D Theorem 8.1 (Cauchy's residue theorem) Let D be a simply connected domain and let C be a simple closed positively oriented contour that lies in D. If f is analytic inside C and on C, except at the points $z_{1}, z_{2}, \ldots, z_{n}$ that lie inside C, then
$\int_{C} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}\left[f, z_{k}\right]$.
The situation is illustrated in Figure 8.1.
Proof Since there are a finite number of singular points inside C, there exists an $r>0$ such that the positively oriented circles $C_{k}=C_{r}^{+}\left(z_{k}\right)$, for $k=1,2, \ldots, n$, are mutually disjoint and all lie inside C. From the extended Cauchy-Goursat theorem (Theorem 6.7), it follows that

$$
\int_{C} f(z) d z=\sum_{k=1}^{n} \int_{C_{k}} f(z) d z
$$

The function f is analytic in a punctured disk with center z_{k} that contains the circle C_{k}, so we can use Equation (8-2) to obtain
$\int_{C_{k}} f(z) d z=2 \pi i \operatorname{Res}\left[f, z_{k}\right], \quad$ for $k=1,2, \ldots, n$.
Combining the last two equations gives the desired result.

The calculation of a Laurent series expansion is tedious in most circumstances. Since the residue at z_{0} involves only the coefficient a_{-1} in the Laurent

Figure 8.1 The domain D and contour C and the singular points $z_{1}, z_{2}, \ldots, z_{n}$ in the statement of Cauchy's residue theorem.
expansion, we seek a method to calculate the residue from special information about the nature of the singularity at z_{0}.

