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Laser Beams and Resonators: Beyond the 1960s
A. E. Siegman

Abstract—This paper describes the continuing advances in
laser resonators and optical beam propagation that emerged
in the decades following the 1960s, growing out of the funda-
mental concepts from that era reviewed in an earlier paper.
It also presents a brief look forward at some of the continued
innovations now emerging in these areas.
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I. Introduction

ALL or nearly all the basic concepts associated with
real stable and unstable optical resonators and with

the propagation of real gaussian beams were in place by
the mid to late 1960s, as described in the first of this pair
of reviews [1].

The development of new concepts related to resonators
and beam propagation nonetheless continued at a rapid
pace through the following three decades, and continues
even today, motivated by new kinds of lasers, by require-
ments for more complex and multielement laser resonators,
by considerations of laser beam propagation in practical
applications, and by a continuing desire for basic under-
standing of optical beams. This second paper attempts to
provide an overview of the most important of these further
advances from the late 1960s onward.

II. Beyond the 1960s: “Complex and Twisted”

A significant fraction of the developments in optical res-
onators and beam propagation from the late 1960s onward
can be described as “complex,” “twisted,” and even “non-
normal” in character, to use only slightly hyperbolic terms
whose meanings will emerge in the following sections.

A. Complex and Twisted Paraxial Optics

During the late 1960s laser researchers became increas-
ingly interested in gain-guided lasers, along with lasers hav-
ing transversely tapered internal apertures and laser mir-
rors having transversely tapered reflectivity. It was soon
realized that all these systems could be described using ex-
isting analytical tools simply by converting most of the real-
valued parameters in gaussian beam theory into complex-
valued quantities.

At about the same time some optics researchers also be-
came interested in optical structures characterized by gen-
eral astigmatism or “twist” about the axis of propagation.
This was motivated in part by the development of nonpla-
nar ring resonators as described below, along with optical
isolators or optical diodes employing Faraday rotation.

The intellectual history of these combined developments
beginning in the late 1960s is nearly as “complex and
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twisted” as the topics themselves. The basic ideas emerged
in overlapping papers from many different authors, making
it difficult to trace primary origins in the extensive litera-
ture that has developed. The following summary therefore
cannot always identify just which individuals contributed
which concepts.

B. Complex Ducts and Complex Gaussian Beams

The concept of an elementary gaussian beam as a spher-
ical wave diverging from a complex-valued source point
emerged early in the laser era, as did the recognition that
one could combine the wavefront radius of curvature R and
gaussian spot size w into a single complex-valued gaus-
sian q̃ parameter defined by 1/q̃ ≡ 1/R − jλ/πw2. The
conceptual relationship between narrow optical beams and
complex-valued eikonal rays was also recognized in more
general approaches to optical propagation [2-6].

Early discussions of propagation through parabolic gain-
guided or “complex parabolic” lensguides were given in
1965 by Kogelnik [7] and a few years later by Casperson
and Yariv [8]. A slightly later discussion of laser resonators
having transversely varying mirror amplitude reflectivity
(“VRM resonators”) was published by Zucker [9]. The
author also made an early suggestion for using Hermite-
gaussian modes with complex argument as free-space eigen-
functions [10].

Further advances came as laser workers realized that an
aperture with a parabolic tranmission profile was formally
equivalent to a thin lens with an imaginary focal length,
and a mirror with a parabolic reflectivity profile was for-
mally equivalent to spherical mirror with an imaginary-
valued radius of curvature. More generally, systems with
parabolic transverse gain or loss profiles were recognized
as formally equivalent to optical fibers or ducts having
imaginary-valued transverse index variations.

Essentially all the formal mathematical results for real-
valued optical systems could then be converted to handle
these complex-valued systems simply by adopting complex
values for the ABCD matrix elements [11-13], the gaussian
spot size w, and the arguments of the Hermite-gaussian
and Laguerre-gaussian functions. One can refer to these
complex-parabolic systems in general as complex gaussian
ducts and their eigenmodes as complex gaussian beams, or
if necessary one can speak of generalized complex-valued
ducts for those more general cases where the transverse
variations are not simply parabolic [14-18].

Figure 1 is a schematic illustration of a complex-gaussian
beam with a fixed amplitude profile propagating in a com-
plex duct. A particularly important aspect of complex
paraxial optics is that systems with positive gain or loss
guiding can still support transversely confined and guided
gaussian modes even in the presence of divergent or unsta-
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ble mirrors, as demonstrated by Casperson and Yariv [8].
(Note that the essential point is that the system have higher
transmission on axis and decreasing trasnmission off axis,
whether this is accomplished by radially decreasing gain or
radially increasing attenuation.)

Casperson also appears to have been the first to note
that there was an important distinction between tranverse
confinement and perturbation stability for complex gaus-
sian systems [19-23]. Complex gaussian concepts were also
applied to one-dimensional modes in gain-guided semicon-
ductor diode lasers [24], to free-space propagation and to
other forms of complex gaussian resonators [25-30], and to
the propagation of partially coherent light [31-33]. Addi-
tional work along these lines has also continued into the
past decade [34-42]

Loss-guided duct

Gaussian eigenmode

Fig. 1. Schematic drawing of the lowest-order complex-gaussian
beam in a loss-guided or gain-guided duct. The lowest and higher-
order modes have diverging phase fronts (not shown), but main-
tain fixed intensity profiles.

The variable reflectivity mirror (VRM) concept which
was pioneered by Zucker [9], used in combination with a
geometrically unstable resonator design [43], provides per-
haps the best current design approach for obtaining the de-
sired combination of large mode volume, moderate output
coupling, and good mode discrimination and beam qual-
ity in higher-power and higher-energy lasers [37, 38, 44-
51]. This approach does, however, remain somewhat ham-
pered by difficulties in obtaining the necessary variable-
reflectivity mirrors.

C. Twisted Beams and General Astigmatism

For the elementary case of an optical system having or-
dinary astigmatism, one can simply make a separation of
variables along the transverse principal axes of the system,
and apply ordinary gaussian beam arguments (complex-
valued if appropriate) separately along the resulting or-
thogonal x and y axes.

Suppose, however, that one assembles an optical res-
onator or lensguide containing astigmatic or anisotropic
paraxial elements, for example cylindrical lenses and Brew-
ster plates, with the principal axes of individual simple
astigmatic elements rotated about the system axis by vari-
ous angles other than multiples of 90 degrees. The result is
a general astigmatic system, or an optical system with an
inherent “twist”. Twisted optical systems of this sort have
nonorthogonal principal axes and their transverse eigen-
modes are characterized by image rotation and polarization

rotation properties.
Optical beams propagating in free space can also possess

an inherent “twist” independent of any optical system (al-
though some sort of twisted optical system may be neces-
sary to create a twisted free-space optical beam). Even in a
lowest-order gaussian beam, for example, the principal axes
of the gaussian intensity profile may be rotated by an ar-
bitrary angle from the principal axes of the toroidal rather
than spherical phase profile. The principal axes for the in-
tensity profile of such a beam may then rotate by up to 180
degrees as the beam propagates from z = −∞ to +∞. Such
beams will then no longer have a unique waist, or even two
unique orthogonal waists where the transverse spot sizes
are minimum and the wavefront curvatures simultaneously
flat. One can also create twisted optical beams in which
the intensity profile does not visibly twist but in which
there is a twisted or helical character to the phase profile
within the beam [52-57], leading in general to an increased
diffraction spreading for the beam.

Recent decades have brought forth extensive discussions
of twisted optical systems and twisted optical beams. Much
of the early literature in this area is associated with non-
planar ring resonators as described elsewhere in this paper.
Of note are publications by Arnaud [5, 52, 58-63]; and
much fundamental work on the classification and analy-
sis of stigmatic, simple astigmatic, and general astigmatic
beams and systems has been done by Nemes [64-70].

In the most general case, where the optical system and
the propagating beam may have both complex-valued and
twisted (general astigmatic) character, the ray matrices [71]
must be expanded from four potentially complex ABCD
coefficients (actually three independent values) to four
complex-valued two-by-two tensor coefficients ABCD [52,
55, 57] with up to ten independent elements [65, 67-69, 72].
The complex-valued gaussian q̃ value similarly becomes a
complex-valued tensor quantity Q̃ [12, 58, 73, 74]. Methods
for transforming the properties of general astigmatic beams
in various ways using general astigmatic systems are of in-
terest [66, 75] as are the angular momentum properties of
twisted beams. Additional papers in this area include [54,
76-85]. A recent overview of optical twist has been given
by Friberg [86].

III. Additional Advances beyond the 1960s

A. Numerical Beam Propagation: Fast Transforms

Fox and Li’s original calculations employed straightfor-
ward numerical integration of the Huygens’ integral for
N sample points across each transverse dimension. The
same propagation calculations can also be carried out using
gaussian mode expansions [87], but both of these methods
are computationally intensive and sensitive to round-off er-
rors. From another viewpoint, Huygens’s integral in scalar
form is a convolution integral which can be evaluated using
Fourier transform methods [88, 89]. The required Fourier
transforms for a uniformly sampled beam profile can then
be converted to discrete Fourier transforms, which can be
evaluated using the Fast Fourier Transform (FFT) algo-
rithm. The merits of this FFT approach include not only
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reducing the N2 computational problem for one transverse
dimension to an N logN problem, where N is the number
of sample points needed to accurately describe the beam
profile, but also substantial reductions in required com-
puter storage and especially in round-off errors.

The first applications of the FFT algorithm to optical
resonator and beam calculations were made by Sziklas and
Siegman [90, 91] and by Johnson [92], and this has now be-
come the standard approach for commercial propagation
codes, for example those of Lawrence [34, 93-95]. A quasi
“Fast Hankel Transform” (FHT) algorithm which uses the
FFT algorithm internally and captures many of its advan-
tages, was also developed a few years later for propagation
calculations in cylindrical coordinates [34, 96-98].

B. Finding Higher-Order Modes: The Prony Method

The Fox and Li method in its simplest form eventually
converges to the lowest-order or lowest-loss eigenmode of a
resonator, but convergence can be slow if there are multiple
modes with very similar losses. In some cases one can also
extract individual higher-order modes, for example with
the convergence method illustrated in Fig. 2 of [1], or with
the resonance excitation approach used in later calculations
by Fox and Li [99]. Powerful numerical algorithms for ex-
tracting all the eigenvalues of large complex matrices can
also be applied to the resonator problem [100].

The general problem in any case is to fit the results from
repeated round trips inside the resonator with a super-
position of exponentially decaying complex-valued eigen-
modes. This problem arises in other situations as well, and
is known to be mathematically difficult. One relatively
simple procedure for fitting N round trips exactly with N
decaying exponentials was invented by the Baron de Prony
in 1795 [101] and introduced serendipitously to the author
by Tuttle [102] in the late 1960s. This Prony method has
since been applied to the calculation of optical resonator
eigenmodes by a number of workers [103-108].

It is also possible to apply the Fox and Li approach to
nonlinear and multimode problems, for example competi-
tion between transverse modes in a laser oscillator. Klein
and coworkers [109] accomplished this by carrying forward
two simultaneous but independent Fox and Li calculations
representing two possible modes inside the same resonator,
together with a gain sheet that saturated based on the to-
tal intensity profile of both modes. They observed that,
in accurate mimicry of a real laser, under some circum-
stances one array built up to a dominant mode while the
other decayed to noise level as a result of mode competi-
tion, whereas in other cases both arrays built up to steady-
state levels in two different transverse modes. The same
technique has subsequently been used by others [110].

C. Operator Methods and Quantum Analogies

A gaussian beam propagating off axis in a parabolic in-
dex profile is formally equivalent to a gaussian quantum
wave packet in a parabolic potential well. A number of
workers have exploited the close formal analogies between
paraxial beam propagation and quantum theory by apply-

ing quantum operator techniques and algebraic methods
as alternative approaches to paraxial beam and resonator
problems [26, 27, 111-122].

D. Nonnormal Modes

As first noted by Fox and Li, the transverse eigenmodes
of an open-sided or gain-guided lensguide or resonator are
not power-orthogonal in the usual sense, and thus do not
form the usual set of “normal modes” characteristic of
most other linear systems. Rather, the resonator eigen-
modes are biorthogonal to a set of adjoint modes which
correspond physically to eigenmodes propagating in the
reverse direction along the same waveguide or around the
same resonator [63, 123-128]. The purely real Hermite-
gaussian or Laguerre-gaussian functions that are widely
used to analyse elementary stable cavities do form com-
plete and orthonormal sets; but these functions are only
approximations (though often extremely good approxima-
tions) to the slightly nonorthogonal exact eigenmodes in
these cavities. The complex-gaussian transverse modes in
complex-gaussian laser cavities and also the eigenmodes of
unstable resonators are distinctly nonorthogonal in char-
acter. As a general principle, purely index-guided systems
such as conventional optical fibers have normal modes, but
gain-guided, loss-guided, or finite open-sided systems have
nonnormal modes.

The nonnormal character of optical resonator eigen-
modes leads to a number of nonstandard and quite non-
intuitive mathematical and physical properties for these
systems. For example, the total power or energy in a non-
normal lensguide or resonator is not simply the sum of
the powers or energies in the individual modes, even if the
eigenmode functions are individually normalized. In ad-
dition, maximum excitation of a given eigenmode by an
externally injected signal is obtained not with the usual
matched coupling but with so-called “adjoint coupling” [42,
129-133]. Injecting a reversed or adjoint wave into a non-
normal system, as shown for a gain-guided duct in the up-
per part of Fig. 2, causes the lowest-order eigenmode to
be excited with more power or energy than the input wave
itself, as shown by the extrapolated portion of the n = 0
line in the lower part of Fig./ 2. This adjoint coupling to
the lowest mode is necessarily accompanied by simultane-
ous excitation of other higher-order eigenmodes which then
die out relative to the lowest-order mode

The second quantization procedure that is widely used
for quantizing the electromagnetic fields of a laser oscilla-
tor in most fully quantum laser analyses [134] is also called
into serious question in nonnormal optical resonators [132,
133]; and the procedure for expanding the fields in an opti-
cal resonator or lensguide in terms of its eigenmodes must
also be substantially modified from the usual least-squares
normal-mode expansion [29, 42]. The Rayleigh Ritz proce-
dure used for estimating eigenvalues in many other systems
also cannot be applied to optical resonator modes [135].

Finally, laser oscillators having distinctly nonorthogo-
nal modes will experience a substantial excess spontaneous
emission per mode or excess quantum noise factor, lead-
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Fig. 2. Maximum excitation of the lowest-order eigenmode in
a complex-gaussian duct is obtained not by the usual mode-
matched coupling, but by so-called adjoint coupling.

ing to a corresponding increase in their Schawlow-Townes
linewidth. This excess noise effect was first proposed by Pe-
termann for gain-guided diode lasers [136], and has since
been shown by the author to be entirely determined by
the nonnormal or nonorthogonal character of the eigen-
modes [137-139]. Large increases in the Schawlow-Townes
linewidth in otherwise conventional lasers with nonorthog-
onal transverse modes have been confirmed by groups at
Stanford [140-143], Leiden [144-146], and Rennes [147].
Recent work has shown that the polarization eigenmodes
in certain twisted-mode cavities are also nonnormal or
nonorthogonal in polarization space, leading to similarly
increased quantum noise properties when used as laser os-
cillators [145, 148, 149].

E. Nonplanar Ring Resonators

A ring resonator having four or more mirrors can be
converted into a nonplanar ring resonator by warping the
ring, for example by lifting any one of the mirrors out of the
plane formed by any three of the other mirrrors. At some
time in the early 1960s it was realized that as an optical
beam travels around such a nonplanar ring the beam profile
will rotate or twist about the direction of propagation by
an amount that depends on the nonplanarity of the ring.
The polarization axes for the beam will also rotate about
the propagation axis by a related amount. Both effects are
manifestations of Berry’s geometrical phase [150].

Early papers on nonplanar ring resonators for lasers in-
clude those of Danileiko and Lobachev, Popov, Arnaud,
and subsequent authors [59-61, 151-157]. The image ro-
tation aspect of these resonators has led to a useful class
of unstable ring resonators, sometimes called “UR90” res-
onators [158-168], in which the image rotation around the

ring path is 90 degrees and the output beam emerges as
a single completely filled rectangular beam, in contrast to
the annular output beam from a conventional unstable res-
onator.

Fig. 3. Monolithic nonplanar ring oscillator (NPRO) (from Kane
and Byer).

The polarization rotation properties of nonplanar rings
have been employed to create more complex types of ring
laser gyroscopes [169-173]. They have also been used in
conjunction with a small amount of Faraday rotation to cre-
ate unidirectional ring laser oscillators [174, 175], notably
the very compact and stable monolithic nonplanar ring os-
cillator (NPRO) of Kane and Byer [176, 177] shown in Fig.
2. Nonplanar rings also display modified misalignment or
axis stability properties as analyzed by several authors [59,
178-181].

F. Lasers and the Sagnac Interferometer

The Sagnac interferometer, aka the “antiresonant ring,”
is another classic optical element that has found widespread
applications in lasers. In addition to prism end reflec-
tors [182, 183], it has been employed as a laser end mir-
ror for laser cavity dumping and switching and for active
and passive (CPM) mode locking [184-194]. With nonlin-
ear elements inserted it can also be used for saturation
spectroscopy and nonlinear optics [195-199]. The avail-
ability of fiber couplers and ring resonators has extended
these concepts to fiber optic implementations [200, 201].
Most recently the Sagnac interferometer has emerged as
a promising concept for laser-interferometer gravity wave
observations or LIGO [202-204].

G. Chaotic Resonators

Stable resonators and lensguides are designated as such
in part because their ray paths, including even the off-axis
ray paths, are stable against small perturbations in initial
position or direction. There are elementary closed geo-
metrical shapes or closed resonators, however, in which all
the internal ray paths that might be taken by a bouncing
light beam or a classical billiard ball are completely chaotic
or perturbation-unstable in character. That is, no matter
how close together two rays may start out in such a struc-
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ture, their trajectories will eventually diverge in a chaotic
fashion. The statistical properties of the rays and resonant
modes in these chaotic structures are of substantial interest
to workers in chaos and nonlinear dynamics.

Fig. 4. Chaotic stadium resonator with internal gain created by
reactive-ion etching on the surface of a GaAs diode laser.

It can be of interest, therefore, to see if there are any con-
nections between this chaotic ray behavior and the oscilla-
tion modes that will be estabished in such a structure if the
structure can be somehow filled with a laser gain medium.
One widely discussed chaotic structure is the “stadium bil-
liard” or stadion [205-208] which consists essentially of two
cylindrical or spherical end caps forming a one-dimensional
unstable optical resonator with side walls added. Prelimi-
nary experiments to study the oscillation behavior in such
a stadium structure have recently been carried out by us-
ing reactive ion etching techniques to fabricate a “stadium
laser” on the surface of a semiconductor laser as shown
in Fig. 4 [40, 209]. The resulting oscillation properties of
this chaotic stadium-resonator laser as shown in Fig. 5 can
then be observed and explained in some detail using an ex-
tended Fox and Li analysis [40, 210]. There appear to be
possibilities for further exploration of this subject [211].

H. Laser Arrays, Higher-Order Modes, and Talbot Mirrors

The lowest-order gaussian mode in any conventional sta-
ble optical resonator has a mode diameter d ∼ (Lλ)1/2

which for a length L on the order of a meter and a wave-
length λ on the order of one micron means a mode diameter
on the order of a millimeter or less. Laser gain media are
readily available, however, in the form of laser rods or gas
laser tubes with diameters of centimeters or more. Ex-
tracting all the available laser power or energy from these
large-volume gain media while maintaining single-mode op-
eration and thus good beam quality can, therefore, be a dif-
ficult problem, not to mention the damage problems asso-
ciated with handling very large powers or energies in small
diameter beams.

The unstable optical resonator offers one useful solution
to this dilemma, although not without creating other diffi-
culties; and much effort has gone into the search for other
approaches to high power or high energy, large mode vol-
ume lasers. One approach is to not only allow but en-
courage laser oscillation in a single higher-order (and thus
larger-diameter) cavity mode, and then to use some form
of phase correction to convert the highly divergent but
nonetheless fully coherent output beam from this laser into
a more desirable beam profile. Laser oscillation in a single

Fig. 5. Oscillation profile within the chaotic resonator of Fig. 4. The
oscillating “scars” are different in the two directions along the
structure.

controlled higher-order mode has in fact been achieved in
several types of lasers, using either various types of modal
filters within the laser resonator or variations on Talbot
mirrors [212] to select a single oscillating mode.

Converting the resulting output beam into a truly high-
quality beam is, however, a more uncertain proposition.
Even if the near-field phase profile can be converted to an
ideal uniphase wavefront so as to obtain a narrow central
lobe in the far field, the transverse intensity variations in-
herently associated with a higher-order mode mean that a
large amount of the total beam energy may still reside in
weak but numerous side lobes surrounding this main cen-
tral lobe.

Another generic approach that comes naturally to those
familiar with phased array radars at microwave frequen-
cies is to construct a large number of lower-power, small-
diameter, single-mode lasers, and then attempt to combine
their beams into a single phased array output. Much effort
has gone into variations on this approach, using for exam-
ple coupled laser oscillators with conventional cavities, or
arrays of coupled waveguided lasers such as for example
closely adjacent laser stripes on semiconductor diode laser
chips.

One generic problem associated with this approach is
that success requires that the individual oscillators oper-
ate not only all at exactly the same frequency but all
with precisely controlled phases relative to each other—
and not only are the dimensional tolerances involved in
precise phase control much more severe at optical frequen-
cies than at microwave frequencies, but the problems in-
volved in obtaining adequately single-frequency operation
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are also much more difficult in lasers than in typical mi-
crowave devices. Locking together some significant number
N of quasi independent lasers requires either potentially
herculean control system efforts, or some form of optical
coupling between the individual lasers in order to lock to-
gether oscillators that must already be highly stabilized in
frequency. Even if the latter can be achieved the generic
situation is that N coupled oscillators can potentially oper-
ate in any of N “super-modes” of the coupled system, only
one of which is wanted, and the rest of which must be ad-
equately suppressed or discriminated against—and even if
this can be achieved the beam-quality or side-lobe problem
mentioned above still remains.

A review of some of the ideas discussed in this section
has been given by Pashinin [213].. I have not attempted to
survey the very large literature devoted to the above topics,
and to laser arrays in particular, in part because many of
the publications are devoted to the complexities of array
theory rather than modal concepts, in part because it is
difficult to identify the seminal or key papers in the field—
and in part because I have some concern that this general
approach, despite the effort devoted to it, may not in the
end provide the kind of results that are sought after.

IV. Conclusions and a Brief Look Forward

My objective in these two reviews has been to provide
a historical look back at at least some of the most im-
portant earlier and continuing advances in laser resonators
and laser beam propagation during the past four decades.
In doing this I have slighted certain topics, including roof
resonators and distributed-feedback and Bragg-mirror res-
onators as mentioned in the first review. Among devel-
opments in more recent decades, I have not attempted to
review phase-conjugate resonators or resonators employing
stimulated back-scattering, despite their interesting prop-
erties and extensive literature, in part because they fall
more in the domain of nonlinear optics; and I have only
given general comments on the broad topic of coupled laser
resonators and arrays. I have also not attempted to cover
recent developments in the obviously very important and
promising subject of fiber lasers.

It is traditional to conclude any such look backwards in
a given area with at least a brief look forward in the same
area, and my own look forward will be brief. In addition
to fiber lasers, particularly significant areas for continued
progress in laser resonators and beams would seem to in-
clude at least the following topics.

A. Custom Resonator Designs

In the early years of the laser era research efforts focused
on understanding the modal properties of simple resonator
structures. In recent years the advent of more powerful
computers, new ways of fabricating complex mirror shapes,
and new concepts in tomography and adaptive optics have
led to increased interest in the synthesis of customized res-
onator structures and especially of custom mirror profiles.
The objective in these efforts is to achieve resonator modes
having predetermined mode profiles, such as for example

uniform or flat-topped mode profiles, that may be better
suited to particular applications or to extracting more en-
ergy from a given laser medium.

Practical examples of this approach include mirrors with
graded or nonspherical phase profiles to achieve individual
passive “mode conjugation”, graded amplitude reflectiv-
ity profiles, diffractive optical elements, and various kinds
of adaptive resonator mirrors. Major contributions to re-
search in this area have come from groups led by Belanger
[38, 214-217] and Leger [218-223]. Continued advances in
this area of customized resonators and of passive mode con-
jugation can be expected.

B. Diode Laser Resonators

Semiconductor diode lasers, including both conven-
tional horizontal stripe lasers and the newer vertical-cavity
surface-emitting (VCSEL) lasers, represent a dominant
portion of current laser research and also of the future
market potential for lasers. Many of the resonator con-
cepts described in this paper are also relevant to diode
lasers (although this may not always be recognized by diode
laser workers having only semiconductor fabrication back-
grounds).

Resonator designs for diode lasers are constrained by the
almost invisibly small size of diode lasers and by the need
in most cases to fabricate the resonator structure directly
on or within the diode laser itself. Great progress has been
made in developing diode laser resonators under these con-
straints but many interesting challenges and possibilities
remain.

C. Laser Beam Quality

The skeptical observer might note that over the past
four decades the modal properties of practical laser de-
vices have been much more frequently calculated than mea-
sured. The meaningful measurement of laser beam prop-
erties has, however, made substantial progress during the
past decade with the emergence of the rigorously defined,
second-moment-based “M -squared” parameter [224], to-
gether with many new instruments to measure laser beam
properties.

The M2 value in particular, although a useful parameter
for characterizing a laser beam, is best viewed as provid-
ing only a “propagation factor” for a laser beam, rather
than a unique or universal measure of laser beam qual-
ity, since the “quality” of a laser beam depends on the
application for which it is intended, and this is not in ev-
ery case directly related to the M2 value. The accurate
measurement of M2 and other beam spatial properties can
nonetheless provide much useful information on the merits
of a given laser beam for practical applications, and also
on the modal characteristics and the basic laser physics of
laser devices. Continued attention to methods for charac-
terizing real laser beams, along with increased emphasis
on really measuring the modal characteristics of real laser
devices, should be encouraged.
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D. Ultra Low Loss Resonators

Finally, advances in mirror coating technology in recent
years have made possible near perfect optical mirrors with
power reflections in the “five nines” range, leading to op-
tical resonators with parts per million losses per round
trip. This in turn has made possible new advances in ring
laser gyroscopes, laser gravity wave (LIGO) interferome-
ters, laser electron accelerators, and sophisticated experi-
ments that explore the basic quantum properties of atoms
in extraordinarily high-Q optical cavities. Advances in this
area will obviously become more difficult as the technolo-
gies near perfection, but the possibilities of new fundamen-
tal results are also similarly enhanced.
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