
Content Management Mobile Computing Web Services Enterprise Transaction Systems

White Paper

XML Databases

This paper examines the role of XML

databases. It looks at the requirements

for storing XML, the retrieval and query

requirements, and the different ap-

proaches that are possible. In particular, it

looks at the situations in which a native

XML database such as Software AG’s

Tamino XML Server offers advantages

over other methods of storing XML docu-

ments.

Introduction: Why is XML popular?

XML was developed initially as a way of

storing documents on the Web, in a form

that allows the information content of the

document to be separated cleanly from

the presentation details. Many people

were finding that it was very difficult to

manage the content of their websites in

HTML, because this separation was mis-

sing. This made it difficult to repurpose

the information for a different audience

or for different display devices. Equally,

the alternative approach of storing all the

information content in a relational data-

base and adding an HTML wrapper for

displaying the information worked only

for rather rigidly structured information

such as price lists: It didn’t give the flexi-

bility that was needed to construct sites

containing information such as holiday

brochures, weather forecasts, or product

catalogs.

So the killer application that made XML

so successful was content management.

It quickly became clear that XML also met

another need, namely the need for flexi-

ble syntax to exchange data between

applications. There have been plenty of

other approaches to this problem, but

what makes XML special is its simplicity,

broad support, and low implementation

cost. As more and more enterprises take

advantage of the connectivity offered by

the Internet to exchange information not

only within their own organization but

also to integrate their business processes

with their suppliers and customers across

enterprise boundaries, the advantages of

a simple yet extensible, platform-neutral

syntax have become widely recognized,

and XML was there at the right time to

meet this need.

As a result, XML is now widely used for

information interchange. Take the UK

Inland Revenue as an example: Taxpayers

have a wide choice of off-the-shelf soft-

ware to prepare their tax returns, but all

these software packages output the data

using the same XML schema for elec-

tronic filing, which means that the Inland

Revenue can accept the data without

worrying about which application was

used to prepare the tax return.

Contents

Introduction: Why is XML popular? 1

The need to store XML 2

Query requirements 3

Database requirements 4

What is a native XML database? 4

Designing an XML database 6

Why Tamino XML Server? 7

Summary 8

Michael Kay

Software AG

March 2003

The key features of XML that have led to

its widespread adoption are:

� It is simple enough that parsers

became available very quickly and

were distributed in most cases as free

or open-source software. This meant

that the decision to use XML could be

made in many organizations without a

lengthy investment review.

� It largely gets rid of low-level character

encoding problems by adopting Uni-

code as its single character repertoire,

allowing worldwide deployment.

� It is sufficiently flexible to handle both

narrative documents intended for a

human readership (for example, Web

pages) and arbitrary hierarchic data

structures intended to be processed by

applications, as well as combinations of

the two.

� The syntax itself is human-readable,

allowing simple documents to be cre-

ated or read using nothing more than a

standard text editor.

� There is no turf war: XML is supported

by the entire IT industry, and the prod-

ucts offered by different vendors are

highly interoperable.

� These factors mean that today, XML is

widely deployed not only for the origi-

nal application area of Web content

management, but for a large variety of

other applications. In many of these

applications, the information needs to

be stored somewhere, and this is

where the requirement for XML data-

bases comes from.

The need to store XML

As the previous section shows, XML was

not initially developed as a model for

storing information. But once an organi-

zation has decided to adopt XML to

underpin a key business process, the

need to store the information (and, of

course, to retrieve it later) soon follows.

There are essentially three ways that

this can be done:

� Store XML as files. In this approach,

the XML document in its raw textual

form is treated as any other text file,

and is stored as such, either as a file in

an operating system file store, or in

some kind of general-purpose docu-

ment management system, or perhaps

as a “BLOB1” or “CLOB2” in a relational

database. Some kind of external index

is maintained to enable these files to

be subsequently retrieved: Perhaps the

only retrieval mechanism is to give

each file a hierarchical name.

� Extract the data. In this approach, the

XML document is parsed and the infor-

mation it contains is extracted into

some kind of database, typically a

relational database. The original XML

document is not retained. When the

information is subsequently required, a

new XML document is constructed by

assembling all the relevant information

items from the database.

� Use an XML database. With this ap-

proach, the XML document is stored in

a database that understands the struc-

ture of the XML document and is able

to perform queries and retrieve the

data taking advantage of knowledge of

its XML structure.

In this paper, we are concentrating on the

third approach. The other two approaches

cannot be completely dismissed, and in

fact there are many situations where

they might be appropriate. But they do

have considerable disadvantages.

The main disadvantage of the file-based

(or BLOB-based) approach is that the

structured information inside the XML

document cannot be used for retrieval

purposes. Separate indexes need to be

created to locate the required document

based on one or more keys such as a

date or employee number. If these keys

are not known, it is very hard to locate

the information. In addition, the only

thing that can be retrieved is the original

document.

It isn’t possible, for example, to do an

aggregation query, such as “Which resorts

have an average February temperature

above 25ºC?” The documents need to be

individually retrieved, and the information

extracted from them, probably by hand.

This means that the value of having the

XML markup in the documents is not

being exploited, and the information

asset is not being used to its full poten-

tial.

Extracting the data into a relational data-

base has other disadvantages. Firstly, it

only works where the data fits comfort-

ably into rows and columns. This doesn’t

work well for narrative documents such

as news reports, and it doesn’t work well

for complex data structures such as med-

ical records. Secondly, there is no record

of the original document, which might

well be needed for archiving purposes or

for legal traceability requirements.

XML Databases White Paper

2

1 BLOB = binary large object, see: http://searchdatabase.techtarget.com/sDefinition/0,,sid13_gci213817,00.html
2 CLOB = character large object; a variable-length character string, can be up to several gigabytes long

This means that it might be necessary to

keep the original document as well as

the extracted data, which can only add to

the information management problem. In

addition, extracting the data from one

document into thousands of small pieces,

and then reassembling these to recreate

the XML document when required, is a

very inefficient process. Of course, where

the primary purpose of the XML message

is to send information to an application

that already maintains its information in a

relational database, this cost is necessary

and appropriate. But where the primary

aim is to record what was in the XML

message so that it is available at a later

time, taking the message apart and stor-

ing all the primitive facts separately is a

quite unnecessary overhead.

Where XML is used for purely narrative

documents, with very little structure, file-

based storage might work. Where it is

used simply as an interchange mecha-

nism for straightforward tabular data,

with a very rigid structure, relational stor-

age might work. But the strength of XML

is that it isn’t limited to these two

extremes.

In the real world, most information is

semi-structured: consider a CV (résumé),

an accident report, an invoice, a software

bug report, an insurance claim, a descrip-

tion of a CD offered for sale on the Inter-

net. Traditionally, in the IT world, we

have handled the structured part of the

information and the unstructured part

separately, using different technologies

and often using different business

processes.

The Internet has changed that: Both parts

now need to be handled as a whole, and

a major reason for the success of XML is

that it is the first mainstream technology

that can handle the whole spectrum of

information from the highly structured to

the totally unstructured. Semi-structured

data has become the norm, and the limi-

tations of technologies that can handle

only one end of the spectrum have

become painfully apparent.

The only reason to store anything is so

that the information can later be

retrieved. So in the next section, we’ll

look at the query requirements for XML

documents.

Query requirements

Most of the requirements for accessing

XML information can be conveniently

classified under one of three headings:

� Get me the documents

� Give me the facts

� Tell me about X

By Get me the documents we mean

queries whose aim is to locate one or

more documents. The documents that are

returned are identical to documents that

were stored in the database at some

time in the past. The information used to

retrieve the document may be something

as simple as a unique reference, or it

may be some combination of properties

that the document must possess. For

example: “Give me the most recent

appraisal for employee E12345.”

By Give me the facts we mean queries

that extract factual information from doc-

uments. The required information may be

all in one document, or it may be spread

across many documents. For example:

“When was the last time employee

E12345 was recommended for promo-

tion?” Or: “How many claims were made

last year by policy-holders in Durham,

and what was their average value?”

By Tell me about X we mean information

retrieval queries of the kind that people

submit to Web search engines. However

much we take care to add markup to nar-

rative documents, there will always be

cases where the only way to find rele-

vant documents is to search the text. For

example, the best way to find an

employee with connections in Peru might

simply be to search for the word Peru,

appearing anywhere in any part of the

document. Searches that analyze the tex-

tual content and also take advantage of

contextual information based on the XML

markup can be especially useful.

A characteristic of this kind of query is

that there is no right answer. It’s up to

the search engine to use as much intelli-

gence as it can to find the documents

that are most relevant to the user’s

enquiry.

Traditionally these three kinds of queries

have been handled by different kinds of

storage software. Get me the documents

can be done using file-based storage

with simple keyword indexing, so long as

the attributes that will be used for

retrieval are known in advance (WebDAV

is a protocol that implements this idea,

and is used by many content manage-

3

ment applications). Give me the facts is

the traditional domain of relational data-

bases: Facts are extracted from the

source documents and stored separately,

so that they can be searched and aggre-

gated. Tell me about X is the domain of

free text retrieval packages and Internet

search engines.

Sometimes one of these patterns of

enquiry dominates, in which case it

makes sense to choose software that

specializes in that kind of enquiry. But

because XML is semi-structured, a gen-

eral-purpose XML database needs to be

good at dealing with all three kinds.

The Worldwide Web Consortium (W3C),

which was responsible for the develop-

ment of the XML specification, is also

defining a query language called XQuery

for accessing XML databases. XQuery is

designed to handle all three kinds of

enquiry, though at present the develop-

ment of free-text capabilities is lagging

behind the syntax for more structured

queries.

Software AG has played an active part in

the development of W3C XQuery since its

inception – as members of the working

group, editors of the specification and

developers of early implementations. A

prototype implementation of W3C XQuery

called QuiP can be downloaded from the

Software AG website, and although the

W3C specification is not yet finalized, fea-

tures of the language have been incorpo-

rated into the current production release

of Tamino XML Server (Version 4.1). In

fact, the previously introduced Tamino

X-Query language is an extension of the

simpler W3C XPath language that is still

available for use in the current Tamino

XML Server release.

Database requirements

As well as supporting the kinds of query

that people expect to perform on stored

XML data, an XML database system

must meet many other requirements.

Many of these are not specific to XML.

For example, a database must:

� Support the management of schemas

to define the data structure, and the

validation of input according to those

schemas

� Provide mechanisms to add, modify or

delete content

� Offer facilities for multi-user access,

transaction-based isolation and dead-

lock detection, backup, recovery and

replication

� Provide bulk data import and export

capabilities

� Allow the physical storage of the

database to be optimized, for example

by allowing user control over the cre-

ation of indexes and the allocation of

disk space and other resources

� Optimize queries to provide the most

efficient possible execution, using the

indexes and other access paths that

have been made available

Because the development of an indus-

trial-strength database system is a major

engineering investment, many so-called

XML databases are actually layered on

top of databases that were originally

designed for a different purpose: typically

a relational database or an object data-

base. Software AG has taken a somewhat

different approach.

Tamino XML Server is designed from the

ground up as a native XML database,

meaning that it has the built-in capability

to store XML documents as they are,

without conversion to other storage for-

mats. This ground-up development does

not mean that Software AG reinvented

the wheel in order to provide Tamino

XML Server with high-performance trans-

actional capabilities, etc., required for

business-critical use. Tamino XML Server

incorporates the knowledge and many

years of experience that Software AG

gained in developing such data-model-

independent functions as transaction

management and backup/recovery, and

as such it maintains its competitive

advantage against similar systems.

In fact, Software AG applies strong disci-

pline to the management of reuse across

its entire product line, so that develop-

ments to a component that are made to

meet the requirements of a new product

will also be fed back and benefit the

users of older products.

This way, Software AG has not only

reduced the cost of developing Tamino

XML Server and accelerated its introduc-

tion to the market, but it has also taken

advantage of the reliability of these com-

ponents achieved through years of expo-

sure in the field.

What is a native XML database?

Software AG invented the term “native

XML database” to explain how Tamino

XML Server differed from other ways of

storing XML. Since then, the term has

become widely used in the industry,

though not always with exactly the

meaning that Software AG had in mind

when the phrase was coined.

XML Databases White Paper

4

3 http://www.rpbourret.com/xml/XMLAndDatabases.htm#nativedb

The essence of the term is captured in a

quote from Ronald Bourret3, who has

written extensively on XML databases.

This is how he explains the concept:

“Native XML databases are databases

designed especially to store XML docu-

ments. Like other databases, they sup-

port features like transactions, security,

multi-user access, programmatic APIs,

query languages and so on. The only

difference from other databases is that

their internal model is based on XML

and not something else, such as the

relational model.”

The focus in this definition is not on spe-

cific features, but on the fact that storage

and retrieval of XML was the central

objective of the product designers.

When you look at a checklist of product

features, it can be difficult to distinguish a

relational database that also supports

XML data from an XML database that also

supports relational data. But below the

surface, the architectural differences that

result from the difference in design per-

spectives are immense.

In particular, the heart of any database

product is the query execution engine,

which constructs, optimizes, and then

executes a query execution plan to

deliver the results of a user query. The

design of the primitive operators that

make up the query execution plan reflect

the operational algebra that underpins

the query language, whose formal

semantics are in turn based on the invari-

ants of a particular data model.

In a relational engine, these operators are

the well-known relational primitives such

as restriction, projection and join. An XML

engine has a different set of operators,

which are better suited to the recursive

tree traversals required for efficient exe-

cution of path expressions. The different

set of operators is needed because the

basic data model for XML (that is, a

recursive tree structure) is fundamentally

different from the rows-and-columns data

model of SQL.

Of course, XML queries can be mapped

into operations in the relational algebra,

just as SQL queries can be mapped to

operations in a tree-based algebra. But

the result is very unlikely to be optimal.

(This is particularly true when mapping

an XML query language to relational

operators, because of the difficulty in

handling recursive queries in SQL. This

problem, which is sometimes referred to

as the parts explosion problem, has been

known since the 1970s, and reflects a

fundamental limitation in the mathemati-

cal power of the first-order predicate cal-

culus on which the relational model is

based.)

So this gives us a more technical defini-

tion of what we mean by a Native XML

Database: it is a database whose core

query execution engine implements an

algebra designed to perform operations

on trees that represent XML documents.

Why is this important?

The answer is performance and

scalability.

Consider a simple XML Query:

input()[//section/title = ‘US Pricing

Information’]

This query selects all documents in the

input collection that have a section ele-

ment (at any depth) whose title is “US

Pricing Information.”

In a large document collection, the only

way any database can deliver acceptable

performance on this query is if the data

has been indexed in some way.

Tamino XML Server makes use of index-

ing structures that are specifically

designed for XML (some of the ideas are

even patented).

� One kind of index is a structure index:

this allows rapid selection of docu-

ments that have a section element

containing a title element.

� Another kind of index is a value index:

this allows rapid selection of docu-

ments that have a particular value in

the title element.

� Put these two indexes together, and

the query can execute very efficiently,

even on a database containing hun-

dreds of gigabytes of data. This works

because the query optimizer under-

stands the meaning of path expres-

sions, and can therefore readily detect

which indexes are of use.

5

In contrast, a system whose core engine

is relational has to translate this query

into a set of operations in the relational

algebra. This may be quite a complex

task, depending on how the XML model

has actually been mapped. The search for

a section element at any depth may be

particularly difficult. The final result is

often a complex set of join conditions,

which need to be evaluated using

indexes that were designed for relational

tables, not for tree-structured XML.

Of course, some relational vendors, if

they take XML seriously, will add extra

operators to their engine to reflect this,

and may add extra indexing mechanisms

as well. But the fact remains, there will

always be a difference between an

engine that was designed for XML from

the ground up, and one that has had XML

bolted on as an afterthought.

Designing an XML database

There is a wealth of experience, captured

in books, methods, and tools, for design-

ing relational databases. This experience

has evolved over thirty years and the

basic principles are now taught in every

college course on the subject. XML data-

bases are a much more recent phenome-

non, and the database designer therefore

has to work much more from first princi-

ples.

The traditional approach to database

design follows the steps:

1. Collect information about the applica-

tion domain, by interviewing users,

collecting process descriptions and

studying existing applications.

2. Build a model of the objects, attributes

and relationships in the domain, using

a notation such as UML.

3. Translate this into a relational schema

by applying the principles of normal-

ization.

4. Refine this design as necessary to

ensure that the performance require-

ments of the application are met.

In principle, a similar approach can be

followed for an XML database, with the

exception of step three, where the model

is translated into XML elements and

attributes instead of relational tables and

columns.

But there is one big difference. In many

cases, the XML documents are designed

primarily for information interchange, not

for holding persistent data. The designer

must therefore decide whether the XML

database is to hold the documents in the

form they arrived (essentially, a reposi-

tory of messages) or whether to refactor

the document contents for query pur-

poses. The decision depends very much

on the particular application require-

ments.

The question “What is a document?” is

sometimes very easy to answer, and

sometimes remarkably difficult. This deci-

sion is easy when it is built into the

application requirements, for example

“I want to store all the product descrip-

tions.” It is less easy where the notion of

a document is not inherent in the

requirements, or where the boundaries

between documents are arbitrary, for

example “I want to store logs of all the

online transactions.”

The concept of a document is one that

users can easily relate to, for the simple

reason that documents have been used

in human communication for thousands

of years. Therefore, choosing what goes

into one document is something that

deserves some care. It is always possible

to assemble new documents as the result

of a query, but as we saw earlier, the

“Find me the documents” queries are

probably the ones that are easiest for

users to formulate and easiest for the

system to execute efficiently. The docu-

ment is also a convenient unit for man-

agement of information, for example

updating and deletion of information will

be easiest if it is done at the document

level.

It’s therefore generally a mistake to think

of the whole database (or of a whole

table) as being one document. Docu-

ments in an XML database should ideally

relate to individual things or events that

are familiar to people in the user commu-

nity: A product, an inspection report, a

job application. Sometimes it makes

sense to assemble related information

into a single document, for example, to

collect together all the information relat-

ing to one medical episode, even though

it may arrive in small pieces over a

period of time. A good guide is: What is

the packaging of information that is most

often going to be requested in a single

query?

Another factor that requires some

thought is the modeling of relationships.

Unlike the relational model, which essen-

tially only offers one way to represent

relationships (the primary key / foreign

key combination), XML offers a bewilder-

ing variety of techniques. These range

from the use of hierarchic nesting, to

ID/IDREF pointers, and URLs and XPointer

hyperlinks to reference one document to

another. And of course relational-style

foreign keys are also available as an

option. This richness derives from the

variety of mechanisms used in written

documents, but some of these techniques

are much more amenable to database

queries than others.

XML Databases White Paper

6

The discipline of XML database design is

still evolving. In this section we discussed

a few ideas that reflect Software AG’s

growing experience of what works well

and what doesn’t.

The real message of this section, how-

ever, is that to succeed, you need more

than good technology: You also need to

understand how to apply it to your partic-

ular problems. You’ve guessed what the

sales message is: You need a product

that is backed by the experience and

service delivery capabilities of a company

that is not only a mature industry player,

but has also committed itself 100 percent

to the development of its XML capability.

Why Tamino XML Server?

We’ve discussed in this paper the differ-

ent ways that XML can be stored, and the

advantages that come from storing docu-

ments in a native XML database rather

than saving it either as a text file or bro-

ken up into many separate facts in a rela-

tional database.

Once you have made the decision to use

an XML database, the decision to use

Tamino XML Server usually follows quite

easily. Software AG is the most experi-

enced vendor in the field, with a host of

independent product endorsements and

awards, a mature product that always

compares well in competitive bench-

marks and feature comparisons, and the

capability to deliver the services that turn

the technology into business success in

Europe, North America, and around the

world.

What are the actual technical factors

that have made the product so well

respected? There are basically two: the

core engine, and the surrounding integra-

tion tools.

The core engine is:

� a thoroughly robust and scalable data-

base engine, with all the expected

capabilities in areas such as transaction

management, resource management,

security, and backup/recovery

� built from the ground up to handle XML

as its core data model, XML queries as

the core query language, and XML

Schema as the core schema language,

and with index structures, space man-

agement, and optimization algorithms

all custom-designed for XML

� built for the Internet. Unlike most rela-

tional systems, which were originally

designed in the client-server era and

often optimized for in-house depart-

mental applications with a few hun-

dred users, Tamino was designed in the

Internet age and its core architecture

relies on the use of Internet protocols.

This has a significant effect on the way

user authentication, security, and ses-

sion management operates, and means

that Tamino fits very naturally into

Web-based application frameworks

such as Enterprise JavaBeans severs

and Microsoft’s .NET environment.

Around this core, Software AG has cre-

ated a suite of tools and integration

options that make it easy to connect

Tamino’s XML engine to a wide variety of

other information sources, applications,

and development environments. In fact,

it is because this outer layer adds so

much value to the Tamino offering that

we refer to the product as an XML Server,

not merely an XML database.

Included in this outer layer are:

� Tamino X-Node and the Data Map,

which allow parts of the XML data

model to be transparently mapped to

external data sources, such as relational

databases

� Tamino X-Tension, which makes it pos-

sible to write user-defined server ex-

tensions. These add custom logic inside

the database, to implement application

functions such as data validation, event

notification, and linking to external ap-

plications via EntireX, Software AG’s

XML-based middleware for application

integration

� Management tools integrated into

Software AG’s System Management

Hub, which provides a central focus for

Web-based remote management of all

Tamino resources and other Software

AG products

� APIs for Java and .NET, each based on

the native data access conventions of

the specific environment

� Tamino X-Plorer, an easy-to-use graphi-

cal front-end that allows the database

contents to be browsed, queried, and

updated

� Tamino WebDAV Server, a WebDAV

interface, making Tamino directly acces-

sible to Content Management applica-

tions that use this increasingly popular

protocol

� XSLT transformation interface, making it

easy to define XSLT transformations that

render the XML results of a query as

HTML for display to the user

7

� Schema designer, a graphical tool for

designing the XML Schemas that define

the contents of a Tamino database, as

well as the definitions that control the

mapping of the logical XML model to

physical storage

In addition, Tamino offers an increasing

range of third-party client tools that fur-

ther increase the ability to integrate

Tamino into a wide variety of application

environments.

Summary

XML has become a huge success both in

its original application area of Web con-

tent management, and also as the pre-

ferred vehicle for application-to-applica-

tion data interchange. The success of XML

means that there is an increasing require-

ment to store XML documents for subse-

quent retrieval.

Although it is possible to store XML in the

form of text files, or to extract the data

from structured XML and store it relation-

ally, neither solution exploits the potential

of XML fully, in particular its ability to

hold semi-structured information. This has

created a market need for XML data-

bases. The fact that XML is radically dif-

ferent from other data models means

that there are particular advantages in

using a native XML database, designed

from the ground up to support XML data

and XML queries, rather than adapting a

database that was originally designed for

a quite different purpose.

Software AG’s Tamino XML Server is the

market leader in its field, and this paper

shows some of the technical reasons

behind this position.

XML Databases White Paper

Copyright © Software AG and/or its suppliers, Uhlandstraße 12, 64297 Darmstadt, Germany.
All rights reserved.
Software AG and/or all Software AG products are either trademarks or registered trademarks
of Software AG. Other product and company names mentioned herein may be the trademarks
of their respective owners.

IN
S/

W
P1

7E
04

03
 0

51

Software AG

Corporate Headquarters

Uhlandstraße 12

64297 Darmstadt, Germany

Tel: +49 - 6151-92- 0

Fax: +49 - 6151-92-1191

www.softwareag.com

