code
is now portable between all installations or contexts in which this property is
defined.

The JAXP Way

JAXP is a collection of lightweight, abstract wrapper classes that make it easy to
instantiate and configure a parser. JAXP also contains abstract classes for creating
very efficient XSLT processors, each implementing a specific XSLT stylesheet
compiled into binary code. We will see XSLT processors later in the chapter; for
now, we concentrate on parsing.

JAXP classes for creating parsers are as follows:

• DocumentBuilder (DOM parser)

• DocumentBuilderFactory

• SAXParser

• SAXParserFactory

133

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 133

This is how you create a parser using JAXP:

SAXParserFactory factory = SAXParserFactory.newInstance();

// set properties as needed

factory.setValidating(true); // default is false, non-validating

factory.setNamespaceAware(true); // default is false

SAXParser saxParser = factory.newSAXParser();

The JAXP SAXParser class is a wrapper around a SAX2 XMLReader object. You
can extract the XMLReader object and use it as described in the preceding
section:

XMLReader reader=saxParser.getXMLReader();

Alternatively, you can use the JAXP SAXParser directly. It has its own parse()
method that provides several convenient features. For instance, you can use
a File object directly:

// filename is a String that is a file name; handler is a ContentHandler

saxParser.parse(new File(filename), handler);

Which parser gets called? Remember that SAX and DOM are just interfaces
and default “do-nothing” implementations for some of them; to get anything
done (like parse a document), the interfaces have to be implemented or default
implementations extended. JAXP itself does not do that: it consists of four
abstract classes that provide factory methods for obtaining instances of a parser
and an XML data source. Specific implementations have to extend the abstract
classes. As part of the JAXP distribution (but not part of JAXP itself), Sun provides
a reference implementation: the Crimson parser in
org.apache.crimson.jaxp.SAXParserImpl. Crimson is a relatively small parser
that does not have the same functionality as Xerces: it supports namespaces but
not XML Schema validation or Xerces’ serialization and XPath features. If you
want to use Xerces, you have to set the System property that creates
a SAXParserFactory:

javax.xml.parsers.SAXParserFactory = org.apache.xerces.parsers.SAXParser

The actual code that uses JAXP classes is not affected in any way.

134

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 134

The ContentHandler Interface

So far, we have been talking mostly about technicalities and preparatory actions.
The substance of the application is the ContentHandler callbacks. Here are the
most important declarations:

// Receive notification of the beginning and end of a document.

void startDocument();

void endDocument();

// Receive notification of the beginning and end of an element.

void startElement(

java.lang.String namespaceURI,

java.lang.String localName,

java.lang.String qName,

Attributes atts

);

void endElement(

java.lang.String namespaceURI,

java.lang.String localName,

java.lang.String qName

);

We will briefly comment on these declarations before going through an
example.

startDocument()—endDocument()

startDocument() is called before any other callbacks, across all handlers, includ-
ing the DTDHandler. The last method to be called is endDocument(); it gets called
even if the ErrorHandler has been notified of an unrecoverable error.

startElement()—endElement() and Namespaces

These are workhorse methods that usually do most of the work. The values of
their arguments depend on how the parser is configured. Within SAX2, the con-
figuration of the parser is determined by two features, each of which can be set to
True or False. One is the namespaces feature, whose name (which looks like
a URL but isn’t) is http://xml.org/sax/features/namespaces; it controls whether
the parser is aware of namespaces at all. If it is set to False, the xmlns declarations
are reported as attributes and element names are reported as qNames, with pre-
fixes included. If the namespaces feature is set to True, then there is the question

135

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 135

of whether to report the xmlns declarations as attributes. This is controlled
by the namespace-prefixes feature, whose name is
http://xml.org/sax/features/namespace-prefixes. The four combinations
of feature values are summarized in Table 4-1, which is adapted from
http://sax.sourceforge.net/?selected=namespaces. You will be able to experi-
ment with different options in the example application of the next section.

Table 4-1. SAX Parser Configurations

NAMESPACES NAMESPACE-PREFIXES NAMESPACE NAMES QNAMES ATTRIBUTES

START/END XMLNS

True False Yes Unknown No

True True Yes Yes Yes

False False Illegal mode

False True Unknown Yes Yes

In practice, if your parser is namespace aware, you usually don’t want name-
space declarations reported as attributes. This leaves you with just two possible
states, corresponding to the first and last rows of the table. If you work with the
JAXP SAXParser rather than SAX2 XMLReader, then you toggle between these two
states using the setNamespaceAware() method of SAXParserFactory that sets the
two features of its XMLReader to opposite values (True-False or False-True). If
the parser is not namespace aware, then namespaceURI and localName are empty
strings, and xmlns declarations are reported as attributes. If the parser is name-
space aware, then all three strings are delivered, but xmlns declarations are not
reported. In this case, namespaceURI will be empty only if no namespaces are
declared. Local and qualified names will be the same in no namespace and in
default namespaces.

startElement() and Attributes

In addition to element names and namespaces, the startElement() method
receives the element’s attributes, if any. They are delivered in an object that
implements the Attributes interface. SAX2 distribution contains a class
that implements the interface, AttributesImpl.

Even though attributes are unordered, the Attributes interface provides
access to them by a 0-based integer index. The index is assigned arbitrarily by the
implementation. Given an index, you can find out everything there is to know
about the corresponding attribute: its local name, qName, namespace URI,
value, and data type. A common way of processing attributes is a For loop:

136

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 136

for(int i=0;i<attr.getLength();i++){

String attrQName=attr.getQName(i);

String attrLocalName=attr.getLocalName(i);

// same for uri, value and data type if needed; process as needed

}

You can also find out the value and the data type by the qName or by a com-
bination of the local name and namespace URI.

There is more to the ContentHandler interface, but we have covered enough
to write a simple but meaningful example, a program that will compile statistics
on how many times every element name, attribute name, and namespace URI
appears in the document.

An Example

The entry page to the program (see Figure 4-2) offers a text area to enter an XML
document and a selection element to set namespace awareness to True or False.
You can also specify a document by a URL.

With the document as shown in the text area and the parser set to be name-
space aware, the output appearing in the text area is shown in Listing 4-2, with
some whitespace rearranged.

137

XML Parsing

Figure 4-2. CountTags, entry page

031ch04.qxp 5/10/02 2:35 PM Page 137

Listing 4-2. Namespace-Aware Parsing Output
<ht:Hashtable xmlns:ht=”http://www.n-topus.com/namespaces/ht”>

<ht:item key=”uri-http://www.n-topus.com/namespaces/a” >1</ht:item>

<ht:item key=”local-beta” >2</ht:item>

<ht:item key=”qName-a:alpha” >1</ht:item>

<ht:item key=”qName-beta” >2</ht:item>

<ht:item key=”uri-” >4</ht:item>

<ht:item key=”qName-alpha” >2</ht:item>

<ht:item key=”local-alpha” >3</ht:item>

</ht:Hashtable>

It shows there is one element in the http://www.n-topus.com/namespaces/a
namespace and four elements in no namespace. (This is the meaning of “4”
occurrences of empty uri.) These are elements whose qname is identical to their
local name. There are two such beta elements and two (out of three) alpha ele-
ments; the remaining alpha element has the local name alpha but the qname
a:alpha. Note that alpha and a:alpha are counted as having the same local name.

If we change the setting to non-namespace aware, we will get different
results, as shown in Listing 4-3.

Listing 4-3. Output from Non-Namespace-Aware Parsing
<ht:Hashtable xmlns:ht=”http://www.n-topus.com/namespaces/ht”>

<ht:item key=”local-” >5</ht:item>

<ht:item key=”attQName-xmlns:a” >1</ht:item>

<ht:item key=”qName-a:alpha” >1</ht:item>

<ht:item key=”qName-beta” >2</ht:item>

<ht:item key=”uri-” >5</ht:item>

<ht:item key=”qName-alpha” >2</ht:item>

</ht:Hashtable>

This time, all URIs and local names are empty, and xmlns:a is counted as an
attribute name. You can experiment by editing the document in the text area and
viewing the output under either setting.

The Code

The HTML page shown in Figure 4-2 displays a form whose action attribute is
TagCount1a.jsp. The idea of the program is quite simple: each name and name-
space URI is used as a hashtable key whose value is the count of this name’s
occurrences in the document. In processing the start tag of each element, the
appropriate key is incremented. In outline, the code proceeds as follows:

138

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 138

1. Import libraries.

2. Define a content handler.

3. Instantiate input source and parser. Configure parser. Parse.

4. Output results (the contents of the hashtable).

We will show the code in two installments.

Import Libraries, and Define a Content Handler

Our content handler defines just one method, startElement(). The method, as
you know, has four arguments: strings for namespace URI, local name, qName,
and an Attributes object. For each of the three strings, we want to perform the
same computation:

• Use the string as a key to retrieve the corresponding value from the
hashtable.

• If the value is Null, set it to 1; otherwise, increment the value by 1.

One way to express it in Java is by a function that takes a hashtable and
a string key as arguments. Because Java hashtables store data as generic objects,
you have to convert each int into an Integer object before putting it into
a hashtable, and you have to cast generic Object objects to Integer objects when
taking it out. (See Listing 4-4.)

Listing 4-4. Converting Simple Type to Object Type in Java
void integerIncr(Hashtable ht,String key){

Integer N=(Integer) ht.get(key);

if (null==N) ht.put(key,new Integer(1));

else ht.put(key, new Integer(1+N.intValue()));

}

More compactly (and perhaps too densely), the same computation can be
expressed as:

Integer uriInt=(Integer) ht.get(uri);

ht.put(uri, new Integer((null==uriInt)?1:1+uriInt.intValue()));

and similarly for the other two strings. The code shown in Listing 4-5 uses
Listing 4-4.

139

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 139

Listing 4-5. Content Handler Definition
<%@ page errorPage=”../error.jsp”

import=”javax.xml.parsers.SAXParserFactory,

javax.xml.parsers.SAXParser,

org.xml.sax.helpers.DefaultHandler,

org.xml.sax.Attributes,org.xml.sax.InputSource,

org.xml.sax.helpers.DefaultHandler, // helper class

java.util.Hashtable,java.util.Enumeration”

%> <%! // declare integerIncr()

// Listing 4-4 goes here

%><%!

class KeyCounter extends DefaultHandler { // this is our ContentHandler

Hashtable ht;

public KeyCounter(Hashtable ht){this.ht=ht;} // constructor accepts Hashtable

public Hashtable getHashtable(){return ht;}

public void startElement(// define the callback

String uri, String local, String qName, Attributes attr){

// add an appropriate prefix to each String

uri=”uri-”+uri; local=”local-”+local;qName=”qName-”+qName;

// for each String argument, increment or set to 1 its value in Hashtable

integerIncr(ht, uri); integerIncr(ht, local); integerIncr(ht, qName);

// do the same with attributes, if any

for(int i=0;i<attr.getLength();i++)

integerIncr(ht,”attQName-”+attr.getQName(i));

}

}

Parsing with JAXP

The part of the code shown in Listing 4-6 sets up the parser and calls its parse()
method.

Listing 4-6. Set up Parser and Parse Using JAXP Methods
// extract URI and text area content from Request

String uriStr=request.getParameter(“uri”);

String docStr=request.getParameter(“doc”);

String useTextArea=request.getParameter(“inputSource”);

// set up InputSource

InputSource iS;

if(!”yes”.equals(useTextArea))

iS=new InputSource(uriStr); // from URI

else iS=new InputSource(new java.io.StringReader(docStr)); // from text area

140

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 140

// create a ContentHandler with a HashTable

Hashtable ht=new Hashtable(); // to hold tag name counts

KeyCounter keyCounter=new KeyCounter(ht); // this is our ContentHandler

// create and configure the parser

SAXParserFactory factory=SAXParserFactory.newInstance();

if(“yes”.equals(request.getParameter(“namespaces”)))

factory.setNamespaceAware(true);

SAXParser parser=factory.newSAXParser();

// all set; parse! (callbacks are set in motion; data is stored in Hashtable

parser.parse(iS,keyCounter);

Output Using JSP Code

In this first version, we will output the contents of the hashtable using Java and
JSP. We extract the keys of the hashtable into an Enumeration object that has two
methods: nextElement() and hasMoreElements(). They are usually deployed
together in a loop, as in Listing 4-7. When you reach the end of the enumeration,
hasMoreElements() returns Null.

In the body of the loop, we get a value for each key and output an ht:item
element with two attributes: key and val. The values of the XML attributes are the
values of our Java variables, so we use the <%= %> JSP construct:

<ht:item key=”<%= key %>” ><%= val %></ht:item>

All together, the output code is shown in Listing 4-7.

Listing 4-7. Code to Display Parser Output in Text Area
// output the contents of the Hashtable

%><textarea rows=”15” cols=”65”>

<ht:Hashtable xmlns:ht=”http://www.n-topus.com/namespaces/ht”>

<%

for(Enumeration e=ht.keys();e.hasMoreElements() ;){

Object key=e.nextElement();

Object val=ht.get(key);

%><ht:item key=”<%= key %>” ><%= val %></ht:item>

<% } %>

</ht:Hashtable>

The entire program of TagCount1a.jsp consists of Listing 4-5, 4-6, and 4-7. In
version 1b, we will replace Listing 4-6 to show parsing without JAXP. In version 2,
we will replace Listing 4-7 with code that outputs the hashtable data by convert-
ing it to XML. This will demonstrate a general technique for converting non-XML
data to XML using a SAX parser.

141

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 141

Creating a Parser Without Using JAXP

The next version uses pure SAX2 (rather than JAXP) to produce the same result.
Because we now have more fine-grained control over namespaces and xmlns
declarations, we need an input element for each. Our user interface is now a two-
frame arrangement so the user can see both the XML text and its tag count at the
same time (TagCountFrames.htm and TagCount1b.htm). (See Figure 4-3.)

In the code, we make the following changes (TagCount1b.jsp).

1. Within imports, we import one more helper class:

import org.xml.sax.helpers.XMLReaderFactory;

2. We declare a String variable to hold the parser class name, get its value
from the input form and use it to create a parser:

String parserClassName=request.getParameter(“parserClass”);

if (null==parserClassName)

parserClassName=”org.apache.xerces.parsers.SAXParser”; // Xerces by

default

XMLReader xmlReader =

XMLReaderFactory.createXMLReader(parserClassName);

142

Chapter 4

Figure 4-3. TagCount with frames

031ch04.qxp 5/10/02 2:35 PM Page 142

3. Because we can control both the namespace and namespace-prefixes
features, we provide code for both:

boolean ns=”yes”.equals(request.getParameter(“namespaces”));

xmlReader.setFeature(“http://xml.org/sax/features/namespaces”, ns);

boolean pref=”yes”.equals(request.getParameter(“prefixes”));

xmlReader.setFeature(“http://xml.org/sax/features/namespace-

prefixes”,pref);

4. Finally, we set the ContentHandler to be our keyCounter class, and
parse:

xmlReader.setContentHandler(keyCounter);

xmlReader.parse(iS);

The ContentHandler class of Listing 4-5 and the output code in Listing 4-7
remain unchanged. In the next version, Listing 4-7 will be replaced with code
that converts a hashtable into XML data and serializes that data to output.
Converting non-XML data (such as hashtable) to XML is an important and fairly
advanced topic that we will cover later in the book. For now, it’s time to take
a break from hashtables and introduce SAX filters.

SAX Filters

A SAX filter is a SAX parser (XMLReader) that owns or otherwise controls another
such parser. That second parser does the actual parsing and feeds SAX events to
the filter. The filter can either suppress an event or forward it on to its content
handler. Extending the metaphor of input sources and event streams, we can say
that the second parser is positioned upstream from the filter.

In order for the filter to receive events from its upstream parser, the filter
must implement the callbacks. In other words, a filter is both a parser and a con-
tent handler that is the content handler for its upstream parser. As a content
handler, it inspects the events coming from the upstream parser. As a parser, it
sends the events that pass its inspection to its content handler. (See Figure 4-4.)

143

XML Parsing

Figure 4-4. SAX filter, upstream parser, and content handlers

031ch04.qxp 5/10/02 2:35 PM Page 143

Suppose that we are writing a filter, the name of its upstream parser is
upParser, the name of the handler is handler, and our filter has a flipCoin()
procedure that returns either 0 or 1. It can then have code like this:

public void startElement(

// as ContentHandler, we process callbacks from upstream parser

String uri, String local, String qName, Attributes attr){

if(flipCoin()==1) // success

// as parser, we have registered a handler and can call its methods

handler.startElement(uri, local, qName, attr);

// else do nothing

}

This would make it difficult to filter out the corresponding endElement
events because, by the time the handler receives such an event, it will have no
idea whether or not the corresponding startElement passed or failed, but this is
not a realistic example: most filters do a more careful inspection of the data com-
ing from upstream.

SAX Support for Filter Writing

One of the Java SAX interfaces is XMLFilter, which extends XMLReader. In other
words, a class that implements an XMLFilter has to implement all of XMLReader,
including parse(). In addition, XMLFilter must have a “parent” that is also an
XMLReader. This is the upstream parser from which the filter receives events. The
parent may or may not be literally a parent class, in the object-oriented program-
ming sense. If it is, the filter can refer to its upstream parser as super. (In Java, as
in C++, an object refers to its parent object as super, and to itself as this.) If it is
not, the getParent() and setParent() methods that every filter must implement
provide access to the upstream parser.

The most common way to implement a filter class is to extend the
XMLFilterImpl class provided in org.xml.sax.helpers. This class implements
both XMLReader and ContentHandler. The default implementation simply asks
the upstream parser to parse, and forwards the events from the upstream parser
to its own content handler. In skeletal form, the XMLFilter of
“SAXversepicker/pickverses.jsp,” our next example, looks like this:

// as a parser, we parse

public void parse(InputSource input) {

super.parse(input); // but we simply ask “parent” to do so

}

// as the parent’s content handler, we implement callbacks

144

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 144

public void startElement(

java.lang.String uri, java.lang.String localName,

java.lang.String qName, Attributes atts

)

{

// but we simply pass them on to our own content handler

// which we have by virtue of being a parser

this.getContentHandler.startElement(uri,localname,qName,atts);

}

In classes that extend XMLFilterImpl, such as our examples in the rest of this
section, this code works behind the scenes, in inherited methods. Applications
override selected callbacks to perform the filtering they need.

We will work through two examples. One will inspect text content and will
pass it on for further processing only if it contains some keywords. The other will
inspect the value of the first child element and will pass the entire subtree on if
that value satisfies a certain condition (say, if it is equal to a given string). In both
cases, we’ll use the King James Bible as data.

Verse Picker

In this application, we will output all verses (v elements) that contain a given
string. The URL of the data and the string to match can be entered from an
HTML form or as a query string following the URL. For example, this URL (bro-
ken into two lines)

http://localhost:8080/xmlp/SAXversePicker/pickverses.jsp?

verseMatch=Bethlehem&xmlUri=/dat/jb/ot.xml

outputs all the verses in ot.xml that contain the word Bethlehem. The verses are
output as a flat list of v elements, all of them children of the root verses element.
The root element has an attribute that shows the match string:

<?xml version=”1.0” encoding=”UTF-8”?>

<verses stringMatch=”Bethlehem”>

<v>And Rachel died, and was buried in the way to Ephrath, which is Bethlehem.

</v>

<!-- many more verses -->

</verses>

145

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 145

The most important work in this program is done by the characters()
callback. We will go over its code before presenting the entire program in a sys-
tematic way.

The characters() Callback

Text content is delivered from the parser to the handler via calls on characters().
They take three arguments: a buffer (which is an array of characters), the starting
position of the current subarray to be processed, and the length of that subarray.
There is no guarantee that the entire content of an element will be delivered in
a single call, so we usually have to set up a buffer on the receiving side, as part of
the handler, and accumulate text content in it until endElement() is called.

To skip text content of elements that are not v elements or descendants of
them, we have to set up a Boolean variable that will indicate the state of the
parser: inside a v element or outside one. The state will be set by startElement()
and endElement() callbacks. This is a common feature of SAX programming: to
maintain contextual information (where in the tree are we?), you have to set
up a state machine in the handler. In this case, with only two states to worry
about, a single Boolean variable is adequate. For three or four states, you can
have two Booleans or an enumerated state type. (We will have an example of
each later in the book.) If you discover that you have to maintain very complex
state conditions, you probably need a DOM tree. As an intermediate solution,
you may consider a stack, which is less structured than a tree but more struc-
tured than a Boolean.

Outline

In outline form, pickverses.jsp proceeds as follows:

1. Import libraries.

2. Define the SAX filter class, VersePicker.

3. Initialize parameters and process request.

4. Define the content handler for VersePicker.

5. Create a filter object and do the parsing and filtering.

We will present the first three sections, which have to do with filtering, in
complete detail. The last two sections perform fairly mundane tasks that can be

146

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 146

automated. We will briefly outline the handmade solution before presenting
the automated one, in a separate section on JAXP transformers.

Import Libraries

Imports come from the following sources:

• standard Java distribution (IO classes)

• javax.xml.parsers (because we are going to use JAXP)

• org.xml.sax (most of them)

• org.xml.sax.helpers (AttributesImpl and XMLFilterImpl)

To use a transformer for parsing and output, we will also need (in the next
section) a number of classes from the javax.xml.transform library. The complete
set of imported libraries is shown in Listing 4-8.

Listing 4-8. VersePicker Inputs
<%@ page errorPage=”error.jsp” import=

“java.io.IOException, java.io.InputStream, java.io.StringReader,

javax.xml.transform.TransformerFactory,

javax.xml.transform.OutputKeys,

javax.xml.transform.Transformer,

javax.xml.transform.sax.SAXTransformerFactory,

javax.xml.transform.sax.TransformerHandler,

javax.xml.transform.sax.SAXSource,

javax.xml.transform.stream.StreamResult,

javax.xml.transform.stream.StreamSource,

javax.xml.parsers.SAXParserFactory,

org.xml.sax.Attributes,

org.xml.sax.SAXException,

org.xml.sax.XMLReader,

org.xml.sax.EntityResolver,

org.xml.sax.ContentHandler,

org.xml.sax.ErrorHandler,

org.xml.sax.InputSource,

org.xml.sax.helpers.AttributesImpl,

org.xml.sax.helpers.XMLFilterImpl” %>

147

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 147

Define VersePicker Class

Because we have already discussed parts of the code, including the characters()
method, we will present the class in total, with comments:

<%!

class VersePicker extends XMLFilterImpl {

boolean inVerse=false; // true while we’re in a “verse” element

StringBuffer verseBuff=new StringBuffer(); // to accumulate character content

String stringMatch=””; // initialized at construction

AttributesImpl atts;

public VersePicker(String match){

super(SAXParserFactory.newInstance().newSAXParser().getXMLReader());

// the XMLReader is the upstream parser (the parent)

stringMatch=match;

inVerse=false;

atts=new AttributesImpl();

// prepare Attributes object for root element; the arguments to addAttribute

// are: namespace URI, local name, qName, data type, value

atts.addAttribute(“”,”stringMatch”,”stringMatch”,”CDATA”,stringMatch);

}

public void startDocument()throws SAXException{

// Output start tag of root element, with stringMatch attribute.

// We say “this.getContentHandler” instead of simpy “getContentHandler”

// to emphasize that we’re using the content handler of this filter object

this.getContentHandler().startDocument();

this.getContentHandler().startElement(“”,”verses”,”verses”,atts);

atts.clear(); // clear Attributes object for remaining (v) elements

}

public void endDocument()throws SAXException{

// output end tag of root element

this.getContentHandler().endElement(“”,”verses”,”verses”);

this.getContentHandler().endDocument();

}

public void startElement(String nsURI,String localName,String qName,

Attributes atts) throws SAXException{

// check qName, set the boolean flag accordingly

if(“v”.equals(qName)) inVerse=true; else inVerse=false;

}

148

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 148

public void characters(char[]ch,int from, int len)throws SAXException{

// if in verse, append content to verse buffer

if(inVerse) verseBuff.append(ch,from,len);

}

public void endElement(String nsURI,String localName,String qName)

throws SAXException{

if(inVerse && 0 <= verseBuff.toString().indexOf(stringMatch)){

// if we are in a verse, and its text contains the match string,

// send a v element to this parser’s ContentHandler

ContentHandler cH=this.getContentHandler();

cH.startElement(“”,”v”,”v”,atts);

// send the entire accumulated buffer as argument to characters()

cH.characters(verseBuff.toString().toCharArray(),0,verseBuff.length());

cH.endElement(“”,”v”,”v”);

}

verseBuff.setLength(0); // empty the buffer

inVerse=false; // reset boolean flag

} // end of endElement() callback

public InputSource resolveEntity(String publicId, String systemId)

throws SAXException{

// the only entity is the DTD: we want to drop the DTD, not pass it along.

return new InputSource(new StringReader(“”));

}

} // end VersePicker

%>

What is this resolveEntity method? As the comment suggests, it is called
upon to produce the DTD, and we don’t want the source DTD because our out-
put will not match it. In this webapp, that’s the only entity resolution required, so
we can simply suppress it.

Now that we have a parser/filter class defined, we can create an instance, set
its content handler, and parse. But what is its content handler? What does it do? It
receives ready-made XML as arguments to SAX callbacks, and its job is simply to
echo what it receives to a character stream—in our case, to the out stream of the
JSP page. Let’s assume that we can write such a handler (call it
EchoContentHandler), and look at the rest of the code.

149

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 149

Process Request, Create Parser, and Parse

To create a parser, we need to know the input source and, in this case, the match
string. We initialize them to default values but override them with request param-
eters if they are submitted by the user. (See Listing 4-9.)

Listing 4-9. Initialize Parameters and Process Request.
<%

// defaults for two parameters

String xmlUri=”/dat/jb/ot.xml”;

String verseMatch=”create”;

// replace default values with those from request, if any

String val=request.getParameter(“xmlUri”);

if(val.length()>0) xmlUri=val;

val=request.getParameter(“verseMatch”);

if(val.length()>0) verseMatch=val;

// if xmlUri is not a URL, construct a file:// URL

if(0>xmlUri.indexOf(“:”))

xmlUri=”file:///”+application.getRealPath(xmlUri);

With the two parameters in hand, we create and configure the parser and
parse, as shown in Listing 4-10.

Listing 4-10. Create a Filter Object and Parse.
VersePicker versePicker=new VersePicker(verseMatch);

versePicker.setContentHandler(new EchoContentHandler(out));

versePicker.parse(xmlUri);

%>

And this is the end of pickverses.jsp, except for the promised content
handler.

EchoContentHandler

We are going to be sketchy in this section for three reasons. First, the code is simple.
Second, echoing an XML document using a SAX content handler is a very com-
mon exercise. It is done in multiple versions in Sun’s excellent Java-XML tutorial
(http://java.sun.com/xml/jaxp/dist/1.1/docs/tutorial/sax/work/Echo01.java).
Finally, writing low-level handler code is not the best way to serialize a sequence
of SAX callbacks as linear-text XML. We will show a better alternative shortly.

150

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 150

For all of these reasons, we will only show the echo code for startElement().
The code is quoted from Sun’s tutorial, and it assumes that there are two low-
level utilities: emit() and nl(). emit() takes one argument, a string, and writes it
to the out stream, and nl() outputs an end-of-line marker appropriate to the sys-
tem on which Java is running. The only possibly tricky detail is that, to output the
double-quote character, it has to be escaped as \”. (See Listing 4-11.)

Listing 4-11. The startElement() Callback to Echo Input Document
public void startElement(String namespaceURI,

String lName, // local name

String qName, // qualified name

Attributes attrs)

throws SAXException

{

String eName = lName; // element name

if (“”.equals(eName)) eName = qName; // namespaceAware = false

emit(“<”+eName);

if (attrs != null) {

for (int i = 0; i < attrs.getLength(); i++) {

String aName = attrs.getLocalName(i); // Attr name

if (“”.equals(aName)) aName = attrs.getQName(i);

emit(“ “);

emit(aName+”=\””+attrs.getValue(i)+”\””);

}

}

emit(“>”);

}

With EchoContentHandler() in place, the code of versePicker.jsp is com-
pleted. We now proceed to introduce a tool, a Transformer class, that will be with
us for rest of the book.

JAXP Transformer Object

The code of Listing 4-11 does not do anything application specific; all it does is
convert XML data from one representation to another (SAX callback sequence to
linear text with markup). This is an operation that does not add any value, and it
shouldn’t require human intelligence. All such operations should be automated,
and indeed they have been. The automation tool (in Java) is a Transformer class
that performs XSLT transformations. It is part of the same JAXP package as
SAXParserFactory and SAXParser. MSXML 3.0, which is both a parser and a trans-
former, provides very similar functionality.

151

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 151

JAXP Transformer objects perform XSLT transformations. XSLT, as we briefly
explained in Chapter 1, is a programming language to transform XML data. An
XSLT program (frequently called a stylesheet) is itself an XML document of a spe-
cial kind. A general-purpose XSLT processor receives an XML data source and an
XSLT program on input and produces a result as specified by the XSLT. The result
is usually XML, HTML, or plain text.

A JAXP transformer that performs XSLT transformations is created with
a specific XSLT program imprinted on it. It takes one input (XML data source)
and produces a result as specified by the XSLT program. Because the program has
been compiled into binary codes, Transformer objects are more efficient than
general-purpose XSLT processors. They are also easy to integrate with other Java
objects.

Transformer and TransformerFactory

You obtain a Transformer object in much the same way as you obtain a SAX
parser: create a TransformerFactory instance and call its newTransformer()
method. The method takes an argument that specifies the XSLT program to
imprint on the new Transformer object.

TransformerFactory tFactory = TransformerFactory.newInstance();

Transformer trans = tFactory.newTransformer(“myXsltProgram.xsl”);

The main point for us now is that newTransformer() can also be called with
no argument at all, in which case it implements the default XSLT program. The
default XSLT program performs the so-called identity transformation: it does not
change its input XML data at all. However, if the source and the result are differ-
ent representations of the same XML data, then the transformer performs the
useful operation of converting from one representation to another.

Sources and Results

Both XML source and XML result (if output is XML) can be any of the three stan-
dard representations: text with markup, DOM, or SAX. More precisely, the Source
interface is implemented by three classes (DOMSource, SAXSource, and
StreamSource), and similarly for the Result interface. What this means is that the
identity transformer can be used for converting XML from any one of these rep-
resentations to any other.

For instance, suppose that your input source is specified by a URL, myURI,
and that you want to apply a SAX parser to it and receive output as DOM. A com-
mon reason to do this is if your input is huge and you want only a DOM subtree

152

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 152

of it: you use a SAX filter as your parser, filter out the subtree you want still repre-
sented as SAX callbacks, and convert that subtree to DOM. (An example is
coming up soon.) The conversion can be done in a single call on the transform()
method of the transformer, as shown in Listing 4-12.

Listing 4-12. SAX to DOM Conversion
SAXSource myInput= new SAXSource(

myXMLFilter,

new InputSource(myURI)

);

DOMResult domResult = new DOMResult();

trans.transform(myInput, domResult);

To create a SAXSource object, you have to give it an InputSource as an argu-
ment. You also, optionally, specify an XMLReader to use as a parser—either (as in
this sample) as a constructor argument or in a separate line of code using
setXMLReader(). If a parser is not specified, the transformer will call
XMLReaderFactory.newInstance() to obtain a generic parser. In either case, the
Transformer object will set itself as the parser’s content handler and call
parser.parse(myInput). All the low-level code for constructing a DOM tree out
of SAX callbacks is hidden inside the transformer. Similarly, if you want to con-
vert SAX events to text with markup, you would use the same function call, but
provide new StreamResult(out) as its second argument. All the low-level code of
our EchoContentHandler class is also hidden inside the transformer.

Actually, what’s hidden inside the transformer is a TransformerHandler, and
it is more than just a content handler: it’s an error handler, a lexical handler,
and a few other things. All the information from the input is passed onwards
through the “transform” call. Another way of writing Listing 4-12 is as follows:

SAXTransformerFactory stFactory =

(SAXTransformerFactory)TransformerFactory.newInstance();

TransformerHandler tHandler = stFactory.newTransformerHandler();

// Transformer trans=tHandler.getTransformer(); // if you want to work with it

myXMLFilter.setContentHandler(tHandler);

tHandler.setResult(new StreamResult(out));

myXMLFilter.parse(myURI);

Convert VersePicker to Text with Markup Using Transformer

We can now replace the entire EchoContentHandler class and the code that uses
it (Listing 4-10) with just a few lines of code that create and use a Transformer
object, either directly or as a transformer handler. After defining VersePicker, we

153

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 153

can either define a transformer handler as the VersePicker’s content handler, or
we can proceed as in Listing 4-13.

Listing 4-13. Create a Filter Object and Parse.
// parse, filter and output using Transformer

TransformerFactory tFactory = TransformerFactory.newInstance();

Transformer trans = tFactory.newTransformer();

trans.transform(new SAXSource(versePicker,

new InputSource(xmlUri)),

new StreamResult(out));

Remember that this second style is actually doing more behind the scenes; in
particular, if you want to suppress DTD information from the original xmlUri,
then you should use the transformer handler and call setContentHandler
explicitly.

To conclude the section on SAX filters, we will show another example, illus-
trating SAX to DOM conversion as sketched in Listing 4-12. (We don’t know yet
what to do with a DOM, but that’s what the last three sections of this chapter are
about.) Specifically, we will write a SAX filter that will receive a string as a request
parameter, and output the book element in ot.xml or nt.xml whose title contains
the string parameter as a substring. This example addresses a fairly common sit-
uation: your XML source is too large to hold in a DOM tree in memory, but you
are interested in only a subtree of your data source. Our BookPicker example is
easy to generalize for many such situations.

BookPicker

Because the code of pickbook.jsp is very similar to pickverses.jsp, we will go over
only the BookPicker class and the transformer code.

The BookPicker Class

The main difference from the VersePicker is that we have to maintain a more
complex state. A book’s title is the text content of the first child of the book ele-
ment. We want to output both the title and the entire book if the title contains the
match string. So, we need two Booleans to maintain state: inBook and inBkTLong
(bktlong is the name of the element that contains the “long title” of the book).
inBook is True when we know we are in a book to be copied to output; inBkTLong
is True when we are in a bktlong element that may or may not match the user-
submitted match string.

154

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 154

A further complication is that we don’t know whether or not we are in the
right book until we have accumulated all of its title. Fortunately, the title is
the first child of the book, and there are no attributes on a book element, so we
don’t have to store anything from the start element of the book. When we receive
the endElement() callback for the title, we check to see whether it’s a book to be
copied. If so, we output the start element of the book, the entire BkTLong ele-
ment (whose text we have accumulated in a buffer), and set the inBook Boolean
to True as a signal to copy the rest of the book element.

Because we now copy the entire XML content of the book including markup,
we include the ignorableWhitespace() callback. This method has the same
parameters as characters(), and it signals to the receiving application the begin-
ning and the length of a stretch of whitespace characters that can be ignored. To
determine whether or not a chunk of whitespace between two elements can be
ignored, the parser needs to know whether the content model of the containing
element is “children-only” or “mixed.” Only validating parsers are required to
report ignorable whitespace, but nonvalidating parsers may also use this method
if they are capable of parsing and using content models.

The code for the BookPicker class is shown in Listing 4-14.

Listing 4-14. BookPicker
class BookPicker extends XMLFilterImpl {

boolean inBook=false; // true while we’re in a selected book

boolean inBkTLong=false; // true while we’re in a “bktlong” element

StringBuffer titleBuff=new StringBuffer();

String stringMatch=””;

Attributes atts=new AttributesImpl(); // always empty in this DTD

public BookPicker(String match) // the constructor

throws ParserConfigurationException,SAXException {

super(SAXParserFactory.newInstance().newSAXParser().getXMLReader());

stringMatch=match;

inBook=false;

inBkTLong=false;

}

public void ignorableWhitespace(char[] ch,int start,int length)

throws SAXException{

if(!inBook) return;

getContentHandler().ignorableWhitespace(ch,start,length);

}

public void characters(char[]ch,int from, int len)throws SAXException{

if(inBook) // pass on

getContentHandler().characters(ch,from,len);

155

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 155

else if(inBkTLong) // accumulate

titleBuff.append(ch,from,len);

}

public void startElement(String nsURI,String localName,String qName,

Attributes atts)throws SAXException{

if(inBook) // pass on

getContentHandler().startElement(nsURI,localName,qName,atts);

else // set boolean value

inBkTLong=”bktlong”.equals(qName);

} // end startElement()

public void endElement(

String nsURI,

String localName,

String qName) throws SAXException{

if(inBook){ // pass on

getContentHandler().endElement(nsURI,localName,qName);

if(“book”.equals(qName)) // end of book reached

inBook=false;

}

else if(inBkTLong){ // end tag of BkTLong found; decision time

// set inBook boolean

inBook= (0 <= titleBuff.toString().indexOf(stringMatch));

if(inBook){ // a match found; output start tag of book and the title

ContentHandler cH=getContentHandler();

cH.startElement(“”,”book”,”book”,atts);

cH.startElement(“”,”bktlong”,”bktlong”,atts);

cH.characters(titleBuff.toString().toCharArray(),0,titleBuff.length());

cH.endElement(“”,”bktlong”,”bktlong”);

}

inBkTLong=false; // we are out of BkTLong

titleBuff.setLength(0); // reset buffer

} // end if(inBkTLong)

} // end endElement()

} // end BookPicker

Code for Output

Code for output uses the transformer. It is virtually the same as in pickverses.jsp,
except one variable is renamed and we output to a DOM rather than a character
stream.

156

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 156

String xmlUri=”/dat/jb/ot.xml”;

String bookMatch=”EXODUS”;

// replace default values with those from request, if any

String val=request.getParameter(“xmlUri”);

if(val.length()>0) xmlUri=val;

val=request.getParameter(“bookMatch”);

if(val.length()>0) bookMatch=val;

if(0>xmlUri.indexOf(“:”))

xmlUri=”file:///”+application.getRealPath(xmlUri);

TransformerFactory tFactory = TransformerFactory.newInstance();

Transformer trans=tFactory.newTransformer();

BookPicker bookPicker = new BookPicker(bookMatch);

DOMResult domResult = new DOMResult();

SAXSource saxSource= new SAXSource(bookPicker), new InputSource(xmlUri));

trans.transform(saxSource,domResult);

Node node = domResult.getNode();

Once the book is in DOM, we can do much more elaborate processing
because the entire tree structure is there, rather than small bits of it saved in
Boolean variables. This is the subject of the DOM sections of this chapter. Before
we get to them, we will have one more section on SAX to show how a SAX parser
can be used to convert non-XML data to XML. This is fairly advanced stuff, so
please slow down and concentrate.

SAX Parsing for Non-XML Data

We will walk through two examples in this section. For the first example, we will
go back to our TagCount program from earlier in this chapter and redo its output
code. In the earlier version, the output is performed by Java code that writes out
tags and hashtable content to a character stream. We will replace it by a more
principled piece of code that converts a hashtable to a SAX representation of
XML data and uses the transformer to serialize it as text with markup. This is
obviously a pedagogical example: we want to reuse familiar code to introduce
a new idea. Our second example will apply the new idea to a useful task: convert
fixed-width text records to XML.

157

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 157

Hashtable Parser for XML Output

The output code of the first version of the program is in Listing 4-7, repeated here
as Listing 4-15.

Listing 4-15. Code to Display Parser Output in Text Area, Repeated
from Listing 4-7
// output the contents of the Hashtable

%><textarea rows=”30” cols=”90”>

<ht:Hashtable xmlns:ht=”http://www.n-topus.com/namespaces/ht”>

<%

for(java.util.Enumeration e=ht.keys();e.hasMoreElements() ;){

Object key=e.nextElement();

Object val=ht.get(key);

%><ht:item key=”<%= key %>” ><%= val %></ht:item>

<% } %>

</ht:Hashtable>

This code wraps the entire hashtable into a Hashtable element and each key-
value pair into an item element, both within the n-topus.com/namespaces/ht
namespace. The problem is that, once XML data is dumped to a stream like that,
it is difficult to subject it to further processing. In this section, we show how to
convert (language-specific) hashtable data to (language-independent) XML data,
so it can be further processed or exchanged with other applications. Note that we
are replacing only the code of Listing 4-15 (repeating Listing 4-7); the rest of
TagCount remains unchanged.

The XML representation for our hashtable data will be a sequence of SAX
procedure calls. Remember that the calls going from the parser to the content
handler carry all the data from the parsed document. Moreover, they show its
hierarchical structure in the temporal sequence of startElement() and
endElement() calls. So, we are going to use a SAX “parser” to make a hashtable
look like XML.

The process of SAX parsing, as we said from the beginning, is a conversation
between a parser and a content handler. In the examples so far, the parser is
something that somebody else wrote, at Apache or Microsoft or Sun. It is a pro-
gram that knows, for instance, how to collect all material between a left bracket
and a right bracket, break it into the tag name and attributes, recognize name-
spaces, package all that information into three strings and an Attributes object,
and call handler.startElement(). Now we are going to write a parser ourselves. It
will be a very simple parser; it will “parse” a hashtable. Specifically, for each key-
value pair in the hashtable, it will perform the tasks as described in the following
paragraph.

158

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 158

It will start by saying: “Hey, I have found the start of a new element, and so
I am going to call handler.startElement(). The element’s prefix is ht mapped to
n-topus.com/namespaces/ht. Its local name is item. Its qName is ht:item. It has
one attribute that is such and so; its value is the key of the key-value pair. It has text
content that is the value corresponding to that key. And now I have found the end
of that element, and so I’m going to call handler.endElement().” Together, all
these calls will translate the contents of the hashtable into arguments to SAX pro-
cedure calls. The handler that responds to those calls can do any processing
whatsoever. In our case here, the handler is the default transformer that will con-
vert its SAX source to text with markup, echoed to a character stream.

Schematically, the main components of TagCount2.jsp are shown in
Figure 4-5.

Hashtable Parser Code

We are going to define a class that implements the XMLReader interface. The way
it works in Java is that, if a class implements an interface, it has to implement all
its methods, even if the application needs only one or two of them. So, a big part
of our parser consists of do-nothing implementations of required methods. The
only method we really have to work on is parse().

XMLReader Methods Other Than parse()

Before we get to implementing methods, we declare the variables and define
a constructor, as shown in Listing 4-16.

Listing 4-16. Variables and a Constructor for HashtableReader
class HashtableReader implements XMLReader{

// read from the hashtable

ContentHandler handler;

ErrorHandler errHandler;

Hashtable ht;

public HashtableReader(Hashtable ht){this.ht=ht;}

159

XML Parsing

Figure 4-5. Hashtable parser and transformer

031ch04.qxp 5/10/02 2:35 PM Page 159

Now, the required methods. We will use this occasion to review the
XMLReader interface. Because we don’t really need these methods, we provide
only minimal implementations for them, as shown in Listing 4-17.

Listing 4-17. Minimal Implementation of the XMLReader Interface
// set and get the handlers, including EntityResolver

public void setContentHandler(ContentHandler h) {handler=h;}

public ContentHandler getContentHandler() {return handler;}

public void setErrorHandler(ErrorHandler h) {errHandler=h;}

public ErrorHandler getErrorHandler() {return errHandler;}

public void setDTDHandler(DTDHandler handler) {}

public DTDHandler getDTDHandler() {return null;}

public void setEntityResolver(EntityResolver resolver) {}

public EntityResolver getEntityResolver() {return null;}

// set and get Features and Properties

public void setFeature(String name, boolean value) {}

public boolean getFeature(String name) {return false;}

public void setProperty(String name, Object value) {}

public Object getProperty(String name) {return null;}

// two required parse() methods: from InputSource or systemID

public void parse(InputSource input) throws SAXException {parse();}

public void parse(String systemId) throws SAXException {parse();}

The XMLReader interface specifies that an implementing class must have
two versions of the parse() method, one taking an InputSource argument, the
other a string that is a URL (systemID). Our little parser doesn’t really need either
of them because its input comes from the hashtable via an enumeration loop. So
the method that is going to do the real work is parse() that takes no arguments.
(We could, in fact, call it anything, but parse() is a good name.) The required
dummy versions simply call the real parse().

The Real Parse

Strictly speaking, we should configure our parser’s properties and have it behave
accordingly, but, because we’re talking to ourselves, we can skip the formalities
and simply assume that our parser is namespace aware but reports xmlns decla-
rations as attributes. Being namespace aware, it must mark the boundaries of
scope of each namespace declaration by calling two methods:
startPrefixMapping() and endPrefixMapping(). It also reports all three strings to
the handler: the local name, the namespace URI, and the qName. In creating an

160

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 160

attribute, it lists the namespace URI (which is empty), the local name, the
qName, the data type (CDATA), and the value.

Listing 4-18 shows the parse() method that actually gets called by
HashtableParser:

Listing 4-18. The Real Parse() Method of HashtableParser
public void parse()throws SAXException{

String htURI=”n-topus.com/namespaces/ht”;

handler.startDocument();

// start prefix mapping immediately

// because namespace is declared on the root element

handler.startPrefixMapping(“ht”,htURI);

AttributesImpl attr=new AttributesImpl();

attr.addAttribute(“xmlns”,”ht”,”xmlns:ht”,”CDATA”,htURI);

handler.startElement(htURI,”Hashtable”,”ht:Hashtable”,attr);

attr.clear();

attr.addAttribute(“”,”key”,”key”,”CDATA”,”dummy”);

for(java.util.Enumeration e=ht.keys();e.hasMoreElements() ;){

Object key=e.nextElement();

Object val=ht.get(key);

attr.setAttribute(0,””,”key”,”key”,”CDATA”,key.toString());

handler.startElement(“ht”,”item”,”ht:item”,attr);

String str=val.toString();

handler.characters(str.toCharArray(),0,str.length());

handler.endElement(“ht”,”item”,”ht:item”);

}

handler.endElement(“ht”,”Hashtable”,”ht:Hashtable”);

handler.endPrefixMapping(“ht”);

handler.endDocument();

}

} // end of HashtableReader

Converting HashtableReader to Text with Markup

To serialize HashtableReader, we use a transformer. Because we want to convert
from SAX to text with markup, we set up the source and the result accordingly. In
particular, the source is a SAXSource that is created with two arguments: the
parser, which is a hashtable reader, and an input source. The transformer sets
itself as a handler and calls the parser’s parse() method, giving it the input
source as an argument. The tricky part is that our XML input data is not really
XML, and the parse() method that we want to be called takes no arguments.

161

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 161

However, recall that we have implemented the standard parse() method with an
InputSource argument so that it ignores its argument and calls our “real parse”:

public void parse(InputSource input) throws SAXException { parse(); }

So, in our transformer code, we create the required dummy InputSource, call
the standard parse() method, and our real parse does get called, as shown in
Listing 4-19.

Listing 4-19. Parser, Transformer, and InputSource
// create parser, parse XML data input into a Hashtable that counts keys

SAXParserFactory factory=SAXParserFactory.newInstance();

if(“yes”.equals(request.getParameter(“namespaces”)))

factory.setNamespaceAware(true);

factory.newSAXParser().parse(iS,keyCounter);

// info about the document is now stored in the hashtable;

// create HashtableReader

HashtableReader hashtableReader=new HashtableReader(ht);

%><textarea rows=”30” cols=”90”>

<%

// new code begins

TransformerFactory tFactory = TransformerFactory.newInstance();

// create a Transformer for identity transformations

Transformer trans = tFactory.newTransformer();

// configure the Transformer to skip XML declaration

// (useful if want to insert output in other XML data)

// and indent output to reflect tree structure

trans.setOutputProperty(

OutputKeys.OMIT_XML_DECLARATION,”yes”);

trans.setOutputProperty(

OutputKeys.INDENT,”yes”

);

// create a dummy InputSource

InputSource dummy= new InputSource();

trans.transform(// takes two arguments, Source and Result

new SAXSource(

hashtableReader, // our intended parser

dummy

),

new StreamResult(out)

);

%>

</textarea>

162

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 162

Behind the scenes, hashtableReader.parse(dummy) is called, which in turn
calls the real parser to convert the internal hashtable into a sequence of SAX call-
backs. The transformer converts that sequence into a marked-up text sent down
the out stream, so the text ends up in the text area.

Fixed-Width Records

HashtableParser is something of a pedagogical example that reused an earlier
example to introduce a new idea. We can now apply that new idea to a useful
task: converting fixed-width text records to XML. We will again use an
XMLReader to “parse” each individual record sending out SAX callbacks, and
we will use a Transformer object to serialize the callbacks as marked-up text.
Figure 4-6 shows FixedWidth.jsp in action.

To perform the conversion, we need to know the widths, and these are pro-
vided as space-separated tokens. One of the components of the program
converts them to integers.

163

XML Parsing

Figure 4-6. Converting fixed-width records to XML

031ch04.qxp 5/10/02 2:35 PM Page 163

The program outputs an XML document conforming to the following DTD:

<!DOCTYPE table [

<!ELEMENT table (row*)>

<!ELEMENT row (td*)>

<!ELEMENT td (#PCDATA)>

]>

The program is actually more flexible than Figure 4-6 suggests. First, the
number of widths does not have to equal the number of fields. If there are fewer
widths than fields, all the extra fields are assumed to have the last width. (So, the
input box for widths could have just three tokens, “5 7 9”, with no change in func-
tionality.) Second, the number of fields does not have to be the same in all
records. The program can output rows containing different numbers of data
elements.

Program Outline

In outline, the program consists of five steps:

1. Import libraries.

2. Define a function to convert widths to integers.

3. Define the parser class, FixedWidthReader (similar to HashtableReader).

4. Process request parameters, and initialize input source, the integer array
of widths, and a FixedWidthReader.

5. Create a transformer that takes a FixedWidthReader as its source and
outputs marked-up text.

The biggest difference between this program and the HashtableReader is
that, in this case, our parser has to process an actual input source, a character
stream that may come from a text file or a text area in an HTML page. Because
the programs are otherwise very similar, we will present the entire
FixedWidth.jsp in one go in Listing 4-20, but leaving stubs for the text-to-integers
conversion function and the FixedWidthReader class.

164

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 164

Listing 4-20. FixedWidth.jsp, with Gaps
<%@ page errorPage=”error.jsp”

import=” . . . “

// import from javax.xml, org.xml.sax, java.io and java.util packages

%><%!

// Convert string of tokens to integer array

public static int[] intArray(String str){

// see separate section

}

%><%

class FixedWidthReader implements XMLReader{

// Read from lines of fixed-width data as if from html table.

// See separate section

}

// Process request,

// initialize InputSource, array of widths and FixedWidthReader

String docStr=request.getParameter(“doc”);

String uriStr=request.getParameter(“uri”);

InputSource iS;

if(docStr!=null) // input from textarea

iS=new InputSource(new StringReader(docStr));

else

iS=new InputSource(application.getRealPath(uriStr));

int[]widths=intArray(request.getParameter(“widths”));

FixedWidthReader fixedWidthReader=new FixedWidthReader(widths);

%><textarea rows=”30” cols=”60”>

<%

// Parse, transform and dump output into textarea

TransformerFactory tFactory = TransformerFactory.newInstance();

Transformer trans = tFactory.newTransformer();

trans.setOutputProperty(

OutputKeys.OMIT_XML_DECLARATION,”yes”);

trans.setOutputProperty(

OutputKeys.INDENT,”yes”

);

trans.transform(new SAXSource(

fixedWidthReader, iS), // parse InputSource using FixedWidthReader

new StreamResult(out)); // convert to marked-up text, send to out stream

%>

</textarea>

165

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 165

String of Tokens to Integer Array

We want to convert a string like “9 7 23” to an integer array. Our problem is that
Java arrays are fixed length, and we don’t know in advance how many tokens to
expect. We have to use a dynamic array (vector) and, when finished, check its
length and create an integer array of that length. However, Java vectors can con-
tain only objects and not primitive data types such as integer or Boolean. So, we
will be converting string tokens to Integer objects, to put them in the vector, and
convert from Integer objects to plain integers when creating an array. (See
Listing 4-21.)

Listing 4-21. String to Integer Array
public static int[] intArray(String str){

Vector intVec=new Vector();

StringTokenizer st=new StringTokenizer(str);

while (st.hasMoreTokens())

// get next token, create an Integer object, add to Vector

intVec.add(new Integer(st.nextToken()));

int[] res=new int[intVec.size()];

for(int i=0;i<res.length;i++)

// extract plain integer from an Integer object

res[i]=((Integer) intVec.get(i)).intValue();

return res;

}

FixedWidthReader

The FixedWidthReader class is quite similar to HashtableReader and has the
same basic outline.

1. Declare variables and define constructor.

2. Define required “do-nothing” methods.

3. Define parse methods.

We will show the first and the last step only, because the middle step is iden-
tical in both classes.

166

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 166

Variables, Constructor, Methods Other than parse()

Variables, as before, include the required handlers and the program-specific
variable to hold the array of widths. The constructor initializes that variable, as
shown in Listing 4-22.

Listing 4-22. Variables, the Constructor
class FixedWidthReader implements XMLReader{

ContentHandler handler;

ErrorHandler errHandler;

AttributesImpl attr=new AttributesImpl();

protected int[]widths=null; // class-specific array of widths

public FixedWidthReader(int[]w){widths=w;} // constructor

// required methods declared in XMLReader (see HashtableReader):

// set and get methods for handlers, features and properties

Parse Methods

As we said, the parse() method has two versions: one takes an InputSource argu-
ment, and the other a string that is a URL (systemID). HashtableReader has both
of them call its own parse() of no arguments. In this program, we actually imple-
ment the InputSource version; the URL version calls it with an InputSource
created from system ID. (See Listing 4-23.)

Listing 4-23. Parse Method with a System ID Argument
public void parse(String systemId) throws SAXException {

parse(new InputSource(systemId));

}

The InputSource method, in conformance with the SAX specification, checks
to see whether its input comes from a character stream, a byte stream, or a URL
(in that order). (Because we are parsing our own input, we know that it comes
either from a character stream or from a text file, but the specification mandates
the test.) If the input is a byte stream, it is converted to a character stream using
a given encoding. Whatever the input source, we end up with a character stream
that delivers lines of text with fixed-width data. The stream must be capable of
counting lines, in case the user requires information on the specific location
of events; in Java, such a stream class is called LineNumberReader.

With a character stream in hand, we can start calling handler methods. Our
parse() method actually makes only four calls: a start/endDocument() pair and
one start/endElement() pair to output the root table element. The hard work of

167

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 167

processing each line is parceled out into a separate method, parseRow(). (See
Listing 4-24.)

Listing 4-24. Parse Method with an InputSource Argument
public void parse(InputSource iS) throws SAXException {

LineNumberReader reader;

try{ // a InputSource parser must try these options in this order

if(null!=iS.getCharacterStream())

reader=new LineNumberReader(iS.getCharacterStream());

else if(null!=iS.getByteStream()){

String encoding=iS.getEncoding();

if(encoding==null)encoding=”utf-8”; // the default

reader=new LineNumberReader(

new InputStreamReader(iS.getByteStream(),encoding));

}

else reader= new LineNumberReader(new FileReader(iS.getSystemId()));

}catch(IOException ioe){ // catch IO exception, output message

throw new SAXException(ioe.getMessage()+” on “+iS.getSystemId());

}

// start callbacks

handler.startDocument();

handler.startElement(“”,”table”,”table”,attr);

try{

for(String line=reader.readLine(); line!=null; line=reader.readLine())

parseRow(line.toCharArray());

}catch(IOException ex){

throw new SAXException(ex.getMessage()+”; line “+reader.getLineNumber());

}

handler.endElement(“”,”table”,”table”);

handler.endDocument();

}

Finally, parseRow() receives each line as a character array and works through
the line outputting each field as a <td> element. It uses two integer variables, lo
and w, to hold the starting position and the width of each field. Together with
a character array, these are precisely the arguments to the characters()
callback: a character array, the start point, and the number of characters to send.
(See Listing 4-25.)

168

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 168

Listing 4-25. Parse Each Line
protected void parseRow(char[]ch) throws SAXException{

if(0==ch.length) return;//empty row

int i=0, // index into the widths array

lo=0, // beginning of next field

w=widths[0]; // width of next field

handler.startElement(“”,”tr”,”tr”,attr);

while(lo<ch.length){

int nextLo=lo+w;

int excess = nextLo - ch.length; // for processing the last column

if(excess > 0){ // the last column is not its complete width

nextLo=ch.length; w=w-excess;

}

// output the next field as a <td> element

handler.startElement(“”,”td”,”td”,attr);

handler.characters(ch,lo,w);

// includes fixed-width extra blanks; can be trimmed here

handler.endElement(“”,”td”,”td”);

// increment the index into width array unless it’s at the last element

if(i!=widths.length-1) i++;

lo=nextLo;

w=widths[i];

}

handler.endElement(“”,”tr”,”tr”);

}

This concludes the fixed-width Java code, and the entire SAX section. As an
exercise, we suggest that you write a similar program for tab-separated fields and
for CSV (comma-separated values) data. In the remainder of the chapter, we
introduce DOM and show how DOM and SAX can usefully work together.

DOM Programming

DOM provides standard interfaces for working with data structures that repre-
sent XML data. The DOM recommendation says nothing about how the data
structures are implemented, or even in what language: they provide only APIs.
These APIs strongly imply that the data structures form a tree of nodes, similar
but not identical to the XPath tree. (We will list the differences shortly.) Beginning
with DOM 3 and XPath 2.0, the tree structures of DOM and XPath will be fully
compatible, both conformant with the Infoset recommendation. This will make it
easier to standardize DOM interfaces that use XPath expressions.

169

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 169

To give you a brief preview, the main DOM interfaces are Node and
Document. The Document interface is derived from Node; that is, a document is
a kind of node and has all its properties and methods. Node objects have a type
property that takes the familiar values of element, attribute, comment, and so
forth. A common pattern of DOM programming is to traverse the entire tree visit-
ing each node, and do to each node according to its type. This is frequently done
in a recursive fashion:

1. Initially set the current node to the document object.

2. If the current node is Null, return.

3. Otherwise, visit and process the current node.

4. For each child of the current node, set the current node to that child and
make a recursive call.

A DOM application typically begins by obtaining an instance of a DOM
parser and creating a DOM document object. You have seen examples of how this
is done in JSP and ASP in earlier chapters.

A Brief History

The notion of the Document Object Model (or DOM) first became widely known
with the release of fourth-generation browsers, as part of dynamic HTML. Within
that context, DOM meant a set of naming conventions and APIs for working with
objects in an HTML page. Its area of application was the Web browser.

Although DOM was supposed to be language independent and standard
across browsers, in practice the two major browsers simply implemented their
DOMs as they wanted them to be, in JavaScript and, in the case of Microsoft, also
in VBScript. A more narrowly defined HTML DOM, without an event model, was
codified by W3C as DOM Level 0 in late 1997. The IE4 DOM was very close to that
specification, whereas the NC4 DOM, released a few months earlier, was sub-
stantially different.

170

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 170

DOM Level 1 was released in October 1998. Its main innovation was to add
a DOM specification for XML. DOM Level 1 consists of three parts:

• Fundamental interfaces that are common to XML and HTML and must be
implemented by all DOM-compliant processors, including XML parsers
and HTML browsers. Fundamental interfaces specify the structure and
behavior of Document, Node, and other fundamental structural elements
of any HTML or XML document.

• Extended interfaces that apply only to XML. They specify those items that
are never found in an HTML document: DTD, processing instructions,
entities and entity references, and so on.

• HTML-specific interfaces that have to do with specific HTML elements
and the event model.

Level 1 groups fundamental and extended interfaces together as Core inter-
faces. They remain so grouped in the current version, DOM Level 2, released in
November 2000. As before, a compliant XML processor (DOM parser) must
implement Core interfaces in their entirety. In addition, DOM Level 2 specifies
several optional groups of interfaces: Views, Styles, Events, Traversal, and Range.
To promote modularity, each group is defined in a separate specification, except
that the Traversal and Range groups are covered in a single specification, proba-
bly for bureaucratic reasons. (The same group of people wrote both.) Otherwise,
Traversal and Range have little in common: Traversal interfaces are for visiting all
nodes of the tree in a uniform way, and Range interfaces have to do with ranges
of text between two endpoints and are mostly useful in the GUI situation of
a browser or an XML editor. The same is true of the Views, Styles, and Events
specifications: like Range, they apply, at least for now, to GUI situations only, and
we are not going to discuss them in any detail. In the remainder of the book, we
will be using Core and Traversal interfaces.

Testing for Optional Interfaces

Because Traversal interfaces are optional, you need a way to test whether they are
implemented by your processor. The DOMImplementation interface of the Core
declares the hasFeature(feature, version) method precisely for this purpose.
Run it with parameter values “Traversal” and “2.0” to determine whether or not
(respectively) this module is supported. It is, indeed, supported both by Apache
Xerces and MSXML.

171

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 171

DOM Interfaces Overview

DOM specifies interfaces that are to be implemented in some programming lan-
guage. They are specified in a language-independent way using a formal notation
called, reasonably enough, Interface Definition Language (IDL). Several such lan-
guages exist, including one that Microsoft uses to specify COM interfaces, and
another one from Object Management Group (OMG) that is used to specify
CORBA interfaces. W3C uses the OMG language but makes it clear that the
choice does not imply any kind of taking sides in the COM-CORBA contest.

DOM interfaces written in IDL are twice removed from the actual implemen-
tation. To get to an implementation, you first have to choose a programming
language and translate DOM interfaces into the appropriate constructs of
that language: abstract classes in C++, interfaces in Java, objects and properties
in JavaScript, and so on. This process is called language binding: the language-
independent interfaces of DOM are bound to constructs in a specific language.
No actual code is written in the process, only declarations. In the second stage of
implementation, the language-specific constructs, such as Java interfaces, are
implemented in actual working code. That code is used in application pro-
gramming.

To ensure that different DOM implementations in at least some languages
are compatible with each other, W3C itself provides the first stage of implemen-
tation—language binding—for two languages, Java and JavaScript (ECMAScript).
Each DOM specification contains three appendices (among others) that contain
IDL definitions, Java language binding, and ECMAScript language binding. We
will look at an example of the same interface in IDL, Java, and ECMAScript after
we review the Node interface and node types. We are not presenting a complete
listing of the entire DOM, but the interfaces we do present and the code that uses
those interfaces provide enough background to learn the remaining ones as
needed by simply perusing the APIs.

Node and Node Types

The central DOM interface is Node, from which a number of other interfaces are
derived. The central design feature of DOM is that every type of XML data—ele-
ment, attribute, comment, PI, CDATA section, and so on—is represented by
a Node object of a specific type. Specifically, this means that DOM Core defines
Element, Attribute, Comment (and so on) interfaces that are all derived from
Node and that inherit its attributes and methods. In addition, the DOM Core
defines an integer constant for each node type, as shown in Table 4-2.

172

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 172

Table 4-2. DOM Node Types

CONSTANT NAME CONSTANT VALUE INTERFACE NAME

ELEMENT_NODE 1 Element

ATTRIBUTE_NODE 2 Attr

TEXT_NODE 3 Text

CDATA_SECTION_NODE 4 CDATASection

ENTITY_REFERENCE_NODE 5 EntityReference

ENTITY_NODE 6 Entity

PROCESSING_INSTRUCTION_NODE 7 ProcessingInstruction

COMMENT_NODE 8 Comment

DOCUMENT_NODE 9 Document

DOCUMENT_TYPE_NODE 10 DocumentType

DOCUMENT_FRAGMENT_NODE 11 DocumentFragment

NOTATION_NODE 12 Notation

Whereas types 1 through 9 represent the familiar information items,
types 10 through 12 require a brief comment, for the sake of completeness.

DocumentType (not to be confused with a node type) is an interface
for working with DTDs. It provides very limited functionality, representing
the DTD, its internal subset, and the SYSTEM and PUBLIC identifiers
simply as strings. There is a working draft of a DOM Level 3 module
(http://www.w3.org/TR/DOM-Level-3-ASLS/abstract-schemas.html) that
will provide elaborate APIs for working with “abstract schemas” such as
a DTD or an XML schema.

DocumentFragment is an interface for “lightweight” tree objects
designed for such operations as cutting and pasting a tree of nodes,
or splicing a sequence of nodes. There is a candidate recommendation
(http://www.w3.org/TR/xml-fragment) that defines what can constitute a frag-
ment, what context information is needed to move a fragment into a different
document, and how to define such context information. It is unlikely, however,
that you will see Fragment nodes until this specification is completed and inte-
grated with DOM.

Notation is an interface for very rarely used XML notations. You are very
unlikely to come across Notation nodes.

173

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 173

Overview of Node Methods

The methods of the Node interface fall into several groups:

• Get information about the current node: getNodeName(), getNodeType(),
getNodeValue(), getOwnerDocument(), hasChildNodes(), hasAttributes()

• Namespace support: namespaceURI(), prefix(), localName()

• Clone and modify the current node: cloneNode(), setNodeValue(),
normalize()

• Modify the node’s children: appendChild(), removeChild(), replaceChild(),
insertBefore()

• Move around in the tree: getAttributes(), getChildNodes(),
getFirstChild(), getLastChild(), getNextSibling(),
getPreviousSibling(), getParentNode()

In addition, there is an isSupported(feature,version) method that performs
the same function as the hasFeature() method of the DOMImplementation
interface.

All these methods are inherited by all the “node type” interfaces. One of these
derived interfaces is Document. We will use it to illustrate IDL and language
bindings after we briefly go over the interfaces that are not derived from Node.

Other Interfaces and Classes

The Node interface and interfaces derived from it repackage the basic XML speci-
fications (XML 1.0 and XML Namespaces) in terms of objects, properties, and
methods. Because DOM is a step closer to processing than the XML specification,
it includes several additional features that meet computational needs. These
include

• DOMString: A sequence of integers that becomes a String object in lan-
guage bindings.

• DOMException: An exception class that contains numeric codes for fre-
quently occurring exceptions.

174

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 174

• NodeList and NamedNodeMap: Two interfaces for dealing with collections
of nodes. NodeList is a dynamically resizable array of nodes that is used to
represent the children of a node and other ordered collections of nodes.
NamedNodeMap is an associative array of name-value pairs; it is used to
represent a node’s attributes.

Example: Document Interface in IDL, Java, and ECMAScript

We start with the IDL code (Listing 4-26), which is similar to C++ and largely self-
explanatory. The term attribute is used to describe what would be called an
instance variable in Java. Additional explanations are provided in comments.
Several times, the code mentions the NodeList interface.

Listing 4-26. The Document Interface in IDL
interface Document : Node { // interface Document is derived from Node

readonly attribute DocumentType doctype;

readonly attribute DOMImplementation implementation;

readonly attribute Element documentElement; // the root of the element tree

Element createElement(in DOMString tagName) raises(DOMException);

// Omitted: similar createXX() methods where XX stands for:

// DocumentFragment, Text, Comment, CDATASection,

// ProcessingInstruction, Attribute, and EntityReference

NodeList getElementsByTagName(in DOMString tagname);

// Introduced in DOM Level 2:

Node importNode(in Node importedNode, in boolean deep) raises(DOMException);

// Introduced in DOM Level 2: support for Namespaces

Element createElementNS(in DOMString namespaceURI, in DOMString qualifiedName)

raises(DOMException);

Attr createAttributeNS(in DOMString namespaceURI, in DOMString qualifiedName)

raises(DOMException);

NodeList getElementsByTagNameNS(in DOMString namespaceURI,

in DOMString localName);

// Introduced in DOM Level 2:

Element getElementById(in DOMString elementId);

};

This is how this comes out in Java (Listing 4-27). Java interfaces cannot have
instance variables, only Get/Set access methods. The readonly qualifier of IDL is
expressed by the absence of a setXX() method for the corresponding variable.

175

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 175

Listing 4-27. The Document Interface in Java
public interface Document extends Node {

public DocumentType getDoctype();

public DOMImplementation getImplementation();

public Element getDocumentElement();

public Element createElement(String tagName) throws DOMException;

// Omitted similar createXX() methods, where XX stands for:

// DocumentFragment, Text, Comment, CDATASection,

// ProcessingInstruction, Attribute, and EntityReference

public NodeList getElementsByTagName(String tagname);

public Node importNode(Node importedNode, boolean deep) throws DOMException;

public Element createElementNS(String namespaceURI, String qualifiedName)

throws DOMException;

public Attr createAttributeNS(String namespaceURI, String qualifiedName)

throws DOMException;

public NodeList getElementsByTagNameNS(String namespaceURI, String localName);

public Element getElementById(String elementId);

}

Finally, in ECMAScript we have pseudo-code with English-language expla-
nations because the language does not have data types. For instance,

getElementsByTagName(tagname)

This method returns a NodeList object.

The tagname parameter is of type String.

This completes our overview of the Core DOM APIs. It is definitely time for
an example. After the example, we will introduce the Traversal APIs and redo the
example using those.

Simple DOM Example: Tree Address

Our application will associate a “tree address” with each element node. We define
a tree address as a sequence of dot-separated integers such that each integer

176

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 176

gives the 0-based child number in the next level of the tree, starting from the root
element. For instance, 0.2.1 is the address of (reading from the right):

the second child of

the third child of

the first child of

the root element

In terms of DOM methods, the node with this tree address can be retrieved
from a Document object named “doc” by the following call. (Note that Java syn-
tax allows whitespace before the “dot” operator, which makes it possible to line
up method calls and insert comments.)

doc.getDocumentElement() // returns the root of the element tree

.getChildNodes().item(0) // getChildNodes() returns a NodeList

.getChildNodes().item(2)

.getChildNodes().item(1)

Concatenating the document’s URL with the tree address of a node yields
a globally unique identifier for that node.

Application Outline and the Main Page

Our application is “DOMtreeAddr/treeAddr.jsp” (see Listing 4-28 within the xmlp
webapp), and it receives a document to process from the text area of an HTML
form. You can enter and edit it manually, you can copy and paste it, or you can
load it into the text area from a URL.

The application parses the document, stores the Document object in cache,
and adds tree addresses to element nodes as values of the treeAddr attribute. We
show three ways of doing this:

• using Core interfaces and a stack to traverse the document

• using Core interfaces and traversing the document recursively

• using Traversal interfaces

177

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 177

The user can also remove the treeAddr attributes from the cached Document
object or remove the Document object from cache to process another one.
Figure 4-7 shows all the buttons of
http://localhost:8080/xmlp/DOMtreeAddr/treeAddr.jsp.

The Code of the Main Page

The code of treeAddr.jsp follows the familiar pattern:

1. Import libraries and instantiate session cache.

2. Initialize session variables and store them in cache (once per session).

3. Output the HTML form.

Let’s look at the first two steps first (Listing 4-28). As in many other examples,
the session variables are a DocumentBuilder (that is, a DOM parser) and a trans-
former that implements the identity transformation. The parser is used every
time during a session when a new XML document needs to be parsed. The trans-
former is used to serialize a Document object to an output stream that, in turn,
dumps the serialized document into the text area.

178

Chapter 4

Figure 4-7. The Tree Address application

031ch04.qxp 5/10/02 2:35 PM Page 178

Listing 4-28. Page Directive and Session Variables
<%@ page errorPage=”error.jsp”

import=”javax.xml.transform.*,

javax.xml.transform.stream.*,

javax.xml.transform.dom.*,

org.w3c.dom.*,

javax.xml.parsers.*”

%><jsp:useBean id=”sessCache” class=”java.util.Hashtable” scope=”session”

/><% // initialize session variables if they’re not already set up

DocumentBuilder db=(DocumentBuilder) sessCache.get(“db”);

if(db==null){

DocumentBuilderFactory dbf=DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);

db=dbf.newDocumentBuilder();

sessCache.put(“db”,db);

}

Transformer trans=(Transformer) sessCache.get(“trans”);

if(trans==null){

TransformerFactory tFactory = TransformerFactory.newInstance();

trans = tFactory.newTransformer();

trans.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION,”yes”);

trans.setOutputProperty(OutputKeys.INDENT,”yes”);

sessCache.put(“trans”,trans);

}

The HTML form has only one small piece of code in it: we check to see
whether the current document has already been parsed and the resulting
Document stored in the cache; if so, we dump it into the text area for display.
Otherwise, we output a default document to work with:

<textarea name=”doc” rows=”30” cols=”80”>

<%

Document doc=(Document)sessCache.get(“doc”); // do we have a document?

if(doc!=null) // yes: dump it into the text area

trans.transform(new DOMSource(doc),new StreamResult(out));

else {

%><!-- output an XML document here -->

<% } // close the else branch

%></textarea>

The rest of the form outputs six buttons, each of which calls a JSP page. We
will concentrate on the three addXXX.jsp pages because the rest of them do not
add any new material.

179

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 179

Add Tree Addresses Using Core Interfaces

Our task is to traverse the DOM tree computing tree addresses for element nodes
as we go along. Ordinarily, you would perform this task using a Traversal inter-
face. However, it is useful to see how traversal is done using only the low-level
Core interfaces, especially because they predate Traversal interfaces by a couple
of years and a lot of installed code relies on them for traversal.

As we mentioned, we show two versions: one that uses a stack to keep track
of nodes to visit, and another that uses recursion. Listing 4-29 shows the stack
version.

Listing 4-29. Stack-Based addTreeAddr() from addTreeAddrCore.jsp
public void addTreeAddr(Document doc) {

java.util.Stack stack = new java.util.Stack();

// push the root of the element tree on stack

stack.push(doc.getDocumentElement());

do{ // repeat until stack is empty

Element elt=(Element)stack.pop();

// Java Stacks hold objects of type Object

// that need to be cast to a specific type.

// We put only Element objects on our stack

String treeAddr=elt.getAttribute(“treeAddr”);

// if the attribute does not have a value

// getAttribute() returns the empty string

if(treeAddr.length()==0) // the root element

elt.setAttribute(“treeAddr”,””);

else treeAddr+=”.”;

NodeList nodeList=elt.getChildNodes();

for(int i=0;i<nodeList.getLength();i++){

Node child=nodeList.item(i);

if(child.getNodeType()!=org.w3c.dom.Node.ELEMENT_NODE)

continue; // skip non-element nodes

((Element)child).setAttribute(“treeAddr”,treeAddr+i);

// for 1-based addresses, we’d say:

// setAttribute(“treeAddr”,treeAddr+(i+1))

stack.push(child);

}

} while(!stack.empty());

}

The recursive version of this procedure, shown in Listing 4-30, takes two
arguments: the current node and its tree address (a string).

180

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 180

Listing 4-30. Recursive addTreeAddr(), from addTreeAddrRec.jsp
public void addTreeAddrRec(Node node, String treeAddr){

if(node.getNodeType()!=org.w3c.dom.Node.ELEMENT_NODE)

return; // If it’s not an Element, do nothing.

Element elt=(Element) node;

elt.setAttribute(“treeAddr”,treeAddr);

if(treeAddr.length()>0) treeAddr+=”.”;

NodeList nodeList=node.getChildNodes();

for(int i=0;i<nodeList.getLength();i++)

addTreeAddrRec(nodeList.item(i),treeAddr+i);

}

We start the recursive process with this line of code:

addTreeAddrRec(doc.getDocumentElement(),””);

Apart from this line, the rest of the page is identical for the stack and the
recursive versions, as shown in Listing 4-31.

Listing 4-31. Add-Address Page Using Core Interfaces (Stack or Recursive)
<%@ page errorPage=”error.jsp”

import=”org.w3c.dom.*, javax.xml.parsers.*”

%><jsp:useBean id=”sessCache” class=”java.util.Hashtable” scope=”session”

/>

<%! /* the definition of the appropriate addAddr procedure goes here */ %>

<%

String docStr=request.getParameter(“doc”);

DocumentBuilder db=(DocumentBuilder) sessCache.get(“db”);

if(docStr==null || db==null){ // user bypassed the entry page

%> <jsp:forward page=”treeAddr.jsp”/>

<% }

Document doc=db.parse(

new org.xml.sax.InputSource(

new java.io.StringReader(docStr)));

addTreeAddr(doc); // this is the stack version;

// addTreeAddrRec(doc.getDocumentElement(),””); // the recursive version

sessCache.put(“doc”, doc);

%><jsp:forward page=”treeAddr.jsp”/>

181

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 181

Traversal Interfaces

DOM Level 2 defines two kinds of objects that can be attached to a tree of nodes
in order to traverse it: NodeIterator and TreeWalker. NodeIterators are better
suited for working with text content of each visited node, whereas TreeWalkers
are better suited for working with document structure. We will sometimes say
traverser to refer to either a NodeIterator or a TreeWalker.

Both kinds of traversers present a “logical view” of the XML data they tra-
verse that may include only a subset of all the nodes in the data. We will say that
nodes included in the traverser’s logical view are visible to the traverser, and
that nodes that are filtered out are invisible. The traverser’s logical view of the
data is determined when it is created. We will explain the creation process
shortly.

A NodeIterator presents a flattened view of the tree as an ordered sequence
of nodes, in document order. It has methods for moving forward and backward
from the current node, but not up to its parent or down to its children.
A TreeWalker preserves the hierarchical view of the subtree, allowing navigation
in all directions. Specifically, this means that NodeIterators have only two naviga-
tion methods, whereas TreeWalkers have seven:

NodeIterator.nextNode()

NodeIterator.previousNode()

TreeWalker.nextNode()

TreeWalker.previousNode()

TreeWalker.firstChild()

TreeWalker.lastChild()

TreeWalker.nextSibling()

TreeWalker.previousSibling()

TreeWalker.parentNode()

In addition, TreeWalkers have access to the current node: getCurrentNode()
simply returns the node without changing the TreeWalker’s position, and
setCurrentNode() allows the TreeWalker to jump to an arbitrary position in the
tree.

Navigation Basics

We think of a traverser as always positioned either before the current node or
after the last node in its logical view. When the traverser is created, it is positioned
before the first node. The nextNode() method returns the current node and

182

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 182

advances the traverser. When the traversal is over, the method returns Null.
A common pattern of working with a traverser is a While loop, as seen here:

// create a traverser called iter

Node node;

while (node = iter.nextNode()) doSomething(node);

The previousNode() method works the opposite way: it returns Null if the tra-
verser is before the first node, and otherwise returns the node preceding the
traverser and moves the traverser backward over the returned node.

Both kinds of traversers are “live”: if, in processing a node, you modify a part
of the tree that is visible to the traverser, then the traverser’s logical view is imme-
diately updated.

Creating a NodeIterator

The procedures for creating NodeIterators and TreeWalkers are identical, and
both use a method of the DocumentTraversal interface. In DOMs that implement
the Traversal module, the Document object also implements
DocumentTraversal. That interface defines two “creation” methods: one for node
iterators, and the other for tree-walkers. To attach a NodeIterator to a tree, con-
vert (cast) the Document object to the TreeTraversal type and apply the
createNodeIterator() method, giving it the root of the tree you want to traverse
as the first argument:

NodeIterator iter=

((DocumentTraversal)doc).createNodeIterator(

root, NodeFilter.SHOW_ELEMENT, null, false);

Node node;

while (node = iter.nextNode()) doSomething(node);

This assumes that doc is the Document object and that root is a node. The
While loop will visit, in document order, every Element node of the subtree under
the root. It will skip nodes that are not elements. This is an example of how node
iterators and tree-walkers present a filtered logical view of the data.

Creation methods take four arguments. The first of them, as we said, is
a node, the root of the subtree to traverse. The last one is a Boolean that tells the
traverser whether it should expand entity references if it comes across them. (It
will be False in all our examples.) The second and third argument determine
what is visible in the logical view presented by the traverser.

183

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 183

Now that we know how to create a traverser and how to navigate it, let us
work through an example. The example will address a small problem with our
add-address programs that we have been careful not to mention until now.

Filtering Parameters of createNodeIterator()

The second parameter of the two creation methods is a named integer
constant. The names of the constants are formed by concatenating the string
“SHOW_” with a node type. Thirteen such constants are defined in the NodeFilter
interface: one for each of the twelve node types (listed in Table 4-2) plus
SHOW_ALL. You can combine the constants using the “|” operator: to make only
elements and attributes visible in the logical view, you would create an iterator
like this:

NodeIterator iter=

((DocumentTraversal)doc).createNodeIterator(

root, NodeFilter.SHOW_ELEMENT | NodeFilter.SHOW_ATTRIBUTE, null, false);

The third parameter of the two creation methods gives you an even finer
control of what is included in the logical view. It is an object that, if not Null,
must implement the acceptNode() method. The method takes a node as an
argument and returns one of three possible integer values: FILTER_ACCEPT,
FILTER_REJECT, or FILTER_SKIP. If the value is FILTER_ACCEPT, the node is
visible in the logical view. If the value is NODE_SKIP, the node is skipped. If the
value is NODE_REJECT, then a TreeWalker object will skip not only the current
node but also all its children; for NodeIterator objects, SKIP and REJECT mean
the same thing.

The acceptNode() method knows nothing about trees and traversals: it just
takes each current node in turn and returns its verdict. This makes NodeFilter
objects very easy to reuse: you can accumulate libraries of commonly used ones
and plug them in as needed.

184

Chapter 4

NOTE NodeFilter objects get to work after the integer-constants filters
have already been applied. If the second argument says SHOW_TEXT and
nothing else, the node filters will see only text nodes. It is your responsibil-
ity as a programmer to make sure that integer constants and node filters
work harmoniously together.

031ch04.qxp 5/10/02 2:35 PM Page 184

Example: The Problem of Odd Addresses

As shown in Listing 4-29, 4-30, and 4-31, all our add-address programs will pro-
duce somewhat unexpected results. Listing 4-32 shows a very simple page with
tree addresses added.

Listing 4-32. Odd Addresses
<top attr=”val” treeAddr=””>

<middle treeAddr=”1”> middle-level content </middle>

<middle treeAddr=”3”> more middle-level content </middle>

<middle treeAddr=”5”>

<bottom treeAddr=”5.1”>bottom-level content.</bottom>

<bottom treeAddr=”5.3”>more bottom-level content.</bottom>

</middle>

</top>

Mysteriously, all the addresses are odd numbered, and there seem to be
twice as many nodes as the eye can see. The expected result would be as shown
in Listing 4-33.

Listing 4-33. Correct Addresses
<top attr=”val” treeAddr=””>

<middle treeAddr=”0”> middle-level content </middle>

<middle treeAddr=”1”> more middle-level content </middle>

<middle treeAddr=”2”>

<bottom treeAddr=”2.0”>bottom-level content.</bottom>

<bottom treeAddr=”2.1”>more bottom-level content.</bottom>

</middle>

</top>

The reason for this is that there are indeed invisible nodes, corresponding to
the whitespace between the visible ones. If our documents had DTDs specifying
that the content model of, for example, the top element is “children-only”, then
the whitespace would not be preserved in the DOM tree. As it is, the parser has to
play it safe and create nodes for them. To eliminate those whitespace-only nodes,
we have to run another traversal. For this traversal, we will use a tree-walker, as
shown in Listing 4-34.

185

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 185

Listing 4-34. Remove Whitespace-Only Nodes
public void removeWSNodes(Document doc) throws Exception {

org.w3c.dom.traversal.TreeWalker tw

= ((org.w3c.dom.traversal.DocumentTraversal)doc)

.createTreeWalker(doc.getDocumentElement(),

org.w3c.dom.traversal.NodeFilter.SHOW_TEXT,

null,false);

Node prev=tw.nextNode(); // node to be removed, if whitespace only

Node node;

while(null!=(node=tw.nextNode())){

if(prev.getNodeType()!=org.w3c.dom.Node.TEXT_NODE)

throw new Exception(“non-Text Node from SHOW_TEXT TreeWalker”);

// trim whitespace from the text of the node

String val=prev.getNodeValue().trim()

if(val.length()==0) // there’s nothing left!

prev.getParentNode().removeChild(prev);

prev=node;

}

}

To obtain correct results, we could add this definition to our add-address
pages, and also a new line of code (shown highlighted), right after the document
is created and before the add-address procedure is invoked:

Document doc=db.parse(

new org.xml.sax.InputSource(

new java.io.StringReader(docStr)));

removeWSNodes(doc); // the new line of code

addTreeAddr(doc);

This would fix the problem with addTreeAddrCore.jsp and
addTreeAddrRec.jsp.

Book Picker as DOM Builder

Our final example in this chapter will combine SAX and DOM to implement
the following idea: suppose that you have a document that is too big to hold in
memory all at once, and you need to process only one of its subtrees, anyway.
However, the processing of that subtree is too complex and context-dependent to
be handled by SAX combined with a simple state machine. (In our pickbook.jsp
example, we had three states, but what if you need seventeen?) A natural strategy
in this common situation is to use SAX to extract the subtree you want and build

186

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 186

a DOM tree for it. We will implement this idea as a revised book picker that
extracts a specified book of the Bible and builds its DOM tree. For diversity, this
program is implemented in Visual Basic, but the code is readily translatable into
Java or, indeed, C#.

Running the Application

To run this (Windows-only) application, the file ActiveSAXbookpicker.dll must be
installed on your machine and your IIS/PWS server must be running. (The DLL
can be in any program directory; common choices are C:\Windows or
C:\WinNT.) Assuming that ActiveSAXbookpicker.asp is in wwwroot\xmlp, the
application is invoked by connecting to
http://localhost/xmlp/ActiveSAXbookpicker.asp, as shown in Figure 4-8.

The code of ActiveSAXbookpicker.asp creates a DOMBuilder object defined
in the ActiveSAXbookpicker.dll file and calls its parseURL method. The method
takes two arguments: the URL of the biblical text and the name of the book to
display. (Our code uses the same copy of ot.xml as in JSP applications; this
assumes that Tomcat is running on port 8080.) The method returns an object of
type MSXML2.DOMDocument. The object has an xml property which is a string that
contains XML text. When the property is accessed, in the last line of code, the tree
is serialized and the result is sent to the browser, as seen in Listing 4-35.

187

XML Parsing

Figure 4-8. VB Book Picker

031ch04.qxp 5/10/02 2:35 PM Page 187

Listing 4-35. The ASP Page, ActiveSAXbookpicker.asp
<%@ LANGUAGE=”VBSCRIPT”

%><% Option Explicit

Dim dombuilder,doc,bookURI,bookName

bookURI=”http://localhost:8080/xmlp/dat/jb/ot.xml”

‘ This assumes that Tomcat is running,

‘ and webapps/xmlp/dat/jb/ot.xml is in place,

‘ but if not, simply copy ot.xml to wwwroot\xmlp\ot.xml

‘ and tstmt.dtd to wwwroot\common\tstmt.dtd

‘ set bookURI=”http://localhost/xmlp/ot.xml”

bookName=”JOB”

‘ bookName can, of course, be pulled out of QueryString object

Set dombuilder = CreateObject(“ActiveSAXbookpicker.DOMBuilder”)

Set doc = dombuilder.parseURL(CStr(bookURI),CStr(bookName))

Response.ContentType = “text/xml”

Response.write(doc.xml)

%>

This ASP page invokes an ActiveX control, MSXML, which in turn tries to
access a URL resource. For this to work, you need a specific combination of secu-
rity settings on the Internet Explorer Tools ➢ Internet Options ➢ Security
menu. This combination is different on Windows 9x and on Windows 2000.
In particular, on Windows 2000, you may need to put http://localhost and
http://localhost:8080, or even the specific URL of the pages you are download-
ing onto Trusted Sites. Future versions of the browser and/or the operating
system may require additional security setting modifications.

The Application’s Code

The code of the application consists of three files: DOMBuilder.cls, which defines
the top-level parseURL() function; ContentHandlerImpl.cls, which does SAX
parsing and builds a DOM tree from SAX output; and ErrorHandlerImpl.cls,
which processes errors (and also returns a DOM tree that holds the XML error
message). We will discuss these in that order.

The DOMBuilder Class

The DOMBuilder class defines a single parseURL() function that takes two argu-
ments—a URL and a string—and returns a DOM object. It is preceded by
fourteen lines of framework-generated code that sets the class properties. The
function itself instantiates a SAX parser (SAXXMLReader), sets its handlers to our
application-specific ContentHandlerImpl and ErrorHandlerImpl, and calls its
own parseURL() function that takes a single argument, a URL. (See Listing 4-36.)

188

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 188

Listing 4-36. The DOMBuilder’s ParseURL() Function
Public Function parseURL(srcURL As String, matchStr As String)

As MSXML2.DOMDocument ‘ returns a MSXML2.DOMDocument

Dim reader As New SAXXMLReader ‘ a SAX parser

Dim contentHandler As New ContentHandlerImpl ‘ Receives parsing events

Dim errorHandler As New ErrorHandlerImpl ‘ Receives error events

Set reader.contentHandler = contentHandler

Set reader.errorHandler = errorHandler

‘ set the public property titleString to matchStr (calls Property Let)

contentHandler.titleString = matchStr

On Error GoTo Parse_Err ‘ go to Parse_Err: label

reader.parseURL (srcURL) ‘ parse the input

‘ return value from function via function name

Set parseURL = contentHandler.doc()

Exit Function

Parse_Err:

‘ return value from function via function name

Set parseURL = errorHandler.doc()

End Function

The ContentHandlerImpl Class

The ContentHandlerImpl class is quite similar to our Java BookPicker class
except that it also builds a DOM object. You may want to review Listing 4-14 from
earlier in the chapter to see the overall logic of the program. In particular, recall
that the content handler can be in one of three states: the silent state that pro-
duces no output, the echo state that copies the input to output because we are
in the right book, and the in-title state when we don’t yet know whether we are in
the right book or not and must accumulate the entire title before switching into
either the echo or the silent state.

The code of ContentHandlerImpl consists of four sections:

• Framework-generated prefatory matter

• Variables and properties, declared and instantiated

• Overridden SAX callbacks: startDocument, startElement, endElement, and
characters

• Framework-generated empty stubs for the remaining callbacks

189

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 189

We will show the two middle sections. The first of them requires little com-
ment, except to remind you that the content handler can be in one of three
states. (See Listing 4-37).

Listing 4-37. Enumeration, Variables, and Properties
Implements IVBSAXContentHandler ‘ the Implements clause

‘ an enumeration of SAX states

Private Enum saxState

saxSilent = 0

saxInBkTLong = 1

saxEcho = 2

End Enum

‘private object variables (DOM Document and Node)

Private oDoc As MSXML2.DOMDocument

Private oNode As MSXML2.IXMLDOMNode

‘ three non-object variables

Dim sState As saxState

Dim bkTitle As String

Dim strMatch As String

‘ access to private variables: Property Get and Property Let

Public Property Get doc() As MSXML2.DOMDocument

Set doc = oDoc

End Property

Public Property Let titleString(str As String)

strMatch = str

End Property

SAX Callbacks

The biggest difference between the Java version and this version is that we pro-
vide for the possibility that there may be more than one book title matching the
user input and, therefore, that more than one book may be sent to output. In the
earlier version, this would result in non-well-formed XML consisting of more
than one tree. In this version, we provide a top wrapper element called books. It is
created in startDocument() using DOM’s createElement() and appendChild()
methods. (See Listing 4-38.)

190

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 190

Listing 4-38. startDocument()
Private Sub IVBSAXContentHandler_startDocument()

Set oDoc = New MSXML2.DOMDocument

Call oDoc.appendChild(oDoc.createElement(“books”))

Set oNode = oDoc.documentElement

sState = saxSilent

End Sub

In startElement(), the program can be in only one of two possible states:
silent or echo. If it is in the echo state, we copy the element to the emerging DOM
tree, again using DOM’s createElement() and appendChild() methods. If we are
in the silent state, we check to see whether the element happens to be the book
title element. If so, we initialize the bkTitle string:

Private Sub IVBSAXContentHandler_startElement(

strNamespaceURI As String,

strLocalName As String,

strQName As String,

ByVal oAttributes As MSXML2.IVBSAXAttributes

)

If sState = saxEcho Then

Set oNode = oNode.appendChild(oDoc.createElement(strLocalName))

ElseIf sState = saxSilent Then

If strLocalName = “bktlong” Then

sState = saxInBkTLong

bkTitle = “”

End If

End If

End Sub

In endElement(), we can be in any of the three states. If we are in the silent
state, we do nothing. If we are in the echo state, we check to see whether we have
reached the end of the book we’ve been echoing; if so, we reset the state to silent.
Finally, if we are in the in-title state, we want to check whether the title that we
have just finished accumulating matches the strMatch argument submitted by
the user. If it does, we switch to the echo state; if it doesn’t, we switch to the silent
state:

Private Sub IVBSAXContentHandler_endElement(

strNamespaceURI As String,

strLocalName As String,

strQName As String

)

191

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 191

If sState = saxEcho Then

Set oNode = oNode.parentNode

If strLocalName = “book” Then sState = saxSilent

ElseIf sState = saxInBkTLong Then

If (InStr(bkTitle, strMatch)) Then

sState = saxEcho

‘ must build book node, then bktlong within it

Dim oTitle As IXMLDOMElement

Set oTitle = oDoc.createElement(“bktlong”)

Call oTitle.appendChild(oDoc.createTextNode(bkTitle))

Dim oBook As IXMLDOMElement

Set oBook = oDoc.createElement(“book”)

Call oBook.appendChild(oTitle)

Call oNode.appendChild(oBook)

Set oNode = oBook

bkTitle = “”

Else ‘ was in bktlong, but title didn’t match

sState = saxSilent

bkTitle = “”

End If

End If

End Sub

The characters() method does nothing if we are in the silent state, accumu-
lates the title if we are in the in-title state, and copies to the emergent DOM tree if
we are in the echo state. Because we are copying text, we copy into a text node
rather than an element node:

Private Sub IVBSAXContentHandler_characters(strChars As String)

If sState = saxEcho Then

Call oNode.appendChild(oDoc.createTextNode(strChars))

ElseIf sState = saxInBkTLong Then

bkTitle = bkTitle & strChars

End If

End Sub

The rest of the code consists of the framework-generated stubs for the
remaining callbacks, such as

Private Sub IVBSAXContentHandler_endDocument()

End Sub

192

Chapter 4

031ch04.qxp 5/10/02 2:35 PM Page 192

This concludes the ContentHandlerImpl class. The ErrorHandlerImpl has no
features, DOM or SAX, that are not in ContentHandlerImpl.

Conclusion

In this chapter, we have covered SAX and DOM programming, from the basics
to more advanced topics, separately and in combination. We have also intro-
duced more JAXP material, including the Transformer object for XSLT
transformations and XML data conversions among different representations.

Unlike every other specification in the book, SAX is not sponsored by W3C,
OASIS, or any other organization. It is a de facto standard, designed and imple-
mented by a group of developers on the xml-dev mailing list (with David
Megginson as the focal point and implementer in charge). Its APIs are exposed by
all major parsers, including MSXML. However, they are not supported by the
.NET XML classes; in particular, the XmlReader class of the .NET framework has
nothing to do with the SAX XMLReader interface. In other words, XML processing
in .NET is different from MSXML, and, if you want to use SAX interfaces, you will
have to import MSXML as a separate package or implement SAX on top of .NET’s
XmlReader.

We also covered DOM interfaces and developed an example of DOM and SAX
used together and implemented in VB/ASP. This example is easy to generalize to
many situations in which you want to extract a subtree from your XML data
before building a DOM.

193

XML Parsing

031ch04.qxp 5/10/02 2:35 PM Page 193

031ch04.qxp 5/10/02 2:35 PM Page 194

CHAPTER 5

XPath, XSLT,
and XLink Processing

IN THIS CHAPTER AND THE NEXT, we explore two languages—XPath and XSLT—that
were first introduced in Chapter 1. Our aim is to present an overall picture: the
data model, the syntax, the processing model, and essential programming tech-
niques. We will not try to be complete and exhaustive: this has been done, in
a definitive way, in Kay’s XSLT Programmer’s Reference (a book twice the size of
this one and completely dedicated to XSLT). We will concentrate on those parts
of XSLT that are most commonly used, but, within that scope, we will go into
considerable depth on issues that are important to programmers: idiomatic XSLT
programming, design patterns, and efficiency. In general, we try to treat XSLT as
just another programming language.

The XML material used in this chapter’s XSLT programs often contains
extended XLink structures. Together, the programs form a complete application
that builds a collection of XLinks from user input and performs search operations
on the resulting graph structure. You may want to review the two sections of
Chapter 2 that presented XLink and a simple XLink application (“XLink
Attributes and XLink Graphs” and “An XLink Example”). Parts of that material are
reused in this chapter.

In outline, the chapter proceeds as follows:

• an XLink application: creating and using a linkbase

• XPath data model and expression syntax

• XSLT overview and processing model

• the push programming pattern (data-driven control structure, default tem-
plates)

• subroutines and recursion

• the code of the linkbase application

195

031ch05.qxp 5/10/02 2:34 PM Page 195

An XLink Application: Creating and Using
a Linkbase

Our XLink application consists of two parts. Part 1 creates a linkbase from an
XML “link source” file that itself can be easily created from user input via an
HTML form. The linkbase contains extended link structures that describe many-
to-many links in XML data that can be in a single document or multiple
documents. Part 2 implements two sample queries.

We again use the King James Bible (ot.xml and nt.xml) as our XML data. As
you may know, New Testament texts frequently quote or contain parallels to
the Old Testament, and there are many parallels among the four Gospels.
Our links are based on those parallels and quotes, as documented in The
New Oxford Annotated Bible with the Apocrypha/Deuterocanonical Books
(ISBN 0-19-528485-2).

The screenshot in Figure 5-1 shows the result of a query.

From Link Source to Linkbase

Our link source file is bibleLinks/biblelinks.xml. It consists of ref elements as
shown in Listing 5-1.

196

Chapter 5

Figure 5-1. Linkbase query result, simple query

031ch05.qxp 5/10/02 2:34 PM Page 196

Listing 5-1. Link Source Document
<bible-linkbase-src>

<ref>

<from>nt.xml Luke 18 27</from>

<to>ot.xml Genesis 18 14</to>

</ref>

<ref>

<!-- more ref elements -->

</bible-linkbase-src>

Each ref element establishes a one-way relationship between two items. To
express this information in an extended link, we need two locator elements for
the two items, and an arc element to assert the relationship. (See Chapter 2 for
more detail.) The entire linkbase document will consist of a single extended link
element that contains all the locator and arc elements. The sample of Listing 5-1
should come out as shown in Listing 5-2.

Listing 5-2. Linkbase Document
<?xml version=”1.0” encoding=”iso-8859-1”?>

<!DOCTYPE elt PUBLIC “elt”

“http://localhost:8080/xmlp/bibleLinks/biblelinkbase.dtd”>

<elt xmlns:xlink=”http://www.w3.org/1999/xlink” xlink:type=”extended”>

<elt xlink:label=”Luke_18_27”

xlink:type=”locator”

xlink:href= // long URL, including an XPointer, broken over two lines

// see explanations to Listing 2-7 in Chapter 2

“dat/jb/nt.xml#

xpointer(/tstmt/bookcoll/book[bktshort=’Luke’]/chapter[18]/v[27])”

/>

<elt xlink:label=”Genesis_18_14”

xlink:type=”locator”

xlink:href= // long URL, including an XPointer, broken over two lines

“dat/jb/ot.xml#

xpointer(/tstmt/bookcoll/book[bktshort=’Genesis’]/chapter[18]/v[14])”

/>

<!-- more locator elements -->

<elt

xlink:to=”Genesis_18_14”

xlink:from=”Luke_18_27”

xlink:type=”arc”/>

<!-- more arc elements -->

</elt>

197

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 197

The transformation is performed by ref2link.xsl. We are not yet ready to read
its code, but let us list some of the tasks it has to perform:

• Process each ref element twice—first to construct locators, then to con-
struct arcs.

• In constructing locator labels, convert a string like “nt.xml Luke 18 27” into
the label “Luke_18_27”. (The same labels are used in arc elements.)

• In constructing locator href attributes, convert a string like “nt.xml
Luke 18 27” into a complete URL+XPointer expression.

• For either labels or href attributes, one of the tasks is to break the original
string into pieces using the space character as the separator.

Once the linkbase is built, we can run queries. We implement two of them:

• Given an element, find all elements to which it is linked.

• Given an element, find all elements that are reachable from a given ele-
ment by recursively going from its neighbors to its neighbors’ neighbors,
and so on until no new elements are found.

In technical terms, the second query is the transitive closure of the first. To
give a familiar example of the same concept, in a tree structure, ancestor is the
transitive closure of parent. By the end of this chapter, after a heavy dose of
XPath and XSLT, you will be able to read the code of the queries and improve it in
exercises.

The XPath Language and Data Model

XPath is an expression-oriented language: its main syntactic unit is an expression
that gets evaluated to produce a value. To learn XPath is to learn three things:

• What kinds of values are there? (the data model)

• What kinds of expressions are there? (the syntax)

• How are expressions evaluated? (the evaluation function from expressions
to values)

Before we work our way through these questions, we would like to give you
a program—an expression evaluator—that you could use to try out various

198

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 198

expressions. To use such a program, you will need a little background in XPath
data types and the evaluation process. So we will work through a short example
first, present the evaluator, and then present the language in more detail.

XPath is always used within another application, such as XSLT, XPointer, or
(currently vendor-specific) functions that retrieve node-sets from DOM trees
using XPath. The outside application receives the value of an XPath expression
and does something with it. The outside application also provides a context of
evaluation for XPath expressions. In this chapter, we are interested in how XPath
is used in XSLT; all our examples of XPath are XSLT examples.

XPath Data Types and the Context of Evaluation

The four data types in XPath are string, number, Boolean, and node-set. The first
three are familiar, and we will refer to them collectively as scalar data types.
A node-set, as the name suggests, is a set of nodes in a tree. Expressions corre-
sponding to scalar data types use the same syntax in XPath as in other
programming languages. Path expressions that evaluate to node-sets are the core
of the language. To illustrate path expressions and node-sets, consider a simple
stylesheet, similar to Listing 1-13 of Chapter 1 but without variables. It is
intended for the same pdata.xml data that we have used in Chapters 1 through 3.
The output of the program is an HTML table that lists the title and first and last
names of each person, as shown in Listing 5-3.

Listing 5-3. XPath Within XSLT (pdataNameTable.xsl)
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

version=”1.0”>

<xsl:template match=”/” >

<html><head><title>People’s names</title></head>

<body><table border=”1”>

<xsl:for-each select=”pdata/person/name”>

<tr>

<td><xsl:value-of select=”title”/></td>

<td><xsl:value-of select=”first”/></td>

<td><xsl:value-of select=”last”/></td>

</tr>

</xsl:for-each>

</table></body>

</html>

</xsl:template>

</xsl:stylesheet>

The XPath expressions in this program are the values of the match and select
attributes. They are all path expressions. The first of them, the value of the match
attribute in line 3, matches a node-set that consists of a single node, the root of

199

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 199

the tree. It creates a context in which the contents of the template element are
evaluated.

The next path expression is the value of the select attribute in the
xsl:for-each element. It is a relative path expression (it does not start with a “/”),
and it is evaluated in the context created by the match attribute. The value of this
expression is a node-set that consists of all the /pdata/person/name elements; if
the file has seventeen person records, the node-set will contain seventeen nodes.
The contents of the xsl:for-each element are applied to each of those nodes in
turn. Each node, in turn, becomes the current node that forms (a part of) the
context in which the contents of the xsl:for-each element are evaluated.

More precisely, the context of evaluation consists of the following:

• a context node-set and a specific node (the context node) within it

• two positive integers: the context node position within the context node-
set and the context size (that is, the number of nodes in the node-set)

• a set of variable bindings (XPath can refer to variables but cannot create
them: they are created in the application that uses XPath.)

• a set of namespace declarations that are in scope for the expression being
evaluated

• a function library (XPath has a core function library that can be extended
with additional functions by the application that uses XPath.)

XPath Examples

Here are a few XPath expressions, with explanations. When talking about values,
we use boldface to indicate that we are talking about objects rather than
expressions that refer to those objects. For instance, 70 is a number expression,
but 70 is a number object.

When Boolean examples appear in an XSLT stylesheet (or any other XML
document) the < and > characters are, of course, replaced by the appropriate
entities, according to XML syntax. Remember that, before an XSLT program gets
to the XSLT processor, it first goes through an XML parser.

• ‘abcd’ is a string literal whose value is the string abcd.

• concat(‘ab’,’cd’) is a functional expression whose value is the same
string.

• 325.74 is a number expression whose value is the number 325.74.

200

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 200

• position() is a functional expression whose value is a number, the
position of the context node within the context node-set. (The position of
the first node is 1.)

• 5>3 is a Boolean expression whose value is the Boolean value true.

• position()<5 and position()>2 is another Boolean expression.

• $var>17 is another Boolean expression whose value is true if the value of
the variable var (interpreted as number, possibly after conversion) is
greater than 17.

The nature of context components and where they come from will become
clear as we proceed. The main thing to remember is that the context of evalu-
ation is external to XPath: it is supplied by the application that uses it. The role of
XPath is to select a set of nodes for processing by its mother application.

A JSP for Testing

We provide a Web application for evaluating (that is, computing the value of)
XPath expressions. The application is xptrans.jsp. To evaluate an XPath
expression, our evaluator constructs an XSLT stylesheet and runs it, from within
the program, on the specified XML source. We also show how the same kind of
evaluator can be implemented in ASP.

We present the evaluator here so you can start using it, but many details of its
code require some knowledge of XSLT and XPath. You don’t have to work through
the code to use the application: simply complete and submit the form in the
application’s entry page, moreXSL\xptrans.htm.

201

XPath, XSLT, and XLink Processing

Figure 5-2. The entry form for XPath tester

031ch05.qxp 5/10/02 2:34 PM Page 201

As you can see from the screenshot, the program expects four parameters
from the reader:

• XML URI: an XML source to be processed by the stylesheet. (It can be
a URL or a local file.)

• top match: the value for the match attribute in the top-level template.

• XPath expression: the path expression to be evaluated in the context
created by the top match.

• result type: nodeset and value. Use nodeset if the expected result is
either a single node or a set of nodes. Use value if the expected result is
a string, a number, or a Boolean. (If the result is a set of nodes and you ask
for its value, you will get the string value of the first node.)

With the defaults as shown in Figure 5-2, the output is as follows:

<list>

<person helpers=”A3 A4 A5” id=”A2”>

<name>

<title>Mr.</title>

<last>Bargle</last>

<first>Bertrand</first>

</name>

</person>

<person helpers=”A1” id=”A5”>

...

</list>

You may want to start by changing only the XPath expression, until you learn
more XPath and XSLT and can start experimenting with the interaction between
the match variable that establishes the context of evaluation and the XPath
expression evaluated in that context. To experiment with Boolean, number, and
string expressions, set the result type to “value” and enter the XPath expression to
evaluate. The result will appear in the browser window. (This will be useful as we
go through XPath functions and operators in a later section.)

JSP (Java) Code

The code of xptrans.jsp, in outline, proceeds as follows:

202

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 202

1. Import needed libraries and classes in the opening page directive.

2. Create a Hashtable object called cache in a useBean action. This is only
done once when the application is run for the first time, because the
object has application scope. After that, the cache and its contents per-
sist from one call to the next.

3. Retrieve user-submitted values for the five parameters from the Request
object.

4. Retrieve a parsed Document (DOM) object for the given XML source
from cache; if it is not there, parse and store the result in cache. Also
store in cache the DocumentBuilderFactory object from which a parser
instance can be obtained.

5. Construct an XSLT program as a text string using the values of
templateMatch and xPath.

6. Construct a transformer object and run the XSLT program on the parsed
document.

7. If formatXslUri is empty, write the result to the output stream; otherwise,
construct another transformer object and run it on the output of the first
transformer.

Many details of this program are quite similar to what we did in xpn.jsp
within the XLink application of Chapter 2. The xpn.jsp file retrieves content from
an XML document (ot.xml) using an XPath expression. You may want to review
that section before proceeding. The big difference from xpn.jsp is in the way in
which the DOM object is created. In Chapter 2, for simplicity, we used Apache-
specific code. Here, we use generic JAXP code as in Chapter 4.

The way that the parser is invoked to create a DOM object is quite different
from the xpn.jsp version of Chapter 2, where we used Apache-specific code for
the purpose. In this chapter, we use the generic JAXP (Java API for XML
Processing). With JAXP, you can switch from one parser to another by simply
changing a system property that points to the class that implements the
DocumentBuilderFactory interface. Here is the code; the two highlighted lines set
the parser properties:

if(0>xmlUri.indexOf(“:”)) xmlUri=”file:///”+application.getRealPath(xmlUri);

Document doc=(Document) cache.get(xmlUri); // attempt to retrieve from cache

if(null==doc){

DocumentBuilderFactory dbf=(DocumentBuilderFactory) cache.get(“dbf”);

if(null==dbf){

203

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 203

dbf=DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true); // be namespace aware

dbf.setValidating(false); // do not validate

cache.put(“dbf”,dbf);

}

DocumentBuilder db=dbf.newDocumentBuilder();

doc=db.parse(xmlUri);

cache.put(xmlUri,doc);

}

In ASP, the same result (minus caching) can be obtained by the following code:

Dim objXML,xmlFile

xmlUri =QueryString.item(“x”)

Set objXML = Server.CreateObject(“MSXML2.DOMDocument.3.0”)

objXML.load Server.MapPath(xmlUri) ‘ load parses the file

The next step is to construct the text of the stylesheet by repeatedly concate-
nating all the pieces into a single string variable, xslString. For the given
defaults, the resulting stylesheet looks as follows (the values of the match and
select attributes have been inserted from user input):

<xsl:stylesheet xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’ version=’1.0’>

<xsl:output method=’xml’/>

<xsl:template match=’/’>

<list><xsl:copy-of select=’*’/></list>

</xsl:template>

</xsl:stylesheet>

If the value of templateMatch is not “/”, then there is a possibility that XSLT’s
default template matching rules will generate extraneous output. To suppress
that output, we override the default rules with a one-line template (also con-
structed) that has an empty template body and therefore produces no output:

<xsl:template match=’text()’/>

At this point in the code, we are ready to run the stylesheet on the DOM
object. As in the preceding chapter, we create a Transformer object and supply it
with a DOM source and a stream result. However, unlike as in Chapter 4, our
transformer is created with a nonempty stylesheet and therefore does more than
simply serializes the DOM source to an XML text: it performs a real transfor-
mation as specified in xslString. In effect, we are running XSLT code from within

204

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 204

Running XSLT from other code is a common way of integrating XSLT into
larger systems. Conversely, functions written in general-purpose programming
languages can be used from within XSLT. We will have much more to say about
interactions between XSLT and other programming languages in the next
chapter.

a Java program. Similar facilities exist for VBScript, JScript, VB, Python, and other
languages. In Java, we use JAXP interfaces to construct an XSLT processor object
and run the stylesheet:

TransformerFactory tFactory = TransformerFactory.newInstance();

Transformer transformer =

tFactory.newTransformer(new StreamSource(new StringReader(xslString)));

for(Enumeration e = props.propertyNames(); e.hasMoreElements();){

String name=(String)e.nextElement();

String val=props.getProperty(name);

transformer.setParameter(name,val);

}

StringWriter outStrW=new StringWriter();

response.setContentType(“text/xml”);

transformer.transform(new DOMSource(doc), new StreamResult(outStrW));

out.write(outStrW.toString());

The last two lines save the output of transformation in a StringWriter object
(which is just a string with stream interfaces) and write the object to the output
stream. We do that for ease of debugging, so the output can be inspected inside
the program before it pops up in the browser. In ASP, we would send the result
directly to the output stream:

xmlObj.transformNodeToObject(objXSL,Response)

205

XPath, XSLT, and XLink Processing

NOTE We avoid using strings when working with MSXML because they
are always, by definition, stored in UTF-16. MSXML can output byte
sequences in other encodings, but string storage implies a coercion to
UTF-16. Trying to set the charset to something else (for example, for com-
patibility with a receiving application that doesn’t understand UTF-16)
simply won’t work. At best, you will get a comprehensible error message.
Microsoft recommends that output be sent directly to the ASP response
stream, as in xmlObj.transformNodeToObject(xslObj, Response).

031ch05.qxp 5/10/02 2:34 PM Page 205

XPath Values and Data Types

As previously stated, XPath has four data types: Boolean, number, string, and
node-set.

The Boolean data type has just two possible values: True and False.
The number data type of XPath is technically known as “the IEEE double-

precision 64-bit floating point type [IEEE 754-1985].” It is identical to double in
Java and C#. We will say more about it in Chapter 9 when discussing the data type
library of XML Schema Part 2.

The string data type is a sequence of Unicode/UCS characters. (UCS stands
for Universal Character Set, an ISO standard for character representation that
corresponds to Unicode.) XPath characters are the same as XML 1.0 characters.

The most important data type is node-set, an unordered set of nodes without
repetition, the result of evaluating of a path expression. XPath node-sets are
unstructured, but the nodes they contain come from an XPath tree. Although
node-sets are unordered, they are frequently processed in document order,
which, for elements, is the order of start tags in the serialized document. We dis-
cuss the node-set data type and the XPath tree model in a separate section.

Type Conversions

For each data type except node-set, there is a conversion function of the same
name: boolean(), number(), and string(). In many contexts, conversion occurs
automatically, and automatic conversion always produces the same result as the
conversion function.

Conversions between Booleans, numbers, and strings work the way you
would expect: the string “false” is converted to the Boolean value False, and the
number 17 is converted to the string “17”. A node-set is converted to a string by
returning the string value of a single node: the node that is the first in document
order. If the node-set is empty, an empty string is returned. A node-set is con-
verted to a number by first converting it to a string, then applying
string-to-number conversion. A node-set is converted to Boolean False if it is
empty; otherwise, it is converted to True.

XPath 1.0 does not have a function to convert to node-set. Within XSLT, there
is an additional data type called result tree fragment that is quite awkward to work
with unless it is converted to node-set. All major XSLT processors now have
a node-set() function that converts result tree fragments to node-sets, and you
will see it in our code. XPath 2.0 is expected to remove the result tree fragment
data type altogether, eliminating the need for this function.

206

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 206

Expressions Other Than Path Expressions

The syntax of Boolean, number, and string expressions does not require much of
an explanation. As in many languages, there are primary expressions (including
function call expressions), a set of functions to learn, and operators that combine
primary expressions into compound ones. Here are the primary expressions:

• VariableReference: $book (the variable name is “book”)

• Parenthetical expression: ($price*0.8 + $shipping)

• Quoted String Literal: “Hello, XPath”, ‘single quotes are “ok” too’

• Number Literal: 325, 4.76E25

• Function Call: count()

Functions and Function Libraries

Function calls use a function from the function library that is part of the evalu-
ation context: a function library is a mapping from function names to functions.
XPath itself contains a core function library; both XSLT and XPointer extend it
with additional functions. The core library contains Boolean, number, string, and
node-set functions. Here is a selection of the more commonly used Boolean,
number, and string functions, showing their signatures (node-set functions will
be presented in the next section):

boolean not(boolean)

number floor(number)

number ceiling(number)

number round(number)

string concat(string, string, . . .)

boolean starts-with(string, string)

boolean contains(string, string)

string substring-before(string, string)

string substring-after(string, string)

string substring(string, number)

string substring(string, number, number)

number string-length(string)

207

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 207

These functions are mostly self-explanatory. You can find details of their
use in Kay’s book or the XPath recommendation, and you will see many of them
used in our code. In the meantime, you can experiment with string, number, and
Boolean functions using xptrans.jsp. Set the result type to “value” and enter an
XPath functional expression to evaluate, such as round(3.14), not(5>3),
substring-before(“abcde”,”cd”), or contains(“abcde”,”cd”). The result will
appear in the browser window.

XPath Operators

Primary expressions can be combined using operators. XPath has no string oper-
ators, but there are four number operators: the familiar + - * for addition,
subtraction, and multiplication, and div for division. (The “/” character is used
for a different purpose in path expressions.)

The Boolean operators are as follows (grouped by precedence, lowest prece-
dence first):

• or

• and

• =, !=

• <=, <, >=, >

When the “<” and “<=” operators appear in XSLT, the “<” character must be
escaped according to XML rules (as in <xsl:if test=”$var < 10 . . . >).

We will see node-set operators in the section on path expressions. In the
meantime, you can experiment with string, number, and Boolean expressions
using xptrans.jsp. Set the result type to “value” and enter an XPath expression to
evaluate, such as 3 + 5 or 7 > 4. The result will appear in the browser window.
Remember to escape the less-than operator as < (or don’t, and view the error
message).

XPath Data Model and the Node-Set Data Type

We will re-use Listing 1-2 of Chapter 1 (presented here as Listing 5-4) to illustrate
the XPath data model. In Chapter 1, it was also used to illustrate XPath, but our
diagram and our model are now more detailed.

208

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 208

Listing 5-4. An XML Document with Attributes and Namespaces
<?xml version=”1.0”?>

<!-- This is a comment. The next line is a PI -->

<?xml-stylesheet href=”exchange.css” type=”text/css”?>

<exchange tone=”informal”>

<q>What’s up?</q>

<a>Nothing much. (I am the root, you know.)

</exchange>

The corresponding XPath tree is shown in Figure 5-3. We follow Michael Kay’s
convention of representing each node by a box divided into three parts: the top part
shows the type of the node, the second gives its name (if any: the root, text, and
comment nodes do not have names), and the third part shows its content, if any.

Note again the following two conventions:

• There is a root node that is parent to the root of the element tree, as well as
top-level comments and processing instructions.

• The text content of an element is wrapped in a text node.

These are reflected in the XPath system of node types.
209

XPath, XSLT, and XLink Processing

Figure 5-3. An XPath tree for Listing 5-4

031ch05.qxp 5/10/02 2:34 PM Page 209

Node Types and Node Properties

A node-set can contain nodes of different types. XPath has seven such types:

• the root node (parent of top-level comments, PIs, and the root element
node)

• element nodes (form a tree of elements)

• text nodes (hold the text content of element nodes)

• comment nodes

• processing instruction nodes

• attribute nodes (along a separate axis)

• namespace nodes (along a separate axis)

These node types are not exactly equal: the first five are structural types that
affect the shape of the tree whereas the last two are more like decorations on
other nodes. (We call them decorative nodes.) XPath treats structural types and
decorative types differently, as you will see in a moment.

Nodes have properties, such as name and text value, and different types of
nodes have somewhat different sets of properties. Table 5-1 provides a summary.

210

Chapter 5

Table 5-1. Node Types and Node Properties

NODE TYPES NAME TEXTVALUE PARENT CHILDREN

root Concatenation of No parent element root,

children’s text values comments, PIs

element Tag name Concatenation of Elements any but root

children’s text values

parent element

text Own text value Element node No children

comment Comment text Root or containing element No children

PI First token Remaining tokens Root or containing element No children

attribute Attribute name Attribute value Owner element No children

namespace Namespace URI Namespace URI Owner element No children

031ch05.qxp 5/10/02 2:34 PM Page 210

The Axes of the XPath Tree

XPath’s main function is to select a set of nodes for processing by its mother
application. The selection process (that is, the process of evaluating a path
expression) always starts from the context node, and proceeds to navigate the
tree guided by the path expression that is being evaluated. The navigation part
can be empty, in which case the selected node-set consists of the context node
itself. Otherwise, there are four directions to navigate: up or down or forward or
back. (Remember that the tree is two-dimensional and arranged from left to right
in document order.) In addition, nodes can have decorations (attributes and
namespaces), and you may choose to select those. In the terminology of XPath,
each of these possibilities is called an axis. We divide them into three groups:

• close-by axes, such as child, that include all nodes right below you

• more far-reaching axes, such as descendant, that include all the nodes
underneath you all the way to the leaves (this is child applied recursively,
or the transitive closure of child)

• two decorative axes, attribute and namespace, that contain the corre-
sponding node types

Another useful way to look at XML data is to switch to the linear view and
divide all elements into groups by the mutual position of their tags. The four pos-
sibilities are as follows:

• Ancestors of element E are all elements whose start tag precedes the
start tag of E and whose end tag follows the end tag of E.

• Descendants of element E are all elements whose start tag follows the
start tag of E and whose end tag precedes the end tag of E.

• Preceding elements of E are all elements whose end tag precedes the
start tag of E.

• Following elements of E are all elements whose start tag follows the
end tag of E.

211

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 211

XPath axes capture these distinctions. There are thirteen axes altogether:

• self: the context node itself

• parent: the parent of the context node (empty if the context node is
the root)

• child: the children of the context node.

• preceding-sibling: all preceding (in document order) siblings of the
context node

• following-sibling: all following (in document order) siblings of the
context node

• ancestor: transitive closure of parent

• descendant: transitive closure of child

• ancestor-or-self: exactly what it says it is

• descendant-or-self: same

• preceding: as defined previously, all elements whose end tag precedes the
start tag of the context node

• following: as defined previously, all elements whose start tag follows the
end tag of the context node

• attribute axis: all attributes of the context node, if any. Empty for non-
element nodes and elements without attributes.

• namespace axis: all namespace nodes of the context node, both defined
and inherited from ancestor nodes.

If the context node is a structure node, then the union of self, ancestor,
descendant, preceding, and following will contain all the element nodes of the
tree. It will not contain the decorative (attribute and namespace) nodes. Each
decorative node has a parent—the element node that owns them—but decora-
tive nodes are not their parent’s children. In other words, if you ask for an
element node’s children, you will get only its children elements, comments, and
processing instructions, but not its attributes or its namespaces.

212

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 212

213

XPath, XSLT, and XLink Processing

Figure 5-4. Positional axes

031ch05.qxp 5/10/02 2:34 PM Page 213

Axes and Context Node Position

XPath expressions are evaluated in a context that includes a context node and its
position within the node-set. The position is determined differently depending
on the axis. For forward axes (child, descendant, descendant-or-self, following-
sibling, and following), node positions are numbered from the context node
forward in document order; for reverse axes (parent, ancestor, ancestor-or-self,
preceding-sibling, and preceding) node positions are numbered from the context
node backward, in reverse document order. This and other details are shown in
Figure 5-4. The numbers in the diagram show how the nodes are ordered along
the axes. As you can see, the “document order” is the order of the depth-first tra-
versal of the element tree: we go as deeply as we can into each subtree before
visiting the next one.

Of the eleven positional axes, we show all except descendant-or-self and
ancestor-or-self.

We are now ready to discuss path expressions and how they evaluate to
node-sets.

Path Expressions

Path expressions (whose formal name is location path expressions) come in two
forms: full and abbreviated. All examples of Chapter 1 used the abbreviated form
because it is easier to read and requires less background. However, it is the full
form that is primary; abbreviated form is derived from full form by a few simple
rules. Only a subset of full-form expressions can be converted to the corre-
sponding abbreviated form.

Both full-form and abbreviated-form expressions can be absolute or relative.
Absolute expressions start with the “/” character, and relative don’t. Relative
expressions are evaluated relative to the context node, and absolute expressions
are evaluated with the context node-set to the root of the XPath tree.

The Full Form of Path Expressions

Here is an example of an absolute full-form path expression:

/child::play/child::scene[position()=3]/child::speech[attribute::speaker=”King”]

Stepping through the expression from left to right, we first select all play ele-
ments that are children of the root (of which there can be only one, according to
XML rules). We next select the third scene element that is a child of play, and
finally all the speech elements that are children of the third scene and have

214

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 214

a speaker attribute whose value is “King”. Sometimes, reading from right to left is
clearer: this location path selects all the speeches by King in the third scene of
the play.

Location Steps and Their Components

A path expression consists of one or more steps separated by a “/”. Our example
has three location steps. A location step consists of three parts (two required and
one optional):

• axis: In what direction are we going?

• node test : What nodes are we selecting while going in that direction?

• additional predicate (optional): further conditions on nodes to be selected.

The axis name is separated from the node test by the “::” separator. The addi-
tional predicate, if any, appears in square brackets.

Node Tests

A node test is either a name test or a node-type test. The simplest name test is
a literal, the name of an element or attribute node. For instance, child::speech
selects all the children of the context node that are speech elements, and
attribute::speaker selects all the attributes of the context node whose name is
speaker (of which there can be at most one, according to XML rules). The
expression

child::speech/attribute::speaker

selects all speaker attributes of all speech elements that are children of the con-
text node. If the context node is a scene, the expression will select all the speakers
within that scene, with repetitions. In the next chapter, we will explain several
ways to select a list without repetitions and compare them for efficiency.

The * Node Test

The * node test matches any name, but only within a certain type, depending on
the axis. Each axis has a principal node type, defined as follows: for attribute and

215

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 215

namespace axes, the principal node types are attribute and namespace, respec-
tively; for all other axes, it is the element node type. So,

/descendant::scene[position()=3]/preceding-sibling::*

selects all the element nodes that are siblings of the third scene and precede it in
the document order, whereas

/descendant::scene[position()=3]/attribute::*

selects all the attributes of the third scene.
Remember that a node-set can contain nodes that have no structural relation

within a tree. The following two expressions select the same node-set only if all
the siblings of the third annotation element are also annotation elements:

/descendant::annotation[position()=3]/following-sibling::*

/descendant::annotation[position()>=3]

Even if they select the same node-set, the meanings of the two expressions
are different: the first selects in terms of tree structure (following siblings of the
third annotation, whatever their tag name), and the second selects within a linear
node-set of annotations (all annotations from third to last, in document order).

The * Test and the Namespace

The * test can be used in combination with a namespace. Suppose that the root
element of a document carries this namespace declaration:

xmlns:art=”http://www.n-topus.com/ns/arts”

The expression /descendant::art:* will select all elements in the document
that belong to that namespace. It is the namespace that matters, not the specific
prefix. If elsewhere in the document the same namespace is mapped to a differ-
ent prefix, the elements with that prefix will still match the expression. Similarly,

/descendant::*/attribute::xlink:*

will select all xlink attributes in the document.

node(), text(), comment(), and processing-instruction()

The node test node() is true for any node of any type. Whereas child::*
selects only children that are elements, child::node() will also select text nodes,

216

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 216

comment nodes, and processing-instruction nodes (but not attribute nodes or
namespace nodes).

To select text, comment, or processing-instruction nodes specifically, you
use text(), comment(), and processing-instruction(), respectively. The
expression

/descendant::comment()

will select all the comment nodes in the document.

Additional Predicates

The optional third component of a location step within a path expression is an
additional predicate. It can be any Boolean expression. If the expression in brack-
ets evaluates to a non-Boolean object, the object is converted to a Boolean as we
discussed. For instance, to select only elements that have an xlink:type attri-
bute, you say

/descendant::*[attribute::xlink:type]

The path expression in brackets evaluates to a node-set that is converted to False
if the node-set is empty and to True otherwise. Similarly, the expression

/descendant::*[not(node())]

selects all element nodes that have no children. These are empty-element nodes,
possibly with attributes but without text.

Equality and Inequality Operators with Node-Sets

Additional predicates within path expressions frequently compare node-sets.
When the = operator is applied to two node-sets, its meaning in XPath is some-
what unusual: the entire expression evaluates to True if the intersection of the
two node-sets is not empty. In other words, if there exists a node N1 in node-set
NS1 and node N2 in node-set NS2 such that string(N1)=string(N2), then
“NS1=NS2” evaluates to True. One consequence of this is that, if one of the two
node-sets is empty, the equality expression always evaluates to False, even if
both node-sets are empty. There is no operator that would check to see whether
all nodes in NS1 and NS2 are equal. In XPath 2.0, both operations will be sup-
ported.

217

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 217

A common example of comparing node-sets for equality is in outputting
a set of unique references from data that contains repetitions. Recall the data of
Listing 5-1:

<bible-linkbase-src>

<ref>

<from>nt.xml Luke 18 27</from>

<to>ot.xml Genesis 18 14</to>

</ref>

<ref>

<!-- more ref elements -->

</bible-linkbase-src>

The following template, within”bibleLinks/noRepRefs.xsl”, will output all
verse references in bibleLinks/biblelinks.xml without repetitions:

<xsl:template match=”ref/to | ref/from”>

<xsl:if test=”not(. = preceding::from | preceding::to)” >

<p><xsl:value-of select=”.” /></p>

</xsl:if>

</xsl:template>

You can test it directly as

http://localhost:8080/xmlp/xx.jsp?

xmlUri=bibleLinks/biblelinks.xml&

xslUri=bibleLinks/noRepRefs.xsl&

method=html

This code is used in the XLink application of this chapter. In the next chapter,
we will show how to perform the same operation much more efficiently.

Union Expressions

The “|” operator forms union expressions. The expression

/descendant-or-self::*|/descendant-or-self::*/attribute::*

will select all element and attribute nodes in the document. In most stylesheets,
it will be written in its abbreviated form:

//*|@*

218

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 218

As you can see, the keystroke savings (and, in many cases, the improvement
in readability) can be substantial. The next section introduces the abbre-
viated form.

Abbreviated Form of Path Expressions

Predicates, axis specifiers, steps, and entire path expressions have abbreviated
forms.

Abbreviated Predicates

Predicates of the form [position()=3] can be abbreviated to [3].

Abbreviated Axis Specifiers

Abbreviations are provided for the two most common axes: child and attribute.
If the axis specifier is abbreviated completely out of existence, the default child
axis is assumed. The attribute:: specifier is abbreviated to @. Here is an earlier
example followed by its abbreviated form:

/child::play/child::scene[position()=3]/child::speech[attribute::speaker=”King”]

/play/scene[3]/speech[@speaker=”King”]

Abbreviated Steps

Two directory path conventions—“.” for the current directory and “..” for the par-
ent directory—are adopted to represent self::node() and parent::node(),
respectively. For instance, this will select all descendants of the context node that
have both attributes a1 and a2:

./descendant-or-self::node()/*[@a1 and @a]

The next example returns True if there is no parent node. This is the way to
test whether a given node is the root. (There is no root() predicate in XPath.)

not(..)

219

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 219

To find the position of the parent node within the list of its siblings, you
can say

count(../preceding-sibling::node()) + 1

Note that count() is a node-set function: it takes a node-set and returns the
number of nodes in it.

Abbreviated Paths

The abbreviation //eltname stands for /descendant-or-self::node()/eltname. It
can be used in an absolute or relative expression. Here are some examples:

• //eltname: all element nodes whose name is eltname

• //*[@xlink:type]: all elements that have an xlink:type attribute

• .//*[@a1 and @a2]: all element nodes within the context node subtree
(including the context node itself) that have both a1 and a2 attributes

The // abbreviation is a quick but inefficient way of specifying a node-set:
use it during the design and initial development stage but look for ways to opti-
mize it before you are done. More specific expressions are always preferable: if all
speech elements are found at /play/scene/speech, then this expression, or even
/play/*/speech, will be considerably more efficient than //speech. Other opti-
mizations are discussed later in the chapter.

Summary of Abbreviations and Wildcards

The following list summarizes all the abbreviations introduced in this section.

• If no axis is shown, the child:: axis is assumed.

• attribute:: abbreviates to @.

• [position()=5] abbreviates to [5].

• * stands for all element children of context node.

• @* stands for all attributes of context node.

220

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 220

• //d stands for /descendant-or-self::node()/child::d/ (that is, all
d descendants of root).

• . stands for the context node.

• .//d stands for all d descendants of context node.

• .. stands for the parent of context node.

Node-Set Functions

Node-set functions fall into three groups: those that evaluate to a number, those
that evaluate to a string (name functions), and the id() function that evaluates to
a node-set. We present them in that order. The number-valued functions are

• last(), no arguments: the number of nodes in the node-set

• count(node-set): the number of nodes in the argument node-set

• position(), no arguments: the position of the context node

All string-valued functions take an optional node-set argument. (The famil-
iar “?” notation is used to indicate that the argument is optional.) If the argument
is omitted, it defaults to a node-set with the context node as its only member. In
either case, the function is applied to the first node of the node-set.

• local-name(node-set?): the local name of the first node

• namespace-uri(node-set?): the namespace URI of the first node

• name(node-set?): concatenated namespace URI (if any) and the local name

Finally, the id() function takes a string argument that can be a single token
or a list of tokens. For each token in its argument, the function looks for an ele-
ment node that has an attribute of type ID, whose value is equal to the token.
Remember that an attribute of type ID does not have to be named id, but it must
be declared as type ID in the DTD. In other words, you must have a DTD if you
use the id() function, but the good news is that you don’t have to validate. Most
parsers (and all those that you are likely to use) will process attribute declarations
even if they are not asked to validate, so your DTD can consist just of those decla-
rations. (See Listing 5-5 for an example.)

221

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 221

Listing 5-5. People with IDs
<?xml version=”1.0” encoding=”iso-8859-1”?>

<!DOCTYPE pdata [

<!ELEMENT person ANY>

<!ATTLIST person id ID #REQUIRED>

]>

<pdata>

<person id=”A2”>

<name>

<title>Mr.</title><last>Bargle</last><first>Bertrand</first>

</name>

<bdate>

<year>1958</year> <month>12</month><day>30</day>

</bdate>

</person>

<!-- many more persons -->

</pdata>

With a DTD like that, you can use the id() function to locate a specific per-
son. This is frequently the most efficient way to locate a node because most XSLT
processors will compile IDs into a hashtable. With a single ID as argument,
id(“A3”) is equivalent to //person[@id=”A3”]. With more than one token, you get
the union of the results: id(“A3 A4”) is equivalent to //person[@id=”A3” or
@id=”A4”]. You may want to run xptrans.jsp on a couple of examples to see how
the id() function works. For instance, enter “/helloXSL/pdata2DTD.xml” as the
URI and id(“CM123”) as the XPath (keeping default values for the other two
parameters), and you will see the Cookie Monster record.

222

Chapter 5

NOTE It is common to estimate the efficiency of a procedure as a function
of the size of its input. If we were to look for a specific person node by
checking each such node, the time it would take would be in proportion to
the length of the list of persons—in proportion to one-half the size of the
list, on the average. Getting the node from a hashtable takes a constant
time. If the list is long, this makes a big difference.

031ch05.qxp 5/10/02 2:34 PM Page 222

XSLT Processing Model

An XSLT stylesheet operates on the XPath tree of the source document. Its main
processing component is a template rule, similar to a function or subroutine in
other languages. In terms of document structure, an XSLT stylesheet proceeds
like this:

• the start tag of the root element that declares namespaces and specifies the
version

• top-level elements (that is, children of the root) other than template rules

• one or more template rules that contain literal result elements and
instruction elements

• the closing tag

The Template Rule, an Example, and a Summary

A template rule has two parts: a pattern that is matched against nodes in the
source tree, and a template body that gets instantiated to form part of the result
tree. In XML terms, the xsl:template element has the mixed-content model: the
template body consists of elements and text. In XPath terms, an xsl:template
element node has element node children and text node children. All text nodes
and non-XSLT element nodes are passed to the result tree unchanged. XSLT chil-
dren of xsl:template are interpreted as instructions to be carried out by the XSLT
processor. The official terminology is literal result elements for non-XSLT material
and instruction elements for XSLT children of xsl:template. Listing 5-6 provides
an example to illustrate these concepts and terminology.

Listing 5-6. Stylesheet Components
<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:p=”http://www.n-topus.com/ns/samples/X”

version=”1.0”><!-- end of start tag of root element -->

<xsl:output method=”html”/><!-- top-level element -->

<xsl:strip-space elements=”*”/><!-- top-level element -->

<xsl:template match=”/” ><!-- start tag of template rule -->

<!-- matches the root of source -->

<html><!-- this and the next 3 lines are literal result elements -->

223

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 223

<head><title>Select 1</title></head>

<body><h3>Select 1</h3>

<div>

<xsl:value-of select=”/p:exchange/p:q[1]” />

<!-- XSLT instruction:

output the first question -->

</div></body></html><!-- end tags of literal result elements -->

</xsl:template><!-- end tag of template rule -->

</xsl:stylesheet><!-- end tag of root element -->

When applied to the document of Listing 5-7, this stylesheet produces the
HTML page of Listing 5-8; in other words, Listing 5-8 comes from

http://localhost:8080/xmlp/xx.jsp?

xmlUri=moreXSL/Xchange.xml&

xslUri=moreXSL/firstQuestion.xsl&method=html

Note the treatment of namespaces: the same namespace URI is the default
(no prefix) namespace in the XML file but mapped to the p: prefix in the
stylesheet. However, the unprefixed q element in the data is matched by the p:q
element in the stylesheet because it’s the namespace URI, not the prefix, that is
used in matching.

Listing 5-7. The Source Document
<?xml version=”1.0”?>

<exchange tone=”informal” xmlns=”http://www.n-topus.com/ns/samples/X”>

<q>What’s up?</q><a>Nothing much.

</exchange>

Listing 5-8. The Output
<html xmlns:p=”http://www.n-topus.com/ns/samples/X”>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8”>

<title>Select 1</title>

</head>

<body>

<h3>Select 1</h3>

<div>What’s up?</div>

</body>

</html>

224

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 224

Top-Level Elements Summarized

In addition to xsl:template, the following more commonly used top-level
elements are discussed and used in this book:

• import and include: includes material from another stylesheet

• param and variable: associates a name with a value (param is settable from
outside the stylesheet, such as from the command line)

• output: sets output method to either XML, HTML, or text

• strip-space and preserve-space: controls transfer of whitespace-only
nodes (for example, whitespace used for formatting) from input document
to result tree

• key: declares a key table (usually implemented as a hashtable) to use in
search

See Kay’s book for the remaining top-level elements:

• attribute-set: defines a named set of attributes

• namespace-alias: declares an alias within the stylesheet for a namespace in
result tree

• number: inserts a formatted number into result tree; number siblings

• decimal-format: works with format-number

Instruction Elements Summarized

The following types of instruction elements are discussed and used in this book.
(Elements in parentheses indicate commonly used children of instruction ele-
ments.)

• Push and pull control of evaluation: apply-templates, for-each

• Other control of evaluation: call-template (with-param), apply-imports

• Output by construction: element, attribute, comment,
processing-instruction

225

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 225

• Output marked-up content by copying : copy (shallow copy),
copy-of (deep copy)

• Output a value: value-of

• Conditionals: if, choose (when)

• Output a message and optionally terminate processing : message

See Kay’s book for the remaining instruction element, fallback, that is used
for graceful degradation and future proofing.

Order of Evaluation: Pull and Push

The first template to be instantiated is always a template that matches the root
element. If no such template is provided, then the default root-matching tem-
plate is used, as explained in the section on default templates. For now, let’s
assume that the root is matched (as in Listing 5-6), and the body of the template
gets instantiated. In the process, additional template bodies can get instantiated
and included in the result tree as the result of evaluating two instructions:
xsl:for-each or xsl:apply-templates. (There is also xsl:apply-imports, but it is
rarely used.)

xsl:for-each and xsl:apply-templates are XSLT analogs of the loop and the
subroutine call, except that both are data-driven: they establish a list of nodes to
process, and, for each node on the list, they provide a template body to instanti-
ate. An xsl:for-each element provides that template body directly as its own
element content, within the same template rule. In Listing 5-9 (which is identical
to Listing 5-3 but with additional comments), the contents of the xsl:for-each
element are instantiated for each person’s record in the “People with IDs” docu-
ment of Listing 5-5.

xsl:apply-templates, shown in Listing 5-10, sends each node on the current
node list to look for a template that will match it and provide a template body.
Because xsl:for-each pulls the nested template bodies into its own template, its
use is called pull processing, and using xsl:apply-templates is called push pro-
cessing because the current node list is pushed out of the current template into
other templates.

The next two listings show two stylesheets that do exactly the same thing,
with one using pull and the other push. Both are intended for the “People with
IDs” document of Listing 5-5. The nested template body is highlighted in both.

226

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 226

Listing 5-9. Names in a Table Using Pull
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/” ><!-- start tag of template rule -->

<!-- matches the root of source -->

<html><head><title>People’s names</title></head>

<!-- literal result elements -->

<body><table border=”1”><!-- literal result elements -->

<xsl:for-each select=”people/person/name”>

<!-- start of template body to be instantiated for each name element -->

<tr>

<td><xsl:value-of select=”title”/></td>

<td><xsl:value-of select=”first”/></td>

<td><xsl:value-of select=”last”/></td>

</tr>

<!-- end of template body to be instantiated for each name element -->

</xsl:for-each>

</table></body> </html>

</xsl:template>

</xsl:stylesheet>

Listing 5-10. Names in a Table Using Push
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/” >

<html><head><title>People’s names</title></head>

<body><table border=”1”>

<xsl:apply-templates select=”pdata/person/name” />

</table></body>

</html>

</xsl:template>

<xsl:template match=”name” >

<!-- start of template body to be instantiated for each name element -->

<tr>

<td><xsl:value-of select=”title” /></td>

<td><xsl:value-of select=”first” /></td>

<td><xsl:value-of select=”last” /></td>

</tr>

<!-- end of template body to be instantiated for each name element -->

</xsl:template>

</xsl:stylesheet>

227

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 227

Both stylesheets output an HTML page that puts the names in a table, as
shown here:

<html><head> . . . </head>

<body>

<table border=”1”>

<tr>

<td>Mr.</td>

<td>Bertrand</td>

<td>Bargle</td>

</tr>

...

</table></body></html>

Push and Pull Without a select Attribute

If there is no select attribute, both xsl:for-each and xsl:apply-templates
default to using the children of the current node as the current node list. This
usage is very common in push stylesheets that recursively descend into the docu-
ment tree, providing a template for each element type in the document. Here is
Listing 5-10 rewritten in this style.

Listing 5-12. Push Without select
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/” ><!-- match root, output what’s needed at this stage -->

<html><head><title>Helpers</title></head>

<body>

<xsl:apply-templates /><!-- apply templates to children -->

</body>

</html>

</xsl:template>

<xsl:template match=”pdata” >

<table border=”1”>

<xsl:apply-templates />

</table>

</xsl:template>

<xsl:template match=”person” ><!-- output a row for each person -->

<tr>

<xsl:apply-templates />

</tr>

</xsl:template>

<xsl:template match=”name” >

228

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 228

<xsl:apply-templates />

</xsl:template>

<xsl:template match=”title | last | first” >

<!-- output each of these in a td -->

<td><xsl:apply-templates /></td>

</xsl:template>

<xsl:template match=”bdate” >

</xsl:template>

</xsl:stylesheet>

The last two templates (in boldface) require comment. The first of them con-
tains a call on xsl:apply-templates for which no explicit templates are provided.
The rest of the processing is done by default templates. First, a default template
calls apply-template on the children of title, last, and first, because they are
element nodes. They all have a single child that is a text node. The default tem-
plate for text nodes outputs their content into the result tree.

The last (empty) template is needed to override default processing of the
bdate element nodes. Without it, the default templates would recursively descend
into those nodes, reach the text nodes, and output their contents,
unformatted, into the result tree.

The output of this stylesheet is different from the preceding one because we
do not arrange the order of cells within a row ourselves—so they get arranged in
document order, which is title, last, first. To change that, we would rewrite the
template for name, pulling its contents in by means of xsl:value-of:

<xsl:template match=”name” >

<!-- replace xsl:apply-templates with: -->

<td><xsl:value-of select=”title” /></td>

<td><xsl:value-of select=”first” /></td>

<td><xsl:value-of select=”last” /></td>

</xsl:template>

Sorting

Both xsl:for-each and xsl:apply-templates can have an xsl:sort child element
that specifies the order in which the current node list is processed; if no such ele-
ment is present, the list is processed in document order. Suppose we want to list
our people alphabetically by last name. Each person has a row, so we give an

229

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 229

xsl:sort child to that instance of xsl:apply-templates that gets matched by
person elements, within the template that matches pdata:

<xsl:template match=”pdata” >

<table border=”1”>

<xsl:apply-templates>

<xsl:sort select=”last”/>

</xsl:apply-templates>

</table>

</xsl:template>

We can achieve the same result in our pull stylesheet by rearranging its
xsl:for-each element like this:

<xsl:for-each select=”pdata/person”>

<xsl:sort select=”name/last”/>

<tr>

<td><xsl:value-of select=”name/title”/></td>

<td><xsl:value-of select=”name/first”/></td>

<td><xsl:value-of select=”name/last”/></td>

</tr>

</xsl:for-each>

You can sort alphabetically or numerically, in ascending or descending order.
To sort our persons in the descending order of their year of birth, you would say

<xsl:for-each select=”pdata/person”>

<xsl:sort select=”bdate/year” data-type = “number” order=”descending” />

</xsl:for-each>

Using Push with a mode Attribute

It frequently happens that you want to process the same set of nodes more than
once, perhaps to present two different views of the data or to compile an index
before displaying full text. In our XLink application, an input ref element such as

<ref>

<from>nt.xml Luke 18 27</from>

<to>ot.xml Genesis 18 14</to>

</ref>

230

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 230

has to be processed twice, first to construct locator elements, and then to con-
struct arcs. We need two templates that match exactly the same data but have
different template bodies. To distinguish them, both xsl:apply-templates and
xsl:template have another attribute called mode. If xsl:apply-templates specifies
a mode, only templates that have the same value of mode will match. Our
ref2link.xsl is structured as follows:

<xsl:template match=”/”>

<elt xlink:type=”extended”>

<xsl:apply-templates mode=”locators”/>

<xsl:apply-templates mode=”links”/>

</elt>

</xsl:template>

<xsl:template match=”ref” mode=”arcs”>

<!-- create arcs elements -->

<xsl:template match=”ref/to | ref/from” mode=”locators”>

<!-- create locator elements -->

The mode attribute can be used in many interesting ways, some of them quite
intricate (not to say tricky), but the main use as illustrated here is completely
straightforward.

Push and Pull Contrasted

If push and pull are so similar, why do we need both? Push and pull work
together in XSLT in much the same way that event-driven and procedural code
work together in more conventional languages. A push template is like an event
handler, triggered by the occurrence of a matching block of XML. The explicit
algorithmic control offered by xsl:if, xsl:choose, xsl:for-each, and
xsl:call-template closely parallels the corresponding structures in C++ or Java.
For some problems, very clean solutions are available that will take the form of
pure push; other problems can be solved better with pure pull. Usually, we end
up with some kind of a mix, as in Listing 5-10, in which most processing is
pushed out to other templates but in the end we pull in values using xsl:value-of.

In pull code, especially with the use of xsl:for-each rather than template
matching, the XSLT structure mirrors the XML structure, so that someone read-
ing the XSLT can tell what the XML was to look like. In contrast, the purest push
templates will simply say what should happen at the bottom level; the XML
structural information is taken from the XML itself at runtime. Each of these has
advantages in terms of clarity and maintainability, and the choice frequently
boils down to individual taste.

231

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 231

Default Templates and Conflict Resolution

When a node is sent out to look for a template that will match and process it,
three outcomes are possible:

• Exactly one template matches the node.

• No templates match the node.

• More than one template matches the node.

The first case is easy. In the second case, a default template is applied. In the
third case, the processor uses the standard conflict-resolution policy to select
the best match.

Default Templates

Each of the seven node-types has a default template, as shown in Table 5-2. The
attribute default rarely gets used because attributes are not children of their ele-
ment, and it takes a special effort to get to them. Defaults for element and text
nodes are used routinely to output text values.

Table 5-2. Node Types and Default Templates

NODE TYPE DEFAULT TEMPLATE ACTION

root Apply available templates to children, in document order

element Apply available templates to children, in document order

text Copy the text content

attribute Copy the attribute value as text

comment Do nothing

PI Do nothing

namespace Do nothing

232

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 232

Precedence Rules

More than one template rule may be applicable to a node, in which case prece-
dence rules are used to determine which template rule to apply. Precedence is
mostly based on two considerations:

• Templates in imported stylesheets have lower precedence than do tem-
plates in stylesheets that import them.

• More-generic templates have lower precedence than do more-specific
templates: a template with match=”*” that matches elements of any name
has lower precedence than does a template with match=”title” that
matches only title elements.

The priority attribute of xsl:template can override other considerations.
However, if your program crucially relies on that attribute for its control struc-
ture, then either your program can be improved or you are using XSLT for a task
that it was not designed for.

xsl:include, xsl:import, and xsl:apply-imports

XSLT has two top-level elements that bring in material from another stylesheet:
xsl:include and xsl:import. Both have an href attribute to specify the URI of the
external stylesheet. xsl:include does straight inclusion, as if the included mate-
rial were physically present in the including document. For conflict resolution,
included templates have the same precedence as home templates. xsl:import
brings in material that can be overridden: if an imported template matches the
same element as a home template, then the home template always wins, no mat-
ter how generic it is. The only way to apply an imported template rule that is
shadowed by a home template that matches the same nodes is by means of
xsl:apply-imports.

Generic and Specific

Patterns have several gradations of specificity. The two most important
distinctions are as follows.

• Patterns that use node classes (such as node(), text(), *) are less specific
and have lower precedence than patterns that use node names.

• Patterns with additional predicates are more specific (other things being
equal) than patterns without additional predicates.

233

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 233

Parameters, Variables, and Result Tree Fragments

XSLT parameters and variables have a good deal in common. Both xsl:param and
xsl:variable are used to associate a name with a value. The ways values are
specified are exactly the same.

Specifying a Value

The value can be specified in two ways: as a template body supplied as the con-
tent of the param/variable element or as an XPath expression supplied as the
value of the select attribute. If there is a select attribute, the element must be
empty:

<xsl:param name=”example” select=”//person/name” /><!-- $example is a node-set -->

<xsl:variable name=”str” select=”’a literal string’”/><!-- $str is a string -->

<xsl:param name=”num” select=”275*3-23”/><!-- $num is a number -->

<xsl:param name=”anotherExample”>

<xsl:copy-of select=”//person/name” />

</xsl:param>

If the value is specified using select, the data type of the value will be one of
the four XPath data types, depending on the expression. Note that, if you want to
supply the value as a literal string, you need two levels of quotation marks:

<xsl:param name=”country” select=”’Benin’”/>

If you omit the inner quotes, the processor will look for the child of the cur-
rent element whose name is “Benin”. The outer quote marks are for the XML
parser; the inner quote marks are for the XSLT/XPath processor.

Result Tree Fragment

If the value of a variable or parameter is specified by a select attribute, the data
type of that value is one of the four XPath types: either a scalar type (Boolean,
string, or number) or a node-set extracted from the input tree. If the value is
specified as a template body, its data type is the XSLT-specific result tree frag-
ment. It is a temporary tree structure that is quite similar to the regular XPath tree
except the root can have more than one element child. In most cases, the tree is

234

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 234

automatically converted to a simple value (string, number, or Boolean), and you
don’t have to think about it. However, a problem arises if you want to process it as
a node-set because XSLT 1.0 provides no function for converting a result tree
fragment to a node-set. This problem will go away in XSLT 2.0 because there will
be no additional result tree fragment data type. In the meantime, every major
XSLT processor has provided an extension function for converting result tree
fragments to node-sets. We show how they work in the next section.

Position and Usage

Parameters and variables can be either top-level or local to a template. Within
a template, variables can appear anywhere, but parameters must be listed in the
very beginning, before anything else.

Parameters Are for Passing Parameters

Variables are to hold a value for future reference, and parameters are for receiving
parameter values either to the entire stylesheet (top-level parameters) or to
a template (template-level parameters). In either case, the values of parameters
are defaults that can be overridden by values supplied from the outside.

The way parameters are passed to the stylesheet is implementation specific.
From a command line, name-value pairs can usually be entered after the other
arguments. This is the syntax used by Michael Kay’s Saxon processor:

saxon countries.xml econsummary.xsl > beninecon.html country=benin

In a Web application, stylesheet parameters can be passed in the usual way
from an HTML form using GET or POST. You have seen examples in the xx.jsp
application (Listing 1-10 of Chapter 1); the webapp simply looks at its parameters
and uses the implementation-specific stylesheet parameter-setting mechanism
to pass them along. Within JAXP, we say

TransformerFactory tFactory = TransformerFactory.newInstance();

Transformer transformer = tFactory.newTransformer(new StreamSource(xslUri));

transformer.setParameter(nameString,valString);

The way parameters are passed from one template to another within
a stylesheet is precisely defined in the specification. This is the subject of the next
section.

235

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 235

Named Templates and Recursion

To pass parameters (and control of execution) from one template to another, the
receiving template must be a named template: it must have a name attribute
whose value is the name of the template. The parameters of a named template
are xsl:param children of a named template. They must be listed in the very
beginning of the template’s body, and they can be given default values in select
attributes:

<xsl:template name=”list-helpers”>

<xsl:param name=”theList” select=”’’”/>

<!-- the rest of template body -->

</xsl:template>

To pass control to a named template, you use xsl:call-template. (See the
example in the next section.) You can pass along additional parameters using
xsl:with-param children elements of xsl:call-template. Their values will over-
ride the defaults (if any) that are specified in xsl:param children of the named
template.

Compared to the xsl:apply-templates instruction, xsl:call-template feels
much more like a “normal” procedure call. Instead of passing control in a diffuse
way to “a highest-precedence template that matches this node,” you can pass
control and parameters to a specific template, identified by name. A template
must have either a match attribute or a name attribute, and it may have both.

A Simple Example: Tables of Helpfulness

We illustrate common uses of call-template with an example based on the peo-
ple data of Listing 5-5. We have simplified the data by removing titles and
birthdays. Instead, we have given each person another attribute, a list of the peo-
ple whom that person finds helpful in his or her work. (The attribute is used in
assigning people to cubicles in such a way as to maximize total mutual help.)

<?xml version=”1.0” encoding=”iso-8859-1”?>

<pdata>

<person id=”A2” helpers=”A3 A4 A5”>

<name><title>Mr.</title> <last>Bargle</last><first>Bertrand</first></name>

</person>

<!-- many more persons -->

</pdata>

Our stylesheet prints a table of helpers for each person.

236

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 236

In the first version, xsl:call-template is used simply as a subroutine call, to
break up what would otherwise be a large chunk of code. The code is concise
enough to see all at once, and it is shown in Listing 5-12.

Listing 5-12. Tables of Helpers
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”html”/>

<xsl:template match=”/” ><!-- start top-level template matching the root -->

<html><head><title>Tables of helpfulness</title></head><body>

<xsl:for-each select=”/pdata/person”>

<xsl:variable name=”myHelpers” select=”@helpers”/>

<xsl:variable name=”myName” select=’concat(name/first,” “,name/last)’/>

<p>Here are the people helpful to <xsl:value-of select=”$myName”/>:

<!-- call named template to output a person’s list of helpers as a table -->

<xsl:call-template name=”list-helpers”>

<xsl:with-param name=”theList” select=”$myHelpers” />

</xsl:call-template>

</p>

<!-- end of list of helpers output -->

</xsl:for-each>

</body></html>

</xsl:template>

<xsl:template name=”list-helpers”>

<xsl:param name=”theList” select=”’’”/><!-- parameter declared -->

<table border=”1”>

237

XPath, XSLT, and XLink Processing

Figure 5-5. Tables of helpers

031ch05.qxp 5/10/02 2:34 PM Page 237

<xsl:for-each select=”//person”><!-- select all person elements -->

<xsl:if test=”contains($theList,@id)”>

<tr>

<td><xsl:value-of select=”name/last”/></td>

<td><xsl:value-of select=’name/first’/></td>

</tr>

</xsl:if>

</xsl:for-each>

</table>

</xsl:template><!-- end of named template -->

</xsl:stylesheet>

Two Efficiency Improvements

The list-helpers template does a search through the list of persons (obtained by
//person) to find the person with a given ID. We can improve it in two ways:
replace //person with /pdata/person and replace xsl:if with a predicate:

<xsl:for-each select=”/pdata/person[contains($theList,@id)]”>

<tr><!-- exactly as before --></tr>

</xsl:for-each>

Replacing //person with a more specific path is almost always an improve-
ment, and sometimes a very substantial one. In the next chapter, we will show
timings to support this claim, and we will show how to calculate those timings.
Replacing xsl:if with an XPath predicate is likely to be an improvement because
the predicate query is likely to be optimized. The query with xsl:if, if taken liter-
ally, asks the processor to build the list of all persons and then filter that list. With
the XPath predicate, the processor probably does not build the intermediate list.

Even with this improvement, each call on contains() takes time proportional
to the number of persons, and, because we do it for each person, each call on
list-helpers takes time proportional to the square of the number of persons. Put
differently, if the number of persons is doubled, the time is quadrupled. A signifi-
cant improvement would be to do list-persons in linear time. This can make
a difference between doable and undoable for a list of tens of thousands of peo-
ple. One way to achieve linear-time performance is to replace contains() that
takes linear time with id() that takes constant time. (For id() to work, we will
need a minimal DTD as discussed in the earlier section on node-set functions.)
This change is implemented in the next section.

238

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 238

Recursive Processing of a List of Tokens

In Listing 5-11, we process a list of nodes (the current node list) and retrieve the
ID for each node. In the next version, we will process a list of IDs directly, as
a string that is a space-separated list of tokens. This is a very common control
structure in XSLT: repeat the same action for each token in a string. A token is
assumed to be of the XML NMTOKEN data type or its equivalent in XML Schema;
in particular, a token does not contain whitespace. We also assume that the list of
tokens is normalized, in the XML 1.0 sense of the term, that is, that the tokens are
separated by a single space character and there is no whitespace before the first
token or after the last one.

To make the processing uniform, there is a simple gimmick that we first used
in our 1999 Wrox book, Professional Java XML Programming : terminate the string
with a space character so that every token in the string, including the last one, is
followed by a space. In this stylesheet, we do it in the definition of the helpers
variable:

<xsl:variable name=”myHelpers” select=”concat(@helpers,’ ‘)”/>

As before, we pass the variable as a parameter to list-helpers. What follows
is different: list-helpers outputs only the table tags but otherwise serves as
a wrapper for make-rows that does all the work:

<xsl:template name=”list-helpers”>

<xsl:param name=”theList” select=”’’”/>

<table border=”1”>

<xsl:call-template name=”make-rows”>

<xsl:with-param name=”theList” select=”$theList” />

</xsl:call-template>

</table>

</xsl:template>

The logic of make-rows is simple: for each token in theList, find the corre-
sponding node and output it as a row. In many programming languages, this task
would be done by a loop that may be described in pseudo-code this way:

current = firstToken(); do makeRow(); current=nextToken(); until noMoreTokens();

The problem with writing this out in XSLT is that XSLT has no assignment
operator. You can create a variable with a certain value but there is no way to
change that value. We will discuss the motivations for this design decision in the
next chapter; our task now is to implement make-rows. In languages without

239

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 239

assignment, this is done using recursion rather than a loop. The logic is as
follows:

if theList is not empty

call make-row with the first token of theList

call make-rows recursively with tail-end of theList, without the first token

otherwise

do nothing

In XSLT, this comes out as shown in Listing 5-13.

Listing 5-13. List of Tokens Recursive Pattern
<xsl:template name=”make-rows”>

<xsl:param name=”theList” select=”’’”/>

<xsl:if test=”string-length($theList)!=0”><!-- if theList is non-empty -->

<xsl:call-template name=”make-row”>

<xsl:with-param name=”friend” select=”substring-before($theList,’ ‘)” />

</xsl:call-template>

<xsl:call-template name=”make-rows”>

<xsl:with-param name=”theList” select=”substring-after($theList,’ ‘)” />

</xsl:call-template>

</xsl:if>

</xsl:template>

This kind of linear recursion down the space-terminated list of space-
separated tokens is a very common programming pattern in XSLT.

All that remains is to implement make-row, given an ID. We can do it in
constant time, using the id() function:

<xsl:template name=”make-row”>

<xsl:param name=”friend” select=”’’”/>

<xsl:for-each select=”id($friend)”>

<tr>

<td><xsl:value-of select=”name/last”/></td>

<td><xsl:value-of select=’name/first’/></td>

</tr>

</xsl:for-each>

</xsl:template>

The make-rows template—and therefore the entire stylesheet—now takes
time that is linear in the size of output, a major improvement over the preceding
version.

240

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 240

Variables, Result Tree Fragments, and Node-Sets

You may be wondering why we have not implemented make-row using a variable:

<xsl:template name=”make-row”>

<xsl:param name=”friend” select=”’’”/>

<xsl:variable name=”current” select=”id($friend)”>

<tr>

<td><xsl:value-of select=”$current/name/last”/></td><!-- will not work -->

<td><xsl:value-of select=’$current/name/first’/></td><!-- will not work -->

</tr>

</xsl:for-each>

</xsl:template>

This won’t work because the value stored in the current variable is not
a node-set, but rather a result tree fragment, a data type that is specific to
XSLT 1.0. Moreover, XSLT 1.0 has no standard function to convert result tree frag-
ments to node-sets. However, a need for such a function arises so often that every
major processor has implemented it. (In XSLT 2.0, the result tree data type and
the entire problem will go away.) To use a conversion function, you have to
include some processor-specific code, but all processors follow the same con-
ventions: you have to declare a processor-specific namespace and invoke the
function using the namespace prefix. For instance, to use Xalan, you would add
the following namespace declaration to the root element:

xmlns:xalan=”http://xml.apache.org/xalan”

To fix this broken code, you would write

<td><xsl:value-of select=”xalan:nodeset($current)/name/last”/></td>

To switch to the Microsoft processor, you would need to declare another
namespace and replace the prefix in the code. Unfortunately, you would also
need to insert a hyphen into nodeset:

xmlns:msxml=”urn:schemas-microsoft-com:xslt”

<td><xsl:value-of select=”msxml:node-set($current)/name/last”/></td>

It makes sense to include namespace declarations for all of the processors
that you are likely to use and just change the prefixes in your code when you
switch processors. This minor hassle will disappear with the next release of
XPath.

241

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 241

The Code of the XLink Application

We now have all the tools to go through the code of the XLink application. As
explained in the beginning of the chapter, the application consists of two parts.
Part 1, ref2xlink.xsl, creates a linkbase from an XML “link source” file that itself
can be easily created from user input via an HTML form. The linkbase contains
extended link structures that describe many-to-many links in XML data. Part 2,
open-ended, implements queries. In this section, we show only one query,
neighbors.xsl, that finds the neighbors of a Bible verse in the XLink graph.

We present ref2link.xsl first. The input and output formats are shown in
Listings 5-1 and 5-2 in the beginning of the chapter. (If you need a reminder of
what an XPointer looks like, review Listing 5-2.) Our task is to transform each ref
element of Listing 5-1 into an arc and two locator elements of Listing 5-2, except
we want to output each locator only once even if it is mentioned in several ref
elements on input.

Link Source to Linkbase Transformer

Before looking at the code, let’s review some of the tasks it has to perform.

• Go over the same ref element twice, first to construct locators, then to
construct arcs.

• In constructing locator labels, convert a string like “nt.xml Luke 18 27” into
“Luke_18_27”. The same labels are used in arc elements.

• In constructing locator hrefs, convert a string like “nt.xml Luke 18 27” into
a complete URL+XPointer expression.

• For either labels or hrefs, one of the tasks is to break the original string into
pieces using the space character as the separator.

Control Structure: apply-templates and Mode

The main control structure of ref2link.xsl is the xsl:apply-templates element.
Listing 5-14 shows the beginning of our link source to linkbase transformer.

242

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 242

Listing 5-14. XLink Application: The Start Tag and the Root Template
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:xlink=”http://www.w3.org/1999/xlink”

version=”1.0”>

<xsl:output method=”xml” indent=”yes” encoding=”iso-8859-1”

doctype-public=”elt” doctype-system=”/xmlp/bibleLinks/biblelinkbase.dtd”/>

<!-- indent attribute specifies whether the XSLT processor may add

additional whitespace when outputting the result tree; we also specify

DOCTYPE elt PUBLIC /xmlp/bibleLinks/biblelinkbase.dtd -->

<xsl:param name=”ref-dir” select=”dat/jb/”> <!-- where ot.xml, nt.xml are kept -->

<xsl:template match=”/”>

<elt xlink:type=”extended”>

<xsl:apply-templates mode=”locators”/>

<xsl:apply-templates mode=”arcs”/>

</elt>

</xsl:template>

The top-level parameter ref-dir supplies the directory path to where source
documents are kept. It is used in constructing the XPointer expressions later in
the stylesheet.

The root template outputs the root element of the result document. It con-
tains two apply-templates elements to process the source in two different modes.

Outputting Arcs

Although the stylesheet outputs locators first because such is the order of apply-
templates elements, the actual order of templates in the stylesheet is immaterial.
We have placed the arcs template first because it is much simpler. It uses two
XPath string functions to compute the values of the from and to attributes. The
values are inserted into the output using the curly-brackets notation for evaluat-
ing XSLT elements within attribute values, as explained in the section in
Chapter 1, “Outputting Attributes with Computed Values”.

<xsl:template match=”ref” mode=”arcs”>

<xsl:variable name=”frombkchapverse” select=”substring-after(from,’ ‘)”/>

<xsl:variable name=”fromloc” select=”translate($frombkchapverse,’ ‘,’_’)” />

<xsl:variable name=”tobkchapverse” select=”substring-after(to,’ ‘)”/>

<xsl:variable name=”toloc” select=”translate($tobkchapverse,’ ‘,’_’)” />

<elt xlink:type=”arc” xlink:from=”{$fromloc}” xlink:to=”{$toloc}”/>

</xsl:template>

243

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 243

The translate() Function

The substring-after() function is self-explanatory, but translate() requires
a comment. It takes three arguments: string, targets, and replacements, and
replaces each character in targets with the corresponding character in
replacements. If there are extra targets, they are deleted from the string;
extra replacements are ignored. Here are some examples:

<xsl:variable name=”s” select=”axbxcx”/>

<xsl:value-of select=”translate($s,’abc’,’zzz’)”/>

result is: zxzxzx

<xsl:value-of select=”translate($s,’ax’,’z’)”/>

result is: zbc

<xsl:value-of select=”translate($s,’a’,’zextra’)”/>

result is: zxbxcx

Outputting Locators

For each verse mentioned in the ref elements of the source document, we must
output a locator element, and we want to do it only once. Our task is to
transform

<ref>

<from>nt.xml Luke 18 27</from>

<to>ot.xml Genesis 18 14</to>

</ref>

into

<elt

xlink:label=”Luke_18_27”

xlink:href=

“dat/jb/nt.xml#xpointer(/tstmt/bookcoll/book[bktshort=’Luke’]/chapter[18]/v[27])”

xlink:type=”locator”/>

and a similar element for the other verse. The task of constructing the XPointer is
implemented as a separate named template, which is discussed in the next sub-
section.

Listing 5-15. XLink Application: Outputting Locators
<xsl:template match=”ref/to | ref/from” mode=”locators”>

<xsl:if test=”not(. = preceding::from | preceding::to)” >

<!-- if not yet encountered -->

<xsl:variable name=”label”

244

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 244

select=”translate(substring-after(.,’ ‘),’ ‘,’_’)”

/><!-- construct the label using substring-after and translate -->

<xsl:variable name=”ref”>

<xsl:call-template name=”make-ref”>

<!-- outsource XPointer production to make-ref -->

<xsl:with-param name=”doc-bk-chap-verse” select=”.” />

</xsl:call-template>

</xsl:variable>

<elt xlink:type=”locator”

xlink:href=”{$ref}” xlink:label=”{$label}”

/><!-- finally, literal result element with two computed attribute values -->

</xsl:if>

</xsl:template>

The highlighted line checks to see whether the current node has yet been
encountered in the input document. It uses the = operator to check whether the
intersection of two node-sets is empty, as discussed in the section “Path
Expressions” earlier in the chapter.

Constructing XPointers

The only remaining part of ref2xlink is the make-ref template. It breaks the input
parameter into pieces using substring-before() and substring-after(), and
constructs the required string out of those pieces using concat().

Listing 5-16. XLink Application: Constructing XPointers
<xsl:template name=”make-ref”>

<xsl:param name=”doc-bk-chap-verse” select=”’’” />

<!-- break doc-bk-chap-verse into pieces: doc, bk, chap, verse -->

<xsl:variable name=”doc” select=”substring-before($doc-bk-chap-verse,’ ‘)”/>

<xsl:variable name=”bk-chap-verse”

select=”substring-after($doc-bk-chap-verse,’ ‘)”/>

<xsl:variable name=”bk” select=”substring-before($bk-chap-verse,’ ‘)”/>

<xsl:variable name=”chap-verse” select=”substring-after($bk-chap-verse,’ ‘)”/>

<xsl:variable name=”chap” select=”substring-before($chap-verse,’ ‘)”/>

<xsl:variable name=”verse” select=”substring-after($chap-verse,’ ‘)”/>

<xsl:variable name=”Q”>’</xsl:variable>

<!-- construct the first part of URI+XPointer, up to book/verse/chapter -->

<xsl:variable name=”uri1”

select=”concat($ref-dir, $doc, ‘#xpointer(/tstmt/bookcoll/’) “/>

<!-- construct the second part of URI+XPointer, up to chapter -->

245

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 245

<xsl:variable name=”uri2”

select=”concat(‘book[bktshort=’, $Q, $bk,$Q,’]/’)” />

<!-- construct the third and last part of URI+XPointer -->

<xsl:variable name=”uri”

select=”concat(“‘chapter[‘, $chap, ‘]/v[‘, $verse, ‘])’)” />

<xsl:value-of

select=”concat($uri1, $uri2, $uri3)” />

</xsl:template>

This concludes ref2xlink.xsl; neighbors.xsl is next. You may want to review
Figure 5-1 that shows its operation.

Find-Neighbors Query

This program receives a verse reference on input and follows all the to-arcs that
originate from that verse. (See Figure 5-1 for a screenshot.) To receive input, the
stylesheet needs a top-level parameter, and to produce its output, the stylesheet
has to URL encode some XPointers, exactly as we did in the Joseph Dreams XLink
application of Chapter 2. As in Chapter 2, we call a Java extension function to do
the encoding and therefore have to declare the appropriate namespace. Here
is the part of the program that precedes the first template:

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns:xlink=”http://www.w3.org/1999/xlink”

xmlns:java=”http://xml.apache.org/xslt/java”

version=”1.0”>

<xsl:output method=”html”/>

<xsl:param name=”startVerse” select=”’’”/>

The rest of the program consists of four templates: the unnamed “root” tem-
plate and three named ones: make-row, make-rows, and nextlinks.

The Root Template

The root template outputs the containing HTML tags: html, body, and table.
Within the table, it calls three named templates:

• make-row: to fill in the first row of the table with the contents of startVerse

• nextlinks: to collect all arcs originating from startVerse into a variable

• make-rows: to fill in the rest of the table with the content of the end points
of those arcs

246

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 246

Listing 5-17. Find-Neighbors: The Root Template
<xsl:template match=”/”> <!-- apply to linkbase, e.g. biblelinkbase.xml -->

<html><head>

<title>Direct links from <xsl:value-of select=”$startVerse”/></title>

</head><body>

<h4>Bible Verses directly linked from

<xsl:value-of select=”$startVerse”/>:</h4>

<table border=”1”>

<xsl:call-template name=”make-row”>

<xsl:with-param name=”verse-label” select=”$startVerse”/>

</xsl:call-template>

<xsl:variable name=”verses”>

<xsl:call-template name=”nextlinks”>

<xsl:with-param name=”verse” select=”$startVerse”/>

</xsl:call-template>

</xsl:variable>

<xsl:call-template name=”make-rows”>

<xsl:with-param name=”verses” select=”$verses”/>

</xsl:call-template>

</table>

</body></html>

</xsl:template>

The make-row Template

The make-row template is very similar to the last (unnamed) template in the XLink
application of Chapter 2: it constructs an XPointer expression and uses it to
retrieve data from an XML document, as shown in Listing 5-18.

Listing 5-18. Find-Neighbors: make-row
<xsl:template name=”make-row”>

<xsl:param name=”verse-label” select=”’’”/>

<xsl:variable name=”bk” select=”substring-before($verse-label,’_’)”/>

<xsl:variable name=”cv” select=”substring-after($verse-label,’_’)”/>

<xsl:variable name=”chapter” select=”substring-before($cv,’_’)”/>

<xsl:variable name=”verse” select=”substring-after($cv,’_’)”/>

<xsl:variable name=”h”

select=”//elt[@xlink:label=$verse-label]/@xlink:href”/>

<xsl:if test=”string-length($h)!=0”>

<xsl:variable name=”x” select=”substring-before($h,’#xpointer’)”/>

<xsl:variable name=”p” select=”substring-after($h,’#xpointer’)”/>

247

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 247

<xsl:variable name=”x-enc” select=”java:java.net.URLEncoder.encode($x)”/>

<xsl:variable name=”p-enc” select=”java:java.net.URLEncoder.encode($p)”/>

<xsl:variable name=”qstring” select=”concat(‘x=’,$x-enc,’&p=’,$p-enc)”/>

<xsl:variable name=”uri”

select=”’http://localhost:8080/xmlp/xptrans.jsp?’”/>

<tr><td>

<xsl:value-of select=”concat($bk,’ ‘,$chapter,’:’,$verse,’ ‘)”/>

<xsl:apply-templates select=”document(concat($uri,$qstring))/*” />

</td></tr>

</xsl:if>

</xsl:template>

The first highlighted line searches for the elt element whose xlink:label
attribute is equal to the label of the parameter to the template. As shown, this
search is performed in the most inefficient manner and can be improved. For
instance, if the document contained IDs, we could rewrite that line as

<xsl:variable name=”h” select=”id($verse-label)/@xlink:href”/>

We leave it as an exercise to restructure the data and the application to make
this optimization possible. In the next chapter, we will show another possible
optimization that also yields constant-time search but that does not require any
changes in the data, only in the program.

The second highlighted line, as discussed in Chapter 2, sends the data
extracted from an external document looking for templates that would process it.

The nextlinks Template

The nextlinks template creates a space-separated and space-terminated list of
tokens. Each token is the value of the xlink:to attribute in an arc whose
xlink:from attribute is our startVerse. As you may recall from our XLink dis-
cussion in Chapter 2, the values of those attributes are string tokens. The list of
those tokens becomes the value of the verses variable in the root template and
gets passed to make-rows, as shown in Listing 5-19.

Listing 5-19. Find-Neighbors: nextlinks
<xsl:template name=”nextlinks”>

<xsl:param name=”verse” select=”’’”/>

<!-- produces links directly reachable from current link -->

<xsl:for-each select=”//elt[$verse=@xlink:from]/@xlink:to” >

<xsl:value-of select=”concat(.,’ ‘)”/>

248

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 248

<!-- add a space to each, including the last one -->

</xsl:for-each>

</xsl:template>

The make-rows Template

The make-rows template outputs the rest of the table. It uses the same linear-
recursion pattern as the make-rows template of Listing 5-13 that worked on
persons and their helpers. (See Listing 5-20.)

Listing 5-20. Find-Neighbors: make-rows
<xsl:template name=”make-rows”>

<xsl:param name=”verses” select=”’’”/>

<xsl:if test=”string-length($verses)!=0”><!-- until “$verses” is empty -->

<xsl:call-template name=”make-row”>

<xsl:with-param name=”verse-label” select=”substring-before($verses,’ ‘)”/>

</xsl:call-template>

<xsl:call-template name=”make-rows”>

<xsl:with-param name=”verses” select=”substring-after($verses,’ ‘)”/>

</xsl:call-template>

</xsl:if>

</xsl:template>

This completes the find-neighbors query. In the next section, we generalize it
to produce reachable.xsl, the transitive closure of one-step search.

The All-Reachable Query

In abstract algorithmic terms, our task in this section is to search a directed graph
for all nodes that are reachable from a given node. The standard procedure is as
follows:

1. Form a list of nodes to visit, initially containing only the start node.

2. Repeat until that list is empty. Visit the first node on the list unless it has
already been visited, and add its neighbors to the list.

The program maintains two lists: visited nodes (initially empty) and nodes-
to-visit (which initially contains only the start node). If the list of nodes to visit is
maintained as a stack (latest additions go to the front), the graph is traversed in

249

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 249

In Listing 5-21, we use the $queue parameter to hold the list of nodes to visit
and the $verses parameter to hold the list of visited nodes. Both are imple-
mented as a space-separated and space-terminated string, so we can perform
the familiar recursion. The program reuses a good deal of material from the pre-
ceding section: the make-row and make-rows templates are identical, but the root
and nextlinks templates have minor changes. The main addition is the closure
template that gets called from the root template. The closure template’s control
structure is as follows:

• If the list of nodes to visit is empty, the closure template sends $verses to
the familiar make-rows template that sends them to output.

• If that list is not empty, it is divided into two parts: the first node and the
tail end.

• If the first node has already been visited, the closure template calls itself
recursively with the tail end of $queue as parameter.

• If the first node has not yet been visited, it is added to $verses, and its
neighbors are added to $queue. With the parameters so updated, closure
recursively calls itself.

Because Listing 5-21 is fairly long, we highlight a few important comments
and lines showing main divisions in the code.

“depth-first” order: we go as deeply as we can following the “first-neighbor” links
before we try the second neighbor of the original node. If the list is maintained as
a queue (latest additions go to the back), the graph is traversed in “breadth-first”
order. The code for the two traversals is almost identical, differing only in a single
line that adds new neighbors to the list.

250

Chapter 5

NOTE The book’s code contains a “decorated” version of the program,
reachable-dist.xsl, that helps visualize the traversal process. It outputs
each node together with its distance from the start node. In the breadth-
first traversal, all nodes of distance 1 are displayed before all nodes of
distance 2, and so on. In the depth-first traversal, distance increases until
we hit a dead end and backtrack to a preceding distance. In addition, the
program outputs messages (xsl:message elements) showing the contents
of the nodes-to-visit list and the visited-nodes list at every stage of the tra-
versal. We recommend that you run this program to see how it unfolds.

031ch05.qxp 5/10/02 2:34 PM Page 250

Listing 5-21. All-Reachable: The Root and closure Templates
<xsl:template match=”/”> <!-- apply to linkbase, e.g. biblelinkbase.xml -->

<html><head>

<title>Reachable from <xsl:value-of select=”$startVerse”/></title>

</head><body>

<h4>Bible Verses reachable from <xsl:value-of select=”$startVerse”/>:</h4>

<table border=”1”>

<xsl:call-template name=”closure”>

<xsl:with-param name=”queue” select=”concat($startVerse,’ ‘)” />

<xsl:with-param name=”verses” select=”’’” />

<!-- redundant; added for clarity -->

</xsl:call-template>

</table></body></html>

</xsl:template>

<xsl:template name=”closure”>

<xsl:param name=”verses” select=”’’”/>

<xsl:param name=”queue” select=”’’”/>

<xsl:choose>

<xsl:when test=”not($queue)”>

<!-- queue is empty; we’re done; produce output -->

<xsl:call-template name=”make-rows”>

<xsl:with-param name=”verses” select=”$verses”/>

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<xsl:variable name=”verse” select=”substring-before($queue,’ ‘)”/>

<!-- first node -->

<xsl:variable name=”tl-queue” select=”substring-after($queue,’ ‘)”/>

<!-- tail end -->

<xsl:choose>

<xsl:when test=”contains($verses,concat($verse,’ ‘))”>

<!-- first node already visited -->

<xsl:call-template name=”closure”><!-- recursive call -->

<xsl:with-param name=”verses” select=”$verses”/>

<xsl:with-param name=”queue” select=”$tl-queue”/>

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<xsl:variable name=”new-links”><!-- get neighbors of first node -->

<xsl:call-template name=”nextlinks”>

<xsl:with-param name=”verse” select=”$verse”/>

</xsl:call-template>

</xsl:variable>

251

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 251

<xsl:call-template name=”closure”><!-- recursive call -->

<xsl:with-param name=”verses”

select=”concat($verses,$verse,’ ‘)”/>

<!-- next line controls order of traversal:

depth-first vs. breadth-first -->

<xsl:with-param name=”queue”

select=”concat($new-links,$tl-queue)”/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

The rest of the program consists of three templates: make-rows (identical to
Listing 5-20), make-row (identical to Listing 5-18) and nextlinks. The nextlinks
template is almost identical to Listing 5-19 except it now compares $verse to
both from and to links, as shown by the two highlighted lines:

<xsl:template name=”nextlinks”>

<xsl:param name=”verse” select=”’’”/>

<xsl:for-each select=

“//elt[$verse=@xlink:from]/@xlink:to |

//elt[$verse=@xlink:to]/@xlink:from” >

<xsl:value-of select=”concat(.,’ ‘)”/>

</xsl:for-each>

</xsl:template>

</xsl:stylesheet>

This concludes our discussion of reachable.xsl. Parts of it can be made more
efficient by using the xsl:key element, which is the subject of the next chapter.

252

Chapter 5

031ch05.qxp 5/10/02 2:34 PM Page 252

Conclusion

XSLT is a powerful technology that should be in every XML programmer’s tool-
box. In this chapter, we covered XSLT in considerable detail. We did not aim to be
comprehensive, but instead tried to identify the most-important and commonly
used features of the language and common patterns of use, with an emphasis on
efficiency. We also developed an XSLT program to work with XLink structures.

XSLT heavily relies on XPath for much of its operation. XPath is another lan-
guage that is at the core of XML processing, and, in addition to XSLT, it forms an
essential part of XPointer and XQuery. These technologies are not yet standard,
but they are developing rapidly.

All the themes of this chapter are continued in the next one, where we’ll
spend more time on issues of efficiency. We will show several common advanced
uses of XSLT and the “best practice” approaches to them, and we will continue
developing our XLink application, both to add functionality and improve the effi-
ciency of its code.

253

XPath, XSLT, and XLink Processing

031ch05.qxp 5/10/02 2:34 PM Page 253

031ch05.qxp 5/10/02 2:34 PM Page 254

CHAPTER 6

More XSLT: Algorithms
and Efficiency

THIS CHAPTER DEVELOPS SEVERAL TOPICS, all of them having to do with writing more
efficient programs and measuring a program’s efficiency. A program’s efficiency
can be improved by using a more suitable data structure, a better algorithm, or
both. XSLT offers an efficient data structure for retrieval through its xsl:key ele-
ment and the accompanying XPath key() function. Their combined effect is to
improve efficiency at runtime (when the transformations are performed) by
doing some preprocessing at “parse time” when the XML input is parsed into the
XPath tree. The preprocessing at parse time is triggered and controlled by
xsl:key, and search at runtime is performed by the key() function. We explain
the workings of xsl:key in some detail and show how it can be used in several
common tasks:

• Create a list of distinct values for a given element, such as a list of all speak-
ers in a play or all affiliates of a company mentioned in a financial report.

• Group elements together by some predicates: for instance, group sales
records by geographic region.

• Convert flat XML structures, such as those extracted from a relational data-
base or an Excel spreadsheet, into more-deeply nested structures that
reflect semantic groupings of data.

Because of the importance of recursion in XML programming, we also show
how to improve the efficiency of recursive programs. In particular, recursive pro-
grams often fail because the processor runs out of stack memory. We show how
a more elaborate algorithm can process much larger data sets than the more
obvious uses of recursion that you have seen in the preceding chapter. The two
problems we use to illustrate these kinds of issues are that of generating a large
range of integers and finding the maximum-length element in a large data set.

Another well-known way to improve efficiency is to offload a resource-
intensive subroutine to a more efficient (and usually less portable) language
processor: code a C function in assembler or a LISP function in C. XSLT offers

255

031ch06.qxp 5/10/02 2:33 PM Page 255

a mechanism of extension functions that allow some tasks to be offloaded
to a function written in Java or a common scripting language, such as JavaScript
and VBScript. Although not yet standardized, the mechanism is offered by all the
major XSLT processors and will become standard in XSLT 2.0.

In outline, the chapter proceeds as follows:

• optimization by using more specific patterns

• use of xsl:key and generate-id() to create a list of distinct values

• use of distinct values for grouping and tabulation

• use of patterns in flat data to add more structure

• patterns of list processing

• linear recursion vs. tree recursion and the use of stack memory

• generating large data sets

• use of extension functions for improved performance

We start with a simple idea: specific paths take less time to process than do
patterns that use the // operator. We use a JavaScript utility to confirm that the
idea is valid and to measure possible gains.

Specific Patterns and Timing

In this section, we show how you can make your program more efficient by using
specific patterns and how you can measure the gain in efficiency. We will choose
the simple task of counting the number of times that a specific element occurs in
a document, such as how many distinct speeches are in a Shakespeare play
(marked up by Jon Bosak according to his play.dtd). A simple and the least effi-
cient way to do that is

<xsl:value-of select=”count(//SPEECH)”

256

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 256

Inspecting the DTD, we easily discover that a SPEECH element can occur
in exactly seven different contexts, corresponding to seven different path
expressions. Therefore, we can rewrite this line as

<xsl:value-of select=”count(/PLAY/INDUCT/SCENE/SPEECH)+

count(/PLAY/INDUCT/SPEECH)+

count(/PLAY/PROLOGUE/SPEECH)+

count(/PLAY/ACT/PROLOGUE/SPEECH)+

count(/PLAY/ACT/SCENE/SPEECH)+

count(/PLAY/ACT/EPILOGUE/SPEECH)+

count(/PLAY/EPILOGUE/SPEECH)”/>

Intuitively, the second expression must take less time to evaluate because we
tell the processor exactly where SPEECH elements are to be found, instead of send-
ing it all over the tree looking for them. How do we confirm this intuition and get
an estimate on the kind of savings we can achieve?

Timing a Web Application

One possible approach is to run the XSLT processor as a Web application and ask
JavaScript for timestamps right before and right after. Here is an implementation
of this idea, in the file timeXSLT\timeXSLTctl.htm. Listing 6-1 is the “control
frame,” named ctlFrame, of a two-frame document, timeXSLT/timeXSL.htm.

Listing 6-1. Timing a Stylesheet
<html><head><title>Timing Speech Counts</title>

<script type=”text/javascript” language=”javascript”>

function callBack(){

with(theForm){

// endTime, startTime and totalTime are fields in the form called theForm,

// in the body of the document below

endTime.value=new Date().getTime();

totalTime.value=endTime.value - startTime.value;

}

}

function onSubmitForm(){

theForm.startTime.value=new Date().getTime();

return true;

}

</script></head><body>

<form name=”theForm” action=”/xmlp/xx.jsp”

onSubmit=”return onSubmitForm()” target=”dataFrame” method=”post”>

257

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 257

xmlUri<input type=”text” name=”xmlUri” value=”/dat/jb/macbeth.xml” />

xslUri<input type=”text” name=”xslUri” value=”/timeXSLT/countspeakers.xsl”/>

startTime<input type=”text” name=”startTime” value=””/>

endTime<input type=”text” name=”endTime” value=””/>

totalTime<input type=”text” name=”totalTime” value=””/>

<input type=”submit” value=”GetTiming”/>

</form></body></html>

The output of onSubmitForm() goes into the “data frame,” initially empty. That
output is generated by xx.jsp that runs an XSLT program on an XML document.
(You saw it in Chapters 1 and 2.) To make the timing code work, the XSLT outputs
a call on the JavaScript callBack(), as shown by the highlighted line in
Listing 6-2.

Listing 6-2. XSLT Stylesheet with a JavaScript Callback
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<html> <head> <title> CountSpeeches </title> </head>

<body onload=”parent.ctlFrame.callBack()”>

<p>Count Speeches in a play, wherever they occur.</p>

<p>

The total number of speeches is

<xsl:value-of select=”count(//SPEECH) “/>

</p></body></html>

</xsl:template></xsl:stylesheet>

The durations recorded by JavaScript include, in addition to actual XSLT pro-
cessing, the time required to parse the XML source, parse the stylesheet, and
generate the output, not to mention the overhead of the Tomcat process and IE.
It is all the more remarkable that, in running the two versions of the stylesheet on
the macbeth.xml file, we originally found the less specific // template
(timeXSLT/countspeeches.xsl) taking almost twice the amount of time of the
more specific one (timeXSLT/countspeechespull.xsl): from a range of 1,800 to
2,000 milliseconds to a range of 800 to 1,100 milliseconds. (This was on a Dell
Dimension 450 running Windows 98, Sun’s JDK 1.2.2, and Xalan 2.0 with Xerces
1.4.1 under Tomcat 3.2.) Your times will of course be faster: even on the same
machine, they improve substantially running JDK 1.3 with Xalan 2.2.0 and Xerces
1.4.4 under Tomcat 4.0.1. Noise comes to dominate: as the numbers shrink, the
variation in the time becomes as large as the time itself, and we have to perform
experiments with larger documents.

The use of // is frequently considered a sign of inadequate thinking and dis-
approved of. We consider it to be a sign of a rough draft, something which can

258

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 258

almost always be improved but which is quite useful in the early stages of devel-
opment.

Distinct Nodes and Keys

Our next problem will be to find and in some way process only distinct elements
that may repeat more than once in the input document. We did a problem
like that in the ref2xlink.xsl stylesheet of Chapter 5 (Listing 5-14). It creates a list
of distinct locators out of ref/to and ref/from elements in the linkbase source
document:

<xsl:template match=”ref/to | ref/from” mode=”locators”>

<!-- if an element is not yet encountered -->

<xsl:if test=”not(. = preceding::from | preceding::to)” >

<!-- construct xlink:href and xlink:label attributes

as ref and label variables -->

<elt xlink:type=”locator” xlink:href=”{$ref}” xlink:label=”{$label}” />

</xsl:if>

</xsl:template>

As explained in Chapter 5, the highlighted line checks to see whether the cur-
rent element occurs among preceding elements. Because we do the check for
each from|to element on input, and each check requires a linear search through
all preceding such elements, the entire time of the procedure is proportional to
the square of the number of from|to elements. We would like to reduce this to lin-
ear time, by arranging to do the search in constant time.

In working with people.xml, we were able to reduce linear search to
constant-time search by using the id() function. (We had to rely on a partial
DTD that declared an attribute of type ID for the person element.) This time
around, we do not have this option because both speakers in Shakespeare plays
and to|from elements in the linkbase source repeat many times in different con-
texts in the source document and cannot be fixed with an ID (even if we had
license to change the source document). We will have to use a different tech-
nique, using the xsl:key element and the key() function.

The xsl:key Element and the key() Function

xsl:key is a top-level element. It is always empty but has three required attri-
butes: name, match, and use. As often in XSLT, the complete description of xsl:key
is rather involved but the basic use is straightforward. Think of it as defining

259

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 259

a named hashtable of nodes within a document keyed by the values of an XPath
expression. For instance, with people.xml as input, we can create a key like this:

<xsl:key name=”person” match=”person” use=”@id”/>

This creates—at parse time—a table of persons keyed by their id attributes.
More precisely:

• The name of the hashtable is the value of the name attribute.

• The nodes stored in the hashtable are those that match the match pattern.

• The key for a given node is the value of the use attribute evaluated as an
XPath expression, with the node as the current node.

The accompanying key() function takes two arguments: the name of the
hashtable and a key value. The function returns the node-set of all nodes that are
keyed by the given value. To retrieve the first (and in this case unique) person
whose ID is “A4”, we would say

key(“person”,”A4”)[1]

This is likely to take constant time and does not require attributes of type ID
declared in the DTD. As often the case, we save time by using extra (memory)
space: the key is created and kept in memory. It may or may not be implemented
as a hashtable, but we find it a useful conceptual prop to think that it is.
Implementers are certainly aware that XSLT programmers depend on this
function for speed.

To repeat the main point: the purpose of xsl:key and the accompanying
key() function is to offload to parse time some preprocessing that results in effi-
cient (constant-time) search at runtime. The preprocessing at parse time is
triggered and controlled by xsl:key, and search at runtime is performed by the
key() function.

Distinct Locators

The key() function returns a node-set that may contain any number of nodes.
For instance, with Bible references, we can define a key like this:

<xsl:key name=”distinct” match=”ref/to|ref/from” use=”.”/>

260

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 260

This says “put all ref/to and ref/from nodes into the table and key them by
their own string value.” In other words, a ref/from or ref/to element that con-
tains the string “nt.xml Luke 18 27” will be keyed by that string. With the table so
constructed, each key value is associated with a node-set that can contain more
than one node because the same verse in the Bible may appear more than once.

How do we extract distinct locators from such a table? The crucial support
comes from the generate-id() function (an XPath function defined within XSLT).
For each node in a document, the function generates a string value that is guar-
anteed to be unique within that document. (Different processors will produce
different such values, depending on the algorithm they use.) Using generate-
id(), we can extract the first item of each node-set stored in the distinct key.
They will all be distinct, and together they will contain all the distinct items.
Listing 6-3 shows the code of the timeXSLT/distinctrefs.xsl file, to be applied to
biblelinks/biblelinks.xml.

Listing 6-3. Unique Locators Using xsl:key and generate-id()
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”html” />

<xsl:key name=”distinct” match=”ref/to | ref/from” use=”.” />

<xsl:template match=”/”>

<html> <head> <title>UniqueSpeakers </title> </head><body>

<xsl:apply-templates select=”*/ref/to | */ref/from” />

<!--collect all to|from nodes -->

</body></html>

</xsl:template>

<xsl:template match=”ref/to | ref/from”>

<xsl:if test=”generate-id(.)=generate-id(key(‘distinct’,.)[1])”>

<p><xsl:value-of select=”.”/></p>

</xsl:if>

</xsl:template>

</xsl:stylesheet>

261

More XSLT: Algorithms and Efficiency

NOTE Strictly speaking, the [1] predicate is unnecessary because, if
generate-id()’s argument is a node-set that contains more than one
node, the function generates a unique string based on its first node. If we
want to compare a node N with the first node in a node-set NS, we can
simply say generate-id(N)=generate-id(NS). However, many examples in
the literature contain the predicate (perhaps to avoid having to give this
explanation), and we will follow their practice.

031ch06.qxp 5/10/02 2:33 PM Page 261

The test takes constant time, and so the entire template takes linear time but
it’s linear in the number of to|from elements in input data. These elements get
collected into a node-set at runtime, by the xsl:apply-templates expression. If
the tree is large, we can further improve efficiency by creating that node-set at
parse time, as another key that will hold all to|from nodes. The value of its use
attribute will simply be a constant string, and the entire table will hold a single
node-set in the timeXSLT/distinctrefs2keys.xsl file:

<xsl:key name=”distinct” match=”ref/to | ref/from” use=”.” />

<xsl:key name=”keylist” match=”ref/to | ref/from” use=”keyVal” />

<xsl:template match=”/”>

<html> <head> <title>Unique Locators</title> </head><body>

<xsl:apply-templates select=”key(‘keylist’,’keyVal’)” />

</body></html>

</xsl:template>

<!--continue as before -->

As an exercise, try using the same techniques for generating a list of speakers
in a Shakespeare play.

The Grouping Problem

The idea of using generate-id() in combination with xsl:key to produce a list of
all possible values of some property without repetition was first discovered (by
Steve Muench of Oracle) in the context of “the grouping problem.” The grouping
problem is to divide a data set into groups using the values of some property,
such as group sales figures by geographic region. Databases and spreadsheets do
grouping efficiently; in XSLT, the task frequently arises in working with XML out-
put from databases.

Staying with the same material, suppose that we have a large collection of
from|to links and we want to group them by to-locators to answer the query:
“for each locator, show all links that point to it.” Two sub problems must be
solved here:

• Create a list of locators, without repetition, as in the preceding section.

• For each locator, find its to-links.

We have, in effect, two nested loops: the outer loop produces a list of distinct
to-locators, and the inner loop outputs the corresponding from-locators.
Listing 6-4 is the code of groupXSLT/groupref-to.xsl.

262

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 262

Listing 6-4. Grouping References by To-Locators Using xsl:key and generate-id()
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”html” />

<xsl:key name=”to-locs” match=”ref/to” use=”.” />

<xsl:template match=”/”>

<html> <head> <title>References grouped by to-locator</title> </head><body>

<xsl:for-each select=”*/ref/to[generate-id()=generate-id(key(‘to-locs’,.)[1])] “>

<h1><xsl:value-of select=”.”/></h1>

<xsl:for-each select=”key(‘to-locs’,.)”>

<xsl:text>from: </xsl:text>

<xsl:value-of select=”../from”/>

</xsl:for-each>

</xsl:for-each>

</body></html>

</xsl:template>

</xsl:stylesheet>

As you can see, the outer loop closely follows the pattern of Listing 6-3. The
complementary problem that groups by from-locators is easy; try to solve it
before looking at the code for groupXSLT/groupref-from.xsl.

Grouping and Tables

In the examples of the preceding section, records are grouped by some element
of their content. In this section, we go over a few cases in which records need to
be broken into groups such that each group contains the same number of items.
An essential tool is the XPath mod operator that produces the remainder of integer
division (technically “the remainder from a truncating division”). Its operation
with negative numbers is not quite obvious (see the W3C XPath recommen-
dation), but you will rarely if ever use it with negative numbers. With positive
numbers, mod is useful for dividing items into groups of equal size: if your variable
nodeSetVar has a node-set value, then the expression

$nodeSetVar[position() mod 5=1]

will output every fifth node in the node-set beginning with the first.

263

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 263

Outputting a Table

Suppose that you have twenty items and you want to output them as a table with
four rows and five columns. A possible strategy is to collect the items that will
end up in the first column of such a table into a node-set, and for each item in
that node-set produce a row. Assuming that the number of columns is in param-
eter numColumns, we can construct a table as follows:

<xsl:for-each select=”xpath/to/data[position() mod $numColumns = 1]”>

<tr>

<td><xsl:value-of select=”.”/></td>

<xsl:for-each

select=”following-sibling::*[position() < $numColumns]”>

<td><xsl:value-of select=”.”/></td>

</tr>

</xsl:for-each>

This makes several assumptions: that the data is already in row-first order,
ready to be tabulated; that all rows are intended to be of equal length; and that
the data set is small enough to be processed in reasonable time. In the remainder
of this section, we’ll work on problems in which at least one of these assumptions
doesn’t hold.

Table Regrouping with Summation by Category

Suppose that our data items have two properties and need to be grouped into
rows and columns by the values of those properties rather than in the order
given. A common example would be company sales data that is initially pre-
sented by division, and within each division monthly sales totals of the regions
covered by that division. What would you do to find the aggregate monthly sales
for each region, ignoring the divisions? In other words, we want to perform
regrouping and accumulations within the groups. Given what we already know,
a two-step strategy suggests itself. First, collect each “row category” into a key,
using the “Muenchian” technique. Second, for each row, output the values of the
“column category” extracting them from the appropriate key.

With this strategy in place, we need some data to try it on. In this example,
we will start with an Excel table, save it as HTML, convert HTML to XHTML, con-
vert XTHML to another XML vocabulary using table headers for tag names, and
finally restructure it into a different table by grouping together items by category.

264

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 264

From Excel to HTML

The following sample (Figure 6-1) of initial Excel data, groupXSLT/DivReg.xls,
shows monthly sales data by region and division. For some months, some
divisions generated no sales in some regions.

To convert this data to HTML (Office 2000 version because Office 1997 works
differently), select the range of data to save and choose “Save as Web Page” from
the File menu. The resulting HTML is mostly a table with many empty cells. To

265

More XSLT: Algorithms and Efficiency

NOTE HTML-to-XHTML conversion is best done by Tidy, a program by
Dave Raggett of W3C that we mentioned in Chapter 2. For information on
how to get Tidy, see Appendix D.

Figure 6-1. Initial Excel data

031ch06.qxp 5/10/02 2:33 PM Page 265

give an example, row 6 of the table (Div A, February), looks like this (with some
whitespace removed):

<tr>

<td></td>

<td>February</td>

<td align=right x:num>425802</td>

<td align=right x:num>451557</td>

<td align=right x:num>214516</td>

<td align=right x:num>143990</td>

<td align=right x:num>406442</td>

</tr>

Several items in the output make it non-well-formed: empty elements with-
out closing tags, unquoted attribute values, improperly formatted comments,
and so on. Before XLST can work on this data, it must be converted to well-
formed XHTML.

Tidy Use

HTML-to-XHTML conversion is done by Tidy. Depending on option settings,
Tidy will output fully conformant HTML or XHTML or generic XML; for HTML
and XHTML, it may use the strict or transitional DTD (that is, it may or may not
convert <center>..</center> into <div align = “center”>..</div>). Our set-
tings are collected in the ciacfg.txt file. To produce correct results on
Excel-generated data, the settings must include this line:

word-2000:yes

Tidy’s output, in groupXSLT/DivReg.xml, is ready for XSLT.

From XHTML to XML

Our next task is straight XML restructuring, converting the XHTML table struc-
ture into

<salesData>

<item div=”Div A” reg=”Reg 1” mo=”January”>300457</item>

<!-- many more items; skip empty cells -->

</salesData>

266

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 266

The peculiarity of our data is that we have three different kinds of rows:

• the top row that lists region names (“the regions row”)

• the first row of each division that shows the division’s name but otherwise
has no data (“division rows”)

• the remaining rows that have no data in the first <td> (“data rows”)

Because we have to provide the division name for each item on the output,
we collect all data rows into a key and index each data row by the first preceding
division row. As you read the code of groupXSLT/DivReg.xsl, remember that
input XML is, in fact, XHTML, defined to be in the
http://www.w3.org/TR/REC-html40 namespace.

Because the namespace is declared on the root element, all other elements
in the stylesheet inherit it, as required by Namespaces in XML recommendation.
The XPath tree will represent it as multiple namespace nodes attached to ele-
ment nodes. The XSLT processor, unless told otherwise, will copy all these
irrelevant namespace nodes to output. The exclude-result-prefixes attribute
prevents this from happening; you will see it used in many examples of this
chapter:

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”

xmlns:h=”http://www.w3.org/TR/REC-html40”

exclude-result-prefixes=”h”>

<xsl:output method=”xml” indent=”yes”/>

<xsl:strip-space elements=”*”/>

<xsl:key name=”divrows” match=”h:tr[not(h:td[1]/node())]”

use=”generate-id(preceding-sibling::h:tr[h:td[1]/node()][1])”/>

<!-- for each non-header row, h:td[1] is empty, and so not(h:td[1]/node())

is true. The most recent row such that h:td[1]/node() is true is the

most recent header row.

-->

With the divrows key so defined, for any header row,
key(‘divrows’,generate-id(.)) is the list of rows for which it is header. We are
now ready to process data rows, beginning in row 4 (so we specify
position > 3). Here is the rest of groupXSLT/DivReg.xsl:

<xsl:template match=”/”>

<xsl:apply-templates select=”/h:html/h:body”/>

</xsl:template>

267

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 267

<xsl:template match=”h:table”>

<salesData> <!-- apply templates to header rows -->

<xsl:apply-templates select=”h:tr[position()> 3][h:td[1]/node()]”/>

</salesData>

</xsl:template>

<xsl:template match=”h:tr”> <!-- we are in a header row -->

<xsl:variable name=”div” select=”string(h:td[1])”/>

<xsl:variable name=”regions” select=”../h:tr[3]/h:td[position()>1]”/>

<!-- outer loop: for each division row -->

<xsl:for-each select=”key(‘divrows’,generate-id(.))”>

<xsl:variable name=”mo” select=”string(h:td[2])”/>

<!-- inner loop: for each region listed in the regions row -->

<xsl:for-each select=”h:td[position()>2]”>

<xsl:variable name=”pos” select=”position()”/>

<xsl:if test=”node()”><!-- skip empty cells -->

<item div=”{$div}” mo=”{$mo}” reg=”{$regions[$pos]}”>

<xsl:value-of select=”.”/>

</item>

</xsl:if>

</xsl:for-each>

</xsl:for-each>

</xsl:template></xsl:stylesheet>

From Data Items to Summary Table

This last transformation can be done very efficiently and elegantly with keys. No
special provisions are needed for missing items (initially empty cells in the Excel
table) because each item contains complete information about itself and is
placed in the output table on the basis of that information.

First, we collect all items in two keys, indexed by the reg and mo attributes:

<xsl:key name=”reg” match=”item” use=”@reg”/>

<xsl:key name=”mo” match=”item” use=”@mo”/>

We also collect them in a key indexed by the combined value of those two
attributes:

<xsl:key name=”reg-mo” match=”item” use=”concat(@reg,’ ‘,@mo)”/>

Even though reg-mo is a single key that keys each item by a single string, it is
functionally equivalent to a two-dimensional table in which each item is keyed

268

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 268

by two values: the region and the month. Put differently, it captures triples of
data: region, month, and item. Given a node-set of distinct regions and a node-
set of distinct months, we can run two nested xsl:for-each loops over them and
extract groups of items by a unique combination (concatenation) of the region
and the month. We obtain the node-sets using the familiar technique:

<xsl:template match=”salesData”>

<xsl:variable name=”regs”

select=”item[generate-id(.)=generate-id(key(‘reg’,@reg))]”/

<xsl:variable name=”mos”

select=”item[generate-id(.)=generate-id(key(‘mo’,@mo))]”/>

At this point, we are ready to produce the output. Listing 6-5 shows the
stylesheet groupXSLT/DivRegMonth.xsl, all together except for the root element
and comments.

Listing 6-5. Table Output from Keys
<xsl:output method=”xml” indent=”yes”/>

<xsl:strip-space elements=”*”/>

<xsl:key name=”reg” match=”item” use=”@reg”/>

<xsl:key name=”mo” match=”item” use=”@mo”/>

<xsl:key name=”reg-mo” match=”item” use=”concat(@reg,’ ‘,@mo)”/>

<xsl:template match=”salesData”>

<xsl:variable name=”regs”

select=”item[generate-id(.)=generate-id(key(‘reg’,@reg))]”/>

<xsl:variable name=”mos”

select=”item[generate-id(.)=generate-id(key(‘mo’,@mo))]”/>

<table border=”1”>

<tr><th/><!-- a row of headers listing months -->

<xsl:for-each select=”$mos”>

<th><xsl:value-of select=”@mo”/></th>

</xsl:for-each>

</tr>

<xsl:for-each select=”$regs”><!-- outside loop, a row per region -->

<xsl:variable name=”reg” select=”@reg”/>

<tr><td><xsl:value-of select=”$reg”/></td>

<xsl:for-each select=”$mos”><!-- inside loop, add up region-month data -->

<xsl:variable name=”mo” select=”@mo”/>

<td>

<xsl:value-of select=”sum(key(‘reg-mo’,concat($reg,’ ‘,$mo)))”/>

</td>

</xsl:for-each>

</tr>

</xsl:for-each>

</table></xsl:template></xsl:stylesheet>

269

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 269

Because all the data is in keys, this program can, in effect, ignore its input
and use the key() function for all its data needs.

U.S. Presidents by Quarter-Century and Party
Affiliation

This section is a variation on the preceding one and leaves part of its code out as
an exercise. We again proceed from XHTML to XML data to regrouped and sum-
marized XML data. The difference is that we are using real data, and our
categories are computed values rather than labels in the data itself.

From XHTML to XML

Our XHTML data (groupXSLT/presTable.htm) shows, for each past U.S. presi-
dent, his years in office and party affiliation:

<table>

<tr><th>Name</th><th>From</th><th>To</th><th>Party</th></tr>

<tr><td>George Washington</td><td>1789</td><td>1797</td><td>None</td></tr>

<tr><td>John Adams</td><td>1797</td><td>1801</td><td>Federalist</td></tr>

<tr><td>Thomas Jefferson</td><td>1801</td><td>1809</td><td>Dem-Rep</td></tr>

...

<tr><td>William J. Clinton</td><td>1993</td><td>2001</td><td>Dem</td></tr>

</table>

For meaningful grouping, we need meaningful tag names. We transform the
XHTML into a vocabulary extracted from table headers:

<?xml version=”1.0” encoding=”UTF-8”?>

<presidents>

<president>

<Name>George Washington</Name>

<From>1789</From>

<To>1797</To>

<Party>None</Party>

</president>

...

</presidents>

This is a straightforward transformation that we leave as an exercise.

270

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 270

From XML to XHTML Summary Table

Our next task is regrouping: we are going to generate a table of output in which
each row is a quarter-century, each column is a political party, and each entry is
the total number of presidents of that political party whose term began within
that quarter-century. (See Figure 6-2.) This is done by PresSum.xsl; the result is in
PresSumOut.htm.

As did several earlier examples, PresSum.xsl starts by defining keys. To key
each year by the quarter-century in which it belongs, we do integer division. (In
XPath, this comes out as floor(. div 25) because there is no primitive integer
division operation.)

<xsl:key name=”party” match=”Party” use=”.”/>

<xsl:key name=”qcent” match=”From” use=”floor(. div 25)”/>

<xsl:key name=”p-q” match=”president”

use=”concat(Party,’ ‘,floor(From div 25))” />

We create a list of parties and a list of quarter-centuries as before. To create
a list of quarter-centuries, we locate, within each, the first year of a new presi-
dency. (In the following code, the values of select attributes are broken into two
lines for formatting.)

271

More XSLT: Algorithms and Efficiency

Figure 6-2. Presidents by quarter-century and party affiliation

031ch06.qxp 5/10/02 2:33 PM Page 271

<xsl:variable name=”parties”

select=”/presidents/president/Party

[generate-id(.)=generate-id(key(‘party’,.))]”/>

<xsl:variable name=”qcents” select=”/presidents/president/From

[generate-id(.)=generate-id(key(‘qcent’,floor(. div 25)))]”/>

The remaining processing (shown in Listing 6-6) is quite similar to
Listing 6-5.

Listing 6-6. Presidents Grouped by Party and Quarter-Century
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:output method=”xml” indent=”yes”/>

<!-- create three keys as shown above -->

<xsl:template match=”/”>

<!-- create two variables as shown above -->

<table>

<tr><!-- output row of headers, skip first column, use party names -->

<th></th>

<xsl:for-each select=”$parties”>

<th><xsl:value-of select=”.”/></th>

</xsl:for-each>

</tr>

<xsl:for-each select=”$qcents”><!-- output the rest of table -->

<xsl:variable name=”qc” select=”floor(. div 25)”/>

<tr><td><xsl:value-of select=”25 * $qc”/></td>

<!-- use quarter century for row label -->

<xsl:for-each select=”$parties”><!-- inner loop: output row -->

<xsl:variable name=”p” select=”.”/>

<td><xsl:value-of select=”count(key(‘p-q’,concat($p,’ ‘,$qc)))”/></td>

</xsl:for-each>

</tr>

</xsl:for-each></table></xsl:template></xsl:stylesheet>

The programs of Listing 6-5 and 6-6 are linear in the size of output, which is
the best one can hope to achieve. (Output has to be produced, no matter what.)
The efficiency is the result of a lot of preprocessing that’s done at parse time and
stored in efficient memory structures. This strategy works as long as keys can
express relationships in data that we need to capture. It can also be applied to
another class of problems that is similar to grouping: converting a flat list of
nodes to a more hierarchical structure.

272

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 272

Converting Flat to Hierarchical Structure

Many HTML documents, especially those converted from other formats or
from database output, have a flat structure with several levels of divisions. The
divisions can be indicated by the h1 . . . h6 header elements or by some other
patterns of HTML elements and attributes. It is frequently desirable to convert
such documents into a hierarchical XML structure. The task is to wrap all mate-
rial between level 1 divisions into top-level elements; within those, wrap all
material between level 2 divisions into next level elements and so on.

An elegant solution to this problem was posted by Jeni Tennison
(http://jenitennison.com), elaborating on a suggestion by Wendell Piez (both
frequent contributors to xsl-list—see Appendix D for the URL). The idea is to use
keys in which each element that signals division at level N is keyed by the result
of applying generate-id() to the first preceding element that signals a higher-
level division:

generate-id((“elements that signal divisions at level N-1”)[1])

For instance, if divisions are signaled by h1 . . . h6, one of the keys will be

<xsl:key name=”next-headings” match=”h2”

use=”generate-id(preceding-sibling::h1[1])” />

and similarly for h3..h6. (Remember that the preceding-sibling axis is ordered
from the current element backwards, so the argument to generate-id() produces
the first h1 element that precedes the current element.) To provide for the possi-
bility that some level divisions may be missing, Tennison’s stylesheet actually
creates keys in which each element that signals division at level N is keyed by

generate-id(“elements that signal divisions at all levels higher than N”)[1]

as in

<xsl:key name=”next-headings” match=”h6”

use=”generate-id(preceding-sibling::*[self::h1 or self::h2 or

self::h3 or self::h4 or self::h5][1])” />

The entire stylesheet can be found at http://jenitennison.com/xslt, in the
Complex Tasks/Constructing hierarchies section. (The site has many other useful
examples.) We are going to use a similar technique in a more general case when
levels are indicated by arbitrary XSLT patterns. Our material will come from The
World Factbook, a large public-domain store of information published annually
by the Central Intelligence Agency of the U.S. Government.

273

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 273

The CIA World Factbook

Whatever else one might think of the CIA (and we have seen reasonable people
disagree on the subject), their annual World Factbook is a very useful public ser-
vice. (See http://www.cia.gov/cia/publications/factbook/index.html.) It
provides information, in a uniform format, about all the world countries and
many non-countries or not-yet-countries (such as the Arctic region, Taiwan, the
West Bank, and the Western Sahara, to name a few). Each record is an HTML file
with names such as al.html for Albania or nz.html for New Zealand. Each file has
links to image files with the country’s map and flag , and otherwise is divided into
nine categories:

• Introduction

• Geography

• People

• Government

• Economy

• Communications

• Transportation

• Military

• Transnational Issues

The categories are further divided into fields, such as Terrain (within
Geography), or Ethnic Groups (within People). A complete listing of fields is pro-
vided, in which each field name is a link to a complete listing of the field’s values
for all countries. For instance, for Ethnic Groups, we get

Afghanistan:

Pashtun 38%, Tajik 25%, Uzbek 6%, Hazara 19%,

minor ethnic groups (Aimaks, Turkmen, Baloch, and others)

274

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 274

Albania:

Albanian 95%, Greeks 3%, other 2%

(Vlachs, Gypsies, Serbs, and Bulgarians) (1989 est.)

note: in 1989, other estimates of the Greek population ranged from 1%

(official Albanian statistics) to 12% (from a Greek organization)

Algeria:

Arab-Berber 99%, European less than 1%

and so on, all the way to Zimbabwe and Taiwan.
Some fields are further divided into subfields. For instance, the field of Land

boundaries within Geography is shown as (Bangladesh data):

<p>Land boundaries:

<i>total:</i>

4,246 km

<i>border countries:</i>

Burma 193 km, India 4,053 km

The entire collection, with maps and flags, can be downloaded as a 64.5MB
zip file and used without restrictions. We include their New Zealand file as
groupXSLT/nz.html as a starting point for running examples.

The HTML File Structure

An inspection of the HTML source reveals a very regular structure, probably gen-
erated from a database. Ignoring the links (external, to the Factbook and the CIA
homepages, and internal, to various sections), the divisions are indicated as
follows:

• The flag and the map are in a top-level table (html/body/table) in the
beginning of the document.

• The name of the country is the content of /html/body/div/h3, the only
such element in the file.

• Category divisions are indicated by
/html/body/center/table/tr/td/b/a[@idand @name] (that is, by an <a> ele-
ment that has both id and name attributes). The content of the <a> element
is the name of the category.

275

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 275

• Fields start at /html/body/p/b. If the field has no subfields, the element
is followed by text. The content of the element provides the name of
the field, and the following text provides the field content. Although the
<p> element containing a field has a fixed structure, there is no way to
specify it in a DTD because the element has a mixed-content model. The
structure can be specified in a RELAX NG grammar or an XML schema.
(See Chapter 8).

• If a field has subfields, the beginning of each subfield is indicated by

<i> . . . </i>., where the content of the <i> element is the name of
the subfield. (For an example, see Land boundaries of Bangladesh.)

Given this regular structure, an XSLT can convert flat HTML files (appropriately
Tidyed) into hierarchical XML, which can then be queried in a variety of ways
beyond those provided by the CIA.

Building a Hierarchy with Keys

For this example, we will keep the XHTML vocabulary intact and simply wrap
each category, field, and subfield into a <div> with an appropriate value of the
class attribute. The contents of a field or subfield are wrapped into a with
the same class attribute. But first we have to define the keys, as here in Listing 6-7
for groupXSLT/ciakey.xsl.

Listing 6-7. Building Hierarchies Using xsl:key and generate-id()
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<!-- sections (categories) are children of the country name -->

<xsl:key name=”children”

match=”/html/body/div/table/tr/td/b/a[@id and @name]”

use=”generate-id(/html/body/div/h3)” />

<!-- each subsection (field) is a child of the preceding section (category) -->

<xsl:key name=”children”

match=”/html/body/p/b”

use=”generate-id((../preceding-sibling::div/

table/tr/td/b/a[@id and @name])[last()])” />

<!-- each subsubsection (subfield)

is a child of the preceding subsection (field) -->

<xsl:key name=”children”

match=”html/body/p/i”

use= “generate-id(preceding-sibling::b)” />

276

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 276

Note that we can have more than one key of the same name (which is what
we do here) for greater uniformity of code. We key everything by strings gener-
ated by generate-id(), and we access the keyed information by the same strings.

The remainder of the groupXSLT/ciakey.xsl stylesheet contains four tem-
plates: for country, category, field, and subfield. (See Listing 6-8.) In the country
and category templates, we output a <div> and within it the name of the
country or category. In the field and subfield templates, we additionally output
content in a span.

Listing 6-8. The Templates for Building Hierarchies Using xsl:key
and generate-id()
<xsl:template match=”/”>

<html><head><title>CIA Structures</title></head><body>

<xsl:variable name=”country” select=”/html/body/div/h3/text()”/>

<div class=”country” name=”{$country}”>

<h3><xsl:value-of select=”$country”/></h3>

<xsl:apply-templates mode=”section”

select=”key(‘children’,$country/..)”/>

</div>

</body></html>

</xsl:template>

<xsl:template match=”a” mode=”section”>

<div class=”category” name=”{text()}” style=”margin:10”>

<h4><xsl:value-of select=”text()”/></h4>

<xsl:apply-templates mode=”subsection”

select=”key(‘children’,.)”/>

</div>

</xsl:template>

<xsl:template match=”b” mode=”subsection”>

<div class=”field” name=”{text()}” style=”margin:10”>

<h5><xsl:value-of select=”text()”/></h5>

<xsl:value-of select=”following-sibling::text()[1]”/>

<xsl:apply-templates mode=”subsubsection”

select=”key(‘children’,.)”/>

</div>

</xsl:template>

<xsl:template match=”i” mode=”subsubsection”>

<div class=”subfield” name=”{text()}” style=”margin:10”>

277

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 277

<i><xsl:value-of select=”text()”/></i>

<xsl:value-of select=”following-sibling::text()[1]”/>

</div>

</xsl:template></xsl:stylesheet>

Building a Hierarchy Recursively

Listing 6-8 works from the inside out: for each division marker, we store in a key
the immediately preceding division marker of the next level up. We ensure that
we store and retrieve the same node by keying them with generate-id(). To con-
trast this programming style with the preceding chapter, we will show how the
same result can be achieved by forward recursion at the appropriate level of the
hierarchy. Whereas earlier examples of recursion used a space-separated list of
tokens as the “recursion driver” (see, for example, Listing 5-13), in Listing 6-9 we
use node-sets and the following-sibling axis for the same purpose. In outline:

• The root template outputs the top-level div and the name of the country,
then applies templates to all first-level sections (categories).

• The next template processes categories (match=”a” mode=section”) and
within each category calls the recursive subsections template to process
fields. The parameter is the node-set of all following siblings.

• The subsections template locates each subsection and calls
apply-templates on each. Because we want our forward processing to stop
when the start of the next higher-level sections is found, we cannot simply
do xsl:for-each select=”following-sibling::*.

• The sub-subsections (subfields) template, by contrast, does want to pro-
cess all the following siblings that are <i> elements, and therefore uses
xsl:for-each. You may call this “opportunistic programming.”

The entire stylesheet is shown in Listing 6-9, groupXSLT/ciarecursion.xsl.

Listing 6-9. Building Hierarchies by Forward Processing
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/”>

<html><head><title>CIA Structures</title></head><body>

<xsl:variable name=”country” select=”/html/body/div/h3/text()”/>

<div class=”country” name=”{$country}”>

278

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 278

<h3><xsl:value-of select=”$country”/></h3>

<xsl:apply-templates mode=”section”

select=”key(‘children’,generate-id($country/..))”/>

</div>

</body></html>

</xsl:template>

<xsl:template match=”a” mode=”section”>

<div class=”section” name=”{text()}” style=”margin:10”>

<h4><xsl:value-of select=”text()”/></h4>

<xsl:apply-templates mode=”subsection”

select=”key(‘children’,generate-id(.))”/>

</div>

</xsl:template>

<xsl:template match=”b” mode=”subsection”>

<div class=”subsection” name=”{text()}” style=”margin:10”>

<h5><xsl:value-of select=”text()”/></h5>

<p>

<xsl:value-of select=”following-sibling::text()[1]”/>

</p>

<xsl:apply-templates mode=”subsubsection”

select=”key(‘children’,generate-id(.))”/>

</div>

</xsl:template>

<xsl:template match=”i” mode=”subsubsection”>

<div class=”subsubsection” name=”{text()}” style=”margin:10”>

<i><xsl:value-of select=”text()”/></i>

<p>

<xsl:value-of select=”following-sibling::text()[1]”/>

</p>

</div>

</xsl:template>

</div>

</xsl:template></xsl:stylesheet>

With this example, we conclude the subject of efficient grouping and
hierarchy building, and return to the issues of recursion.

279

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 279

List Processing and Recursion Depth

As we just mentioned, our earlier examples of recursion used a space-separated
list of tokens as the “recursion driver” whereas Listing 6-9 uses node-sets and the
following-sibling axis for the same purpose. The recursive pattern is the same
in both cases: to process a list of items, we first apply a problem-specific predi-
cate to see whether there are more items to process; if the answer is yes, we do
what needs to be done with the first item on the list and recursively process the
tail end of the list, without the first item.

The common types of list processing are usually grouped into three cate-
gories: map, filter, and accumulate. To take a simple example, suppose that we
have list of integers from 1 to 10.

• An example of mapping would be a function that takes that list as an argu-
ment and returns a list of squares of all the numbers on the list: 1,4,9, . . .
100. This is often described as “mapping the square() function over
the list.”

• An example of filtering would be a function that takes that list as an argu-
ment and returns a list of all the prime numbers on the list: 2,3,5,7. This is
often described as “filtering the list by the prime() predicate“, that is, the
predicate that returns True if its argument is a prime number.

• An example of accumulation would be a function that takes that list as an
argument and returns the sum of all the numbers on the list. Another
example would be finding the maximum element of the list. The definitive
feature of accumulation is that the result is not a list but rather a primitive
value obtained by performing some computation on all elements of
the list.

These three processing patterns can be combined in various ways: we can
get the sum of squares of all prime numbers on our list by applying the prime()
filter, the square() map, and the sum() accumulator, in that order. The ability to
create processing pipelines out of standard functional components is a very pow-
erful feature of list processing.

Another common list-related task is generating a list according to some spec-
ification. A simple example is a function that takes two integers, lo and hi, and
generates a range of integers from lo to hi.

In many languages, lists can be generated and processed using either itera-
tion (a loop) or recursion. In XSLT, some list operations can be done using either
xsl:for-each or recursion; others can be done only by recursion. In this section,
we will show simple examples of list processing in XSLT. In the next section, we
will look at alternatives and compare them for time efficiency and the size of the
lists that they can generate or process.

280

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 280

List Processing in XSLT

If your list is a node-set and you already have it constructed (usually extracted
from data), then xsl:for-each is very well suited for filtering and mapping.
Consider the for-each element of the last template of Listing 6-9:

<xsl:for-each select=”following-sibling::i”>

<div class=”subsubsection” name=”{text()}”>

<h6><xsl:value-of select=”.”/></h6>

<p><xsl:value-of select=”following-sibling::text()[1]”/> </p>

</div>

</xsl:for-each>

We start with the list of following siblings, filter it by the predicate
name()=”i”, and apply a function to each surviving node that maps it to the
appropriate XHTML structure.

If you need to do some sort of accumulation, or if your list needs to be gener-
ated in the first place, then xsl:for-each is not of much help. We will do
a sequence of range() examples in the next section, but here is an example of
accumulation.

Find Longest String in a List of Strings

Listing 6-10 is a generic template used in max-range/longestverse0.xsl that has
a list parameter, assumed to be a node-set; it returns a copy of the node that
has the longest string value. It follows the familiar recursive pattern. Note how
recursion eliminates the need for assignment: instead of changing the value of
a variable, we call another instance of the same template with updated values of
$max and $maxlen.

Listing 6-10. Template to Find Node with Longest String Value
<xsl:template name=”longest”>

<xsl:param name=”maxlen” select=”0”/>

<xsl:param name=”max” select=”’’”/>

<xsl:param name=”list” select=”’’”/><!-- list to process -->

<xsl:choose>

<xsl:when test=”not($list)”> <!-- list is empty, return copy of $max -->

<xsl:copy-of select=”$max”/>

</xsl:when>

<xsl:otherwise>

<xsl:variable name=”first” select=”$list[1]”/>

<xsl:variable name=”firstlength” select=”string-length($first)”/>

281

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 281

<xsl:choose>

<xsl:when test=”$maxlen > $firstlength”><!-- max is unchanged -->

<xsl:call-template name=”longest”>

<xsl:with-param name=”max” select=”$max”/>

<xsl:with-param name=”maxlen” select=”$maxlen”/>

<xsl:with-param name=”list” select=”$list[position()!=1]”/>

<!-- recursively process list without first node -->

</xsl:call-template>

</xsl:when>

<xsl:otherwise><!-- new max found -->

<xsl:call-template name=”longest”>

<!-- the new max parameter is $first,

converted from result tree to node-set -->

<xsl:with-param name=”max” select=”xalan:nodeset($first)”/>

<xsl:with-param name=”maxlen” select=”$firstlength”/>

<xsl:with-param name=”list” select=”$list[position()!=1]”/>

</xsl:call-template>

</xsl:otherwise>

</xsl:choose>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

Let’s use this template to find the longest verse in the book of Genesis.
Because we are going to use ot.xml and nt.xml several times in the rest of the
chapter, here are a few lines from their DTD, tstmt.dtd:

<!ELEMENT tstmt (coverpg?,titlepg?,preface?,(bookcoll|suracoll)+)>

...

<!ELEMENT bookcoll (book|sura)+>

<!ELEMENT book (bktlong, bktshort, epigraph?, bksum?, chapter+)>

...

<!ELEMENT bktlong (%plaintext;)*>

<!ELEMENT bktshort (%plaintext;)*>

<!ELEMENT chapter (chtitle, chstitle?, epigraph?, chsum?, (div+|v+))>

...

<!ELEMENT div (divtitle, v+)>

In summary, a “testament” consists of book collections; book collections
consist of books or suras; books have long and short titles followed by a number
of verses (except for one “chapter,” Psalm 119, that consists of div elements that
contain v elements). Given this structure, the highlighted lines in the following

282

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 282

code will call our named template to find the longest verse in the book of
Genesis, whose position in Genesis is less than or equal to a given limit:

<xsl:param name=”limit” select=”100”/>

< xsl:template match=”/”>

<html><head><title>Longest Verse in Genesis</title></head><body>

The longest verse is <p>

<xsl:call-template name=”longest”>

<xsl:with-param name=”list”

select=”(/tstmt/bookcoll/book[contains(bktlong,’GENESIS’)]/chapter/v)

[position() <= $limit]”/>

</xsl:call-template>

</p></body></html>

</xsl:template>

Can this template be used to find the longest verse in the entire ot.xml file? In
a world without friction or memory limitations, the change would be trivial: sim-
ply remove the contains() predicate in the select expression and the $limit
clause. However, on many installations, the simple recursion pattern will not
work because the XSLT processor will run out of memory (specifically, stack
memory).

Stack Memory and Recursion Depth

In most implementations of recursive functions (or templates), the program
memory is divided in two parts: a heap, for overall storage of objects, and
a stack that is used to keep track of scalar values and references to objects. Every
time that there is a new recursive call, new values of parameters are placed on the
stack and removed only after the call is completed. The maximum number of
recursive calls that have to be simultaneously present on the stack is called the
recursion depth. If recursion is too deep, the program will run out of stack mem-
ory (although heap memory may still be available).

As with time efficiency, we estimate the stack memory requirements of a pro-
gram as a function of the size of input. If a recursive call cannot be completed
until the next one is, then the stack will grow in proportion to (as a linear function
of) the total number of recursive calls. We call such examples of recursion linear
recursion. If the template of Listing 6-10 were used to find the longest verse in
ot.xml, the total number of recursive calls is the total number of verses in ot.xml,
which is too many for most PCs to handle.

283

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 283

Linear Recursion vs. Tail Recursion

In processing the template of Listing 6-10, there is really no reason to keep
a recursive call on stack once the next call is made, because the parameters of the
next call carry all the information that is needed to complete the computation. In
particular, they have the length of the longest-verse element found so far,
a pointer to that element, and a pointer to the remaining list to process. A recur-
sive process in which each recursive call carries all the information that is needed
to complete the computation is called tail recursion. A processor that under-
stands tail recursion can process it very efficiently: for the longest-verse problem,
the stack would contain, throughout the computation, only a number (the length
of the longest verse so far) and pointers to two objects on the heap—one to the
remaining list to process and the other to the longest verse. (More precisely, the sec-
ond pointer would be to the node-set that contains a single node that holds the
longest verse found so far.) GNU C compiler has been doing this kind of opti-
mization for many years, and some XSLT processors (most notably Michael Kay’s
Saxon) do it, too; Xalan, MSXML, and the rest will follow eventually. There are
actually two issues here: one is recognition of tail recursion in itself, which limits
stack depth, and the other is recognition of the pattern $list[position()!=1] in
the recursive call. Saxon can recognize that this amounts to following a list
pointer and that it is a job to be done in constant time—but, if the list is stored in
an array, forming this value takes linear time. Thus, in Saxon, we might expect to
apply this stylesheet in linear time, linear heap space, and constant stack depth;
in Xalan, we might expect quadratic time (a linear number of linear operations),
linear heap space at any given moment but quadratic total space (a linear number
of linear-length lists to be formed and thrown away by the pattern just men-
tioned), and linear stack depth. For each stylesheet problem, it’s worthwhile to
think through these four factors: total time, maximum stack depth, maximum
heap space, and total heap space. XSLT implementers will make progress, but the
implementer has no perfect choice to make. In the meantime, if we want to find
the longest verse in the Bible, we have to pursue other options. One is to restruc-
ture the stylesheet so as to reduce recursion depth, and the other is to use an
extension function (Java, JavaScript, or VBScript) to get the job done. We will
investigate both options on the simpler problem of generating a long list before
returning to the problem of finding the maximum-length element.

Generating Large Data Sets

In this section, we show how XSLT can be used to generate large XML data sets of
a fairly flat regular structure, similar to XML-ized database output. We often need
such data sets for testing, but the ways in which they are generated are interest-
ing in their own right. Two useful techniques are shown: breaking a large problem

284

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 284

into smaller chunks (a strategy known as divide and conquer) and using external
functions to optimize performance. In the examples in this section, we also show
how to perform fine-grained time/space measurements using Java method calls.

Generating a Range of Numbers

To make the problem simple and uniform, our data sets are number ranges.
Although simple and specific, the task of generating a range of numbers as nodes
in an XPath tree actually has many applications because it makes an equivalent
of a For loop available in XSLT. If you have a range variable whose value is a node-
set such that each node’s text is (the string representation of) an integer, and
those integers range from 1 to 100,000, then you can evaluate an expression
100,000 times by saying

<xsl:for-each select=”$range”>

<!-- expression to evaluate -->

</xsl:for-each>

Because of its general usefulness, the range() extension function is provided
in Michael Kay’s Saxon but not in other major XSLT processors. We implement
this function in two different ways in XSLT and as an extension function in Java,
and compare the performance of the three implementations.

Linear Recursion vs. Tree Recursion (Binary Split)

A straightforward template to output a range of numbers could adhere to the fol-
lowing algorithm.

To output the range of numbers from lo to hi:

• If hi < lo, output nothing and stop.

• Otherwise, output lo, then output the range of numbers from lo+1 to hi.

The highlighted part of the algorithm is the recursive call. This is another
example of linear recursion: the growth of the stack is a linear function of the size
of the range. In XSLT, the algorithm (used in max-range/linearrange.xsl) comes
out as shown in Listing 6-11.

285

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 285

Listing 6-11. Range by Linear Recursion
<xsl:template name=”range”>

<xsl:param name=”low” select=”1”/>

<xsl:param name=”high” select=”0”/>

<xsl:if test=”$high >= $low”>

<td><xsl:value-of select=”$low”/></td>

<xsl:call-template name=”range”>

<xsl:with-param name=”low” select=”$low + 1”/>

<xsl:with-param name=”high” select=”$high”/>

</xsl:call-template>

</xsl:if>

</xsl:template>

A more complicated algorithm would be to follow the strategy of splitting the
problem in two equal parts. (A good descriptive name for this strategy is binary
split.) As before, the highlighted phrases in the last bullet that follows are recur-
sive calls:

To output the range of numbers from lo to hi:

• If hi > lo, output nothing and stop.

• If hi = lo, output lo and stop.

• Otherwise, find the midpoint between lo and hi, output the range of
numbers from lo to mid-1, output the mid number, and output the range
of numbers from mid+1 to hi.

This algorithm is an example of a general “divide-and-conquer” problem-
solving strategy: to solve a problem, you divide it into smaller subproblems,
solve those, and combine the results. When implemented recursively (as in
Listing 6-12), it results in a pattern called tree recursion because each recursive
call gives rise to two more calls, and all together the recursive calls form a tree. In
Figure 6-3, “R()” stands for a recursive call and “O()” stands for “output a single
number.”

286

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 286

Listing 6-12 shows max-range/binaryrange.xsl, the tree-recursion version of
the range template.

Listing 6-12. Range by Binary Split
<xsl:template name=”range”>

<xsl:param name=”low” select=”1”/>

<xsl:param name=”high” select=”0”/>

<xsl:choose>

<xsl:when test=”$low = $high”><!-- only one number in range; output -->

<td><xsl:value-of select=”$low”/></td>

</xsl:when>

<xsl:when test=”$low > $high” /><!-- no numbers in range; do nothing -->

<xsl:when test=”$low < $high”>

<xsl:variable name=”mid” select=”floor(($low + $high) div 2)”/>

<!-- find the mid point -->

<xsl:call-template name=”range”><!-- first recursive call -->

<xsl:with-param name=”low” select=”$low”/>

<xsl:with-param name=”high” select=”$mid - 1”/>

</xsl:call-template>

<td><xsl:value-of select=”$mid”/></td><!-- output the middle number -->

<xsl:call-template name=”range”><!-- second recursive call -->

<xsl:with-param name=”low” select=”$mid + 1”/>

<xsl:with-param name=”high” select=”$high”/>

</xsl:call-template>

</xsl:when>

</xsl:choose>

</xsl:template>

287

More XSLT: Algorithms and Efficiency

Figure 6-3. A tree of recursive calls for Range(1-7)

031ch06.qxp 5/10/02 2:33 PM Page 287

The advantage of tree recursion over linear recursion is that its recursion
depth is in proportion to the logarithm of the size of the problem. Even though
the total number of recursive calls is the same as in the linear version, at any
given time the stack contains at most the logarithm of the range size, because
recursive calls in the tree are processed in the depth-first order. Here is the order
of execution for R(1,7):

R(1,7)

R(1,3) O(4) R(5-7)

R(1,1) O(2) R(3,3) O4 R(5-7)

O(1) O(2) R(3,3) O(4) R(5-7)

O(1) O(2) O(3) O(4) R(5-7)

...

The maximum number of R’s on the stack is 3, the logarithm of 8. For
R(1,1000), the maximum stack size would be 10, as opposed to 1,000 for the
linear version. Logarithms grow much slower than a linear function does,
so a tree recursive procedure should be able to generate much larger ranges than
a linear-recursive one. Is this indeed true? The next section shows a framework
for testing whether all this fine theory is confirmed in practice.

Comparison

To test, we are going to run both algorithms on ranges of different size, each time
asking these questions:

• Is the processor up to it? Obviously, as the range is increased, at some point
the answer will be “no”: the program will either generate an error message,
die silently, or crash the computer. Will that point be the same for linear
recursion and tree recursion approaches?

• How long does it take to do it? If possible, we would like to measure how
much time passes specifically from the moment that the range template is
called the first time to the moment it returns.

To take the scoop out of it, Table 6-1 shows the results for the binary-split and
linear-recursion versions, as run in Xalan. The smaller numbers are basically
noise: it doesn’t reliably take less time to generate a three-item list than it does for
a one-item, and it doesn’t reliably take more time to generate 100 than 300 by lin-
ear recursion, but overhead depends on the state of the XSLT engine and of other
processes in the machine. As you can see, the linear recursion version stops at
3,000 because it just couldn’t do the 10,000 range in our testing configuration,

288

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 288

whereas binary-split did it quite easily, and in fact went on to produce the
1–100,000 range. The absolute values will of course vary from one machine to
another, but the relative time/space efficiency should remain about the same.

Table 6-1. Time and Space for Range Generation in XSLT

BINARY SPLIT LINEAR RECURSION

LIMIT TIME (MSEC) MEMORY (BYTES) TIME (MSEC) MEMORY (BYTES)

1 270 22728 280 16976

3 220 11472 170 11472

10 220 24824 220 23152

30 280 39672 280 51848

100 330 85504 390 108400

300 220 217360 220 340912

1000 380 657648 330 1483920

3000 600 2261728 720 7318400

10000 1540 8213448

30000 4340 38870016

100000 24000 42921800

Measurement Code

Our measurements for Table 6-1 have been made in an all-Java environment:
both the XSLT processor and the extension functions that measure time and
space usage are written in Java. This means that they run in the same process, the
Java virtual machine. This is good for comparing the relative merits of different
algorithms. However, as we indicated, different processors can be optimized in
different ways; in particular, linear recursion can be made to use space more effi-
ciently.

We measure memory use in addition to timing. The figures we obtain are for
total memory (heap and stack together) because Java does not provide tools to
measure stack memory specifically. However, the code may be useful. Its output
shows that the space requirements for small ranges look rather random: most
of the space consumption is actually overhead. For larger ranges, space con-
sumption is roughly proportional to the size of the range, as might be expected.

289

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 289

Note that these figures show total memory use and that they are rough approxi-
mations.

The complete XSLT stylesheets that run these range templates on
multiple inputs and measure performance are max-range/range.xsl and max-
range/rangebin.xsl, Listing 6-13 through 6-15. Because you may well want to edit
these to run to the limits of your particular implementation, we suggest that you
run them outside of the webapp environment; for Windows environments you’ll
find batch files with matching names (such as max-range/range.bat.) Simply
double-click the batch file to generate the corresponding output file (such as
max-range/rangeout.xsl.) The listings omit explanatory text with HTML markup.

Listing 6-13. Range Measurements 1: Namespaces
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”

xmlns:java=”http://xml.apache.org/xslt/java”

xmlns:xalan=”http://xml.apache.org/xalan”

xmlns:dat=”http://n-topus.com/ns/data”

exclude-result-prefixes=”xalan java dat”>

<xsl:output method=”html”/>

We declare three namespaces, in addition to the XSLT namespace. We refer to
them by their prefixes for convenience. The java namespace is for extension
functions written in Java, as explained in the next section. All the functions
in this example come from our XslUtil class. The xalan namespace is for the
Xalan-specific extension function that converts result-tree fragments to node-
sets. The dat namespace is for XML data that we are going to include in the
stylesheet itself. (Remember that an XSLT stylesheet is an XML document that
can contain any XML data.) The stylesheet will extract data out of the stylesheet
using the document() function with the empty string as argument. (See Listing 6-14.)

Listing 6-14. Range Measurements 2: Limits and the document() Function
<dat:limits>

<!-- limits for linear recursion shown; binary split has more of them -->

<d>1</d><d>3</d><d>10</d> <d>30</d><d>100</d>

<d>300</d><d>1000</d> <d>3000</d>

</dat:limits>

<xsl:template name=”range”>

<!-- The range template of Listing 6-11 or 6-12 goes here -->

</xsl:template>

<xsl:template match=”/” >

<html><head><title>tst</title>XSLT Measurements</head><body>

<!-- output the top row of table -->

<table border=”1” >

<tr><th>Limit</th><th>Time(in msec)</th><th>Space</th><th>Count</th></tr>

<!-- extract limits data from the stylesheet -->

<xsl:variable name=”limitlist” select=”document(‘’)/xsl:stylesheet/dat:limits/*”>

290

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 290

The rest of the stylesheet outputs the table. For each item on the limitlist,
we perform the same actions:

• clear memory

• register start time and the amount of memory in use

• run the range template

• register end time and the amount of memory in use

• convert the generated range from result-tree fragment to node-set and
count it

The value of the current limit, time and space measurements, and the count
fill in the current row of the table, as shown in Listing 6-15.

Listing 6-15. Range Measurements 3: Table Output
<xsl:for-each select=”$limitlist*”><!-- for each limit -->

<xsl:variable name=”limit” select=”.”/>

<xsl:variable name=”dummy-void” select=”java:XslUtil.clearMemory()”/>

<xsl:variable name=”startTime” select=”java:XslUtil.time()”/>

<xsl:variable name=”startMemory” select=”java:XslUtil.usedMemory()”/>

<xsl:variable name=”theRange”>

<!-- construct the current range as value of variable -->

<xsl:call-template name=”range”>

<xsl:with-param name=”high” select=”$limit”/>

</xsl:call-template>

</xsl:variable>

<xsl:variable name=”endTime” select=”java:XslUtil.time()”/>

<xsl:variable name=”endMemory” select=”java:XslUtil.usedMemory()”/>

<tr><td align=”right”><xsl:value-of select=”$limit”/></td>

<td align=”right”><xsl:value-of select=”$endTime - $startTime”/></td>

<td align=”right”><xsl:value-of select=”$endMemory - $startMemory”/></td>

<td align=”right”><xsl:value-of

select=”count(xalan:nodeset($theRange)/*)”/></td>

</tr>

</xsl:for-each>

</table></body></html>

</xsl:template></xsl:stylesheet>

As you can see, extension functions are a powerful tool. We will explain how
they work after presenting the specific Java functions used in this example.

291

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 291

Java System Functions for Time and Memory

The Java-XSLT utilities of this section are one-liners that call Java system functions.
We have collected them into a class of our own for convenience and clarity. The
file is xmlp/WEB-INF/classes/XslUtil.java. If at some point you want to change
and reuse it, you’ll find a make.bat file in the same directory: stop the Web server,
double-click on make.bat, and you’ll see that it compiles the file, puts it into the
standard “jar” distribution format, and copies it into Tomcat’s common/lib direc-
tory. (If you’re not using Tomcat on Windows, you’ll have to edit the make file to
do what you want.) Restart the Web server and run your code. The details of Java
code are completely immaterial for our topic (XSLT efficiency), but, for those who
are familiar with the language, we should mention that it is easiest to run a Java
function from XSLT if it is a public static method of a public class, which is why
all the methods of XslUtils are declared public and static. (See Listing 6-16.)

Listing 6-16. System Functions in XslUtil
public static void clearMemory(){// call the Garbage Collector

System.gc();

}

public static double freeMemory(){ // return the amount of free memory

return (double)Runtime.getRuntime().freeMemory();

}

public static double usedMemory(){// return the amount of memory in use

Runtime runtime = Runtime.getRuntime();

return (double)(runtime.totalMemory() - runtime.freeMemory());

}

public static double time(){ // return current time

return System.currentTimeMillis();

}

Summary of Results

To summarize the findings of this section, binary split and linear recursion take
similar time (both generate the same number of recursive calls, after all), but
binary split uses much less stack memory and can produce much larger data
sets. We have also experimented with a ten-way split algorithm that recursively
splits the problem into ten subproblems (rather than two, as in binary split).
Somewhat to our surprise, its performance was no better than that of the binary
split, and the code (max-range/range10.xsl, included with the book’s code) is
considerably more complicated.

292

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 292

Extension Functions

Extension functions are functions written in a language other than XSLT and
called from within XSLT. The most common languages to use are Java, JavaScript,
and various scripting languages, including VBScript.

XSLT 1.0 provides no specification for how a function call in XSLT is bound to
the appropriate binary object outside it. However, vendor-specific implemen-
tations are fairly consistent with each other, and XSLT 2.0 will definitely build on
them to provide a standard set of conventions as well as bindings for specific lan-
guages. (Java and JavaScript are the prime candidates.) The common theme is
that a binding for external functions is associated with a namespace, and each
function call is an XML element in that namespace. You have seen (in
Listing 6-15) such examples as

<xsl:value-of select=”count(xalan:nodeset($theRange)/*)”/></td>

<xsl:variable name=”endMemory” select=”java:XslUtil.freeMemory()”/>

Currently, the namespace URIs for extension functions are XSLT processor
specific, but, if your language is Java and you map the namespace to the java:
prefix, then simply replacing the namespace will switch your code from Xalan to
Saxon or the Oracle XSLT processor. Of course, if your functions use processor-
specific class libraries (as some of ours do), then more conversion will be needed.

When Are Extension Functions Useful?

The most common uses of extension functions are to get access to system ser-
vices, optimize performance, and get access to an external non-XML data source,
such as a database.

We have seen the first of these in the preceding section. The second one is
shown in this section, and the third will be shown in the next chapter.

Generating a Range Using an Extension Function

A natural question to ask is whether the performance will improve if a large
node-set, such as the number ranges of the preceding section, is generated by an
external function. We have experimented with external functions in Java,
JavaScript, and VBScript.

293

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 293

Range Function in Java

To experiment with a Java extension function, all you need to do is change the
way in which the range is generated in Listing 6-15. Instead of

<xsl:variable name=”theRange”>

<!-- construct the current range as value of variable -->

<xsl:call-template name=”range”>

<xsl:with-param name=”high” select=”$limit”/>

</xsl:call-template>

</xsl:variable>

we now have (in rangejava.xsl)

<xsl:variable name=”theRange” select=”java:XslUtil.range(1,$limit)”/>

The range() method of XslUtil actually returns an object that implements the
DOM NodeList interface. The conversion of DOM NodeList to XPath node-set is
done automatically by Xalan.

To construct a NodeList object, you construct a sequence of children of
a dummy element; in the end, you return that sequence using the
getChildrenNodes() method. In our case, each child node is of type <item> and
itself has a child node of type text that contains the integer value converted to
string. See Listing 6-17.

Listing 6-17. System Functions in XslUtil, Used in Listing 6-14 and 6-15
import org.apache.xpath.axes.*;

import org.apache.xpath.*;

import org.w3c.dom.*;

public class XslUtil {

// a number of XSLT utilities,

// including range(), freeMemory(), clearMemory() and time()

public static Document newDoc() throws Exception {

DocumentBuilderFactory dbf=DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);

dbf.setValidating(false);

return dbf.newDocumentBuilder().newDocument();

}

public static NodeList range(double lo,double hi){

try{

int ilo=(int)lo;

int ihi=(int)hi;

Document doc= newDoc();

294

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 294

Element result = doc.createElement(“result”);

int ilo=(int)lo; int ihi=(int)hi;

for(int i=ilo;i<=ihi;i++){

Node nd=doc.createElement(“item”);

result.appendChild(nd);

nd.appendChild(doc.createTextNode(Integer.toString(i)));

}

return result.getChildNodes();

}catch(Exception ex){ex.printStackTrace(); return null;}

}

...

} // end of XslUtil class

To report the results, we modify Table 6-1 by removing the memory columns
and adding new measurements to produce Table 6-2.

Table 6-2. Time for Range Generation by an Extension Function

LIMIT BINARY SPLIT LINEAR RECURSION JAVA EXTENSION FUNCTION

TIME(MSEC) TIME(MSEC) TIME(MSEC)

1 270 280 390

3 220 170 160

10 220 220 160

30 280 280 160

100 330 390 160

300 220 220 160

1000 380 330 220

3000 600 720 220

10000 1540 280

30000 4340 490

100000 24000

In this table, the extension function is a good deal faster than either of the
pure XSLT solutions, but it may run out of memory (total memory, not stack)
because it uses memory less intelligently than the XSLT processor does. Is this
a safe conclusion? Emphatically not: it depends on the details of your XSLT
processor implementation, and these will change with every upgrade. In fact, this
table has changed drastically as we’ve gone through the book, upgrading our JDK

295

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 295

as well as Tomcat, Xalan, and Xerces: Speed generally rises, but not consistently,
and it is perfectly possible for the binary recursion to win in speed as well as
overall size.

Extension Functions vs. External (Web Application)
Functions

In addition to extension functions, external code written in other languages can
be invoked from within an XSLT stylesheet using the document() function. You
have already seen such usage in some of our earlier examples. Recall that the
document() function takes one argument, a URL, and loads the document speci-
fied by the URL into the XSLT processor. It is perfectly legal to attach a query
string to the URL in the usual way and invoke an application on the server. We
illustrate this usage in rangeasp.xsl that builds a range by invoking a VBScript
function in an ASP page on an IIS server. Its only difference from the Java version
is that instead of

<xsl:variable name=”theRange” select=”java:XslUtil.range(1,$limit)”/>

we now say

<xsl:variable

name=”theRange”

select=”document(concat(‘http://localhost/xml/range.asp?’,

‘lo=1&hi=’,

$limit))/*”/>

The argument of the document() function is the following URL (URL-encoded
and with the expression $limit evaluated):

http://localhost/xmlp/range.asp?lo=1&hi=$limit

The function returns a complete document tree including a document root.
We take its children, of which there is just one, the root of the element tree cre-
ated by range.asp:

<%@ LANGUAGE=”VBSCRIPT”

%><% Option Explicit

%>

<list>

<%

Dim lo,hi

296

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 296

lo = Int(Request.QueryString(“lo”))

hi = Int(Request.QueryString(“hi”))

Do While NOT lo > hi

Response.Write “<d>”

Response.Write lo

lo = lo + 1

Response.Write “</d>”

Loop

%>

</list>

Note that our call on document() that invokes an ASP page with VBScript code
coexists quite peacefully with all of the Java system function calls that measure
performance and memory use. However, the results of those calls may be hard to
interpret, because the entire range creation is done out of (Java) process.

Extension Functions vs. External Web Applications

Extension functions are a more general mechanism. When they are standardized,
they will be even more useful. The advantages of external functions invoked via
document() are that their invocation rules are already stable within any given
invocation tool (ASP, JSP, and so on), and that their code can reside anywhere on
the Internet.

Although limited in scope, external functions are a useful tool for calling
non-XSLT code from within XSLT.

The Longest Verse, Revisited

Now that we have new tools, let’s revisit the problem that we could not solve
using linear recursion: finding the longest verse in the Bible. We present a pure-
XSLT solution using tree recursion and three extension-function solutions using
Java, JavaScript, and VBScript.

Tree Recursion Based on the Document Tree

Instead of dividing the data in half, our tree-recursion solution
(max-range/lvdivconq.xsl) uses the tree structure of the data itself to break the
problem into manageable chunks. Within each chapter, we find the longest verse
by linear recursion, exactly as in Listing 6-10. Each chapter reports its longest ele-
ment to the next level of the document tree (book), and the longest element
among books is the longest element of the entire Bible.

297

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 297

Recursion via xsl:apply-templates Within a Variable

The recursion is performed by three templates that have the same mode attribute,
whose value is lv, for “longest verse”. (See Listing 6-18. If needed, review the
Chapter 5 section “Using Push with the mode Attribute”.) The first template is
the most general: it matches any element node. It calls xsl:apply-templates
within a variable, so the results of template application to the children of the
matched node are collected into that variable. The variable value is then sent to
the longest template, to identify the winner within the current level of processing.

The other two templates of the lv mode are more specific. One matches text
nodes and outputs nothing to prevent default matching and output. The other
serves as the base case of the recursion: it matches chapter nodes and outputs
the longest verse of each chapter, without invoking xsl:apply-templates. The
operation of the program depends on the XSLT conflict-resolution algorithm
that, in case of conflict, selects the more specific template.

Listing 6-18. Recursion down the Document Tree
<xsl:template match=”*” mode=”lv”>

<xsl:variable name=”nextLevel”>

<xsl:apply-templates mode=”lv”/><!-- This is the essential recursion. -->

</xsl:variable>

<xsl:call-template name=”longest”><

<xsl:with-param name=”list” select=”xalan:nodeset($nextLevel)/v”/>

<!--

nodeset($nextLevel) returns a node-set that consists of a single dummy node

whose children are the v (verse) nodes that we want;

nodeset($nextLevel)/v produces the node-set of those verse nodes

-->

</xsl:call-template>

</xsl:template>

<xsl:template match=”chapter” mode=”lv”>

<xsl:variable name=”verses” select=”v”/><!-- no more ‘apply-templates’ -->

<xsl:call-template name=”longest”>

<xsl:with-param name=”list” select=”$verses”/>

</xsl:call-template>

</xsl:template>

<!-- suppress output from default templates -->

<xsl:template match=”text()” mode=”lv”/>

Listing 6-18 assumes that all v nodes are children of chapter nodes. In fact,
ot.xml has one “chapter” (Psalm 119) that consists of div elements that contain
v elements. We leave it as an exercise to incorporate this detail into Listing 6-18
and the remaining programs of the chapter.

298

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 298

Longest Verse by Tree Recursion

The entire program is shown in Listing 6-19. Its root template starts the process
by invoking xsl:apply-templates with mode lv.

Listing 6-19. The Entire lvdivconq.xsl Program
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”

xmlns:xalan=”http://xml.apache.org/xalan”

exclude-result-prefixes=”xalan”>

<xsl:template match=”/”>

<html><head><title>Longest Bible Verse</title></head><body>

The longest verse is <p>

<xsl:apply-templates mode=”lv”/>

<!-- apply to children of root, of which there is one -->

</p></body></html>

</xsl:template>

<xsl:template match=”*” mode=”lv”>

<!-- See Listing 6-18 -->

</xsl:template>

<xsl:template match=”chapter” mode=”lv”>

<!-- See Listing 6-18 -->

</xsl:template>

<xsl:template match=”text()” mode=”lv”/> <!-- as in Listing 6-18 -->

<xsl:template name=”longest”><!-- identical to Listing 6-10 -->

</xsl:template>

</xsl:stylesheet>

This program successfully finds the longest verse. The idea of “recursive
descent” into the document tree is applicable to any problem that looks for
a summary value computed from a regular XML structure.

Longest Verse Using Extension Elements and
Functions

In this section, we present several longest-verse programs that use external
functions. Each solution in this section is characterized not just by the language
in which it is written but also by the software configuration in which it can run.

299

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 299

Because the programs run as Web applications, the configuration includes a
specific server. We have

• lvvbs.xsl, a stylesheet that calls a VBScript function within an ASP appli-
cation that uses MSXML 3

• lvjs.xsl, a stylesheet that calls a JavaScript function within a JSP application
that uses Xalan

• several stylesheets that call a Java function within a JSP application on
a Tomcat server that uses Xalan

The reason that we have more than one Java example is that Java provides
more options: whereas the JavaScript and VBScript functions can return only
a scalar value (a string or a number), Java functions can in addition return a refer-
ence to the actual node in the tree, so you can immediately use the value
returned by the function in an XPath expression.

Another difference between Java solutions and solutions written in scripting
languages is that scripting language code can be placed directly within the
stylesheet, as the content of an extension element. An extension element’s name
belongs to a namespace that has a special meaning to the processor; frequently,
extension elements contain executable content. So, for instance, an XSLT proces-
sor from XSLTSmiths company (www.xslt-smiths.com) can have the following
feature: if an XSLT program maps a certain prefix to the urn:xslt-smith-com-js
namespace URI, the processor will assume that all elements with that prefix con-
tain JavaScript code and process it accordingly. The JavaScript code will, of
course, have access to all elements both within the XML data and the XSLT itself.
You will see an example of an extension element in a VBScript program shortly.

Just as with extension functions, extension elements will be standardized in
XSLT 2.0.

VBScript Extension Function with MSXML 3

A VBScript function to locate the longest verse is defined, in a straightforward
way, within the msxsl:script extension element. In this case, the file is max-
range/longestversevbs.xsl. The element’s attributes declare the language in
which the code is written and the prefix that will signal the extension function.
(See Listing 6-20.)

300

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 300

Listing 6-20. VBScript Extension Function Defined in msxml:script
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”

xmlns:msxsl=”urn:schemas-microsoft-com:xslt”

exclude-result-prefixes=”ms msxsl”>

<msxsl:script language=”VBScript” implements-prefix=”ms” >

Function maxVerseNumber(vList)

Dim i,listlen,longestlen,longestloc, item

listlen = vList.length

longestlen = 0

longestloc = -1

For i = 0 To listlen - 1

itemStr = vList.item(i).text

itemlen = len(itemStr)

If(itemlen > longestlen) Then

longestlen = itemlen

longestloc = 1 + i

End If

Next

maxVerseNumber = longestloc

End Function

</msxsl:script>

Once the verse is found within the node-set of all verses, we can find its
book, chapter, and verse number within the chapter using appropriate path
expressions, as shown in Listing 6-21.

Listing 6-21. The Root Template Calling a VBScript Extension Function
<xsl:template match=”/”>

<html><head><title>Longest Bible Verse</title></head><body>

<xsl:variable name=”v” select=”/tstmt/bookcoll/book/chapter/v”/>

<xsl:variable name=”lvn” select=”ms:maxVerseNumber($v)”/>

<xsl:variable name=”lvv” select=”$v[$lvn]”/>

The Longest verse is number <xsl:value-of select=”$lvn”/>, of

length <xsl:value-of select=”string-length($lvv)”/>,

which is verse <xsl:value-of select=”1+count($lvv/preceding-sibling::*)”/>

in chapter <xsl:value-of select=”$lvv/../chtitle”/>

of the book of <xsl:value-of select=”$lvv/../../bktshort”/>.

</body></html>

</xsl:template></xsl:stylesheet>

301

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 301

JavaScript Extension Element with Xalan

In the case of JavaScript code run by Xalan, there is an additional level of soft-
ware, Bean Scripting Framework (BSF), that is used to run scripting code within
Java applications (such as Xalan). Otherwise, the structure of the program is quite
similar to the VBScript solution. The root template is identical except for the
highlighted line that invokes the external function, which now reads

<xsl:variable name=”lvn” select=”jstraverse:maxVerseNumber($v)”/>

The function itself is defined within an extension element that is within
another extension element: the outer element says “This is an extension compo-
nent,” and the inner element says “This will be a JavaScript function.” They are all
packaged into separate namespaces that are declared on the root element. (See
Listing 6-22.)

Another feature of the JavaScript solution is that the NodeList provided to the
function is a DOM NodeList object, with the getLength() and item() methods.

Listing 6-22. JavaScript Extension Function in Xalan
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”

xmlns:lxslt=”http://xml.apache.org/xslt”

xmlns:jstraverse=”JavascriptTraversal”

extension-element-prefixes=”jstraverse”

xmlns:xalan=”http://xml.apache.org/xalan”

exclude-result-prefixes=”xalan jstraverse lxslt”>

<lxslt:component prefix=”jstraverse” elements=”” functions=”maxVerseNumber”>

<lxslt:script lang=”javascript”>

function maxVerseNumber (vList) {

var listlen= vList.getLength();

var longestlen=0;

var longestloc=-1;

for(var i=0;i < listlen;i++){

var item= vList.item(i);

var itemStr= “”+item.getFirstChild().getNodeValue();

var itemlen=itemStr.length;

if(itemlen > longestlen){

longestlen=itemlen; longestloc=1+i;

}

}

return longestloc;

}

</lxslt:script>

</lxslt:component>

302

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 302

In summary, to define and use a JavaScript extension function, you have
to define the appropriate namespaces (as shown in the highlighted lines of
Listing 6-22) and write your JavaScript code inside a script element
that is, in turn, contained within a component element, both in the
http://xml.apache.org/xslt namespace. For more details on how
non-Java extension functions are defined and used with Xalan, see
http://xml.apache.org/xalan-j/extensions.html. This file is also part of the
Xalan distribution, within the doc subdirectory of the root. Also in the distri-
bution are a number of samples, including samples of extension functions. To
run our max-range/longestverseJS.xsl, you must include the bsf.jar file as script-
ing-language framework and the js.jar specific JavaScript language; to use other
scripting languages, you would use their implementation jars for the BSF.

Because Xalan is itself a Java program, using Java extension functions is eas-
ier than using those written in other languages. You have seen Java extension
functions in efficiency-measurement examples earlier in the chapter, and the
next section provides more examples.

Java Extension Functions

In this section, we present three Java extension functions. All three require the
same namespaces to be declared, and the corresponding prefixes excluded from
output:

xmlns:java=”http://xml.apache.org/xslt/java”

xmlns:xalan=”http://xml.apache.org/xalan”

exclude-result-prefixes=”xalan java”

All three functions are used in the same root template that you saw in
Listing 6-21. They differ in how they are invoked and what they return. They also
differ in the extent to which they depend on Xalan-specific APIs. In the remain-
der of this section, we show the function call and the code for each of the three
functions.

longestLoc()

The first function is an exact analog of the scripting functions of the preceding
sections: it takes a NodeList and returns the position of the maximal length
node in it.

<xsl:variable name=”v” select=”/tstmt/bookcoll/book/chapter/v”/>

<xsl:variable name=”lvn” select=”java:XslUtil.longestLoc($v)”/>

303

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 303

The code of this function uses only standard DOM interfaces, as indicated by
comments. (See Listing 6-23.)

Listing 6-23. Java Extension Function, Returns a Scalar, Pure DOM
public static Double longestLoc (NodeList list) {

try{

int listlen=list.getLength(); // DOM

int longestlen=0;

int longestloc=-1;

for(int i=0;i < listlen;i++){

Node item=list.item(i); // DOM

String itemStr=item.getFirstChild().getNodeValue(); // DOM

int itemlen=itemStr.length();

if(itemlen > longestlen){

longestlen=itemlen; longestloc=1+i;

}

}

return new Double(longestloc);

}catch(Exception ex){ex.printStackTrace();return new Double(1);}

}

The communication between the XSLT program and this Java function takes
place in the following two lines of code from max-range/longestversejava.xsl. The
first line constructs the variable to send as an argument to the Java function.
The second line returns the result computed by the Java function to XSLT and
makes it the value of an XSLT variable.

<xsl:variable name=”v” select=”/tstmt/bookcoll/book/chapter/v”/>

<xsl:variable name=”lvn” select=”java:XslUtil.longestLoc($v)”/>

maxValLoc()

The next function also returns a double, but it takes two arguments: a node-set
and an XPath expression to be applied to each node of the node-set. We return
the position of the node that has the maximum value of that expression. To
find the position of the longest verse, we use the appropriate expression:

<xsl:variable name=”v” select=”/tstmt/bookcoll/book/chapter/v”/>

<xsl:variable name=”lvn” select=”java:XslUtil.maxValLoc($v,’string-length(.)’)”/>

304

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 304

This function is more flexible than the preceding one; for instance, to find
the shortest verse, we would simply change the second argument of the
function call:

<xsl:variable name=”lvn”

select=”java:XslUtil.maxValLoc($v,’0 - string-length(.)’)”/>

However, this flexibility comes at a price: the function uses Xalan-specific
XPath APIs, and these APIs are changing. In Listing 6-24, you see that the
XPathAPI.eval static method is used to apply the XPath string to each successive
node, and we take the numeric value of the “eval” result. The only unintuitive
part of the method is the highlighted line labeled “Xalan 2.2.0 workaround”,
which actually uses almost all of the time spent in this evaluation. Xalan’s inter-
nal representation of nodes has changed (for performance reasons) in ways that
have left the XPathAPI behind. Our workaround is to create a document (with the
“newDoc” method from Listing 6-17) and import each node (really a node
“proxy”) into that new document—in effect making a copy of it to which we
apply the XPath string. This works, but it’s much slower than it should be;
we expect that, by the time you read this book, that line will be unnecessary.

Listing 6-24. Java Extension Function, Returns a Scalar, Uses org.apache.xpath
public static Double maxValLoc (NodeList list,String xPath) {

try{

int listlen=list.getLength(); // DOM

double maxVal=Double.NEGATIVE_INFINITY;

int maxLoc=-1;

Document doc = newDoc(); // see Listing 6-17

for(int i=0;i < listlen;i++){

Node item=list.item(i); // DOM

try{

item = doc.importNode(item,true); // Xalan 2.2.0 workaround.

double itemVal=XPathAPI.eval(item,xPath).num(); // org.apache.xpath

if(itemVal > maxVal){

maxVal=itemVal; maxLoc=1+i;

}

}catch(Exception ex){}

}

return new Double(maxLoc);

}catch(Exception ex){ex.printStackTrace();return new Double(1);}

}

The remaining max() function (presented in the next section) returns a node
rather than a scalar value. It is thus even more flexible: the returned value can be

305

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 305

plugged directly into an XPath expression. It is also heavily dependent on a spe-
cific XSLT processor and a specific programming language. If your application
has to work on different processors, then your extension functions should return
only scalar values (strings, numbers, and Booleans). On the other hand, some-
thing like our max() function, similar to Michael Kay’s max() built into Saxon, will
probably become part of the standard extension function library.

max()

This function takes the same parameters as maxValLoc(), a node-set and an
XPath expression:

<xsl:variable name=”v” select=”/tstmt/bookcoll/book/chapter/v”/>

<xsl:variable name=”lvv” select=”java:XslUtil.max($v,’string-length(.)’)”/>

We use the max() function to illustrate one more Xalan-specific feature:
a node-set can be passed as a parameter to a Xalan extension function as an
(unquoted) XPath expression. In other words, max() can be called from XSLT code
without declaring an auxiliary variable that holds the node-set:

<xsl:variable name=”lvv”

select=”java:XslUtil.max(/tstmt/bookcoll/book/chapter/v,’string-length(.)’)”/>

In either case, the returned value is the longest verse itself, not its position in
the node-set, and we no longer have to say

<xsl:variable name=”lvv” select=”$v[$lvn]”/>

With max(), we obtain lvv directly. Otherwise, the code (still within
XslUtil.java and shown in Listing 6-25) is very similar to Listing 6-24.

Listing 6-25. max() Returns a Node
public static Node max (NodeList list,String xPath) {

Node result=null;

try{

Document doc=newDoc(); // Listing 6-17

int listlen=list.getLength();

double maxVal=Double.NEGATIVE_INFINITY;

for(int i=0;i < listlen;i++){

Node item=list.item(i);

try{

item = doc.importNode(item,true); // Xalan 2.2.0 workaround

306

Chapter 6

031ch06.qxp 5/10/02 2:33 PM Page 306

double itemVal=XPathAPI.eval(item,xPath).num();

if(itemVal > maxVal){

maxVal=itemVal; result=item;

}

}catch(Exception ex){}

}

return result;

}catch(Exception ex){ex.printStackTrace();return result;}

}

This concludes our discussion of extension functions, and the entire
Chapter 6.

Conclusion

The efficient use of resources, especially processing time and stack memory, is an
important consideration in XSLT programming. The techniques of this chapter
can sometimes make the difference between being able or unable to process
a large set of data within specific time and space constraints. However, XSLT is
simply a wrong tool for many processing tasks, and these include tasks that are
too big, that require extensive processing of document text content, or that pro-
duce a lot of new structure on output (rather than rearranging existing structures
of the input document). On such tasks, programmatic API for working with XML
data in general-purpose programming languages may be a better tool. There are
two sets of such APIs—SAX and DOM—and they are the subject of the next
chapter.

307

More XSLT: Algorithms and Efficiency

031ch06.qxp 5/10/02 2:33 PM Page 307

031ch06.qxp 5/10/02 2:33 PM Page 308

CHAPTER 7

XML Repository

THIS CHAPTER IS ORGANIZED around a larger application that brings together several
topics from earlier chapters and introduces some new ones. The application is
a repository of educational materials for a commonly taught college course, to be
developed and used cooperatively by educators around the world. The XML data
in the repository is actually metadata: citations of books and XML documents,
and annotations of those citations and other annotations.

At the heart of the application is what we will call an XML database: a small
set of potentially large collections of small, similarly structured XML documents.
An XML database is analogous to a relational database, which is a small set of
tables, each of which is a potentially large collection of small, similarly structured
records. We are replacing the traditional flat database row with an XML docu-
ment, which has a more flexible hierarchical structure. Its greater flexibility
creates disadvantages that we’re learning to cope with and advantages that we’re
learning to use. In particular, XPath can be used as a query language on XML
records.

The three common ways to implement an XML database are as follows:

• Store XML data in the file system as a single XML document or several docu-
ments (one per “table”) or a great number of documents (one per record). We
have done an implementation in which the entire database is persisted as
a single XML file; when parsed, each “table” is stored as a vector of DOM
trees, each tree corresponding to a record. The code is available with the
book’s distribution.

• Store XML data in a relational database. This is the approach that we will
present in detail in this chapter.

• Store XML in a native XML database. A native XML database stores name-
spaces, elements, attributes, and document order in internal data
structures optimized for XML data retrieval.

We refer to these three approaches as vdb, rdb, and xdb, respectively.
The first approach, vdb, is the simplest, and it works well for small reposito-

ries. What counts as “small” depends, of course, on the amount of available

309

031ch07.qxp 5/10/02 2:31 PM Page 309

memory, real or virtual: figure that the DOM trees will require several times as
many megabytes as the file itself.

The second approach, rdb, incurs a performance penalty for data transfor-
mations between relational and XML formats, but it uses mature technology that
supports complex queries and database operations. Within this approach, we will
learn how to store XML data in a relational database, how to access a relational
database from within an application, and how to convert query results to XML.

The third approach, xdb, may be the best long-term solution, but the tech-
nology is still quite new and changing fast, and so we didn’t feel it was
appropriate to include it in the book at this stage.

In terms of new material, the chapter covers these topics:

• XML languages for representation of metadata: RDF and Dublin Core

• organization of annotations using XLink

• storing XML data in a relational database, combining SQL and XPath
queries

The last item is properly the subject of the new standard, XQuery 1.0: An XML
Query Language, currently being developed by W3C (www.w3c.org/TR/xquery/).
However, the techniques we present are valuable in other contexts as well.

In outline, this chapter will proceed as follows:

• the structure of XML data, RDF, and Dublin Core

• the structure of the database

• the overall structure of the application

• general issues in database access and specifics of JDBC

• query implementations and XPath filtering

The Structure of XML Data

XML data in our repository is of four kinds: citations, annotations, submissions,
and subject keywords. Citations are references to materials that are used in
a course, both text and multimedia, hard copy and online. In this simplified
version of the project, we work only with text sources and we assume that they
are either entire books or online XML documents; we ignore journal articles,

310

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 310

individual chapters in edited volumes, and a host of other variations that would
take us too far into library science.

Annotations, broadly understood, include the chapter or page numbers to
specify a reading assignment, the topics covered in such an assignment, the
approximate class time required to work through an assignment, the description
of a classroom activity, essay and exam questions, and so on. Annotations can be
linked to sources, other annotations, or both.

Submissions data contains the identity of the submitter and the date of sub-
mission. It is maintained both for citations and annotations. Subject keywords
are simply a list of text strings separated by semicolons.

Note that all of this is metadata (that is, data about data). We have an aca-
demic discipline (such as anthropology) that has accumulated a good deal of
data on its subject matter. Our citations are data about resources in which the
field-specific data can be found. Our annotations are data about how that field-
specific data can be taught, and our submissions are actually meta-metadata:
who submitted a citation or annotation and when. Our topics are also
meta-metadata: a controlled vocabulary of search categories for our repository
of metadata.

Metadata is an important subject within XML. Metadata for XML data itself is
essential both for the Semantic Web project and for the much-discussed Web ser-
vices. Both of them aim at creating information structures that can be processed
by machines as part of a purposeful action. Metadata standards are essential for
that goal. In the case of Web services, you need a service description that will
help you discover the service in the first place, in a repository that stores infor-
mation about services. Once the service is discovered, you need another
description or two to learn its specific functionality and how it is invoked. In the
case of Semantic Web, you need a standard way of describing Web resources,
groups of such resources, and relationships among resources. The standard
metadata framework for this purpose is called RDF (Resource Description
Framework). This is a major focus of W3C activity that has already resulted in
several recommendations, with others in various stages of development.

RDF, Briefly

RDF is a big subject, but its basics are simple:

• The world consists of resources, each specified by a URI.

• Resources have properties, and each property has a value.

• Property values can be either resources or literal values (literals).

311

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 311

• An RDF document contains resource descriptions.

• Resource descriptions consist of statements that assign values to resource
properties.

RDF statements are sometimes described as consisting of a subject (refer-
ence to the resource), a predicate (reference to the property), and the object
(reference to the value). This terminology can be a bit confusing because it does
not quite match typical English syntax. If we say “Trisha is the creator of the Web
site http://cs.colgate.edu,” “Trisha” is the subject of the English sentence but
the object of an RDF description in which the resource is the Web site, the prop-
erty is creator, and Trisha is the value of the property. The important thing for us
is that RDF statements are resource-property-value triples.

RDF descriptions can be written in several different notations. The XML
notation specified in the W3C recommendation RDF Model and Syntax is just
one of them. (See http://www.w3.org/TR/REC-rdf-syntax/.) In that notation, the
statement of the preceding paragraph will come out as

<?xml version=”1.0”?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>

<rdf:Description rdf:about=”http://cs.colgate.edu”>

<author>Trisha</author>

</rdf:Description>

</rdf:RDF>

Here, “author” is a property name that is not regulated by the RDF specifi-
cation, whose only concern is the overall structure of description records. This
structure is designed so that you can easily group together multiple statements
about the same resource. For instance, if we wanted to add that Trisha worked
together with Jonathan, and they did the work in 2001, we would simply add
more children to the same rdf:Description element, as shown in Listing 7-1.

Listing 7-1. Example of RDF/XML
<?xml version=”1.0”?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”>

<rdf:Description rdf:about=”http://cs.colgate.edu”>

<author>Trisha</author>

<author>Jonathan</author>

<year>2001</year>

</rdf:Description>

</rdf:RDF>

312

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 312

The namespace for the XML syntax of RDF descriptions defines a controlled
vocabulary of element names that contains RDF (the root element) and
Description. It does not define a controlled vocabulary of property names
because RDF is intended to be a general framework that applies to many differ-
ent subject domains, both on the Web and in the “real world.” A vocabulary of
properties that’s appropriate for Web pages would not work well for bank
accounts or online businesses. However, it does have significant overlaps with
the vocabulary that’s appropriate for describing books, and the librarians of the
world were quick to understand that and to take the initiative in proposing
a standard for such a vocabulary.

Dublin Core

As you may know, the world epicenter of online library science happens to be in
Dublin, Ohio, at the headquarters of OCLC. The “O” in OCLC originally stood for
Ohio, but, as the consortium grew to become national and then international in
scope, its name mutated into Online Computer Library Center. Long before the
Web, OCLC positioned itself as the leading authority on digital online catalogs
and databases of bibliographic resources. When the Web developed into a huge
library of online resources, OCLC was the first to propose a core descriptive
vocabulary for Web pages. Because it resulted from a conference held in Dublin,
Ohio, it was named the Dublin Core Metadata Element Set, or Dublin Core for
short. Dublin Core predates XML: its first intended use (described in RFC 2731
Encoding Dublin Core Metadata in HTML, December 1999) was in META ele-
ments of HTML pages. Here is an example from the RFC:

<meta name = “DC.Title” content = “The Communist Manifesto”>

<meta name = “DC.Creator” content = “Marx, K.”>

<meta name = “DC.Creator” content = “Engels, F.”>

When XML came along, and especially after the first RDF recommendation,
Dublin Core developed an independent existence as dublincore.org. Its mem-
bership comes from both W3C (especially its RDF group) and OCLC. It is moving
rapidly to develop XML standards for digital library catalogs that would contain
references both to traditional and Web resources. Just as W3C, the Dublin Core
group is not a standards body and calls its documents “recommendations.” It has
adopted a procedure that is patterned after W3C’s but with fewer intermediate
stages, probably because Dublin Core recommendations are more modest in
scope. Completed recommendations include the Dublin Core Metadata Element
Set of fifteen standard elements (dcmes version 1.1), and a specification on how
they are to be used within RDF descriptions
(http://dublincore.org/documents/2001/09/20/dcmes-xml/, September 20,

313

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 313

2001). In the controlled vocabulary of dcmes-xml, our Listing 7-1 would come
out as shown in Listing 7-2.

Listing 7-2. Example of Dublin Core RDF/XML
<?xml version=”1.0”?>

<rdf:RDF xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:dc=”http://purl.org/dc/elements/1.1/”

>

<rdf:Description rdf:about=”http://cs.colgate.edu”>

<dc:creator>Trisha</dc:creator>

<dc:creator>Jonathan</dc:creator>

<dc:date>2001</dc:date>

</rdf:Description>

</rdf:RDF>

DCMES DTD

The Dublin Core Metadata Element Set (DCMES) specification comes with a DTD
and an XML schema. We will not go through them in detail, but we will use
a DTD excerpt to introduce all fifteen elements and the overall structure. All ele-
ments are collected in an entity:

<!ENTITY % dcmes “dc:title | dc:creator | dc:subject | dc:description |

dc:publisher | dc:contributor | dc:date | dc:type | dc:format |

dc:identifier | dc:source | dc:language |

dc:relation | dc:coverage | dc:rights” >

The entity is used to define the content model of rdf:Description. The defi-
nition says that all DC elements are optional and repeatable:

<!-- The resource description container element -->

<!ELEMENT rdf:Description (%dcmes;)* >

The rest of the DTD defines the fifteen elements. Each element is defined as
PCDATA and has an optional xml:lang attribute. For example:

<!-- An entity responsible for making contributions

to the content of the resource. -->

<!ELEMENT dc:contributor (#PCDATA)>

<!ATTLIST dc:contributor xml:lang CDATA #IMPLIED>

314

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 314

Some elements have an attribute that is, semantically, a resource:

<!-- An unambiguous reference to the resource within a given context. -->

<!ELEMENT dc:identifier (#PCDATA)>

<!ATTLIST dc:identifier xml:lang CDATA #IMPLIED>

<!ATTLIST dc:identifier rdf:resource CDATA #IMPLIED>

The identifier element can specify what it identifies as its rdf:resource attri-
bute, but frequently it serves as an identifier for whatever is described by its
parent rdf:Description. In our citation elements, we use it to provide traditional
external identifiers, such as ISBNs, but we also use an identifier element to pro-
vide a system-generated unique identifier for each citation. This is an important
structural feature of the overall application design: each citation, annotation, and
submission element in the XML database has a unique system-generated identi-
fier that is the first child of the element’s record. We will return to this feature as
we discuss the structure of the application.

Citation Elements

Our citation elements follow the dcmes DTD. Listing 7-3 provides an example.

Listing 7-3. Example of Citation
<rdf:Description>

<dc:identifier>C0</dc:identifier>

<dc:identifier>ISBN 0333776267</dc:identifier>

<dc:title>Internet Ethics</dc:title>

<dc:creator>Duncan Langford</dc:creator>

<dc:format>Book</dc:format>

<dc:publisher>ILRT, University of Bristol</dc:publisher>

<dc:date>2000-06-06</dc:date>

</rdf:Description>

As discussed previously, every citation element has at least two identifier
children. The first of them is a system-generated string that consists of the letter
“C” (for citations) followed by a unique integer. The rest of the record is standard
book metadata. The date is in the YYYY-MM-DD format, in conformance with the
XML Schema Part 2 specification.

315

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 315

Annotation Elements

Our annotations use XLink structures to relate annotations to what they anno-
tate. XLink and RDF are in competition here: both propose vocabularies for
describing graph structures. However, when the emphasis is on multiple links,
the XLink vocabulary seems better suited for the task. It would also be possible to
describe the annotations using RDF conventions, but the result would be much
more verbose. Besides, we have already developed some expertise in XLink and
a fair amount of code, so it makes sense to reuse them.

Each individual annotation is represented by an ann element. Just as with
citations, the first child of each ann contains a unique ID that consists of the letter
“A” followed by a unique integer. Because an ann is an extended link element, it
has locator and arc children elements (that is, elements that have the xlink:type
attribute equal to “locator” or “arc”). We use them in application-specific ways to
support query processing, as explained after the example shown in Listing 7-4.

Listing 7-4. Example of Annotation
<ann xlink:type=”extended”>

<ident>A22</ident>

<elt xlink:type=”locator” xlink:href=”A22” xlink:label=”this”/>

<elt xlink:type=”locator” xlink:href=”C4” xlink:label=”Creole”>

<p>The title of the book is Afro-Creole in the Caribbean</p>

</elt>

<elt xlink:type=”locator” xlink:href=”C5” xlink:label=”Faces”>

<p>Faces of the Caribbean</p>

</elt>

<elt xlink:type=”locator” xlink:href=”C8” xlink:label=”Lit”>

<p>Anthology of Caribbean literature</p>

</elt>

<elt xlink:type=”arc” xlink:from=”this” xlink:to=”Creole”>

<p>Arc elements can contain XHTML descriptions also.</p>

</elt>

<elt xlink:type=”arc” xlink:from=”Faces” xlink:to=”Creole”>

<p>There are interesting parallels between these two books.</p>

</elt>

</ann>

Several features of this element require an explanation. We provide them in
the order of their appearance in the element.

316

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 316

The Content Model, Locator Elements, and href Attributes

The content model of ann is

<!ELEMENT ann (ident,elt*)>

where each elt is either a locator or an arc. Our locators locate resource records
rather than resources themselves. The reason is that many of our resources are
offline books and cannot be “located” by a URI. What this means is that, in our
system, a locator’s href attribute is a system-internal unique ID that locates
a record, both within XML and within a relational database. An ID consists
of a prefix (C, A, SC, SA) followed by an integer. Because the ID occupies a specific
position within each element, it is easy to locate an element by its ID using
XPath. The integer part of an ID also serves as the primary key of the record in the
database, so it is easy to locate the record by its ID in the database also.

Descriptive Content

Both locator elements and arc elements can contain arbitrary XHTML to provide
a description of the locator or the arc, as in this excerpt:

<elt xlink:type=”locator” xlink:href=”C4” xlink:label=”Creole”>

<p>The book, whose complete title is Afro-Creole in the Caribbean</p>

</elt>

Locator Labels

Most locator labels are constructed from book titles, but we also introduce
a special “this” label to refer to the current annotation. This allows us to treat all
annotations uniformly as extended links, which simplifies both XSLT and
JSP/ASP code.

Schematically, instead of a simple link with an href attribute

<ann xlink:type=”simple” href=”someUri” />

we create an extended link that is processed in the same way as other extended
links:

<ann xlink:type=”extended”>

<ident>A22</ident>

<elt xlink:href=”A22” xlink:label=”this” xlink:type=”locator”/>

<elt xlink:href=”someUri” xlink:label=”someLabel” xlink:type=”locator”>

<elt xlink:from=”this” xlink:to=”someLabel” xlink:type=”arc”>
317

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 317

In addition, the “this” label greatly simplifies a recursive transitive-closure
search for all resources (citations and annotations) that are linked to a given
resource.

Submit Elements

Submission records, as we said, are meta-metadata: they record the date
and authorship of a citation or annotation. RDF has heavy machinery for
meta-metadata: there is a standard way of making a resource out of a statement.
Because this operation makes a piece of description into a thing that we can talk
about, logicians and RDF practitioners call it reification, which is Latin for “mak-
ing into a thing.” Once a description is reified, it can be treated as any other
resource that has properties.

We have decided not to follow that route because it would take us too deeply
into RDF. Instead, we use a minimal structure adequate for our purposes, as
shown in Listing 7-5.

Listing 7-5. Example of Submission Record
<submit>

<ident>SA22</ident>

<author>profProf</author>

<date>2001-10-12 15:22:45</date>

</submit>

A submission record is a submit element with three children. The first child,
as with citations and annotations, is a unique ID. The ID starts with the letter “S”
followed by the ID of the corresponding citation or annotation. The remaining
two children of a submission element contain information about the identity of
the submitter and the date of the submission.

Some submission records have an additional fourth child to indicate that the
corresponding resource has been committed. Recall that this application is
designed for a team of cooperating adults who contribute educational materials
to a shared database. Only members of the team have access to the database. All
members of the team can view and add materials, but only a small subset of
them, called committers, can commit the material to the tested and officially
sanctioned version. We thus have two groups of users: developers and commit-
ters. (The terms are those used by most open-source software projects. See, for
example, http://www.apache.org.)

Listing 7-6 provides an example of a committed record.

318

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 318

Listing 7-6. Example of Committed Record
<submit>

<ident>SC1</ident>

<author>profB</author>

<date>2001-10-17 14:54:31</date>

<committed by=”admin” date=”2001-10-22 14:55:18”/>

</submit>

Topics

Topics are keywords and phrases that are stored as a semicolon-delimited list of
items within an attribute value.

The Structure of the Database

Now that we understand the structure of our XML data, we have to decide how to
store it in a relational database. The first decision is easy: for each of our three
kinds of structured data (citations, annotations, and submission records), we will
have three tables, with each record in them corresponding to an XML element.
Note that each table will have a primary key, and all joins will be on primary keys.
This guarantees efficiency because virtually all DBMS build indexes on primary
keys, and joins on primary keys take constant time.

The next question is how to store an element. One can take either of two
extreme approaches. At one extreme, an XML document is stored in its serialized
form in a single text field. At the other extreme, each descendant of the element is
stored as a separate field. However, there are any number of compromise
solutions, in which some descendants (those that are likely to be used in queries)
are unrolled into separate fields while the rest (or perhaps the entire element) are
stored in the serialized form.

In our database, we will completely unroll submission records because they
have a flat structure with a small and fixed number of children, but adopt a com-
promise solution for citations and annotations: some of the descendants will be
stored in separate fields, but there will also be a field to contain the entire serial-
ized element. This will make it possible to search citations and annotations by,
for example, dc:creator and further filter the retrieved records by an XPath con-
dition. (See the later section on refset operations.)

Another common problem is how to store descendants that can be repeated
any number of times. A common solution, adopted here, is to store their contents
in a delimited text string and break that string into individual components as
needed. In our database, the delimiter is the end-of-line marker. The same delim-
iter is used in the user interface: an entry field for, say, authors, is a text area, and

319

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 319

Search actions operate on a collection of references to objects in the data-
base (“refset” for short). The actions are add, delete, clear, and display. (See
Figure 7-1.) If the action is “add,” then the XML data store is searched for match-
ing records, and they are added to the refset; if the action is “delete,” the current
refset is searched for matching records, and they are removed from the refset.
The “clear” action empties the refset, and the “display” action (the default) shows

the user is instructed to enter each author (if there’s more than one) on a separate
line. Eventually, the end-of-lines entered by the user end up in the database field.

In summary, the database (xmlp.mdb) consists of four tables, corresponding
to the main divisions in the data: rdbCitations, rdbAnnotations, rdbSubmissions,
and rdbTopics.

The Structure of the Application

The application consists of the following major components:

• user interface: Web pages (JSPs) with forms and XSLTs that go with them

• XML repository and persistent store

• query result set modifiable by follow-up queries (We call it reference set,
abbreviated as refset.)

Supported Actions

The application supports two kinds of actions that broadly correspond to
SELECT and UPDATE queries of the relational database. We call them search
actions and update actions. Some actions are available to all users, and others are
available only to a special category of users (the committers).

320

Chapter 7

NOTE In this simplified version of the application, we distinguish only
two categories of participants: users and committers. In the production
version, we distinguish three categories: users, developers, and committers.
Users have read-only access to committed material and do not need to log
in. Developers are like users, but they can also submit new materials and
have write access to materials of their own. Committers are like develop-
ers, but they can also change the status of submitted materials to
committed after an editorial process and the developer’s consent. The
extra complications involved are of little value to the reader of this book.

031ch07.qxp 5/10/02 2:31 PM Page 320

its contents in a text area. None of the refset actions have any effect on the con-
tents of the database.

Within update actions, all users can add a citation or an annotation to the
database. For committers, there is also a form to change the status of a record to
“committed,” and another form to add a new subject keyword or phrase. Update
actions are summarized in Figure 7-2.

Application Components and Files

Code files for the application fall into four groups: top-level files, action files,
user-interface files, and included files.

321

XML Repository

Figure 7-1. Search actions: client, server, database, and refset

Figure 7-2. Update actions: client, server, and database

031ch07.qxp 5/10/02 2:31 PM Page 321

Top-level files are index.jsp (for login), logout.jsp, error.jsp, and
rdbFrames.jsp.

Action files and user-interface files are as follows:

• rdbCtl.jsp is the initial source for the control frame. It contains code for
reloading the data. Like all code files that use the database, it uses (by
inclusion) getConn.jsp.

• rdbRefSetOps.jsp performs all refset-related actions. It uses getRef.jsp,
getRefs.jsp, and (by inclusion) getRefBase.jsp.

• Included files are getRefBase.jsp and getConn.jsp.

• upAddCite.jsp, upAddAnnot.jsp, and upCommit.jsp are for update actions.

• uiCitation.jsp, uiCitation.xsl, uiAnnotation.jsp, and uiAnnotation.xsl are
user-interface files that display appropriate forms. The action of the
uiCitation.jsp form is upAddCite.jsp, and similarly for uiAnnotation.jsp
and upAddAnnot.jsp.

In outline, most user interactions with the system follow the scenario
detailed in Table 7-1.

Table 7-1. Typical Scenario of Use

USER APPLICATION

Log in Verify login;

store login info in session cache;

display top form, rdbCtl.jsp, with a menu of actions

Select action Display appropriate form

Fill out form and submit Perform action;

display result in data frame;

display follow-up form, if any, or return to top form

The Login Page, the Frames Page, and Access
Control

The login page (Listing 7-7) collects the username and password and submits
them to the application.

322

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 322

Listing 7-7. The Login Page, index.jsp in the rdb Directory
<%@ page errorPage=”error.jsp” %>

<html><head><title>XML Repository</title></head>

<body>

Welcome to the XML Repository. Please enter username and password.

<form action=”rdbFrames.jsp” method=”post” target=”_top”>

Name:<input type=”text” name=”unm” value=”admin” size=”20”/>

<select size=”1” onchange=”with(this.form)unm.value=this.value”>

<option selected=”true” value=”admin”>committer</option>

<option value=”anyName”>user</option>

</select>

Pwd:<input type=”password” name=”upw” value=”pwd” size=”30”/>

<input type=”submit” value=”login”/>

</form>

<!-- the next line is in case your login page appears in a frame -->

<script language=”JavaScript”>

if(window != window.top)

document.write(‘Get out of frames!’);

</script>

</body></html>

The frames page displays two frames: a control frame with a menu of avail-
able actions and a data display frame (which is initially empty). However, before
the frames are displayed, the page checks to see that the username variable is not
empty. All the remaining pages begin with this check, in case a casual or mali-
cious visitor accessed the page without going through the login process.

In the code shown in Listing 7-8, login validation is primitive: the password is
the same for everybody, and, to be a committer, you only have to log in with the
“admin” username. These are, of course, placeholders for a table lookup on
a secure server. The main point for us is that, as a result of this procedure, we
store the username and the isCommitter string value in the session cache so that
other pages in the session have access to them. (We use a string rather than
a Boolean isCommitter because this simplifies Java code in a minor way.)

Listing 7-8. The Frames Page, rdbFrames.jsp
<%@ page errorPage=”error.jsp”

%><jsp:useBean id=”sessCache” class=”java.util.Hashtable” scope=”session”

/><%

String unm=(String)sessCache.get(“unm”);

if(unm==null) { // no username yet

unm=request.getParameter(“unm”);

if(null!=unm)sessCache.put(“unm”,unm);

323

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 323

String pwd=request.getParameter(“upw”);

boolean pwdOk=”pwd”.equals(pwd); // a place holder

if(!pwdOk || unm==null || unm.length()==0)

{ sessCache.remove(“unm”); %><jsp:forward page=”index.jsp”/><% }

String isCommitter= “no”; // a

if(“admin”.equals(unm))isCommitter=”yes”; // a place holder

sessCache.put(“isCommitter”,isCommitter);

/* we get this far only after password validation */

%><html><head><title> Frames for Vector DB </title></head>

<frameset cols=”45%,55%”>

<frame name=”ctlFrame” src=”rdbCtl.jsp”>

<frame name=”dataFrame” src=”about:blank”>

</frameset></html>

At this point, the screen looks as shown in Figure 7-3.

324

Chapter 7

Figure 7-3. The frames page with top form in the control frame

031ch07.qxp 5/10/02 2:31 PM Page 324

The page displayed in the control frame, rdbCtl.jsp, contains both an HTML
form and a good deal of Java code.

The Top Control Page, rdbCtl.jsp

In outline, the page proceeds as follows:

1. imports and beans

2. login check

3. initialize and reload

4. the HTML form

5. code to support initialization and reloading

The last item contains code related to database access. When we reach that
point, we will interrupt to review the main concepts and how they are imple-
mented in Java.

Imports and Beans, Login Check

Imports are extensive and listed individually, without any wildcards. They come
from the following sources:

• DOM and SAX

• JAXP packages for parsing and transformation

• Java sql package for database access

• Java servlet classes

• other Java

• Apache-specific class for XML processing

Next, we instantiate three beans: the application cache, the session cache,
and a hashtable to hold the refset.

325

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 325

<jsp:useBean id=”appCache” class=”java.util.Hashtable” scope=”application”/>

<jsp:useBean id=”sessCache” class=”java.util.Hashtable” scope=”session”/>

<jsp:useBean id=”refSet” class=”java.util.Hashtable” scope=”session”/>

The caches are used for application and session data as follows.

• appCache holds basic XML information (namespaces) and basic database
information, including the number of records in the database. As a minor
optimization, it also holds the path to the Web application’s root, so we
don’t have to recalculate it every time we need to resolve a reference.

• sessCache holds several session-level variables, including a parser factory
to get an XML parser, a transformer to serialize query results, and a string
showing whether the session’s user is a committer. (We use a string rather
than a Boolean to simplify Java code in a minor way.)

You will see how the caches are used momentarily, but first we have to check
the login. Recall (from frames.jsp, Listing 7-8) that, if login is successful, the
username is stored in the session cache. Now we only have to check the session
cache to see if the username is there:

String unm=(String) sessCache.get(“unm”);

if(unm==null)

{ %>

<jsp:forward page=”index.jsp”/>

<%

} // not yet logged in.

From this point on, we know that the user is logged in; next we want to find
out whether she is a committer:

String isCommitterStr=(String) sessCache.get(“isCommitter”);

boolean isCommitter= “yes”.equals(isCommitterStr);

We can now proceed to initialize the session and, perhaps, (re)load the entire
application.

Session Initialization and Application (Re)Loading

We proceed to initialize session variables, as shown in Listing 7-9.

326

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 326

Listing 7-9. Session Variables
// get from cache or create new and store in cache

DocumentBuilderFactory dbf=getDBF(sessCache);

DateFormat dateFormat=getDateFormat(sessCache);

Transformer trans=getTransformer(sessCache);

These three function calls all follow the same logic: see if the variable is in
session cache; if not, create a new instance, store it in cache, and return.
Listing 7-10 shows getDBF(), declared later in the file.

Listing 7-10. getDBF()
public DocumentBuilderFactory getDBF(Hashtable sessCache){

DocumentBuilderFactory dbf=(DocumentBuilderFactory)sessCache.get(“dbf”);

if(dbf==null){

dbf=DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);

dbf.setValidating(false);

sessCache.put(“dbf”,dbf);

}

return dbf;

}

Next we retrieve two variables from the request object to see whether the
user wants to do something other than run queries:

boolean reload= “yes”.equals(request.getParameter(“reload”));

String newTopic = request.getParameter(“newTopic”);

If there is a new topic to add (an option available only to committers, as you
will see shortly), then we add it both to the database and to the application
cache:

if(newTopic != null && newTopic.length() > 0)

addTopic(appCache,newTopic);

We will show the code for addTopic() after we cover JDBC. In the meantime,
if the user wants to reload, or if this is the very first time the application is run,
then we load or reload the application.

327

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 327

(Re)Loading the Application

The first thing to note is that we don’t want to start the process of (re)loading if
other users are running the program, and we don’t want another user to invoke
the program while it is being (re)loaded. In databases, this kind of blocking is
performed by the database management system. Java has a special construct that
ensures that only one “thread of execution” can access a certain variable. The
construct uses the SYNCHRONIZED keyword. We synchronize on the built-in
application object, which is unique to each JSP application. (See Listing 7-11.)

Listing 7-11. Synchronized Reloading of the Application
synchronized(application){

if(null==appCache.get(“idCount”) // no records yet

|| reload){ // user asks to reload

appCache.clear();

refSet.clear();

setAppCacheRootElt(dbf, appCache); // basic XML info, e.g. namespaces

setAppCacheDB(appCache); // basic DB info, e.g. driver name

getWebAppPath(appCache,request); // path to web apps root

}

}

The HTML Form

Next in rdbCtl.jsp is the HTML form that is displayed in the control frame. The
only Java code in it is the conditional to check whether the user is a committer, in
which case the section “For committers only” is also displayed:

<% if(isCommitter) { %>

// display widgets to add a keyword or commit a record

<h4>For committers only</h4>

add a subject keyword

<form action=”commit.jsp” target=”dataFrame”>

<table>

<tr>

<td>Commit record of ID:</td>

<td><input name=”ref” type=”text” size=”10” value=”C0”></td>

<td><input type=”submit” value=”Do it!”></td>

</tr>

</table>

</form>

<% } %>

328

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 328

Apart from this little piece of scripting, the form’s code is trivial and can be
easily reconstructed from the screen shot in Figure 7-3.

Definitions of Java Methods

The initialization code in the preceding sections makes a number of function
calls, using functions declared later in the JSP. You have seen one of those
functions, getDBF() (Listing 7-10). It is time to review them all and give a more
representative sample. The functions fall into three groups:

• Functions similar to getDBF() that try to retrieve a session object from
cache, and, in case of failure, create a new such object and store it in cache:
getTransformer(), getDateFormat(), and getWebAppPath().

• Functions used in (re)loading the application: setAppCacheRootElt(),
setConnectionData(), and setAppCacheDB(). We will review the first one in
this section and the last two after covering JDBC.

• The addTopic() function that implements the “add topic” action. Unlike all
other actions, this one doesn’t have a JSP of its own because it takes very
little code. It does rely on the included getConn.jsp to obtain a connection
to the database. Like all other database-related material, it will be pre-
sented after the JDBC section.

getTransformer(), getDateFormat(), and getWebAppPath()

Listing 7-12 displays the three functions listed in the first bullet. As explained,
they all follow the same pattern as getDBF() of Listing 7-10.

Listing 7-12. Transformer, DateFormat, and WebAppPath
public Transformer getTransformer(Hashtable sessCache)

throws TransformerConfigurationException {

Transformer trans=(Transformer)sessCache.get(“trans”);

if(trans==null){

TransformerFactory tFactory = TransformerFactory.newInstance();

trans = tFactory.newTransformer();

trans.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION,”yes”);

trans.setOutputProperty(OutputKeys.INDENT,”yes”);

sessCache.put(“trans”,trans);

}

return trans;

}

329

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 329

public DateFormat getDateFormat(Hashtable sessCache){

DateFormat dF=(DateFormat)sessCache.get(“dateFormat”);

if(dF==null) dF=new SimpleDateFormat(“yyyy-MM-dd HH:mm:ss”);

sessCache.put(“dateFormat”,dF);

return dF;

}

public String getWebAppPath(Hashtable appCache,HttpServletRequest request)

throws Exception{ // returns, e.g., “http://localhost:8080/xmlp/rdb/”

String webAppPath=(String)appCache.get(“webAppPath”);

if(webAppPath==null){

String myURI=HttpUtils.getRequestURL(request).toString();

webAppPath=myURI.substring(0,1+myURI.lastIndexOf(‘/’));

appCache.put(“webAppPath”,webAppPath);

}

return webAppPath;

}

setAppCacheRootElt()

The only remaining function that does not deal with database access is
setAppCacheRootElt(). Its task is a bit peculiar, reflecting the peculiar way in
which our repository operates: we have a great number of XML elements
(citations and annotations) stored in a relational database, but we don’t have
a root element within a document that contains them all. The elements stored in
the database all use namespace prefixes for RDF, Dublin Core, and XLink, but the
namespaces are not declared anywhere. setAppCacheRootElt() sets up a purely
abstract “root element” for all the citations and annotations in the database,
declares namespaces on it, and stores it in the application cache. (See
Listing 7-13.) When namespace resolution is needed, the declarations are
retrieved and prefix mappings are processed. The processing is done here, in an
Apache-specific way, by an org.apache.xml.utils.PrefixResolverDefault object
that implements the PrefixResolver interface.

Listing 7-13. setAppCacheRootElt()
public void setAppCacheRootElt(DocumentBuilderFactory dbf, Hashtable appCache)

throws Exception{

String xmlStr=

“<dbDataRoot xmlns:dc=’http://purl.org/dc/elements/1.1/’ “

+” xmlns:rdf=’http://www.w3.org/1999/02/22-rdf-syntax-ns#’ “

+” xmlns:xlink=’http://www.w3.org/1999/xlink’/>”;

DocumentBuilder docBuilder=dbf.newDocumentBuilder();

330

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 330

Document doc=docBuilder.parse(new InputSource(new StringReader(xmlStr)));

Element rootElt=doc.getDocumentElement();

appCache.put(“namespaces”,new PrefixResolverDefault(rootElt));

}

The remaining definitions all have to do with JDBC and will be covered in
and after the JDBC section:

public void setConnectionData(Hashtable appCache)

public void setAppCacheDB(Hashtable appCache)

public void addTopic(Hashtable appCache,String newTopic)

This concludes rdbCtl.jsp. To remind you where we are in a typical use case,
the user has logged in and is ready to select an action to perform. Apart from
reload (covered in this section) and logout, all of them involve database access.
Our next task is to review the general concepts of database access from a com-
puter program and how they are implemented in Java.

Driver, Database, Connection, and Statement

Java libraries for database access are collectively known as JDBC (Java Database
Connectivity). They define a number of classes and interfaces that create a vendor-
independent database connectivity layer. The key to vendor independence is
a JDBC driver, a software package produced by database or third-party vendors
that encapsulates DBMS-specific features. (For instance, it converts between
DBMS-specific data types and JDBC data types.) A database featuring more than
150 JDBC drivers (some of them free, others commercial products) is available at
http://industry.java.sun.com/products/jdbc/drivers.

In addition to database-specific drivers, Sun provides, as part of the standard
Java distribution, a JDBC–ODBC bridge that makes it possible to connect to
ODBC data sources using JDBC APIs. This is the driver that we use in our code.
However, we store the name of the driver in the application cache, and, to use
a different driver, you only have to change that name in the cache (after you have
installed your driver, as explained in the next section).

Installing and Using a Driver

JDBC drivers are usually distributed as JAR (Java archive) files. To install, simply
add the JAR file to your classlist. To use, include a line like this in your code:

Class.forName(your--driver-name);

331

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 331

If the JDBC–ODBC bridge is used, this line comes out as

Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);

To encapsulate this code, we store the name of the driver in the application
cache, keyed by the “dbDriver” string, and so the driver is instantiated by this line
of code:

Class.forName(appCache.get(“dbDriver”).toString());

Once the driver is instantiated, you can proceed to use JDBC code. A typical
scenario proceeds as follows:

1. Obtain a connection, typically from a connection pool.

2. Create a statement object, to execute SQL statements.

3. Run a database session, executing statements, processing result sets,
and so on.

4. Close connection (or return it to the connection pool).

The following subsections explain these steps and illustrate them with exam-
ples from our code. The first step is to obtain a connection to your database.

Connections and Connection Pooling

The simplest way to obtain a connection is via a public static getConnection()
method of the DriverManager class. The method takes three parameters: the
database URI, username, and password. The database URI must be in the format
specified in the documentation of your JDBC driver. In the case of the
JDBC–ODBC bridge, you must create a DSN (Data Source Name) using the ODBC
manager and use that name as the database URI. Assuming that the DSN is
“xmlp” and the username and password can be empty strings, you would obtain
a connection by this line of code:

Connection con=DriverManager.getConnection(“jdbc:odbc:xmlp”,””,””);

We wrap this action in two layers of indirection to make the code more
general. First, just as with the driver name, we store the database URI in the
application cache. This is done in one of the methods of rdbCtl.jsp that we
skipped on first reading, as shown in Listing 7-14.

332

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 332

Listing 7-14. Store JDBC Driver Name and Database URL in Application Cache
public void setConnectionData(Hashtable appCache){

appCache.put(“dbDriver”,”sun.jdbc.odbc.JdbcOdbcDriver”);

appCache.put(“dbURL”,”jdbc:odbc:Xmlp”);

}

Second, we place the code that obtains a connection into a getConnection()
function defined in the included getConn.jsp. Therefore, in our application,
a connection is obtained by

con=getConnection(appCache);

where getConnection() is as shown in Listing 7-15.

Listing 7-15. Code for getConnection() from getConn.jsp
public Connection getConnection(Hashtable appCache){

try{ // getConnection could retrieve from connection pool

Class.forName(appCache.get(“dbDriver”).toString());

return DriverManager. // statement continued on next line

getConnection(appCache.get(“dbURL”).toString(),”rdb”,”pwd”);

}catch(Exception ex){

System.err.println(“failed to get DB connection: “+ex);

return null;

}

}

This makes it easy to replace our simple code with a more sophisticated
method of managing connections called “connection pooling”. The motivation
for connection pooling is that obtaining a connection is a computationally
expensive operation that should be done as rarely as possible. The idea of con-
nection pooling is simple enough: the application obtains a pool of connections
in one action, typically at startup, and asks for another connection only when
the pool dries up. When a new user asks for a connection, it is allocated from the
pool, and, when a user releases a connection, it is returned to the pool. In our
code, releasing a connection is also encapsulated as a method, freeConnection(),
that can be rewritten to use connection pooling:

public void freeConnection(Connection con,Hashtable appCache){

try{ // freeConnection could return con to a connection pool

if(con!=null)con.close();

}catch(Exception ex){

System.err.println(“failed freeConnection: “+ex);

}

}

333

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 333

Several connection pool implementations are available, and the latest
version of JDBC implements a standard API for managing a connection pool. To
incorporate connection pooling in our application, you would only have to
install the appropriate software and rewrite our getConnection() and
freeConnection(), both in getConn.jsp.

Statement and ResultSet

Once you have a connection, you can run SQL statements. SQL contains both
a data definition language that defines the structure of the database and a data
manipulation language; data manipulation language, in turn, contains SELECT
queries that only retrieve data and UPDATE queries that modify the data (but not
the structure of the database). We do provide an example of data definition lan-
guage in rdbCreateTables.jsp (so that a database to use with our code can be
created even if you don’t have a copy of MS Access on your machine), but the
application proper uses only SELECT and UPDATE queries. The simplest way to
use them is to create a Statement object and run its executeQuery() method for
SELECT queries and executeUpdate() method for UPDATE queries. Both meth-
ods take a string argument that is a well-formed SQL query.

If you run an UPDATE query, the returned value is an integer—the number of
rows that have been inserted, deleted, or modified. (This value is frequently
ignored.) For an example of executeUpdate(), consider addTopic() from
rdbCtl.jsp. (See Listing 7-16.) It adds a new topic word or phrase to the database
table that holds them, and also to the appCache, where topics are held as
a semicolon-separated string.

Listing 7-16. addTopic() from rdbCtl.jsp
public void addTopic(Hashtable appCache,String newTopic) {

Connection con=null;

Statement stmt=null;

try{

con=getConnection(appCache); // our method from getConn.jsp

stmt = con.createStatement();

// construct SQL query; the new topic has to be quoted in it,

// hence single quotes within double quotes

String sqlStr=”INSERT INTO rdbTopicNames VALUES (‘“+newTopic+”’)”;

// insert new topic into database;

// returned integer is ignored but possible error is caught

stmt.executeUpdate(sqlStr);

// insert new topic into appCache

String topicNames=appCache.get(“topicNames”).toString();

if(topicNames==null) topicNames=””;

334

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 334

appCache.put(“topicNames”,topicNames+newTopic+”; “);

}catch(Exception ex){ex.printStackTrace();}

finally{

if(stmt!=null) try{stmt.close();stmt=null;} catch(Exception ex){}

freeConnection(con,appCache); // our method in getConn.jsp

}

}

If you run a SELECT query, the returned value is a ResultSet object that pro-
vides sequential access to the returned records. Much like an enumeration or
a tree traverser, it has a next() method that returns the next record or null if we
have reached the end of the record set. Within each record, individual fields are
retrieved by getXX() methods, where XX stands for a data type: getInt(),
getString(), and so on. The argument to all these methods is either an integer
giving the number of the field in the record (beginning with 1) or the field’s name
in the database table.

For an example of a SELECT query, consider setAppCacheDB(), the final left-
over from rdbCtl.jsp. It retrieves from the database and stores in appCache two
items: the number of records in the database (as idCount) and the semicolon-
separated list of topics:

public void setAppCacheDB (Hashtable appCache){

Connection con=null;

Statement stmt=null;

ResultSet rs=null;

int idCount=0; StringBuffer topics=new StringBuffer();

try{

setConnectionData(appCache); // see Listing 7-14

con=getConnection(appCache); // see Listing 7-15

if(con==null) return;

stmt = con.createStatement();

// retrieve the last record from the rdbSubmissions table

// the number of submissions is the number of records in database

rs=stmt.executeQuery(“SELECT 1+Max(ident) FROM rdbSubmissions”);

if(rs.next()) // if result set not empty

idCount=rs.getInt(1); // retrieve first field of record, which is the

rs.close();

rs=stmt.executeQuery(“SELECT * FROM rdbTopicNames”);

while(rs.next())topics.append(rs.getString(1)+”; “);

}catch(Exception ex){ex.printStackTrace();}

finally{

if(rs!=null)try{rs.close();}catch(Exception ex){}

if(stmt!=null)try{stmt.close();}catch(Exception ex){}

335

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 335

freeConnection(con,appCache); // in getConn.jsp; similar to getConnection()

// store two items in appCache

appCache.put(“idCount”,new Integer(idCount));

appCache.put(“topicNames”,topics.toString());

}

}

PreparedStatement

In many situations, a better alternative to Statement is the JDBC
PreparedStatement. PreparedStatement is created with an SQL query imprinted
on it at construction. It is more efficient than plain Statement because its SQL
query is compiled once and can be reused many times with different parameters.

Consider a simple example: suppose you have a database table that has
names and email addresses and you want to be able to retrieve an address (or
addresses) by name. You have created a database connection as described in the
preceding sections, and you are ready to create a query string and a statement
object. Assume that the name to search by is in the currentName variable, proba-
bly retrieved from the Request object. With plain Statement, you would create
a query string like this:

“SELECT addr FROM addrBook WHERE name=’” + currentName + “‘“

Note that you need single quotes within double quotes so that the value of
currentName comes out quoted in the resulting string. This is error prone and
may result in nasty complications: what if the name has special characters, as in
“O’Donnell”? Besides, you have to remember to quote strings but not integers or
dates, except if you insert dates as strings. The PreparedStatement, in addition to
being more efficient, provides a simple and uniform way of filling in arbitrary
parameters, as follows:

First, you create a query string differently, with question marks as placehold-
ers for parameters to be filled in, and you use the query string in creating your
PreparedStatement:

String queryStr = “SELECT addr FROM addrBook WHERE name=?”;

PreparedStatement prepStmt = conn.prepareStatement(queryStr);

336

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 336

Next, you fill in the value of the parameter using one of many data type-
specific procedures that are provided for that purpose. In this case, we need
setString():

// set the value of the first parameter of PreparedStatement to currentName

prepStmt.setString(1,currentName);

// run the query

ResultSet rs= prepStmt.executeQuery();

Note that executeQuery() does not take any arguments because the query
string is already imprinted on the PreparedStatement and its parameter is
already set. For UPDATE queries, you would use executeUpdate() rather than
executeQuery(), as you will see in several rdb query implementations in the next
section.

In addition to setString(), PreparedStatement has setInt(), setBlob(),
setBoolean(), setDate(), and so on, even including setObject() in which we pro-
vide an arbitrary object and tell the database what standard SQL type to treat it
as. Here’s a sample from upAddCite.jsp, presented in full in the next section:

pStmt.setInt(1,identInt);

pStmt.setString(2,identifierStr);

. . .

pStmt.setObject(7,xmlValue,java.sql.Types.LONGVARCHAR);

PreparedStatement is the last remaining JDBC feature that is used in the
application of this chapter. Many more features are available for more-advanced
use, such as connection pooling, access to metadata, transactions, and stored
procedures.

JDBC Equivalents in ASP

Database access in ASP differs in minor details from JDBC but operates with the
same concepts and similar objects. For an example, consider an ASP that
accesses our submissions table (rdbSubmissions), retrieves submission records
by their author, and outputs them as an HTML table:

<%@ LANGUAGE=”VBSCRIPT” %>

<% Option Explicit %>

<html><head><title>rdbSubmissions author </title>

<META HTTP-EQUIV=”Content-Type” content=”text/html; charset=iso-8859-1”>

</head><body>

<table border=”1”>

337

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 337

<%

Dim oRS,intCount,oField,author,query ‘ declare variables

‘create a RecordSet object using ADODB (Active Data Object)

Set oRS=Server.CreateObject(“ADODB.RecordSet”)

‘get data from Request

author = Request.QueryString(“author”)

‘create SQL query string

query = “SELECT * FROM rdbSubmissions WHERE Author LIKE ‘“ & author & “%’”

‘open connection to database and run query in a single Open method of RecordSet

oRS.Open query,”DSN=xmlp;UID=;PWD=”

Response.Write “<tr>”

‘output field names as HTML table headers

For Each oField in oRS.Fields

Response.Write “<th>” & oField.Name & “</th>”

Next

Response.Write “</tr>”

‘output RecordSet, a record per row of HTML table

Do While NOT oRS.EOF ‘same syntax as in reading a file

Response.Write “<tr>”

For intCount = 0 to oRS.Fields.Count-1

Response.Write “<td>” & oRS.Fields(intCount).Value & “</td>”

Next

Response.Write “</tr>”

oRS.MoveNext

Loop

%>

</tr></td></table></body>

</HTML>

In this version, a connection object is created behind the scenes as part of
populating a RecordSet object with query results, but it is also possible to go in
the way JDBC requires, with an explicit connection object within which we use
a query to create a ResultSet object.

This particular ASP doesn’t mention XML at all, but its output is legal XML
(XHTML) and can be processed using MSXML, as in other examples in the book.
We used rdbSubmissions so that you can read through it once as a plain
ODBC/ASP/HTML construction without thinking about XML, but, if you use the
other tables and retrieve the xmlValue field, the MSXML DOMDocument con-
structions can parse the string and do whatever you like with it, just as Java’s
DocumentBuilder can.

The .NET framework has an entirely new set of tools for working with rela-
tional data and converting it to XML, but this is a subject for another book, or for
the next edition of this one.

338

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 338

Query Implementations 1: UPDATE Queries

Recall that our application’s functionality mostly consists of two kinds of queries:
UPDATE queries that add new records to the database or modify existing ones,
and SELECT queries that retrieve data from the database into a data structure
called refset. A refset can be further modified by either removing some data from
it or adding more data from the database.

In terms of code, the application consists of top-level files, included files,
action files, and user-interface files:

• Top-level files are index.jsp (for login), logout.jsp, error.jsp, and
rdbFrames.jsp.

• Included files are getConn.jsp and getRefBase.jsp.

• User interface files are uiCitation.jsp, uiCitation.xsl, uiAnnotation.jsp, and
uiAnnotation.xsl. The JSPs use the corresponding XSLTs to display appro-
priate forms.

• Action files for update queries are upAddCite.jsp (the action of the
uiCitation.jsp form) and upAddAnnot.jsp (the action for the
uiAnnotation.jsp form). In addition, there is upCommit.jsp for changing
the status of a record to committed.

• The action file for refset operations is rdbRefSetOps.jsp, which performs all
refset-related actions. It uses getRef.jsp, getRefs.jsp, and (by inclusion)
getRefBase.jsp.

• Finally, rdbCtl.jsp is the initial source for the control frame. It contains
code for reloading the data. Like all code files that use the database, it uses
(by inclusion) getConn.jsp.

We have covered all the code of rdbCtl.jsp, most of it in the section “Structure
of the Application” and the rest as examples in the JDBC section. In the remain-
der of the chapter, we are going to show a representative sample of action files. In
particular, for UPDATE queries, we will work through the user interface files for
adding a citation and the upAddCite.jsp that performs that operation. For refset
operations, we will show rdbRefSetOps.jsp. (The user interface for refset oper-
ations is in rdbCtl.jsp.)

339

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 339

UPDATE Queries Overview

The progression of steps in creating or modifying a citation is as follows:

• From rdbCtl.jsp, the user fills in the Add Citation form and submits. The
action of the form is uiCitation.jsp.

• uiCitation.jsp constructs an input form for citations using uiCitation.xsl
and information about the user (committer or not) stored in sessCache.
The constructed form is displayed in the control frame. The action of the
form is upAddCite.jsp.

• upAddCite.jsp constructs a citation element from request data submitted
by the user, stores it in the database according to the adopted scheme, and
also displays it in a text area for the user to review. Each time we add
a citation or an annotation, we add a submission record as well.

We will follow this process through uiCitation.jsp, uiCitation.xsl, and
upAddCite.jsp.

uiCitation.jsp

This JSP offers different functionality to committers and general users (noncom-
mitters). General users can only add new citations. They will be presented with
a blank form (generated by uiCitation.xsl) to enter citation data; if they enter an
existing citation’s ID into the appropriate box, it will be ignored.

Committers can also add new citations, but they can also edit existing ones.
To do that, they enter an existing citation’s ID into the appropriate box, and the
system will display the existing record for the committer to edit and save.
(Typically, to find out the ID of an existing record, the committer would use
a SELECT query first.)

We will display the citation entry form in the next section, together with the
XSLT code that generates it. The code of uiCitation.jsp proceeds as follows:

1. Start with the familiar imports, beans, and the login check. A new ele-
ment in this section is the include directive to include getRefBase.jsp: we
are going to use its getXmlValue() method to retrieve a serialized citation
element from the database.

2. Construct the XSL filename, which is the same as the JSP’s name but
with the .xsl extension.

340

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 340

3. Check the ID: if present and valid, retrieve the XML record from the data-
base for input to XSLT; otherwise, provide an empty element for input.

4. Construct a transformer for XSLT and run it on XML input. Send output
to the browser.

5. Finish up with links to logout and rdbCtl.jsp.

The code in Listing 7-17 is divided by highlighted comments that correspond
to the items in this outline.

Listing 7-17. The Code of uiCitation.jsp
<%@ page errorPage=”error.jsp”

import=”javax.xml.transform.Transformer,

javax.xml.transform.TransformerFactory,

javax.xml.transform.stream.StreamSource,

javax.xml.transform.stream.StreamResult,

java.io.StringReader,java.io.File,

java.sql.Connection,java.sql.Statement,

java.sql.ResultSet,java.sql.DriverManager,

java.util.Hashtable”

%><jsp:useBean id=”appCache” class=”java.util.Hashtable” scope=”application”

/><jsp:useBean id=”sessCache” class=”java.util.Hashtable” scope=”session”

/><%@ include file=”getRefBase.jsp” %><%

String unm=(String)sessCache.get(“unm”);

if(unm==null)

{ %><jsp:forward page=”index.jsp”/><% } // not yet logged in.

boolean isCommitter= “yes”.equals((String)sessCache.get(“isCommitter”));

// Start HTML output

%><html><head><title>Create Citation</title></head>

<body>

On this page, you can create a new citation.

<% if(isCommitter){ %>

You can also enter an existing citation’s id and new values for its fields.

<% } %>

<%

// Construct the XSL file name: same as this JSP, but with .xsl suffix

String pathToJSP=application.getRealPath(request.getServletPath());

String pathToXSL=pathToJSP.substring(0,1+pathToJSP.lastIndexOf(‘.’))+”xsl”;

String xslUri=new File(pathToXSL).toURL().toString();

// check ID; construct XML input to Transformer

String idStr=request.getParameter(“idStr”);

if(idStr==null || !idStr.startsWith(“C”))idStr=””;

341

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 341

String citeRecStr=null;

if(idStr.length()>0) // valid ID; retrieve record from database

citeRecStr=getXmlValue(idStr,appCache);

if(citeRecStr==null ||

citeRecStr.startsWith(“<div”)) { // an error message from JDBC

idStr=””;

citeRecStr= “<rdf:Description/>”; // empty record

}

// with citeRecStr initialized, construct a Transformer to output form

TransformerFactory tFactory = TransformerFactory.newInstance();

Transformer transformer = tFactory.newTransformer(new StreamSource(xslUri));

// set top-level parameters of the stylesheet

transformer.setParameter(“isCommitter”,isCommitter?”yes”:””);

transformer.setParameter(“idStr”,idStr);

transformer.setParameter(“topicNames”,appCache.get(“topicNames”).toString());

transformer.transform

(

new StreamSource(new StringReader(citeRecStr)),

new StreamResult(out)

);

%><!-- output links to logout and rdbCtl.jsp -->

Logout or

return.

</body></html>

At this point, the action switches to uiCitation.xsl.

XSLT for Citation Input Form

This stylesheet generates a form for creating or editing a citation entry. Its input
is either an empty entry, <rdf:Description/>, or an existing entry. (See
Listing 7-18.)

Listing 7-18. Example of Citation
<rdf:Description>

<dc:identifier>C0</dc:identifier>

<dc:identifier>ISBN 0333776267</dc:identifier>

<dc:creator>Duncan Langford</dc:creator>

<dc:title>Internet Ethics</dc:title>

<dc:date>2000-06-06</dc:date>

<dc:publisher>ILRT, University of Bristol</dc:publisher>

<dc:format>Book</dc:format>

342

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 342

<dc:subject>internet; www; ethics; technology; </dc:subject>

<dc:description>Covers “moral varieties of Internet mischief”

and many other topics; contributing authors from 11 countries.

See

Amazon.com listing.</dc:description>

</rdf:Description>

In this template, items other than subject and description can be repeated,
and everything is optional except the first dc:identifier field. Figure 7-4 shows
the output of the stylesheet as displayed if the user is a committer and has
entered a valid record ID.

The XSLT, as we just saw, has top-level parameters that provide the following
information: the user’s status (committer or not), the ID string of the record to
work on, and the list of topics. If the user is not a committer, the last two parame-
ters are empty strings.

343

XML Repository

Figure 7-4. Entry form for citation

031ch07.qxp 5/10/02 2:31 PM Page 343

In outline, the XSLT consists of three parts:

• the root and top-level elements, before the first template

• the root template that outputs most of the HTML page, including text areas
for entering multiple values of a Dublin Core element

• a named template for outputting a SELECT element for subject options

All XSLT details in this stylesheet should be familiar from the two XSLT
chapters. In Listing 7-19, the only detail that merits a reminder is the exclude-
result-prefixes attribute on the root. Its purpose is to eliminate extraneous
namespace nodes within the subtree of the stylesheet rooted at the element
bearing the exclude-result-prefixes attribute. (In our case, this is the entire
stylesheet element tree.)

Listing 7-19. The Root and Top-Level Elements of uiCitation.xsl
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”

xmlns:dc=”http://purl.org/dc/elements/1.1/”

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

exclude-result-prefixes=”dc rdf”

>

<xsl:output method=”html”

indent=”yes” encoding=”UTF-8”

omit-xml-declaration=”yes”

/>

<xsl:param name=”topicNames” select=”’’”/>

<xsl:param name=”idStr” select=”’’”/>

<xsl:param name=”isCommitter” select=”’’”/>

The Root Template

Listing 7-20, 7-21, and 7-22 contain the root template. It is fairly long but repeti-
tive: most of its code outputs text areas to enter citation components. Before we
get to this part, we construct a variable whose value controls whether or not
we retrieve data from the database to populate the form. Two conditions need
to be checked: is the user a committer and is there a valid ID value? (See
Listing 7-20.)

344

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 344

Listing 7-20. The okIdStrVariable
<xsl:template match=”/”>

<xsl:variable name=” “>

<xsl:choose>

<xsl:when test=”$isCommitter=’yes’ and starts-with($idStr,’C’)”>

<xsl:value-of select=”$idStr”/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select=”’’”/>

</xsl:otherwise>

</xsl:choose>

</xsl:variable>

This piece of code is followed by instructions to the user (within a <div> ele-
ment) that say “Use one line per author, title, and so on. Multiple lines indicate
multiple values. The only exception to this is the description text, in which multi-
ple lines of well-formed XHTML are normal.” This is followed by a form that
contains a two-column table. The first cell of each row is a label describing the
contents of the second cell; the second cell is an input element or a text area.
Listing 7-21 shows the first two rows of the table. The first row is, in fact, condi-
tionally present only if the user is a committer. The second row shows a text area
into which the author or authors are entered, separated by the newline character.

Listing 7-21. The Form, the Table, and the First Two Rows
<form name=”addCite” action=”upAddCite.jsp” target=”dataFrame”>

<table>

<xsl:if test=”$isCommitter”>

<tr>

<td>id</td>

<td><input type=”text” name=”idStr” value=”{$okIdStr}” size=”8”/></td>

</tr>

</xsl:if>

<tr>

<td>author</td>

<td><textarea name=”author” rows=”2” cols=”40”>

<xsl:for-each select=”rdf:Description/dc:creator”>

<xsl:value-of select=”concat(.,’
’)” />

</xsl:for-each>

</textarea></td>

</tr>

345

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 345

There are similar text area rows for title, date, publisher, and format, but the
rows for description, identifier, and subject keywords are different. In the case of
description, we want to copy the entire content of the element into the text area,
without breaking it into lines:

<tr>

<td>description</td>

<td><textarea name=”description” rows=”3” cols=”40”>

<xsl:copy-of select=”rdf:Description/dc:description/*/node()” />

</textarea></td>

</tr>

In the case of identifiers, we want to exclude the first identifier that is the
system-generated ID and output only the remaining ones. We use the predicate
position()>1, with the “>” character appropriately encoded:

<tr>

<td>identifier</td>

<td><textarea name=”identifier” rows=”2” cols=”40”>

<xsl:for-each select=”rdf:Description/dc:identifier[position()>1]”>

<xsl:value-of select=”concat(.,’
’)” />

</xsl:for-each>

</textarea></td>

</tr>

Finally, for the keys, we want to output a drop-down selection list, which
requires slightly more-involved code but serves as a good exercise on recursion.
Because we don’t know how many subject keywords there are, we create a named
template that outputs a single option within the select element, and recursively
call it until the list of “topicNames” is empty:

<tr>

<td>keys</td>

<td>

<input type=”text” name=”keys” value=”{rdf:Description/dc:subject}” size=”40”/>

</td>

</tr>

<tr>

<td>add key</td>

<td><select name=”addKey” size=”1”

onchange=”with(this.form) keys.value+=addKey.value+’; ‘“>

<option selected=”1” value=””>add key</option>

<xsl:call-template name=”subjectOptions”>

346

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 346

<xsl:with-param name=”topicOptions” select=”$topicNames”/>

</xsl:call-template>

</select>

</td>

</tr></table>

The rest of the root template outputs the Submit button and closes off the
form and the template.

The Recursive subjectOptions Template

Finally, the subjectOptions template does a straight linear recursion on the
semicolon-separated list of subject keywords:

<xsl:template name=”subjectOptions”>

<xsl:param name=”topicOptions” select=”’’”/>

<xsl:if test=”contains($topicOptions,’; ‘)”>

<xsl:variable name=”opt” select=”substring-before($topicOptions,’; ‘)”/>

<option value=”{$opt}”><xsl:value-of select=”$opt”/></option>

<xsl:call-template name=”subjectOptions”>

<xsl:with-param name=”topicOptions”

select=”substring-after($topicOptions,’; ‘)”/>

</xsl:call-template>

</xsl:if>

</xsl:template>

This concludes uiCitation.xsl and the entire user interface sequence for cre-
ating or editing a citation. The input from the form generated by uiCitation.xsl is
processed by upAddCite.jsp.

Creating or Editing a Citation: upAddCite.jsp

In outline, this JSP proceeds as follows:

1. Perform the usual preliminaries: inputs, two beans, the getConn.jsp
include file, login check, session objects (DOM parser, null Document,
and Transformer).

2. Retrieve information from Request (components of citation).

3. Compute ID, determine if this is a new or edited citation.

347

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 347

4. Build a DOM tree for the citation. Fields containing multiple values (one
per line) are parsed using a StringTokenizer.

5. Serialize DOM object to XML string; add record to the database using
addCitation() method; output the XML string to text area in the data
frame.

6. Define addCitation() method.

We will skip the preliminaries because you have seen them all several times.
The rest of the code is presented in separate listings corresponding to items in
this outline, starting with “Retrieve Request” in Listing 7-22. We cover
addCitation() in a separate subsection because some parts of the code are a bit
involved.

Listing 7-22. Retrieve Request Information, Trimming Whitespace
String idStr=request.getParameter(“idStr”); // citation ID, or “”

String identifierStr=request.getParameter(“identifier”).trim();

String authorStr=request.getParameter(“author”).trim();

String titleStr=request.getParameter(“title”).trim();

String dateStr=request.getParameter(“date”).trim();

String publisherStr=request.getParameter(“publisher”).trim();

String formatStr=request.getParameter(“format”).trim();

String keysStr=request.getParameter(“keys”); // ends with “; “

String descriptionStr=request.getParameter(“description”).trim();

Before we build a new DOM for this citation, we compute its ID and deter-
mine whether this is a new record (in which case the ID is the current idCount
and the idCount needs to be incremented) or an edit of an existing record. (See
Listing 7-23.)

Listing 7-23. Compute ID; Determine If This Is a New or Edited Record
int identInt=-1;

boolean isNewRecord=false;

try{

if(null==idStr){} // new record; id is -1

else if(idStr.startsWith(“C”)) // compute id as integer

identInt=Integer.parseInt(idStr.substring(1));

}catch(Exception ex){}

// if this is a new record, increment idCount in appCache

// within a synchronized block

synchronized(appCache){

int idCount=((Integer)appCache.get(“idCount”)).intValue();

348

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 348

if(identInt<0 || identInt >= idCount){ // new record

isNewRecord=true;

appCache.put(“idCount”,new Integer(1+idCount));

identInt=idCount;

}

}

idStr=”C”+Integer.toString(identInt);

We are ready to start building a DOM tree. This is the longest part by far, but
the code (see Listing 7-24) is repetitive, and we will make a few cuts. For most
fields, we break the submitted string into individual items using
a StringTokenizer and call appendChild(); we will show only one of them. The ID,
subject, and description fields are treated differently. Before we do anything else,
we declare namespace URI strings and use them in constructing the
rdf:Description element.

Listing 7-24. Build DOM tree, with Namespaces
String dcURI = “http://purl.org/dc/elements/1.1/”;

String rdfURI = “http://www.w3.org/1999/02/22-rdf-syntax-ns#”;

// construct the citation element with namespace declarations

Element cite=doc.createElementNS(rdfURI,”rdf:Description”);

cite.setAttribute(“xmlns:rdf”,rdfURI);

cite.setAttribute(“xmlns:dc”,dcURI);

// construct citation element’s components, beginning with ident

Element identCite=doc.createElementNS(dcURI,”dc:identifier”);

identCite.appendChild(doc.createTextNode(idStr));

cite.appendChild(identCite);

// create a Tokenizer for multivalue fields

StringTokenizer st=null; // initialized for each multivalue field

// an example of a multivalue field: dc:identifier

st=new StringTokenizer(identifierStr,”\n\r”);

while (st.hasMoreTokens()){

Element identifier=doc.createElementNS(dcURI,”dc:identifier”);

identifier.appendChild(doc.createTextNode(st.nextToken()));

cite.appendChild(identifier);

}

// skip similar code for author, title, date, publisher,format

// for subject, simply create a text node child out of keyStr

Element subject=doc.createElementNS(dcURI,”dc:subject”);

subject.appendChild(doc.createTextNode(keysStr));

cite.appendChild(subject);

// for description, we embed the XHTML string into a div element,

// parse into a DOM node and attach using DOM’s importNode() method

349

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 349

Element description=doc.createElementNS(dcURI,”dc:description”);

if(descriptionStr!=null && descriptionStr.length()>0) {

try{

descriptionStr=”<div>”+descriptionStr+”</div>”;

Document desc=db.parse(new InputSource(new StringReader(descriptionStr)));

description.appendChild(doc.importNode(desc.getDocumentElement(),true));

}catch(Exception ex){}

}

cite.appendChild(description); cite.appendChild(description);

}

With the DOM object constructed, we can serialize it using the default trans-
former and use the resulting XML to append a record to the database. We will
also display serialized XML in a text area.

Because the default transformer cannot output directly to a String object, we
output to a stream (StringWriter) and convert to a string. Otherwise, the code is
straightforward and familiar, as shown in Listing 7-25.

Listing 7-25. Serialize DOM, Add to Database, and Output to Text Area
// serialize DOM object to string, via StringWriter

StringWriter sw=new StringWriter();

trans.transform(new DOMSource(cite),new StreamResult(sw));

String xmlValue=sw.toString();

// add citation to database

addCitation(isNewRecord,identInt,identifierStr,authorStr,titleStr,

dateStr,keysStr,xmlValue,unm,sessCache,appCache);

// output serialized citation to text area in data frame

%>

<html><head><title>Add Citation</title></head><body>

<textarea rows=”30” cols=”60”>

<%

trans.transform(new DOMSource(cite),new StreamResult(out));

%>

</textarea></body></html>

The only remaining piece is the definition of the addCitation() method. This
is where we use JDBC, and particularly PreparedStatement.

The addCitation() Method

The addCitation() method, shown in Listing 7-26, adds both a citation and
a submission record to the database. In either case, we need different SQL

350

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 350

depending on whether we create a new citation or edit an existing one. (In the
first case, we need an INSERT statement; in the second case, we need an UPDATE
statement.) Altogether, there are four different SQL statements for which we cre-
ate a PreparedStatement. The corresponding SQL strings are created in the code
(some of them built up out of smaller pieces because they are too long to fit on
a single line), but we will display two of them separately to make reading the
code easier. The INSERT statement for a citation is

“INSERT INTO rdbCitations VALUES(?,?,?,?,?,?,?)”

and the UPDATE statement for citation, broken into two lines, is

“UPDATE rdbCitations SET ident=?,identifier=?,creator=?,title=?,

crDate=?, subject=?,xmlValue=? WHERE ident=”+identInt

In the second SQL string, the value of identInt is computed by the JSP and
appended to the string.

For each of the four PreparedStatements, we must set values of statement
parameters. We use setString() and setInt() for the purpose, with two
exceptions. One of them is the xmlValue field in the rdbCitations table, which is
a string that can be longer than 255 characters. We have to use setObject(), with
three arguments: field number or name, value to be converted to object, and the
“real” data type of the value (java.sql.Types.LONGVARCHAR). When this value is
retrieved, the stored object is converted to its intended data type and then to the
corresponding Java type.

In the rdbSubmissions table, the fields having to do with commitment (date
and committer identity) have to be set to NULL because commitment is per-
formed as a separate action. In this case, setNull() is used, with two arguments:
field number or name, and the field’s data type.

Listing 7-26. Definition of addCitation()
<%! // addCitation() method: XML string to database

public void addCitation(

boolean isNewRecord,

int identInt,

String identifierStr,

String authorStr,

String titleStr,

String dateStr,

String keysStr,

String xmlValue,

String submitter,

Hashtable sessCache,

351

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 351

Hashtable appCache

) throws Exception{

Connection con=null; PreparedStatement pStmt=null;

try{

con=getConnection(appCache);

// create PreparedStatement for Citation, new or edited

if(isNewRecord)

pStmt=con.prepareStatement(“INSERT INTO rdbCitations VALUES(?,?,?,?,?,?,?)”);

else pStmt=con.prepareStatement(

“UPDATE rdbCitations SET “

+” ident=?,identifier=?,creator=?,title=?,crDate=?,subject=?,xmlValue=?”

+” WHERE ident=”+identInt);

// fill in parameters of PreparedStatement with data from Request and elsewhere

pStmt.setInt(1,identInt);

pStmt.setString(2,identifierStr);

pStmt.setString(3,authorStr);

pStmt.setString(4,titleStr);

pStmt.setString(5,dateStr);

pStmt.setString(6,keysStr);

// to setString whose len is > 255, use setObject(fieldNumber, obj, JDBC type)

pStmt.setObject(7,xmlValue,java.sql.Types.LONGVARCHAR);

pStmt.executeUpdate();

pStmt.close(); // done with Citation; Submission record next

// create PreparedStatement for Submission, new or edited

if(isNewRecord)

pStmt=con.prepareStatement(“INSERT INTO rdbSubmissions VALUES(?,?,?,?,?)”);

else pStmt=con.prepareStatement(

“UPDATE rdbSubmissions SET “

+” ident=?,author=?,subDate=?,committedBy=?,comDate=?”

+” WHERE ident=”+identInt);

// fill in parameters of PreparedStatement with data from Request and elsewhere

pStmt.setInt(1,identInt);

pStmt.setString(2,submitter);

DateFormat dateFormat=(DateFormat)sessCache.get(“dateFormat”);

String rightNowStr=dateFormat.format(new Date());

pStmt.setString(3,rightNowStr);

// set next two fields to NULL; specify data type

pStmt.setNull(4,java.sql.Types.VARCHAR);

pStmt.setNull(5,java.sql.Types.TIMESTAMP);

pStmt.executeUpdate(); }catch(Exception ex){}

finally{ // the ususal clean up

if(pStmt!=null) try{pStmt.close();pStmt=null;}catch(Exception ex){}

352

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 352

if(con!=null) try{con.close();con=null;}catch(Exception ex){}

}

} %>

This concludes the code of upAddCite.jsp and the entire update section.
Next, we look at the SELECT queries and refset actions. Our presentation here
will be less complete because many details are already familiar. The main point
of interest is in retrieving XML data from a relational database using a combi-
nation of an SQL query and an XPath condition.

Query Implementations 2: Refset Actions

To remind you of the overall picture, we repeat the diagram of Figure 7-1 in
Figure 7-5 to show refset operations.

Supported refset operations are add, delete, clear, and display. If the action is
“add,” then the database is searched for matching records, and they are added to
the refset. (The search condition consists of two parts: an SQL query and an
XPath expression. The database is searched using SQL, and the returned result
set is filtered using XPath.) If the action is “delete,” the current refset is searched
for matching records (using XPath only), and they are removed from the refset.
The “clear” action empties the refset, and “display” action (the default) shows its
contents in a text area.

In terms of code, we will work through rdbRefSetOps.jsp that implements all
the actions. In particular, it defines the following methods: addRefs(), delRefs(),
and writeRefs() for display. (Because refset is implemented as a hashtable, the
“clear” action is implemented by simply calling the hashtable clear() method.)

353

XML Repository

Figure 7-5. Select actions: client, server, database, and refset

031ch07.qxp 5/10/02 2:31 PM Page 353

The supporting getRefIf() method does the XPath filtering, with the help of
code in getRef.jsp.

In outline, rdbRefSetOps.jsp proceeds as follows:

1. Perform the usual preliminaries: imports, beans, includes, the login
check.

2. Get information from Request, including the selected action parameter.

3. Depending on the value of the action parameter, call the appropriate
function.

4. Display the current refset in a text area in the data frame.

5. Define all the requisite functions.

Skipping the preliminaries, Listing 7-27 shows the first part of the file, up to
function definitions.

Listing 7-27. Part 1 of rdbRefSetOps.jsp: Get Request Information, Call the Right
Action Method
// get information from Request

String sqlWhere=request.getParameter(“sqlWhereClause”);

if(sqlWhere==null) sqlWhere=””;

String xPath=request.getParameter(“XPath”);

if(xPath==null) xPath=””;

String refType=request.getParameter(“type”); // citation or annotation?

String action=request.getParameter(“action”);

// dispatch on action -- call appropriate method

if(“clear”.equals(action)) {refSet.clear();}

else if(“show”.equals(action)) {/* do nothing */}

else if(“add”.equals(action))

addRefs(sqlWhere,refType,xPath,refSet,sessCache,appCache);

else delRefs(xPath,refSet,sessCache,appCache);

// display the refset

%><html><head><title>Search result</title></head><body>

The current reference set is as follows:

<form><textarea rows=”30” cols=”60”>

<% writeRefs(refSet,appCache,out);

%></textarea></form></body></html>

354

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 354

Definitions of Refset Operations

Definitions of refset operations are quite straightforward except for the support-
ing methods (getRefIf() and checkXpath()) that do XPath filtering. In this
section, we show the top-level definitions, highlighting the lines that use sup-
porting methods. The key (no pun intended) to their operation is that the same
record ID serves as the primary key in the database and the key under which
the record is stored in the refset.

In Listing 7-28, we show two shorter methods: writeRefs() and delRefs().

Listing 7-28. Part 2 of rdbRefSetOps.jsp: Action Definitions
public void writeRefs(Hashtable refSet, Hashtable appCache, Writer out){

// output refset to the out stream

Connection con=null; Statement stmt=null;

try{

con=getConnection(appCache);

stmt=con.createStatement();

out.write(“<refList>\n”);

for(java.util.Enumeration e=refSet.keys();e.hasMoreElements() ;){

String key=e.nextElement().toString();

out.write(getXmlValue(key,queryStringIdent(key),con,stmt));

}

out.write(“</refList>\n”);

}catch(Exception ex){

try{out.write(“<div class=’badError’>getRefs err: “+ex+”</div>”);}

catch(Exception ex2){}

}finally{

if(stmt!=null)try{stmt.close();}catch(Exception ex){}

if(con!=null)try{freeConnection(con,appCache);}catch(Exception ex){}

}

}

public void delRefs(String xPath,Hashtable refSet,

Hashtable sessCache,Hashtable appCache)throws Exception{

Enumeration keys=refSet.keys();

while(keys.hasMoreElements()){

String key=keys.nextElement().toString();

// for each key, retrieve XML string from the database, test with XPath

// return non-null if matched

if(null!=getRefIf(key,xPath,sessCache,appCache))

refSet.remove(key);

}

}

355

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 355

Listing 7-29 shows addRefs(), a long but fairly transparent piece of code. It
cleanly falls into two parts: the first part does database access and knows nothing
about XML, and the second does XPath filtering on the result set obtained in the
first part.

Listing 7-29. rdbRefSetOps.jsp, addRefs()
public void addRefs(

String sqlWhere, // SQL where clause

String refType, // citation or annotation?

String xPath, // XPath condition to check

Hashtable refSet,Hashtable sessCache,Hashtable appCache)

throws Exception{

// Part 1: run SQL query, obtain result set

Connection con=null;

PreparedStatement pStmt=null;

ResultSet rSet=null;

try{

con=getConnection(appCache);

String tableName; String prefix;

if(“annotations”.equals(refType)){

tableName=”rdbAnnotations”; prefix=”A”;

}

else {

tableName=”rdbCitations”; prefix=”C”;

}

String queryString=”SELECT ident,xmlValue FROM “+tableName;

if(sqlWhere.length() > 0) queryString+=” WHERE “+sqlWhere;

pStmt=con.prepareStatement(queryString);

rSet=pStmt.executeQuery();

// Part 2: filter result set by XPath

while(rSet.next()){

int ident = rSet.getInt(1); // get first item from next record

String xmlValue=rSet.getString(2); // get second item

String identStr=prefix+ident; // e.g., “A”+254

if(xPath.length()==0) // no XPath to test; add to refset

refSet.put(identStr,xPath);

else {

DocumentBuilderFactory dbf=

(DocumentBuilderFactory)sessCache.get(“dbf”);

DocumentBuilder db=dbf.newDocumentBuilder();

Document doc=db.parse(new InputSource(new StringReader(xmlValue)));

Node node=doc.getDocumentElement();

if(checkXpath(node,xPath,appCache))

356

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 356

refSet.put(identStr,xPath);

}

} // end while

}finally{ // clean up

if(rSet!=null)try{rSet.close();rSet=null;}catch(Exception ex){}

if(pStmt!=null)try{pStmt.close();pStmt=null;}catch(Exception ex){}

if(con!=null)try{freeConnection(con,appCache);}catch(Exception ex){}

}

}

XPath Filtering

We do XPath filtering in an Apache-specific way. There are several other ways to
achieve the same result. When the XQuery 1.0 and XPath 2.0 recommendations
are completed, the task of retrieving XML data from a database using an XPath
expression will be further streamlined, and perhaps standardized. For this rea-
son, we encapsulate the filtering predicate into a separate method, checkXpath(),
and we do not place great pedagogical value on our code that implements it—but
it can be easily replaced.

The predicate, as you have just seen in addRefs(), takes three arguments:
an element to test, an XPath expression to test it against, and the appCache.
The appCache is needed to process namespaces: as you remember, the name-
spaces are stored as a PrefixResolverDefault object in appCache. (See
setAppCacheRootElt() in Listing 7-11.) That object, together with the element
and the XPath, is given as an argument to the public static eval() method of
org.apache.xpath.XPathAPI; the output of the method is converted to a Boolean
and returned. The code is shown in Listing 7-30.

Listing 7-30. checkXpath()
public boolean checkXPath(Node node,String xPath,Hashtable appCache){

try{ // using Xalan’s XPathAPI; the alternative is

// to insert xPath into a stylesheet in a Transformer object

PrefixResolver resolver=(PrefixResolver)appCache.get(“namespaces”);

// evaluate and convert to boolean

return XPathAPI.eval(node,xPath,resolver).bool();

}catch(Exception ex){return false;}

}

The same predicate is used in getRefIf() that returns the DOM tree of the
document indicated by a reference, but only if that document checks against an
XPath condition. (See Listing 7-31.)

357

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 357

Listing 7-31. getRefIf()
public Document getRefIf(String ref,String xPath,

Hashtable sessCache,Hashtable appCache){

// Return DOM Document indicated by ref,

// but only if “xPath” condition holds.

try{

Document doc=getDoc(ref,sessCache,appCache);

if(checkXPath(doc.getDocumentElement(),xPath,appCache))

return doc;

}catch(Exception ex){}

return null;

}

Finally, the unconditional retrieval of a DOM document by its reference is
done by getDoc() and in a completely unremarkable way: the serialized XML
document is retrieved from the database and parsed, as shown in Listing 7-32.

Listing 7-32. getDoc()
public Document getDoc(String ref,Hashtable sessCache,Hashtable appCache){

// Return DOM Document indicated by ref.

try{

String xmlValue=getXmlValue(ref,appCache);

DocumentBuilderFactory dbf=

(DocumentBuilderFactory)sessCache.get(“dbf”);

DocumentBuilder db=dbf.newDocumentBuilder();

return db.parse(new InputSource(new StringReader(xmlValue)));

}catch(Exception ex){return null;}

}

This concludes our discussion of refset operations, and the entire chapter.

Conclusion

We covered a lot of ground in this chapter. The exposition has been organized
around a larger application that uses a relational database as a repository of per-
sistent XML data. The repository can be queried by a combination of SQL and
XPath expressions. The data itself is metadata, a collection of references to online
and offline resources and annotations on those references and other anno-
tations.

358

Chapter 7

031ch07.qxp 5/10/02 2:31 PM Page 358

To cover all the aspects of the application, we have introduced some new
material and revisited many previously discussed topics. In particular:

• To represent the data, we introduced XML metadata formalisms, Resource
Description Framework (RDF), and Dublin Core Metadata Element Set
(DCMES).

• To represent graphs of annotations, we revisited XLink, with modifications:
the href attributes defining locators are keys for looking up XML data in
a relational database.

• We have discussed ways to store XML data in relational databases and
illustrated some of them in our database: some of our XML records are
stored in the database as a collection of fields and others as XML text to be
parsed on retrieval.

• Before showing how the database is queried, we discussed the general
principles of database access and how they are implemented in Java.
Similar facilities, of course, exist in the ASP/ADO and the .NET frame-
works.

• Throughout the application, we used DOM both to build new XML records
and to modify existing ones.

We mentioned several times in the chapter that, eventually, a “native XML
database” may be a better infrastructure than a relational database for storing
XML data. However, native XML databases are still in beta at best, and, in any
event, relational database will continue to be in use for the foreseeable future,
and the task of integrating them with XML data stores and data flows will remain
relevant. Also on the horizon are the XQuery and XPath 2.0 recommendations,
which will bring a new degree of standardization to querying XML data using
XPath expressions (combined with SQL-like expressions of XQuery). When these
specifications are completed, a new edition of this book will definitely be in
order. Even then, the ideas and techniques introduced in this chapter will remain
useful for XML programmers.

359

XML Repository

031ch07.qxp 5/10/02 2:31 PM Page 359

031ch07.qxp 5/10/02 2:31 PM Page 360

CHAPTER 8

RELAX NG
and XML Schema

THIS CHAPTER PRESENTS two recent alternatives to DTDs: RELAX NG and XML
Schema. We will start with RELAX NG, which is a smaller framework that can be
easily covered in its entirety. XML Schema is a much larger specification that
would take a few chapters to do any kind of justice to it. (The specification itself
is more than 350 pages long.) Fortunately, it consists of two parts, and Part 2
(“Datatypes”) is completely independent of Part 1 (“Structures”). Part 2 is easy to
summarize, it can be used independently of Part 1, and both RELAX NG and
SOAP make use of it. XML Part 1 is a few notches higher on the scale of complex-
ity from Part 2, or from any other XML specification. However, it’s possible to
ignore much of it, and that’s what we are going to do, concentrating on only those
areas that are needed for understanding SOAP and the Web services technology.

As we have mentioned, XML Schema is a W3C recommendation. The RELAX
NG specification was developed under the auspices of an OASIS technical com-
mittee and released December 3, 2001. It has since been submitted to the ISO for
approval. As far as we know, this is the first time in the brief history of XML that
a major specification is moving towards a standard outside of W3C.

Both RELAX NG and XML Schema have the following features:

• XML syntax

• support for namespaces

• modularity and ease of reuse

• support for a rich system of data types comparable to those of major pro-
gramming languages

In both specifications, element content models are “first-class objects”: tree-
structured entities that can be named and referenced by name (and therefore
reused in multiple contexts). This is a major advance over DTD parameter enti-
ties that are simply character strings.

361

031ch08.qxp 5/10/02 2:30 PM Page 361

For all these similarities, the two languages still have major differences
between them. XML Schema Part 1 is a huge monolithic whole. It contains many
features that have little to do with validation (such as type inheritance and iden-
tity constraints). It mandates massive additions to the document’s infoset as
a byproduct of validation. The data-typing vocabulary of XML Schema Part 2 is
hardwired into Part 1. By contrast, RELAX NG emphasizes modularity and exten-
sibility. Its main task is validation, and it takes care not to introduce anything in
a RELAX NG grammar that would make additions to the document’s infoset. For
instance, it provides no means for specifying attribute defaults. If such additions
are desired for backward compatibility with DTDs, a specialized mechanism can
be invoked to achieve such compatibility. Similarly, RELAX NG has a clean inter-
face for connecting to a data type library that may or may not be XML Schema
Part 2. If all you need to do is validate and check simple data types, RELAX NG is
a better tool. It is also by far the best tool for validating XHTML-derived lan-
guages, within the framework of XHTML modularization described in Chapter 3.
RELAX NG makes it possible and practicable for ordinary mortals to use the
modularization framework. In summary, RELAX NG does fewer things but it does
them better, and it provides hooks for additional functionality (such as data typ-
ing) that can be performed before, after, or instead of validation.

In outline, the chapter will proceed as follows:

• RELAX NG introduction and frameworks for testing

• RELAX NG overview, with subdivisions

• modularization and reuse with RELAX NG

• XHTML modularization with RELAX NG

• data typing within RELAX NG using XML Schema data types

• overview of the XML Schema Part 1 recommendation

RELAX NG History and Current Condition

RELAX NG resulted from the merger of two earlier projects: Murata Makoto’s RELAX
(REgular LAnguage description for XML) and James Clark’s TREX (Tree Regular
Expressions for XML). The two projects had a good deal in common: both aimed
to produce a better DTD, with XML syntax, support for namespaces, and more
expressive power. Both relied on XML Schema Part 2 for a vocabulary of data
types. After the merger, the creators of TREX and RELAX became the co-editors of

362

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 362

RELAX NG (Next Generation), within the framework of an Oasis technical com-
mittee (http://www.oasis-open.org/committees/relax-ng/). In December 2001,
the committee published version 1.0 of the specification, together with two sup-
plemental documents: a tutorial and a DTD compatibility specification.

Other Materials and Tools

In addition to the official OASIS site, a major source of RELAX NG materials is
James Clark’s Web site, www.thaiopensource.com. It contains, among other things,

• two versions of a RELAX NG validator Jing (presented shortly).

• an implementation of the XHTML modularization framework and XHTML
Basic.

• RELAX NG grammars for RELAX NG itself and for XSLT.

• a test suite for RELAX NG.

• a remarkable program called DTDinst that converts a DTD (with parame-
ter entities and all) into an equivalent XML document. Two XML output
formats are provided, one of them RELAX NG.

• a paper entitled “The Design of RELAX NG” that provides motivations for
major design decisions. Although theoretical in places, the paper is useful
for RELAX NG practitioners as well.

Several RELAX NG tools can be found at Sun’s Developer Connection site,
http://www.sun.com/software/xml/developers/. The most important of them is
the Multi-Schema Validator (MSV) that can validate XML documents against sev-
eral kinds of XML schemas: RELAX NG, RELAX, TREX, DTD, and a subset of XML
Schema Part 1.

An interesting tool related to RELAX NG is RelaxNGCC (RELAX NG Compiler
Compiler, http://homepage2.nifty.com/okajima/relaxngcc/index_en.htm).
A “compiler-compiler” is a computer program whose input is a grammar in
which every grammar rule is associated with a certain action, described by
a piece of code (such as a function). The program uses such an input to generate
a “compiler” for the grammar that, in addition to parsing, performs actions asso-
ciated with grammar rules. Because, in a context-free grammar, a grammar rule
corresponds to a subtree of the parse tree, the compiler-compiler generates
a program that performs specified operations on subtrees of the parse tree. The
best-known compiler-compiler is YACC (Yet Another Compiler Compiler), which

363

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 363

is part of the Unix operating system. Many compiler-compilers have been written
for BNF grammars (introduced in Chapter 2); RelaxNGCC provides similar func-
tionality for RELAX NG grammars.

With background in place, we proceed to a simple example and a framework
for testing.

A Simple Example

Recall our very first DTD for a question-answer exchange (Listing 1-5 in
Chapter 1):

<!ELEMENT exchange (q, a)>

<!ELEMENT q (#PCDATA)>

<!ELEMENT a (#PCDATA)>

<!ATTLIST exchange tone (friendly|polite| cold|rude) “friendly”>

In RELAX NG, this comes out as rng/exchange.rng.

Listing 8-1. The First RELAX NG Grammar
<element name=”exchange xmlns=”http://relaxng.org/ns/structure/1.0”>

<element name=”q”><text/></element>

<element name=”a”><text/></element>

<attribute name=”tone”>

<choice>

<value>friendly</value>

<value>polite</value>

<value>cold</value>

<value>rude</value>

</choice>

</attribute>

</element>

Two differences from the DTD are immediately noticeable:

• A RELAX NG grammar is an XML document in
“http://relaxng.org/ns/structure/1.0” namespace.

• There is no way to provide a default value for an attribute. In general, there
is no way, within RELAX NG proper, to put material in the grammar that
will augment the document’s infoset. However, you can do that in gram-
mar annotations, as explained later in the chapter.

364

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 364

Validating Against RELAX NG Grammars

Several validation tools are available, including James Clark’s Jing and Sun’s MSV
(http://www.sun.com/software/xml/developers/multischema/). We use Jing,
which comes in two versions: a jing.jar file and a Windows executable, jing.exe.
The Windows executable is used from the command line wheareas the jar exe-
cutable can be used either from the command line or within a Web application.
We will present both kinds of usage.

Using a Web Application

To connect to our Web application for RELAX NG, refer to http://local-
host:8080/xmlp/rng/validate.htm. You will see a page with two frames. The
frame on the left has a form with two input boxes: one for an XML file to validate
and the other for a RELAX NG grammar to validate it against. Submitting the
form runs the validator; if the text area on the right shows no output, validation
has been successful. Otherwise, an error message is displayed. Figure 8-1 shows
the page with the output from termDefBad.xml and termDef.rng.

The form input, when submitted, goes to validaterng.jsp. The main fact to
keep in mind when reading that JSP is that Jing works on top of a SAX2 XML
parser. Because we want to capture its error messages and display them in a Web
page, we have to go inside Jing code and obtain our own instance of the parser
(XML reader) and the error handler.

365

RELAX NG and XML Schema

Figure 8-1. RELAX NG validation page

031ch08.qxp 5/10/02 2:30 PM Page 365

In outline, validaterng.jsp proceeds as follows:

1. Import the libraries.

2. Declare methods for getting an XML reader and an error handler.

3. Process the Request object.

4. Set up output streams.

5. Parse, validate, and display errors (if any) in the text area.

Skipping the imports, we proceed directly to declarations. The structure of
Jing’s code is such that, to obtain a parser instance, we have to implement an
XMLReaderCreator interface and give the implementing class a createXMLReader()
method, as shown in Listing 8-2.

Listing 8-2. Obtaining an XML Reader
public class XMLReaderCreatorImpl implements XMLReaderCreator {

public XMLReaderCreatorImpl() {} // default constructor

public XMLReader createXMLReader() throws SAXException {

XMLReader xr;

try{

xr=SAXParserFactory.newInstance().newSAXParser().getXMLReader();

}catch(Exception ex){throw new SAXException(ex);}

// set the parser’s features, as explained in chapter 4 :

// namespace-aware, do not preserve prefixes

xr.setFeature(“http://xml.org/sax/features/namespaces”, true);

xr.setFeature(“http://xml.org/sax/features/namespace-prefixes”, false);

try { // disable DTD validation

xr.setFeature(“http://xml.org/sax/features/validation”, false);

}catch (Exception e) {}

return xr;

}

}

The error handler is created by a plain public method (not within a class).
The method creates a modified default error handler and returns it. The Java
code is a little tricky in its use of an anonymous inner class, but is otherwise quite
clear. (See Listing 8-3.)

366

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 366

Listing 8-3. Obtaining an Error Handler
public ErrorHandler createErrorHandler(){

DefaultHandler dh = new DefaultHandler(){

// dh is an object of an anonymous inner class

// that is derived from DefaultHandler

void printErr(SAXParseException e){

System.err.println(“[**] “+e+”\n at “+e.getLineNumber()+”:”

+e.getColumnNumber()+” of “+e.getPublicId()+” - “+e.getSystemId());

}

public void warning(SAXParseException e)

throws SAXException{printErr(e);}

public void error(SAXParseException e)

throws SAXException{ printErr(e);}

public void fatalError(SAXParseException e)

throws SAXException{ printErr(e);}

};

return dh;

}

With declarations in place, we can proceed to the code that actually does the
work. First, we process the Request object and set up output streams. Remember
that, in the Tomcat system, System.out and System.err are directed to the Tomcat
console window; we want to direct error output to the text area in the Web page.
Once the output streams are set up, we parse and validate.

Listing 8-4. Process the Request Object, Parse, and Validate.
// process Request object

String rng=request.getParameter(“rng”);

String uri=request.getParameter(“uri”);

if(uri.indexOf(“:”) < 0) // local file, not a URL

uri = new File(application.getRealPath(uri)).toURL().toString();

if(rng.indexOf(“:”) < 0) // local file, not a URL

rng = new File(application.getRealPath(rng)).toURL().toString();

// set up output streams

java.io.PrintStream sysOut = System.out;

java.io.PrintStream sysErr = System.err;

java.io.ByteArrayOutputStream baos = new java.io.ByteArrayOutputStream();

final java.io.PrintStream ps = new java.io.PrintStream(baos);

// parse, validate and output error messages, if any:

<html><body>

If the text area is empty, validation has been successful:

<textarea cols=”50” rows=”10”>

<% try{

367

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 367

System.setOut(ps);

System.setErr(ps);

ValidationEngine engine= new ValidationEngine(

new XMLReaderCreatorImpl(),createErrorHandler(),true);

if(!engine.loadSchema(new InputSource(rng))) { // parse grammar

%> sorry, can’t load pattern from <%= rng %>; failed <%

}else engine.validate(new InputSource(uri)); // parse and validate XML

}catch(Throwable ex){ex.printStackTrace(new java.io.PrintWriter(out,true));}

finally{System.setOut(sysOut);System.setErr(sysErr);}

%>

<%= baos.toString() %>

</textarea></body></html>

Using the Command Line

From the command line, you can use either jing.jar or (on Windows) jing.exe. To
use jing.exe, simply make sure that it is on the path. The usage is

jing grammar.rng doc1 doc2...

Running jing.exe on exchange.rng and a “bad” exchange that has q and a in
the wrong order (exchangeBad.xml) produces this output (with long lines broken
in two and whitespace rearranged for readability):

C:\tomcat401\webapps\xmlp\rng>jing exchange.rng exchangeBad.xml

Error at URL “file:/C:/tomcat401/webapps/xmlp/rng/exchangeBad.xml”,

line number 3, column number 3: element “a” not allowed at this point

Error at URL “file:/C:/tomcat401/webapps/xmlp/rng/exchangeBad.xml”,

line number 5, column number 1: unfinished element

Elapsed time 290 milliseconds

To run the Java validator, the jing.jar and a JAXP-compatible SAX2 parser
(such as Xerces or Crimson) must be on the classpath. The classpath can be set
on the command line with the -cp option. The class that runs the validator is
com.thaiopensource.relaxng.util.Driver. The arguments are the same as with
the Windows executable:

java -cp c:\cp\jing.jar;c:\cp\xerces.jar com.thaiopensource.relaxng.util.Driver

grammar.rng doc1 doc2...

368

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 368

We provide, in the xmlp/rng directory, two BAT files: one to run Jing with
Xerces (jingx.bat) and the other to run Jing with Crimson (jingcrimson.bat).
Using jingx.bat, we can run the same test as before like this:

C:\tomcat401\webapps\xmlp\rng>jingx exchange.rng exchangeBad.xml

This gets expanded and produces nearly identical output:

C:\tomcat401\webapps\xmlp\rng>java -cp c:\tomcat401\common\lib\jing.jar;c:\tomca

t401\common\lib\xerces.jar -Dcom.thaiopensource.relaxng.util.RegexEngine=com.tha

iopensource.relaxng.util.XercesRegexEngine com.thaiopensource.relaxng.util.Drive

r exchange.rng exchangeBad.xml

Error at URL “file:/C:/tomcat401/webapps/xmlp/rng/exchangeBad.xml”, line number

3, column number 6: element “a” not allowed at this point

Error at URL “file:/C:/tomcat401/webapps/xmlp/rng/exchangeBad.xml”, line number

5, column number 13: unfinished element

Elapsed time 651 milliseconds

Using the smaller Crimson parser takes a little less time. However, only
Xerces supports XML Schema data types.

RELAX NG Overview

There is a peculiar difficulty in writing about RELAX NG: The tutorial
(http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html)
provided by the editors of the specification is so good that it’s difficult to add any-
thing to it. We provide an overview that is less comprehensive but that
concentrates on features that are likely to be most commonly used.

RELAX NG features can be conveniently grouped around several large
themes. (In the bulleted list, the headers in parentheses indicate the corre-
sponding sections of the tutorial.)

• XML syntax

• element definitions and named content models (Named Patterns)

• uniform treatment of elements and attributes (Choice, Attributes,
Enumerations, Lists, Interleaving)

• namespace support, both in the grammar itself and in document instances
(Namespaces, Annotations)

369

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 369

• name classes (Name Classes)

• modularity and code reuse (Modularity, Nested Grammars)

• a system of data types (Datatyping)

The prefinal version of the specification and tutorial also had material on
keys and key references, a generalization of the DTD’s ID/IDREF functionality.
This material has been removed from the specification (and therefore the tuto-
rial). The reason seems to be that the theoretical foundations of identity and
reference in XML are still poorly understood, and therefore the RELAX NG com-
mittee felt it was premature to bring this functionality into RELAX NG, which is
otherwise based on the well-understood theory of tree automata.

XML Syntax

The language of DTD has several reserved words and symbols that are expressed
by XML elements in RELAX NG. Table 8-1 shows a sample of correspondences. As
first indications of how elements and attributes are treated uniformly in RELAX
NG, note that both CDATA and PCDATA come out as <text/>, and the “items” in
the table can be replaced by either elements or attributes. (A more precise state-
ment follows soon.)

Table 8-1. A Sample of DTD and RELAX NG Correspondences

MEANING DTD RELAX NG

parsed text PCDATA <text/>

unparsed text CDATA <text/>

empty element content EMPTY <empty/>

sequence item1,item2 item1 item2

choice item1|item2 <choice>item1 item2</choice>

optional item? <optional> item </optional>

zero or more item* <zeroOrMore> item </zeroOrMore>

one or more item+ <oneOrMore> item </oneOrMore>

group (item1 item2) <group>item1 item2</group>

370

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 370

Here is an example of a DTD fragment and the corresponding RELAX NG
pattern:

<!ELEMENT elt ((a,b)|c,d)>

<!ELEMENT a (#PCDATA)>

<!-- same definition for b, c, d; Now RELAX NG -->

<element name=”elt”>

<choice>

<group>

<element name=”a”><text/><element>

<element name=”b”><text/><element>

</group>

<element name=”c”><text/><element>

</choice>

<element name=”d”><text/><element>

</element>

RELAX NG operates as a pattern-matching language: the grammar specifies
patterns that instance documents must match.

Patterns and Grammars

A RELAX NG pattern is an XML element of any of the types shown in Table 8-2.

371

RELAX NG and XML Schema

Table 8-2. RELAX NG Patterns

grammar The root element, usually

element, attribute For defining elements and attributes

group, choice For defining content models; correspond to () and |

optional, zeroOrMore, For defining content models; correspond to ?, *, and +

oneOrMore

list For listing enumerated values, in both attribute and element definitions

interleave Sequence in any order, used in both attribute and element definitions

mixed, empty, text For mixed and empty content models

ref, parentRef, externalRef References to names defined elsewhere using the <define> element

value, data For typed data

notAllowed Used in merging grammars; advanced usage

031ch08.qxp 5/10/02 2:30 PM Page 371

A RELAX NG “document type definition” consists of a single pattern. The pat-
tern can be as simple as a single element definition, as in Listing 8-1. Usually, the
root element of a RELAX NG grammar is grammar. Within a grammar element,
a pattern or a sequence of patterns can be named using define elements and ref-
erenced by name in other patterns using ref elements. For instance, an element’s
content model can be named and reused.

We will illustrate the basic usage with a UsAddress.rng grammar for U.S.
postal addresses. The first version (Listing 8-5) is intentionally simplistic.

Listing 8-5. RELAX NG Grammar for U.S. Postal Address
<grammar xmlns=”http://relaxng.org/ns/structure/1.0”>

<start>

<ref name=”UsAddress”></ref>

</start>

<define name=”UsAddress”>

<element name=”us-address”>

<ref name=”UsAddressContentModel”/>

</element>

</define>

<define name=”UsAddressContentModel”>

<element name=”street”><text /></element>

<element name=”city”><text /></element>

<element name=”state”><text /></element>

<element name=”zip”><text /></element>

</define>

</grammar>

A grammar usually contains a single start element to indicate the root ele-
ment of document instances. (If your grammar is intended for inclusion in other
grammars rather than as a top-level grammar, the start element can be omitted.
See the following text on inclusion and reuse.) The start element is followed by
any number of include and define elements. The order of elements, including
the start element, is not important, but it makes sense to place the start ele-
ment at the top of grammar definition.

Tokens and Enumerations

The grammar of Listing 8-5 does not express many obvious constraints. The
content of zip is not arbitrary text but a single token that does not contain white-
space. We can improve by saying

<element name=”zip”><data type=”token” /></element>

372

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 372

To express the more precise constraint that zip consists of five or nine digits,
we’ll need to import a data-typing library. (See the section on data types later in
this chapter.) Without an external data-typing library, RELAX NG has only two
built-in data types: token and string. The difference between them is the same as
the difference between NMTOKEN and CDATA in XML: token conforms to the
syntax of the QName production and does not contain whitespace.

The content of the state element is constrained to an enumeration of 51
possible tokens. To express this, we could say

<element name=”state”>

<choice>

<value>AK</value>

<value>AL</value>

<value>AR</value>

<!-- 47 more states and the District of Columbia -->

</choice>

</element>

In DTDs, only attributes could have enumerated values. In RELAX NG, ele-
ments and attributes are treated as uniformly as possible: they have the same
pattern syntax and nearly identical sets of constraints.

Uniform Treatment of Elements and Attributes

Within an element’s definition, both definitions of children elements and
definitions of attributes are children of the parent/owner element’s definition:

<element name=”parent-owner”>

<element name=”child1”><text/></element>

<element name=”child2”><empty/></element>

<attribute name=”attr1”>

<choice><value>a</value><value>b</value></choice>

</attribute>

<attribute name=”attr2”></attribute>

</element>

The uniform syntax does not mean that the definition of validity has
changed: as with DTDs, the order of element declarations determines the order
of children in an instance document, but the order of attributes is unconstrained.
This means that attribute definitions may appear in any order. They can also be
intermixed, in any order, with children elements’ definitions. The following defi-
nition is equivalent to the previous one:

373

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 373

<element name=”p”>

<attribute name=”a2”></attribute>

<element name=”c1”><text/></element>

<attribute name=”a1”>

<choice><value>a</value><value>b</value></choice>

</attribute>

<element name=”c2”><empty/></element>

</element>

Choice Between Elements and Attributes

The uniformity of syntax yield benefits in expressive power: we can naturally
express a choice between an element and an attribute:

<define name=”Email”> <!-- can be attribute of parent, element, or structure -->

<choice>

<attribute name=”email”><text/></attribute>

<element name=”email”>

<choice>

<text/>

<group>

<element name=”userid”><text/></element>

<element name=”host”><text/></element>

</group>

</choice>

</element>

</choice>

</define>

The one difference between element and attribute definitions is that an attri-
bute definition can be an empty element, and its content will default to <text/>;.
The following two definitions are equivalent:

<attribute name=”email”><text/></attribute>

<attribute name=”email”></attribute>

An element definition cannot be empty: it has to explicitly say <text/> or
<empty/>.

374

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 374

Lists

In DTDs, only attribute values (not element content) can be defined as a list of
tokens. RELAX NG again provides uniform treatment. We show here an element
definition, but an attribute definition would use exactly the same syntax:

<element name=”listTest”>

<list>

<oneOrMore>

<data type=”token”/>

</oneOrMore>

</list>

</element>

This will match such content as

<listTest>a b c d</listTest>

If we made a data type library available (see the section “The datatypeLibrary
and XML Schema Data Types” later in this chapter), we could declare an element
type that is a list of integers or Booleans. Even a list of tokens is different enough
from string to make it worth defining: each item on the list must conform to the
XML name production, and whitespace is normalized in a list of tokens but not
in a string.

Interleaving of Elements and the Mixed-Content Model

In DTDs, there is no way to define an unordered set of elements, short of writing
out the disjunction of all possible reorderings. RELAX NG provides the
interleave pattern for this purpose. You can interleave any patterns, including
optional elements, zeroOrMore patterns, and oneOrMore patterns.

The mixed pattern, corresponding to the DTD mixed-content model, is, in
fact, shorthand for interleaving text with elements:

<mixed>somePattern</mixed>

stands for

<interleave> <text/> somePattern </interleave>

Unlike DTDs, this allows the order of children to be specified even within the
mixed-content model. Consider a document that introduces many new terms

375

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 375

that each must be followed by a definition, perhaps separated by some text. The
following grammar (termDef.rng) enforces that constraint. (See Listing 8-6.)
The grammar filters out documents in which a definition element appears
before the matching term element, or one of the two is missing.

Listing 8-6. Terms and Definitions
<grammar xmlns=”http://relaxng.org/ns/structure/1.0”>

<start>

<element name=”termdef”>

<ref name=”termdefContent”/>

</element>

</start>

<define name=”termdefContent”>

<mixed>

<oneOrMore>

<ref name=”TermRef”/><ref name=”DefRef”/>

</oneOrMore>

</mixed>

</define>

<define name=”TermRef”>

<element name=”term”><data type=”token”/></element>

</define>

<define name=”DefRef”>

<element name=”def”><data type=”string”/></element>

</define>

</grammar>

This grammar will accept termDef.xml in Listing 8-7, but reject the same file
with a term and a def switched around or one of them missing.

Listing 8-7. Document with Terms and Definitions
<termdef>

Some text 1

<term>a</term>

More text 1

<def>first letter</def>

Some text 2

<term>b</term>

More text 2

<def>second letter</def>

Even more text

</termdef>

376

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 376

Namespace Support

RELAX NG supports namespaces. A name defined by a RELAX NG grammar
consists of a namespace URI and a local NCName (no-colon name). It matches
a name in the instance document only if both the namespace URI and the local
name match. A RELAX NG processor matches names against definitions in a con-
text that contains all the defined mappings from prefixes to namespace URIs.

To specify the namespace of a name being defined, the ns attribute is used:

<element name=”e” ns=”http://www.n-topus.com/ns/rngexample”>

<text/>

</element>

This will match any of the three following elements, but no names from
a different namespace:

<e xmlns=”http://www.n-topus.com/ns/rngexample”>hmmmm. . . . </e>

<p:e xmlns:p=”http://www.n-topus.com/ns/rngexample”>well, maybe</p:e>

<pre:e xmlns:pre=”http://www.n-topus.com/ns/rngexample”>any text, really</pre:e>

The ns attribute can appear on any element of a RELAX NG grammar, and
the namespace it specifies will attach itself to every name defined within its
scope. So, if you specify a namespace on a choice element:

<choice ns=”http://www.n-topus.com/ns/rngexample”>

<element name=”na”>...</element>

<element name=”nb”>...</element>

<element name=”nc”>...</element>

</choice>

all the element names defined within the choice element will belong to that
namespace.

If all the names in instance documents come from the same namespace, it
makes sense to put the ns attribute on the grammar element. The effect is that
every time you say

<element name=”...“

the name you have defined will belong to the namespace specified on the
grammar element.

377

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 377

QNames in Definitions

What if your instance documents combine vocabularies from more than one
namespace? One solution is to repeat ns attributes within the grammar every
time you switch from one vocabulary to another. This is tedious and prone to
errors, so RELAX NG allows you to associate the “target” namespaces with pre-
fixes (using the standard xmlns attribute) and to use qualified names as the values
of the name attribute. For instance, suppose that your instance documents com-
bine Resource Definition Framework and Dublin Core vocabularies. You can start
your grammar like this:

<grammar xmlns=”http://relaxng.org/ns/structure/1.0”

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:dc=”http://purl.org/dc/elements/1.1/”

...

>

The following two definitions will define names in two different namespaces:

<element name=”rdf:Description”>...</element>

<element name=”dc:description>...</element>

An alternative approach is to define separate grammars for the two vocabu-
laries and use the include element to incorporate them into your combined
vocabulary. We will show how to do that in the section on modularity and reuse.

Namespaces and Attributes

Attributes, as you know, do not inherit the namespace specified on its parent ele-
ment but rather default to no namespace (that is, the Namespace URI that is the
empty string). Suppose that you say

<element name=”e” ns=”http://www.n-topus.com/ns/rngexample”>

<empty/>

<attribute name=”a”><text/></attribute>

</element>

This is equivalent to

<element name=”e” ns=”http://www.n-topus.com/ns/rngexample”>

<empty/>

<attribute name=”a” ns=””><text/></attribute>

</element>

378

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 378

Both will match the first two of the following elements but not the third one:

<e xmlns=”http://www.n-topus.com/ns/rngexample” a=”whatever”/>

<p:e xmlns:p=”http://www.n-topus.com/ns/rngexample” a=”whatever”/>

<p:e xmlns:p=”http://www.n-topus.com/ns/rngexample” p:a=”whatever”/>

To have attribute names in a namespace, you have to use one of the follow-
ing approaches:

• Specify the namespace in the attribute definition using the ns attribute.

• Associate the namespace with a prefix and use a QName in the attribute
definition.

• Define the “namespaced” attributes in a separate grammar and include it
in the grammar for the combined vocabulary.

We will illustrate the last approach in the “rddl.rng” section later in the chap-
ter where we define a language that combines the XHTML and XLink
vocabularies.

Namespaces Within the Grammar: Annotations

RELAX NG grammars are themselves XML documents that use names from
a specific namespace. All names from other namespaces are ignored by the val-
idator and therefore can serve as annotations or comments. For instance:

<grammar xmlns=”http://relaxng.org/ns/structure/1.0”

xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:dc=”http://purl.org/dc/elements/1.1/”

xmlns:ann=”http://www.n-topus.com/ns/rngexample/”

...

>

<ann:comment>This grammar is for a bibliographic database language

that combines two RDF elements with the Dublin Core metadata vocabulary.

Arbitrary XHTML (except applets and objects) can be used within

dc:description elements</ann:comment>

Suppose that you have another XML vocabulary within a namespace that is
used to write programs for some processor to execute. You can intersperse a text
in that vocabulary with the RELAX NG grammar, extract it using XSLT, and run
the other program. This technique has been suggested for Schematron patterns

379

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 379

embedded in XML schemas (see
http://www.ascc.net/xml/resource/schematron/schematron.html), but it can
also be used with RELAX NG grammars.

An Annotation Vocabulary for DTD Compatibility

To facilitate transition from DTDs to RELAX NG, a separate specification defines
a controlled annotation vocabulary to express two features of DTDs that are not
expressible in RELAX NG grammars. These features are default attributes and the
validity constraints on the ID and IDREF attribute data types. (IDs must be
unique within a document; IDREFs must refer to an existing ID.) Consider this
DTD (from the specification):

<!DOCTYPE employees [

<!-- A list of employees. -->

<!ELEMENT employees (employee*)>

<!-- An individual employee. -->

<!ELEMENT employee (#PCDATA)>

<!ATTLIST employee

id ID #REQUIRED

manages IDREFS #IMPLIED

managedBy IDREF #IMPLIED

country (US|JP) “US”

>

]>

It can be translated to the following RELAX NG schema (with annotation-related
material highlighted):

<element name=”employees”

xmlns=”http://relaxng.org/ns/structure/1.0”

xmlns:a=”http://relaxng.org/ns/compatibility/annotations/1.0”

datatypeLibrary=”http://relaxng.org/ns/compatibility/datatypes/1.0”>

<a:documentation>A list of employees.</a:documentation>

<zeroOrMore>

<element name=”employee”>

<a:documentation>An individual employee.</a:documentation>

<attribute name=”id”>

<data type=”ID”/>

</attribute>

<optional>

<attribute name=”manages”>

<data type=”IDREFS”/>

380

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 380

</attribute>

</optional>

<optional>

<attribute name=”managedBy”>

<data type=”IDREF”/>

</attribute>

</optional>

<optional>

<attribute name=”country” a:defaultValue=”US”>

<choice>

<value>US</value>

<value>JP</value>

</choice>

</attribute>

</optional>

<text/>

</element>

</zeroOrMore>

</element>

As you can see, the DTD compatibility package provides the following fea-
tures:

• documentation element within the “compatibility” namespace

• defaultValue attribute within the same namespace

• a data type library that defines the ID, IDREF, and IDREFS types as they are
defined in XML 1.0

The specification also defines conformance requirements for processors that
implement the compatibility package. As of this writing (February 2002), neither
Jing nor MSV implements it.

Name Classes

Normally, the element pattern (that is, the element element in the RELAX NG
namespace) has a name attribute, and matches only those elements in instance
documents that have the same name as the value of that attribute. However, this
is too rigid for some tasks. Consider RDDL that we covered in Chapter 2: it is
XHTML Basic augmented by one element called resource. As currently defined,
resource can use only simple links and, therefore, five specific XLink attributes.

381

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 381

(We will define RDDL according to its current spec in the “rddl.rng” section later
in this chapter.) Suppose we wanted to say that resource (or some other element
in some other language) can take all XLink attributes. We would like to be able to
say that resource can take any attribute from the XLink namespace. RELAX NG
allows you to do that, using the nsName element, as in the highlighted line in the
following code:

<element name=”resource”><!-- first we define resource element -->

<ref name=”resource.attlist”/>

<ref name=”Flow.model”/><!-- defined in XHTML Basic -->

</element>

<define name=”resource.attlist”>

<ref name=”lang.attrib”/><!-- defined in XHTML Basic -->

<ref name=”id.attrib”/><!-- defined in XHTML Basic -->

<ref name=”XMLBASE.attrib”/><!-- defined in XHTML Basic -->

<nsName ns=”http://www.w3.org/1999/xlink”/><!-- any XLink attribute -->

</define>

You will see these definitions in a larger context in the section on modularity,
in which we’ll show you the entire modularization framework implemented in
RELAX NG. For now, just note the single highlighted line in which a name class
is used.

The nsName element can be used without an ns attribute, in which case its
value defaults as usual to the element’s inherited namespace.

Combining Name Classes

You can perform set operations on name classes. The choice name class matches
any name that is matched by any of its children name classes. The not name class
matches all names that are not matched by its child name class. The following
example (adapted from the tutorial) shows an element that can have any number
of attributes from any namespace other than its own:

<element name=”cite” ns=”http://www.example.com”>

<zeroOrMore>

<attribute>

<not>

<choice>

<nsName ns=””/> <!-- must be in a namespace -->

<nsName/> <!-- the namespace must be different from its element’s -->

</choice>

</not>

382

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 382

</attribute>

</zeroOrMore>

<text/>

</element>

By itself, the highlighted part matches a single attribute (from an open set of
names); to match any number of those, the zeroOrMore pattern is needed.

Modularity and Reuse

The main tools of modularization are two patterns: externalRef and include. Any
pattern residing in an external file can be referenced from a RELAX NG grammar
using the externalRef pattern. A grammar residing in an external file can be
included in another grammar using the include pattern. Both elements have
a required href attribute and are processed in the same way:

1. The XML text referenced by the href attribute is parsed.

2. All attributes from the referring element (externalRef or include) are
transferred to the result of parsing.

3. The result of parsing replaces the referring element.

This provides a mechanism for creating vocabularies out of reusable
modules.

Combining and Replacing Definitions

In addition to reusing modules, we want to be able to reuse (that is, redefine)
names. RELAX NG allows multiple definitions of the same name and provides
three ways of combining them: choice, interleave, and replace.

383

RELAX NG and XML Schema

NOTE Multiple definitions usually result from an external reference or
inclusion, but there is no prohibition against a single grammar having
multiple definitions of the same name. The mechanisms for
combining multiple definitions are the same in both cases.

031ch08.qxp 5/10/02 2:30 PM Page 383

Combining Definitions

If a grammar contains multiple definitions of the same name, at least one of
them must have a combine attribute. The possible values of combine are choice or
interleave. The effect is equivalent to wrapping alternative definitions into
a choice or interleave pattern. In both cases, the order in which alternatives
appear does not matter: the choice and interleave operations are order inde-
pendent (or commutative, in algebraic terms). In the DTD framework, as we saw
in last chapter, combining is done by concatenating strings, which is not com-
mutative. In general, commutative operations are better because they remove
a big burden from the programmer and a frequent source of bugs.

Replacing Definitions

In the case of included grammars, definitions in the including grammar can also
be replaced by new definitions. The new definitions must be supplied as children
of the include element. Three element types can appear, in any order and any
number of times, as children of include: define, start, and div. A define child of
include replaces the definition(s) of the same name within the included gram-
mar, and a start child of include redefines its start element, if any. The div
element has the same content model as grammar and serves to group definitions
together.

As an example of modularity and reuse, consider how XHTML modulari-
zation and XHTML Basic are implemented in RELAX NG. You may want to review
the XHTML Basic section of Chapter 3, to be reminded of the issues.

XHTML Modularization

The current version of RELAX NG implementation of XHTML modularization can
be found at http://thaiopensource.com/relaxng/xhtml/. The home page says,
in part,

The modules directory contains all the modules; xhtml-basic.rng uses the
modules to implement XHTML Basic; xhtml-strict.rng uses the modules to
implement XHTML 1.0 strict; xhtml.rng uses the modules to implement the
union of XHTML 1.0 transitional and XHTML 1.0 frameset. . . . To create
a custom version of XHTML, simply copy xhtml.rng and delete the inclusions
of the modules that you do not want.

384

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 384

The biggest difference between the RELAX NG implementation and the DTD
implementation is that the RELAX NG implementation does not require you
to create a model module specific to the combination of XHTML modules
you are using. Instead, simply include the modules you want. The modules
take care of redefining the content models appropriately.

Let’s start by looking at xhtml.rng, which corresponds to the DTD driver file.

xhtml.rng

This file contains nothing but include patterns, providing, in effect, a listing of all
available modules. (See Listing 8-8.)

Listing 8-8. The XHTML Driver File for the Union of Transitional and
Frames DTDs
<!-- This corresponds to the union of transitional or frameset DTDs -->

<grammar ns=”http://www.w3.org/1999/xhtml”

xmlns=”http://relaxng.org/ns/structure/1.0”>

<include href=”modules/datatypes.rng”/>

<include href=”modules/attribs.rng”/>

<!-- <include href=”modules/struct.rng”/> -->

<include href=”modules/frames.rng”/>

<include href=”modules/text.rng”/>

<include href=”modules/hypertext.rng”/>

<include href=”modules/list.rng”/>

<include href=”modules/image.rng”/>

<include href=”modules/ssismap.rng”/>

<include href=”modules/base.rng”/>

<include href=”modules/link.rng”/>

<include href=”modules/meta.rng”/>

<include href=”modules/param.rng”/>

<include href=”modules/object.rng”/>

<include href=”modules/bdo.rng”/>

<include href=”modules/pres.rng”/>

<include href=”modules/edit.rng”/>

<include href=”modules/applet.rng”/>

<!-- <include href=”modules/basic-form.rng”/> -->

<include href=”modules/form.rng”/>

<include href=”modules/style.rng”/>

<include href=”modules/script.rng”/>

<!-- <include href=”modules/basic-table.rng”/> -->

<include href=”modules/table.rng”/>

385

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 385

<include href=”modules/csismap.rng”/>

<include href=”modules/events.rng”/>

<include href=”modules/inlstyle.rng”/>

<include href=”modules/target.rng”/>

<include href=”modules/iframe.rng”/>

<include href=”modules/nameident.rng”/>

<include href=”modules/legacy.rng”/>

</grammar>

You will notice that three modules are commented out: Basic-form, Basic-
table, and Struct. The two Basic modules are commented out because they are
included in their full-sized siblings. Unlike the DTD version, in which the Forms
and Table modules are written from scratch because, without any code reuse, the
RELAX NG implementation derives them from the Basic modules. We will see
how it is done after we review frames.

The Frames Problem

To remind you of the situation with frames, we have to go back all the way to the
HTML 4.0 recommendation. It contains three SGML DTDs: strict, transitional,
and loose, in addition to a special frameset DTD, in which the html element con-
sists of head and frameset, rather than head and body. The loose DTD was
intended to justify and forgive many “features” that had been introduced before
HTML was codified. The transitional DTD was less forgiving, and it intended to
provide a migration path to the strict DTD. The frameset DTD was supposed
to complement the loose and transitional ones but not the strict DTD. The
strict DTD disallowed many features that were listed as “deprecated” in transi-
tional DTD; it also severed any connection with the frameset and frame
elements. (In the world of strict DTD, you are supposed to achieve this kind of
effect with stylesheets and positioning.) XHTML 1.0 dropped the loose DTD but
carried over the strict and transitional ones. It also preserved the frameset DTD,
in combination with the transitional DTD but not with the strict one.

As James Clark (and probably others) have observed, there is really no reason
to separate frameset and frame into a special DTD of their own because one can
easily say

<!ELEMENT html (head, (body|frameset))>

The reasons why this has not been done are historical and probably irra-
tional, but even the modularized XHTML continues to carry a separate Frames
module. RELAX NG gets rid of it: there is a Struct module that defines html as
(head,body) and a Frames module that defines html as (head, (body|frameset)).

386

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 386

The driver file of Listing 8-8 uses the Frames module and comments out the
Struct module; the driver files for the strict XHTML and for XHTML-Basic com-
ment out the Frames module and use the Struct module instead. Because the
Stuct module is more constrained, it is reused in the Frames module, as
explained in the next section.

The Reuse of the Struct Module

The Struct module defines the html, head, and body elements. It is used in the
Strict and Basic grammars because they don’t allow frames. In the transitional
version (in which frames are allowed), the Struct module is reused within the
Frame module, which redefines html to allow a choice between body and
frameset. The definition of body is taken unchanged from the Struct module;
the Frames module adds the definition of frameset. Here is the beginning of the
Frames module, in which html is redefined (in the highlighted lines of code):

<?xml version=”1.0” encoding=”iso-8859-1”?>

<grammar xmlns=”http://relaxng.org/ns/structure/1.0”>

<include href=”struct.rng”>

<define name=”html”>

<element name=”html”>

<ref name=”html.attlist”/>

<ref name=”head”/>

<choice>

<ref name=”body”/>

<ref name=”frameset”/>

</choice>

</element>

</define>

</include>

As mentioned in the preceding section, include elements can have define
children that replace definitions of the same names in the included grammar.
This is how html is redefined here. The body element is available from the Struct
module, and frameset is defined in the rest of this grammar. In the end, the
noframes element again references body:

<define name=”noframes”>

<element name=”noframes”>

<ref name=”noframes.attlist”/>

<ref name=”body”/>

</element>

</define>

387

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 387

<define name=”noframes.attlist”>

<ref name=”Common.attrib”/>

</define>

</grammar>

Common.attrib is defined in the Attribs module, attrib.rng. The Attribs and
Datatype modules are included in every XHTML-based language.

Basic and Non-Basic Modules for Forms and Tables

Further examples of code reuse are found in the Form and Table modules, which
include their Basic cousins. We will compare form.rng and basic-form.rng. In the
Basic module, the form element is defined as

<define name=”form”>

<element name=”form”>

<ref name=”form.attlist”/>

<ref name=”Block.model”/>

</element>

</define>

wherein Block.model is defined, in the Text module, as

<define name=”Block.model”>

<oneOrMore>

<ref name=”Block.mix”/>

</oneOrMore>

</define>

and Block.mix is defined, also in the Text module, as

<define name=”Block.mix”>

<ref name=”Block.class”/>

</define>

388

Chapter 8

NOTE The reason that Block.class is wrapped into Block.mix is because
the Legacy module redefines Block.mix to include inline elements. It
would be contrary to the framework’s naming conventions to call the
result Block.class.

031ch08.qxp 5/10/02 2:30 PM Page 388

Finally, the Text module defines Block.class as a choice of text containers:

<define name=”Block.class”>

<choice>

<ref name=”address”/>

<ref name=”blockquote”/>

<ref name=”div”/>

<ref name=”p”/>

<ref name=”pre”/>

<ref name=”Heading.class”/><!-- h1 through h6 -->

</choice>

</define>

We have reached the bottom but have not found the control elements of the
form, such as input or textarea. As you can guess, Block.class gets redefined in
the Form module:

<define name=”Block.class” combine=”choice”>

<ref name=”Form.class”/>

</define>

This makes it possible for forms to contain forms, together with their control
elements.

The non-Basic Form module includes the Basic Form module and redefines
the form and select elements, to allow fieldsets in forms and optgroups in
select elements:

<include href=”basic-form.rng”>

<define name=”form”>

<element name=”form”>

<ref name=”form.attlist”/>

<oneOrMore>

<choice>

<ref name=”Block.mix”/>

<ref name=”fieldset”/>

</choice>

</oneOrMore>

</element>

</define>

<define name=”select”>

<element name=”select”>

<ref name=”select.attlist”/>

389

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 389

<oneOrMore>

<choice>

<ref name=”option”/>

<ref name=”optgroup”/>

</choice>

</oneOrMore>

</element>

</define>

</include>

We are ready to try an example of our own: a RELAX NG grammar for RDDL.
It is similar but not identical to Jonathan Borden’s grammar at
http://www.openhealth.org/RDDL/xhtml-rddl.rng.

rddl.rng

RDDL, as you recall, is just XHTML Basic with an additional resource element.
The content model of resource is arbitrary XHTML Basic. The attributes of
resource consist of three common attributes (id, xml:base, and xml:lang) and
five XLink attributes (type, href, title, role, and arcrole). In the current version
of RDDL, only simple links are allowed. The rddl.rng grammar is a driver file that
includes all XHTML Basic modules plus two additional modules that we have to
define: a Resource module and an XLink module.

Resource Module

The Resource module is in resource.rng (Listing 8-9).

Listing 8-9. resource.rng
<grammar

ns=”http://www.rddl.org/”

xmlns=”relaxng.org/ns/structure/1.0”>

<define name=”resource”>

<element name=”resource”>

<ref name=”resource.attlist”/>

<ref name=”Flow.model”/>

</element>

</define>

<define name=”resource.attlist”>

<ref name=”lang.attrib”/>

<ref name=”id.attrib”/>

390

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 390

<ref name=”XLINK.simple.attlist”/>

</define>

</grammar>

We declare the target namespace to be http://www.rddl.org, and, within that
namespace, we declare the resource element. Its content mode is Flow.model, as
defined in text.rng: a choice of all block and inline elements of XHTML. Its attri-
butes are

• lang.attrib and id.attrib, defined in the Attribs module of XHTML Basic

• XLINK.simple.attlist, defined in the additional XLink module

XLink Module

The XLink module is in xlink.rng. It defines attributes and groups of attributes, as
shown in Listing 8-10.

Listing 8-10. xlink.rng
<!-- XLink Module -->

<grammar ns=”http://www.w3.org/1999/xlink”

xmlns=”http://relaxng.org/ns/structure/1.0”

datatypeLibrary=”http://www.w3.org/2001/XMLSchema-datatypes”

>

<define name=”XLINK.type.attrib”>

<attribute name=”type” ns=”http://www.w3.org/1999/xlink”>

<choice>

<value>simple</value>

<value>extended</value>

<value>arc</value>

<value>locator</value>

<value>resource</value>

</choice>

</attribute>

</define>

<define name=”XLINK.href.attrib”>

<optional>

<attribute name=”href” ns=”http://www.w3.org/1999/xlink”>

<data type=”anyURI” />

</attribute>

</optional>

</define>

391

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 391

<!-- XLINK.role.attrib, XLINK.arcrole.attrib and XLINK.title.attrib

are defined in the same way -->

<define name=”XLINK.simple.attlist” combine=”choice”>

<ref name=”XLINK.type.attrib”/>

<ref name=”XLINK.href.attrib”/>

<ref name=”XLINK.role.attrib”/>

<ref name=”XLINK.arcrole.attrib”/>

<ref name=”XLINK.title.attrib”/>

</define>

</grammar>

These two modules—resource.rng and xlink.rng—are all that is needed to
define RDDL as an extension of XHTML Basic. It is instructive to compare them
with the RDDL DTD at http://www.openhealth.org/RDDL/rddl-xhtml.dtd; the
difference in complexity is quite striking.

The new RELAX NG material in xlink.rddl consists of the datatapeLibrary
attribute and the anyURI data type. These are explained in the next section.

The datatypeLibrary and XML Schema Data Types

RELAX NG defines two native data types: string and token. If any other data type
is used in a grammar, the processor will try to look it up in an external data
type library. If no such library is specified, the unknown type is equivalent to
string. (Some users might prefer to see an error message in this situation.)

An external library is specified by the datatypeLibrary attribute, whose value
is a URI that identifies the library. The attribute can be specified on any element,
and its value is inherited by the element’s descendants in the same way that
namespace declarations are inherited. An obvious place for the datatypeLibrary
attribute is the grammar element, as in Listing 8-10.

XML Schema Part 2, Built-in Types

The only external library currently available, and one that is likely to be standard,
is XML Schema Part 2. The library contains a great number of built-in simple
types—some of them primitive, others derived. For instance, the primitive type
decimal represents arbitrary precision decimal numbers; the built-in type
integer is derived from decimal by setting the number of fraction digits to 0.
From integer, a number of other integer types are derived, such as long, int,
short, and byte. All these derivations are by restriction, but you can also derive
new types by forming a list of simple types. This is how the IDREFS type is derived

392

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 392

from IDREF. A complete diagram of built-in data types (with primitive and derived
types color-coded and different kinds of derivation shown with different kinds of
lines) can be found at http://www.w3.org/TR/xmlschema-2/#built-in-datatypes.

The Jing processor comes with support (currently not quite complete) for
that library. Specifically, the current version supports the built-in XML Schema
data types in the following list, which is quoted from the Jing data types Web page
http://thaiopensource.com/relaxng/jing-datatypes.html but rearranged and
divided into sublists:

• string types: string normalizedString token

• numeric types: decimal float double

• integer types: integer nonPositiveInteger negativeInteger long int short byte
nonNegativeInteger unsignedLong unsignedInt unsignedShort
unsignedByte positiveInteger

• XML name types: Name QName NCName

• XML attribute types: NOTATION ID IDREF IDREFS NMTOKEN
NMTOKENS

• self-explanatory types: language, Boolean

The following clarifications and caveats are also from the Jing data
types page:

• Other data types (such as anyURI) are recognized but validated as strings.

• ID and IDREF are validated as tokens, and IDREFS as a list of tokens. Jing
does not check the validity constraints on these attributes, but it will once
it implements the DTD compatibility library. (See the section on anno-
tations earlier in the chapter.)

• The NOTATION attribute is validated simply as a QName. In XML 1.0, there
are additional validity constraints on its use, but it is practically never
used, either in DTDs or XML schemas.

In addition to built-in types, XML Schema offers a mechanism for creating
user-defined derived types. The mechanism, also implemented by Jing, is pre-
sented in the next section, which is a brief excursion into the world of XML
Schema.

393

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 393

XML Schema Part 2, User-Defined Types

The notion of a data type is quite precisely defined in XML Schema: it is a triple
consisting of a set of values, a set of literals to represent those values, and a set of
facets. The set of values is called the value space, and the set of literals the lexical
space. Within the lexical space, there may be multiple representations for the
same values, in which case a subset of the lexical space is designated as the
canonical representation. For instance, the value space of Boolean consists of two
values {true, false}, its lexical space of legal literals is {true, false, 1, 0}, and its
canonical representation is the set of literals {true, false}.

double

To take a more elaborate example that will also give us interesting facets to talk
about, the value space of the double data type is the set of values of the form
m�2e, in which m is an integer whose absolute value is less than 253, and e is an
integer between –1075 and 970, inclusive. In addition, the value space contains
positive and negative 0 (literals 0 and –0), positive and negative infinity (literals
inf and -inf) and a special not-a-number value (literal NaN). This value space is
known as “the IEEE double-precision 64-bit floating-point type [IEEE 754-1985]”,
which is familiar from Java and JavaScript; it is also the one used by XSLT.

The lexical representations of doubles are decimal numbers or decimal num-
bers in the scientific notation, with a mantissa followed (optionally) by “e” or “E”,
followed by an exponent that must be an integer. If there is no exponent, 0 is
assumed. The canonical representation has a mantissa with a single digit before
the decimal point and at least one digit after the decimal point; the exponent is
required.

Facets

Facets are properties. There are fundamental facets and constraining facets.
Fundamental facets are the same for all data types. The five facets are: equal,
ordered, bounded, cardinality, and numeric. They describe the value space: Is
equality defined on it? (The answer is yes, for all of them.) Is it ordered? Is it
bounded? Is it finite or infinite? Is it numeric? For instance, Boolean is not
ordered, not bounded (because it’s not ordered), not numeric, and finite; double
is totally ordered, bounded, numeric, and finite. There isn’t much to say about
fundamental facets; they are just there.

394

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 394

Constraining facets are for deriving data types. For instance, the constraining
facets of double are

• pattern

• enumeration

• whitespace

• maxInclusive

• maxExclusive

• minInclusive

• minExclusive

The whitespace facet is something of a black sheep in this list: instead of
constraining the set of values, it controls the whitespace handling. Its possible
values are preserve, replace, and collapse: preserve means “leave as is,” replace
means “replace every whitespace character with #x20,” and collapse means “col-
lapse runs of whitespace characters into a single #x20 character.” The rest of the
facets are discussed and illustrated in the following sections.

Examples of XML Schema Type Definitions

Listing 8-11 provides some examples of simple type definitions in the XML
Schema language.

Listing 8-11. Examples of XML Schema Simple Type Definitions
<simpleType name=”doubleRangeType”>

<restriction base=”double”>

<maxInclusive value=”5” />

<minInclusive value=”2” />

</restriction>

</simpleType>

395

RELAX NG and XML Schema

NOTE A complete table of XML Schema built-in data types and the values
of their fundamental facets can be found at
http://www.w3.org/TR/xmlschema-2/#section-Datatypes-and-Facets.

031ch08.qxp 5/10/02 2:30 PM Page 395

<simpleType name=”doubleEnumType”>

<restriction base=”double”>

<enumeration value=”3.1”/>

<enumeration value=”4.7”/>

<enumeration value=”5.3”/>

</restriction>

</simpleType>

<simpleType name=”doubleListType”>

<list itemType=”double”/>

</simpleType>

With types so defined, you can define elements as follows:

<element name=”doubleInRange” type=”doubleRangeType”/>

<!-- 2.0, 3.7, 4.99, 5.0 are legal values; 1.5, 5.001 are not -->

<element name=”doubleEnumValue” type=”doubleEnumType”/>

<!-- 3.1, 4.7, 5.3 are the only legal values -->

<element name=”doubleList” type=”doubleListType”/>

<!-- legal values are whitespace separated lists of doubles -->

With elements and types so defined, elements in instance documents will be
checked for type conformance by a Schema validator. The motivation is that
application programs will not have to do type checking themselves.

Anonymous Types

Instead of defining a named type and using its name in defining an element, you
can have an anonymous type defined within the element definition:

<element name=”doubleList”>

<simpleType>

<list itemType=”double”/>

</simpleType>

</element>

The difference is that, if you give a type a name, you can reuse it, by
reference, in other element definitions.

396

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 396

Non-Atomic Simple Types

List types are simple types that are not atomic. Another kind of non-atomic sim-
ple types are union types. Suppose that you want to be able to specify a font size
either as an integer in the range from 8 to 72 or as one of three string tokens:
small, medium, and large. You can define the corresponding type and element as
shown in Listing 8-12.

Listing 8-12. Union Type
<simpleType name=”FontSizeType”>

<union>

<simpleType>

<restriction base=”positiveInteger”>

<minInclusive value=”8”/>

<maxInclusive value=”72”/>

</restriction>

</simpleType>

<simpleType>

<restriction base=”NMTOKEN”>

<enumeration value=”small”/>

<enumeration value=”medium”/>

<enumeration value=”large”/>

</restriction>

</simpleType>

</union>

</simpleType>

<element name=”FontSize” type=”FontSizeType” />

In Summary

In summary, simple data types of XML Schema fall into these three categories:

• primitive or derived

• built-in (primitive or derived) or user-defined (derived). The only way to
create a new primitive type is by revising the W3C recommendation.

• atomic or non-atomic (list, union). There are built-in list types
(NMTOKENS), but not union types.

Learning the simple type system is not hard because most types are familiar
either from programming languages or from XML 1.0. If you want to create your

397

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 397

own types, then, in addition to built-in types, you need to know the facets. Here is
the complete list of constraining facets, divided into groups of similar meaning:

• length, minLength, maxLength

• minInclusive, minExclusive, maxInclusive, maxExclusive

• pattern (Regular Expressions)

• enumeration

• duration, period (for time-based types)

• encoding (hex or base64)

• scale (number of digits in fractional part)

• precision (number of significant digits)

• whitespace (one of: preserve, replace, collapse)

The Pattern Facet and Regular Expressions

The most important facet, by far, is the pattern facet that allows you to specify
a regular expression to constrain the values of the type. Regular Expressions, in
case you have not used them before, form a language for specifying sets of char-
acters and strings of characters. They are used in the context of pattern matching:
a regular expression forms a pattern against which strings are matched. Here
are a few examples:

• Most individual characters match themselves: the chararacter “-” matches
itself.

• The pattern “\d” matches any digit. The pattern “\d{3}” matches any
sequence of three digits.

• The pattern 315-\d{3}-\d{4} matches any telephone number in the 315
area code of the United States, in the 315-123-4567 format.

398

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 398

• The pattern \(\d{3}\)\d{3}-\d{4} matches any telephone number in the
United States, in the (315)228-7719 format. (You have to escape the “(” and
“)” characters because they have a special meaning in the Regular
Expression language.)

• The pattern (\(\d{3}\)|\d{3}-)\d{3}-\d{4} matches any telephone number in
the United States in either of the two formats. (The unescaped “(” and “)”
are used for grouping; the “|” character means “or”.)

Regular Expressions are a big topic, and whole books are written on them.
The entire Perl programming language is built around Regular Expressions.
Regular Expressions are also an important part of JavaScript, in addition to being
an important part of XML Schema Part 2, which has a large appendix on Regular
Expressions. The new feature of Regular Expressions as used in XML Schema is
that they include expressions for classes of Unicode characters. (Until recently,
Regular Expressions covered only ASCII.) It is a measure of XML Schema’s size
and ambition that it includes, as a brief aside, a fifteen-page specification for
Unicode Regular Expressions.

Using Regular Expressions to Define Simple Types

To define a simple type for U.S. telephone numbers in the 315-123-4567 format,
use the pattern facet:

<simpleType name=”USPhoneType”>

<restriction base=”string”>

<pattern value=”\(\d{3}\)\d{3}-\d{4)”/>

</restriction>

</simpleType>

The pattern facet can be used with almost any base type, including numeric
types. You could define a range of integers from 23 to 76 by saying

<simpleType name=”intRange”>

<restriction base=”integer”>

<pattern value=”2[3-9]|[3-6][0-9]|7[0-6]”/>

</restriction>

</simpleType>

399

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 399

The pattern reads

• a 2 followed by digit in the range 3-9 or

• a digit in the 3–6 range followed by a digit in the 0–9 range (that is, any
digit, we could have used “\d” as well) or

• a 7 followed by a digit in the range 0–6 range

There is a tool that automatically generates such patterns from integer and
decimal ranges: http://www.xfront.com/#regexGen. The latest versions of Xerces
(1.3.1 or later) include a library for processing Regular Expressions, as part of its
XML-Schema evaluator. Jing also uses this library.

Validating Derived Types with Jing

To validate derived simple types, RELAX NG allows data elements to have param
children that have a name attribute whose value is a facet name. The content of
the param element is the value of the facet. For instance, to constrain a data type
to strings of length 31 or less, we say

<element name=”SMS”>

<data type=”string”>

<param name=”maxLength”>31</param>

</data>

</element>

As of this writing (but check the current Jing documentation!), to validate
Regular Expression patterns (the pattern facet), you have to use the Java version
and specifically the Xerces XML parser because xerces.jar includes the Regular
Expressions processor. (For Java programmers, the processor is in the
org.apache.xerces.utils.regex package.) To run Jing with that processor
enabled, you set the value of a System property,
com.thaiopensource.relaxng.util.RegexEngine, to the corresponding class.
If you run Jing from the command line (or, more likely, from the jingx batch file),
you would insert this option (divided into two lines):

-Dcom.thaiopensource.relaxng.util.RegexEngine=

com.thaiopensource.relaxng.util.XercesRegexEngine

This concludes our discussion of XML Schema Part 2 data types and how
they are used as a data-typing library with RELAX NG. We are now going to

400

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 400

attempt an overview of XML Schema Part 1, concentrating on those aspects of it
that we’ll put to use in the next chapter.

XML Schema Part 1: Structures

We will start with a simple schematic example and a comparison with RELAX NG.
In the context of the example, we will also develop a framework for testing. After
this initial round of piecemeal discovery, we will provide a more systematic
review.

To avoid clutter, in this section, we will abbreviate XML Schema Part 1 as XS1,
and XML Schema Part 2 as XS2. We will also refer to the corresponding W3C rec-
ommendations as XS1R and XS2R (frequently followed by a section number).

We will make occasional references—in addition to the recommendations—
to a very useful set of materials developed by Roger Costello (xfront.com). In
particular, we will use his XML Schema Tutorial at
http://www.xfront.com/#schema, and XML Schema Best Practices (abbreviated to
xsBest) at http://www.xfront.com/BestPracticesHomepage.html.

An Example and a Comparison

Consider a simple document: r stands for root, c stands for child, and gc stands
for grandchild. Every grandchild is of a specific type: string, a string pattern,
a number, and a year. They can be thought of a part name, part stock number,
current price, and the year it was added to the product line, as shown in
Listing 8-13.

Listing 8-13. Simple Schematic Document, xs/xsEx1.xml
<?xml version=”1.0”?>

<r>

<c>

<gcStr>any string</gcStr>

<gcStrPat>22-abc-z12</gcStrPat><!-- a string pattern -->

<gcNum>123.45</gcNum><!-- a number -->

<gcYear>1999</gcYear><!-- a year -->

</c>

<!-- many more children -->

</r>

401

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 401

Proceeding from the bottom up, consider the gcNum element. In RELAX NG, it
can be declared without preserving data type information:

<element name=”gcNum”><text/></element>

Alternatively, a data-typing library (which may or may not be XS2) can be
invoked and the data type information included in the declaration:

<!-- in scope for datatypeLibrary declaration -->

<element name=”gcNum”>

<data type=”decimal”/>

</element>

In XML Schema, you don’t have these choices, you have to say

<element name=”gcNum” type=”...“ />

You can, of course, specify the type as string or as decimal, but there has to
be a type specification, and that specification must be a built-in type defined in
XS2, or a type derived from a built-in type by the rules specified in XS2. Moreover,
XS1 requires that these data type specifications must be present in the output of
a conformant XS processor, the so-called Post-Schema-Validation Infoset,
or PSVI.

Validation, Assessment, and PSVI

XS1R, Section 2.4 (“Conformance”) defines three levels of conformance,
beginning with the minimal one:

[Definition:] Minimally conforming processors must completely and correctly
implement the •Schema Component Constraints,•Validation Rules,
and•Schema Information Set Contributions contained in this specification.

Here, “Schema Information Set Contributions” (that is, additions to the
document’s infoset) are defined as follows (XS1R, 2.3):

[Definition:] Augmentations to post-schema-validation infosets expressed by
schema components, which follow as a consequence of•validation and/or
•assessment•. Located in the fifth sub-section of the per-component sections
of Schema Component Details (§3) and tabulated in Contributions to the
post-schema-validation infoset (§C.2).

402

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 402

The key words in this definition are validation and assessment, defined in the
very beginning of XS1R, in Section 2 “Conceptual Framework,” subsection 2.1
“Overview of XML Schema.” We quote almost the entire subsection, highlighting
key phrases:

An XML Schema consists of components such as type definitions and ele-
ment declarations. These can be used to assess the validity of well-formed
element and attribute information items . . . and furthermore may specify
augmentations to those items and their descendants. This augmentation
makes explicit information which may have been implicit in the original
document, such as normalized and/or default values for attributes and ele-
ments and the types of element and attribute information items.

Schema-validity assessment has two aspects:

1. Determining local schema-validity, that is whether an element or attribute
information item satisfies the constraints embodied in the relevant compo-
nents of an XML Schema;

2. Synthesizing an overall validation outcome for the item, combining local
schema-validity with the results of schema-validity assessments of its
descendants, if any, and adding appropriate augmentations to the infoset
to record this outcome . . .

Throughout this specification, [Definition:] the word assessment is used to
refer to the overall process of local validation, schema-validity assessment
and infoset augmentation.

“Local validity assessment” is what RELAX NG does. DTDs, in addition, mod-
ify the infoset by adding default values, normalizing whitespace in some cases,
and adding ID/IDREF constraints. XS goes beyond DTD, adding complex data
type information. This approach is motivated by a certain vision of the Web as
consisting of pipelines of XML applications that relegate all data validation tasks
to the XS processor rather than performing them locally, within the application,
based on the needs of the application. Not surprisingly, many developers have
objected that they don’t want structure validation bundled together with massive
additions to the document’s infoset; in particular, they want to have greater con-
trol over the kind of data validation that their applications use. A discussion on
the xml-dev list in August 2001 expressed this point of view very clearly; see, for
example, http://lists.xml.org/archives/xml-dev/200108/msg01127.html,
msg01131.html, and msg01136.html.

403

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 403

There were calls for big changes in XS1R, if not abandoning it altogether. For
whatever reasons (we think they were practical as well as political: XSR1 was
hugely delayed, holding up other recommendations, including XSR2, and XSR2,
in turn, was needed for SOAP and Web services), XS1 was released as described.
Fortunately, nobody (to the best of our knowledge) has seen a PSVI yet: imple-
menters are too busy with all the details of “local validation.”

A Simple Schema and a Validation Framework

In this section, we present an XS1 schema for Listing 8-13, and show how to run
a validator. The schema is divided over two listings: Listing 8-14 shows most of
the code, leaving a gap for the declaration of the type of c element, which is
shown in Listing 8-15.

The schema (xsEx1nns.xsd) assumes that the document is in “no name-
space.” (That’s what nns stands for.) For documents with namespaces, additional
markup will be required as part of the mechanism by which the schema and the
document find each other.

Listing 8-14. Our First XS1 Schema, xsEx1nns.xsd
<?xml version=”1.0”?>

<schema xmlns=”http://www.w3.org/2001/XMLSchema”>

<!-- An XS schema is an XML document in the XS namespace.

In this schema, XS is the default namespace; XS vocabulary is prefix-less -->

<element name=”r”><!-- start definition of r -->

<complexType><!-- start definition of r type -->

<sequence>

<!-- the complex type of r is “zero or more repetitions of c” -->

<element name=”c” minOccurs=”0” maxOccurs=”unbounded”>

<complexType>

<!-- see Listing 8-15 for what goes here -->

</complexType>

</element><!-- end of definition of c element -->

</complexType><!-- end definition of r type -->

</element><!-- end definition of r -->

</schema>

The type definition of c is in Listing 8-15. Note that we do not specify
minOccurs and maxOccurs values for children of c because both have the default
value of 1. (XS1 allows attribute defaults both in instance documents and in
schemas themselves.)

404

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 404

Listing 8-15. Type Definition of the Type of Element c
<sequence>

<element name=”gcStr” type=”string” />

<!-- minOccurs=”1” maxOccurs=”1” are defaults -->

<element name=”gcStrPat”>

<simpleType>

<restriction base=”string”>

<pattern value=”\d{2}-[A-Za-z]{3}-\w\d{2}”/>

</restriction>

</simpleType>

</element>

<element name=”gcNum” type=”decimal” />

<!-- XS2 defines built-in type ‘year’ but Xerces 1.4.1 does not support it,

we use ‘positiveInteger instead -->

<element name=”gcYear” type=”positiveInteger” />

</sequence>

With a document and a schema in place, we can try to validate the docu-
ment. Before we do that, however, we have to make an addition to it: we have to
specify what schema it wants to be validated against. RELAX NG, as you recall,
relegates this question to those users of the data who want the data validated,
allowing them to select the validating grammar. XS1 introduces specific markup
in the instance document (and in the schema, for documents with namespaces,
as we will see shortly).

Schema-Related Markup in the Document

A reference to the schema appears as an attribute of the document’s root ele-
ment. The attribute is a global attribute in the “Schema Instance” namespace, as
seen in Listing 8-16.

Listing 8-16. Schema-Related Markup in a No-Namespace Document
<?xml version=”1.0”?>

<r

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”xsEx1nns.xsd”

>

<!-- the rest as in Listing 8-13 -->

</r>

405

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 405

Obviously, you may frequently want to validate an instance document
against a schema of your own. (What if you don’t trust the document?) For this
reason, xsi:noNamespaceSchemaLocation and xsi:schemaLocation (coming up)
are, according to XS1, only “hints” that the processors don’t have to support and
applications don’t have to follow. In practice, all processors so far support them,
but they also allow you to turn “automatic” schema validation off and program
your own validation. The way this is done in Xerces is described in
http://xml.apache.org/xerces-j/properties.html. We provide this option in our
Web application that validates against XS schemas.

Framework for Validation

Our XS schema validation is set up in much the same way as with RELAX NG. The
code is a little simpler because the validation is done by the parser (Xerces) itself,
rather than by an external library. No additional libraries are needed; we just have
to set the parser’s properties for schema validation.

To connect to the application, refer to
http://localhost:8080/xmlp/xs/validate.htm. You will see a page with two
frames. The frame on the left has a form with several input elements. Submitting
the form runs the validator. If the text area on the right shows no output,
validation has been successful; otherwise, an error message is displayed.
(See Figure 8-2.)

406

Chapter 8

Figure 8-2. XML schema validation page

031ch08.qxp 5/10/02 2:30 PM Page 406

The form in the left frame has the following input elements:

• An input box for the XML document to validate.

• A selection element to indicate whether the document is to be validated
against the schema it specifies or against an external schema of your
choosing.

• A text area to indicate which namespace is to be validated by which
schema. As you will see in a moment, a schema validates a vocabulary in
a specific namespace, or a vocabulary that is not in any namespace.

• A last input element to specify an external schema to validate a document
that is not in any namespace.

The form input, when submitted, goes to validate.jsp. In outline, validate.jsp
is identical to validaterng.jsp. (See Listing 8-2 through 8-4.)

1. Import the libraries.

2. Declare methods for getting an XML reader and an error handler.

3. Process the Request object.

4. Set up output streams.

5. Parse, validate, and display errors (if any) in the text area.

Skipping the imports, we proceed directly to declarations. Obtaining the
parser, as we said, is a little simpler than in RELAX NG: we only need a method,
not a method within a class. The code for obtaining an error handler is
unchanged from validaterng.jsp. We show both methods together in Listing 8-17.

Listing 8-17. XML Reader and Error Handler
public XMLReader createXMLReader() throws SAXException {

XMLReader xr;

try{

xr=SAXParserFactory.newInstance().newSAXParser().getXMLReader();

// set the parser features for Schema validation

xr.setFeature(“http://xml.org/sax/features/validation”,true);

xr.setFeature(“http://xml.org/sax/features/namespaces”,true);

xr.setFeature(“http://apache.org/xml/features/validation/schema”,true);

xr.setFeature(

407

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 407

“http://apache.org/xml/features/validation/schema-full-checking”,true);

}catch(Exception ex){throw new SAXException(ex);}

return xr;

}

public ErrorHandler createErrorHandler(){

return new DefaultHandler(){

void printErr(SAXParseException e){

System.err.println(“[**] “+e+”\n at “+e.getLineNumber()+”:”

+e.getColumnNumber()+” of “+e.getPublicId()+” - “+e.getSystemId());

}

public void warning(SAXParseException e) throws SAXException{printErr(e);}

public void error(SAXParseException e) throws SAXException{ printErr(e);}

public void fatalError(SAXParseException e) throws SAXException{

printErr(e);}

};

}

With declarations in place, we can proceed to the code that actually does the
work. First, we set up output streams. (See Listing 8-18.) This part is unchanged
from validaterng.jsp. (Remember that, in the Tomcat system, System.out and
System.err are directed to the Tomcat console window; we want to direct error
output to the text area in the Web page.)

Listing 8-18. Parsing and Schema Validation
java.io.PrintStream sysOut = System.out;

java.io.PrintStream sysErr = System.err;

java.io.ByteArrayOutputStream baos = new java.io.ByteArrayOutputStream();

java.io.PrintStream ps = new java.io.PrintStream(baos);

Finally, we process the Request object, parse (including schema validation),
and display error messages, if any:

<html><body>If the text area is empty, validation has been successful:

<textarea cols=”50” rows=”10”>

<% try{

// set up output streams, create XMLReader and its ErrorHandler

System.setOut(ps);

System.setErr(ps);

XMLReader reader=createXMLReader();

reader.setErrorHandler(createErrorHandler());

408

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 408

// process Request; set parser properties accordingly

String uri= request.getParameter(“uri”);

if(uri.indexOf(“:”) < 0)

uri = new File(application.getRealPath(uri)).toURL().toString();

String useExternalLoc=request.getParameter(“external”);

String externalSchemaLocation=

request.getParameter(“externalSchemaLocation”);

String extNoNSLocation=

request.getParameter(“externalNoNSSchemaLocation”);

if(“yes”.equals(useExternalLoc)){

if(externalSchemaLocation!=null&&externalSchemaLocation.length()>0)

reader.setProperty(

“http://apache.org/xml/properties/schema/external-schemaLocation”,

externalSchemaLocation);

if(extNoNSLocation!=null&&extNoNSLocation.length()>0)

reader.setProperty(

“http://apache.org/xml/properties/schema/external-noNamespaceSchemaLocation”,

extNoNSLocation);

}

reader.parse(uri); // the punch line

}catch(Throwable ex){ex.printStackTrace(new java.io.PrintWriter(out,true));}

finally{System.setOut(sysOut);System.setErr(sysErr);}

%>

<%= baos.toString() %>

</textarea></body></html>

The rest of the chapter will use the validator of Listing 17 and 18.

What If the Document Is in a Namespace?

What if our simple document of Listing 13 and 16 has a markup vocabulary that
is in a namespace? Changes would need to be introduced both in the document
and in the schema.

In the document, obviously, we would have to declare the namespace. In
addition, we would change the schema-instance attribute that references the
schema. Instead of noNamespaceSchemaLocation, we now use schemaLocation. The
value of schemaLocation, a quoted string, has internal structure: it has to consist
of two tokens—the first of which is the document’s namespace, the second the
location of the schema. See Listing 8-19.

409

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 409

Listing 8-19. Schema-Related Markup in a Namespaced Document, xsEx1ns.xml
<?xml version=”1.0”?>

<r xmlns=”http://www.n-topus.com/schemas/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation =”http://www.n-topus.com/schemas/

xsEx1a.xsd”

>

<!-- the rest as in Listings 13 and 16 -->

</r>

The reason we repeat the document’s schema in the schema-instance attri-
bute is because we want to provide for the possibility that a single document
contains vocabularies from several namespaces, each of which can be validated
by a schema of its own. In other words, a schema validates a certain namespace.
The value of schemaLocation can consist of any number of pairs that establish
a connection between a namespace and a schema document that validates it.
(There is no assumption that such a document has to be unique: the same name-
space can be validated, in different ways, by different schemas.)

In the schema itself, the namespace it is supposed to validate is specified as
the targetNamespace attribute, as shown in Listing 8-20.

Listing 8-20. Namespace-Related Markup in a Schema Document, xsEx1ns.xsd
<?xml version=”1.0”?>

<schema

xmlns=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”http://www.n-topus.com/schemas/1ns/”

elementFormDefault=”qualified”

>

<!-- the rest copied unchanged from Listing 8-14 -->

<element name=”r”><!-- start definition of r -->

<complexType><!-- start definition of r type -->

<sequence>

<!-- the complex type of r is “zero or more repetitions of c” -->

<element name=”c” minOccurs=”0” maxOccurs=”unbounded”>

<complexType>

<!-- see Listing 8-15 for what goes here -->

</complexType>

</element><!-- end of definition of c element -->

</complexType><!-- end definition of r type -->

</element><!-- end definition of r -->

</schema>

410

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 410

The targetNamespace attribute is easy to understand, but what is
elementFormDefault? (This particular item probably provoked more comment
than any other single detail of the specification.) We will explain what it is about
later in the chapter. For now just accept that it has to be there, and we don’t rec-
ommend that you omit it from any schemas of your own.

Simple Schema Variations and Best Practices

We now return to the contents of the schema (as opposed to specifying how the
document finds its schema). The schema of Listing 14 and 15 is organized as
a single deeply nested structure. Costello’s “Best Practices” calls this the Russian
Doll pattern, in reference to the wood matryoshka dolls that nest inside each
other. This section will present more modular alternatives to the Russian Doll.

Variation 1: Named Types

Reviewing Listing 8-14 and 8-15, you will notice that the XS element element has
two alternative content models. One is to be empty, as in

<element name=”gcNum” type=”decimal” />

In this content model, the type of the element is declared as the value of the
type attribute. The other content model is for element to have a child that is
the definition of the element’s type. Two examples from Listing 8-14 and 8-15 are

<element name=”c” minOccurs=”0” maxOccurs=”unbounded”>

<complexType>

<!-- see Listing 8-15 for what goes here -->

</complexType>

</element><!-- end of definition of c element -->

<element name=”gcStrPat”>

<simpleType>

<restriction base=”string”>

<pattern value=”\d{2}-[A-Za-z]{3}-\w\d{2}”/>

</restriction>

</simpleType>

</element>

The type can be a simple type (simpleType) or a complex type (complexType),
but we will disregard this difference for the moment. Our point of interest is that,
if a type has a name, it can be the value of the type attribute. Built-in types, such

411

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 411

as decimal, of course have names, but XS1 allows the user to give names to user-
defined types and use these names in element definitions. We are going to
rewrite Listing 8-14 and 8-15 in that fashion. In particular, for each element that
has something other than a built-in simple type, we will define a named type and
use it in the declaration of the element.

More Namespaces

Our current intent is to define some names of types and to use those names else-
where in the schema. Once you start using names, you have to ask yourself what
namespace they are coming from. (Note that, in Listing 8-20, the schema identi-
fies its target namespace and declares its vocabulary, but it does not itself use
that vocabulary. For this reason, the body of the schema could remain
unchanged from Listing 8-14 and 8-15.) The names we are going to define are
internal to the schema: they do not appear at all in the document instance.
However, XS1 stipulates that those names must be added to the target name-
space. So, in our schema, we must not only specify what the target namespace is,
but we must also declare it as a namespace that is used in the current document,
the schema itself.

To make the vocabularies clearly visible, we will map both the XS namespace
and the target namespace to a prefix, as shown in Listing 8-21.

Listing 8-21. Listing 8-14 and 8-15 Rewritten with Named Types (xsEx1b.xsd)
<?xml version=”1.0”?>

<xs:schema

xmlns:xs=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”http://www.n-topus.com/schemas/1b/”

xmlns:p=”http://www.n-topus.com/schemas/1b/”

elementFormDefault=”qualified”

>

<xs:element name=”r” type=”p:rType” />

<xs:complexType name=”rType”>

<xs:sequence>

<xs:element name=”c” minOccurs=”0” maxOccurs=”unbounded” type=”p:cType” />

</xs:sequence>

</xs:complexType><!-- end definition of rType -->

<xs:complexType name=”cType”>

<xs:sequence>

<xs:element name=”gcStr” type=”xs:string” />

<xs:element name=”gcStrPat” type=”p:strPatType” />

<xs:element name=”gcNum” type=”xs:decimal” />

<xs:element name=”gcYear” type=”xs:positiveInteger” />

412

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 412

</xs:sequence>

</xs:complexType><!-- end definition of cType -->

<xs:simpleType name=”strPatType”>

<xs:restriction base=”xs:string”>

<xs:pattern value=”\d{2}-[A-Za-z]{3}-\w\d{2}”/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

We provide a separate document, xsEx1b.xml, that is validated by this
schema. Its only difference from xsEx1ns.xml is that it references the schema of
Listing 8-21 rather than the schema of Listing 8-20.

To recapitulate the main point, Listing 8-21 has two namespaces for two
vocabularies. One is the schema vocabulary (which includes both the “structure-
definition” vocabulary such as element, attribute, and complexType, and the
“simple-types” vocabulary, such as string, decimal, and positiveInteger). The
other is the target vocabulary of element and attribute names defined by the
schema. This vocabulary of the target namespace also includes all the type
names that are defined in our schema, even though they never appear in
instance documents. If target namespace vocabulary is used in the schema itself,
the target namespace must be declared, and the vocabulary items must use qual-
ified names.

Listing 8-21 declares both element names and type names, but it uses only
the type names. Element names are not used because all elements are declared
where they belong in the instance structure. For instance, the element gcString is
a child of the element c, and its declaration is the child of the declaration of c. In
our next variation, we will declare all elements at the top level, so their decla-
rations are all children of the schema element. In defining content models, we will
refer to those top-level declarations. In the terminology of XS1, element decla-
rations that are children of schema are called global declarations, whereas
declarations embedded within other declarations are called local. Our next
version of Listing 8-15 will have all declarations global.

Global vs. Local Declarations and Element References

As before, we will map both the schema namespace and the target namespace to
a visible prefix, to see the vocabularies clearly. The schema is in Listing 8-22
(xsEx1c.xsd).

413

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 413

Listing 8-22. Listing 21 Rewritten with Global Declarations
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

targetNamespace=”http://www.n-topus.com/schemas/1c/”

xmlns:p=”http://www.n-topus.com/schemas/”

>

<xs:element name=”r” type=”p:rType” />

<xs:complexType name=”rType”>

<xs:sequence>

<xs:element ref=”p:c” minOccurs=”0” maxOccurs=”unbounded” />

</xs:sequence>

</xs:complexType><!-- end definition of rType -->

<xs:element name=”c” type=”p:cType” />

<xs:complexType name=”cType”>

<xs:sequence>

<xs:element ref=”p:gcStr” />

<xs:element ref=”p:gcStrPat” />

<xs:element ref=”p:gcNum” />

<xs:element ref=”p:gcYear” />

</xs:sequence>

</xs:complexType><!-- end definition of cType -->

<xs:element name=”gcStr” type=”xs:string” />

<xs:element name=”gcStrPat” type=”p:strPatType” />

<xs:element name=”gcNum” type=”xs:decimal” />

<xs:element name=”gcYear” type=”xs:positiveInteger” />

<xs:simpleType name=”strPatType”>

<xs:restriction base=”xs:string”>

<xs:pattern value=”\d{2}-[A-Za-z]{3}-\w\d{2}”/>

</xs:restriction>

</xs:simpleType>

</xs:schema>

In this schema, everything is given a global name: user-defined types and
elements that are children of some other elements and could be declared
“locally,” within the declarations of their parent elements. In terms of style,
Listing 8-22 is the complete opposite of the Russian Doll style of Listings 8-14
and 8-15. Which style is better? This is the subject of the “Best Practices”
discussions.

414

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 414

Choices and Best Practices

The author of an XS schema faces the following choices, among others:

• Make the target namespace or the XS namespace (or neither) the default.

• Declare all elements globally so that the declarations are all children of
schema, or declare elements that are “local” to another element locally,
within the declaration of that other element.

• Use named types or anonymous types.

These and similar choices are the subject matter of frequent “Best Practices”
discussions on the xml-dev list and elsewhere. Roger Costello’s xsBest page at
http://www.xfront.com/BestPracticesHomepage.html is a central point where
these discussions are collected and summarized in clear language and uniform
format.

Global, Local, and the elementFormDefault Attribute

Yet another choice that has been much discussed on xsBest and elsewhere con-
cerns the elementFormDefault attribute. If you look back at the schema element of
Listing 8-22, you will notice that the attribute is missing: the schema validates
without it. The reason is that this attribute is relevant only when there are local
declarations. Its possible values are qualified and unqualified, and the choice
they regulate is this: do locally declared element names belong in the target
namespace or in no namespace? In other words, with the schemas of Ex1ns.xsd
and Ex1b.xsd, if the value of the attribute is qualified, then the document of
Listing 8-23 is valid; if the value of the attribute is unqualified, then the docu-
ment of Listing 8-24 is valid. (Listing 8-23 is xsEx1d.xml, validated by Ex1ns.xsd
and Ex1b.xsd. Listing 8-24 is xsEx1e.xml, validated by Ex1e.xsd.)

Listing 8-23. Document-Matching Schema with elementFormDefault=qualified
<q:r xmlns:q=”http://www.n-topus.com/schemas/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation =”http://www.n-topus.com/schemas/

xsEx1b.xsd”

>

<q:c>

<q:gcStr>any string</q:gcStr>

<q:gcStrPat>22-abc-z12</q:gcStrPat><!-- a string pattern -->

<q:gcNum>123.45</q:gcNum><!-- a number -->

415

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 415

<q:gcYear>1999</q:gcYear><!-- a year -->

</q:c>

<!-- many more children -->

</q:r>

Listing 8-24. Document-Matching Schema with elementFormDefault=unqualified
<q:r xmlns:q=”http://www.n-topus.com/schemas/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation =”http://www.n-topus.com/schemas/

xsEx1b.xsd”

>

<c>

<gcStr>any string</gcStr>

<gcStrPat>22-abc-z12</gcStrPat><!-- a string pattern -->

<gcNum>123.45</gcNum><!-- a number -->

<gcYear>1999</gcYear><!-- a year -->

</c>

<!-- many more children -->

</q:r>

Somewhat surprisingly, the value unqualified is the default: if you omit it in
the schemas of Listing 8-20 and 8-21, the document of Listing 8-24 will check out
but the document of Listing 8-23 will bomb. The reasoning seems to be as fol-
lows: elements declared locally are part of the content model of some other
elements, and therefore their names are not exposed and need not be protected.
If we think of XS1 as a data modeling language, the reasoning makes sense: local
names would unnecessarily clutter the namespace, obscuring the main divisions
in the data. However, this is a big if: why would you want the same language to
perform both syntactic validation and data modeling? One could argue, and
some people have, that it would be better to use a dedicated language like UML
for data modeling and provide a UML–XML mapping.

XS1’s ambition to be a modeling language extends far beyond the
elementFormDefault attribute: the types of XS1 and XS2 form an inheritance hier-
archy with a single root in anyType. User-defined types are all derived from that
type and can themselves stand in the base-type/derived-type relationship. Types
can be abstract, forcing definition of derived types, or they can be final, prevent-
ing definition of derived types. Whereas simple types can be derived only by
restriction, complex types can be derived either by restriction or by extension.

Just as in object-oriented programming, you can substitute a base type for
a derived type, even if the derived type was formed by restriction. You can block
such substitution using the block attribute. You can also establish substitution
relation on element names, using the substitutionGroup element: if type D is the
same as or is derived from some base type B, then you can specify that globally

416

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 416

defined elements of type D—whatever their name—can be substituted into con-
tent models that require an element of type B. For instance, if Lager and Ale are
declared globally and have schema types that are derived from the BeerType,
then we specify that we don’t mind having a Lager wherever a Beer is required by
the grammar:

<xs:element name=”Beer” type=”xs:BeerType”/>

<xs:element name=”Lager” substitutionGroup=”Beer” type=”xs:LagerType”/>

<xs:element name=”Ale” substitutionGroup=”Beer” type=”xs:AleType”/>

<xs:element name=”Porter” substitutionGroup=”Beer” type=”xs:PorterType”/>

<xs:element name=”Stout” substitutionGroup=”Beer” type=”xs:Stout”/>

It would go well beyond the scope of this chapter or this book to illustrate
and discuss all these possibilities. We will provide a concise overview in the next
section, and otherwise recommend Roger Costello’s excellent tutorial and many
other online sources.

XS1 Overview

This is a cut-and-dry summary of many pages of dense documentation. It has
many bulleted lists, and very few examples.

We use the conventions of XS1, illustrated by this example:

elementFormDefault = (qualified | unqualified) : unqualified

This means “the attribute elementFormDefault can have two possible values,
qualified or unqualified, with unqualified being the default.”

What Is There?

This is a complete list of things you can find in an XS schema. Items in parenthe-
ses are details that we are going to say very little or nothing about.

• annotations

• simple type definitions

• complex type definitions

• element declarations

417

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 417

• attribute declarations

• (particles, wildcards, attribute uses)

• (attribute group definitions and attribute groups)

• (model group definitions and model groups)

• (identity-constraint definitions: a much more powerful version of
ID/IDREF)

• (notation declarations: virtually never used)

Annotations, Extending Schemas

Almost any XS element, including the root schema element, can have an
annotation element as its child, sometimes specifically as its first child.
The annotation element can contain either human-readable or machine-
processable materials; the latter can express additional constraints that
are not expressible in XS. A good use of annotation elements is to place
Schematron constraints in them. (On Schematron and how to use it
to extend schemas with additional constraints, see Costello’s
http://www.xfront.com/ExtendingSchemas.pdf.)

The Root Element

The root schema element can have the following attributes:

• targetNamespace = anyURI

• elementFormDefault = (qualified | unqualified) : unqualified

• attributeFormDefault = (qualified | unqualified) : unqualified (Same idea
as for elementFormDefault)

• id = ID

• version = token

• xml:lang = language

418

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 418

• blockDefault = (#all | List of (extension | restriction | substitution)) (The
default value for block attributes that block substitution of base types for
derived types or elements for their declared substitutions. You can block
them all or be more specific.)

• finalDefault = (#all | List of (extension | restriction)) (the default value
for final attributes that block derivation, by extension or restriction
or both)

The content model of the schema element is

((include | import | redefine | annotation)*,

(

((simpleType | complexType | group | attributeGroup) |

element | attribute | notation), annotation*)*

)

This can be summarized as

1. First, do all your include’s, import’s, redefine’s, and top-level anno-
tations.

2. Then do all your types, groups, elements, and attributes, in any order,
sprinkling with annotations liberally.

3. Ignore notations, nobody uses them.

include, import, and redefine

The include element is to include another schema with the same target name-
space. The import element is to include another schema with a different target
namespace. This is useful when your document uses more than one namespace.

Both include and import have a schemaLocation attribute. In addition, import
has a namespace attribute.

The redefine element does the same as include and additionally redefines
one or more definitions in the included schema. It has a schemaLocation attri-
bute. Its content are (re)definitions of simpleType, complexType, attributeGroup,
or group.

419

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 419

group, attributeGroup, modelGroup

You can group several element declarations into a group and give such a group
a name, for later reuse. Similarly, you can group several attribute declarations
into a group and give such a group a name for later reuse. You have to use the
group element to group element declarations and the attributeGroup element to
group attribute declarations. Finally, you can group pieces of a content model
into a group (using the modelGroup element) and reuse that in definitions of other
content models.

Declaring Elements

There are three patterns for declaring elements, shown in Listing 8-25:

• with a named type, specified by the type attribute

• with an unnamed complex type

• with an unnamed simple type

Listing 8-25. Declaring Elements
<xs:element name=”name” type=”type” minOccurs=”int” maxOccurs=”int”/>

<xs:element name=”name” minOccurs=”int” maxOccurs=”int”>

<xs:complexType>

...

</xs:complexType>

</xs:element>

<xs:element name=”name” minOccurs=”int” maxOccurs=”int”>

<xs:simpleType>

<xs:restriction base=”type”>

...

</xs:restriction>

</xs:simpleType>

</xs:element>

420

Chapter 8

NOTE An element declaration may contain a default=”value” attribute,
providing a default value for the element. In the document, such elements
are entered with empty content.

031ch08.qxp 5/10/02 2:30 PM Page 420

Declaring Attributes

There are two patterns for declaring attributes:

• with a named type, specified by the type attribute

• with an unnamed simple type

<xs:attribute name=”name” type=”simple-type” use=”how-used”

default/fixed=”value”/>

<xs:attribute name=”name” use=”how-used” default/fixed=”value” >

<xs:simpleType>

<xs:restriction base=”simple-type”>

...

</xs:restriction>

</xs:simpleType>

</xs:attribute>

The use attribute has these possible values: required, optional, or
prohibited. If there is a default or a fixed attribute, there must be no use attri-
bute. The value of a default or fixed attribute is a simple type value.

In content model (complex type) definitions, attribute declarations, for some
reason, must come last, after all the element declarations.

Defining Complex Types

There are four patterns for defining complex types.

• complex type that is not derived from another user-defined type or from
a simple type (that is, complex type derived directly from anyType).

• complex type that is derived from another user-defined complex type by
extension

• complex type that is derived from another user-defined complex type by
restriction

• complex type that is derived from a simple type (built-in or user-defined)
by adding attributes

The definitions can be global (with a name attribute) or embedded (without
a name attribute).

421

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 421

In the patterns shown in Listing 8-26, whenever we say sequence, we actually
mean any one of sequence, choice, group, or all. The all element means “a
sequence in any order” (same as interleave of RELAX NG).

Listing 8-26. Declaring Complex Types
<xs:complexType>

<xs:sequence> <!-- can be sequence or choice or group or all -->

...

</xs:sequence>

</xs:complexType>

<xs:complexType>

<xs:complexContent>

<xs:extension base=”complex type” >

<xs:sequence>

...

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType>

<xs:complexContent>

<xs:restriction base=”complex type” >

<xs:sequence>

...

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType>

<xs:simpleContent>

<xs:extension base=”simple type” >

<xs:attribute name=”name” type=”simple type”.../>

...

</xs:extension>

</xs:complexContent>

</xs:complexType>

422

Chapter 8

NOTE The empty element with attributes is treated as a complex type.

031ch08.qxp 5/10/02 2:30 PM Page 422

Wildcards for Extensibility

XS1 provides any and anyAttribute wildcards that match any element and attri-
bute (respectively) in the instance document. Both can be constrained by
a namespace attribute to mean “any element/attribute from the specified name-
space, or from the target namespace, or from any namespace other than the
target namespace, or from no namespace at all”:

<xs:any.../>

<xs:any namespace=”http://www.w3.org/1999/XSL/Transform”/>

<xs:any namespace=”##targetNamespace”/>

<xs:any namespace=”##other”.../>

<any namespace=”##local”/><!-- any element in no namespace -->

<xs:anyAttribute namespace=”http://www.w3.org/XML/1998/namespace”/>

For instance, the following declaration allows any attribute to be added to
the element:

<xsd:element name=”ExtendMeWithAttribute”>

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base=”xsd:string”>

<xsd:anyAttribute/>

</xsd:extension>

</xsd:simpleContent>

</xsd:complexType>

<xsd:/element>

Schema-Related Markup in Document Instances

Schema-related markup in document instances is introduced by global attributes
in the schema-instance namespace. (As a notational convenience, we will
assume that the namespace has been mapped to the xsi: prefix.) You have seen
two such attributes: xsi:schemaLocation and xsi:noNamespaceSchemaLocation.
There are two more: xsi:nil=“true” and xsi:type.

xsi:nil=“true” in an instant document’s element means that the element is
empty even though it is not declared as empty. The schema declaration of the
element must have the nillable attribute set to true. This is clearly added for
database uses, and it invites the familiar kind of criticism: why cram this into
a specification that is intended to be used by everybody, including people who
never use databases?

423

RELAX NG and XML Schema

031ch08.qxp 5/10/02 2:30 PM Page 423

xsi:type is a brute-force mechanism to specify the type of an element or an
attribute in an instance document bypassing the entire schema validation and
PSVI machinery. The value of the attribute can be anything that makes sense to
the receiving application; typically, this includes all XS2 simple types. SOAP doc-
uments and applications use this attribute a lot, as you will see in the next
chapter.

Conclusion

In this chapter, we covered RELAX NG and XML Schema, two grammar for-
malisms that are intended as an improvement upon—and a replacement
for—the DTD. In particular, both RELAX NG and XML Schema

• use XML syntax,

• support XML namespaces,

• support unordered content,

• integrate attributes into content models, and

• support data typing.

RELAX NG has excellent support for modularization and reuse, which makes
its implementation of XHTML modularization and XHTML Basic very easy to
use. We have looked at the implementation closely and used it to define a RELAX
NG grammar for RDDL.

RELAX NG support for data typing is layered on top of validation: the user
can perform validation or data typing or both. RELAX NG does not itself provide
a data type library but allows the grammar to specify such a library. The Jing
implementation of RELAX NG comes with built-in support for the data type
library of XS2. We have presented this library and provided examples of simple
type derivations in XML Schema. Finally, we have shown how user-defined types
are handled in RELAX NG.

XS1 is a very large specification with many powerful features. We have tried
to do it justice to the extent that it is possible in a single section. It has many pow-
erful features, and its many critics suggest that it should be refactored into
several smaller modules, each of which are useable in different contexts.

424

Chapter 8

031ch08.qxp 5/10/02 2:30 PM Page 424

CHAPTER 9

Web Services

IN THIS CHAPTER, we will present Web services, probably the most active and rapidly
growing area of XML-based applications. We will explain what Web services are
and what they are not, we will introduce the main specifications that define Web
services functionality, and we will work through two complete examples that
illustrate how Web services are built and deployed. In outline, the chapter pro-
ceeds as follows:

• What’s a Web service?

• a simple example

• client and server variations

• SOAP in detail

• a less simple example

• publishing a business with UDDI

As our framework, we will be using Apache Axis, but some examples will
include JScript MSXML, or standard ECMAScript code in the browser and JSPs
that don’t use any Axis-specific classes.

What’s a Web Service?

No official definition of Web services is enshrined in some sort of a standard or
a W3C recommendation. However, there is a general agreement that a Web ser-
vice is a distributed application that allows maximum interoperability between
components written in different languages and running on different platforms. It
is also generally agreed upon that this kind of interoperability is achieved by
encoding interactions between components in an XML protocol.

In practice, the concept of a Web service (WS) is both more specific (there is
a strong candidate for the position of the XML protocol) and more general, in

425

031ch09.qxp 5/10/02 2:28 PM Page 425

that WSs have a number of additional features. These features of a WS, illustrated
by our examples, are as follows:

• It uses an agreed-upon, XML-based message format called Simple Object
Access Protocol (SOAP). SOAP message may or may not be delivered over
HTTP. (FTP, SMTP, and even proprietary messaging architectures are also
a possibility.)

• It provides a meta-description of its access point(s) and interfaces in an
XML-based Web Services Description Language (WSDL).

• It is registered with one of several synchronized, online registries that
maintain their entries in an agreed-upon, XML-based format. The format
is called Universal Description, Discovery, and Invocation (UDDI) because
the purpose of the registries is to enable automatic service discovery and
invocation.

The access point of a Web service and the Internet address of a UDDI registry
are likely to be URLs. Otherwise, a Web service doesn’t have to be of any service
to anybody, and may have nothing to do with the Web. In particular, the user
interface to a Web service doesn’t have to be a Web browser (it can be, for exam-
ple, a .NET Windows form instead, or, indeed, an Excel spreadsheet that invokes
a native HTTP object), and the SOAP server that dispenses SOAP messages may
be completely unrelated to any Web server.

The Vision

Figure 9-1 is a well-known diagram that neatly summarizes the Web services
vision.

426

Chapter 9

Figure 9-1. Publish, find, and bind

031ch09.qxp 5/10/02 2:28 PM Page 426

In this diagram, the “publish” step is the first and is performed once: a Web
service publishes its registry description (which contains, among other things, its
WSDL description) in a service registry (most likely, a UDDI registry). After that,
a customer looking for a service of that type can find it in the registry and use the
registry information to “bind” itself to the service. A productive exchange of ser-
vices (and, in most cases, money) takes place.

We will return to this high-level diagram after we learn the mechanics of low-
level SOAP exchanges.

Areas of Application

Two main areas of application are envisaged for Web services. One is automatic
service discovery and invocation on the Internet by software agents that con-
struct long chains of interactions without human intervention. The other is
legacy data and application integration. Web services wrap all their data
exchanges into a standard XML format that is understood by any other Web ser-
vice running on any platform and implemented in any programming language.
To bring legacy formats into a distributed application, one only has to write
a Web service that encodes those formats as SOAP messages.

The first of these areas has received by far the most attention and is a fre-
quent subject of media discussions and futuristic scenarios. (The word hype,
which we mostly try to avoid, may be appropriate here.) Consider the standard
example of a travel reservation service. Currently, a person finds a reservation
service on the Web and uses it to connect to a database of some sort and view the
options; once an option is selected, another process, again initiated by the
human user, results in booking and online payment, and, after that, the same
overworked user has to arrange for a hotel reservation and car rental. Web ser-
vices are supposed to automate much of this: the user supplies the parameters of
the situation to an intelligent agent of some sort that initiates a chain of inter-
actions among several specialized services, such as airline booking, hotel
booking, and car rental, based on the user profile and previous history.

Scenarios like this determine much of the content of SOAP and other specifi-
cations. This is not surprising: a specification has to be future oriented to avoid
being obsolete on arrival. However, a careful analysis suggests that, in this case,
the specifications may be aiming too far ahead. Futuristic scenarios of the kind
we’ve just described are very distant because they involve two kinds of difficult
issues. One is more technical: for software agents to cooperate, the problems of
security, quality of service, payment, and enforceable contracts among Web
services have to be resolved in some standard, interoperable ways. The corre-
sponding specifications are barely on the drawing board. The other set of dif-
ficult issues is not even technical yet, but conceptual: cooperation among
human agents is based on deep-shared context that several decades of artificial

427

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 427

intelligence have been unable to formalize. The notion that Web services will
suddenly succeed where previous long-term efforts proved fruitless doesn’t seem
to be based on any solid grounds. We highly recommend two recent articles that
discuss these issues in great detail:
http://www.xml.com/pub/a/2002/02/06/webservices.html and
http://www.xml.com/lpt/a/2001/10/03/webservices.html.

This said, the use of Web services in a “shared context” situation is likely to
blossom. This particularly applies to legacy data and application integration
within an enterprise, wherein the semantics of lexical items can be agreed upon,
Web service interfaces can be kept stable and changed in sync, and problems of
security and payment are either nonexistent or easy to solve.

Web Services and the Programmer

An essential part of the Web services vision is that creating a Web service must be
easy for a programmer. Perhaps the main area of competition between providers
of Web services infrastructure is in programming environments and tools for
automatic code generation: generating SOAP servers from Java or C# classes,
generating WSDL descriptions from SOAP servers, and generating SOAP client
skeletons from WSDL descriptions. This is, of course, good news for program-
mers, as long as one of the providers doesn’t clobber the rest into nonexistence or
irrelevance and becomes a de facto monopolist.

In this chapter, we use the Web services infrastructure from Apache, called
Axis. As of this writing (February 2002), it is in a third alpha release and relatively
stable. (Be aware that the framework is under active development, and there are
frequent nightly builds, often in response to recently reported bug or a feature
request.) Other important infrastructures include Microsoft’s .NET, IBM’s
WebSphere, and Sun’s JAX-RPC (http://java.sun.com/xml/jaxrpc/).

Components of a Service

A service exposes at least one “endpoint,” usually by publishing its URI. A con-
sumer of the service and the service endpoint exchange SOAP messages. The
consumer may be a passive receiver of messages broadcast by the service or it
may initiate an exchange by sending a request and receiving a response. The ele-
mentary communication step is a single message, but messages may form
more-complex Message Exchange Patterns (MEPs). The most common MEP—
and the most common use of Web services—is a Remote Procedure Call (RPC):
the consumer requests some computation and sends in parameters, and the ser-
vice returns the results of the computation.

At the SOAP communication level, the service consumer is a “SOAP client,”
and the service itself is a “SOAP server.” Both are computer programs. In the

428

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 428

examples of this chapter, SOAP clients are usually JSPs and SOAP servers are Java
classes, but the client and the server don’t have to be written in the same lan-
guage or be running on the same platform because all their exchanges are XML
encoded. It is this kind of interoperability that makes Web services so promising.

A SOAP server may or may not need a user interface, but a SOAP client usu-
ally does. The user interface may or may not be on the same computer as the
SOAP client. In our examples, the user interface is a Web page with a form that
sends information to the SOAP client (a JSP) over HTTP, but this is just one of
many possible configurations. The SOAP specification is completely silent about
how SOAP clients are accessed; its main concerns are the message exchange
model, the structure of the message, and the “binding” of SOAP messages into an
underlying protocol. HTTP is the only protocol that SOAP implementations must
support, but other protocols can also be used, and examples of using email
(SMTP) for exchanging SOAP messages are not difficult to find. In the situation of
an internal network, with Web services used for legacy data integration, one can
imagine SOAP messages traveling over a proprietary protocol.

Figure 9-2 summarizes the components of a Web service.

This diagram specifically shows the configuration of our first example.
Although the overall structure of components is the same for all Web services,
their implementation and binding into the underlying protocol can vary, as we
have discussed.

Specification Map

This section summarizes the current status of the SOAP, WSDL, and UDDI speci-
fications. We felt it was needed because the specifications are frequently referred

429

Web Services

Figure 9-2. Components of a Web service

031ch09.qxp 5/10/02 2:28 PM Page 429

to as standards as in “Web services are based on the SOAP, WSDL, and UDDI
standards.” In fact, they are not standards unless the term is stretched to the
point of meaninglessness.

SOAP

The SOAP specification is a working draft (WD) at W3C and carries the usual WD
caveats: “This is a public W3C Working Draft. It is a draft document and may be
updated, replaced, or obsoleted by other documents at any time. It is inappropri-
ate to use W3C Working Drafts as reference material or to cite them as other than
“work in progress’” (http://www.w3.org/TR/soap12-part1/, “Status of this
Document”). In fact, SOAP has gone through a major change in its transition
from version 1.1 to 1.2, and many parts of the latest 1.2 version are clearly far
from being stable.

SOAP version 1.2 comes in three parts: Part 0, nonnormative, is a primer;
Part 1 is the “core” of the specification, and Part 2 is called “Adjuncts”. Part 1
describes the Message Exchange Model, the structure of a SOAP message, and the
general principles of binding SOAP messages to the underlying protocol. Part 2
describes a specific binding (to HTTP), a specific SOAP encoding of data types as
XML elements, and rules for using SOAP in an RPC framework. Until version 1.2,
these three items were part of the same monolithic core, but, in an attempt to
make the specification more modular, they were split off into Adjuncts. SOAP
encoding, in particular, used to be a central part of the SOAP specification,
prompting objections that individual developers and toolset vendors may want
to develop their own procedures for serializing data objects to XML, and stan-
dardizing such procedures contributes nothing to Web service interoperability.

In SOAP messages, the encoding is specified by the encodingStyle attri-
bute, whose value is a URI that identifies the encoding. (Just as with
namespace URIs, an encoding style URI doesn’t have to point to an existing
resource.) The encodingStyle URI for the encoding of SOAP 1.2 Part 2 is
http://schemas.xmlsoap.org/soap/encoding/. (This URI actually points to an XS
schema defining the encoding.) You will see that particular encoding used in our
examples later in the chapter. Although no longer a normative part of the stan-
dard, it is very well designed, and a large body of installed software still uses it.

WSDL

Unlike SOAP, WSDL is just a W3C note (http://www.w3.org/TR/wsdl), with no
commitment to ever making it into an area of activity and establishing a working
group. The section entitled “Status” reads “This document is a NOTE made avail-
able by the W3C for discussion only. Publication of this Note by W3C indicates no
endorsement by W3C or the W3C Team, or any W3C Members. W3C has had no

430

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 430

editorial control over the preparation of this Note.” This status has not changed
since March 2001 when version 1.1 of the specification was submitted by
Microsoft, IBM, and Ariba. In December 2001, two of the editors of SOAP 1.2 pub-
lished an article on XML.com entitled “All We Want for Christmas is a WSDL
Working Group” (http://www.xml.com/pub/a/2001/12/19/wsdlwg.html). Their
wish was granted in January 2002 when W3C formed a Web services activity that
contains three working groups, including a Web services description WG.
However, WSDL is not mentioned as a relevant document for the WG to consider.

In the meantime, in February 2002, yet another vendor consortium
appeared, named Web Services Interoperability Organization (WSIO); one of its
objectives is to “encourage best-practices use of ‘baseline’ Web services today
(XML, SOAP, WSDL, UDDI).” (See http://www.ws-i.org/FAQ.aspx#A04.) Its mem-
bers include most major software companies, such as IBM, Microsoft, Oracle,
and SAP; Sun has not joined but may do so in the future. Neither WSIO nor the
W3C working group has published any documents yet (as of February 2002), but
they will probably work in consultation because many companies are repre-
sented in both organizations. It seems reasonably certain that something like
WSDL will be standardized within a year, but it may bear little or no resemblance
to WSDL. In the meantime, WSDL is deeply embedded in all the existing toolsets
for developing Web services, as you will see in a moment.

UDDI

UDDI is even less of a standard than WSDL: it has never been submitted to W3C
or any standards organization. It does have the backing of a powerful consor-
tium, uddi.org, and it has toolset support. However, there are alternative
approaches to publishing Web services, such as Web Services Inspection
Language (WSIL) from IBM and Microsoft. (See http://www-106.ibm.com/
developerworks/webservices/library/ws-wsilspec.html.) WSIL is easier to set up
and use (in particular, it does not require a database), but UDDI offers more fea-
tures, including taxonomic categorization of services and searches based on
those taxonomies. IBM’s Web Services Tool Kit (WSTK) 3.0 supports both. You can
download the free 46MB archive from
http://www.alphaworks.ibm.com/tech/webservicestoolkit.

An Example

Our Web service will implement a remote procedure call. The procedure will
receive one parameter, an integer, and return the prime factors of that integer. We
will write two versions of the service: one will return prime factors as a string,
with integers separated by the asterisk character (*), and the other will return

431

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 431

prime factors as an array of integers. An invocation of the array version is shown
in Figure 9-3.

We will start with the simpler string version, proceeding in the following
order:

1. Define a Java class with a method that implements the Web service func-
tionality.

2. Convert the Java class into a SOAP server.

3. Use either the SOAP server code or the initial Java code to generate
a WSDL description of the service.

4. Use the Wsdl2Java utility to generate a SOAP client from the WSDL
description. In addition to the client itself, the utility will generate
a SOAP server “stub”: a local class that exposes the same interfaces as
the server and functions as a local proxy for the server.

5. Write a JSP that will invoke the SOAP client.

Because our service receives a single integer parameter, we will not bother
with an HTML page to submit that parameter to the JSP; we will simply attach
a query string, such as ?N=-102, to the JSP’s URL, as in Figure 9-3.

All Web service components, as implemented in our example, will live on
a single computer that will also run the Web browser to connect to the JSP.
Because that single computer will act as three computers on a network,
Figure 9-4 provides a map (basically, Figure 9-2 with additional detail) showing
where each component resides.

432

Chapter 9

Figure 9-3. Web service RPC

031ch09.qxp 5/10/02 2:28 PM Page 432

We will implement the components of this diagram moving from right to left:
SOAP server, SOAP client, and JSP. In the process, we will write a few useful
macros and show you how to use TCPMon, a tool that allows you to inspect HTTP
messages going to and from a web server. With TCPMon, you can view the actual
SOAP messages that get exchanged between the (SOAP) client and server. At this
point, we will be ready to discuss the structure of a SOAP message in detail.

The Java Class for a Web Service

The Java class has a single public method, factors(), that will become the
operation supported by the Web service. (See Listing 9-1.)

Listing 9-1. The PrimeFactorsString Class
public class PrimeFactorsString {

/*

factors(int N) produces a string result, as a String:

factors(0) == “0”

factors(-N) == “-” + factors(N)

factors(12) == “2*2*3”

*/

public String factors (int N){

if(N==0) return “0”;

if(N<0) return “-”+factors(-N);

StringBuffer sB=new StringBuffer();

433

Web Services

Figure 9-4. Components of a service, with their places of residence

031ch09.qxp 5/10/02 2:28 PM Page 433

int limit = (int)Math.floor(Math.sqrt(N));

for(int i=2;i<=limit;i++)

while(0==N%i) {

sB.append(i);

sB.append(“*”);

N/=i;

} // end of while loop and entire for loop

if(sB.length() > 0) // the last “*” is not needed

sB.deleteCharAt(sB.length()-1);

return sB.toString();

} // end of factors()

} // end of class definition

From Java Class to a SOAP Server

Every Web service framework provides facilities for automatic conversion from
application code to Web service code. Axis provides two methods: one simple but
limited in its scope, and the other more involved and more flexible. The simple
method is very simple indeed. It consists of two steps:

1. Rename your *.java file as a *.jws file.

2. Put it in the right place.

In our example, we rename PrimeFactorString.java as PrimeFactorString.jws
and put it into the TOMCAT_HOME/webapps/axis directory. (You will find it
there when you unzip our archive.) The SOAP server is ready to receive requests
from a SOAP client. When a request comes in, Axis automatically locates the file,
compiles the class, and converts SOAP messages into Java invocations of your
service class.

The method has limitations. For one thing, it depends on access to source
code. What if you want to make a compiled class into a Web service? Even more
significantly, it does not provide any customization “hooks,” such as user-defined
classes in SOAP server code that are mapped to and from XML elements in SOAP
messages. For a more flexible way of creating a Web service, we use a “deploy-
ment descriptor” written in Web Services Deployment Descriptor language
(WSDD). We will show an example of WSDD use in our example of SOAP
exchanges that involve structured objects and arrays.

434

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 434

Generating WSDL Descriptions

To generate (the first time around) and view the WSDL description of our
Web service, point your browser at
http://localhost:8080/axis/PrimeFactorsString.jws?WSDL. You will see a pretty
verbose (some call it “bloated”) WSDL file, which we show (Listing 9-2) slightly
shortened and with important elements highlighted.

Listing 9-2. WSDL for PrimeFactorsString Service
<?xml version=”1.0” encoding=”UTF-8”?>

<definitions targetNamespace=

“http://localhost:8080/axis/PrimeFactorsString.jws”

xmlns=”http://schemas.xmlsoap.org/wsdl/”

xmlns:serviceNS=”http://localhost:8080/axis/PrimeFactorsString.jws”

xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<message name=”factorsRequest”>

<part name=”arg0” type=”xsd:int”/>

</message>

<message name=”factorsResponse”>

<part name=”factorsResult” type=”xsd:string”/>

</message>

<portType name=”PrimeFactorsStringPortType”>

<operation name=”factors”>

<input message=”serviceNS:factorsRequest”/>

<output message=”serviceNS:factorsResponse”/>

</operation>

</portType>

<binding

name=”PrimeFactorsStringSoapBinding”

type=”serviceNS:PrimeFactorsStringPortType”>

<soap:binding

style=”rpc”

transport=”http://schemas.xmlsoap.org/soap/http”/>

<operation name=”factors”>

<soap:operation soapAction=”” style=”rpc”/>

<input>

<soap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

namespace=””

use=”encoded”/>

</input>

435

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 435

<output>

<soap:body

encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

namespace=””

use=”encoded”/>

</output>

</operation>

</binding>

<service name=”PrimeFactorsString”>

<port

binding=”serviceNS:PrimeFactorsStringSoapBinding”

name=”PrimeFactorsStringPort”>

<soap:address

location=”http://localhost:8080/axis/PrimeFactorsString.jws”/>

</port>

</service>

</definitions>

It makes little sense to discuss WSDL in detail because it is likely to undergo
changes before the book is out, and it will certainly change a great deal before it
becomes any kind of standard. For now, just note these main structural points:

• The file begins by specifying all the messages used by the service (just two
in our example).

• Each message lists its parameters and their data types; the data types are
those of XML Schema Part 2 (xsd:int and xsd:string in our example).

• The portType is defined in terms of it operations (only one, factors, in our
case), and the operations are defined in terms of messages they send and
receive.

• The binding gives the SOAP specifics (message pattern is RPC and the
underlying protocol is HTTP), and restates the operations in more SOAP-y
terms. The SOAP encoding is specified by a URI; the “target” namespace of
service-specific elements within the SOAP message is set to the empty
string. When we finally get to SOAP messages received and sent by this ser-
vice, you will see how these settings determine the composition of the
message.

• The final part, service, specifies the port and the URL for SOAP messages
to use.

436

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 436

In theory, a programmer doesn’t have to know much about WSDL or ever
look at WSDL files. In practice, as usual with generated code, some post-editing
will probably be needed in nontrivial applications.

Our next question is: what is it good for? The answer is: for automatic code
generation, either within the same framework, or an alternative Java framework,
or indeed in any framework that has a WSDL-to-code transformer, which
includes all of those that are worth considering. An essential feature of Web ser-
vices is that they must be easy for programmers to create. The main area of
competition between software vendors is in the toolsets for creating WSs, and
automatic code generation from WSDL description is an essential component of
any such toolset.

WSDL to Java

The code we need to generate is for the SOAP client that knows how to invoke our
PrimeFactors server. The program that generates such code within the Axis
framework is called Wsdl2java. To simplify running it, we provide a batch file,
PFStringW2J.bat, which is one long line, shown in Listing 9-3 divided into three
lines and abbreviated.

Listing 9-3. Batch file to Invoke Wsdl2java
java -cp (classpath specification goes here)

org.apache.axis.wsdl.Wsdl2java --verbose -o PFString

http://localhost:8080/axis/PrimeFactorsString.jws?wsdl

The classpath specification simply makes sure that all the necessary libraries
are available, including wsdl4j.jar and xerces.jar. The libraries are located in
common\lib, a common library space for all Tomcat Web applications. Because
our SOAP server and SOAP client run within the same Tomcat installation, this
may be a little confusing. Conceptually, we are still on the SOAP server, running
Wsdl2java to generate SOAP client code from WSDL that was generated on the
server from server code. The program is asked to run in the verbose mode, place
its output in the webapps/axis/PFString directory (which doesn’t need to exist
before this batch file is run), and get its input from the generated WSDL file.

437

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 437

Looking into the PFString directory, we find that it contains a localhost sub-
directory that contains three Java code files. The files define an interface and two
classes within the localhost package. (The fact that the subdirectory and the Java
package it contains are called “localhost” has no special significance: putting the
code in a package makes a lot of sense, a package needs a name, and the host
name is as good as any.) The interface and two classes are as follows:

• interface PrimeFactorsStringPortType: declares the operations that the
service supports (a single factors() operation in our example)

• class PrimeFactorsStringSoapBindingStub: implements the PortType inter-
face, translates a Java method call into a SOAP message using built-in Axis
classes, and sends the message to the SOAP server

• class PrimeFactorsString: the SOAP client itself that gets instantiated in the
JSP and supplies a server stub with a public method to call

We will look at the code in a moment; let’s use it first. To be usable, the code
has to be compiled and placed where a JSP can find it, that is, common/lib. So
our task is to compile the code, put it in a JAR archive, and copy the archive to
common/lib. We again provide a batch file for the task, makePFString.bat, which
is shown in Listing 9-4.

Listing 9-4. Batch File to Compile, Jar, and Copy the SOAP Client and Server Stub
cd PFString

javac -classpath (classpath specification, same as in Listing 9-2)

localhost/*.java

jar -cf PFString.jar localhost/*.class

copy PFString.jar ..\..\..\common\lib

438

Chapter 9

NOTE We want to emphasize that the WSDL input can come from any
WSDL, not necessarily automatically generated from a SOAP server. In
a typical situation, SOAP servers and SOAP clients are created by different
programmers working in different organizations. When a Web service is
published (via UDDI or some other mechanism), it exposes its functional-
ity as a WSDL description. It is this WSDL that is used to generate clients.
A service programmer, in creating a WSDL for his service, may use the
automatically generated description, or manually post-edit it, or write
a better description from scratch.

031ch09.qxp 5/10/02 2:28 PM Page 438

Conceptually, in terms of Web service components and their places of resi-
dence, this batch file compiles SOAP client code on the SOAP server machine and
copies it to the SOAP client. As we said, because our SOAP server and SOAP client
run within the same Tomcat installation, some libraries in common/lib work for
the server, some others work for the client, and yet others (such as xerces.jar)
work for both.

JSP for SOAP Client

The only thing left is to write a JSP that receives HTTP requests from the end user
and invokes the SOAP client. Its punchline (divided in four and simplified) is this
procedure call:

String ans;

try{

ans=new localhost.PrimeFactorsString(). // instantiate client

getPrimeFactorsStringPort(SOAP Server URI). // get server stub

factors(12);

// invoke service

} catch(process error message }

We will return to this line several times later in this section. In the meantime,
the entire JSP (displayed in Figure 9-3) is primeFactorsString.jsp in Listing 9-5.

Listing 9-5. JSP to Invoke the Client
<%@ page errorPage=”../error.jsp”

%><html><head><title>PrimeFactorsString</title></head>

This JSP invokes the Axis PrimeFactorsString service.

<%

String nStr=request.getParameter(“N”);

if(nStr==null){

%>Sorry, a parameter “N” is required <%

} else {

String endPoint=”http://localhost:8080/axis/PrimeFactorsString.jws”;

int N=0;

String ans=null;

try{

N = Integer.parseInt(nStr);

// the punch line; Port created with a URL argument

ans=new localhost.PrimeFactorsString().

getPrimeFactorsStringPort(new java.net.URL(endPoint)).

factors(N);

439

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 439

%>The prime factorization of <%= N %> is <%= ans %>. <%

}catch(Exception ex){

%> Sorry, we cannot find the prime factors of <%= nStr %>;

the exception is

<textarea rows=”20” cols=”80”>

<% ex.printStackTrace(new java.io.PrintWriter(out,true)); %>.

</textarea>

<% }

} %>

</body></html>

The magical thing about this JSP is that we can replace it, and the entire
SOAP client that it invokes, with a JavaScript or a C# SOAP client, and the SOAP
server won’t know the difference. (You will see examples later in the chapter.) To
understand how the magic works, we look inside the SOAP client and server stub
and watch them in operation.

The SOAP Client

Remember the JSP’s punchline:

try{

ans=new localhost.PrimeFactorsString(). // instantiate client

getPrimeFactorsStringPort(). // get server stub

factors(12); // invoke service

} catch(Exception ex){ans=ex.getMessage();}

The exception caught by this code is very likely to be
a java.rmi.RemoteException. It comes from the java.rmi package, in which RMI
stands for Remote Method Invocation, a Java-specific framework for distributed
applications that consist of Java classes. When both the SOAP client and SOAP
server are implemented in Java, it is natural to expect that SOAP messages will
ride on top of RMI exchanges.

Let’s first look at the PortType interface that the server stub must implement.
Apart from whitespace, the code is exactly as produced by Wsdl2java, as shown in
Listing 9-6.

440

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 440

Listing 9-6. The PortType Interface
/**

* PrimeFactorsStringPortType.java

*

* This file was auto-generated from WSDL

* by the Apache Axis Wsdl2java emitter.

*/

package localhost;

public interface PrimeFactorsStringPortType extends java.rmi.Remote {

public java.lang.String factors(int arg0) throws java.rmi.RemoteException;

}

The server stub must implement one method, corresponding to the only
operation of the SOAP server. Its name is factors(), its return value is of type
String, and it takes one argument (with the generated name arg0) whose data
type is int. It is fairly easy to see how this code can be synthesized from the
WSDL. The client itself is programmed exclusively in terms of this interface. This
is the way that RMI operates: when an RMI component invokes a remote
method, it pretends that it’s a local method of the local stub class; the stub class
takes care of all data interchanges between itself and the real remote class.

The client class, PrimeFactorsString, has one variable that is the URL of the
service, and two methods that return an object implementing the PortType inter-
face. One of them takes no argument and returns a server stub that connects to
the server identified by the URL; the other takes a URL as an argument and
returns the service identified by that URL. All these methods do is establish an
HTTP connection to the SOAP server. Listing 9-7 shows the code of the SOAP
client, slightly shortened and some comments replaced with our own.

Listing 9-7. The SOAP Client
/**

* PrimeFactorsString.java

*

* This file was auto-generated from WSDL

* by the Apache Axis Wsdl2java emitter.

*/

package localhost;

public class PrimeFactorsString {

// the URL of the service, obtained from WSDL

private final java.lang.String PrimeFactorsStringPort_address =

“http://localhost:8080/axis/PrimeFactorsString.jws”;

// material removed; two methods to return a PortType object follow:

public localhost.PrimeFactorsStringPortType

getPrimeFactorsStringPort() {

441

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 441

java.net.URL endpoint;

try {

endpoint = new java.net.URL(PrimeFactorsStringPort_address);

}

catch (java.net.MalformedURLException e) {

return null; // unlikely as URL was validated in Wsdl2java

}

return getPrimeFactorsStringPort(endpoint);

}

public localhost.PrimeFactorsStringPortType

getPrimeFactorsStringPort(java.net.URL portAddress) {

try {

return new localhost.PrimeFactorsStringSoapBindingStub(portAddress);

}

catch (org.apache.axis.AxisFault e) {

return null; // ???

}

}

}

Apart from AxisFault, there is nothing specific to Axis or indeed specific to
Web services in this code. All this is in the server stub that implements the
PortType interface. AxisFault is a class that extends java.rmi.RemoteException
with additional fields and methods to provide access to SOAP-level error con-
ditions called faults. We will discuss SOAP faults in the SOAP overview section.

The Server Stub

The server stub makes extensive use of the Axis framework. We are not going to
present all 95 lines of its code, but will try to show enough to indicate the main
components and actions.

The code (PrimeFactorsStringSoapBindingStub.java) starts out by declaring
two private variables that give a clue to where the main functionality of the class
is hidden. (See Listing 9-8.)

Listing 9-8. The Stub’s Variables: Service and Call
public class PrimeFactorsStringSoapBindingStub

extends javax.xml.rpc.Stub

implements localhost.PrimeFactorsStringPortType {

private org.apache.axis.client.Service service = null ;

private org.apache.axis.client.Call call = null ;

442

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 442

Evidently, there is an org.apache.axis.client package that contains Service
and Call classes. The default constructor of our class shows how Service and Call
are related. (See Listing 9-9.)

Listing 9-9. The Stub’s Default Constructor
public PrimeFactorsStringSoapBindingStub()

throws org.apache.axis.AxisFault {

try {

service = new org.apache.axis.client.Service();

call = (org.apache.axis.client.Call) service.createCall();

}

catch(Exception t) {

throw org.apache.axis.AxisFault.makeFault(t);

}

}

However, tracing the path of calls that, in the end, creates the stub, we dis-
cover that it is not created by the default constructor, but rather by a constructor
with a java.net.URL argument. The path starts in the JSP, where the punchline
(again) says

ans=new localhost.PrimeFactorsString().

getPrimeFactorsStringPort(new java.net.URL(endPoint)).

factors(N);

The getPrimeFactorsStringPort() method within the SOAP client, when
called with a URL argument, calls the constructor with that argument:

return new localhost.PrimeFactorsStringSoapBindingStub(portAddress);

Back in the stub class, we can see that it does indeed have another
constructor, as shown in Listing 9-10.

Listing 9-10. The Stub’s java.net.URL Constructor
public PrimeFactorsStringSoapBindingStub(java.net.URL endpointURL)

throws org.apache.axis.AxisFault {

this(); // call the default constructor, creating Service and Call

// now set the properties of the Call object

call.setTargetEndpointAddress(endpointURL);

call.setProperty(org.apache.axis.transport.http.HTTPTransport.URL,

endpointURL.toString());

}

443

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 443

Ignoring the details, we can say that the Call object emerges from the con-
structor completely aware of the location of the service it is going to call, which is
not really surprising. Ignoring more details, we can look at the factors() method
(Listing 9-11).

Listing 9-11. The Stub’s factors() Method
public java.lang.String factors(int arg0) throws java.rmi.RemoteException{

if (call.getProperty(

org.apache.axis.transport.http.HTTPTransport.URL

)==null) {

throw new org.apache.axis.NoEndPointException();

}

call.removeAllParameters();

// set the call’s parameter within the SOAP message, xsd:int

call.addParameter(“arg0”, new org.apache.axis.encoding.XMLType(

new javax.xml.rpc.namespace.QName

(“http://www.w3.org/2001/XMLSchema”,”int”)),

org.apache.axis.client.Call.PARAM_MODE_IN);

// set the call’s return type within the SOAP message, xsd:string

call.setReturnType(new org.apache.axis.encoding.XMLType(

new javax.xml.rpc.namespace.QName(“http://www.w3.org/2001/XMLSchema”,

“string”)));

// ACTION and NAMESPACE properties are set to “”; see SOAP section later

call.setProperty(org.apache.axis.transport.http.HTTPTransport.ACTION, “”);

call.setProperty(call.NAMESPACE, “”);

call.setOperationName(“factors”);

// all set; invoke the service

// the arguments are an array of Object; the returned value is Object

Object resp = call.invoke(new Object[] {new Integer(arg0)});

if (resp instanceof java.rmi.RemoteException) {

throw (java.rmi.RemoteException)resp;

}

else { // convert returned Object to String and return

return (java.lang.String) resp;

}

}

The punchline of this method is unquestionably the highlighted invoke()
call. There are some Java specifics in it: because it ought to be prepared to handle
objects of any class, it takes an Object array as argument and returns an object;
upon receipt, the returned object is cast down to a specific class. Otherwise, it is

444

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 444

The details of TCPMon operation can be found in the Axis User Guide. We
provide a batch file, webapps/axis/runTCPMon.bat, that opens the TCPMon
Admin panel. In that panel, enter “8081” in the Listen Port# box, enter “localhost”
under Listener Target Hostname, and “8080” under Listener Target Port#. Click
on the Add button. To watch the traffic, click on the newly added Port 8081 panel.

Assuming that we have set up a listener as described in the preceding para-
graph, all that’s left to do is go into primeFactorsString.jsp in xmlp/ws and
change the value of its endPoint variable:

String endPoint=”http://localhost:8081/axis/PrimeFactorsString.jws”;

As we explained in the preceding section, this endpoint will end up, as a URL
object, in the server stub that will use it to invoke the service. Because our SOAP
messages ride on top of HTTP, invoking a service means sending an HTTP

clearly inside this call that SOAP messages are sent and received. We could dig
more deeply into the Java code of invoke() (it’s open source!) to see what’s going
on, but this would take us deeper into the specific Axis framework and away from
the general platform- and framework-independent operation of Web services. So,
instead of reading more Java code (which we urge you to do), we are going to
snoop on the SOAP messages that invoke() sends and receives.

TCPMon and the Messages

Axis provides a utility, TCPMon (TCP monitor), that allows you to watch HTTP
traffic to a specific server and port. Suppose that we want to watch the traffic on
localhost:8080 (as is indeed the case). Instead of specifying localhost:8080 as
the target port for our traffic, we direct it to a TCPMon listener on another host
and/or port (say, localhost:8081), and instruct the listener to pass on the 8081
traffic to its target host and port, which we set to localhost:8080. Now all mes-
sages to and from localhost:8080 can be intercepted and displayed by
the TCPMon listener on localhost:8081. This is usually called “HTTP tunneling”:
TCPMon serves as a tunnel (with a hidden video camera) that lets HTTP traffic
pass through.

445

Web Services

NOTE There is nothing SOAP-specific about TCPMon and HTTP tunnel-
ing in general. You can establish a TCPMon mapping from any local port
to any web server, either local or nonlocal, serving either static or gener-
ated pages. For instance, you can associate port 8082 with
www.google.com:80, connect to localhost:8082, use the engine, and have
TCPMon display your queries going out and HTML coming back.

031ch09.qxp 5/10/02 2:28 PM Page 445

request (that contains a SOAP request) and receiving back an HTTP response
(that contains a SOAP response). TCPMon will obligingly display all these mes-
sages for us. Let’s look at the SOAP request first. (See Listing 9-12.) It happens to
be an HTTP POST request whose body is a SOAP message and the headers
include one nonstandard SOAPAction header.

Listing 9-12. SOAP Request Within HTTP POST Request
POST /axis/PrimeFactorsString.jws HTTP/1.0

Content-Length: 402

Host: localhost

Content-Type: text/xml; charset=utf-8

SOAPAction: “”

<?xml version=”1.0” encoding=”UTF-8”?>

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<SOAP-ENV:Body>

<factors>

<arg0 xsi:type=”xsd:int”>36</arg0>

</factors>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

We observe that the root of a SOAP message (viewed as an XML document) is
an Envelope element that has a single child, a Body element. Both are in the “soap
envelope” namespace. The other two declared namespaces are for XSchema and
XSchema Instance. They are used to declare data types, as in xsi:type=xsd:int.
(Recall from the preceding chapter that the xsi:type attribute is for declaring
types outside any schema context.) The contents of the Body element are the
remote procedure call. They could be in a namespace of their own, but, in this
message, they are not in any namespace. Recall that the WSDL of Listing 9-2 had
<soap:body...namespace=””.../>, and correspondingly, in Listing 9-11,
call.NAMESPACE was set to “”.

The convention for passing a procedure call in a SOAP message is that
the name of the procedure is the tagname of a child element of the body, and the
arguments are children of that element, named arg0, arg1, and so on if they are
automatically generated. (In a handcrafted SOAP message, you can give them any
names you want.) The content of an argument element is its value, and each of
them can have an xsi:type element to indicate its data type.

446

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 446

Let us look at the response (Listing 9-13), to see if it conforms to the same
pattern.

Listing 9-13. SOAP Response Within HTTP POST Request
HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: 444

Date: Sun, 10 Feb 2002 22:19:37 GMT

Server: Apache Tomcat/4.0.1 (HTTP/1.1 Connector)

<?xml version=”1.0” encoding=”UTF-8”?>

<SOAP-ENV:Envelope

(same namespaces and the encoding attribute)

>

<SOAP-ENV:Body>

<factorsResponse>

<factorsResult xsi:type=”xsd:string”>2*2*3*3</factorsResult>

</factorsResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Indeed, we see the same message structure and the same use of XS2 to indi-
cate data types. The names of elements within Body follow obvious naming
conventions.

The SOAP messages of Listing 9-12 and 9-13 completely define the operation
of the service. Any SOAP client that sends the HTTP request of Listing 9-12 will
receive the response of Listing 9-13. (If our SOAP server were set up to work over
SMTP instead of HTTP, any SOAP client that’s capable of sending an email with
the HTTP body of Listing 9-12 would receive back an email with the HTTP body
of Listing 9-13.) We are going to illustrate this point by writing two alternative
clients in different languages that will communicate with the same server using
the same SOAP messages.

447

Web Services

NOTE Another, more structured method of attaching types to elements
would be to place the contents of the body in a namespace and associate
that namespace with an XSchema (or, indeed, a RELAX NG grammar) that
would define the data types of elements.

031ch09.qxp 5/10/02 2:28 PM Page 447

Client Variations

In this section, we are not going to use any frameworks or toolsets but rather
manufacture SOAP messages directly from HTML form data. The idea is that
a SOAP request is an XML document, which, in turn, is a character string, which,
in turn, is a sequence of bytes. The SOAP client doesn’t need to know anything
about SOAP: it can construct the SOAP request as a character string and deliver
it to the SOAP server as an XML document or as a sequence of bytes: the oper-
ation of the SOAP server will remain unaffected.

Variation 1: SOAP as XML

Our first alternative client will use Microsoft-specific JScript code within Internet
Explorer. It will construct a SOAP request as text, parse it into an MSXML
DOMDocument object, and send it directly to the SOAP server using an XML-
HTTP ActiveX object. It will receive a SOAP response back as an XML document
and display it with the help of an XSLT. This is illustrated in Figure 9-5.

The HTML Page

Our first no-framework example is an HTML page with some JScript code
and a form, primeFactorsStringDirect.htm. The code initializes four variables
(see Listing 9-15) and defines three functions:

function factorSoapEnv(N){ // build the SOAP request envelope

function getFactors(N){ // invoke the service

function onSub(){ // onSubmit action: call getFactors()

448

Chapter 9

Figure 9-5. Client variation 1: SOAP as XML

031ch09.qxp 5/10/02 2:28 PM Page 448

The body of the page consists entirely of the form. The form has an input ele-
ment to enter a number to factor, and a <div> to receive the result. The result is
computed by the JScript getFactors() function that talks directly to the SOAP
server, as shown in Listing 9-14.

Listing 9-14. Another Kind of Client
<html><head><title>primeFactorsStringDirect.htm</title>

<script LANGUAGE=”JScript”>...</script></head>

<body><form name=”theForm”

action=”javascript:void”

onSubmit=”return onSub()”>

<input type=”button” value=”getFactors”

onclick=”resultDiv.innerHTML=getFactors(theForm.N.value)”/>

number to factor:

<input type=”text” name=”N” size=”20” value=”120”>

result: <div ID=”resultDiv”> </div>

</form> </body></html>

Submitting the form results in the same action as the button’s on:

function onSub(){

resultDiv.innerHTML=getFactors(theForm.N.value);

return false;

}

The JScript Code

Obviously, all the action is in the getFactors() function. How does a JavaScript
function invoke a SOAP action? It uses four ActiveX objects in the background, as
shown in Listing 9-15.

Listing 9-15. Four ActiveX Objects
var xmlhttp = new ActiveXObject(“Microsoft.XMLHTTP”);

var SOAPRequest = new ActiveXObject(“MSXML2.DOMDocument”);

SOAPRequest.async = false;

var SOAPResponse = new ActiveXObject(“MSXML2.DOMDocument”);

SOAPResponse.async = false;

var objStyle = new ActiveXObject(“MSXML2.DOMDocument”);

objStyle.load(“primeFactorsStringDirect.xsl”);

objStyle.async = false;

449

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 449

The first of these objects, XMLHTTP, has not been used in this book before. It is
aware of XML and HTTP, so it has methods for setting headers, loading a body
that is an XML document, sending out an HTTP request, and receiving an HTTP
response. The SOAPRequest and SOAPResponse objects are familiar
DOMDocuments, which will be used as holders for SOAP messages which, for
those DOMDocument objects will be just XML data. Finally, objStyle is a DOM
object that holds an XSLT for transforming a SOAP message into HTML. Perhaps
the most educational feature of this example is that the same DOMDocument
object is used to process SOAP messages and XSLTs because they are all
XML data.

We also need a supporting function that will take the value of the N parame-
ter and construct a SOAP envelope. This is a pedestrian kind of function that
keeps on concatenating the right strings. A number of service-specific features
are hard-wired into its code, as shown in Listing 9-16.

Listing 9-16. Function to Build an Envelope (Very ad hoc)
function factorSoapEnv(N){ // build the SOAP request envelope

var S=’<?xml version=”1.0” encoding=”UTF-8”?>\n’;

S+=’<SOAP-ENV:Envelope\n’;

S+=’SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”\n’;

S+=’xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”\n’;

S+=’xmlns:xsd=”http://www.w3.org/2001/XMLSchema”\n’;

S+=’xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>\n’;

S+=’<SOAP-ENV:Body>\n’;

S+=’<factors>\n’;

S+=’ <arg0 xsi:type=”xsd:int”>’+N+’</arg0>\n’;

S+=’</factors>\n’;

S+=’</SOAP-ENV:Body>\n’;

S+=’</SOAP-ENV:Envelope>\n’;

return S;

}

With the supporting function and ActiveX objects in hand, we can write
getFactors(), shown in Listing 9-17. It is completely obvious except for one
annoying detail: to get it to work, we have to specify (redundantly) the value of
the SOAPAction header. (In the Axis version of the client, it was set to the empty
string.)

xmlhttp.setRequestHeader(“SOAPAction”, “PrimeFactorsString”)

This is something that is required by Microsoft software and is likely to
change in the future because the header goes back to SOAP 1.1 and is deprecated
in SOAP 1.2.

450

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 450

Listing 9-17. The getFactors() Function
function getFactors(N){

// open connection to the SOAP server URL

xmlhttp.Open(“POST”,

“http://localhost:8080/axis/PrimeFactorsString.jws”,

false); // false stands for “asynchronous=false”

// set HTTP headers including SOAPAction

xmlhttp.setRequestHeader(“SOAPAction”, “PrimeFactorsString”)

xmlhttp.setRequestHeader(“Content-Type”, “text/xml; charset=utf-8”)

// load SOAP request constructed by factorSoapEnv()

SOAPRequest.loadXML(factorSoapEnv(N));

// send the HTTP request out

xmlhttp.Send(SOAPRequest.xml);

// load the result (serialized XML) into another DOM document

SOAPResponse.loadXML(xmlhttp.responseXML.xml);

// send the SOAP response, as DOM, to a trasformer object

// to convert to HTML

var result=SOAPResponse.transformNode(objStyle.documentElement);

return result;

}

The last thing to consider is the objStyle stylesheet for transforming a SOAP
response message into HTML. This will require an analysis of possible returned
values and a discussion of SOAP faults.

SOAP Returned Values and an XSLT to Display Them

If our SOAP communication is successful, we’ll get back the familiar SOAP
response of Listing 9-13. Its body is

<?xml version=”1.0” encoding=”UTF-8”?>

<SOAP-ENV:Envelope

(namespaces and the encodingStyle attribute)

>

<SOAP-ENV:Body>

<factorsResponse>

<factorsResult xsi:type=”xsd:string”>2*2*2*3*5</factorsResult>

</factorsResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

451

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 451

From this, our XSLT will extract the data type of the result and its value.
However, if SOAP communication fails, the Body element will contain something
else: one or more Fault elements, also in the SOAP-ENV namespace. In this case,
our stylesheet will extract the entire Body content and place it into a text area.
Because in either case we are interested in the content of the Body element, our
root template will use apply-templates to select Body’s children, and the other
two templates will process the two possible versions of its content. (See
Listing 9-18.)

Listing 9-18. XSLT to Display Result
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

exclude-result-prefixes=”xsi xsd SOAP-ENV”

>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<xsl:apply-templates select=”SOAP-ENV:Envelope/SOAP-ENV:Body/*” />

</xsl:template>

<xsl:template match=”factorsResult”><!-- output success -->

<p>

type=<xsl:value-of select=”@xsi:type”/>;

value=<xsl:value-of select=”.”/>

</p>

</xsl:template>

<xsl:template match=”SOAP-ENV:Fault”><!-- output failure -->

<p><H1>ERROR</H1>

code=<xsl:value-of select=”SOAP-ENV:faultcode”/>;

short version=<xsl:value-of select=”SOAP-ENV:faultstring”/>;

details:

<textarea rows=”40” cols=”60”>

<xsl:copy-of select=”SOAP-ENV:detail”/>

</textarea>

</p>

</xsl:template>

We will discuss the details of SOAP fault elements in a moment, after we
present our second SOAP client variation.

452

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 452

Variation 2: SOAP As Bytes

Our second alternative client uses standard HTML and ECMAScript to construct
a SOAP request and send it to a JSP, along with the SOAP server URL. The JSP
(which does not use any Axis-specific code and so can easily be replaced by an
ASP) opens a direct socket connection to the SOAP server and passes along the
SOAP message as a stream of bytes. It receives the SOAP response also as a stream
of bytes, and passes it on back to the browser. This is summarized in Figure 9-6.

The HTML Page

The HTML page of this client, primeFactorsString.htm, is very similar to
Listing 9-14 but simpler. (See Listing 9-19.) It constructs the SOAP envelope
exactly as in Listing 9-14 but sends it to a JSP page for further processing rather
than directly to the SOAP server. The form in the page does have two additional
hidden input elements: one to submit the URL of the SOAP server and the other
to submit the SOAP envelope constructed by a JavaScript function.

Listing 9-19. The HTML Page That Submits Data to PassAlong.jsp
<html><head><title>primeFactorsString.htm</title></head><body>

<script>...</script>

<form name=”theForm” method=”POST” action=”PassAlong.jsp”

onSubmit=”return onFactorSub()”>

number to factor:<input type=”text” name=”N” size=”20” value=”120” >

<input type=”hidden” name=”router”

value=”http://localhost:8080/axis/PrimeFactorsString.jws” >

<input type=”hidden” name=”envelope” value=”” >

<input type=”submit”>

</form></body></html>

453

Web Services

Figure 9-6. Client variation 2: SOAP as a stream of bytes

031ch09.qxp 5/10/02 2:28 PM Page 453

The form’s onSubmit action is simply to store the SOAP envelope (constructed
by JavaScript) in the envelope hidden field and submit the form:

function onFactorSub(){

theForm.envelope.value=factorSoapEnv(theForm.N.value);

return true;

}

The factorSoapEnv() function is identical to the one of the same name in the
preceding version of the client (Listing 9-16): it just keeps on concatenating all
the right strings until the envelope is ready to go. At this point, the action shifts to
PassAlong.jsp.

The JSP and the Socket Connection

The JSP receives two items from the browser: the URL of a SOAP server and
a SOAP envelope to send. In outline, it proceeds as follows:

1. Take the URL apart and open a socket connection to the server, and set
up streams to send and receive data.

2. Construct headers for the SOAP request.

3. Send the headers and the SOAP envelope to the SOAP server.

4. Receive the response as a stream of (integer codes for) characters, and
convert to a text string (the result string). Close the SOAP server con-
nection.

5. Send the result string, without its HTTP headers, back to the browser.

We will present PassAlong.jsp in two installments, Listing 9-20 and 9-21.

Listing 9-20. Receive HTTP Request; Send SOAP Request
<%@ page errorPage=”error.jsp” import=”java.net.*,java.io.*”

%><%

String urlString=request.getParameter(“router”);

String payload=request.getParameter(“envelope”);

URL url=new URL(urlString);

int timeout=20000; // 20 seconds

int port= url.getPort(); if(port<0) port=80;

// open socket connection to SOAP server; set up streams

454

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 454

Socket s = new Socket(url.getHost(),port);

s.setSoTimeout(timeout);

OutputStream outStream = s.getOutputStream ();

InputStream inStream = s.getInputStream ();

// construct HTTP headers for SOAP request

StringBuffer headerbuf = new StringBuffer();

headerbuf.append(“POST “)

.append(url.getFile()).append(“ HTTP/1.0\r\n”)

.append(“Host: “)

.append(url.getHost()).append(‘:’).append(port).append(“\r\n”)

.append(“Content-Type: text/xml; charset=utf-8\r\n”)

.append(“Content-Length: “)

.append(payload.length()).append(“\r\n”)

.append(“SOAPAction: \”\”\r\n”) // the empty string

.append(“\r\n”); // end of HTTP headers; a blank line

// Send HTTP headers and payload downstream to SOAP server

BufferedOutputStream bOutStream = new BufferedOutputStream(outStream);

bOutStream.write(headerbuf.toString().getBytes(“utf-8”));

bOutStream.write(payload.getBytes(“utf-8”));

bOutStream.flush(); outStream.flush();

The next listing (Listing 9-21) shows the processing of the SOAP response.
The response comes back over the byte stream inStream attached to the remote
socket. We want to convert this into a character string, to be sent back to the
browser. This involves several transformations. First, we buffer the byte stream.
Second, we wrap the byte stream, which is, in fact, a UTF-8 encoding of Unicode
characters, into a character stream, specifying the encoding. However, Java char-
acter streams do not really carry values of type char; they carry integers that are
Unicode codes for the character data, appropriately encoded (UTF-8 in this JSP).
So we have to convert those Unicode codes into real characters before storing
them in a Java String object. This involves copying them to a StringWriter stream,
converting from int to char in the process. When this is done, the StringWriter
content is easily dumped to a string.

That string contains both the SOAP response message and the HTTP headers
for carrying it over HTTP. We chop off the headers and send the response mes-
sage back to the browser. We could easily have piped it through an XSLT, as in the
preceding example.

455

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 455

Listing 9-21. Receive SOAP Request; Process; Send to Browser
// Prepare InputStreamReader

BufferedInputStream bInStream = new BufferedInputStream(inStream);

InputStreamReader reader=new InputStreamReader(bInStream,”utf-8”);

// convert incoming stream of “characters as integers” into String

StringWriter sw=new java.io.StringWriter();

for(int ch=reader.read();ch>=0;ch=reader.read())

sw.write((char)ch); // convert int to char, write to StringWriter

String resString=sw.toString();

// close up SOAP server connection

bOutStream.close(); outStream.close();

bInStream.close(); inStream.close();

s.close();

// chop off headers from the result string

int endHeaderPos=resString.indexOf(“\r\n\r\n”);

if(endHeaderPos>=0) resString=resString.substring(endHeaderPos+4);

// send result string back to the browser

response.setContentType(“text/xml; charset=utf-8”);

response.setContentLength(resString.length());

out.write(resString);

%>

This completes PassAlong.jsp, the Client Variations section, and the entire
PrimeFactorsString example. The code archive also contains the
PrimeFactorsArray example that you saw displayed in Figure 9-3. It is very similar
to PrimeFactorsString, except the Web service returns prime factors as an array of
integers. The SOAP server code is in axis/PrimeFactorsArray.jws, and the SOAP
client is invoked by xmlp/ws/primeFactorsArray.jsp. The only novelty is that
the generated code returns a value of type Object[], and our JSP that invokes the
client and receives the result has to do some type conversions. Sometimes when
you’re going to depend on generated code, you do have to read it.

Overview of SOAP 1.2

Now that we have seen several examples of SOAP messages, we can take a general
look at the specification that defines them. As mentioned, it consists of three
parts: the main Part 1, Part 0 (Primer), and Part 2 (Adjuncts). Before version 1.2,
Part 0 didn’t exist and Part 2 was included in the core specification.

456

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 456

Part 1 consists of the following sections (listed in order of size and
significance):

• The XML structure of the SOAP envelope, by far the longest and most
important

• SOAP Message Exchange Model, mostly relevant for somewhat distant
future

• SOAP Protocol Binding Framework, general principles only (a specific pro-
posal is in Part 2)

• Two very brief supporting sections on SOAP’s relationship to XML (it is an
XML language) and the role of URIs in SOAP (important)

With much of earlier SOAP relegated to Adjuncts, Part 1 feels a little too
general and abstract.

Part 2 has three major sections:

• SOAP encoding, that is, a set of specific rules for encoding data types
in XML

• Using SOAP for RPC, that is, a set of conventions for encoding a procedure
call in a SOAP envelope structure

• Default SOAP HTTP binding

As we mentioned, the first two of these sections have been made into
Adjuncts to give more flexibility to individual developers and applications. The
status of the third section is as follows: you can use any protocol, but most likely
you will use HTTP; if you use HTTP, you can embed SOAP envelopes into HTTP
exchanges in any way you wish, but here is a default binding that will most likely
be understood without any additional arrangements. So far, most Web services
have been using the default HTTP, but there is active experimentation with SMTP
and instant messaging as alternatives.

In this section, we will discuss the Message Exchange Model and the XML
structure of the SOAP envelope. In the next section, we will discuss SOAP encod-
ing and SOAP RPC conventions, in the context of an RPC example that returns
structured data (an array of objects) rather than a simple type, as in earlier
examples.

In the remainder of this chapter, we will say SOAP1.2-1 to mean SOAP 1.2
Working Draft Part 1, and similarly for SOAP1.2-2 and SOAP1.2-0.

457

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 457

SOAP Message Exchange Model

A SOAP message is a one-way transmission from a SOAP sender to a SOAP
receiver. However, SOAP messages can be combined to implement various
Message Exchange Patterns (MEPs) such as request/response or multicast. The
definition of a MEP would describe

• the life cycle of an exchange conforming to the pattern within a specific
transport protocol,

• the temporal and causal relationships of the messages within the
pattern, and

• the terminating conditions of the pattern, both normal and abnormal.

SOAP1.2-2 gives a general definition of MEPs and a specific definition of just one
of them, the “Single-Request-Response” MEP.

SOAP messages can travel from the message originator to its final destination
via intermediaries that can simply pass the message on or process it and emit
a modified message or a fault condition. SOAP node is a general name for the ini-
tial SOAP sender, the ultimate SOAP receiver, or a SOAP intermediary (which is
both a SOAP sender and a SOAP receiver). Ultimately, a Web service is a col-
lection of SOAP nodes.

A SOAP message consists of two parts: the optional header and the manda-
tory body. Both header and body consist of “blocks,” which are XML elements.
The content of the body, sometimes called the payload, is intended to be
processed by the message’s final destination. The content of the header is
intended for intermediate nodes, with each header block targeted individually.
The entire machinery of header blocks and intermediate nodes is intended for
automatic collaboration among multiple SOAP processors. For instance, a pur-
chase order from a SOAP client to a SOAP server may travel via an intermediate
node (specified in a header block) that will authenticate the digital signature of
the originator of the purchase order, and another intermediate node that will ini-
tiate just-in-time delivery of the ordered items. As we said, this functionality is
probably some time away in the future.

The XML Structure of a SOAP Message

This section explains how the abstract structure of a SOAP message is expressed
in XML.

458

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 458

The Root Element and Its Schema Definition

SOAP1.2-1 and SOAP1.2-2 use the infoset terminology to describe XML data. So,
for instance, a SOAP message is defined in SOAP1.2-1 Section 4 as follows: “A
SOAP message has an XML infoset that consists of a document information item
with exactly one child, which is an element information item as described
below.” Continuing the quote, that “element information item” has the following
properties:

• a local name of Envelope

• a namespace name of http://www.w3.org/2001/12/soap-envelope

• zero or more namespace-qualified attribute information items

• one or two element information item children in order as follows:

• an optional Header element information item (see 4.2 SOAP Header)

• a mandatory Body element information item (see 4.3 SOAP Body)

We are going to use looser (but less verbose) terminology of document,
element, and attribute. So we recast the official definition as follows.

A SOAP message is an XML document. Its root element’s name is Envelope,
within the http://www.w3.org/2001/12/soap-envelope namespace. (In our dis-
cussion, we will call it the Envelope namespace and assume that it is mapped to
the env prefix.) The env:Envelope element has two children in the same name-
space: the optional env:Header and the required env:Body. It may also have other
children as long as they come from other namespaces, and it may have global
(that is, namespace-qualified) attributes.

To make it even clearer, here is an excerpt from the XSchema for Envelope,
Header, and Body elements (http://schemas.xmlsoap.org/soap/envelope/). This is
SOAP 1.1, but the changes for 1.2 are minimal and listed in SOAP1.2-1. The
schema is very readable, with only two details possibly unfamiliar:
namespace=##other means “any namespace other than currently in scope,” and
processContents=”lax” means “don’t give me a hard time with this one.” (See
Listing 9-22.)

459

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 459

Listing 9-22. XSchema for SOAP Envelope
<xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”

xmlns:tns=”http://schemas.xmlsoap.org/soap/envelope/”

targetNamespace=”http://schemas.xmlsoap.org/soap/envelope/” >

<xs:element name=”Envelope” type=”tns:Envelope” />

<xs:complexType name=”Envelope” >

<xs:sequence>

<xs:element ref=”tns:Header” minOccurs=”0” />

<xs:element ref=”tns:Body” minOccurs=”1” />

<xs:any namespace=”##other” minOccurs=”0” maxOccurs=”unbounded”

processContents=”lax” />

</xs:sequence>

<xs:anyAttribute namespace=”##other” processContents=”lax” />

</xs:complexType>

Next, we look at the Header and Body elements and other items defined in the
Envelope namespace.

The Header Element

Recall that, in the abstract Message Exchange Model, both header and body con-
sist of blocks. In XML terms, both env:Header and env:Body can have any number
of children elements in their own namespace(s), with no constraints on their
internal structure. Header blocks, as we said, can be independently targeted at
intermediate SOAP nodes. To express such targeting in XML, SOAP1.2-1 defines
three attributes in the Envelope namespace: actor, mustUnderstand, and
encodingStyle.

The value of actor can be any URI. SOAP nodes have a property called role,
whose value is also a URI; if the value of actor on a header block matches the
value of role, then the block is targeted at that node. SOAP1.2-1 does not explain
how a node specifies its role, but it does mention, in Section 2.2, that “each SOAP
node MUST act in the role of the special SOAP actor named
http://www.w3.org/2001/12/soap-envelope/actor/next.”

If the value of actor is not specified, the block is targeted at the ultimate
receiver of the message.

If the node’s role matches a header block’s actor attribute and, in addition,
the value of mustUnderstand on that header block is 1 or true, then the node must
either process the block or emit an error message.

The encodingStyle attribute, which you have seen in our examples, specifies
the XML encoding of data items. Its value is a URI. For the encoding defined in
SOAP1.2-2, that URI is http://schemas.xmlsoap.org/soap/encoding/, but it can
be any URI that serves as an identifier for an application-specific encoding.

460

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 460

Listing 9-23 provides an example from SOAP1.2-0 that illustrates this usage, as
well as the actor and mustUnderstand attributes.

Listing 9-23. A Header Example
<env:Header>

<m:reservation xmlns:m=”http://travelcompany.example.org/reservation”

env:actor=”http://www.w3.org/2001/12/soap-envelope/actor/next”

env:mustUnderstand=”true”>

<m:reference>uuid:093a2da1-q345-739r-ba5d-pqff98fe8j7d</reference>

<m:dateAndTime>2001-11-29T13:36:50.000-05:00</m:dateAndTime>

</m:reservation>

<t:transaction

xmlns:t=”http://thirdparty.example.org/transaction”

env:encodingStyle=”http://example.com/encoding”

env:mustUnderstand=”true” >

5

</t:transaction>

</env:Header>

This example has two header blocks. The first header block must be
processed by the first SOAP node it encounters, and the second header block is
targeted at the ultimate receiver. The content of the node is a piece of data to be
processed by the targeted node in accordance with the encoding identified by
http://example.com/encoding.

We have not yet seen or read about a working example that actually uses
header blocks in this way.

The Body and Fault Elements

The env:Body element never carries an env:actor attribute because it is targeted
at the ultimate receiver of the message. It can have any number of children, of
two different kinds. Under normal conditions, children of env:Body must be ele-
ments from namespaces other than the Envelope namespace. (The requirement
that children of env:Body must be in some namespace is new in 1.2 and still under
discussion.) If a SOAP error occurs, env:Body may have any number of env:Fault
elements. (Recall that we wrote code for this possibility in the XSLT of
Listing 9-18.)

The env:Fault element has two mandatory children and two optional ones.
The mandatory children are faultcode and faultstring, both in no namespace.

461

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 461

The optional children are faultfactor and detail, also in no namespace. Their
use is as follows:

• faultcode is for use by software. Their value is a qualified name in the
Envelope namespace. SOAP1.2-1 Section 4.4.5 defines half a dozen
faultcode values, such as env:VersionMismatch and
env:DataEncodingUnknown.

• faultstring is to provide a human-readable description of the fault.

• faultfactor is a URI, typically one of the URIs that is used as a value for an
actor attribute. It serves to provide information about which SOAP node
on the SOAP message path caused the fault. In the multinode situation,
intermediate nodes generating an error MUST emit a faultfactor ele-
ment; the ultimate receiver may, but doesn’t have to do so, because . . .

• detail is intended for error information related to env:Body. If the contents
of the SOAP body could not be processed successfully, detail must be
present within env:Fault.

This concludes our discussion of SOAP1.2-1. By the time you read this, some
details of our discussion may be out of date, but we have tried to concentrate on
those aspects of the specification that seem most stable and useful in practical
programming. We move on to SOAP1.2-2, and specifically to encoding and RPC
conventions.

XML Encoding and RPC Conventions

In this section, we will be talking specifically about using SOAP and Web services
for RPC, but the principles of XML encoding apply to other scenarios as well.

All our previous examples have shown RPCs of the simplest possible kind, in
which both the argument of the procedure call and the returned value are of
a primitive type. In other words, both the SOAP request and the SOAP response
have to encode only a single primitive value, which can be done by an xsi:type
attribute.

In the general case, both the argument and the returned values are complex
structures with subparts and references to them. (Note that one argument is
enough: if there are more, we can always wrap them in a structure of which they
are subparts.) So, for the general case, we need a set of general conventions for
serializing a complex structure with references to its subparts as an XML struc-
ture within a SOAP message.

462

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 462

An Example

We will illustrate the notion of structure with subparts on a simple example: an
inventory of office equipment that lists such items as computers, printers, scan-
ners, and fax machines. It is intended purely as an illustration of concepts. Once
the concepts are in place, we will develop another example that we will imple-
ment as a real Web service.

Each item in our inventory is represented by a structure with three fields:
a unique tag number, a character string that classifies the item, and the item’s
price. In C, we would define such as structure as follows:

typedef struct{

int tagNumber;

char * classifier;

double price;

}Item;

The reason we are using C rather than Java for the illustration is because the
C struct is much closer in some respects to XML representations than are
Java/C++ objects. The C struct usually has only data, not methods (although it
can, of course, contain pointers to functions), and it has no notion of controlled
access: everything is public. In fact, the XML encoding of SOAP1.2-2 uses the
struct element to represent structured objects whose subparts are referenced by
name. (It uses the array element to represent structured objects whose subparts
are addressed by a numerical index.)

With the structure defined, we can describe individual items (still using C
syntax):

Item i1 = { 1, “computer”, 679.95 }

Item i3 = { 3, “printer”, 122.50 }

An item can combine more than one function; for instance:

Item i6 = { 6, “printer scanner fax”, 400.00 }

An office inventory is itself a structure that has four subparts: computer,
printer, scanner, and faxMachine. An office is allowed at most one of each. A fully
equipped office will look like

Office o1 = { i1, i3, i4, i5 } // i4 is scanner, i5 is fax machine

463

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 463

An office that has a multifunction device will look like

Office o2 = { i2, i6, i6, i6 } // i2 is computer

Notice that a single struct, i6, is referenced more than once. If we think of
each reference as a directed link, the entire structure forms a directed graph,
shown in Figure 9-7.

Suppose that we want to write a Web service RPC that receives an office
inventory as its argument and returns the total price of all equipment in that
office. The task of XML encoding would be to represent an arbitrary directed
graph of structures and references in XML. In particular, the XML representation
would have to represent the fact that, in our second office, the price of the multi-
function device must be counted only once. The way this is done is what is meant
by the “SOAP encoding.”

SOAP Encoding and the Data Model

The initial SOAP authors could have, of course, used XLink for SOAP encoding,
but they didn’t. Instead, they designed it as a specialized XML language that is
more in tune with the notions that are traditionally used in programming lan-
guages: struct and array. This language has been carried over from earlier
versions into Section 4 of SOAP1.2-2, with three changes (two of which are prom-
ised but not yet implemented).

464

Chapter 9

Figure 9-7. Directed graph of office items

031ch09.qxp 5/10/02 2:28 PM Page 464

The first change is a change in status: the use of the encoding style as defined
in SOAP1.2-2 is “encouraged but not mandatory.” Individual applications can use
their own serialization rules.

The second change is conceptual: serialization rules are going to be sepa-
rated from the data model. The “SOAP Encoding” section of SOAP1.2-2 is
preceded by a “SOAP Data Model” section, whose entire content is the following
editorial comment:

Section 4 currently defines a data model in the form of a directed graph.
Elements of the data model include struct, array, and id/href. In addition to
the data model, section 4 includes a particular encoding of that model with-
out clearly separating the two. The W[orking]G[roup] would like to clarify the
relationship between the data model and the particular encoding by saying
that the SOAP encoding is one of several potential encodings of the SOAP
data model. This section is the placeholder for the description of the
SOAP data model.

The third change is terminological and also described in an editorial note (in
the very beginning of Section 4): “The Working Group is aware that the following
section does not use the XML Infoset terminology used elsewhere in this specifi-
cation, and most notably in Part 1. The WG expects to rewrite this section using
the XML Infoset terminology at a later date.”

With these caveats and promised changes out of the way, we can quickly
review the encoding rules of SOAP1.2-2, Section 4.

Values, Types, and Encoding

XML encoding deals with very familiar programming concepts. First, we distin-
guish values and types. Within values, we distinguish simple values (without
subparts) and compound values (with subparts). There are two kinds of com-
pound values: structs, whose subparts are referenced and accessed by name, and
arrays, whose subparts are referenced by a numerical index from a continuous
range starting at 0. Within types, we also distinguish simple types (classes of sim-
ple values) and compound types (classes of compound values).

Section 4 uses the generic term accessor to refer to struct accessors (names)
and array accessors (numerical indices). It distinguishes between single-
reference values that can be accessed by only one accessor and multireference
values that may be accessed by more than one accessor. If there is an XSchema
for the encoding, it may be possible to determine from the schema whether
a value is single-reference or multireference.

465

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 465

The encoding rules are fairly straightforward. We will summarize the main
points so you can read the actual SOAP messages in our example; for more
details, see SOAP1.2-2. In the following summary, the enc: prefix is assumed
to be mapped to the namespace URI of the encoding,
http://www.w3.org/2001/12/soap-encoding.

• All values are represented by element content.

• The type of a value must be represented, either using the xsi:type
attribute or within an agreed-upon schema.

• Within an array representation, in which all array components are repre-
sented as children of the element representing the array, the type of
components can be represented just once as the value of the
enc:arrayType attribute on the parent element.

• A simple value must have a type specified in XS2, or a type derived from an
XS2 type.

• A struct compound value is encoded as a sequence of elements, each
accessor represented by an embedded element whose name corresponds
to the name of the accessor. A special appendix defines the mapping from
application-defined names to XML names.

• SOAP arrays are defined as having a type of enc:Array or a type derived
from it. SOAP arrays must contain an enc:arrayType attribute whose value
specifies the type of the contained elements and the dimension(s) of the
array.

To give an example, we are going to implement the Office Equipment Price
service, set up TCPMon to monitor its traffic, and inspect the XML representation
of Java objects in SOAP messages. Before we do that, we will quickly summarize
the RPC conventions.

Representation of RPC in SOAP1.2-2

To represent an RPC, very simply, make an element whose name is the name of
the remote procedure, and give it parameter children that represent the argu-
ments. Each parameter child must have its type specified using some XML
encoding, for instance, the encoding of SOAP1.2-2. To represent the graph struc-
ture of references, a system of id and href attributes is used: each object has an
id attribute of type ID (as in XML 1.0 DTD), and href attributes have, as values,
the values of those id attributes. You will see examples in the next section.

466

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 466

The Office Equipment Web Service

Our implementation of this Web service will proceed through the following steps:

1. Write the Java code for the server, compile, JAR, and place into
common/lib.

2. Deploy the server using a “deployment descriptor” for it.

3. Write a JSP that is a SOAP client for the service.

When we are done, we will be able to invoke the service by connecting to the
JSP, and view the result shown in Figure 9-8.

As the screenshot shows, SOAP correctly serializes and deserializes the graph
of references.

467

Web Services

Figure 9-8. The Office Equipment Web service in operation

031ch09.qxp 5/10/02 2:28 PM Page 467

The Java Code

The first step is to write a fair amount of very simple and repetitive Java code. We
need two classes: one to represent an equipment item and the other to represent
an office inventory of such items. Both classes will be Java beans. A Java bean is,
very simply, a Java class that conforms to the following conventions:

• It has a default no-argument constructor.

• For each private variable that has read access, it has a get-accessor
method.

• For each private variable that has write access, it has a set-accessor
method.

• The accessor methods have standard signatures, and their names conform
to Java bean naming conventions.

For signatures and naming conventions, it’s much easier to provide an exam-
ple than a definition. Listing 9-24 shows the OfficeItem class, a fully conformant
Java bean.

Listing 9-24. OfficeItem.java, a Java Bean
public class OfficeItem{

private int tag=0;

private String cla=”dummy”;

private double price=0.0;

public OfficeItem(){};

public OfficeItem(int tagNumber,String classifier,double price){

setTagNumber(tagNumber);

setClassifier(classifier);

setPrice(price);

}

// get-accessors

public int getTagNumber(){return tag;}

public String getClassifier(){return cla;}

public double getPrice(){return price;}

// set-accessors

public void setTagNumber(int tagNumber){tag=tagNumber;}

public void setClassifier(String classifier){cla=classifier;}

public void setPrice(double price){this.price=price;}

public String toString(){

StringBuffer sb=new StringBuffer(“{tagNumber=”);

468

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 468

sb.append(tag).append(“, classifier=”)

.append(cla).append(“, price=”)

.append(price).append(“}”);

return sb.toString();

}

}

As you can see, if the name of the variable is var and its type is type, then the
names and signatures of the accessors are

type getVar(){return var;}

void setVar(type newVarValue){var=newVarValue;}

The office inventory class, OfficeBean.java, is also a bean. (See Listing 9-25.)
This time, we’ll omit some of the accessor methods. To calculate the total price,
we maintain a hashtable of items, and add the price of an item only if it has not
yet been seen.

Listing 9-25. Another Java Bean
import OfficeItem;

import java.util.Hashtable;

public class OfficeBean{

private OfficeItem[] items; // computer, printer, scanner, faxMachine

public OfficeBean(){ // create a dummy, use four times.

OfficeItem oi=new OfficeItem();

items = new OfficeItem[4];

for(int i=0;i<4;i++)items[i]=oi;

};

public OfficeItem getComputer(){return items[0];}

public void setComputer(OfficeItem oi){items[0]=oi;}

// same for printer, scanner, faxMachine

public OfficeItem[] getItems(){return items;}

public void setItems(OfficeItem[]items){this.items=items;}

public String toString(){

StringBuffer sb=new StringBuffer(“{“);

sb.append(getComputer().toString()).append(“, “)

.append(getPrinter().toString()).append(“, “)

.append(getScanner().toString()).append(“, “)

.append(getFaxMachine().toString()).append(“}”);

return sb.toString();

}

469

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 469

private boolean isNew(Object ob,Hashtable hash){

if(hash.get(ob)!=null)return false; // wasn’t new

hash.put(ob,ob);

return true; // was new, but won’t be next time.

}

public double totalPrice(OfficeBean ob){

double price=0.0;

Hashtable hash=new Hashtable();

OfficeItem[]itemList=ob.getItems();

for(int i=0;i<4;i++)

if(isNew(itemList[i],hash)) price+=itemList[i].getPrice();

return price;

}

}

Now we have to make this Java code into a Web service. We cannot use the
previous rename-as-jws method yet. Eventually, Axis will be powerful enough to
generate WSDL from our Java code and use it to define the service, but, for now,
we will have to do manual compilation and deployment. This is actually useful,
because manual deployment will always give you more power and flexibility than
will automatic deployment.

Compile, JAR, and Copy

Before we deploy our code as a Web service, we have to make it available to the
Axis engine that runs Web services. This engine is, in fact, a servlet running
within Tomcat. So, we have to do the familiar sequence of operations: compile
the code, put it in a JAR, and copy the JAR where Tomcat can find it, in
common/lib. (We again put the sequence into a batch file,
axis/OfficeBean/makeCompile.bat.) Remember that conceptually we are on the
SOAP server, deploying a service.

The Deployment Descriptor and the Batch Files

The tool for manual deployment of Web services using Axis is, surprise, an XML
language called Web Services Deployment Descriptor language (WSDD).
Listing 9-26 is the deployment descriptor for our OfficeBean service, file
deploy.wsdd.

470

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 470

Listing 9-26. Deployment Descriptor
<deployment

xmlns=”http://xml.apache.org/axis/wsdd/”

xmlns:java=”http://xml.apache.org/axis/wsdd/providers/java”>

<service name=”OfficeBean” provider=”java:RPC”>

<parameter name=”className” value=”OfficeBean”/>

<parameter name=”methodName” value=”totalPrice”/>

</service>

<beanMapping qname=”myNS:OfficeBean” xmlns:myNS=”urn:OfficeBean”

languageSpecificType=”java:OfficeBean”/>

<beanMapping qname=”myNS:OfficeItem” xmlns:myNS=”urn:OfficeBean”

languageSpecificType=”java:OfficeItem”/>

</deployment>

This deployment descriptor defines a service and two bean mappings. The
service has a name and a “provider” (RPC in this case). This means that we are
using the conventions of the XML encoding and RPC as defined in SOAP1.2-2.
The service element has parameter children. One of them specifies the class that
functions as a service. The other specifies the operation that the service supports.
If the service supported more operations, we would have more parameter ele-
ments, or we could use

<parameter name=”methodName” value=”*”/>

to indicate that all public methods of the class are operations supported by the
service.

The beanMapping elements establish mappings between the names used in
SOAP messages and Java beans that those names represent. You can find further
details on WSDD in the Axis User Guide,
http://xml.apache.org/axis/index.html.

Batch File for Deployment

The actual deployment is done by a batch file,
axis/OfficeBean/deployService.bat. It’s a single-line script that we show divided
into five lines. (See Listing 9-27.)

Listing 9-27. Deployment Script
java

-cp ../../../common/lib\axis.jar;.;../../../common/lib\clutil.jar;

../../../common/lib\log4j-core.jar;../../../common/lib\wsdl4j.jar;

../../../common/lib/xerces.jar;../../../common/lib/OfficeBean.jar

org.apache.axis.client.AdminClient -p8080 deploy.wsdd

471

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 471

With the code in place and the service deployed, we can move on to write the
client.

SOAP Client for the Office Equipment Service

In our PFString example, we had much of the SOAP client code automatically
generated from the WSDL file. Eventually, Axis will be able to do that, but the cur-
rent version (Alpha 3) is not, and so we will do some manual coding. As with
manual deployment, manual coding will always provide more power and flexibil-
ity than automatic code generation.

The client, officeBeanPrice.jsp, is in webapps/xmlp/ws. (Conceptually, we
are on a different machine now, the SOAP client machine.) You have seen it dis-
played in Figure 9-8, and it consists of these main steps:

1. Import libraries.

2. Output some explanatory text.

3. Define a few office items and two office beans.

4. Output the contents of the two offices as HTML tables.

5. Call the Web service to calculate equipment prices.

6. Output equipment prices for both offices with some explanatory text.

7. Define the totalPrice() method that performs the Web service
invocation.

The script runs a Java program, org.apache.axis.client.AdminClient. Before
running it, we set the classpath to include a number of libraries from
common/lib, including OfficeBean.jar that contains the service code. The pro-
gram uses the -p option to set the port, and it takes one argument: the name of
the deployment descriptor file. Remember to restart Tomcat after the script
is run.

472

Chapter 9

NOTE To run the service, you have to run this Java command (or our
batch file). You only have to run it once. The information gets stored in
webapps/axis/WEB-INF/server-config.wsdd. You can inspect that file and
perhaps even edit it to experiment with deployment descriptors. It is read
every time Tomcat is restarted.

031ch09.qxp 5/10/02 2:28 PM Page 472

It is the last part that is truly interesting; the rest is standard JSP material. We
will present all the initial parts together, with multiple omissions, then go
through the Web service invocation in detail. See Listing 9-28.

Listing 9-28. The SOAP Client JSP, Part 1
<%@ page errorPage=”../error.jsp”

import = “org.apache.axis.AxisFault,

org.apache.axis.client.Call,

org.apache.axis.client.Service,

org.apache.axis.encoding.XMLType,

org.apache.axis.encoding.BeanSerializer,

OfficeBean,OfficeItem,

javax.xml.rpc.namespace.QName”

%><html><head><title>OfficeBeanPrice</title></head>

This JSP page invokes the Axis OfficeBean service...

<!-- more explanatory text -->

<% // define a few OfficeItems

OfficeItem c1 = new OfficeItem(1,”computer”,2000.00);

OfficeItem c2 = new OfficeItem(2,”computer”,2000.01);

OfficeItem p1 = new OfficeItem(3,”printer”,100.10);

OfficeItem s1 = new OfficeItem(4,”scanner”,101.00);

OfficeItem f1 = new OfficeItem(5,”faxMachine”,110.00);

OfficeItem m2 = new OfficeItem(6,”printer scanner faxMachine”,222.22);

// define two OfficeBeans, set their equipment

OfficeBean ob1 = new OfficeBean();

ob1.setComputer(c1); ob1.setPrinter(p1);

ob1.setScanner(s1); ob1.setFaxMachine(f1);

OfficeBean ob2 = new OfficeBean();

ob2.setComputer(c2); ob2.setPrinter(m2);

ob2.setScanner(m2); ob2.setFaxMachine(m2);

%>

<!-- Output the contents of the two offices as HTML tables. -->

<h3>Office #1</h3>

<table>

<% for(int i=0;i<4;i++)

out.write(“<tr><td>”+ob1.getItems()[i].toString()+”</td></tr>\n”);

%>

</table>

<h3>Office #2</h3>

<table>

<% for(int i=0;i<4;i++)

out.write(“<tr><td>”+ob2.getItems()[i].toString()+”</td></tr>\n”);

%>

473

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 473

</table>

<%

try{ // invoke the service, output result with explanatory text

%>The total price for Office #1 is <%= totalPrice(ob1) %>; the total

price for Office #2 is <%= totalPrice(ob2) %>. As you can see, the

multifunction machine (tag number 6) is counted only once...

<%

}catch(Exception ex){

%> Sorry, we cannot find the prices; the exception is

<textarea rows=”20” cols=”80”>

<% ex.printStackTrace(new java.io.PrintWriter(out,true)); %>.

</textarea>

<% }

%></body></html>

The rest of the JSP is the definition of the totalPrice() method. Here are the
main points to watch out for as you read the code of Listing 9-29:

• The URI of the service (the “endpoint”) is, as we said, a servlet that is the
Axis SOAP engine.

• We create a Service and a Call object as before.

• For each class to be serialized, we create a Class object (Java meta-object
for class descriptions) and a QName object to represent that class in XML.

• A QName object is, in effect, two strings: the namespace URI and the local
name. The local name is the same as the name of the Java class.

• For each class, we create a Serializer object for that class.

• Once all these supporting objects are in place, we invoke the service.

Listing 9-29. The SOAP Client JSP, Part 2: Service Invocation
<%!

public String totalPrice(OfficeBean ob) throws Exception{

String endPoint=”http://localhost:8080/axis/servlet/AxisServlet”;

Service service = new Service();

Call call = (Call) service.createCall();

QName obqn = new QName(“urn:OfficeBean”, “OfficeBean”);

Class obclass = OfficeBean.class;

QName oiqn = new QName(“urn:OfficeBean”, “OfficeItem”);

474

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 474

Class oiclass = OfficeItem.class;

// add Serializers; if we were receiving these classes as return values,

// we would add Deserializers also (commented out)

call.addSerializer(obclass, obqn, new BeanSerializer(obclass));

call.addSerializer(oiclass, oiqn, new BeanSerializer(oiclass));

// call.addDeserializerFactory(obqn, obclass, BeanSerializer.getFactory());

// call.addDeserializerFactory(oiqn,oiclass , BeanSerializer.getFactory());

Object result;

try {

call.setTargetEndpointAddress(new java.net.URL(endPoint));

call.setProperty(Call.NAMESPACE, “OfficeBean”);

call.setOperationName(“totalPrice”);

call.addParameter(“arg0”, new XMLType(obqn), Call.PARAM_MODE_IN);

result = call.invoke(new Object[] { ob });

} catch (AxisFault fault) {return “Error : “ + fault.toString();}

return result.toString();

}%>

All the components of the Web service are now in place and you can run it by
pointing your browser at http://localhost:8080/xmlp/ws/officeBeanPrice.jsp.
However, if you want to capture and inspect the SOAP traffic, set up TCPMon to
monitor it and revise the JSP to use the TCPMon’s port as the service endpoint.
This is what we are going to do.

The SOAP Messages

First, let us spell out what we need to do to set up TCPMon:

1. Double-click on runTCPMon.bat in webapps/axis. This will display the
TCPMon administrator.

2. Fill in the listenport with “8081” and the target with “host: localhost;
port: 8080”.

3. Click on Add. Select the port 8081 tab.

4. Now open webapps/xmlp/ws/officeBeanPrice.jsp in a text editor and
change the endpoint to be localhost:8081 instead of localhost:8080.

If you connect to officeBeanPrice.jsp again, TCPMon will capture and display
both the HTTP request and the HTTP response. (TCPMon knows nothing about
SOAP, it’s all HTTP for it.) In fact, it will show two exchanges because the JSP

475

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 475

invokes the service twice, for two different offices. We will start with the first
exchange (all office items are different objects), and we will show the response
first because it’s much simpler and very similar to our earlier examples: only
a simple value is returned. (See Listing 9-30.)

Listing 9-30. SOAP Response from First Invocation
HTTP/1.1 200 OK

Content-Type: text/xml; charset=utf-8

Content-Length: 487

Date: Sat, 23 Feb 2002 15:02:50 GMT

Server: Apache Tomcat/4.0.1 (HTTP/1.1 Connector)

<?xml version=”1.0” encoding=”UTF-8”?>

<SOAP-ENV:Envelope

SOAP- ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<SOAP-ENV:Body>

<ns1:totalPriceResponse xmlns:ns1=”OfficeBean”>

<totalPriceResult xsi:type=”xsd:double”>2311.1</totalPriceResult>

</ns1:totalPriceResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Now the SOAP request, which is what we are really interested in. We will
divide it into two parts: Listing 9-31 shows the HTTP headers and the outer ele-
ments which are the same for both requests, Listing 9-32 shows the Body element
of the first request, and Listing 9-33 will show the Body element of the second
request.

Listing 9-31. SOAP Request: The Skeleton
POST /axis/servlet/AxisServlet HTTP/1.0

Content-Length: 1676

Host: localhost

Content-Type: text/xml; charset=utf-8

SOAPAction: “OfficeBean/totalPrice”

<?xml version=”1.0” encoding=”UTF-8”?>

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

476

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 476

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<SOAP-ENV:Body>

<!-- the contents of the Body go here -->

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The body consists of seven elements. The first of them represents the service
operation and has the same name as the method we call: totalPrice. The other
six are all multiRef elements, corresponding to all the different objects at differ-
ent levels of structure. Recall that we have an OfficeBean object that contains an
array that consists of four elements, which are OfficeItems. They all come out as
multiRef’s, in a somewhat random order, as shown in Listing 9-32.

Listing 9-32. SOAP Request from First Invocation: The Body
<SOAP-ENV:Body>

<ns1:totalPrice xmlns:ns1=”OfficeBean”>

<arg0 href=”#id0”/><!-- reference to OfficeBean, id0 -->

</ns1:totalPrice>

<multiRef id=”id0” SOAP-ENC:root=”0” xsi:type=”ns2:OfficeBean”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:ns2=”urn:OfficeBean”>

<computer href=”#id1”/>

<printer href=”#id2”/>

<scanner href=”#id3”/>

<faxMachine href=”#id4”/>

<items href=”#id5”/>

</multiRef><!-- end of multiRef for OfficeBean, id0 -->

<multiRef id=”id3” SOAP-ENC:root=”0” xsi:type=”ns3:OfficeItem”

xmlns:ns3=”urn:OfficeBean”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”>

<tagNumber xsi:type=”xsd:int”>4</tagNumber>

<classifier xsi:type=”xsd:string”>scanner</classifier>

<price xsi:type=”xsd:double”>101.0</price>

</multiRef><!-- end of multiRef for Scanner OfficeItem, id3 -->

<multiRef id=”id5” SOAP-ENC:root=”0” xsi:type=”SOAP-ENC:Array”

SOAP-ENC:arrayType=”ns4:OfficeItem[4]”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”

xmlns:ns4=”urn:OfficeBean”>

<item href=”#id1”/>

<item href=”#id2”/>

477

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 477

<item href=”#id3”/>

<item href=”#id4”/>

</multiRef><!-- end of multiRef for Array, id5 -->

<multiRef id=”id4” SOAP-ENC:root=”0” xsi:type=”ns5:OfficeItem”

xmlns:ns5=”urn:OfficeBean”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”>

<tagNumber xsi:type=”xsd:int”>5</tagNumber>

<classifier xsi:type=”xsd:string”>faxMachine</classifier>

<price xsi:type=”xsd:double”>110.0</price>

</multiRef><!-- end of multiRef for faxMachine OfficeItem, id5 -->

<multiRef id=”id1” SOAP-ENC:root=”0” xsi:type=”ns6:OfficeItem”

xmlns:ns6=”urn:OfficeBean”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”>

<tagNumber xsi:type=”xsd:int”>1</tagNumber>

<classifier xsi:type=”xsd:string”>computer</classifier>

<price xsi:type=”xsd:double”>2000.0</price>

</multiRef><!-- end of multiRef for Computer OfficeItem, id1 -->

<multiRef id=”id2” SOAP-ENC:root=”0” xsi:type=”ns7:OfficeItem”

xmlns:ns7=”urn:OfficeBean”

xmlns:SOAP-ENC=”http://schemas.xmlsoap.org/soap/encoding/”>

<tagNumber xsi:type=”xsd:int”>3</tagNumber>

<classifier xsi:type=”xsd:string”>printer</classifier>

<price xsi:type=”xsd:double”>100.1</price>

</multiRef><!-- end of multiRef for Printer OfficeItem, id2 -->

</SOAP-ENV:Body>

The SOAP request message for the second invocation is very similar in struc-
ture, except it has only four multiRef elements instead of six. The multiRef
elements for office items are the same as before, and so is the totalPrice ele-
ment. All the differences are in the multiRef elements for the OfficeBean and the
array, of a predictable nature: there are multiple references to the same
OfficeItem element. The remarkable thing, of course, is that the Java code of the
SOAP server correctly interprets the XML encoding.

In Listing 9-33, we omit material repeated from Listing 9-32.

Listing 9-33. SOAP Request from the Second Invocation: The Body
<SOAP-ENV:Body>

<ns1:totalPrice xmlns:ns1=”OfficeBean”>

same as in Listing 9-32

</ns1:totalPrice>

478

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 478

<multiRef id=”id0” SOAP-ENC:root=”0” xsi:type=”ns2:OfficeBean”...>

<computer href=”#id1”/>

<faxMachine href=”#id2”/>

<printer href=”#id2”/>

<scanner href=”#id2”/>

<items href=”#id3”/>

</multiRef>

<multiRef id=”id1” SOAP-ENC:root=”0” xsi:type=”ns3:OfficeItem”...>

computer OfficeItem, same as in Listing 9-32

</multiRef>

<multiRef id=”id3” SOAP-ENC:root=”0” xsi:type=”SOAP-ENC:Array”...>

<item href=”#id1”/>

<item href=”#id2”/>

<item href=”#id2”/>

<item href=”#id2”/>

</multiRef>

<multiRef id=”id2” SOAP-ENC:root=”0” xsi:type=”ns5:OfficeItem”...>

<tagNumber xsi:type=”xsd:int”>6</tagNumber>

<classifier xsi:type=”xsd:string”>printer scanner faxMachine</classifier>

<price xsi:type=”xsd:double”>222.22</price>

</multiRef>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

This concludes our discussion of our last Web service example. In the code
archive, we also show a “bean array” version of the prime factorization service.
(The SOAP server is in axis/PFBeanArray; the SOAP client is invoked from
xmlp/ws/pFBeanArray.jsp.) The bean array version differs from the string version
presented in this chapter in that it returns an array of Java beans and therefore
uses the XML encoding of SOAP1.2-2. It is deployed in the same way as the
OfficeBean.

To conclude the entire chapter, we will return to Figure 9-1 and try to flesh it
out using the material we have learned in between.

Publish-Find-Bind with UDDI

In the very beginning of the chapter, Figure 9-1 illustrated the Web services
vision, and we repeat the diagram here. Figure 9-9 shows this again.

A typical scenario implied by this diagram unfolds like this:

479

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 479

1. A business registers itself with a public Web services registry.

2. The business publishes Web services that it supports with a registry. This
becomes public information.

3. Other businesses search the registry for services or businesses of a
specific kind and find that information.

4. On the basis of this information, they connect to a Web service sup-
ported by the business, automatically or manually implement its client,
and start using the service.

In this section, we will implement a simple version of this scenario, using
IBM’s Web Services ToolKit (WSTK), which is available at
http://www.alphaworks.ibm.com/tech/webservicestoolkit. Be forewarned that
this is a 46MB (free) archive that requires approximately 400MB of disc space to
be used. It has good documentation but a somewhat complex configuration pro-
cedure. If you do decide to install it and run our example, refer to Appendix A for
detailed instructions.

Scenario in Detail and in Java

Going one level closer to an implementation, we observe that, deep down inside,
the registry is a database (and indeed, WSTK comes with a DB2 database in it).
The database supports both authorized update access (by the business to its own
business information) and public read-only access to other businesses’ infor-
mation. Some sort of an authorization scheme is required; WSTK implements it
using an “authorization token” that is part of every restricted-access operation.

480

Chapter 9

Figure 9-9. Publish, find, and bind

031ch09.qxp 5/10/02 2:28 PM Page 480

A second observation is that our registry for distributed applications is itself
a distributed client-server application. We can expect that there is a client that
talks to a server proxy that talks to the server that talks to the database. Our sce-
nario, in greater detail, looks like this:

1. Create a proxy.

2. Ask the proxy for an authorization token.

3. Using the token, create an entry for a business entity.

4. Retrieve, via public access, the properties of the business entity.

5. Using the token, delete the entry from the registry.

One element of the initial scenario that we don’t implement is setting up
a service and creating a client for it on the basis of its WSDL description. Setting
up a service would take us too far into the current details of UDDI, retrieving the
WSDL is trivial, and creating a client from WSDL has been covered in an earlier
section.

Java Implementation: the main() Method

We implement the more detailed scenario as a Java program,
PublishFindDeleteBiz.java. To compile and run the program, click on
CompilePublishFindDeleteBiz.bat in xmlp/ws/uddi; the program will pause to
display its output.

Listing 9-34 shows the beginning of the class definition and the main()
method, which follows the scenario quite closely.

Listing 9-34. The main() Method of PublishFindDeleteBiz
public class PublishFindDeleteBiz {

// two URLs, one for publishing (authenticated access)

// the other for public search access

static String publishURL=”http://localhost:80/services/uddi/publishapi”;

static String inquiryURL=”http://localhost:80/services/uddi/inquiryapi”;

// userid and password for creating an authentication token

static String userid=”wstkDemo”;

static String password=”wstkPwd”;

// business name: minimal info to create a business

static String businessName=”N-topus Software”;

481

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 481

public static void main(String[]args)throws Exception{

// create proxy, get authentication token, create new business

UDDIProxy proxy=makeProxy(inquiryURL,publishURL);

AuthToken token=getToken(proxy,userid,password);

BusinessEntity myBiz = newBusiness(proxy,token,businessName);

// get business info: public access, no token needed

String[][]nameKeyPairs=

getNameKeyPairs(getBusinessInfoVector(proxy, “exactNameMatch”,businessName));

// output the properties found

for(int i=0;i<nameKeyPairs.length;i++)

System.out.println(“name=”+nameKeyPairs[i][0]+

“; key=”+nameKeyPairs[i][1]);

// delete business using authenticated access

deleteBusiness(proxy,token,nameKeyPairs[0][1]);

}

Java Implementation: Proxy, Token, and New Business

Listing 9-35 shows the first three methods called by main() (plus a short support-
ing method). They implement the first three steps in our scenario. In doing so,
they rely heavily on the org.uddi4j library that is an essential part of WSTK.

Listing 9-35. Make Proxy; Get Authentication Token; Create Business Entry
public static UDDIProxy makeProxy(String inquiryURL,String publishURL)

throws Exception{

UDDIProxy proxy=new UDDIProxy();

proxy.setInquiryURL(inquiryURL);

proxy.setPublishURL(publishURL);

return proxy;

}

public static AuthToken getToken(UDDIProxy proxy,String userid,String password)

throws Exception{

return proxy.get_authToken(userid,password);

}

public static BusinessEntity newBusiness(UDDIProxy proxy,

AuthToken token, String businessName) throws Exception{

Vector entities = unitVector(new BusinessEntity(“”, businessName));

BusinessDetail bd = proxy.save_business(token.getAuthInfoString(),entities);

return (BusinessEntity)(bd.getBusinessEntityVector().elementAt(0));

}

482

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 482

public static Vector unitVector(Object ob){

// supporting method: create a Vector with a single item in it

Vector vec=new Vector();

vec.add(ob);

return vec;

}

With a business entry set up, we first demonstrate public access by retrieving
its properties, and then private access, by deleting it from the registry. Note that
an essential part of setting up a business entry is providing the business with an
automatically generated globally unique business key. (See Listing 9-36.)

Listing 9-36. Get Properties, Delete Business
public static Vector getBusinessInfoVector(UDDIProxy proxy,

String match,String businessName) throws Exception{

// create a Vector of names to search by; one name in this case

Vector names=unitVector(new Name(businessName));

// FindQualifiers is a UDDI4J class for search qualifiers

FindQualifiers fQ=new FindQualifiers();

Vector qualifier = unitVector(new FindQualifier(match));

fQ.setFindQualifierVector(qualifier);

// find businesses by name; show only the first 99 matches

BusinessList bList=proxy.find_business(names,null,null,null,null,fQ,99);

return bList.getBusinessInfos().getBusinessInfoVector();

}

public static String[][] getNameKeyPairs(Vector businessInfoVec){

// for each retrieved business, store its name and key in 2-D String array of

// business name -- business key pairs (just one pair in this program)

String[][]pairs=new String[businessInfoVec.size()][2];

for(int i=0;i<pairs.length;i++){

BusinessInfo bi=(BusinessInfo)businessInfoVec.elementAt(i);

pairs[i][0]=bi.getNameString();

pairs[i][1]=bi.getBusinessKey();

}

return pairs;

} // name -- key values can be output to a stream, see main()

483

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 483

public static String deleteBusiness(UDDIProxy proxy,

AuthToken token, String bizKey) {

try{

DispositionReport dr = // returned by every update action

proxy.delete_business(token.getAuthInfoString(),bizKey);

if(dr.success()) return “”;

return “Errno=”+dr.getErrno()+”; ErrCode=”+dr.getErrCode()+

“\nErrInfoText=”+dr.getErrInfoText();

}catch(UDDIException ex){

return reportUDDIException(ex); // see next section

}catch(Exception e){

java.io.StringWriter sw=new java.io.StringWriter();

e.printStackTrace(new java.io.PrintWriter(sw,true));

return sw.toString();

}

}

The only remaining thing to inspect is the procedure that reports UDDI
exceptions. It yields a pleasant surprise. (See Listing 9-37.)

Listing 9-37. Report UDDI Exception
public static String reportUDDIException(UDDIException e){

DispositionReport dr = e.getDispositionReport();

if (dr==null) return “”;

return “UDDIException faultCode:” + e.getFaultCode() +

“\n operator:” + dr.getOperator() +

“\n generic:” + dr.getGeneric() +

“\n errno:” + dr.getErrno() +

“\n errCode:” + dr.getErrCode() +

“\n errInfoText:” + dr.getErrInfoText();

}

While much of the information comes from the Disposition Report, the
UDDI exception itself emits a FaultCode, an identifying code for the SOAP-level
error condition. It turns out that a UDDI proxy is, in fact, a SOAP client, and all
conversation between a proxy and the registry consists of SOAP messages. This is
illustrated in Figure 9-10.

484

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 484

What this means is that we can use TCPMon to watch UDDI requests and
responses. With a real UDDI registry, proxy requests directed to publishapi and
therefore containing the authentication token would go to a secure HTTPS port,
and that part of SOAP traffic would be unreadable. Because we are using a demo
registry from WSTK, TCPMon can intercept and display all traffic.

SOAP Traffic Between the Proxy and the Registry

The first action involving a proxy is to obtain an authorization token. Listing 9-38
shows the request that is going out; it is addressed to publishapi that handles all
exchanges that involve authentication.

Listing 9-38. Authorization Token Request
POST /services/uddi/publishapi HTTP/1.0

Host: localhost

Content-Type: text/xml; charset=utf-8

Content-Length: 369

SOAPAction: “”

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/1999/XMLSchema”>

<SOAP-ENV:Body>

<get_authToken

cred=”wstkPwd”

generic=”2.0”

485

Web Services

Figure 9-10. UDDI and SOAP

031ch09.qxp 5/10/02 2:28 PM Page 485

userID=”wstkDemo”

xmlns=”urn:uddi-org:api_v2”/>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

As you can see, because this is a conversation between friends, the data types
of arguments are not shown in the procedure call: they are presumably deter-
mined from a shared schema.

The response to this request (see Listing 9-39) is an authToken containing the
authInfo, by which the registry recognizes the user. In this case, the authorization
information is just the concatenation of userID with password, separated by
a colon, but other registries may use other (probably more sophisticated) formu-
las for creating an authentication token.

Note the value of the generic attribute that shows the version of UDDI used:
it is 2.0 in the request but 1.0 in the response. In other words, a UDDI 2.0 client is
talking to a UDDI 1.0 registry.

Listing 9-39. Authorization Token Response
HTTP/1.1 200 OK

Server: WebSphere Application Server/4.0

Content-Type: text/xml

Content-Length: 259

Content-Language: en

Connection: close

<?xml version=”1.0” encoding=”UTF-8” ?>

<Envelope xmlns=”http://schemas.xmlsoap.org/soap/envelope/”>

<Body>

<authToken generic=”1.0”

xmlns=”urn:uddi-org:api”

operator=”www.ibm.com/services/uddi”>

<authInfo>wstkDemo:wstkPwd</authInfo>

</authToken>

</Body>

</Envelope>

Request to create a business entry again goes to publishapi. The response (in
Listing 9-40) starts out with providing business detail about the registry itself: its
version, the namespace of its vocabulary, and its operator. (WSTK, in its
responses, identifies the operator as IBM’s online registry,
www.ibm.com/services/uddi, but, in fact, the demo runs on localhost and does
not need Internet connection at all.) The operator is reporting a businessEntity
identified by a unique businessKey. Note that, in the request, the business key is

486

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 486

the empty string, which is a signal to the registry that a new unique key needs to
be generated. Finally, there is a discoveryURL by which this business entity can be
found.

Listing 9-40. Business Entity Request and Response
POST /services/uddi/publishapi HTTP/1.0

Host: localhost

Content-Type: text/xml; charset=utf-8

Content-Length: 465

SOAPAction: “”

<?xml version=’1.0’ encoding=’UTF-8’?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”

xmlns:xsi=”http://www.w3.org/1999/XMLSchema-instance”

xmlns:xsd=”http://www.w3.org/1999/XMLSchema”>

<SOAP-ENV:Body>

<save_business generic=”2.0”

xmlns=”urn:uddi-org:api_v2”>

<authInfo>wstkDemo:wstkPwd</authInfo>

<businessEntity businessKey=””>

<name>N-topus Software</name>

</businessEntity>

</save_business>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

// END OF REQUEST, BEGIN RESPONSE

HTTP/1.1 200 OK

Server: WebSphere Application Server/4.0

Content-Type: text/xml

Content-Length: 583

Content-Language: en

Connection: close

<?xml version=”1.0” encoding=”UTF-8” ?>

<Envelope xmlns=”http://schemas.xmlsoap.org/soap/envelope/”>

<Body>

<businessDetail generic=”1.0”

xmlns=”urn:uddi-org:api”

operator=”www.ibm.com/services/uddi”>

<businessEntity businessKey=”22CF7F20-28AF-11D6-BBAF-AC5F02E03C2F”

authorizedName=”wstkDemo” operator=”www.ibm.com/services/uddi”>

<discoveryURLs>

<discoveryURL useType=”businessEntity”> <!-- broken into two lines -->

487

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 487

http://www.ibm.com/services/uddi/uddiget?

businessKey=22CF7F20-28AF-11D6-BBAF-AC5F02E03C2F

</discoveryURL>

</discoveryURLs>

<name>N-topus Software</name>

</businessEntity>

</businessDetail>

</Body>

</Envelope>

The only remarkable thing about the request for information is that it is
addressed to inquiryURL. The first line reads

POST /services/uddi/inquiryapi HTTP/1.0

The body of the request does not contain an authorization token. The
response follows the familiar lines. The entire body consists of a single
businessList element, whose start tag looks like

<businessList generic=”1.0”

xmlns=”urn:uddi-org:api”

operator=”www.ibm.com/services/uddi”

truncated=”false”>

The truncated=”false” attribute indicates that there are fewer than 99
responses, so the list didn’t have to be truncated.

Finally, the request to delete the business entry goes to the publishURL. We
will show only the Body element of both request and response:

<SOAP-ENV:Body><!-- request -->

<delete_business generic=”2.0” xmlns=”urn:uddi-org:api_v2”>

<authInfo>wstkDemo:wstkPwd</authInfo>

<businessKey>22CF7F20-28AF-11D6-BBAF-AC5F02E03C2F</businessKey>

</delete_business>

</SOAP-ENV:Body>

488

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 488

<Body><!-- response -->

<dispositionReport generic=”1.0”

xmlns=”urn:uddi-org:api”

operator=”www.ibm.com/services/uddi”>

<result errno=”0”>

<errInfo errCode=”E_success”>E_success (0) Success. </errInfo>

</result>

</dispositionReport>

</Body>

The entire response body is a disposition report that in this case reports suc-
cess. On this hopeful note, we can conclude the UDDI section and the entire
chapter. Just as with WSDL, we believe that something like a UDDI registry will be
an important part of the emerging web of distributed applications, and we are
fairly confident that the operation of such a registry will be built on top of the
same XML protocol that the applications themselves are using. We also believe
that, when the registry specification converges to a standard, it will be substan-
tially different from today’s UDDI.

Conclusion

In this long chapter, we have covered the emerging field of Web services. We have
tried to separate the vision and promise of Web services from their current reality
and the frequent exaggerations of that reality. We have also tried to separate rela-
tively stable features from multiple details that are still in flux and await
standardization.

The first section of the chapter introduced the general concept of a Web ser-
vice and its main building blocks. A review of relevant specifications—SOAP,
WSDL, and UDDI—served both to elaborate the building blocks structure and to
emphasize how incomplete and unfinished those specifications are. Although
SOAP has a considerable base of users and is on track for standardization by
W3C, both WSDL and UDDI are best described as placeholders for eventual stan-
dards that will perform the same function but may be very different from the
current drafts.

The second section of the chapter traced all aspects of a Web service devel-
opment within the context of a simple example. That example used the Axis
framework for both the SOAP server and SOAP client. The next section developed
alternative clients outside the Axis framework and in different languages to illus-
trate the main promise of Web services: complete interoperability between
different languages and platforms.

489

Web Services

031ch09.qxp 5/10/02 2:28 PM Page 489

After the examples, the next two sections presented an overview of SOAP 1.2,
both its core features (SOAP 1.2, Part 1) and Adjuncts (SOAP 1.2, Part 2). Within
Adjuncts, we particularly concentrated on SOAP XML encoding and SOAP con-
ventions for representing RPCs. To illustrate this material, we developed, in the
following section, another example that uses many more features of XML encod-
ing than did the first example.

Finally, in the last section, we showed how to create a business entry in
a UDDI registry, using IBM’s WSTK. We also showed how to query the registry and
how to modify the entry (in a rather drastic way, by deleting it). At this point, we
are all set to add more content to the entry, including search terms by which
we want our business to be found and a WSDL description of its services. (The
search terms would include standard business categorization codes, as specified
in NAICS, UN/SPC, and other standards.)

With this content in place, the Web services offered by the business can
indeed be discovered by a software agent, and clients for the services can be
automatically generated from their WSDL descriptions. However—and we do
want to insert a word of caution—even with all this machinery in place, we will
still be quite a distance away from the vision of software agents creating long
chains of Web service invocations to create solutions to complex problems.
Composing simple Web services into a complex meaningful whole requires a leap
in intelligence to which the current tools do not even begin to aspire. Despite
such caution, we can honestly express enthusiasm: there are many good things to
be done, and, although some of them ought to be developed as open-source
infrastructure, there’s also money to be made.

490

Chapter 9

031ch09.qxp 5/10/02 2:28 PM Page 490

On both platforms, you need the following types of software:

• Web server with backend connector (ASP or JSP)

• XML parser that is namespace aware and XML-Schema capable

• XSLT processor

• Bean Scripting Framework (BSF) for running scripts from within XSLT
stylesheets

• RELAX NG validator and accompanying software

• Web services toolkit: SOAP and WSDL

APPENDIX A

Installation Guide

THIS BOOK’S CODE falls into three categories: Java-JSP code running on the Java
platform, VBScript-VB-ASP code running on the Windows platform, and XML-
XSLT code running on both platforms. To run and experiment with all of our
code, you have to configure two platforms. This book can be usefully read with
just the Java-based code for the simple reason that there is much more Java XML
code than there is Windows XML code (unless you include the .NET platform,
which is not covered in this book). Just as important, the Java XML code is largely
open source: this helps in debugging and in learning from the code. We want to
emphasize that much of our own Java code forms a testbed for using XSLT and
other cross-platform technologies, and it is possible to use the testbed without
active understanding of all the details of its code. We do provide Windows-based
alternatives for many Java XML tools.

491

NOTE Both in this appendix and throughout the book, we assume that
you are familiar with HTML and the basics of Web applications: the HTTP
protocol, CGI, and its more recent alternatives (ASP, servlets, and JSP).
These are covered in Appendix B and C.

031apxA.qxp 5/10/02 2:45 PM Page 491

BSF is not needed until Chapter 6, RELAX NG software is not needed until
Chapter 8, and Web services software is not needed until Chapter 9. However,
you’ll need a Web server or two, an XML parser, and an XSLT processor from the
beginning.

In the case of the Java platform, you also need to install the platform itself.

Version Updates

This appendix describes the versions of software and their locations as of the
time the book was finished (March 2002). New versions are unavoidable, and
their locations may change. For updates, please go to the top-level readme.htm
file in our code archive, which is downloadable from the book’s Web site at
http://www.apress.com/catalog/book/1590590031/. We will try to keep it up
to date.

As mentioned in the introduction, there will be a mailing list for readers of
the book where you can post questions. Instructions for joining the list can be
found in the same readme.htm file.

The Java Framework

To install the Java framework, proceed as follows:

1. Install Java 2 Standard Edition from http://java.sun.com/j2se/. The
archive you will actually download is known as the Java Development Kit
(JDK). As of this writing (March 2002), the current version is jdk1.4, but
we used version 1.3.1 for the book’s code. Version 1.4 includes some
libraries that we had to download separately for the UDDI section of
Chapter 9.

After the JDK is installed, add the JDK bin directory to your environment
PATH variable.

2. Install Apache Tomcat, a combined Web server and JSP processor, from
http://jakarta.apache.org/builds/jakarta-tomcat-4.0/release/. In
that directory are subdirectories for different versions, and within each
version subdirectory is a bin subdirectory that contains the actual binary
distributions. We have used version 4.0.1, whose distributions are in the
v4.0.1/bin/ subdirectory of the release directory.

There are three possibilities for download: zip and gzip archives
and a Windows-specific EXE installer. Download any of these three and

492

Appendix A

031apxA.qxp 5/10/02 2:45 PM Page 492

3. To start and stop Tomcat, use the scripts in the TOMCAT_HOME/bin
directory. The scripts are startup.bat and shutdown.bat for Windows, and
startup.sh and shutdown.sh for Unix. Once Tomcat has started, point
your browser to http://localhost:8080 and run the included servlets
and JSP examples to test the installation. Additional instructions are
available from the Apache Web site at
http://jakarta.apache.org/tomcat/tomcat-4.0-doc/RUNNING.txt;
when you have Tomcat running, the same page is available locally at
http://localhost:8080/tomcat-docs/RUNNING.txt. (We use “/” generi-
cally for either “/” or “\”.)

4. Download Xalan-J 2.2 (or later) XSLT processor from
http://xml.apache.org/dist/xalan-j/. Make sure that you download
the latest stable version. Note that there are zip and tar.gz archives of the
same package; the .tar.gz archive is smaller.

Unzip into a directory of your choice. Move all the JAR files from that
directory into TOMCAT_HOME /common/lib. Both among those JAR
files and in Tomcat’s common/lib directory there will be a xerces.jar (the
XML parser). Keep the later of the two versions.

5. For Chapter 7 and later, repeat the same process with Rhino JavaScript
from http://www.mozilla.org/rhino/download.html: download the most
current stable release, unzip, and move the JAR file into
TOMCAT_HOME /common/lib.

6. For Chapter 9, repeat the same process with the Axis Alpha 3 SOAP
toolkit from http://xml.apache.org/axis/index.html: download,
unzip, and move the JAR files into TOMCAT_HOME/common/lib.

uncompress into a directory of your choice. In our own installation, the
name of that directory is tomcat401, at the top level. We will refer to that
directory as TOMCAT_HOME. TOMCAT_HOME is the centerpiece of the
framework; the rest of the Java framework and our own code will go into
subdirectories of the Tomcat home directory.

493

Installation Guide

NOTE If you are installing on a Windows NT or 2000 machine and are
using the EXE installer, you will have the option of installing Tomcat as
a service. Do not select this option because the console (command line)
window in which Tomcat is started (if it is not a service) may show valu-
able error messages. Otherwise, download the installer, run it, and choose
the installation directory as just described.

031apxA.qxp 5/10/02 2:45 PM Page 493

The distribution contains a webapps directory with an axis subdirectory;
copy the axis subdirectory into TOMCAT_HOME/ webapps. Additional
installation instructions for the examples in Chapter 9 can be found in
a separate section later in this appendix.

7. For Chapter 8, download RELAX NG validator Jing and the
RELAX NG implementation of XHTML modularization from
http://www.thaiopensource.com/relaxng/. In more detail, abbreviating
this URL to ThaiHome, proceed as follows:

Download jing.jar and, if on Windows, the Win32 executable, jing.exe,
from ThaiHome/jing. Place jing.jar into TOMCAT_HOME /common/lib.
Place the Win32 executable on your Windows path.

Download the XHTML modularization package as
ThaiHome/xhtml/xhtml-rng.zip from ThaiHome/xhtml/. Unzip in
a directory of your choice: we do not use the package in our programs
but use its materials as examples of good design.

8. Finally, unzip our own code, xmlp.zip, into TOMCAT_HOME/webapps/.
(The webapps subdirectory is created within Tomcat at installation; this
will create the xmlp directory within TOMCAT_HOME/webapps. It will
also add some files to the axis directory within TOMCAT_HOME/webapps.)

One JAR file
(TOMCAT_HOME/webapps/xmlp/WEB-INF/classes/XslUtil.jar) in our
code needs to be moved to TOMCAT_HOME/common/lib. In the same
WEB-INF/classes directory is the source file, XslUtils.java, and
a Windows batch file, make.bat, in case you decide to edit the code:
running make.bat will recompile the class, re-JAR it, and recopy the jar to
TOMCAT_HOME /common/lib.

Note that we provide command line scripts only for Windows, as BAT
files, assuming that Linux users will have no difficulty recasting them as
Unix shell scripts.

If Tomcat was running when you installed our code or when you moved
XslUtil.jar to common/lib, stop and restart it before continuing.

You can point your browser to http://localhost:8080/xmlp, and you will be
looking at our default file (index.html) that contains links to activate or display
our examples. Some links result in examples being run, whereas others simply

494

Appendix A

031apxA.qxp 5/10/02 2:45 PM Page 494

display the code. (The text of the link indicates what action to expect.) At this
point, you can test the examples of Chapter 1; later chapters require additional
installations as explained in the remaining sections of this appendix.

The Windows Framework

On Windows, the framework is mostly part of the platform. You have to install an
IIS or PWS Web server and make sure that it is running. (A common arrangement
is to have it start at computer startup.) By default, the Windows Web server runs
on port 80 and Tomcat runs on port 8080. Both can be in operation at the same
time, and each can refer to the other’s pages with no difficulty.

The Server

Most versions of IIS/PWS currently in operation support ASP, but please note
that IIS 3.0 as it is installed by default with Windows NT 4 Server does not.
Upgrading IIS 3.0 to IIS 4.0 on Windows NT is an extremely painful procedure.
If you are in this category of users, we recommend that you either upgrade to
Windows 2000 or forego testing the ASP examples.

The Parser and XSLT Processor

For XML parser and XSLT processor, we use MSXML3. This is included in IE6, so,
if you have IE6 installed, you don’t have to do anything. For IE5.0 and IE5.5, the
installer (msxml3sp2Setup.exe) can be downloaded or run directly from this URL
(shown as two lines):

http://download.microsoft.com/download/xml/

SP/3.20/W9X2KMeXP/EN-US/msxml3sp2Setup.exe

This is the English version, Service Pack 2 (SP2). The referring page for SP2 in
general (again shown as two lines) is

http://msdn.microsoft.com/downloads/sample.asp?

url=/msdn-files/027/001/772/msdncompositedoc.xml&frame=true

On this page you will find versions for other languages, as well as three
“Important Notes”. The first one states that, if you have IE6, you don’t need to
upgrade, and the second states that this upgrade will install only in “replace
mode” not in “side by side mode.” What this means is that, with an earlier

495

Installation Guide

031apxA.qxp 5/10/02 2:45 PM Page 495

upgrade, you could choose to install MSXML3 side by side with MSXML2, but this
option is no longer available (and you don’t want it, anyway: MSXML is infamous
for supporting a nonstandard version of XSLT). The third Important Note says
that, if you upgrade IE5.0, all applications using MSXML must be closed. As
usual, it’s best to close all applications.

Note on MSXML4

This is a warning: MSXML4 is not a substitute for MSXML3 precisely because it
will not install in a replace mode. In other words, if you install MSXML4 with
IE5.0 or IE5.5 on your machine, the browser will still be running the old, substan-
dard MSXML 2. MSXML4 is good for writing server-side code that uses
XML/XSLT, but it will not help you at all with browser-based XML/XSLT code.

Even on the server, MSXML4 may be short-lived because .NET doesn’t use it
at all.

The SOAP Toolkit

Optionally, you may wish to use the Microsoft SOAP Toolkit to experiment with
the SOAP examples of Chapter 9. The toolkit can be found at the following URL,
which is shown divided into two lines:

http://msdn.microsoft.com/downloads/default.asp?

URL=/code/sample.asp?url=/msdn-files/027/001/580/msdncompositedoc.xml

The Final Steps

Unzip our code, xmlpasp.zip, into the root directory of the drive that has the IIS
Web server on it; it will unzip into \inetpub\wwwroot\xmlp.

Your Windows installation is complete, except for two details:

• Listing 3-1, if run over HTTP, requires very relaxed security that enables
ActiveX controls in the page. Running this from localhost may require
adding localhost to your “trusted sites.” Even this may not always work, or
you may be unwilling to change security settings even temporarily. If this is
the case, simply run this example as a local file; that is, open
TestValidityJS.htm in the browser as a local file. The intent of the example
is demonstrated even better if it is run as a local file.

• One program in Chapter 4 requires installing a DLL, as explained in the
next section.

496

Appendix A

031apxA.qxp 5/10/02 2:45 PM Page 496

Installing a DLL

Although most Windows programs in the book use VBScript or JScript within an
ASP, ActiveSAXbookpicker from Chapter 4 is an ActiveX control. Installing an
ActiveX control is simple, but there is a preliminary step if you don’t already have
any DLLs based on Visual Basic 6.0. DLLs compiled with VB6.0 require the file
MSVBVM60.DLL in a standard DLL directory such as WINDOWS\SYSTEM32. If
you don’t have this file, it is available from many Web sites (search Google with
“download” and “msvbvm60.dll” as search terms; it’s a common problem) or you
can run an installer (URL divided into three lines):

http://support.microsoft.com/default.aspx?

scid=http://download.microsoft.com/download/vb60pro/

Redist/sp5/WIN98Me/EN-US/VBRun60sp5.exe

With this proviso, the installation instructions are as follows:

• Make sure that you have MSVBVM60.DLL in a DLL directory.

• Move ActiveSAXbookpicker.dll from
TOMCAT_HOME/webapps/xmlp/ActiveSAX_VBCode/ActiveSAXBookpicker
into the same directory.

• Register the ActiveSAXbookpicker.dll as an ActiveX server.

The last task is performed with the following command:

REGSVR32 <pathToDLL>

The easiest way to do this without typing errors is to select Start ➢ Run, type
regsvr32 into the command line followed by a space, and then drag the
ActiveSAXbookpicker.dll file icon over to the Run box.

Note to Users of Older Versions of Windows

You don’t need to upgrade to Windows 2000 or XP, except for installing WSTK 3.0
for the last example of the last chapter (if you do run that—see the “UDDI
Example” section later in this appendix). All code has been tested on Windows 98,
and we’ve noted two aggravations. First, when running more stressful examples,
you are more likely to have an actual system crash than when running with
a more stable operating system; for this, there’s nothing you can do but reboot.
Second, you’ll find that, when running some of our batch files, you will see an

497

Installation Guide

031apxA.qxp 5/10/02 2:45 PM Page 497

“Out of Environment Space” error message. To get around this, make a shortcut
to the batch file and right-click on the shortcut’s icon. Choose Properties ➢
Memory and replace the Auto selections with the highest available numerical val-
ues (probably 640 on the left and 4096 on the right). Now double-click on that
shortcut whenever we ask you to double-click on the batch file itself, and it
should work.

If Space Is at a Premium

All together, the archives you have downloaded will occupy more than
50MB of space, including more than 40MB for the Java platform and
language, jdk.1.3. Most of that space is consumed by documentation
and source code (for open-source software). If you want to minimize your
space expenditures, do this: after downloading the Xalan and Axis archives,
extract only the executable (JAR) files and get rid of the archive itself. This will
reduce your space commitment significantly. You can still view, for example,
Xalan documentation (which includes Xerces documentation) on the Web at
http://xml.apache.org/xalan-j/index.html. For more on online resources, see
Appendix D.

To reduce space requirements for the UDDI example of Chapter 9, use an
external UDDI registry, as explained in the “UDDI Example” section later in this
appendix.

If space is not a problem, however, we highly recommend that you download
not only the binaries with documentation and samples, but also the source files
for these distributions. This will give you examples to learn from, code snippets
to copy and modify, and source to go along with line-numbered error messages
in debugging.

Database Connectivity

The application of Chapter 7 uses a relational database to store XML data. This
section of the appendix describes what needs to be done to get that application
running. Because the application is written in Java, we consider only two cases:
Java platform on top of Windows and Java platform on top of Linux.

Java Platform on Windows

We supply an initial almost-empty Access database that the user can further pop-
ulate and modify. The database, xmlp.mdb, is in our xmlp.zip archive, within
the TOMCAT_HOME/xmlp/dat directory. To make it available to the Java
application, go into the ODBC control on your system and create an ODBC Data
Source Name (DSN), as explained in the next two paragraphs.

498

Appendix A

031apxA.qxp 5/10/02 2:45 PM Page 498

499

On Windows 2000 systems, the ODBC control is in Administrative Tools in
the control panel. Click on Data Sources (ODBC) to open a tabbed dialog box.
Under the System DSN tab, click on Add, and then on Microsoft Access Driver. In
the next dialog box, enter “xmlp” as the name of the data source, then click on the
Select button and enter “TOMCAT_HOME/xmlp/dat/xmlp.mdb” as the data
source (or navigate to it to select).

In Windows NT 4, start the ODBC applet in the control panel. Under the
System DSN tabbed panel, click on Add, select Microsoft Access Driver, and then
type “xmlp” as the name of the data source, and click on Select to navigate to our
file (xmlp.mdb) in TOMCAT_HOME/webapps/xmlp/dat. Type any useful com-
ment in the Description box and click on OK.

Java Platform on Linux

For Linux installation instructions follow the link to linux_readme.htm in the
top-level readme.htm file of the code archive.

Large Data Files

Several of our programs use large data files that are not included in our archive.
In particular, we use the King James Bible with XML markup by Jon Bosak
(http://www.ibiblio.org/bosak/), and Shakespeare’s plays from the same
source. The Bible (together with the Koran and the Book of Mormon) can be
found at http://www.metalab.unc.edu/bosak/xml/eg/rel200.zip. Please
download (almost 2MB zipped), extract ot.xml and nt.xml, and move into
TOMCAT_HOME/webapps/xmlp/dat/jb/. The complete collection of
Shakespeare’s plays is in shaks200.zip in the same directory, but we include
Macbeth and Julius Caesar (macbeth.xml, j_caesar.xml) in our xmlp.zip file so
that you can test our code without another 2MB download.

Some examples in Chapter 6 use a small excerpt (included in our code
archive) from the CIA World Factbook. Those readers who are interested in the
entire Factbook database may download it from
http://www.cia.gov/cia/publications/factbook/index.html.

Web Services Examples (Chapter 9)

As mentioned in the “The Java Framework” section, you have to download and
install Axis to run Web services examples. Follow the instructions in that section
before proceeding. As part of installing and running the examples, you will need
to run short scripts, which we again provide only for Windows (as BAT files). In
that sense, but only in that sense, the instructions are Windows-specific.

Installation Guide

031apxA.qxp 5/10/02 2:45 PM Page 499

Chapter 9 has three examples that require additional comment:
PrimeFactorsString, OfficeBean, and UDDI.

PrimeFactorsString

In this example and the next, some Java code needs to be compiled, put in a JAR
file and copied to the common/lib directory. The JAR file for this example,
PFString.jar, is already in our archive, in the webapps/axis/PFString/ directory. If
your Axis version is the same we are using (Alpha 3), then simply copy that file to
common/lib. If you have a later version, you may want to recompile the example,
in case there are incompatibilities between versions. Proceed as follows.

The first step is to double-click on the file webapps/axis/PFStringW2J.bat.
This generates Java client files in the webapps/axis/PFString/localhost subdirec-
tory. Next, double-click on webapps/axis/makePFString.bat. This will compile
the Java files, put them into PFString.jar, and copy the JAR to common/lib.

After PFString.jar is copied to common/lib, you have to restart Tomcat.

OfficeBean

In this example, you have to compile and JAR the code before copying it to
common/lib. You also have to “deploy” the service.

To do this, double-click the file webapps/axis/OfficeBean/makeCompile.bat.
This compiles the source code in that directory, puts it into OfficeBean.jar, and
copies the jar to common/lib, where Tomcat will find it on its next restart.

Next, double-click on the file webapps/axis/OfficeBean/deployService.bat.
This will deploy the service, effective immediately (no further restart is needed).

UDDI Example

The UDDI example requires an installation that is much more involved than for
any other example. Instructions are provided in a readme.htm file for the UDDI
example in our code archive, which is reachable from the main index.html page.

Additional Platforms

Many of our readers will want to do at least some of their work with Perl, PHP,
C++, C#, or other platforms. XML toolsets are available for all of them, and most
of this book will still be relevant. Although we can’t tell you how to translate each
example into your target framework, we do hope to hear from you as you find
and solve the difficulties involved.

500

Appendix A

031apxA.qxp 5/10/02 2:45 PM Page 500

APPENDIX B

Web Applications

A WEB APPLICATION IS A BACKEND PROGRAM run by a Web server that receives input data
from a Web client and sends the output of the program back to the client. As
explained in Appendix C, input data comes from the client either as a query
string attached to the request URI (with the GET method) or as the body of the
request (with the POST method). Several frameworks establish communication
between the Web server and the backend program, and we consider four of them
in this appendix: Common Gateway Interface (CGI), Active Server Pages (ASPs),
servlets, and Java Server Pages (JSPs).

General Framework

Consider an HTML form, as shown in Listing B-1.

Listing B-1. HTML Form with GET Method
<form action=”http://localhost:8080/xmlp/nobody.jsp” method=”GET”>

<input type=”text” name=”alpha” value=”1”/>

<input type=”text” name=”beta” value=”2”/>

<input type=”Submit”/>

</form>

When you click on the Submit button, the browser sends the request shown
in Listing B-2 to the server specified in the action attribute (in this case,
localhost port 8080). We have deleted a few headers for simplicity.

Listing B-2. Request Corresponding to Listing B-1
GET /xmlp/nobody.jsp?alpha=1&beta=2 HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)

Host: localhost:8080

Connection: Keep-Alive

It is then up to the server at localhost:8080 to decide what
/xmlp/nobody.jsp?alpha=1&beta=2 is and what to do with it. The important thing
to realize is that the server is getting exactly what it would get if you had typed
http://localhost:8080/xmlp/nobody.jsp?alpha=1&beta=2 into the address win-
dow of your browser.

501

031apxB.qxp 5/10/02 2:44 PM Page 501

If you use the form of Listing B-1 but replace GET with POST, your request
will be as shown in Listing B-3.

Listing B-3. Request Corresponding to HTML Form with POST Method
POST /xmlp/nobody.jsp HTTP/1.1

Content-Type: application/x-www-form-urlencoded

User-Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)

Host: localhost:8080

Content-Length: 14

Connection: Keep-Alive

alpha=1&beta=2

As you can see, the data is now separated from the headers by an empty line.
There is a Content-Type header, which says how the data is formatted, using
a MIME data type. Finally, there is a Content-Length header, which says how
much data there is.

Different frameworks differ in how they invoke the backend program to pro-
cess the data, and how the data is presented to the programmer who is writing
the backend program.

CGI

CGI is by far the oldest of the frameworks, going back to the early 1990s. A tradi-
tional CGI program is, indeed, a separate self-standing program, running in
a different process and invoked by the server using the underlying operating sys-
tem. (By contrast, modern backend frameworks are run by the server itself, as
a thread within the same process, which requires much less time and other com-
putational resources.) The CGI program communicates with the server via
system-level environment variables, which include REQUEST_METHOD,
QUERY_STRING, CONTENT_LENGTH, and CONTENT-TYPE. If the method (that is, the value
of the REQUEST_METHOD variable) is GET, the CGI program would parse the value of
the QUERY-STRING variable, extracting names and values of arguments. If the
method is POST, the CGI program would read the request’s data from standard
input, ending when it has processed the Content-Length number of bytes or
eventually timing out if it couldn’t. In either case, it would write the resulting
page, with appropriate Content-Type and Content-Length headers, to standard
output. Note that the programmer has to output literally everything in the
request: the headers, the blank line, and the entire HTML page, with tags and all.

There is more, but not much more than that to CGI. For further information,
go to http://www.w3.org/CGI/, from which you’ll be redirected to various docu-
ments at the National Center for Supercomputer Applications (NCSA) at the

502

Appendix B

031apxB.qxp 5/10/02 2:44 PM Page 502

University of Illinois Urbana-Champaign (UIUC), which is where the original
Mosaic browser, HTTPd server, and the CGI protocol were invented. You may
want to start with http://hoohoo.ncsa.uiuc.edu/cgi/intro.html.

Improvements to Backend Processing

Improvements to backend processing since the initial CGI days fall into four
main categories:

• Backend programs are run by the server itself, as a thread within the same
process, without invoking the operating system. This makes it possible to
keep backend programs in memory between invocations, thus greatly
improving performance.

• Backend programs can maintain state, “remembering” the identity of the
user between invocations. This is essential for extended interactions, such
as e-commerce. A logical sequence of interactions with the same user is
called a session.

• Processing of request and response is wrapped into object-oriented inter-
faces that hide the tedious detail from the programmer.

• Backend code can be embedded into an HTML page within special tags, so
the HTML page serves as a template into which computed data is inserted
in specified places.

Microsoft’s Active Server Pages (ASPs) show all these facilities, except the lan-
guages they use (JScript and VBScript) are not really object-oriented
programming languages. This will change in ASP.NET.

ASPs

An ASP provides a Request object, a Response object, and a Session object. The
Request object knows how to read request data; the same methods extract data
from the query string and from the request body. The Response object knows
how to write data to the client. The Session object is, in effect, a table for objects
that may be referenced by the same user in an extended, multirequest inter-
action; the Session object holds data that persists through all requests from the
same user within the same session. In addition to the Session object, ASP pro-
vides an Application object to hold data that persists through all sessions,

503

Web Applications

031apxB.qxp 5/10/02 2:44 PM Page 503

throughout the lifetime of the application. As of ASP 3.0, ASP also provides an
ASPError object that knows what has just gone wrong.

For a simple example (such as Listing B-4), suppose that we want a session to
begin with a username specification to which we can refer later. Then page
hello.asp does that. Note that the programmer doesn’t have to send tags.

Listing B-4. ASP with Request and Session Objects
<%@ LANGUAGE=”VBSCRIPT” %>

<% Option Explicit %>

<html><head><title>Hello </title></head><body>

<%

DIM username

username = Request.QueryString(“user”)

IF(“”=username) THEN

username=Session(“username”)

ELSE

Session(“username”)=username

END IF

%>

<H1>Hello, <%= username %>!</H1>

</body></html>

Note that the ASP page can have both template HTML and snippets of pro-
gramming code. In fact, any legal HTML page is also an ASP, so you can change
its extension to .asp and it will display correctly. The only difference is that it will
be passed through an ASP processor (because that’s where the server sends all
URL requests with the .asp extension).

The response to http://localhost/xmlp/hello.asp?user=Joe will be:

<html><head><title>Hello </title></head><body>

<H1>Hello, Joe!</H1>

</body></html>

and, if we later look at http://localhost/xmlp/hello.asp with no username
specified, the value is remembered, and the page is the same. Using a TCP moni-
tor tool, TCPMon (introduced in Chapter 9), we can track the HTTP requests and
responses, and establish that ASP maintains sessions using cookies, small
and dated text files that the server can place on the client’s computer and receive
back as a header in the next request within a session. A cookie header looks like
this (from running the example of Listing B-4):

Cookie: ASPSESSIONIDFFFOMNIT=IONLHGCDBBNCBJOFIHJGMPGD

504

Appendix B

031apxB.qxp 5/10/02 2:44 PM Page 504

The Request object receives the cookies just as it receives all other headers
and collects them in its Request.Cookies property. The Response object knows
how to write cookies; we can refer to Response.Cookies(0) or to
Response.Cookies(“cookieName”).

Plenty of books have been written on ASP programming, and you can find
good tutorials on the Web. See Appendix D for some of them.

One last detail about ASPs is that switching from GET to POST means switch-
ing from the Request.QueryString object to a Request.Form object, which is
simple and logical, but mildly annoying because you may well use forms with
method=”GET” for debugging (so you can see the data in the URL) and then switch
to method=”POST” to hide the data. This is better done in Java servlets.

Java Servlets and JSPs

Java servlets are, in some respects, a step forward from ASPs because they use
a real programming language with real objects. In other respects, they were a step
back, because they are Java programs that are not embedded into an HTML (or
XML) template, and so the programmer has to output all the tags manually, and
even some of the headers. The equivalent of the ASP page of Listing B-4 is the
HelloServlet.java class of Listing B-5. It imports every class to be used, then
defines doGet() and doPost() methods to handle the different invocations. The
doPost() method simply calls doGet().

Listing B-5. Sample of Servlet Code
import java.io.PrintWriter;

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.http.HttpSession;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException {

String username=request.getParameter(“user”);

HttpSession session = request.getSession(true);

if(null==username)

username=(String) session.getAttribute(“username”);

else session.setAttribute(“username”, username);

response.setContentType(“text/html”);

505

Web Applications

031apxB.qxp 5/10/02 2:44 PM Page 505

PrintWriter out = response.getWriter();

out.println(“<html><head><title>Hello World!></title></head>”);

out.println(“<body><h1>Hello,”);

out.println(username);

out.println(“!</h1></body></html>”);

}

public void doPost(HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException {

doGet(request, response);

}

}

This is invoked as http://localhost:8080/servlet/HelloServlet?user=Joe.
Servlets can be useful, but we don’t use explicitly written servlets in this book;
instead, we use JSPs. A JSP is a template page with special tags for code that is
intended to become a servlet. When a JSP is accessed for the first time, it is
rewritten as a servlet and compiled, which is why the first invocation takes a bit
longer. Otherwise, a JSP looks rather like ASP with some extra flavorings, at least
at first sight. The JSP of Listing B-6 is equivalent to the ASP of Listing B-4.

Listing B-6. JSP with Request and Session Objects
<%@ page errorPage=”error.jsp” import=”java.util.Properties”

%><jsp:useBean id=”dict” class=”java.util.Properties” scope=”session”

/>

<html><head><title>Hello </title></head><body>

<%

String username=request.getParameter(“user”); <!— same for GET and POST —>

if(null==username)

// get user name from dict using “username” as key;

// if not found, use “dear User” as default

username = dict.getProperty(“username”,”dear User”);

else dict.setProperty(“username”,username);

%>

<h1>Hello, <%= username %>!</h1>

</body></html>

The fundamental difference from ASP is that this is not a script to be exe-
cuted, but a shorthand notation for a program to be compiled (and then
executed); if this is the file /webapps/xmlp/hello.jsp, it will be rewritten as
hello$jsp.java in TOMCAT_HOME/work/localhost/xmlp/, which will be com-
piled into TOMCAT_HOME/work/localhost/xmlp/hello$jsp.class. The
compilation improves performance, but its primary benefit is error checking.

506

Appendix B

031apxB.qxp 5/10/02 2:44 PM Page 506

The Java compiler can catch lots of simple mistakes because Java—unlike
VBScript or JScript—is a strongly typed language, so the compiler can ensure that
there are no type errors or missing declarations in the code.

Many excellent resources on JSPs are available, starting from
java.sun.com/jsp. In this appendix, we will limit ourselves to a few comments on
Listing B-6. It starts by specifying the error page; this is simply another JSP page
that will be presented to the user if an unhandled error condition occurs. It can
be as simple as that shown in Listing B-7.

Listing B-7. A Simple Error Page
<%@ page isErrorPage=”true” %>

<html><head><title>ErrorPage</title></head><body>

Problem: <%= exception.getMessage() %>

</body></html>

We will discuss the use of error pages in Appendix E “Troubleshooting in JSP”.
After the error page, we tell the JSP processor to import the

java.util.Properties class to compile this code. Then we declare a bean,
a Properties object named dict, whose scope is this session. In other words, we
are creating a dictionary that is kept by some sort of Session object, but we don’t
have to think about the Session object: we simply say that we want our dictionary
to be available throughout the session and to go away once the session is over.
Objects can have one of four possible scopes: page, request, session, or appli-
cation, and with each scope they will last for as long as they are supposed to.
(Page scope is that of an ordinary variable declared on the JSP page; a request-
scope object will follow the request to another JSP or servlet if the request is
forwarded.)

ASP.NET will undoubtedly catch up on some of the advantages of JSP over
ASP. Looming behind both are J2EE and the entire .NET framework. Both are
fascinating developments that place Web applications in a larger context of dis-
tributed applications with persistent data. Unfortunately, both are also outside
the scope of this book.

507

Web Applications

031apxB.qxp 5/10/02 2:44 PM Page 507

031apxB.qxp 5/10/02 2:44 PM Page 508

APPENDIX C

HTTP Protocol

THE HYPERTEXT TRANSFER PROTOCOL (HTTP) is the communication protocol of the
Web. It was invented by Tim Berners-Lee as part of the Web’s suite of specifi-
cations that also included definitions of HTML and URL. The first version of
HTTP, referred to as HTTP/0.9, was a simple protocol for raw data transfer across
the Internet. HTTP/1.0 became an Internet standard, released by the Internet
Engineering Task Force (IETF) as RFC 1945. HTTP 1.0 improved the protocol by
allowing messages to be in a MIME-like format, containing meta-information
about the data transferred and modifiers on the request/response semantics. The
current version, HTTP/1.1, made performance improvements by making all con-
nections persistent and supporting absolute URLs in requests.

HTTP communication usually takes place over TCP/IP connections. The
default port is TCP 80, but other ports can be used. This does not preclude HTTP
from being implemented on top of any other protocol on the Internet, or on
other networks. HTTP only presumes a reliable transport, and any protocol that
provides such guarantees can be used.

This appendix is not intended as a thorough description of HTTP. We give
only as much detail as is needed for understanding the book’s explanations and
examples.

URIs, URLs, and URNs

A Uniform Resource Identifier (URI) is a means of unambiguously referring to
a resource. The resource can, in principle, be anywhere, but typically URIs refer
to resources on the Internet. The URI specification is an Internet standard (RFC
2396). Resources located by URIs can be files, email addresses, programs, ser-
vices, or even books in the library. URIs are of two types: Uniform Resource
Locators (URLs) and Uniform Resource Names (URNs). URLs are more familiar,
but W3C defines URL as “an informal term (no longer used in technical specifi-
cations) associated with popular URI schemes: http, ftp, mailto, etc.”
(www.w3.org/Addressing/).

As you can see from this quote, the first component of a URI is called its
scheme. The scheme of URNs is urn. The scheme of HTTP resources is http; in
general for URLs, the scheme is the name of the protocol that is used to access
the server. An HTTP URN (or URL) is a pointer to a particular resource on the

509

031apxC.qxp 5/10/02 2:43 PM Page 509

Internet at a particular location, such as
www.apress.com/catalog/book/1590590007/index.html. A complete URL must
specify the scheme (that is, the protocol used to access the server), the name of
the server, the directory path from the server root to the resource, and the name
of the resource; optionally, it can specify the port number. If the port number is
left out, the default port (80 for HTTP) is assumed. Many browsers allow the user
to omit the scheme (taking http as the default), and, for HTTP resources, also
omit the string www. in the beginning of the server name.

URNs are intended to serve as persistent, location-independent resource
identifiers. Given a URN, a client will be able to retrieve it from any server that
has the resource. For URNs to function that way, there must be an agreed-upon
system of registries that would map URNs to locations. HTTP exclusively deals
with URLs.

As this book explains (especially in Chapter 2), both URNs and URLs are
often used in the XML world as simply unique identifiers of namespaces, without
any meaning attached to them (such as “this is an address of a resource on the
Web”). Within the SOAP world, they are also used as unique identifiers of various
things, such as XML encodings. Many people feel that this is a perversion of the
original intent of URLs, even if it is approved of by the URL’s original inventor.

An HTTP URL can be followed by a location within the resource, separated
from the resource URL by the # character. In HTML resources, the string that fol-
lows must be the same as the ID or NAME attribute of an A element within the
document. In XML, the string that follows is an XPointer, as explained in
this book.

An HTTP URL can also be followed by a query string, separated from the URL
by the “?” character. A query string is a list of arguments to a backend program
(CGI script, ASP, servlet, JSP, and so on—see Appendix B). The arguments are sep-
arated by an ampersand (“&”), and each argument is of the form name=value. The
arguments (and the rest of the URL) must be URL encoded: a character that is
illegal in a URL must be represented by its Unicode hexadecimal index preceded
by the percent sign (“%”). Some of the illegal characters are as follows: space, <, >,
single and double quotes, @, and &. For a complete list, see the URI specification
at www.ietf.org/rfc/rfc2616.txt.

Overall Operation

The HTTP protocol is a request/response protocol. Most HTTP communications
are initiated by a client, also known as a user agent. The user agent sends
a request to a server (using a URL to identify the recipient of the request) and
receives back a response. User agents are typically Web browsers, but they can
also be HTML or XML editors, spiders, crawlers, and search engines.

In some cases, there may be intermediaries between the client and the
server, as when the request goes first to a public proxy that rewrites parts of

510

Appendix C

031apxC.qxp 5/10/02 2:43 PM Page 510

the message and forwards it to the real server behind a firewall. Another common
form of intermediary is a tunneling device that simply relays requests and
responses without any changes. In this book, we actually use a tunnel (in
Chapter 9) to watch the HTTP traffic between a SOAP client and a SOAP server.

The Structure of Client Request

An HTTP client request has three parts: the command line, the header section,
and the entity body. For some commands, the body part is empty.

The HTTP request command line consists of a command (also called
a method) followed by a URL and an HTTP version number, as in

GET /docs/info-page.html HTTP/1.0

This request uses the GET method to request the document specified by
a relative URL, /docs/info-page.html. Absolute URLs can also be used, as in

GET http://www.ietf.org/rfc/rfc2396.txt HTTP/1.1

Immediately following the command line, the client sends headers with
information about itself, including a list of document formats that it can accept.
There is one header per line; each header consists of a name and a value sepa-
rated by a colon, as in

User-Agent: Lynx/2.4 libwww/5.1k

Accept: image/gif, image/x-xbitmap, image/jpeg, */*

The User-Agent keyword lets the server determine what browser is being
used. This allows the server to send files that are optimized for the particular
browser type. The Accept keyword will inform the server what types of data the
client can handle. The data types are specified using the MIME protocol
(Multipurpose Internet Mail Extensions [MIME] Part Two: Media Types, RFC 2046).

The command line and the subsequent header lines are all terminated by
a blank line. If the method is POST, the blank line may be followed by additional
data, which is usually intended for backend programs. Finally, another blank line
terminates the request. A complete request might look like:

POST /axis/PrimeFactorsString.jws HTTP/1.0

Content-Length: 402

Host: localhost

Content-Type: text/xml; charset=utf-8

As you can see, the MIME type of XML documents is text/xml.

511

HTTP Protocol

031apxC.qxp 5/10/02 2:43 PM Page 511

Two Ways of Sending Data to Backend Programs

Data can be sent to backend programs using either the GET or POST method.
With GET, data is sent as the query string following the URL; with POST, it is sent
in the body of the HTTP message. For small amounts of data (one or two argu-
ments), the query string is a quick way of invoking a backend program without
setting up an HTML page with a form (provided you don’t mind the user seeing
your data in the address window). For larger amounts of data, the POST method
should be used.

Server Response

The HTTP response also contains three parts: the status line, the headers, and
the body. The status line contains three fields: the HTTP version, a status code,
and a status code description. The description is usually brief. For example, the
status line

HTTP/1.0 200 OK

indicates that the server uses version 1.0 of the HTTP in its response, the status
code is 200, and the meaning of the code is “everything’s okay”; the request has
been processed successfully. A few of the most common codes and their
descriptions are listed below.

After the response line, the server sends headers with information about
itself and the requested document. As in Request, there is one header per line,
and each header is a colon-separated, name-value pair, for instance:

HTTP/1.1 200 OK

Date: Wed, 19 May 1999 18:20:56 GMT

Server: Apache/1.3.6 (Unix) PHP/3.0.7

Last-Modified: Mon, 17 May 1999 15:46:21 GMT

Content-Length: 10352

Connection: close

Content-Type: text/html; charset=iso-8859-1

The Server keyword lets the browser know what server is being used. The
date header will inform the client the time of the response (in terms of server
time zone); the Last-Modified header will let the browser know the last time this
document was modified, and, finally, the Content-type and Content-length will
inform the browser of the properties of the document that is being sent. The
server sends a blank line to end the headers.

512

Appendix C

031apxC.qxp 5/10/02 2:43 PM Page 512

If the client’s request if successful, the requested data is sent. This data may
be a static document or dynamically generated by a backend program. This result
is called a response entity. If the client’s request could not be fulfilled, additional
data sent may be a human-readable explanation of why the server could not ful-
fill the request. The properties (type and length) of this data are sent in the
headers. Finally, a blank line terminates the response. A complete response
might look like the following:

HTTP/1.1 200 OK

<!-- headers as before -->

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”

“http://www.w3.org/TR/REC-html40/loose.dtd”>

<html>

<body>

<h1>Hello, HTTP</h1>

</body>

</html>

In HTTP/1.0, after the server has finished sending the response, it discon-
nects from the client and the transaction is over unless the client sends
a Connection:KeepAlive header. In HTTP/1.1, the default is to keep the con-
nection open so the client can make additional requests; to have it closed, the
client sends an explicit Connection:close header. Because many HTML docu-
ments embed other documents as inline images, applets, frames, and so on, this
persistent connection feature of HTTP/1.1 protocol saves the overhead of the
client having to repeatedly connect to the same server just to retrieve
a single page.

Request Commands (Methods)

Many methods are defined for HTTP 1.1, but only three of them—GET, POST, and
HEAD—are widely used. We have already discussed GET and POST. The HEAD
method requests only the headers to be sent, so the client can collect infor-
mation about the server and the document named in the request without
actually having it transferred. Otherwise, the headers of a HEAD request are
the same as with GET, and the response is the same, except it has no body.

513

HTTP Protocol

031apxC.qxp 5/10/02 2:43 PM Page 513

Less Commonly Used Methods and WebDAV

The remaining methods are less commonly implemented by current Web servers.
They include:

• PUT : Requests that the server store the resource identified by the
request URI.

• DELETE : Requests that the server delete the resource identified by the
request URI.

• OPTIONS: Requests information about the communication options avail-
able on a server for the request URI, such as the methods that can be
invoked on it. (Can it be deleted?)

These methods imply a vision of a read-write Web, in which the Web client is
not only a viewer but also an editor of Web resources. For this vision to become
reality, a host of difficult technical issues having to do with security and concur-
rency have to be resolved. These issues are addressed in WebDAV, a set of
extensions to HTTP that is nearing completion at IETF. Some of the features sup-
ported by WebDAV are access control, version control, locking and unlocking of
resources, namespace-awareness for copying and pasting XML data, and 128-bit
encryption. Windows XP, Adobe Acrobat 5.0, and the Apache Web server provide
support for WebDAV.

Server Response Codes

The HTTP server reply status line contains three fields: HTTP version, status
code, and description in the following format. Status is given with a three-digit
server response code. Status codes are grouped as shown in Table C-1.

Table C-1. Code Ranges and Their Meanings

CODE RANGE MEANING

100–199 Informational

200–299 Client request successful

300–399 Client request redirected, further action necessary

400–499 Client request incomplete

500–599 Server errors

514

Appendix C

031apxC.qxp 5/10/02 2:43 PM Page 514

By far the three most common codes are as follows:

• 200 OK: The request has succeeded. The server’s response contains the
requested data.

• 404 Not Found: The server has not found anything that matches the
request URI.

• 500 Internal Server Error: The server encountered an unexpected con-
dition, which prevented it from fulfilling the request.

The best status code is the one you don’t see because the requested data is
displayed.

515

HTTP Protocol

031apxC.qxp 5/10/02 2:43 PM Page 515

031apxC.qxp 5/10/02 2:43 PM Page 516

APPENDIX D

Online Resources

WE GROUP ONLINE RESOURCES into several categories, as follows:

• standards

• sources of information, FAQs, and discussion lists

• sources of software

• everything else

We briefly mention the sources of the software used in the book, but see
Appendix A for detailed information.

Standards

None of XML-related “standards” are literally so, in the sense of being approved
by either an international standards organization such as ISO, or a national stan-
dards organization such as ANSI. They are all de facto standards produced by
industry consortia. The most important of these consortia, by far, is the World
Wide Web Consortium, W3C.

W3C Technical Reports

All W3C technical reports (recommendations at various stages, working drafts,
and notes) can be found at www.w3.org/TR/. You can find any W3C technical doc-
ument by searching through that page. Individual documents’ URLs are formed
by attaching an identifying string; for instance, Extensible Markup Language
(XML) 1.0 (Second Edition) is found at www.w3.org/TR/REC-xml. Here are some of
the URLs that are used in this book; we provide a title and the string to attach to
www.w3.org/TR/:

• Extensible Markup Language (XML) 1.0 (Second Edition): REC-xml

• Namespaces in XML: REC-xml-names/

517

031apxD.qxp 5/10/02 2:42 PM Page 517

• XSL Transformations (XSLT): xslt

• XML Path Language (XPath): xpath

• XML Linking Language (XLink): xlink

• XML Pointer Language (XPointer): xptr

• XML Schema Part 1: Structures: xmlschema-1

• XML Schema Part 2: Datatypes: xmlschema-2

• XML Information Set: xml-infoset

• SOAP Version 1.2 Part 1: Messaging Framework: soap12-part1

In addition to supplying technical reports, W3C is a source of WWW, HTML,
and XML news, information, and public domain software. It also maintains
a number of public mailing lists on its activities, found at
www.w3.org/Mail/Lists.html.

OASIS Technical Committees

Another source of XML standards that is becoming increasingly important is
OASIS (Organization for the Advancement of Structured Information Standards),
www.oasis-open.org. The most important OASIS-sponsored project for this book
is RELAX NG, but you might also be interested in its work on Docbook and
ebXML, and their XML and XSLT conformance testing suites.

OASIS also provides a home for the Cover pages and xml.org, two important
sources of information. (See the next section.)

Other Consortia

It seems that a business consortium has become a well-developed mechanism
for creating de facto standards. We will mention a few here:

• UDDI.org, for developing UDDI, as described in Chapter 9.

• Web Services Interoperability Organization (WSIO), to ensure interoper-
ability of Web services based on the SOAP, WSDL, and UDDI protocols.
(See www.ws-i.org/.)

518

Appendix D

031apxD.qxp 5/10/02 2:42 PM Page 518

• WAPForum, for developing the Wireless Applications Protocol.
(See www.wapforum.org/.)

• DAML.org, not an industry consortium but a consortium nevertheless, of
a number of academic and research institutions, funded by DARPA, and
committed to the vision of the Semantic Web.

Sources of Information

Our book investigates several broad topics: XML; Java XML processing; JSP, ASP,
and Web applications; XML and databases; and Web services. The following
resources are grouped according to these topics.

Large companies (such as IBM, Microsoft, Sun, and Oracle) have large stores
of information on all of these topics. We particularly mention four:

• IBM Developerworks, http://www.ibm.com/developerworks/ has many
tutorials, often with links to IBM alphaworks’ site of free software. (IBM
free software is not necessarily open-source.)

• Microsoft Developer Network (MSDN), www.msdn.microsoft.com/, and
especially www.msdn.microsoft.com/xml and www.msdn.microsoft.com/asp,
of course, has much useful information.

• Sun’s Java site, http://java.sun.com, and especially
http://java.sun.com/xml, http://java.sun.com/jsp, and
http://java.sun.com/j2ee, are all good resources, with links to developer
sites. There is also interesting software at http://www.sun.com/xml/.

• Oracle Technology Network, http://technet.oracle.com/, has a lot of
interesting information and software, including their recent “release candi-
date” of Oracle9i JDeveloper that integrates XML Java processing with
relational database access. Be aware that the free download of this package
is about 150MB, compressed.

XML Resources

The Cover pages (http://xml.coverpages.org/) are the oldest source of infor-
mation on XML and, before it, SGML. They are maintained by Robin Cover
(hence the name) and hosted by OASIS. It is a huge and diligently maintained
resource; Robin Cover’s summaries frequently provide useful insights.

519

Online Resources

031apxD.qxp 5/10/02 2:42 PM Page 519

While you are at or near OASIS, also visit xml.org, especially the FAQ page,
www.xml.org/xml/xmlfaq.shtml. It has links to several XML and XSL FAQs, as well
as FAQs for XML Schema, SOAP, and UDDI. It is also home to the xml-dev mailing
list at www.xml.org/xml/xmldev.shtml. The list’s archives at
http://lists.xml.org/archives/xml-dev make excellent reading. More specific
XML-related lists are at www.w3.org/Mail/Lists.html, and a very active XSLT
mailing list is at www.mulberrytech.com/xsl/xsl-list.

Several XML-related resources are maintained by the O’Reilly network. The
most important one is www.xml.com. It serves both as an online journal and
a repository of information, with links to tutorials, reviews, and software.

For current XML events, visit www.xmlhack.com and perhaps subscribe to its
daily newsletter. It will keep you up to date on everything XML, including the
most passionate exchanges on the xml-dev list.

For Microsoft’s coverage of XML, go to www.msdn.microsoft.com/xml. An
abundance of information is available here, some of it Microsoft specific and
some of general interest. More coverage of Microsoft-based XML processing can
be found at www.intsysr.com/ and vbxml.com.

Java XML Processing

There is a Java XML page at Sun, http://java.sun.com/xml/, with links to several
specifications:

• Java Architecture for XML Binding (“JAXB”)

• Java API for XML Messaging (“JAXM”)

• Java API for XML Processing (“JAXP”)

• Java API for XML Registries (“JAXR”)

• Java API for XML-Based RPC (“JAX-RPC”)

Of these, JAXP is the only one in release status, and it’s the only one that is
used in this book. However, you should follow the development of the other
specifications because they are likely to have a significant impact on the Web and
Web services infrastructure.

JAXP APIs are distributed with most Java XML parsers, including Xerces. The
Javadoc documentation for those APIs is part of both Xerces and Xalan distri-
bution.

JAXP, of course, provides only a thin veneer of abstract classes on top of spe-
cific parsers. Parsers themselves produce objects that implement W3C DOM

520

Appendix D

031apxD.qxp 5/10/02 2:42 PM Page 520

interfaces to enable actual processing of XML data. In addition to Java imple-
mentations of DOM, there are other sets of Java-XML APIs that are more Java
specific than language-independent DOM. Probably the best known of them is
JDom (www.jdom.org/), which is currently in Beta 7. Designed specifically with
Java in mind, these APIs are, presumably, easier to program and more efficient
than JAXP APIs, but it is not obvious that they will prevail in the long run.

JSP, ASP, and Web Applications

For information on JSP, start from http://java.sun.com/jsp, where you will find
multiple links to JSP-related information, both at Sun and elsewhere. For infor-
mation on ASP, start from www.msdn.microsoft.com/asp.

In addition to Sun’s JSP FAQ at http://java.sun.com/products/jsp/faq.html,
there is an independent one at www.esperanto.org.nz/jsp/jspfaq.jsp.

Several ASP FAQs, including www.aspfaq.com/, collect information from
Microsoft’s ASP newsgroups.

XML and Databases

A starting point on XML and databases is, unquestionably, Ron Bourret’s Web
site, www.rpbourret.com/xml/index.htm. It has very valuable and up-to-date sur-
veys on XML and databases, XML database products, XML data binding, and
others. They serve as a comprehensive overview of the field.

An important, open-source XML database project, DBXML.org, has recently
moved to Apache, becoming the Xindice project within http://xml.apache.org.
Of all open-source native XML projects, this is probably the most important.
Several commercial native XML projects are listed in Bourret’s paper on XML
database products. The Tamino product from Software AG is probably the most
advanced, and it has to be significant that several Software AG employees are on
critical W3C committees, such as XPath 2.0, DOM 3.0, and XQuery. The whole
field of native XML databases will get a big boost when XQuery becomes a W3C
recommendation, harmonized with XPath 2 and DOM 3.

Web Services

There isn’t a single major source of XML ideas or software that is not involved
with Web services in one way or another. Here is a brief listing:

521

Online Resources

031apxD.qxp 5/10/02 2:42 PM Page 521

• W3C is working on standards for SOAP and, more broadly, for XML proto-
cols. W3C also has a note on WSDL and is actively working to position RDF
as a Web services description language. There is a page at W3C on
“Semantic Web web services resources,”
www.w3.org/2001/11/11-semweb-webservices.

• OASIS is working on XML messaging and a number of other projects
within its ebXML initiative, joint with UN/CEFACT. (UN/CEFACT stands for
United Nations Centre for Trade Facilitation and Electronic Business.
Don’t ask us how and why, but ebXML stands for Electronic Business using
XML. There is a dedicated Web site, ebxml.org.)

• Microsoft, IBM, Sun, Oracle, and Hewlett-Packard all work on various
aspects of SOAP, WSDL, and UDDI. In addition to individual companies’
sites, there are also UDDI.org (http://uddi.org)and the Web Services
Interoperability Organization (http://ws-i.org).

Sources of Software

Our main source of software is the Apache foundation, www.apache.org. This is an
umbrella organization for several open source projects, each with multiple sub-
projects. In particular, this book uses the following subprojects at
xml.apache.org: Xerces (an XML parser that validates against DTDs and XML
schemas), Xalan (an XSLT processor), and Axis (a framework for developing and
deploying Web Services). This book also uses Tomcat and Log4J from
http://jakarta.apache.org. Appendix A gives detailed instructions on how to
download and install them. You should know that each of these projects has
a mailing list for users and another one for developers. You can post questions to
the users list and get answers, or you can answer other people’s questions; even-
tually, you may want to join the developers list and contribute bug reports
or code.

As we were writing the book, Microsoft’s XML, ASP, and other Web-related
technologies were, and still are, undergoing a massive change to the .NET frame-
work, so the only Microsoft software we can recommend at this point is what is
mentioned in Appendix A.

For software from IBM, Sun, and Oracle, go to the links listed in the begin-
ning of the preceding section.

A small but interesting source of open-source software is W3C. In addition to
Tidy (used and referenced in the book), they have a number of cutting-edge,
proof-of-concept projects, all of them accessible from www.w3.org/Status.

522

Appendix D

031apxD.qxp 5/10/02 2:42 PM Page 522

No listing of XML standards or resources would be complete without a para-
graph on James Clark’s contributions. Before XML, he single-handedly created
most of the open-source software for SGML (much of it used within commercial
products as well). He was the technical lead of the committee that created XML,
the editor of XSLT 1.0, and co-editor of XPath 1.0, simultaneously producing
a reference implementation of the XSLT processor, xp. He went on to
develop a grammar formalism for XML validation, TREX, that merged with
Murata Makoto’s RELAX and eventually became RELAX NG, an OASIS-sponsored
specification that has been submitted to ISO. Visit the RELAX NG page at OASIS,
James Clark’s page for RELAX NG at www.thaiopensource.com/, and
www.jclark.com for other software.

Other individual developers include David Megginson,
www.megginson.com, the developer of SAX and SAX2, with multiple
input from xml-dev; Rick Jelliffe, the inventor of Schematron,
www.ascc.net/xml/resource/schematron/schematron.html; Dave Raggett,
the author of Tidy; Michael Kay, the author of the XSLT processor Saxon
(http://saxon.sourceforge.net/) and the editor of XSLT 2.0 ; and many others
that are too numerous to mention here. You will find them all on xml-dev.

Keep Looking

Any static page on Web resources, especially printed in a book, is going to be
obsolete and incomplete soon. Keep looking through google.com, altavista.com,
or alltheweb.com for other tutorials, code collections, or interesting develop-
ments. Visit xml.com and w3c.org once a week, subscribe to xmlhack newsletter,
and peruse the archives of xml-dev and xsl-dev at least once a month. Things are
moving fast, and they keep moving faster.

523

Online Resources

031apxD.qxp 5/10/02 2:42 PM Page 523

031apxD.qxp 5/10/02 2:42 PM Page 524

This appendix consists of four sections. In the first, we will look at the error
messages in the console window and at the Java code that generates them. As we
explained in Appendix B, JSPs get rewritten as servlets and compiled. Both the
source code of the servlet and the compiled code are placed in a subdirectory of
the TOMCAT_HOME/work/localhost directory.

In the second section of this appendix, we look at error pages; in the third, we
explain how to make JSPs more modular. In the fourth and last section, we con-
sider the biggest source of frustration for JSP and all Java programmers: classpath
problems.

Looking at Servlet Code for JSP

In JSP, error messages frequently show the line numbers in the JSP or in the gen-
erated servlet. Let’s start with a bad JSP file, webapps/xmlp/bad/badCode1.jsp,
as shown in Listing E-1.

Listing E-1. Bad JSP 1
<html><head><title>Blowups Happen # 1</title></head><body>

Time to explode <% bad code %>

</body></html>

APPENDIX E

Troubleshooting in JSP

THINGS OFTEN GO WRONG. When they do, we get error messages. In a JSP, these mes-
sages are found in the console (that is, the Tomcat command line) window and in
the browser, as an error page. In this appendix, we give a few suggestions on how
best to use the information in the error messages, how to make your error pages
more informative, and how to make your code more modular so that your error
pages can better localize the problem.

525

NOTE If you are running Tomcat on a Windows machine, and you used
the Windows executable installer, and you installed Tomcat as a service,
then you won’t have a console window. You can see error messages in the
error page in the browser or in the log files in TOMCAT_HOME/logs.

031apxE.qxp 5/10/02 2:42 PM Page 525

What do we get from http://localhost:8080/xmlp/bad/badCode1.jsp?
An error message, of course, specifically from
org.apache.jasper.compiler.Compiler.compile(Compiler.java:284); it says

org.apache.jasper.JasperException: Unable to compile class for JSP

An error occurred at line: 2 in the jsp file: /bad/badCode1.jsp

Generated servlet error:

C:\tomcat401\work\localhost\xmlp\bad\badCode1$jsp.java:58: ‘;’ expected.

bad code

Notice that two files are involved: we are at the second line of
/bad/badCode1.jsp, but the 58th line of a generated Java file, whose filepath is
given in full: it’s a subdirectory of TOMCAT_HOME/work. All servlets generated
from JSPs end up in subdirectories of the TOMCAT_HOME/work directory.

Looking at that file, we can find the generated code defining a class named
badCode1$jsp. The code starts by saying that this class lives within a package (and
the compiler should give it access to other classes in that package); that all the
classes within the existing packages javax.servlet, javax.servlet.http, and
others will be imported; it then declares the badCode1$jsp class as an extension to
a base class named HttpJspBase, and starts declaring methods within
badCode1$jsp, as shown in Listing E-2.

Listing E-2. Generated Servlet for Bad JSP 1
package org.apache.jsp;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import org.apache.jasper.runtime.*;

public class badCode1$jsp extends HttpJspBase {

...

public void _jspService(HttpServletRequest request, HttpServletResponse response)

...

To make sense of this, look at the Tomcat documentation, or your JDK docu-
mentation, or simply look at www.google.com/search?q=HttpJspBase, where you’ll
see API documentation for the class that’s being generated for you. Of course,
that documentation will not cover the code that’s extracted from the JSP page
“badCode1.jsp” itself:

out.write(“<html>......<body>\r\nTime to explode “);

bad code

out.write(“\r\n</body></html>\r\n”);

526

Appendix E

031apxE.qxp 5/10/02 2:42 PM Page 526

Indeed, that’s bad code. If we supply the “;” that the error message claimed to
be expecting, replacing bad code with bad code; inside the JSP file and then click-
ing on Refresh/Reload in the browser, it will still be bad code. Now the error
message will be

Class org.apache.jsp.bad not found.

The statement bad code; could be a legal declaration of a variable named
code which is of class bad, just as String str; declares a variable of class String,
but there is no class named bad within the JSP package we’re putting our page
into. If we defined such a class, we could make this run.

Error Pages

We’ll start with the bad/error.jsp page we suggested in Appendix B, Listing B-7.
(See Listing E-3.)

Listing E-3. Simple Error Page (Same as Listing B-7)
<%@ page isErrorPage=”true” %>

<html><head><title>ErrorPage</title></head><body>

Problem: <%= exception.getMessage() %>

</body></html>

This page will be activated by any uncaught error in any JSP for which it is
the error page. We are going to make an error page for bad/badCode2.jsp, shown
in Listing E-4. It expects a parameter called count, compiles fine, and generates
a one-row table counting from 0 to count-1.

Listing E-4. Counting JSP
<%@ page errorPage=”error.jsp” %>

<html><head><title>Blowups Happen #\ 2</title></head><body>

<table border=”1”><tr>

<%

int count=Integer.parseInt(request.getParameter(“count”));

for(int i=0;i<count;i++) { %>

<td> <%= i %> </td>

<% } %>

</tr></table>

</body></html>

527

Troubleshooting in JSP

031apxE.qxp 5/10/02 2:42 PM Page 527

If we connect to http://localhost:8080/bad/badCode2.jsp?count=5, we will
get a row of numbers from 0 to 4. Let’s see what will happen if we take off
?count=5, providing no parameter:

<html><head><title>ErrorPage</title></head><body>

Problem: null

</body></html>

This error message is a bit too cryptic. We can do better if we expand the
error page, as in Listing E-5.

Listing E-5. A Better Error Page
<%@ page isErrorPage=”true”

import=”java.io.PrintWriter” %>

<html><head><title>ErrorPage</title></head><body>

Problem: <%= exception.getMessage() %>

<%

exception.printStackTrace(); // send details to console

%>

Detail:

<textarea rows=”15” cols=”80”>

<%

exception.printStackTrace(new PrintWriter(out,true)); // to page

%>

</textarea>

</body></html>

Now the error page says exception.printStackTrace(); and that sends
a detailed report to the console (the Tomcat command line window); it also sends
the same report to the normal output page, within a text area. We can read it
either way; the report begins with

java.lang.NumberFormatException: null

at java.lang.Integer.parseInt(Unknown Source)

at java.lang.Integer.parseInt(Unknown Source)

at org.apache.jsp.badCode2$jsp._jspService(badCode2$jsp.java:59)

This will generally be enough to get us started debugging. We can extract
more information from the Exception object, but it may be a better strategy to
do more to prevent errors, instead of having to discover them in the error page.

528

Appendix E

031apxE.qxp 5/10/02 2:42 PM Page 528

Writing Modular JSPs

Errors are usually easiest to handle if you localize them as much as possible. One
way to localize possible errors is to break up a monolithic JSP into smaller mod-
ules. In particular, we can isolate the code for counting into a Java method
definition outside the HTML template, and have the JSP code within the HTML
template call that method. Consider goodCode.jsp in Listing E-6.

Listing E-6. JSP with a Method Definition
<%@ page errorPage=”error.jsp” %>

<html><head><title>Modular JSP</title></head><body>

<table border=”1”><tr>

<%= countUp(request.getParameter(“count”)) %>

</tr></table>

</body></html><%!

public static String countUp(String countStr){

try{

int count=Integer.parseInt(countStr);

StringBuffer sB=new StringBuffer();

for(int i=0;i<count;i++)

sB.append(“<td>”).append(i).append(“</td>”);

return sB.toString();

}catch(Exception ex){

return “<td>countUp(‘“+countStr+”’): “+ex+”</td>”;

}

}

%>

The first part of this JSP, down to </body></html>, is much simplified and
obviously correct. It refers to a countUp method that produces the string
“<td>0</td> . . . <td>12</td>” for count=13. That method is no longer strictly
JSP; it cannot use HTML inclusions the way that the same code could before, and
this is a loss. However, the loss is offset by a gain: exceptions, if any, will arise
within the simple context of a short method definition. Consider what happens if
we call goodCode.jsp with count=abc: it produces a nice one-row, one-cell table
containing this message:

countUp(‘abc’): java.lang.NumberFormatException: abc

That may not be what you want your end user to see, but it does tell you just
what’s going on. Much of our JSP code in this book is divided into method and
class definitions that are used within the JSP code proper, as part of the HTML
template.

529

Troubleshooting in JSP

031apxE.qxp 5/10/02 2:42 PM Page 529

Classpath Problems in Java/JSP

A large fraction of the problems you will encounter in running or recompiling our
code are “classpath problems”: you are invoking a library in a JAR file, and java or
javac can’t find it. Worse, Java seems to find it but is in fact finding the wrong
version of the library; for example, you may have several copies of xerces.jar. The
situation is better than DLL hell, and we have simplified it further by putting all
our JARs into TOMCAT_HOME/common/lib, but you should be aware of it. If
you see a “package not found on import” error, or a “cannot resolve symbol”
error, it’s quite likely that a JAR is in the wrong place or that you have not
restarted Tomcat since putting it in the right place.

To find which JAR or JARs have definitions for a given class, it helps to under-
stand that a JAR file is a zip archive, a compiled Java class or interface is a .class
file, and filenames are stored in uncompressed format. To find which jars have
definitions of the Node interface, you can search (with grep on Linux or Ctrl+F
on Windows) for JAR files containing the string Node.class or even, if you know
specifically that you are looking for org.w3c.com.Node, for the string
org/w3c/dom/Node.class. You probably have a fair number of these, mostly copies
of xerces.jar or xalan.jar. Look at dates and sizes to see which one you want (usu-
ally the latest) and put it ahead of the rest of them on the classpath and perhaps
remove the rest from your system.

Usually, especially with our usage of common/lib (all required JARs are in
one flat directory), that’s enough. Sometimes it’s not, because classpath is really
a misnomer: the term classpath actually refers to a hierarchy of class loaders that
invoke each other, and the top class loader (for our purposes, the one that loads
all JARs in your JDK’s jre/lib/ext directory) is visible to all others, but not neces-
sarily vice versa. Here is an example of how this may become relevant.

Suppose that you developed some Java classes for your Web application and
placed them into your webapp’s WEB-INF/lib subdirectory. This is good for dis-
tributing your Web application as a single self-contained archive that can simply
be expanded into the TOMCAT_HOME/webapps directory. However, you
should be aware of the possibility that Tomcat’s common libraries in common/lib
are visible to your webapp’s libraries, but not vice versa. This is a good design
principle: each class loader effectively defines an extension to the Java language.
Usually it will cause no problems: for example, your own WEB-INF/lib directory
can contain classes that refer to common/lib/xalan.jar. However, if you have
written XSLT extension functions that are called by Xalan, then you want your
extension functions to be visible to Xalan’s class loader. At that point, you have to
start thinking about hierarchies of class loaders, and you may well end up using
more than one copy of xalan.jar.

Remember to check the readme.htm file of our code archive.

530

Appendix E

031apxE.qxp 5/10/02 2:42 PM Page 530

Index

531

Numbers and Symbols
19 Short Questions about Namespaces

(with Answers) (David
Megginson), 75

@* abbreviation, in path expressions,
220

@ character, referencing XPath attri-
butes with, 25

& (ampersand) character, predeclared
character reference for, 48–49

‘ (apostrophe) character, predeclared
character reference for, 49

* (asterisk) character, in EBNF rules, 50
/ (backslash) character,

for referencing the root of the docu-
ment tree, 25

using in path expressions, 215
: (colon) character, use of in XML, 55
, (comma), as sequence separator in

children-only content model,
89

© (copyright symbol), entering into an
XML document, 48

{} (curly brackets), denoting an XSLT
variable to be evaluated with,
29

> (greater than) character
predeclared character reference for,

49
in XML end tags, 4
in XML start tags, 4

< (less than) character
predeclared character reference for,

49
in XML start tags, 4

* node test, 215–216
% (percentage) symbol, contained in

PE declaration and reference,
100

. (period) abbreviation, in path
expressions, 221

| (pipe) operator
as choice separator in children-only

content model, 89
using to combine createNodeIterator

constants, 184
union expressions formed with,

218–219
+ (plus) character, in EBNF rules, 50

? (question mark) character, in EBNF
rules, 50

" (straight quotes)
predeclared character reference for,

49
using to specify a value as a literal

string, 234
* test, and the namespace, 216–217
.. abbreviation, in path expressions, 221
.//d abbreviation, in path expressions,

221
// abbreviation, in path expressions, 220
:: separator, using in path expressions,

215
<=, <, >=, > operators, in XPath, 208
</ characters, use of in XML end tags, 4
=, != operators, in XPath, 208

A
abbreviated axis specifiers, of path

expressions, 219
abbreviated paths, of path expressions,

220
abbreviated predicates, of path

expressions, 219
abbreviated steps, of path expressions,

219–220
abstract modules, and implementation,

110–111
acceptNode() method, 184
accumulation list processing pattern, 280
action files

for the application, 321–322
for refset operations, 339
for update queries, 339

ActiveSAXbookpicker.asp
application’s code, 188–192
code example, 188
ContentHandlerImpl class in, 189–190
SAX callbacks in, 190–193
startDocument() code example,

191–193
actor attribute, in Envelope namespace,

460–461
add action, refset, 353
addCitation() method

for adding a citation and submission
record to a database, 350–353

definition code example, 351–353

031indx.qxp 5/10/02 2:24 PM Page 531

additional predicates, 217
addRefs() method, refset, 353
addTreeAddr()

recursive from addTreeAddrRec.jsp,
180

stack-based from
addTreeAddrCore.jsp, 179

all-reachable query
code example of root and closure

templates, 251–252
standard procedure for, 249–250

ampersand (&) character, predeclared
character reference for, 48–49

ancestor axis, XPath, 212
ancestor nodes, of tree, 3
ancestor-or-self axis, XPath, 212
and operator, in XPath, 208
ann elements, content model of, 317
annotation elements, 310–311

use of XLink structures with, 316–318
annotation vocabulary, for DTD com-

patibility, 380–381
anonymous types, example defined

within the element definition,
396

ANY content model, for DTDs, 88–89
Apache Axis, using as framework for

Web services, 425–490
Apache Tomcat, Web server and JSP

processor as part of XSLT
setups, 21

Apache Xalan, XML processor as part of
XSLT setups, 21

Apache Xerces, XML parser as part of
XSLT setups, 21

appCache, function of, 326
application

components and files, 320–322
search actions supported by, 320–321
the structure of, 320–331
typical scenario for user interactions,

322
update actions supported by, 321

application cache, instantiating,
325–326

application (re)loading, and session ini-
tialization, 326–328

apply-imports instruction element,
XSLT processing model, 225

apply-templates instruction element,
XSLT processing model, 225

arc elements, descriptive content for,
317

arc value, for xlink:type for children ele-
ments, 62

arcs, in directed graphs, 60

arcs template, for outputting arcs in
XLink application, 243

array accessors (numerical indices), ref-
erenced in SOAP1.2-2 Section
4, 465–466

ASP
JDBC equivalents in, 337–338
in Web applications, 503–505

ASP-based Web application, code exam-
ple for validation, 85–86

ASP code
to run XSLT, 23–24
for xptrans.jsp, 204–205

ASP page, code example for
ActiveSAXbookpicker.asp, 188

asterisk (*) character, meaning of in
EBNF rules, 50

attribute axis, XPath, 212
attribute declarations, EBNF format,

90–91
attribute defaults, 92
attribute instruction element, XSLT pro-

cessing model, 225
attribute nodes, XPath, 210
attribute-set element, XSLT processing

model, 225
attribute values, 91
attributeGroup element, XML Schema,

420
attributes

common way of processing, 136–137
and namespaces, 59–60
outputting with computed values,

28–29
patterns for declaring, 421
redefining in a DTD, 105–106
in XPath, 25

Attributes interface, SAX2, 136–137
authorization token request, code exam-

ple, 485–486
authorization token response, code

example, 486
Axis. See Apache Axis
Axis User Guide

finding details of TCPMon operation
in, 445

Web site address, 471

B
backend processing, improvements to,

503
backend programs, sending data to, 512
basic-form.rng vs. form.rng, 388–390
Basic module, form element defined in,

388
beanMapping elements, function of, 471

532

Index

031indx.qxp 5/10/02 2:24 PM Page 532

behavioral markup vs. semantic
markup, 63–64

Berners-Lee, Tim, HTML defined by, 13
Bible, XLink code example, 65–69
binary split. See tree recursion (binary

split)
binary split vs. linear recursion, sum-

mary of test results, 292
Block.class

defined in the Text module, 389
redefined in the Form module,

389–390
Block.mix, defined in the Text module,

388
Block.model, defined in the Text mod-

ule, 388
body element, referenced by the

noframes element, 387–388
Book Picker, as DOM builder, 186–193
BookPicker class

code example, 155–156
code for output, 156–157
vs. VersePicker class, 154

boolean() conversion function, in XPath,
206

Boolean data type
possible values for, 206
supported by Jing processor, 393

Boolean operators, in XPath, 208
Bourret, Ronald

Namespace Myths Exploded by, 75
Namespaces FAQ by, 75

Bray, Tim, XML Namespaces by Example
by, 75

browsers
approaches to displaying XML in, 35
code example of HTML document in,

43
implementation of XML parsing and

CSS styling by, 35
XSLT support on the client side by,

37–39
business entity request and response,

code example, 487–489

C
C struct, using for office equipment

inventory example, 463–464
call-template(with-param) instruction

element, XSLT processing
model, 225

callback. See also event handler
defined, 128
illustration, 129

candidate recommendations (CRs), by
W3C, 13–14

canonical representation, 394
Cascading Stylesheets (CSS). See also

CSS (Cascading Stylesheets)
development of, 30–31

CDATA (Character DATA) attribute type,
91

CDATA sections, entering into a docu-
ment, 49

character entities, representing by their
Unicode numbers, 48–49

characters() callback, for verse picker
application, 146

child axis, XPath, 212
child nodes, of tree, 3
children-only content model, code

examples of, 89–90
choice separator, pipe character as in

children-only content model,
89

choose(when) instruction element, XSLT
processing model, 226

CIA World Factbook. See The World
Factbook

citation elements
progression of steps in creating and

modifying, 340
storing in a database, 319
in XML data, 315

citation input form
outline of XSLT parts, 344
XSLT for, 342–347

citations, 310–311
code example, 342–343
code example for computing ID,

348–349
creating and editing, 347–353
example of entry form for, 343

Clark, James
contents of his RELAX NG Web site,

363
creation of DSSSL stylesheet lan-

guage by, 33–34
Web site address for a separate

frames DTD discussion, 109
XML Namespaces by, 75

.class PE name, to represent elements of
similar meaning, 112

clear action, refset, 353
client-side validator, error message

from, 83
client variations

code example of another kind of
client, 449

SOAP as XML, 448
in Web services programming, 448–456
close-by axes, XPath tree, 211

533

Index

031indx.qxp 5/10/02 2:24 PM Page 533

Codes for the Representation of Names of
Languages (ISO 639), 59

colon (:) character
use of in XML 1.0, 55
use of in XML Namespaces, 55

comma (,) character, as sequence sepa-
rator in children-only content
model, 89

command line, using to validate RELAX
NG grammars, 368–369

comment instruction element, XSLT
processing model, 225

comment nodes, XPath, 210
committed record, code example, 319
committers, defined, 318
Common.attrib, defined, 112–113
compiler-compiler, defined, 363
complex types

code example for declaring, 422
patterns for defining, 421

computed values, outputting attributes
with, 28–29

conditional processing, 27–28
conditional sections, 106–107
conflict resolution, and default tem-

plates, 232–233
connection pooling, 333–334
connections and connection pooling,

332–334
constraining facets

complete list of, 398
for data types, 394–395
for deriving data types, 395

content handler
as part of SAX trio, 128
for SAX filters, 144–145

content handler definition, code exam-
ple, 140

content model, of ann, 317
content model file, XHTML Basic DTD,

117–119
content models, types of, 7
ContentHandler interface, code exam-

ple of the callback
declarations, 135

ContentHandlerImpl class
in ActiveSAXbookpicker.asp, 189–190
code example of enumeration, vari-

ables, and properties, 190
context of evaluation, and the XPath

data types, 199–201
.content PE name, to represent the con-

tent model of an element
type, 112

copy(shallow copy) instruction element,
XSLT processing model, 226

copy-of (deep copy) instruction ele-
ment, XSLT processing model,
226

copyright symbol (©), entering into an
XML document, 48

Core interfaces
add-address page using (stack or

recursive), 181
in DOM Level 1 and 2, 171

Costello, Roger
Web site address for Schematron

information, 418
XML Schema materials developed by,

401
count(node-set), node-set number-

valued function, 221
CountTags

code procedure, 138
entry page, 137

cp symbol, defined, 89
createNodeIterator() method

code example, 183
filtering parameters of, 184

creation methods arguments, 183
CRs (candidate recommendations), by

W3C, 13–14
CSS (Cascading Stylesheets)

example of simple, 32
limitations of, 33
for XML, 31–32

curly brackets ({}), using to denote an
XSLT variable to be evaluated,
29

D
data formats, describing with XML, 1
data linking, describing with XML, 1
data processing, describing with

XML, 1
data sets, generating large in XSLT,

284–292
data transfer, describing with XML, 1
data transformations, describing with

XML, 1
data types

built-in in XML Schema Part 2,
392–393

describing with XML, 1
database structure, of relational for stor-

ing XML data, 319–320
datatypeLibrary

Jing processor support for, 393
and XML Schema data types,

392–400
DCMES DTD, 314–315
descendant axis, XPath, 212

534

Index

031indx.qxp 5/10/02 2:24 PM Page 534

decimal-format element, XSLT pro-
cessing model, 225

declarations. See namespace decla-
rations

DeclHandler, exposure of individual
declarations in the DTD by,
130

decorative axes, XPath tree, 211
decorative nodes. See attribute nodes;

namespace nodes
default templates

and conflict resolution, 232–233
and node types, 232

definitions
combining multiple in RELAX NG,

383–384
replacing in RELAX NG, 384

delete action, refset, 353
delRef() method, refset, 353
DeRose, Steve, XPath development by

with James Clark, 34
Dertouzos, Michael, joint creator of the

W3C, 13
descendant axes, XPath tree, 211
descendant nodes, of tree, 3
descendant-or-self axis, XPath, 212
descriptive content, for locator and arc

elements, 317
directed graph, arcs in, 60
display action, refset, 353
distinct locators, XSLT, 260–262
divide-and-conquer problem solving,

286–287
divisions, code example for keys, 273
DLL, installing, 497
document, and its DTD, 93
document() function

using within an XSLT stylesheet,
296–297

in XPath, 69–70
document instances, schema-related

markup in, 423–424
Document interface

DOM (Document Object Model), 170
IDL code example, 175
Java code example, 176

document-matching schema
with elementFormDefault=qualified,

415–416
with elementFormDefault=unquali-

fied, 416–417
document-oriented XML vs. data-

oriented XML, 19–20
document tree

code example of recursion down, 298
tree recursion based on, 297–299

Document Type Definition (DTD). See
DTD (Document Type
Definition)

DocumentBuilder (DOM parser), JAXP
class, 133

DocumentBuilderFactory class, JAXP,
133–134

DocumentFragment interface, 173
documents

reuse of DTDs with an internal subset
in, 102–105

validating namespaced, 103–105
DocumentType interface, 173
DOM (Document Object Model)

a brief history, 170–171
defined, 6
main interfaces, 170
other interfaces and classes, 174–175
treatment of XML documents by,

125–126
DOM APIs, functions included in, 6
DOM builder, Book Picker as, 186–193
DOM Core interfaces. See Core inter-

faces
DOM interfaces, overview, 172–176
DOM Level 1, parts of, 171
DOM Level 2, interfaces specified by, 171
DOM Level 3 module, Web site address

for working draft, 173
DOM Node types, table of, 173
DOM programming, 169–181
DOM tree, code example for building,

349–350
DOM tree address, simple example,

176–181
DOMBuilder class, code example for

ParseURL() function, 189
DOMBuilder object, code example for

creating, 187–188
DOMException, 174
DomImplementation interface, testing

for optional interfaces with,
171

DOMString, 174
DOMtreeAddr/treeAddr.jsp application

code of main page, 178–179
outline, 177–178

double data type
constraining facets, 395
example, 394

dreams.xsl, code example, 68
driver file, XHTML Basic DTD, 114–117
drivers, installing and using JDBC,

331–332
DSSSL stylesheet language, created by

James Clark, 33

535

Index

031indx.qxp 5/10/02 2:24 PM Page 535

DTD (Document Type Definition)
attributes and, 17–19
declaration of entity names in, 93–94
a document with an external, 18
everything contained in, 120
with external parsed entities, 96–97
facilitating transition from RELAX NG

to, 380–381
and namespaces code example, 104
problems with, 120
and RELAX NG correspondences, 370
vs. RELAX NG grammar, 364
reuse with an internal subset in

a document, 102–105
reuse within another DTD, 105–106
syntax and code examples, 88–93
used for writing grammar rules, 3
and validation, 81–124
XHTML Basic, 114–119
XML code examples without, 15–17

DTD compatibility package, features
provided by, 381

DTD-less documents
code example of all you can find in,

51–52
kinds of material contained in, 49–50

DTDHandler, 130
Dublin Core, 313–315
Dublin Core Metadata Element Set

(DCMES). See Dublin Core
Dublin Core RFD/XML, code example,

314

E
EBNF (Extended Backup-Naur Form),

use of, 50–51
EBNF rules/productions

operators used in, 89
and the syntax of names, 55

echoContentHandler, 150–151
ECMAScript, code example of the

Document interface in, 176
element c, code example of type defi-

nition of the type of, 405
element content, types of, 7
element declarations and content mod-

els, for DTDs, 88–90
element instruction element, XSLT pro-

cessing model, 225
element nodes, XPath, 210
element tree, of an HTML document, 43
elementFormDefault attribute, using,

415–417
elements

vs. attributes and attribute modifi-
cations, 105–106

code example for declaring, 420
code example of redefining, 105–106
interleaving of mixed-content model

and, 375–376
patterns for declaring, 420

elements and attributes
defining as lists in RELAX NG, 375
expressing a choice between, 374
uniform treatment of in RELAX NG,

373–376
embed use case, XHTML modulari-

zation, 110
EMPTY content model, for DTDs, 89
Encoding Dublin Core Metadata in

HTML (RFC 2731), code
example from, 313

encodingStyle attribute, in Envelope
namespace, 460–461

end tag, format of, 4–5
endDocument() method, use of in

ContentHandler interface,
135

endElement() method, use of in
ContentHandler interface,
135–136

extended link element, possible values
for children elements of, 62

extension functions
vs. external Web applications, 297
XSLT/XPath, 71–73

entities
defined, 93
general and parameter, 93–101

entity, defined, 48
entity declarations, defined, 93
entity references, defined, 93
entity resolution, 95
EntityResolver, function of, 130–131
env:Body element, 459, 461-462
Envelope namespace, 459

attributes in, 460–461
env:Envelope element, 459
env:Fault element, mandatory and

optional children in, 461–462
env:Header element, in the abstract

Message Exchange Model,
459–461

error handler, code example for obtain-
ing, 367

error pages, troubleshooting in JSP,
527–528

ErrorHandler, function of, 130
example, English-language for syntax

diagrams, 3–4
exclude-result-prefixes attribute, using,

267

536

Index

031indx.qxp 5/10/02 2:24 PM Page 536

executeUpdate(), using for UPDATE
queries, 337

extend use case, XHTML modulari-
zation, 110

extended link element
code example of XML structure of, 63
and its XLink graph, 62–64

extension elements and functions,
longest verse using, 299–303

extension functions
vs. external (Web application)

functions, 296–297
time of range generation by, 295–296
using to generate a range, 293–296
using within XSLT, 293–297
when they are useful, 293

external DTD references, code example,
93

external entity references (including
DTD references), 97–99

external (Web application) functions
vs. extension functions,
296–297

external general parsed entities, 93
DTD with, 96–97
uses for, 99

external Web applications vs. extension
functions, 297

externalRef pattern, processing in
RELAX NG, 383

F
facets, for data types, 394–395
factors() method, server stub code

example for, 444–445
factorSoapEnv() function, 454
fallback instruction element, XSLT pro-

cessing model, 226
Fault elements, SOAP, 452
filter writing, SAX support for, 144–145
filtering, a list by the prime() predicate,

280
find-neighbors query

root template, 246–247
XLink application, 246–249

#FIXED keyword, using with attribute
defaults, 92

fixed-width records, converting to XML,
163–169

FixedWidth.jsp program
code example with gaps, 165
outline, 164

FixedWidthReader class
outline, 166
variables, constructor, methods other

than parse(), 167

flat structures, converting to hierarchi-
cal, 273–279

following axis, XPath, 212
following-sibling axis

for building a hierarchy recursively,
278–279

XPath, 212
for-each instruction element, XSLT pro-

cessing model, 225
For loop, using to process attributes,

136–137
form element, defined in the Basic mod-

ule, 388
Form module, Block.class redefined in,

389
formal (or uninterpreted) languages,

XML languages as, 2
Formal Public Identifiers (FPIs), in

SGML, 98
form.rng vs. basic-form.rng, 388–390
Forms and Tables, Basic and non-Basic

modules for, 388–392
frames, problem in XHTML modulari-

zation, 386–387
frames page, for application, 323–325
freeConnection(), code example of

rewritten to use connection
pooling, 333

Function Call, XPath, 207
functions and function libraries,

207–208
fundamental facets, for data types,

394–395

G
general entity names, five predeclared,

93
general entity references, use of, 93
general parsed entities, 94
general unparsed entities, 94
generate-id() function, 261
getChildren() function, in DOM APIs, 6
getConnection() from getConn.jsp, code

example for, 333
getConnection() function, code example

for obtaining a connection,
333

getConnection() method, of
DriverManager class,
332–334

getDateFormat() function, code exam-
ple, 329–330

getDBF(), code example, 327
getFactors() function, writing, 450–451
getParent() function, in DOM APIs, 6
getRefIf() method, XPath filtering by, 354

537

Index

031indx.qxp 5/10/02 2:24 PM Page 537

getTransformer() function, code exam-
ple, 329–330

getWebAppPath() function, code exam-
ple, 329–330

global attributes, providing specific
functionality with, 59

global declarations vs. local declarations
and element references,
413–414

globally unique names, creating, 53–55
grammar, defined, 3
grammar rules

standard notations used for writing, 3
of XML languages, 6–9

graphs. See XLink graphs
greater than (>) character, predeclared

character reference for, 49
greeting element, of Hello, XML, 4
group element, XML Schema, 420
group/XSLT/DivReg.xsl, code for pro-

cessing data rows, 267–268
grouping and tables, 263–272
grouping problem, discovery of by Steve

Muench of Oracle, 262–263
groupXSLT/DivReg.xls data, converting

to HTML, 265–266

H
hashtable, instantiating to hold the ref-

set, 325–326
hashtable data, code example for con-

verting to XML data, 158–159
hashtable parser, for XML output,

158–159
hashtable parser code, defining a class

to implement XMLReader
interface, 159–163

HashtableParser, the real parse()
method for, 160–161

HashtableReader
code example of variables and a con-

structor for, 159
converting from SAX to text with

markup, 161–163
Hello, XML

simple syntactical code example for,
4–5

syntactical diagram of, 5
hierarchical structures, converting flat

to, 273–279
hierarchies

building recursively, 278–279
templates for building using xsl:key

and generate-id(), 277–278
using xsl:key and generate-id() to

build, 276–277

HTML
compared to XML and XHTML,

41–48
defined by Tim Berners-Lee, 13
evolution of, 109
as a language, 44–45
vs. XHTML, 42–44
vs. XML, 45

HTML document
in a browser, 43
with a different stylesheet, 45
element tree of, 43
program for converting to XHTML, 47

HTML file, code example for client-side
validation, 84–85

HTML file structure, of The World
Factbook, 275–276

HTML form, code example, 328
HTML form with GET method, code

example of request corre-
sponding to, 501

HTML form with POST method, code
example of request corre-
sponding to, 502

HTML hyperlink
similarities to an XLink simple link

element, 62
vs. an XLink simple link element,

61–62
HTML page, that submits data to

PassAlong.jsp, 453–454
HTML-to-XHTML conversion program,

by Dave Raggett, 265
HTTP protocol, 509–515

less commonly used methods and
WebDAV, 514

overall operation of, 510–513
request commands (methods),

513–514
server response, 512–513
server response codes, 514–515
the structure of client request,

511–512
HTTP tunneling, 445
hypertext links, defined, 61

I
IANA (Internet Assigned Numbers

Authority), language identi-
fiers registered with, 59

IBM’s Web Services ToolKit (WSTK), Web
site address for downloading,
431, 480

ID attribute value, 91
id() function, implementing make-row

with, 240

538

Index

031indx.qxp 5/10/02 2:24 PM Page 538

id() node-set function, 221–222
IDL code example, of the Document

interface, 175
IDREF attribute value, 91
IETF (Internet Engineering Task Force),

13
if instruction element, XSLT processing

model, 226
IGNORE keyword, for conditional

sections, 106–107
#IMPLIED (optional) attribute default, 92
import and include elements, XSLT pro-

cessing model, 225
import element, XML Schema, 419
import libraries, for verse picker appli-

cation, 147
imports and beans, login check, sources

of, 325
include element, XML Schema, 419
INCLUDE keyword, for conditional

sections, 106–107
include pattern, processing in RELAX

NG, 383
Included files

for application, 321–322
defined, 339

Infoset, overview, 121–123
infoset augmentations, 92–93
infoset specification, for XML standards,

6
inline elements section, of content

model file, 117–118
input source

converting the file name to a URL,
132

giving to the parser, 131–132
as part of SAX trio, 128

InputSource, and other sources of input,
131–132

InputSource object
creating, 131–132
returned by resolveEntity() method,

130–131
INSERT statement, code example of for

a citation, 351
installation guide, 491–500
instruction elements

summarized for XSLT processing
model, 225–226

for XSLT children of xsl:template,
223

integer array, code example for convert-
ing string of tokens to, 166

integer division, code example, 271
integer types, supported by Jing proces-

sor, 393

Interface Definition Language (IDL), in
DOM, 172

internal general parsed entities, uses for,
99

Internet Explorer (IE), implementation
of XML parsing and CSS
styling by, 35

Internet Explorer and MSXML support
for XSLT, 38

ISO 639. See Codes for the Representation
of Names of Languages (ISO
639)

ISO 8879:1986, international standard
for SGML, 13

isSupported(feature,version) method, of
Node interface, 174

J
Java

code example of the Document inter-
face in, 176

range function, 294–296
Java class

calling a static method of, 71
converting to a SOAP server, 434

Java code
compiling, putting in a JAR, and

copying where Tomcat can
find it, 469–470

for Office Equipment Web service,
468–470

Java extension functions, 303–307
Java framework, installation guide,

492–495
Java implementation

of get properties and delete business,
483–484

of main() method, 481–482
of proxy, token, and new business,

482–483
Java/JSP, troubleshooting classpath

problems in, 530
Java methods, definitions of, 329–331
Java servlets and JSPs, in Web appli-

cations, 505–507
Java system functions, for time and

memory, 292
Java validator, running, 368–369
Java XML processing, online resources

for, 520–521
Java-XML tutorial, Web site address,

150
java.net.URL constructor, server stub

code example for, 443
JavaScript extension function, code

example in Xalan, 302–303

539

Index

031indx.qxp 5/10/02 2:24 PM Page 539

JAXP
code for creating a parser, 134
creating a parser without using, 142
parsing with, 140–141

JAXP classes, for creating parsers,
133–134

JAXP Transformer object, XSLT transfor-
mations performed by, 152

JDBC (Java Database Connectivity),
331–338

equivalents in ASP, 337–338
installing and using drivers, 331–332
PreparedStatement as alternative to

using Statement, 336–337
Jing data types page, clarifications and

caveats from, 393
Jing validation tool

using to obtain an XML Reader, 366
validating derived types with,

400–401
versions, 365

JScript code, for invoking a SOAP action,
449–450

JSP
looking at servlet code for, 525–527
and the socket connection, 454–456
troubleshooting error pages, 527–528
troubleshooting in, 525–530
writing a modular, 529

JSP, ASP, and Web applications, online
resources for, 521

JSP code
for outputting hashtable contents

using Java and JSP, 141
to run XSLT, 24
for SOAP client, 439

JSP page, with XPath, 73–74

K
key element, XSLT processing model, 225
key() function, and the xsl:key element,

259–260
keys, building a hierarchy with, 276–278
King James Bible, using as XML data for

an XLink application, 196–198

L
language binding, provided for Java and

JavaScript (ECMAScript), 172
language codes, defined in Codes for the

Representation of Names of
Languages, 59

language type, supported by Jing
processor, 393

last(), node-set number-valued
function, 221

leaf nodes, of tree, 3
less than (<) character, predeclared

character reference for, 49
lexical space, 394
LexicalHandler, access to lexical mate-

rial provided by, 130
linear recursion

code example of range by, 286
defined, 283
vs. tail recursion, 284
vs. tree recursion (binary split),

285–292
link element, defined, 60
Link Source document, code example,

197
link source to linkbase transformer,

tasks it has to perform,
242–246

Linkbase, from Link Source to, 196–198
Linkbase document, code example,

197–198
linkTransform.xsl, code of, 68–74
list-helpers template

improving efficiency of, 238
as a wrapper for make-rows, 239

List module, code example excerpt
from, 113–114

list of tokens recursive pattern, code
example, 240

list processing
finding the longest string in a list of

strings, 281–283
and recursion depth, 280–284
in XSLT, 281

list types, as non-atomic simple types,
397

literal result elements, for non-XSLT
material, 223

literal string, specifying a value as, 234
loading (reloading) the application,

code example of, 328
local-name(node-set?), node-set string-

valued function, 221
local resource, defined, 62–63
location path expressions. See path

expressions
location steps

parts of, 215
and their components, 215–219

locator elements
code example for outputting,

244–245
descriptive content for, 317

locator labels, construction of, 317–318
locator value, for xlink:type for children

elements, 62

540

Index

031indx.qxp 5/10/02 2:24 PM Page 540

login page, for application, 322–323
longest verse

locating with VBScript extension
function with MSXML 3,
300–301

revisited, 297–307
by tree recursion, 299
using extension elements and

functions, 299–303
longestLoc(), Java extension function,

303–304

M
main() method, of

PublishFindDeleteBiz.bat,
481–482

make-row template, XLink application,
247–248

make-rows template, find-neighbors
code example for, 249

makePFString.bat file, code example,
438

mapping, the square() function over the
list, 280

Mathematical Markup Language
(MathML) Version 2.0, release
of, 108

max(), Java extension function,
306–307

maxValLoc(), Java extension function,
304–306

measurement code, for time and space
for range generation in XSLT,
289–292

Megginson, David
19 Short Questions about Namespaces

(with Answers) by, 75
development of SAX by, 127

Message Exchange Patterns (MEPs)
combining SOAP messages to imple-

ment, 458
most common, 428

message instruction element,
XSLT processing model,
226

Microsoft IIS/PWS, Web server and ASP
processor as part of XSLT
setups, 21

Microsoft Internet Explorer (IE). See
Internet Explorer (IE)

Microsoft MSXML 3.0 (and later), SAX
implementation in, 127

Microsoft .NET, as Web services infra-
structure, 428

Microsoft SOAP Toolkit, Web site
address, 496

.mix PE name, to represent element
types from different classes,
112

mixed-content declaration, 90
mixed-content model

EBNF production and declaration for,
90

interleaving of elements and,
375–376

mod operator, using to divide items into
groups of equal size, 263

mode attribute, using push with,
230–231

modelGroup element, XML Schema, 420
.mod PE, code example, 112
.module PE, code example, 112
modular JSPs, writing, 529
modularity and reuse, 383–392
modularization

goals and use cases, 110–111
main tools of, 383

modularization framework
DTD implementation of, 111–114
layers, 110

Modularization of XHTML
deciding if it is worth using, 119
release of, 108

Mozilla, implementation of XML parsing
and CSS styling by, 35

MSXML, and Internet Explorer support
for XSLT, 38

MSXML 3.0 (or later), combined XML
parser and XSLT processor for
XSLT setups, 21

Muench, Steve, grouping problem
solution discovered by,
262–263

Multi-Schema Validator (MSV) tool,
available from Sun’s Web site,
363

multiple nodes, working with, 27
mustUnderstand attribute, in Envelope

namespace, 460–461

N
name(node-set?), node-set string-valued

function, 221
name classes, combining in RELAX NG,

382–383
named templates and recursion,

236–241
NamedNodeMap interface, 175
names and namespaces, 52–60
namespace-alias element, XSLT pro-

cessing model, 225
namespace axis, XPath, 212

541

Index

031indx.qxp 5/10/02 2:24 PM Page 541

namespace declarations
including in your code for all proces-

sors, 241
overriding, 58
scope of, 55–56

Namespace Myths Exploded (Ronald
Bourret), 75

namespace nodes, XPath, 210
namespace support

Node methods for, 174
in RELAX NG, 377–383

namespace-uri(node-set?), node-set
string-valued function, 221

namespaced documents
code example of schema-related

markup in, 409–410
validating, 103–105

namespaces
approaches needed to have attribute

names in, 379
and attributes, 59–60
code example of handling of in XSLT

and XPath, 57
code example of suffix redefined in

the internal subset of DTD,
104

default, 58
and DTDs code example, 104
and names, 52–60
and prefixes, 53–55
in RELAX NG grammar serving as

annotations or comments,
379–380

use of in ContentHandler interface,
135–136

and well-formed documents, 41–79
namespaces and attributes, RELAX NG,

378–379
Namespaces FAQ (Ronald Bourret), 75
Netscape, implementation of XML pars-

ing and CSS styling by, 35
New Oxford Annotated Bible with the

Apocrypha/Deuterocanonical
Books, use of for XML data,
196

nextlinks template, find-neighbors code
example for, 248–249

NMTOKEN attribute value, 91
NMTOKENS, IDREFS, 91
nns. See no namespace (nns)
no namespace (nns), 404
no namespace (nns) document, code

example of schema-related
markup in, 405–406

node children, Node methods for modi-
fying, 174

Node interface
DOM (Document Object Model), 170
and Node types, 172–173

Node methods, overview of, 174
node-set data type, 206

converting to a string in XPath, 206
node-set functions, 221–222
node-sets

code example of comparing for
equality, 218

equality and inequality operators
with, 217–218

and how path expressions evaluate
to, 214–222

node tests, 215–217
node types

and default templates, 232
table of DOM, 173

node types and node properties, sum-
mary table of, 210

NodeFilter objects, 184
NodeIterator object

attaching to a tree, 183
creating, 183–184
as traversal interface, 182

NodeList interface, 175
nodes

precedence rules for, 233
processing a set of, 27

non-atomic simple types, 397
Notation interface, 173
ns attribute, for specifying the name-

space of a name being
defined, 377

number() conversion function, in XPath,
206

number data type, in XPath, 206
number element, XSLT processing

model, 225
Number Literal, XPath, 207
number-valued node-set functions, 221
numeric types, supported by Jing

processor, 393

O
OASIS (Organization for the

Advancement of Structured
Information Standards), Web
site address for, 9

OASIS technical committees, online
resources, 518

Object Management Group (OMG), lan-
guage for specifying CORBA
interfaces, 172

OCLC (Online Computer Library
Center), 313–315

542

Index

031indx.qxp 5/10/02 2:24 PM Page 542

Office Equipment Web service
implementation of, 467–479
writing the SOAP client for, 472–479

official recommendation (R), by W3C, 14
online library science, world epicenter

of, 313
online resources, 517–523

for Java XML processing, 520–521
for JSP, ASP, and Web applications,

521–522
OASIS technical committees, 518
other standards consortia, 518–519
for software, 522–523
W3C technical reports, 517–518
for Web services, 521–522
for XML and databases, 521
for XML information, 519–520

Opera, implementation of XML parsing
and CSS styling by, 35

or operator, in XPath, 208
order of evaluation, pull and push in

XSLT, 226–231
ot.xml file, finding the longest verse in,

283
output element, XSLT processing model,

225

P
param and variable elements, XSLT pro-

cessing model, 225
parameter entities (PEs)

common attributes, 112–113
as documentation, 100–101
as macros, 100

parameter entity references, use of, 93
parameters

how they are passed to the stylesheet,
235

passing from one template to
another, 236–241

position and usage of, 235
parent axis, XPath, 212
Parenthetical expression, XPath, 207
parse() method

code example with a systemID argu-
ment, 167

code example with an InputSource
argument, 168

using, 131–132
parsed general entities

internal entity references, 94–95
syntax for declaring, 94

parser
creating, 132–134
creating the JAXP way, 133–134
creating the SAX2 way, 133

creating without using JAXP, 142
defined, 3
as part of SAX trio, 128

parser attitudes, and well-formed docu-
ments, 8–9

parser output, code example for display-
ing in text area, 158–159

parseRow(), code example for parsing
each line, 169

parsers, with attitude, 46–47
ParseURL() function, code example for

DOMBuilder’s, 189
parsing

programming languages vs. XML,
9–11

XML, 7–8, 125–193
XML vs. programming languages, 9–11

PassAlong.jsp
code example of receive HTTP

request and send SOAP
request, 454–455

code example of receive SOAP
request, process, and send to
browser,456

path expressions
abbreviated form of, 219–221
additional predicates within, 217
the full form of, 214–219
and how they evaluate to node-sets,

214–222
location steps and their components,

215–219
summary of abbreviations and wild-

cards, 220
pattern facet

code example for defining telephone
numbers, 399

and Regular Expressions, 398–399
using to define a range of integers,

399–400
pattern matching, examples of, 398–399
patterns and grammar, RELAX NG, 371
payload, defined, 458
PCDATA (Parsed Character DATA),

using, 7
pdata (personal data) documents, code

example for validating, 102
pdata0.dtd, DTD code example, 102
PE naming conventions, 111–112

within a module, 112–114
PEs (parameter entities). See parameter

entities (PEs)
PFStringW2J.bat, code example for

WSDL to Java, 437
pickverses.jsp, outline form for how it

proceeds, 146–151

543

Index

031indx.qxp 5/10/02 2:24 PM Page 543

pipe (|) operator, as choice separator in
children-only content model,
89

PIs (processing instructions), in XML
documents, 16

plus (+) character, meaning of in EBNF
rules, 50

PortType interface, code example, 441
position(), node-set number-valued

function, 221
positional axes, 213
Post-Schema-Validation Infoset (PSVI),

92–93
precedence rules, for patterns, 233
preceding axis, XPath, 212
preceding-sibling axis, XPath, 212
predeclared entities, 48–49
prefixes, and namespaces, 53–55
PreparedStatement, 336–337
PrimeFactorsString class, function of, 438
primeFactorsString.htm, the HTML

page of, 453–454
primeFactorsString.jsp, code example,

439–440
PrimeFactorsStringPortType interface,

function of, 438
PrimeFactorsStringSoapBindingStub

class, function of, 438
priority attribute, of xsl:template, 233
processing-instruction element, XSLT

processing model, 225
processing instruction nodes, XPath, 210
processing pipeline, for XML+XSLT on

the client, 36
programming languages vs. XML, 9–11
proposed recommendations (PRs), by

W3C, 14
PRs (proposed recommendations), by

W3C, 14
PSVI (Post-Schema-Validation Infoset).

See Post-Schema-Validation
Infoset (PSVI)

public identifiers
fields, 98
in SGML, 97–99

pull processing, 226
code example, 227

push processing, 226
code example, 227–228
using with a mode attribute, 230–231

Q
.qname PE name, for dealing with

namespace issues, 112
qNames

in definitions, 378

technique for validating in docu-
ments with namespaces,
103–105

qstring declaration, in XPath expression,
70–71

Query Implementations 1: UPDATE
Queries, 339–353

Query Implementations 2: Refset
Actions, 353–358

query string, 71
question mark (?) character, meaning of

in EBNF rules, 50
$queue parameter, using to hold a list of

nodes to visit, 250
quotation marks (“ ”), specifying a value

as a literal string with, 234
Quoted String Literal, XPath, 207

R
R (official recommendation), by W3C, 14
Raggett, Dave

Tidy program by, 47, 265
range() extension function, in Michael

Kay’s Saxon, 285
Range interfaces, in DOM Level 2, 171
range measurements 1: namespaces,

code example, 290
range measurements 2: limits and the

document() function, code
example, 290

range measurements 3: table output,
code example, 291

rdb, defined, 310
rdbCtl.jsp, as initial source for the con-

trol frame, 339
rdbRefSetOps.jsp

outline of how it proceeds, 354
working through, 353–358

RDDL (Resource Directory Description
Language)

modules needed to define as an
extension of XHTML Basic,
391–392

standard values for nature and pur-
pose attributes, 78–79

rddl.rng, Resource module, 390–391
RDF (Resource Description Framework),

basics of, 311–313
RDF Model and Syntax, W3C recommen-

dation for RDF descriptions,
312

RDF statements, contents of, 312
recursion, via xsl:apply-templates within

a variable, 298
recursion depth

defined, 283

544

Index

031indx.qxp 5/10/02 2:24 PM Page 544

and list processing, 280–284
and stack memory, 283–284

recursive descent, 299
recursive processing, of a list of tokens,

239–241
recursive subjectOptions template, 347
redefine element, XML Schema, 419
ref2link.xsl

main control structure of, 242–243
as part of XLink application, 242–252

refset hashtable, instantiating, 325–326
refset operations

definitions of, 355–357
supported, 353

Regular Expressions
and pattern facets, 398–399
using to define simple types, 399–400

reification, defined, 318
relational database, as XML repository,

309–310
RELAX NG

associating target namespaces with
prefixes in, 378

built-in data types, 373
code example of a document with

terms and definitions, 376
code example of terms and defi-

nitions, 376
combining and replacing definitions

in, 383–384
combining multiple definitions of the

same name in, 383–384
defining elements and attributes as

lists in, 375
and DTD correspondences, 370
facilitating transition from DTDs to,

380–381
features of, 361–362, 369–370
history and current condition, 362–369
local validity assessment by, 403
namespace support, 377–383
namespaces and attributes, 378–379
overview, 369–383
patterns and grammar, 371–373
QNames in definitions, 378
replacing definitions in, 384
tokens and enumerations, 372–373
tools available from Sun’s Web site, 363
uniform treatment of elements and

attributes, 373–376
validation page, 365
Web site address for the tutorial, 369
and XML Schema, 361–424
vs. XML Schema, 362
vs. XML Schema attitudes to infoset

augmentation, 92

RELAX NG grammar
appearance of ns attribute on, 377
vs. DTD (Document Type Definition),

364
for RDDL, 390–392
using a Web application to validate,

365–368
using the command line to validate,

368–369
validating against, 365–369

RELAX NG namespace, element pattern
name attribute, 381–383

RELAXNGCC (RELAX NG Compiler
Compiler), Web site address,
363

Remote Procedure Call (RPC). See RPC
(Remote Procedure Call)

remote resource, defined, 63
Request object, code example for pro-

cessing, parsing, and
validating, 367–368

#REQUIRED attribute default, 92
Resource Directory Description

Language (RDDL). See RDDL
(Resource Directory
Description Language)

Resource module, in resource.rng,
391–392

resource value, for xlink:type for chil-
dren elements, 62

resource.rng, code example, 390–391
Result interface, implementation of in

verse picker application,
152–153

result tree fragment data type
converting, 234–235
within XSLT, 206

retrieve request, code example, 348
RFC (request for comments), 13
RMI (Remote Method Invocation), 440
root node, of tree, 2
root node type, XPath, 210
root template

code for the form, the table, and the
first two rows, 345

code for the okIdStr variable, 344–345
containing HTML tags outputted by,

246
RPC (Remote Procedure Call), 428

representation of in SOAP1.2-2, 466
using SOAP and Web services for,

462–466
Web services invocation of an array

version, 432
RPC conventions and XML encoding,

462–466

545

Index

031indx.qxp 5/10/02 2:24 PM Page 545

Ruby Annotation, release of, 108
Russian Doll pattern, defined in

Costello’s Best Practices, 411

S
SAX (Simple API for XML), 11

implementation in Java and other
languages, 127

support for, 127
support for filter writing, 144–145
treatment of XML documents by,

125–126
SAX application, objects that work closely

with each other in, 128–129
SAX callbacks, in

ActiveSAXbookpicker.asp,
190–193

SAX filters, 143–157
SAX parser configurations, 136
SAX parsing, for non-XML data, 157–169
SAX programming, basic, 126–143
SAX to DOM conversion, code example,

153
SAX2

AttributesImpl interface, 136–137
available on SourceForge, 127
interface that declares parser object

methods, 131–132
Saxon (Michael Kay), use of recursion

by, 284
SAXParser class, JAXP, 133–134
SAXParserFactory class, JAXP, 133–134
SAXSource object, creating, 153
SAXversepicker/pickverses.jsp, skeletal

form code example, 144–145
scalar data types, in XPath, 199
schema document, code example of

namespace-related markup
in, 410–411

schema element
attributes of root, 418–419
content model of, 418–419

Schema Information Set Contributions,
W3C definition XS1R 2.3, 402

schema validation, setting the parser’s
properties for, 406–407

schema-validity assessment, aspects of,
403

search actions, supported by the appli-
cation, 320–321

SELECT queries, using, 334–336
self axis, XPath, 212
semantic attributes, 64
semantic markup vs. behavioral

markup, 63–64

sequence separator, comma as in chil-
dren-only content model, 89

serialization format, XML as, 11
server stub

code example for factors() method,
444–445

code example for java.net.URL con-
structor, 443

code for default constructor, 443
for Web services, 442–445

servlet code, troubleshooting in JSP,
525–527

sessCache, function of, 326
session cache

code example for checking for user-
name, 326

instantiating, 325–326
session initialization, and application

(re)loading, 326–328
session variables, code example for ini-

tializing, 327
setAppCacheDB(), code example,

335–336
setAppCacheRootElt() function, code

example, 330–331
setNamespaceAware() method, of

SAXParserFactory, 136
setString(), using to fill in the value of

a PreparedStatement parame-
ter, 337

SGML (Standard Generalized Markup
Language)

international standard for, 13
public identifiers, 97–99
use of to define HTML, 13

SGML (Standard Generalized Markup
Language) documents vs.
XML documents, 42

SGML/HTML vs. XML/XHTML, 45–46
sibling nodes, of tree child nodes, 3
Simple API for XML . See SAX (Simple

API for XML)
Simple Object Access Protocol (SOAP) .

See SOAP (Simple Object
Access Protocol)

simple types, using Regular Expression
to define, 399–400

Single-Request-Response MEP, 458
SOAP (Simple Object Access Protocol)

as bytes, 453–456
XML-based message format used by

Web services, 426
SOAP 1.2

contents of Part 1, 457
major sections in Part 2, 457

546

Index

031indx.qxp 5/10/02 2:24 PM Page 546

overview of, 456–462
SOAP as XML

the HTML page, 448–449
SOAP client, 428–429

code example of the PortType inter-
face, 441

JSP code for, 439
SOAP client JSP, part 1, code example,

473–474
SOAP encoding, and the data model,

464–466
SOAP envelope

code example for XSchema for, 460
code example of function for build-

ing, 450
SOAP message

convention for passing a procedure
call in, 446

exchange model, 458
manufacturing directly from HTML

form data, 448–456
parts of, 458
the root element and its schema defi-

nition, 459–460
setting up TCPMon for, 475
the XML structure of, 458–462

SOAP node, 458
SOAP request, code example of within

HTTP POST request, 446
SOAP response, code example of within

HTTP POST request, 447
SOAP returned values, and an XSLT to

display them, 451–452
SOAP server, 428–429

converting a Java class to, 434
SOAP specification, 430
SOAP1.2-2, representation of RPC in, 466
SOAP1.2-2, Section 4

changes in, 464–465
values, types, and encoding, 465–466

software, online resources for, 522–523
Source interface, implementation of in

verse picker application,
152–153

SourceForge, Web site address, 127
specification map, summarizing the

current status of SOAP, WSDL,
and UDDI, 429–431

stack memory, and recursion depth, 283
standards

development of by W3C, 13
for XML text and XML tree, 12

start tag, format of, 4–5
startDocument() method, use of in

ContentHandler interface, 135

startElement() method
code example for callback to echo

input document, 151
defined by content handler,

139–140
use of in ContentHandler interface,

135–136
startElement() method and attributes,

function of, 136–137
Statement and ResultSet, 334–336
straight quotes ("), predeclared charac-

ter reference for, 49
string() conversion function, in XPath,

206
string data type, in XPath, 206
string-valued node-set functions, 221
strip-space and preserve-space ele-

ments, XSLT processing
model, 225

struct accessors (names), referenced in
SOAP1.2-2 Section 4,
465–466

Struct module, reuse of within the
Frames module, 387–388

structural node types, 210
stylesheet language, XSLT as, 20
stylesheet languages

a brief history, 30–39
and browsers, 30–39

subject keywords, 310–311
subjectOptions template, code example

of straight linear recursion of
subject keywords, 347

submission record, definition and code
example, 318

submission records, storing in a data-
base, 319–320

submissions, 310–311
submit elements, 318–319
subset use case, XHTML modular-

ization, 110
summary table, from data items to,

267–268
Sun’s JAX-RPC, as Web services infra-

structure, 428
syntactical diagram, for Hello, XML code

listing, 5
syntax, as language component, 2–3
syntax diagrams

an English-language example, 3–4
tree structures formed by, 3

system functions, in XslUtil used in code
examples, 294–295

SYSTEM identifiers vs. PUBLIC identi-
fiers, 97–99

547

Index

031indx.qxp 5/10/02 2:24 PM Page 547

T
tables

outputting into rows and columns,
264

regrouping with summation by cate-
gory, 264–265

tables of helpers, code example, 237–238
tables of helpfulness, code example, 236
TagCount with frames, 142
tail recursion vs. linear recursion, 284
TCPMon listener, function of, 445
TCPMon (TCP monitor) utility, and the

messages, 445–447
template rule, XSLT processing model,

223–233
templates, precedence rules for, 233
Tennison, Jeni, stylesheet for converting

flat to hierarchical structures,
273

testing, a parser’s compliance with the
XML specification, 47

testmt.dtd, sample lines from, 282
Text module

Block.class defined as a choice of text
containers in, 389

Block.mix defined in, 388
Block.model defined in, 388

text nodes, XPath, 210
text-only content model, 90
The World Factbook

building a hierarchy with keys, 276–278
categories in, 274
how divisions are indicated in HTML

file structure, 275–276
the HTML file structure, 275–276
published by the CIA, 273–275

Tidy HTML-to-XHTML conversion pro-
gram, using, 266

to-locators, grouping references by
using xsl:key and generate-
id(), 263

tokens and enumerations, RELAX NG,
372–373

Tomcat. See Apache Tomcat
top control page (rdbCtl.jsp), outline of

how it proceeds, 325
top-level elements, summarized for

XSLT processing model, 225
Transformer object, JAXP, 151–154
TransformerFactory instance, creating,

152
translate() function, code example, 244
transversal interfaces, 182–186
Traversal interfaces, in DOM Level 2, 171
traversal interfaces, navigation basics,

182–183

tree
conditions, needed for parsing XML,

8
defined, 2–3
diagram for Hello, XML code listing, 5

tree address, simple DOM example,
176–181

tree recursion (binary split)
based on the document tree, 297–299
longest verse by, 299
vs. linear recursion, 285–292

tree representations, of XML, 6
treeAddr.jsp

code of main page, 178–179
page directive and session variables

code, 179
TreeWalker object, as traversal interface,

182
troubleshooting, in JSP, 525–530

U
UCS (Universal Character Set), 206
UDDI (Universal Description, Discovery,

and Invocation)
code example of procedure that

reports exceptions, 484
publish, find, bind with, 479–489
used by Web services, 426

UDDI exceptions, 484–485
uiCitation.jsp, functionality of, 340–342
uiCitation.xsl, code example of the root

and top-level elements of, 344
uninterpreted languages. See formal (or

uninterpreted) languages
union expressions, formed with | (pipe)

operator, 218–219
union type, code example, 397
unique locators, using xsl:key and gen-

erate-id(), 261
units of storage, defined, 48
Universal Description, Discovery, and

Invocation (UDDI). See UDDI
(Universal Description,
Discovery, and Invocation)

upAddCite.jsp
code examples, 348–353
outline of how it proceeds, 347–348

update actions, supported by the appli-
cation, 321

UPDATE queries
overview, 340–342
using, 334–336

updates, Web site address for, 492
upstream parser, for SAX filters, 144–145
URI (Uniform Resource Identifier), types

of, 509–510

548

Index

031indx.qxp 5/10/02 2:24 PM Page 548

URL (Uniform Resource Locator),
509–510

URN (Uniform Resource Name), 509–510
U.S. presidents by quarter-century and

party affiliation, 270–272
XHTML to XML, 270
from XML to XHTML summary table,

271–272
use attribute, possible values for, 421
use cases, goal of modularization to

support, 110
user agent, defined, 510
user-interface files

for the application, 321–322
defined, 339

UTF (Unicode Transfer Format), 16
UTF-8, encoding supported by XML

parsers, 16
UTF-16, encoding supported by XML

parsers, 16

V
valid documents

defined, 82
and validating parsers, 19

validate.asp program, code example,
85–86

validateJS.js program, code example,
84–85

validaterng.jsp, how it proceeds, 366
validating parsers

defined, 82
running, 82–87
and valid documents, 19

validation and DTDs, 81–124
validation tools, for validating against

RELAX NG grammars,
365–369

validom.jsp page, code example, 86–87
value, specifying, 234
value-of instruction element, XSLT pro-

cessing model, 226
value space, 394
VariableReference expression, XPath,

207
variables, result tree fragments, and

node sets, for implementing
make-row, 241

VB Book Picker, running the application,
187–188

VBScript extension function
calling by the root template, 301
code example of it defined in

msxml:script, 301
with MSXML 3 for locating longest

verse, 300–301

vdb, defined, 309–310
vector of DOM trees, as XML repository,

309–310
verse picker application, 145–151

character() callback for, 146
code for creating a filter object and

parsing, 150
code for initializing parameters and

processing request, 150
code for root element attribute that

show match string, 145–146
outline form for how it proceeds,

146–151
URL that outputs verses containing

Bethlehem, 145
VersePicker class

code for creating a filter object and
parsing, 154

converting to text with markup using
Transformer, 153–154

defining, 148–149
VersePicker inputs, code example, 147
$verses parameter, using to hold a list of

nodes visited, 250

W
W3C (World Wide Web Consortium)

development of standards by, 13
procedures and recommendations,

13–15
XML recommendations issued by, 1
XML standards and, 11–15

W3C recommendations, XML Schema
Part 1 and 2 designations for,
401

W3C technical reports, online resources,
517–518

WAPForum, Web site address, 98
WDs (working drafts), by W3C, 13–14
Web application

ASPs, 503–505
CGI framework, 502–503
code example for timing a stylesheet,

257–258
general framework, 501–502
improvements to backend pro-

cessing, 503
prerequisites and setups for hands-

on work, 21–22
using to validate RELAX NG gram-

mars, 365–368
Web application (external) functions

vs. extension functions,
296–297

Web application validator, error mes-
sage from, 84

549

Index

031indx.qxp 5/10/02 2:24 PM Page 549

Web services (WSs), 425–490
areas of application, 427–428
components of a service, 428–429
components of with there places of

residence, 433
creating a string version of an RPC,

432–447
diagram of components of, 429
diagram that summarizes the vision,

426–427
example of implementing a proce-

dure call, 431–447
features in, 426
important infrastructures, 428
the Java Class for, 433–434
online resources for, 521–522
and the programmer, 428
the SOAP client, 440–442
what they are, 425–431

Web Services Deployment Descriptor
language (WSDD), tool for
manual deployment of Web
services, 470–472

Web Services Description Language
(WSDL). See WSDL (Web
Services Description
Language)

Web services examples, installation
guide, 499–500

Web Services Inspection Language
(WSIL), from IBM and
Microsoft, 431

Web Services Interoperability
Organization (WSIO), Web
site address, 431

Web site address
for articles about Web services, 428
Axis User Guide, 471
for complete list of XHTML modules,

111
for current version of RELAX NG

implementation of XHTML
modularization, 384

for diagram of built-in data types, 393
for discussion on xml-dev list, 403
for downloading IBM’s Web Services

Tool Kit (WSTK), 431
for the encodingStyle URI for encod-

ing SOAP 1.2 Part 2, 430
for handlers that can be registered

with the parser, 130
for IBM’s Web Services ToolKit

(WSTK), 480
for in-depth treatment of language

identifiers in XML, 60

for information about pull model vs.
SAX, 127

for James Clark’s RELAX NG materi-
als, 363

for James Clark’s separate frames
DTD discussion, 109

for Java-XML tutorial, 150
for Jing data types Web page, 393
for Jon Bosak’s Four Religious Works

package, 65
for latest version of Xerces, 400
for list of HTML and XHTML differ-

ences, 46
Microsoft SOAP Toolkit, 496
for OASIS, 9
for OASIS technical committee, 363
for RDDL information, 76
for RDF Model and Syntax, 312
for RELAX NG tutorial, 369
for RELAXNGCC (RELAX NG

Compiler Compiler), 363
for Robin Cover’s XML language iden-

tifiers page, 60
for Roger Costello’s Schematron

information, 418
for SourceForge, 127
for specification on using dcmes ele-

ments within RDF
descriptions, 313

for Sun’s Developer Connection site,
363

for Sun’s JAX-RPC Web services infra-
structure, 428

for Tidy program for fixing HTML
documents, 47

for top-level readme.htm file in book
code archive, 492

for various XML Namespaces
resources, 75

for W3C recommendations and tech-
nical reports, 1

for WAPForum, 98
for Web Services Inspection

Language (WSIL), 431
for Web Services Interoperability

Organization (WSIO), 431
for working draft of DOM Level 3

module, 173
for the The World Factbook, 274
XML Base recommendation, 132
XML Schema Best Practices (Roger

Costello), 401
for XML Schema built-in data types

and fundamental facets val-
ues, 395

550

Index

031indx.qxp 5/10/02 2:24 PM Page 550

XML Schema Tutorial (Roger
Costello), 401

for XML test suite, 47
for XPointer definition, 66
for XSchema for Envelope, Header,

and Body elements, 459
WebSphere, as Web services infrastruc-

ture, 428
well-formed documents

and namespaces, 41–79
and parser attitudes, 8–9

well-formedness conditions, and parser
attitudes, 8–9

While loop, common pattern of working
with a traverser, 183

whitespace facet, possible values for, 395
whitespace-only nodes

code example for removing, 186
eliminating with a tree-walker tra-

versal, 185–186
wildcards for extensibility, in XS1, 423
wireless devices, and XHTML Basic, 109
WML DTD, code example from, 98–99
WML1.2 DTD, declaring synonyms for

CDATA, 100–101
working drafts (WDs), by W3C, 13–14
writeRefs() method, refset, 353
WSDD language. See Web Services

Deployment Descriptor lan-
guage (WSDD)

WSDL (Web Services Description
Language)

access points and interfaces
described in, 426

code example for generating descrip-
tions, 435–437

to Java, 437–439
main structural points, 436–437

WSDL specification, as note published
by W3C, 430–431

Wsdl2java program, batch file to invoke,
437

X
Xalan. See also Apache Xalan

JavaScript extension element with,
302–303

results from running binary-split and
linear-recursion algorithms,
288–292

xdb, defined, 310
Xerces. See also Apache Xerces

turning off automatic schema vali-
dation in, 406

Web site address for latest version, 400

XHTML
evolution of, 109
reason to use instead of HTML, 47–48

XHTML 1.1-Module-Based XHTML,
release of, 108

XHTML Basic
release of, 108
and wireless devices, 109
and XHTML modularization, 107–119

XHTML Basic DTD, 114–119
driver file, 114–117

xhtml-basic10.dtd driver file
first part of in XHTML Basic DTD,

115
second part of in XHTML Basic DTD,

116–117
XHTML document

code example of, 44
program for converting an HTML

document to, 47
XHTML driver file, for the union of tran-

sitional and frames DTDs,
385–386

XHTML DTD, coreattrs PE used in attri-
bute declarations, 100

XHTML modularization
the frames problem, 386–387
RELAX NG implementation of,

384–392
and XHTML Basic, 107–119

XHTML modules, Web site address for
complete list of, 111

XHTML specifications, release of with
DTD implementations, 108

XHTML table structure, converting from
XHTML to XML, 266–268

xhtml.rng, showing nothing but include
patterns, 385–386

XLink (XML Linking Language), purpose
of, 60

XLink
Bible commentary example, 65–69
code example, 65–69
extended link code example, 65–67

XLink application
code example for constructing

XPointers in, 245–246
code example for outputting arcs in,

243
code example for outputting locator

element in, 244–245
code example for outputting locators,

244–245
code example for start tag and root

template, 243

551

Index

031indx.qxp 5/10/02 2:24 PM Page 551

XLink application (continued)
code example with extended links,

67–69
the code of, 242–252
creating and using a linkbase,

196–198
XLink attributes

summary table of, 64
used to describe links within XML

data, 59
and XLink graphs, 60–64

XLink graphs
specifying for extended link element,

62–64
and XLink attributes, 60–64

XLink module, in xlink.rng, 391–392
XLink simple link element

vs. an HTML hyperlink, 61–62
similarities to an HTML hyperlink, 62

xlink:actuate, use of in behavioral
markup, 62–64

xlink:arcrole attribute
use of, 64
Web site address for use guidelines,

78
xlink:href attribute, required for locator

elements, 63
xlink:label attribute, needed for locator

and resource elements, 63
xlink:role attribute

use of, 64
Web site address for use guidelines,

78
Xlinks, XSLT stylesheet to process, 72–73
xlink:show, use of in behavioral markup,

62–64
xlink:title attribute, use of, 64
xlink:type attribute

possible values of for children ele-
ments, 62

values, 60
XML (eXtensible Markup Language). See

XML
XML

approaches to displaying in
a browser, 35

code examples, 15–20
components, 2
converting fixed-width records to,

163–169
with CSS in a browser, 32
defined, 2
displaying on the client, 35–39
document-oriented vs. data-ori-

ented, 19–20

the essence and alternative views of,
12

vs. HTML, 45
introduction to, 1–39
as just syntax with no interpretation,

10
key to success of, 36–37
parsing, 7–8, 125–193
procedure for constructing a syntac-

tical tree, 8
processing pipeline, 37
vs. programming languages, 9–11
as a serialization format, 11
sources and results, 152–153
structure of a SOAP message, 458–462
tree representations of, 6
uses for, 1
why it is so great, 9

XML 1.0
EBNF rules/productions, 50–51
XML foundations set down in, 1

XML 1.0 perspective vs. the XML name-
spaces perspective, 54

XML and databases, online resources
for, 521

XML attribute types, supported by Jing
processor, 393

XML attributes
and a DTD, 17–19
XML documents with, 17–18

XML Base recommendation, Web site
address, 132

XML catalogs, OASIS technical commit-
tee work on, 99

XML code examples, without a DTD,
15–17

XML data
code example for converting

hashtable data to, 158–159
diagram of mutual relationship with

parser and application, 11
the structure of, 310–319

XML database
common ways to implement, 309
as XML repository, 309–310

xml-dev list, Web site address for dis-
cussion on, 403

XML documents
with attributes, 17–18
code example of one without a DTD,

52
comments and processing instruc-

tions, 16
declaration and encoding, 15–16
with a DTD, 18

Index

552

031indx.qxp 5/10/02 2:24 PM Page 552

elements of Hello, XML, 4–5
encoding and RPC conventions,

462–466
entering CDATA sections into, 49
everything contained in, 120–121
with external DTDs, 18
framework for XSLT programs, 29–30
kinds of material contained in those

without a DTD, 49–50
and markup languages, 4–5
online resources for information,

519–520
purpose of parsing, 125
vs. SGML documents, 42
tags needed for empty elements, 7
valid, 19
without a DTD, 48–52

XML languages
grammar rules of, 6–7
for representation of metadata, 310

XML languages and documents, 2–6
XML Link (XLink), specifying the source

and target of, 12
XML name types, supported by Jing

processor, 393
XML Namespaces (James Clark), 75
XML Namespaces

a brief list of confusions and contro-
versies, 75–76

controversies and RDDL, 74–79
procedure used to establish a name-

space, 53–54
resources list for information about,

75
treatment of attributes and elements

by, 59–60
XML foundations set down in, 1

XML Namespaces by Example (Tim
Bray), 75

XML notation, for RDF descriptions, 312
XML parsers, 2

error handling by, 47
mediation between XML data and

applications by, 10–11
two most common encodings sup-

ported by, 16
XML Pointer specification (XPointer),

using XPath within, 12
xml: prefix, attributes with, 59, 59–60
XML processor, 2
XML Reader, code example for obtain-

ing, 366
XML reader and error handler, code

example for XML Schema,
407–408

XML repository, 309–359
XML Schema, 74

annotations and extending schemas,
418

author choices and best practices,
415

code example of simple type defi-
nitions, 395–396

contents of, 417–418
element element content models,

411–413
features of, 361–362
framework for validation, 406–409
group, attributeGroup, modelGroup,

420
import element, 419
include element, 419
mapping the namespace and target

namespace to a prefix,
412–413

mechanism for creating user-defined
derived types, 393–400

named types variation, 411–413
overview, 417–424
redefine element, 419
and RELAX NG, 361–424
vs. RELAX NG, 362
vs. RELAX NG attitudes to infoset

augmentation, 92
simple data type categories, 397–398
simple variations and best practices,

411–417
validation page, 406–407

XML Schema data types
and datatypeLibrary, 392–400
supported by the Jing processor, 393

XML Schema Part 1 (XS1)
code example of parsing and schema

validation, 408–409
a simple schema and a validation

framework, 404–409
structures, 401–424
validation, assessment, and PSVI,

402–404
W3C definition XS1R 2.1, 403
wildcards for extensibility, 423

XML Schema Part 2 (XS2)
built-in types, 392–393
user-defined types, 394–400

XML schema validation page, input ele-
ments, 407

XML specifications
selected list of, 14
test suite for testing a parser’s com-

pliance with, 47

553

Index

031indx.qxp 5/10/02 2:24 PM Page 553

XML standards, and W3C, 11–15
XML syntax, 370–371
xml4css.xml, code example, 31–32
xml:base attribute

defined in XML Base recommen-
dation, 132

purpose and use of, 60
XML+CSS, 35
XMLFilter, Java SAX interface that

extends XMLReader, 144–145
XMLFilterImpl class, extending,

144–145
xml:lang attribute, using, 59
XMLReader, defined, 131
XMLReader interface, code example for

minimal implementation of,
160

XMLReader methods, other than
parse(), 159–161

XML+XSLT, on the client, and more on
processing pipelines, 35–37

XML+XSLT=>HTML, on the server, 38
XML+XSLT=>XSL-FO, on the server,

38–39
XPath

attributes in, 25
Boolean operators, 208
document() function, 69–70
expressions other than path

expressions, 207–208
language and data model, 198–208
mod operator, 263
namespaces in, 56–57
node types and node properties, 210
primary expressions, 207
three things you will learn while

learning, 198
type conversions, 206

XPath and XSLT, code example of name-
space handling in, 57

XPath axes, 212–214
XPath data model, and the node-set

data type, 208–214
XPath data types

and the context of evaluation,
199–201

and values, 206–208
XPath examples, 200–201
XPath expressions, 25

with explanations, 200–201
vs. XPointer expressions, 67
and XSLT programs, 20–30

XPath filtering, in an Apache-specific
way, 357–358

XPath language, and data model,
198–208

XPath node-set, axes and content node
position, 214

XPath operators, 208
XPath specification, tree diagram con-

ventions from, 5
XPath tester, entry form for, 201–202
XPath tree

axes of, 211–214
generating a range of numbers as

nodes in, 285
for an XML document with attributes

and namespaces, 209
XPath Tree Model, for a document with

a comment and a PI, 16–17
XPath values and data types, 206–208
XPath within XSLT

(pdataNameTable.xsl), code
example, 199–200

XPath, XSLT, and XLink processing,
195–253

XPointer expressions
definition of, 66–67
vs. XPath expressions, 67

XPointers
constructing in XLink application,

245–246
extracting from dreams.xml and

encoding, 71
xptrans.jsp

coding in ASP, 204–205
evaluating XPath expressions with,

201–205
how the JSP (Java) code proceeds,

202–203
reader parameters expected by, 202

XQuery 1.0: An XML Query Language,
being developed by W3C, 310

xs/xsEx1.xml, code example, 401–402
XS1. See XML Schema 1
XS1R, 401

Section 2.3 definition of additions to
document infoset, 402

Section 2.4 definitions of levels of
conformance, 402

XS2. See XML Schema 2
XS2R, 401
xsEx1nns.xsd, code example of our first

XS1 schema, 404
XSL-FO, 34
XSL language, 33
xsl:apply-imports, for applying an

imported template rule, 233
xsl:apply-templates element

as main structure of ref2link.xsl,
242–243

recursion via, 298

554

Index

031indx.qxp 5/10/02 2:24 PM Page 554

xsl:apply-templates instruction
evaluating, 226–227
sorting element for, 229–230

xsl:attribute, using to construct an out-
put attribute, 29

xsl:for-each
sorting element for, 229–230
using, 27
using for filtering and mapping in list

processing, 281
xsl:for-each instructions, evaluating,

226–227
xsl:import, bringing in material from

another stylesheet with, 233
xsl:include, bringing in material from

another stylesheet with, 233
xsl:key element

and the key() function, 259–260
required attributes, 259

xsl:param, associating a name with
a value with, 234

xsl:sort child element, using with xsl:for-
each and xsl:apply-templates,
229–230

XSLT (eXtensible Stylesheet Language
for Transformations). See
XSLT

XSLT, 6, 33–34
algorithms and efficiency, 255–307
for citation input form, 342–347
code example for stylesheet with

a JavaScript callback, 258–259
code example of list of tokens recur-

sive pattern, 240
to display SOAP returned values, 452
distinct nodes and keys, 259–263
Internet Explorer and MSXML sup-

port for, 38
list processing in, 280–284
namespaces in, 56–57
push and pull contrasted in, 231
setups for running XSLT programs,

21–22
specific patterns and timing, 256–259
table showing time and space for

range generation in, 289
using extension functions within,

293–297

using to generate large data sets,
284–292

XSLT and XPath, code example of name-
space handling in, 57

XSLT parameters, variables, and result
tree fragments, 234–235

XSLT processing model, 223–233
instruction elements summarized,

225–226
top-level elements summarized, 225

XSLT processor, URL for invoking, 22
XSLT Programmer’s Reference (Michael

Kay), 195
XSLT programs

ASP code to run, 23–24
browser support for, 37–39
code example for producing an

HTML page, 25–30
code for outer shell of, 30
with conditional expressions, 28
for Hello, XML world! listing, 23
helloXSL/helloSelect.xsl, 26
improving efficiency of, 256–259
JSP code to run, 24
running, 22–25
as stylesheets, 20
timing a Web application, 257–259
and XPath expressions, 20–30

XSLT stylesheet
invoking external code written in

other languages in, 296–297
to process XLinks, 72–73

XSLT variable, creating, 29
XSLT/XPath extension functions, 71–73
xsl:template, priority attribute, 233
XslUtil

code example of system functions in,
292

system functions used in code exam-
ples, 294–295

xsl:variable
associating a name with a value with,

234
using, 26–27

Y
YACC (Yet Another Compiler Compiler),

363–364

555

Index

031indx.qxp 5/10/02 2:24 PM Page 555

031indx.qxp 5/10/02 2:24 PM Page 556

	Table of Content--XML Programming: Web Applications and Web Services with JSP and ASP
	Chapter 1--Welcome to XML
	Chapter 2--Well-Formed Documents and Namespaces
	Chapter 3--DTDs and Validation
	Chapter 4--XML Parsing
	Chapter 5--XPath, XSLT, and XLink Processing
	Chapter 6--More XSLT: Algorithms and Efficiency
	Chapter 7--XML Repository
	Chapter 8--RELAX NG and XML Schema
	Chapter 9--Web Services
	Appendix A
	Appendix B--Web Applications
	Appendix C--HTTP Protocol
	Appendix D--Online Resources
	Appendix E
	Index

