
Independent Front-end and Back-end Dynamic Voltage
Scaling for a GALS Microarchitecture

Grigorios Magklis, Pedro Chaparro, José González, Antonio González
Intel Barcelona Research Center, Intel Labs – UPC

{grigorios.magklis, pedro.chaparro.monferrer, pepe.gonzalez, antonio.gonzalez}@intel.com

ABSTRACT
In recent years, Globally Asynchronous Locally Synchronous
(GALS) designs and dynamic voltage scaling (DVS) have
emerged as some of the most popular approaches to address the
ever increasing microprocessor energy consumption. In this work,
we propose two on-line algorithms for adjusting dynamically, and
independently, the voltage and frequency of the front-end and
back-end domains of a novel two-domain microprocessor. We
evaluate our mechanisms for both internal and external voltage
regulators, and we present optimal dynamic voltage scaling results
for the proposed microarchitecture. Our schemes achieve average
improvement of 12% of the energy-delay2 metric, when using
internal voltage regulators.

Categories and Subject Descriptors
C.1.0 [Processor Architectures]: General

General Terms
Algorithms, Design.

Keywords
DVS, GALS, MCD, energy efficiency, microarchitecture

1. INTRODUCTION
Microprocessor power consumption has increased significantly in
recent years, so much so that energy efficiency (or power effi-
ciency) has become one of the main targets of microprocessor
architects. Energy efficiency can be addressed statically by chang-
ing the microarchitecture design, or dynamically by employing
run-time mechanisms to adapt the hardware to applications. One
static technique is employing a Globally Asynchronous Locally
Synchronous design [4]. GALS achieves better energy efficiency
by reducing the complexity and power dissipation of the clock
distribution, which constitutes a large part of the total processor
power [10][11]. One of the most successful run-time techniques
for improving energy efficiency is dynamic voltage and frequency
scaling (DVS for short) [1]. GALS systems have the unique abil-
ity to operate each domain at different frequency and voltage,
which allows applying DVS independently to different parts of the
processor. It has been shown that per-domain adaptation is sig-
nificantly more energy efficient compared to global adapta-
tion [20].

In this work, we study the effect of fine-grain DVS on a clustered
GALS microprocessor. Our microarchitecture utilizes clustering
on both the front-end and back-end of the microprocessor, result-
ing in a very efficient baseline [3]. We propose to further increase
the efficiency of the system by separating the core into two clock
domains (front-end and back-end) and by allowing independent
DVS for each domain. Our work is the first to propose a front-
end/back-end split of the microprocessor and to propose DVS
control for all domains of a GALS microprocessor. Moreover, we
perform a more complete study than previous works, by including
the energy costs of internal voltage regulators, and leakage energy
in our results. Third, we use a significantly different microarchi-
tecture than previous MCD-like studies.

We have evaluated a previous state-of-the-art work based on
queue utilization [20] for our microarchitecture and it achieves
near zero energy-delay2 improvement. The reason is the difference
in the microarchitectures studied. Queue utilization is not a suffi-
ciently good indicator of performance for our microarchitecture.
Firstly, because our pipeline is much wider and has a far greater
degree of out-of-order execution compared to previous proposals.
Secondly, we have more queues in the microarchitecture than
MCD-like proposals (due to synchronization FIFOs and cluster-
ing), which requires a significantly more complex mapping of
queue utilization to performance.

2. GALS MICROARCHITECTURE
Figure 1 shows our GALS microarchitecture. The processor con-
sists of three clock domains, shaded grey: front-end (FE), back-
end (BE) and memory (MEM). We consider the memory domain
external to the core of the microprocessor (but still on-chip). The
processor follows a clustered design.

The FE contains a branch predictor, a trace cache, and an IA32
decoder, the ROB, the dispatch and the commit logic. The FE is
divided into two clusters [3]. Instruction fetch, decode and steer-
ing is centralized. After the steering logic decides the destination
BE cluster [8], it directs the instruction to the corresponding FE
cluster. Each FE cluster has its own rename table and ROB, which
are simpler and smaller than in a monolithic design. Renaming
and allocation proceeds independently and in parallel. The commit
logic must maintain order between the two ROBs, which increases
its latency, but it is not on the critical path of the execution [3].

The BE is also divided into two clusters. Each cluster consists of
an integer and a floating-point out-of-order execution engines.
The load-store queue and the first-level data cache are centralized,
and shared among the clusters. Addresses are calculated at the
execution clusters and then are passed to the LSQ for resolution
and issuing to the cache. Special copy instructions explicitly
communicate register values between the clusters using point-to-
point links [14].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’06, October 4–6, 2006, Tegernsee, Germany.
Copyright 2006 ACM 1-59593-462-6/06/0010…$5.00.

Each domain has its own local clock network that distributes a
reference clock signal to the domain. We assume that the skew
between the domain reference clocks can be arbitrary. This allows
to run each domain at a different frequency, and to apply DVS to
each domain independently of the others but inter-domain com-
munication must be synchronized correctly to avoid meta-stability
We assume synchronizing FIFOs for inter-domain communica-
tion, similar to previous studies [5][16][17]. We chose this domain
separation so as to minimize the performance loss due to synchro-
nization delays. We keep the schedule–execute–bypass loop in-
side a domain so we can perform back to back scheduling of de-
pendent instructions. Moreover, we do not put each cluster in a
different domain because that would not allow back-to-back exe-
cution of copy- and load-dependent instructions.

3. DYNAMIC VOLTAGE SCALING
Domains can execute through voltage changes, similar to previous
studies [11][12][16][20]. Each domain includes an on-chip digital
clock multiplier connected to a single, shared, external
PLL [6][13]. This limits our DVS choices (Table 1), but allows
frequency changes without stopping the domain. Each domain
includes an internal voltage regulator [9]. This allows for ex-
tremely fast voltage switching (in just a few nsec). Hazucha et al.
report 94% efficiency (output power divided by input power) for
their design. We are more conservative and assume only 90%
efficiency. Our power model accounts for power losses due to the
regulator inefficiency (independently for each regulator).

The goal of our proposed mechanisms is to improve energy effi-
ciency of the baseline microarchitecture by adapting the voltage

and frequency of the front-end and the back-end domains of the
processor. There are several metrics for energy efficiency. In this
study, we adopt the energy-delay2 (ED2) metric proposed by
Brooks et al. [1]. Thus, we need a mechanism—at the microarchi-
tecture level—to estimate ED2. The ED2 metric, for an interval, is
calculated as (Edynamic+Estatic)·N 2, where N is the value of the cycle
counter for the interval and Edynamic and Estatic are the dynamic and
static energy consumption for this interval.

We propose to use the mechanism devised in [7] to measure dy-
namic energy. The microprocessor uses performance counters to
measure the activity on the various units. The total activity, during
a time interval, is multiplied by the energy-per-access register
associated with the unit (fixed at design time), to calculate the
total energy of the unit. In this work, we estimate the static energy
of a circuit, using the formula by Zhang et al. [21]; we assume
that there exists a mechanism to estimate static energy consump-
tion at run-time.

For a specific execution interval, if we plot the ED2 metric over all
voltage and frequency (V-F) settings, we will observe a roughly
U-shaped graph. The lowest point in the graph is the optimal ED2
for this execution interval. All points to the left of the optimal
(i.e., those with lower V-F) have higher ED2 because the applica-
tion loses too much performance compared to the energy reduc-
tion achieved. Correspondingly, to the right of the optimal, ED2 is
higher because the application consumes too much energy for the
performance benefit realized.

3.1. Best-Neighbor Adaptation
For best-neighbor adaptation, the controller operates in two dis-
tinct phases: sample and hold. In the sample phase, the system
calculates the ED2 for the different V-F settings in the neighbor-
hood of the current V-F level by trying each configuration for an
interval. At the end of the sample phase, the controller decides the
V-F setting with the minimum ED2. This setting is then applied
and the controller moves to the hold phase. In this phase, the con-
troller maintains the chosen V-F setting for several intervals.

Figure 2 shows the state machine of the domain controller, for the
sample phase. The controller starts at state S, with voltage VS.
After one interval, it moves to state H, to sample the ED2 at a
higher V-F setting (if not already running at maximum V-F). Next
interval, it moves to state L, to sample ED2 at a lower V-F setting.
In the figure, MS, ML, and MH denote the ED2 of the corresponding
states. Then, the controller chooses the best V-F setting of the

Table 1. Voltage-frequency levels.
 Level mV GHz Level mV GHz
 0 700 3400 7 875 5000
 1 725 3700 8 900 5200
 2 750 3900 9 925 5400
 3 775 4200 10 950 5600
 4 800 4400 11 975 5800
 5 825 4600 12 1000 6000
 6 850 4800

Figure 1. Clustered GALS microarchitecture.

Figure 2. Best-neighbor state machine and meta-control.

three for the hold phase. States ES, EL and EH correspond to the
terminal states of the controller. Upon entering one of the E states,
the controller sets the V-F to the appropriate values, resets to the S
state, and waits until the hold phase ends.

Imagine the situation where we are trying to make a decision on
the front-end V-F setting. If during the sample phase, we do not
hold the back-end V-F constant then we do not know if the benefit
in ED2 that we see during an interval is because of the front-end or
the back-end V-F changes. To avoid this situation there is a meta-
controller to force the domain controllers to operate in an inter-
leaved fashion. The meta-controller ensures that when one of the
domains is in the sample phase the other one will be in the hold
phase and vice versa. Figure 2 shows the meta-controller opera-
tion graphically. The parameter N defines how many intervals
should pass between the sample phases of the two domains.

3.2. Greedy-Search Adaptation
The goal of greedy-search is to approximate the optimal ED2 by
following an imaginary U-shaped curve. Figure 3 shows the state
machine of the domain controller. The controller starts at state S
and after one interval it moves to either state A or C, depending on
the starting V-F (the V-F changes accordingly). After this point,
the controller uses the history of the last two intervals t and t-1 to
make decisions for the upcoming interval t+1 (Mt and Mt-1 denote
the ED2 of the corresponding intervals). If the ED2 was reduced,
then the last V-F change was correct and we continue changing in
the same direction. Otherwise, if the ED2 increased, then we re-
verse direction.

The assumption is that if the last V-F change was beneficial then
we are in the right direction to reach the valley of the ED2 U-
curve. If the last change was not beneficial then we are going in
the wrong direction (either we started wrong or we reached the
bottom of the U-curve and started climbing the other way) and we
should change. Ideally, this mechanism will force the system to
stay close to the lowest point of the U-curve.

There is also a meta-controller to interleave the two domain con-
trollers. The meta-controller periodically (every N intervals) dis-
ables the currently active controller and enables the other one
(Figure 3). When a controller is de-activated, the voltage and fre-

quency for the corresponding domain remain at the last setting
chosen until the controller is re-activated. Every time a controller
is re-activated, it starts from the S state.

4. PERFORMANCE RESULTS
We use a cycle accurate simulator that executes traces of IA32
binaries, including OS code. The simulator also includes a power
estimation module, based on an enhanced version of CACTI [18],
utilizing activity counters (similar to Wattch [2]) and a leakage
module utilizing the formula by Zhang et al. [21]. The assumed
technology is 45nm. We initialize domain clocks at random values
at the beginning of simulation time to account for clock skew.
Table 2 shows the main microarchitectural parameters of the
processor. For our experiments, we use the twenty-six applica-
tions of the SPEC CPU2000 benchmark suite, compiled with the
latest Intel® compiler with full optimizations, and run with the
reference input set. We simulate 200M IA32 instructions from the
middle of the application.

We also employ off-line simulation to calculate the optimal V-F
scheduling for a given execution. For the off-line analysis and all
simulations that compare with the off-line, we simulate only 20M
instructions, due to simulation time constraints. First, we simulate
an application for all combinations of FE and BE V-F settings,
and we collect statistics at fixed instruction intervals. Then we
construct a timeline, i.e., a sequence of intervals, for each applica-
tion. To emulate a control mechanism C, we choose a V-F combi-
nation A, according to the control policy of C, for an interval of
execution. We then add the statistics of A for this interval to the

Figure 3. Greedy-search state machine and meta-control.

Table 2. Microarchitectural parameters.
Front-end

Fetch 24K inst. trace cache, 6 inst./cycle, 5 cycle
fetch-to-dispatch

Decode, rename
and steer

3+3 inst./cycle, 1 cycle latency, plus 1 cycle
wire delay to synch, FIFOs

ROB 256+256 entries, commit 3+3 inst./cycle
Back-end (configuration shown per cluster)

Synch. FIFOs 1 FIFO per issue queue, 24 entries each

Issue queues 48-entry INT, 2 inst./cycle and 48-entry FP, 2
inst./cycle and 24-entry COPY, 1 inst./cycle

Register file 256-entry INT, 256-entry FP
Inter-cluster 1 cycle latency, 1 copy/cycle

L1 data 32KB, 4-way, 3 cycle hit, 2 read ports, 1 write
port, 256-entry LSQ

Memory

L2 unified 2MB, 16-way, 13 cycle hit, ≥ 500 cycle miss, 1
read port, 1 write port

-1%

0%

1%

2%

3%

4%

5%

bz
ip

2
cr

af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er
pe

rlb
m

k
tw

ol
f

vo
rte

x
vp

r
am

m
p

ap
pl

u
ap

si ar
t

eq
ua

ke
fa

ce
re

c
fm

a3
d

lu
ca

s
m

es
a

m
gr

id
si

xt
ra

ck
sw

im
w

up
w

is
e

ga
lg

el
IN

T FP
M

E
AN

Figure 4. GALS performance loss due to inter-domain syn-
chronization.

off-line total statistics, and repeat this process for the next inter-
val. We stop when we reach the end of the timeline. The average
error of an off-line vs. a dynamic run is about 0.45%.

4.1. GALS Performance
In this section, we evaluate the performance loss due to inter-
domain synchronization whereas in following sections we evalu-
ate the proposed DVS schemes. Figure 4 shows the slowdown of
our GALS microprocessor running at maximum frequency, com-
pared to an identical, fully synchronous one. All of the perform-
ance loss shown in this figure is due to inter-domain synchroniza-
tion penalties. The worst-case slowdown is 4.7% for gzip with an
average of less than 2% over all benchmarks.

There are two sources of performance loss in the microprocessor:
the branch misprediction loop and the cache miss loop. Branch
misprediction involves two synchronizations: (a) from the FE to
the BE, when we decode a branch and before the branch is re-
solved, and (b) from the BE to the FE, to communicate the mis-
prediction after the branch is resolved. L1 misses also involve two
synchronizations: (a) from the BE to the L2, to notify for the miss
and request the data, and (b) from the L2 to the BE, when the
request is serviced. Integer benchmarks exhibit higher slowdown
on average compared to floating-point ones (2.6% vs. 0.8%),
mainly due to higher branch misprediction rate.

4.2. Fine-grain DVS
Figure 5 shows the performance loss, power reduction and ED2
improvement of best-neighbor. The comparison is performed
against the clustered GALS processor running all domains at the

highest V-F. The interval is 10K instructions and N=1. This trans-
lates to 50K instructions for the hold phase on average. Figure 6
shows the same results for greedy-search. The interval length is
similarly set, and the meta-controller interleaves the domains
every 90K instructions (N=9). For both mechanisms, N was cho-
sen after an extensive search process, utilizing the off-line simula-
tor. For many values of N close to the ones chosen, the results do
not vary significantly.

Summarizing the two figures, the average ED2 improvement of
best-neighbor is about 11.5% while greedy-search achieves
roughly 7.5%. The average slowdown of greedy-search is lower
than best-neighbor, mainly due to its ability to perform large fre-
quency changes faster: best-neighbor performs only a single-step
change per turn, while greedy-search is allowed up to nine
changes (N=9). This is beneficial when the application suffers
abrupt changes in demand. Greedy-search reacts faster and
reaches the new stable state earlier. Best-neighbor has the benefit
of being more stable. If the domain is already running at the best
V-F then the sample phase will choose not to change; greedy-
search will constantly move around the best setting.

4.3. Optimal Fine-grain DVS
In order to evaluate the effectiveness of our schemes we calculate
the best ED2 for each application, utilizing off-line simulation.
Due to space restrictions, we show results only for best-neighbor.
Since the hold phase is roughly 50K instructions, we use this
number as the interval length for all off-line mechanisms. We
compare our schemes against three different upper bounds.

-20%

-10%

0%

10%

20%

30%

40%

50%

60%
bz

ip
2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf
pa

rs
er

pe
rlb

m
k

tw
ol

f
vo

rte
x

vp
r

am
m

p
ap

pl
u

ap
si ar
t

eq
ua

ke
fa

ce
re

c
fm

a3
d

lu
ca

s
m

es
a

m
gr

id
si

xt
ra

ck
sw

im
w

up
w

is
e

ga
lg

el
M

EA
N

Slowdown Power ED2P

Figure 5. Best-neighbor slowdown, power reduction, and ED2

improvement.

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

bz
ip

2
cr

af
ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er
pe

rlb
m

k
tw

ol
f

vo
rte

x
vp

r
am

m
p

ap
pl

u
ap

si ar
t

eq
ua

ke
fa

ce
re

c
fm

a3
d

lu
ca

s
m

es
a

m
gr

id
si

xt
ra

ck
sw

im
w

up
w

is
e

ga
lg

el
M

EA
N

Slowdown Power ED2P

Figure 6. Greedy-search slowdown, power reduction, and ED2

improvement.

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

bz
ip

2

cr
af

ty

eo
n

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rlb

m
k

tw
ol

f

vo
rte

x

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lg

el

lu
ca

s

m
es

a

m
gr

id

si
xt

ra
ck

sw
im

w
up

w
is

e

M
EA

N

Online Step-1i Step-1 Optimal

Figure 7. ED2 improvement of best-neighbor (Online) compared to various off-line mechanisms.

The first scheme is called Optimal. At each interval, it searches all
combinations of V-F for the two domains and chooses the best
one. This is the best we can do with any kind of dynamic mecha-
nism. Our DVS mechanisms are restricted to single-step V-F
changes. The second upper bound scheme, called Step-1, is used
to discover if this restriction has an inherent inefficiency. At each
interval, the V-F of each domain is changed by one level, towards
the direction of the optimal V-F. Our third off-line mechanism,
called Step-1i, accounts for the meta-controller by interleaving the
two domains. This mechanism also accounts for single-step V-F
changes, similarly to Step-1. This represents a tighter upper bound
for our DVS mechanisms.

Figure 7 shows the ED2 achieved with the four schemes. The re-
sults for best-neighbor, labeled Online, are not exactly the same as
those in Figure 5 but very similar, because now we simulate only
20M instructions, while in Section 4.2 we simulated 200M in-
structions. Online achieves an average ED2 improvement of 12%
over all benchmarks, while Step-1i, Step-1 and Optimal achieve
17.2%, 17.8% and 19.4% respectively. This means that we
achieve about 70% of the efficiency of Step-1i, which is the best
we could do given the two restrictions of our mechanisms: single-
step V-F changes and domain interleaving.

Comparing Step-1i and Step-1, we can see that interleaving has
minimal impact on the efficiency of the mechanisms (Step-1i
achieves 97% of Step-1). This means that we can develop simpler
control systems without loosing efficiency, which is exactly what
we propose: simple per-domain control that ignores interactions
and side effects from the rest of the domains, and simple meta-
control to co-ordinate the domain controllers. Comparing Step-1
and Optimal, we can see that single-step V-F changes have bigger
impact than interleaving (Step-1 achieves 92% of Optimal) due to
the slow change rate in the face of sharp changes in program be-
havior. When the control interval is short, as in this case, the time
it takes to stabilize to the new V-F is short. When the interval is
long, the stabilization delay may incur significant inefficiency.

Figure 8 shows the sensitivity to the interval size. As expected,
power efficiency gains are smaller when moving to longer inter-
vals. This is because the mechanisms—including Optimal—
cannot take advantage of short application phases; they must ad-
just V-F to account for the average behavior over long periods.
The efficiency loss due to single-step V-F changes becomes more
pronounced as the interval length increases. Interleaving the do-
mains also affects the efficiency of the control, as can be seen by
comparing Step-1i to Step-1, but not so much as single-level V-F
changes. We can also see that for intervals of 500K instructions

and above, greedy-search outperforms best-neighbor. When the
interval length becomes significant compared to the application
phase length, the faster V-F changes of greedy-search pay off. For
short intervals, the stability of best-neighbor wins.

The determining factor of the interval length is the speed of the
voltage regulator (VR). The left side of Figure 8 corresponds to
fast internal VRs (voltage changes in nsec), while the right side
corresponds to slow external VRs (voltage changes in msec). The
middle could be either internal or external VRs (voltage changes
in µsec). We conclude that best-neighbor is best for fast VRs,
where greedy-search is best otherwise.

We have also evaluated the best known previous work, based on
queue utilization [20]. In that work, the utilization of the queues
that connect the fetch and the execution domains is tried to be
maintained inside some pre-defined bounds.. The ED2 improve-
ment for this mechanism was close to zero, for all benchmarks
(we did not put it in our figures, because it does not show).

This is because of the great differences in the MCD-like microar-
chitecture of [20] and our proposal. In [20] the back-end is split
into domains according to operation type, and most importantly,
the instruction queues are the synchronizers. We have special
synchronization FIFOs before the instruction queues, and we fol-
low a clustered design. A simple queue model (for mixed-clock
FIFO, instruction queue or combination of both), like the one
assumed in [20] does not work for our microarchitecture.

Moreover, in our simulations we include the energy consumption
of the internal VRs, and leakage energy. Both of these factors
influence the improvement we see with DVS, and have been ig-
nored from all previous studies (including [20]), as far as we
know. Finally, we claim that our baseline microarchitecture is
highly energy efficient, much more than previous proposals. This
is due to extensive use of clustering both at the front-end and at
the back-end. MCD-like microprocessors may be energy efficient,
but we think are very hard to design, due to the non-deterministic
latencies of domain crossings.

5. RELATED WORK
Chapiro [4] was the first to introduce the idea of GALS systems.
Since then there have been several published works on GALS and
DVS. Iyer and Marculescu [11] propose a microprocessor with
five domains: fetch, decode and rename, integer pipeline, floating-
point pipeline, and memory pipeline (includes first level cache).
They conclude that the performance loss due to domain synchro-
nization was significant but that GALS could be more efficient
than fully synchronous designs using fine-grain adaptation
mechanisms.

Semeraro et al. [16][17] propose a Multiple Clock Domain
(MCD) processor, with four domains: front-end (fetch and dis-
patch), integer, floating-point, and memory (with first and second
level cache). This separation results in minimal slowdown com-
pared to a globally synchronous design. Moreover, they describe
an off-line mechanism to obtain almost optimal DVS. Semeraro
et al. [15] propose an interval-based hardware control mechanism
for the domains of the MCD (all but the front-end), called the
Attack/Decay [17]. The Attack/Decay uses the rate of change of
the occupancy of the issue queues of the MCD to decide if the
frequency should increase or decrease for the next interval. They
report energy-delay product improvement of about 85% of what
was achieved with their off-line mechanism.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

22%

0 1 2 3 4 5 6 7 8 9 10
Interval (in millions of instructions)

Optimal
Step-1
Step-1i
Greedy-search
Best-neighbor

Figure 8. ED2 improvement for various interval sizes.

The authors in [12] combine clustering with MCD into a Clus-
tered Multiple Clock Domain (CMCD) design. The CMCD con-
sists of four back-end clusters (each with a local first level cache),
a shared front-end, and a shared second level cache each in a sepa-
rate domain. They also propose a mathematical model that relates
the fetch queue utilization, the branch prediction accuracy, the
front-end frequency and the application performance. They use
the model in a control mechanism to adapt the voltage and fre-
quency of only the front-end domain, achieving close to optimal
results.

Wu et al. [19] model the MCD domains as queue systems and
propose a feedback control DVS system based on a Proportional-
Integral (PI) controller. The controller uses the occupancy of the
domain input queue over some interval of time and responds with
a frequency for the upcoming interval. The goal is to maintain
occupancy close to a pre-defined nominal value. Wu et al. [20]
propose a DVS mechanism for the MCD that reacts to workload
changes instead of making decisions at fixed time intervals. The
controller utilizes both the queue occupancy and the rate of
change of the occupancy. When a metric consistently exceeds a
predefined threshold for a consecutive number of cycles an action
is taken.

6. CONCLUSIONS
We have presented and evaluated a novel GALS microarchitec-
ture with minimal IPC degradation (less than 2%). We have also
described how to enable independent voltage and frequency con-
trol for the domains of the microprocessor, and how to measure
energy consumption, including leakage, at run-time. Finally, we
have proposed and evaluated two mechanisms for dynamically
adapting the frequency and voltage of the domains.

To our knowledge, our proposed dynamic adaptation mechanisms
are the first ones to control all domains of a GALS microproces-
sor. We perform an extensive evaluation of our mechanisms,
comparing with optimal control and under different voltage regu-
lator speeds. We conclude that our best-neighbor mechanism per-
forms best for internal (fast) voltage regulators while our greedy-
search mechanism performs best in all other cases. When using
internal voltage regulators best-neighbor achieves about 12% ED2
improvement, or 70% of an optimal algorithm with similar char-
acteristics.

7. REFERENCES
[1] D. M. Brooks et al. Power-Aware Microarchitecture: Design

and Modeling Challenges for Next-Generation Microproces-
sors. IEEE Micro, 20(6), Nov./Dec. 2000.

[2] D. Brooks, V. Tiwari and M. Martonosi. Wattch: A Frame-
work for Architectural-Level Power Analysis and Optimiza-
tion. In International Symposium on Computer Architecture,
June 2000.

[3] P. Chaparro, G. Magklis, J. González and A. González. Dis-
tributing the Frontend for Temperature Reduction. In Inter-
national Symposium on High-Performance Computer Archi-
tecture, Feb. 2005.

[4] D. M. Chapiro. Globally Asynchronous Locally Synchronous
Systems. PhD thesis, Stanford University, 1984.

[5] T. Chelcea and S. M. Nowick. Robust Interfaces for Mixed-
Timing Systems with Application to Latency-Insensitive Pro-
tocols. In Design Automation Conference, June 2001.

[6] T. Fischer et al. A 90-nm Variable Frequency Clock System
for a Power-Managed Itanium Architecture Processor. IEEE
Journal of Solid State Circuits, 41(1), Jan. 2006.

[7] J. González and A. González. Dynamic Cluster Resizing. In
International Conference on Computer Design, Oct. 2003.

[8] J. González, F. Latorre and A. González. Cache Organiza-
tions for Clustered Microarchitectures. In Workshop on
Memory Performance Issues, June 2004.

[9] P. Hazucha et al. Area-Efficient Linear Regulator with Ultra-
Fast Load Regulation. IEEE Journal of Solid-State Circuits,
40(4), April 2005.

[10] A. Hemani et al. Lowering Power Consumption in Clock by
Using Globally Synchronous Locally Synchronous Design
Style. In Conference on Design Automation, June 1999.

[11] A. Iyer and D. Marculescu. Power and Performance Evalua-
tion of Globally Asynchronous Locally Synchronous Proces-
sors. In International Symposium on Computer Architecture,
May 2002.

[12] G. Magklis, J. González and A. González. Frontend Fre-
quency-Voltage Adaptation for Optimal Energy-Delay2. In
International Conference on Computer Design, Oct. 2004.

[13] T. Olsson et al. A Digitally Controlled Low-Power Clock
Multiplier for Globally Asynchronous Locally Synchronous
Designs. In International Symposium on Circuits and Sys-
tems, May 2000.

[14] J. M. Parcerisa, J. Sahuquillo, A. González and J. Duato.
Efficient Interconnects for Clustered Microarchitectures. In
International Conference on Parallel Architectures and
Compilation Techniques, Sept. 2002.

[15] G. Semeraro et al. Dynamic Frequency and Voltage Control
for a Multiple Clock Domain Microarchitecture. In Interna-
tional Symposium on Microarchitecture, Nov. 2002.

[16] G. Semeraro et al. Hiding Synchronization Delays in a
GALS Processor Microarchitecture. In International Sympo-
sium on Asynchronous Circuits and Systems, April 2004.

[17] G. Semeraro et al. Energy Efficient Processor Design Using
Multiple Clock Domains with Dynamic Voltage and Fre-
quency Scaling. In International Symposium on High-
Performance Computer Architecture, Feb. 2002.

[18] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An Integrated
Cache Timing, Power, and Area Model. WRL Research Re-
port 2001/2, Aug. 2001.

[19] Q. Wu, P. Juang, M. Martonosi and D. W. Clark. Formal
Online Methods for Voltage/Frequency Control in Multiple
Clock Domain Microprocessors. In International Conference
on Architectural Support for Programming Languages and
Operating Systems, Oct. 2004.

[20] Q. Wu, P. Juang, M. Martonosi and D. W. Clark. Voltage
and Frequency Control with Adaptive Reaction Time in Mul-
tiple-Clock-Domain Processors. In International Symposium
on High-Performance Computer Architecture, Feb. 2005.

[21] Y. Zhang et al. HotLeakage: A Temperature-Aware Model of
Subthreshold and Gate Leakage for Architects. Technical
Report CS-2003-05, Dept. of Computer Science, University
of Virginia, Mar. 2003.

