
OS/2 REXX:
From Bark to Byte

Document Number GG24-4199-00

December 1993

International Technical Support Organization
Boca Raton Center

Take Note!

Before using this information and the product it supports, be sure to read the
general information under “Special Notices” on page xix.

First Edition (December 1993)

This edition applies to OS/2 2.1.

Order publications through your IBM representative or the IBM branch office serving
your locality. Publications are not stocked at the address given below.

An ITSO Technical Bulletin Evaluation Form for reader ′s feedback appears facing
Chapter 1. If the form has been removed, comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. 91J, Building 235-2 Internal Zip 4423
901 NW 51st Street
Boca Raton, Florida 33431-1328

When you send information to IBM, you grant IBM a non-exclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

 Copyright International Business Machines Corporation 1993. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use,
duplication or disclosure is subject to restrictions set forth in GSA ADP Schedule
Contract with IBM Corp.

Abstract

This document describes OS/2 REXX from a usage and application scenario
basis. It includes OS/2 REXX interfaces to CM/2, DB2/2 and MMPM/2.

This document is intended for IBM system engineers, IBM technical advisors,
IBM authorized dealers, IBM customers and others who require a knowledge
of OS/2 2.1 REXX and its interfaces.

A working knowledge of OS/2 2.1 and REXX is assumed.

PS (336 pages)

 Copyright IBM Corp. 1993 iii

iv OS/2 REXX

Contents

Abstract . i i i

Figures . xii i

Tables . xvii

Special Notices . xix

Preface . xxi
How This Document is Organized . xxi
Related Publications . xxii
International Technical Support Organization Publications xxiii
Acknowledgments . xxiii

Chapter 1. Why REXX? . 1
1.1 Power of OS/2 2.1 REXX . 2
1.2 Example . 5

1.2.1 Sample 1 FAH2CEL.CMD . 5

Chapter 2. OS/2 REXX Specifics . 9
2.1 Calling from a REXX Procedure . 9

2.1.1 The REXX Call Instruction . 10
2.1.2 Calling OS/2 .EXE or Command Files 11
2.1.3 Multitasking with START and DETACH 15

2.2 File I/O with OS/2 REXX . 18
2.2.1 Charin(name,start,length) . 19
2.2.2 Charout(name,string,start) . 20
2.2.3 Chars(name) . 20
2.2.4 Linein(name,line,count) . 21
2.2.5 Lineout(name,string,line) . 21
2.2.6 Lines(name) . 22
2.2.7 Stream(name,operation,streamcommand) 22
2.2.8 Examples . 23

2.3 RxQueue . 25
2.3.1 PUSH . 25
2.3.2 QUEUE . 25
2.3.3 Private Queues Using RXQUEUE 26
2.3.4 LIFO, FIFO and CLEAR . 38

2.4 Printing . 38
2.4.1 PRINT Command . 39

 Copyright IBM Corp. 1993 v

2.4.2 Lineout and Charout . 39
2.4.3 Printer Objects . 39

2.5 PMREXX, REXXTRY and RxMessageBox 42
2.5.1 PMREXX . 42
2.5.2 REXXTRY . 46
2.5.3 RxMessageBox . 47

Chapter 3. External Functions . 49
3.1 Usefulness . 49
3.2 How to Register External Functions 50
3.3 Example - Accessing User Profile Management Services 51
3.4 Some Established External Function Packages 52

Chapter 4. REXX Utilities External Function Package (REXXUTIL) 53
4.1 Drives, Directories and Files . 54

4.1.1 SysDriveMap . 54
4.1.2 SysDriveInfo . 56
4.1.3 SysFileDelete . 58
4.1.4 SysFileTree . 58
4.1.5 SysFileSearch . 58
4.1.6 SysMkDir . 60
4.1.7 SysSearchPath . 60

4.2 Workplace Shell Objects . 60
4.2.1 SysCreateObject . 61
4.2.2 SysSetObjectData . 62

4.3 Miscalleneus Functions . 64
4.3.1 SysCls . 65
4.3.2 SysCurPos . 65
4.3.3 SysCurState . 65
4.3.4 SysGetKey . 66
4.3.5 SysSleep . 66
4.3.6 SysTextScreenRead . 67
4.3.7 SysTextScreenSize . 67

Chapter 5. The Workplace Shell and REXX 69
5.1 Objects and Object Classes . 69

5.1.1 WPFileSystem . 71
5.1.2 WPAbstract . 71
5.1.3 WPTransient . 71

5.2 Creating Objects . 72
5.2.1 Creating a Folder Object . 72
5.2.2 Creating a Program Object . 74
5.2.3 Creating a Shadow Object . 75

vi OS/2 REXX

5.2.4 Creating a Program Object in the Startup Folder 76
5.3 Creating Drag and Drop REXX Programs 77
5.4 Creating (Shadow) Objects Associated With Data Files 78
5.5 Modifying Workplace Shell Objects . 79

5.5.1 Object IDs . 79
5.5.2 RC Files . 79
5.5.3 User INI File . 80
5.5.4 SysSetObjectData . 81

5.6 Moving Objects . 84
5.7 SysIni . 84

5.7.1 Using SysIni to Change System Settings 85
5.7.2 Using SysIni to Read INI Data . 87

5.8 Extended Attributes . 89

Chapter 6. REXX and C . 93
6.1 Creating C Functions for REXX . 93

6.1.1 RXSTRING . 94
6.1.2 Writing the C Function . 94
6.1.3 Parameter Handling . 97

6.2 Creating DLLs Callable by REXX Programs 100
6.3 Calling REXX from C (REXXSTART Function) 101

Chapter 7. Multimedia REXX . 105
7.1 MMPM/2 Installation . 106
7.2 Using MCI from REXX . 106

7.2.1 Registering MMPM/2 Functions . 106
7.2.2 Checking if MMPM/2 is Installed 106
7.2.3 Opening a Media Device . 107
7.2.4 Error Checking . 108
7.2.5 MCI Commands . 108
7.2.6 ACQUIRE . 109
7.2.7 CAPABILITY . 109
7.2.8 CLOSE object . 110
7.2.9 CONNECTOR . 110
7.2.10 INFO . 111
7.2.11 Load . 111
7.2.12 PAUSE . 112
7.2.13 PLAY . 112
7.2.14 RECORD . 113
7.2.15 RELEASE . 113
7.2.16 RESUME . 113
7.2.17 SAVE . 114
7.2.18 SEEK . 114

Contents vii

7.2.19 SET . 114
7.2.20 STATUS . 115
7.2.21 STOP . 115

7.3 RXPLAY.EXE . 115

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 125
8.1 EHLLAPI Uses . 125
8.2 Calling EHLLAPI Functions from REXX Programs 126
8.3 Connecting and Disconnecting Host Sessions 127
8.4 Reading the Host Screen . 128

8.4.1 How to Obtain the Presentation Space Dimensions 128
8.4.2 Copying the Presentation Space 129
8.4.3 Searching the Presentation Space 130

8.5 Sending Keystrokes to the Host Session 131
8.6 Determining Host Availability . 131

8.6.1 Using Screen Changes to Manage Host Availability 132
8.6.2 Query Host Update Function . 134
8.6.3 Pause Function . 135
8.6.4 Wait Function . 136
8.6.5 A Sample Host Checking Algorithm 136

8.7 A Sample EHLLAPI Program - EHLRDR.CMD 137
8.8 Sending and Receiving Files . 145

8.8.1 Example - EHLSF.CMD . 145
8.8.2 Example - EHLRECV.CMD . 147

8.9 Manipulating the Presentation Space Window 150

Chapter 9. REXX Interfaces to DB2/2 . 151
9.1 DB2/2 Installation and Setup . 151
9.2 How to Register DB2/2 Functions . 152
9.3 User Profile Management (UPM) . 153
9.4 DB2/2 Database Administration . 154

9.4.1 Server Workstation Database Administration 154
9.4.2 Client Workstation Database Administration 159

9.5 Embedding Structured Query Language (SQL) Statements in REXX
Programs . 163

9.5.1 Static vs. Dynamic SQL . 163
9.5.2 SELECT Statement . 164
9.5.3 Varying List SELECT . 167
9.5.4 Changing Table Data . 170
9.5.5 Adding Rows to a Table . 170
9.5.6 Updating Rows . 171

9.6 Error Handling . 174
9.7 Testing Observations . 174

viii OS/2 REXX

9.8 Database Application Remote Interface (DARI) 175

Chapter 10. Visual REXX Builders . 177
10.1 VisPro/REXX . 177
10.2 VX-REXX . 179
10.3 Example - SELECT.CMD . 179
10.4 SELECT.CMD with VisPro/REXX . 180

10.4.1 Initial Setup . 180
10.4.2 The Main Form . 181
10.4.3 Main Window Layout . 184
10.4.4 Adding a Menu Bar . 186
10.4.5 Copying REXX Code . 188
10.4.6 Drag and Drop Programming . 191
10.4.7 Creating a Secondary Form . 193
10.4.8 Creating Events . 194
10.4.9 List Tables . 196
10.4.10 GETTABLE.CMD . 197
10.4.11 SubProcs - SQLERR.CMD . 197
10.4.12 Show Table Rows . 198
10.4.13 Build the Application . 198
10.4.14 Tip on Adding an Icon to the .EXE file 199

10.5 SELECT.CMD with VX-REXX . 200
10.5.1 Initial Setup . 200
10.5.2 Primary Window Setup (Window1) 202
10.5.3 Program Initialization . 207
10.5.4 Create the Table Window . 212
10.5.5 Selecting a Database . 214
10.5.6 Loading the Table Window . 217
10.5.7 Creating the Table Window . 218
10.5.8 Selecting a Table . 220
10.5.9 Cancel from Table Window . 221
10.5.10 General Routines . 222
10.5.11 Testing Applications . 223
10.5.12 Creating the Executable Version 224

Appendix A. REXX Syntax Diagrams . 225
A.1 Keyword Instructions . 226
A.2 Functions . 231

A.2.1 Built-in Functions . 231
A.2.2 OS/2 API Functions . 240
A.2.3 REXX Utils Functions . 240

Appendix B. OS/2 DB2/2 REXX Reference 245

Contents ix

B.1 REXX DB2/2 API Syntax . 245
B.2 SQL Statements Syntax . 251

B.2.1 SQL Statements Passed Directly to SQLEXEC 253
B.2.2 Dynamic REXX SQL Statements 254

B.3 SQL REXX Data Structures . 262
B.3.1 SQLCA . 262
B.3.2 SQLDA . 263
B.3.3 SQLCHAR . 264
B.3.4 SQLOPT . 264
B.3.5 SQLEDINFO . 264
B.3.6 SQL_DIR_ENTRY . 264
B.3.7 SQLENINFO . 265
B.3.8 SQLESYSTAT and SQLEDBSTAT 265
B.3.9 SQLEUSRSTAT . 266
B.3.10 SQLDCOL . 266
B.3.11 SQL_AUTHORIZATIONS . 266

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 269
C.1 WPFolder Setup String Parameters 269

C.1.1 WPFolder Background Setup String Parameters 273
C.1.2 WPFolder File Setup String Parameters 274
C.1.3 WPFolder Window Setup String Parameters 275
C.1.4 WPFolder General Setup String Parameters 277
C.1.5 WPFolder Icon Related Setup String Parameters 278
C.1.6 WPFolder Miscellaneous Setup String Parameters 278
C.1.7 WPFolder Object Properties Setup String Parameters 280

C.2 WPProgram Setup String Parameters 280
C.2.1 WPProgram Setup String Parameters 281
C.2.2 WPProgram Parameters Substitution Characters 282
C.2.3 WPProgram Session Setup String Parameters 283
C.2.4 WPProgram Session Setup String Parameters for PROGTYPE . 284
C.2.5 WPProgram DOS and WIN-OS2 Settings 286
C.2.6 WPProgram Association Setup String Parameters 290
C.2.7 WPProgram Window Setup String Parameters 292

C.3 RGB Values for Fixed Colors of OS/2 2.1 293

Appendix D. CM/2 REXX EHLLAPI Reference 295
D.1 REXX EHLLAPI Functions . 295
D.2 Keyboard Mnemonics . 300

Appendix E. Published Books, Manuals, and Papers on REXX 309
E.1 Books and IBM Manuals Available Through Usual IBM Channels . . 309

E.1.1 Cross-system books . 309

x OS/2 REXX

E.1.2 VM . 309
E.1.3 MVS . 310
E.1.4 OS/2 . 310
E.1.5 AS/400 . 311
E.1.6 VSE . 311
E.1.7 Applications and Other REXX-related Books 311

E.2 Non-IBM Books and Manuals . 311
E.2.1 Applications and other REXX-related books 313

E.3 Papers . 313

List of Abbreviations . 315

Index . 317

Contents xi

xii OS/2 REXX

Figures

 1. Example FAH2CEL.CMD Part 1 . 5
 2. Example FAH2CEL.CMD Part 2, Function Fah 6
 3. Example FAH2CEL.CMD Part 3, Function Cel 7
 4. Screen Shot of SAMPLE.CMD Application 14
 5. Data File Used for REXX Multitasking Example 15
 6. Part of the Program to Do Calculations and Call Print Routine . . . 16
 7. Part of the Program to Print Reports in a Separate Process 17
 8. Separate REXX CMD File to Print Output 17
 9. Printed Output from REXX Multitasking Sample 18
10. Example of Charin, Charout and Chars 21
11. Example of Linein and Lines Commands 22
12. Examples of Stream Command Usage 23
13. VM Specific Example of Reading a File Using EXECIO 24
14. OS/2 and VM Independent Example of Reading a File 24
15. Example of Loading and Displaying a Session Queue 26
16. Example of Displaying a Session Queue 26
17. Private Queue Part 1, Create Queues 27
18. Private Queue Part 2, Place Data in Queues 28
19. Private Queue Part 3, Show Contents 28
20. Displayed Output from Private Queue Example 29
21. Private Queue Across Two Separate Sessions Part 1 30
22. Private Queue Across Two Separate Sessions Part 2 31
23. Private Queue, Input in Separate Session Part 1 31
24. System Output to REXX Part 1, Main Body 33
25. System Output to REXX through Queues Part 1 34
26. System Output to REXX through Queues Part 2 35
27. System Output to REXX through Queues Part 3 36
28. System Output to REXX through Queues Part 4 37
29. System Output to REXX through Queues Part 5 37
30. LIFO, FIFO and CLEAR with RXQUEUE 38
31. Change Printer Driver Installation Path 40
32. Set Timeout Value for the Printer Offline Menu 41
33. Set Printer Ports LPT1 to LPT9 . 41
34. PMREXX Example - RXCALC.CMD . 43
35. REXX Calculator for PMREXX . 44
36. PMREXX Window for RXCALC . 45
37. Using RxMessageBox from Non-PM Programs 45
38. RxMessageBox for RXCALC.CMD . 46
39. Calling External REXX Function . 49
40. Register an External Function . 50

 Copyright IBM Corp. 1993 xiii

41. Drop an External Function . 51
42. UPMUSRID.CMD . 51
43. The Mammal Class Hierarchy . 69
44. The Workplace Shell Object Class Hierarchy 70
45. Create Folder Object . 73
46. Create Program Object . 74
47. Create a Shadow Object . 75
48. Create Program Object in Startup Folder - WPSREG.CMD 76
49. REGFUNC.CMD . 76
50. Associate Files to Program Object - WPSDRAG.CMD 78
51. Create Shadow of a Data File . 78
52. REXX Program to Display All Installed Object IDs 81
53. SysSetObjectData to Open an Object 82
54. SysSetObjectData to Change Icon View Setting 82
55. SysSetObjectData to Make an Object Undeletable 82
56. SysSetObjectData to Hide an Object 83
57. SysSetObjectData to Associate Object with Icon 83
58. SysIni to Change Desktop Background Color 86
59. SysIni to Change System Settings . 87
60. REXX Program to Display All Installed Object IDs 88
61. GEA.CMD . 90
62. Register SysCls . 93
63. RXSTRING . 94
64. QryUserID . 95
65. GETUSER.CMD . 97
66. SysCurPos . 98
67. Creating DLL Compile and Link Steps - GENEXT.CMD 100
68. EXTFUNC.DEF . 100
69. Using EXTFUNC.DLL Functions - CALLEXT.CMD 101
70. Calling REXX From C Example - REXXDB2.C 102
71. Registering REXX MMPM/2 . 106
72. Checking if MMPM/2 is Installed . 107
73. Opening a File and a Media Device 107
74. Opening a Media Device . 107
75. Error Checking in MMPM/2 REXX . 108
76. Usage of Connector to Query Wave Stream Capability 111
77. Load a File to a Device . 111
78. PAUSPLAY.CMD, Play a Video From a REXX .CMD File 112
79. Play a Video Continuously From a REXX .CMD File 114
80. RXPLAY.EXE MMPM/2 REXX Player 116
81. MMPM/2 REXX Player Device Open 117
82. MMPM/2 REXX Player File Open . 118
83. MMPM/2 REXX Player Position Media Player 119

xiv OS/2 REXX

84. MMPM/2 REXX Player Command List 120
85. MMPM/2 REXX Player Status List . 121
86. MMPM/2 REXX Player Status List . 122
87. MMPM/2 REXX Player Save to File 123
88. MMPM/2 REXX Player Information . 124
89. Register HLLAPISRV and Connect to Presentation Space Window 127
90. Connect to Host Session . 127
91. Disconnect from Host Session . 127
92. Obtain Presentation Space Row and Column Values 129
93. Copy Last Row of Host Screen . 129
94. Search Presentation Space . 130
95. Sendkey Function . 131
96. Invoking Rdrlist with No Host Checking 132
97. Invoking Rdrlist with Host Checking 133
98. Query Host Update Function . 134
99. Pause Function . 135
100. Wait Function . 136
101. Host Check Using Wait, Pause, and Query_Host_Update 137
102. Main Routine of EHLRDR.CMD . 138
103. Get_PS_Dimensions Routine . 139
104. FinishUp Routine . 139
105. Sendkey_and_wait Routine . 140
106. Host_error Routine . 140
107. Get_To_RdrList_Screen Routine . 141
108. Leave_RdrList_Screen Routine . 142
109. ProcessRdrList . 143
110. EHLSF.CMD Main Routine . 146
111. EHLSF.CMD SendIniFiles Routine . 147
112. EHLRECV.CMD Main Routine . 148
113. EHLRECV.CMD ReceiveIniFiles Routine 149
114. Registering SQLDBS and SQLEXEC 153
115. Grant Access to Database . 155
116. Revoke Access from Database . 156
117. Grant Access to Table . 157
118. Revoke Access from Table . 158
119. Catalog APPC Node . 160
120. Uncatalog Node . 161
121. Catalog Remote Database . 162
122. UnCatalog Remote Database . 163
123. SELECT Statement Example . 165
124. Varying List SELECT . 168
125. Adding a Row . 171
126. Mass Update . 172

Figures xv

127. Update Row by Row . 172
128. SQL Error Handling . 174
129. Project Folder in VisPro/REXX . 181
130. Layout View in VisPro/REXX . 182
131. Main Form Layout in VisPro/REXX . 185
132. Form Settings Notebook in VisPro/REXX 186
133. Menu Bar Designer in VisPro/REXX 187
134. Code Window in VisPro/REXX . 188
135. Add Window Management in Code Window in VisPro/REXX 189
136. Drag and Drop Programming in VisPro/REXX 191
137. Create Link in VisPro/REXX . 192
138. Tables Form in VisPro/REXX . 193
139. VX-REXX Initial Screen . 202
140. Text Page of Window1 Properties . 203
141. Window1 . 204
142. Menu Editor . 205
143. Window1 Customized . 207
144. Init Routine . 208
145. Creating a Message Box . 210
146. Message Box Code . 210
147. Drag ListBox Object . 211
148. Init Routine Code to Load ListBox Object 212
149. Table Window . 214
150. PB_1_Click Routine . 215
151. PB_1_Click Routine with Generated Code 217
152. TableCreate Routine . 219
153. LB_2_DoubleClick Routine . 221
154. Sqlerr Routine . 223
155. Select Application . 224
156. Open Options of a Folder . 269
157. View Page of a Folder Settings Notebook 270
158. Background Page of a Folder Settings Notebook 273
159. File Page of a Folder Settings Notebook 274
160. Window Page of a Folder Settings Notebook 275
161. General Page of a Folder Settings Notebook 277
162. Program Page of a Program Settings Notebook 281
163. Session Page of a Program Settings Notebook 284
164. Settings Dialog on the Session Page of a Program Settings

Notebook . 286
165. Association Page of a Program Settings Notebook 291
166. Window Page of a Program Settings Notebook 292

xvi OS/2 REXX

Tables

 1. WPFolder View Setup String Parameters 271
 2. WPFolder Background Setup String Parameters 273
 3. WPFolder File Setup String Parameters 274
 4. WPFolder Window Setup String Parameters 276
 5. WPFolder General Setup String Parameters 277
 6. WPFolder Icon Related Setup String Parameters 278
 7. WPFolder Miscellaneous Setup String Parameters 279
 8. WPFolder Object Properties Setup String Parameters 280
 9. WPProgram Program Setup String Parameters 281
10. Program Parameters Substitution Characters 282
11. WPProgram Session Setup String Parameters 283
12. WPProgram Session Setup String Parameters for PROGTYPE= . . 285
13. DOS and WIN-OS2 Settings Fields < d e f a u l t > 286
14. WPProgram Association Setup String Parameters 291
15. WPProgram Window Setup String Parameters 292
16. RGB Values for the 16 Fixed Colors of OS/2 2.1 293
17. Mnemonics with Uppercase Alphabetic Characters 301
18. Mnemonics with Lowercase Numbers or Letters 301
19. Mnemonics with @A and @ Uppercase Alphabetic Characters . . 303
20. Mnemonics with @A and @ Lowercase Alphabetic Characters . . 304
21. Mnemonics with @A and @ Alphanumeric (Special) Characters . 305
22. ASCII Mnemonics Using Data Keys and Combinations of Shift (@S)

and @ Uppercase Alpha Keys . 305
23. Alphabetic Keys . 306
24. Mnemonics with Special Character Keys 307

 Copyright IBM Corp. 1993 xvii

xviii OS/2 REXX

Special Notices

This publication is intended to help customers and IBM technical
professionals understand the capabilities and interfaces of OS/2 2.x REXX.
The information in this publication is not intended as the specification of any
programming interfaces that are provided by OS/2 2.x. See the
PUBLICATIONS section of the IBM Programming Announcement for OS/2 2.x
for more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM′s product, program, or service may
be used. Any functionally equivalent program that does not infringe any of
IBM ′s intellectual property rights may be used instead of the IBM product,
program or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject
matter in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to
the IBM Director of Commercial Relations, IBM Corporation, Purchase, NY
10577.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
(VENDOR) products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer′s ability to evaluate and
integrate them into the customer′s operational environment. While each item
may have been reviewed by IBM for accuracy in a specific situation, there is
no guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in

 Copyright IBM Corp. 1993 xix

other operating environments may vary significantly. Users of this document
should verify the applicable data for their specific environment.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific
information relative to the implementation of the PTF when it becomes
available to each customer according to the normal IBM PTF distribution
process.

The following terms, which are denoted by an asterisk (*) in this publication,
are trademarks of the International Business Machines Corporation in the
United States and/or other countries:

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies:

Advanced Peer-to-Peer Networking AIX
CUA DATABASE 2
DB2 DB2/2
DISTRIBUTED DATABASE CONNECTION
SERVICES/2

IBM

ISSC Multimedia Presentation Manager/2
OS/2 OS/400
Personal System/2 Presentation Manager
SAA WIN-OS/2
Workplace Shell EHLLAPI

Amiga DeskMan/2
GPF 1-2-3, Lotus, Freelance, Freelance

Graphics
Hockware VisPro/REXX
Watcom VX-REXX

xx OS/2 REXX

Preface

This document describes OS/2 REXX from a usage and application scenario
basis. It includes OS/2 REXX interfaces to CM/2, DB2/2 and MMPM/2.

This document is intended for IBM technical professionals, IBM technical
advisors, IBM authorized dealers, IBM customers and others who require a
knowledge of OS/2 2.1 REXX and its interfaces.

A working knowledge of OS/2 2.1 and REXX is assumed.

How This Document is Organized
The document is organized as follows:

• Chapter 1, “Why REXX?”

This is a comprehensive look at the advantages and disadvantages of the
REXX language.

• Chapter 2, “OS/2 REXX Specifics”

This chapter gives a brief overview to the features of OS/2 REXX and
describes some of the major differences between OS/2 REXX and the
other platforms.

• Chapter 3, “External Functions”

This chapter focuses on external functions written in compiled languages
that are accessible by REXX programs.

• Chapter 4, “ REXX Utilities External Function Package (REXXUTIL)”

This chapter will focus on some of the most useful features in RexxUtils
although some of the utilities are used in examples throughout this book.

• Chapter 5, “The Workplace Shell and REXX”

This chapter takes a look at the REXXUTIL functions, and different ways
that they can be used to manipulate the Workplace Shell.

• Chapter 6, “ REXX and C”

This chapter will discuss in detail how to write C functions that are
accessible by REXX, as well as an in depth look at how to call REXX
functions from C programs.

• Chapter 7, “Multimedia REXX”

 Copyright IBM Corp. 1993 xxi

In this chapter the REXX interfaces to the MMPM/2 software application
are explained in detail. Examples are provided.

• Chapter 8, “REXX Interfaces to CM/2 EHLLAPI”

This chapter will focus on REXX EHLLAPI APIs and their interaction
 with 3270 sessions.

• Chapter 9, “REXX Interfaces to DB2/2”

This chapter discusses how the DB2/2 interfaces can be used to create
useful REXX programs. Example programs are provided and explained.
The installation and setup required for REXX programs to access remote
workstation databases is also provided.

• Chapter 10, “Visual REXX Builders”

In this chapter we take an existing REXX application and convert it into a
VX-REXX program, as well as a VisPro/REXX program.

Related Publications
The publications listed in this section are considered particularly suitable for
a more detailed discussion of the topics covered in this document. A general
listing of other REXX related documentation can be found in Appendix E,
“Published Books, Manuals, and Papers on REXX” on page 309.

• Procedures Language 2/ REXX Reference, S10G-6268

• Procedures Langauge 2/ REXX User′s Guide, S10G-6269

• SAA CPI REXX Level 2 Reference, SC24-5549

• IBM Database 2 OS/2 Programming Reference, S62G-3666

• IBM Database 2 OS/2 SQL Reference, S62G-3667

• IBM Communications Manager/2 EHLLAPI Programming Reference,
SC31-6163

• OS/2 2.1 Unleashed, SR28-4318

• The REXX Language: A Practical Approach to Programming

• VisPro/REXX for OS/2 2.x

• Watcom VX-REXX for OS/2 Programmer′s Guide and Reference

xxii OS/2 REXX

International Technical Support Organization Publications
A complete list of International Technical Support Organization publications,
with a brief description of each, may be found in:

Bibliography of International Technical Support Organization Technical
Bulletins, GG24-3070.

Acknowledgments
The advisor for this project was:

Jerry A. Stegenga II
International Technical Support Organization, Boca Raton

The authors of this document are:

Richard Rogers
IBM United States

Ilari Rönnberg
IBM Finland

This publication is the result of a residency conducted by the International
Technical Support Organization at the Boca Raton Center.

Thanks to the following people for the invaluable advice and guidance
provided in the production of this document:

Tim Sennitt, International Technical Support Organization, Boca Raton

Niels Gylling, IBM Denmark Responsor

Richard Kurtz, IBM Poughkeepsie

Mike Lamb, ISSC Kingston

Bret Curran, IBM Personal Systems Support Center Dallas

Juan van der Breggen, ISM South Africa

And the various contributors to the REXX Fora

Preface xxiii

xxiv OS/2 REXX

Chapter 1. Why REXX?

REstructured eXtended eXecutor language (REXX) was developed with the
intention of providing a language that makes programming easier. It is a
language designed for the computer administrator, whether the administrator
is an experienced programmer or just a beginner. Because of this, learning
how to program effectively in the REXX language is considerably easier than
in many other languages. No compiler is required. It is an interpreted
language, meaning each step of the program is evaluated and then executed
each time the program runs. REXX evolved out of the EXEC and EXEC 2
languages that provided a way to bundle Conversational Monitor System
(CMS) commands together. REXX took that concept a step further by
providing the CMS command interface along with the syntax and function of
a more robust programming language. REXX was developed and used
internally at IBM* for a few years before being made a part of the Virtual
Machine/System Product (VM/SP) in 1983. In 1987 REXX was chosen by IBM
to be the Systems Application Architecture (SAA*) procedural language,
paving the way for the important role it has assumed in the Operating
System/2* (OS/2*) product.

A strength of the REXX language is that it is very easy for you to write REXX
programs that interface with the operating system that your program will be
running on. REXX is compatible with the VM, Multiple Virtual Storage (MVS),
Advanced Interactive eXecutive (AIX*), and OS/2 operating systems, among
others. REXX has been a part of OS/2 since Version 1.2. If you have OS/2,
then you have all that you need to write REXX programs. Since REXX is
packaged with OS/2, there are many interfaces to OS/2 functions provided for
REXX programming. Given that REXX is an inherent part of OS/2, it is a
natural way to explore OS/2 function as well as products that integrate with
OS/2.

The intent of this book is to focus on OS/2 specific features of the REXX
language, and to provide information on how to use REXX to interact with
OS/2 and some OS/2 compatible functions. This redbook is not a tutorial on
how to program in REXX. The REXX syntax and command reference are
provided in Appendix A, “REXX Syntax Diagrams” on page 225 as a
convenience. There are many good books and technical references that are
very helpful for the beginning REXX programmer. (See “Related
Publications” on page xxii.) We have also included syntax and programming
reference information for each of the OS/2 interfaces we focus on in this
book.

 Copyright IBM Corp. 1993 1

1.1 Power of OS/2 2.1 REXX
Since REXX is a part of the OS/2 2.1 package, most of the features of OS/2
2.1 are accessible through REXX. For example, there are functions contained
in the REXX Utilities package that provide for manipulation of the Workplace
Shell*, desktop and file directories. OS/2 2.1 REXX has the capability of
using dynamic link libraries (DLL) to interface with other software
applications, for example Ultimedia*, Communications Manager for OS/2
(CM/2), and Database 2* for OS/2 (DB2/2*). All of these languages provide
application programming interfaces (APIs) that allow REXX programs to
interface with them. There are numerous Visual REXX products on the
market that link REXX programs to OS/2 Presentation Manager* (PM).
Because REXX is not compiled, the performance in terms of execution speed
of a REXX program does not compare to compiled languages running under
OS/2 2.1. However, it is obvious that REXX is a strategic part of the OS/2
world of products and is often the fastest way to create, or interface to, an
application.

Here is a more comprehensive look at the advantages and disadvantages of
the REXX language.

Advantages:

• System independent coding for:

− VM

− MVS

− Operating System/400 (OS/400*)

− Advanced Interactive Executive (AIX)

− OS/2

− Amiga**

• Character strings are the only data type. Handling depends on usage.
For example, numbers can be manipulated by string operations:

Number = ′5678′
LastOne = Substr(Number,4,1)
Say LastOne /* Will Display 8 */

or the same number can be used for numeric calculation:

Number = ′5678′
LastOne = Substr(Number,4,1)
Multiplied = LastOne * Number
Say Multiplied /* Will Display 45424 */

2 OS/2 REXX

• Powerful string handling functions. For example:

TextLine = ′ This is a line of text′
PartOfFourth = Substr(Word(TextLine,4),3,2)
Say PartOfFourth /* Will Display ne */

• Associative arrays. For example:

Do I = 1 to 4
Data.I = ′ DATA ′ I

End
Do I = 1 to 4
Say Copies(″ ″,I) Data.I

End
/* Will say
 DATA 1
DATA 2
DATA 3
DATA 4

*/

• Decimal arithmetic, precision decided by programmer

• Interpretive language for faster development

• Programming styles to fit anybody, from one line code to Common
Business Oriented Language (COBOL) style

• Natural, english like syntax

• SAA language

• Future recognition by American National Standards Institute (ANSI) and
the International Organization for Standardization (ISO)

• Access to operating environment commands

• REXX enabled products such as:

− LOTUS** Notes (INTERFLOX)

− LOTUS 1-2-3**

− Personal Application System/2 (PAS/2)

− Enhanced editor for PM (EPM)

• REXX API interfaces provided to environments such as:

− DB2/2 Query Manager CM/2

− Advanced Program-to-Program Communication (APPC)

− Emulator High Level Language Application Programming Interface
(EHLLAPI*)

Chapter 1. Why REXX? 3

− Common Programming Interface for Communications (CPI-C)

− Multimedia Presentation Manager/2* (MMPM/2)

• External function packages, existing and possibility to build your own

• Can replace command lists (batch languages) with structured approach

• Visual builders (VisPro/REXX** by HockWare**, VX-REXX** by Watcom**,
GPF* * REXX tool by GPF) allow easy access to common user access
(CUA*) objects and event programming

• Packaged with OS/2 and other operating systems, so no separate
purchase necessary to start programming with REXX

• Evolving language, moving towards Object REXX

Disadvantages:

• Interpreted, not compiled for OS/2. Faster and easier development and
version independence but slightly slower performance

• Differences between operating systems especially file I/O

• REXX data type, the string, not supported well in other languages thus
requiring extra conversions when invoking programs or functions written
in other languages

4 OS/2 REXX

1.2 Example
Following is an example showing structured programming in REXX and the
use of REXX variables in both string and arithmetic operations. The example
is used for converting temperatures from Fahrenheit to Celsius and vice
versa. The names of places in the example are purely coincidental and have
only been selected to show selection logic in REXX.

All examples in this book are also included in the REXX Samples diskette
shipped with the book.

1.2.1 Sample 1 FAH2CEL.CMD

/* Calculate Fahrenheit in Boca Raton to Celsius */
/* or Celsius in Helsinki to Fahrenheit */
Do Until Pos(Ans,′ CF′) > 0 /* Loop until answer either C or F */

′ CLS′ /* Clear the screen */
Say ′ Do you wish to convert Celsius in Helsinki or′
Say ′ Fahrenheit in Boca Raton?′ /* Display question */
Say ′ Answer C for Celsius of F for Fahrenheit′
Pull Ans /* Get the answer from keyboard */
Ans = Translate(Ans,′ CF′ , ′ cf′) /* Translate to uppercase */

End
If Ans = ′ F′ then Call Fah /* Translate Fahrenheit to Celsius */
Else Call Cel /* Translate Celsius to Fahrenheit */
Exit /* The Exit point for program */

Figure 1. Example FAH2CEL.CMD Part 1

The first part of the program, Figure 1 provides screen output via the Say
function as well as input via the Pull function. It uses the string function Pos
to search if the keyboard input is valid and Translate to translate the input to
uppercase. CLS is used to show how standard OS/2 commands can be used
from within REXX. Call is used to show how separate procedures can be
called within the program to provide a more structured approach. Do Until is
shown as one way of using loops in a REXX program.

Chapter 1. Why REXX? 5

Fah:

Do Until Datatype(Fahrenheit) = ′ NUM′
/* Do until datatype = numeric */

Say ′ Give temperature in Boca Raton in Fahrenheit:′
Pull Fahrenheit
If Datatype(Fahrenheit) <> ′ NUM′ then Iterate

/* If not numeric, loop again */
Celsius = -32*5/9+Fahrenheit*5/9

/* 0 Celsius = -32 Fahrenheit */
/* 1 Fahrenheit = 5/9*Celsius */
Select /* Select from various situations */
When Celsius < -273.15 then Do
Say ′ Impossible, below absolute freezing point!!′
Say ′ Otherwise answer would be:′ Celsius
Exit

End
When Celsius < 20 then Do
Say ′ Are you sure you are talking about Boca Raton′
Say ′ and not Helsinki or the North Pole?′
Say ′ This low temperature is:′ Celsius

End
When Celsius > 90 then Do
Say ′ Say, are we talking about Venus here?′
Say ′ This temperature is:′ Celsius

End
Otherwise /* None of the above */
Say ′ Temperature in Boca Raton in Celsius is:′ Celsius

End
End

Return

Figure 2. Example FAH2CEL.CMD Part 2, Function Fah

The second part of the program shows the use of Iterate to provide control
inside a loop by going to the beginning of loop without executing the rest of
the instructions within the loop. Select is used to show how REXX can be
instructed to select an instruction from various alternatives. Datatype can be
used to determine if the variable can be used as a valid numeric value.
Celsius = -32*5/9+Fahrenheit*5/9 shows how REXX can handle calculations
with its string variable.

6 OS/2 REXX

Cel:

Do Until Datatype(Celsius) = ′ NUM′
Say ′ Give temperature in Helsinki in Celsius:′
Pull Celsius
If Datatype(Celsius) <> ′ NUM′ then Iterate
Fahrenheit = 32+Celsius*9/5
Select
When Celsius < -273.15 then Do
Say ′ Impossible, below absolute freezing point!!′
Say ′ Otherwise answer would be:′ Fahrenheit
Exit

End
When (Fahrenheit > 60) & (Fahrenheit < 194) then Do
Say ′ Are you sure you are talking about Helsinki′
Say ′ and not somewhere south?′
Say ′ This High temperature is:′ Fahrenheit

End
When Fahrenheit >= 194 then Do
Say ′ Say, are we talking about Venus here?′
Say ′ This temperature is:′ Celsius

End
Otherwise
Say ′ Temperature in Helsinki in Fahrenheit is:′ Fahrenheit

End
End

Return

Figure 3. Example FAH2CEL.CMD Part 3, Function Cel

The third part is basically the second part reversed to provide a complete
solution to a common question of calculating temperatures.

Chapter 1. Why REXX? 7

8 OS/2 REXX

Chapter 2. OS/2 REXX Specifics

REXX, also called SAA CPI Procedures Language, has been standardized as
the procedure language for the following platforms:

• VM

• TSO/E

• OS/400

• OS/2

Since REXX is tightly integrated with the operating system and utilizes the
features provided by that environment, there are unique features in each of
the REXXs depending on their specific environment. It is also possible to
code additional functions to REXX as external function packages to provide
system specific functions like object manipulation.

An example of this is the functions provided with OS/2 REXX REXXUTIL DLL.
These functions are system specific and cannot be used on other platforms
or when writing portable programs. They can, however, provide some
powerful features for OS/2. These functions are more fully described in
Chapter 4, “ REXX Utilities External Function Package (REXXUTIL)” on
page 53.

OS/2 is the only REXX platform that has full SAA Common Programming
Interface (CPI) Procedures Language level 2 support to date. Level 2 support
is described in SAA CPI REXX Level 2 Reference. OS/2 REXX commands
also perform, in some cases, differently from what VM programmers are
used to. This chapter gives a brief overview of OS/2 REXX features and
describes some of the major differences between OS/2 REXX and the other
platforms.

2.1 Calling from a REXX Procedure
In order to work efficiently with REXX under OS/2 some knowledge of
particular OS/2 commands is needed. For example, DETACH and START can
give your OS/2 REXX programs powerful multitasking capabilities unknown to
most VM programmers. Having this ability to execute procedures and
commands in separate sessions can, in many cases, increase the
performance of your program.

 Copyright IBM Corp. 1993 9

For instance, an OS/2 REXX program can do screen input in one process,
fetch data in another, and do calculations in the third. All this can be done in
parallel sessions with REXX using the START or DETACH command.

2.1.1 The REXX Call Instruction
To call to another REXX CMD in OS/2 you must use the CALL instruction.
For example, you have two REXX programs, MAIN.CMD and SUB.CMD, and
MAIN.CMD calls SUB.CMD using the statement:

SUB

Now this statement would work in VM but it will give the following error
message in OS/2:

SYS1803: Chaining was attempted from a REXX batch file.

Typing HELPMSG SYS1803 at an OS/2 command prompt will give you the
following explanation:

SYS1803: Chaining was attempted from a REXX batch file.

EXPLANATION: CMD.EXE does not support chaining from REXX
batch files.
ACTION: Check your REXX batch file for other batch files
names. Precede the batch file name that you want started
with the REXX keyword CALL.

Using the statement:

Call SUB

however, will work in both environments.

 Note

For the Call instruction the interpreter looks first for a corresponding label
in your procedure. If no label is found, the interpreter then looks for a
built-in function or a .CMD file with that name.

You cannot use Call to start OS/2 commands or EXE files. See the
following sections on how to do this.

10 OS/2 REXX

2.1.2 Calling OS/2 .EXE or Command Files
Because OS/2 commands and .EXE files are not OS/2 batch files they cannot
be executed using Call. You can execute OS/2 commands or EXE files by
one of the following methods:

• Use the command name (with or without quotes)

For example:

DIR

or

′ DIR′

This starts the command within the same session and processing will
continue once the command has terminated. Some details about using
just the OS/2 command are described in 2.1.2.1, “The OS/2 Command
Name.”

• Use the START command

For example:

START /F ′ DIR′

is will start a command in a new session and processing will continue
immediately after the command is issued. Some details about the
START command are described in 2.1.2.2, “The START Command” on
page 12.

• Use the DETACH command

For example:

′ DETACH DIR > OUT.FIL′

This starts and simultaneously detaches an OS/2 program from its
command processor. Some details about the DETACH command are
described in 2.1.2.3, “The DETACH Command” on page 14.

2.1.2.1 The OS/2 Command Name
Starting OS/2 commands by simply using their names will provide a single
tasking environment. Quotes, however, should be used to ensure that the
command name has not been used previously as a variable. REXX will allow
you to use variables as commands and does not reserve any names for
system use. So the following:

DIR = ′ TREE′
DIR

would execute the command TREE, not display a directory listing.

Chapter 2. OS/2 REXX Specifics 11

2.1.2.2 The START Command
The Start command is used to start OS/2 commands or DOS commands in a
separate session. The complete description of the START command can be
found in the OS/2 Command Reference or the online version which is located
in the Information folder on the default desktop. Some useful parameters for
the START command are included here.

/B Parameter

Makes the program the background session. For example:

START /B /C SAMPLE.CMD

will start the SAMPLE.CMD in an OS/2 window in a background
session and after the .CMD is finished the window is closed. Note
that if the /FS, /WIN or /PM parameter is specified, the program
automatically becomes the foreground session and this parameter
is ignored.

/C Parameter

Indicates to start the program indirectly through the command
processor, CMD.EXE, and end the session when the command is
complete. For example:

START /C SAMPLE.CMD

 1. Will start a new command prompt.

 2. Start SAMPLE.CMD.

 3. Close the prompt after the .CMD file has finished.

This is useful if you don′ t want unnecessary command prompts
started.

/F Parameter

Makes the program the foreground session. If this parameter is
not specified, the program becomes a background session. For
example:

START /F /C SAMPLE.CMD

will start the SAMPLE.CMD in an OS/2 window in a foreground
session and after the .CMD is finished the window is closed. Note
that if the /FS, /WIN or /PM parameter is specified, the program
automatically becomes the foreground session.

12 OS/2 REXX

/FS Parameter

Requests that an application be started in a full-screen session.
This session will be started in the foreground. For example, to
start the SAMPLE.CMD in an OS/2 full-screen session:

START /FS SAMPLE.CMD

/MAX Parameter

Start the command in a maximized window. If you do not give a
command name as a parameter START will start a new CMD.EXE
session. For example, to start a new OS/2 window in a
maximized state in the foreground:

START /MAX /F

/MIN Parameter

Requests that a Presentation Manager (PM) or any windowed
application starts in a minimized (icon) state. For example, to
start the command minimized to an icon:

START /MIN SAMPLE.CMD

This has no effect if the /FS parameter is also used. Also, a PM
application may choose not to honor this request.

/PM Parameter

Indicates that the program to be started is a Presentation
Manager application. For example:

START /PM E.EXE

/WIN Parameter

Indicates that this is an OS/2 application that runs within an OS/2
or DOS window. For example:

START /WIN SAMPLE.CMD

The program to be started can also be given a descriptive name which will
show in the Window List and on the Title Bar of the OS/2 or DOS window or
full-screen and the icon like in Figure 4 on page 14 for the following
command:

START ″Sample application″ /F /C SAMPLE.CMD

The order of parameters is also important. Issuing START /FS SAMPLE.CMD
will start SAMPLE.CMD in a full-screen session, but START SAMPLE.CMD
/FS will pass /FS as a parameter to SAMPLE.CMD and start it in a
background window.

Chapter 2. OS/2 REXX Specifics 13

Figure 4. Screen Shot of SAMPLE.CMD Application

2.1.2.3 The DETACH Command
Any program that is started with DETACH must be able to process programs
independently outside the control of the command processor. DETACH
should not issue any input or output calls to the keyboard, the mouse, or the
display. You can detach any program, command, or file that does not
require the use of a screen. Examples of these are internal commands and
batch (.CMD) files.

The OS/2 operating system detaches CMD.EXE when it runs the internal
command or batch file. For example, if you type DETACH DIR, it is changed
to the equivalent of DETACH CMD.EXE /C DIR. Detach will start a command
in a new session and processing will continue immediately after the
command is issued.

14 OS/2 REXX

2.1.3 Multitasking with START and DETACH
The START and DETACH commands are very useful for providing
multitasking capabilities to your program. The following figures provide an
example of simple multitasking under OS/2 REXX with DETACH. More
examples on multitasking using queues and START are provided in 2.3,
“RxQueue” on page 25.

These figures show:

• The data file accessed by the program, Figure 5

• How to read data from the file, Figure 5

• How to do calculations and process a report in one process, Figure 7 on
page 17

• How to print the reports one by one in the second process, Figure 8 on
page 17

• The output from the program, Figure 9 on page 18

A COMPANY
A 1500 20 3
B 2500 30 0
C 1000 40 25
D 450 20 25
B COMPANY
A 1500 15 15
B 2500 10 10
C 1100 20 20
D 450 15 15

Figure 5. Data File Used for REXX Multitasking Example

Chapter 2. OS/2 REXX Specifics 15

/* Do calculations from values given in DataFile */
/* Print in separate session through MULTIPRT.CMD */
DataFile = ′ SFIG1994.DAT′ /* Name of DataFile */
Header = ′ Sales figures for 1994,′ /* Heading text */
Detail = ′ PRODUCT VALUE AMOUNT DISCOUNT NET VALUE′

/* Headings */
Parse Value 0 0 0 0 With A B C D /* Initialize values to 0 */
LineCount = 1 /* Initialize LineCount to 1*/
Start = 1 /* Start = TRUE */
SubTot = 0 /* Total for company */
Do While Lines(DataFile) > 0 /* Read while lines in file */
Line = Linein(DataFile) /* Read line */
If Pos(′ COMPANY′ , Line) > 0 Then Do /* If heading line */
If \Start then Call PrintIt /* Dont print on first line*/

Out.LineCount = Header Line′ *′ Detail /* Concatenate headings*/
Start = 0 /* No longer start */

End
Else Do /* If not heading */
Parse Var Line Product Value Amount Discount /* Parse values*/
/* Do some calculations and string functions */
Total = Right(Format((1-Discount/100)*Value*Amount,6,2),15)
Out.LineCount = Line Total /* Concatenate Total to Line*/
SubTot = SubTot + Total /* Total for company */
Select /* Calculate totals for products */
When Product = ′ A′ then A = A + Total
When Product = ′ B′ then B = B + Total
When Product = ′ C′ then C = C + Total
When Product = ′ D′ then D = D + Total
Otherwise nop

End
End
Linecount = LineCount + 1 /* Increment line count */

End
Call Printit /* Print last company
/ Final = ′ Totals for Products:′ / Summary */
Final = Final′ * Total Product A:′ A
Final = Final′ * Total Product B:′ B
Final = Final′ * Total Product C:′ C
Final = Final′ * Total Product D: ′ D
Final = Final′ * Totals Sales:′ A+B+C+D /* Final amount */
′ @DETACH MULTIPRT ′ Final /* Print summary lines */

/* in a separate process */
Exit

Figure 6. Part of the Program to Do Calculations and Call Print Routine

16 OS/2 REXX

PrintIt:
/* Print reports in separate process */
OutLine = ′ ′ /* Initialize to null string*/
LineCount = LineCount - 1 /* Deduct by 1 */
Do I = 1 to LineCount /* Concatenate to one string*/
OutLine = OutLine′ *′ Out.I /* to pass on to printing */

End
OutLine = OutLine′ * Total:′ SubTot
LineCount = 1 /* Start next company */
′ @DETACH MULTIPRT ′ OutLine /* Print in separate session*/
/* MULTIPRT.CMD doesn′ t need screen output or keyboard input */
/* so we can use DETACH, otherwise would have to use START */
SubTot = 0 /* Start next company with 0*/

Return

Figure 7. Part of the Program to Print Reports in a Separate Process

/* MULTIPRT.CMD */
/* Print strings separated by * to LPT1 */
Arg Rest /* Strig as argument */
Rest = Strip(Rest,′ L′ , ′ *′) /* Strip leading * */
Do Forever
Parse Var Rest ToPrt′ *′ Rest /* Parse to separate lines */
Rc = Lineout(′ LPT1:′ , ToPrt) /* Output to printer */
/* For otput to file change LPT1: to fully qualified fname*/
If Strip(Rest) = ′ ′ then leave /* Nothing else to process */

End

Figure 8. Separate REXX CMD File to Print Output

Chapter 2. OS/2 REXX Specifics 17

SALES FIGURES FOR 1994, A COMPANY
PRODUCT VALUE AMOUNT DISCOUNT NET VALUE
A 1500 20 3 29100.00
B 2500 30 0 75000.00
C 1000 40 25 30000.00
D 450 20 25 6750.00

TOTAL:140850.00

SALES FIGURES FOR 1994, B COMPANY
PRODUCT VALUE AMOUNT DISCOUNT NET VALUE
A 1500 15 15 19125.00
B 2500 10 10 22500.00
C 1100 20 20 17600.00
D 450 15 15 5737.50

TOTAL:64962.50

TOTALS FOR PRODUCTS:
 TOTAL PRODUCT A: 48225.00
 TOTAL PRODUCT B: 97500.00
 TOTAL PRODUCT C: 47600.00
 TOTAL PRODUCT D: 12487.50
 TOTALS SALES: 205812.50

Figure 9. Printed Output from REXX Multitasking Sample

2.2 File I/O with OS/2 REXX
Most REXX programmers in the VM and TSO environments are used to using
EXECIO or IOX for file I/O. However EXECIO is not included in either the SAA
definitions or OS/2. Instead, OS/2 uses the following functions:

• Charin

• Charout

• Chars

• Linein

• Lineout

• Lines

• Stream

18 OS/2 REXX

All of these functions, with the exception of Stream, are also included in
REXX on the other platforms and provide a way for making REXX programs
more portable. The complete syntax of these functions can be found in
Appendix A, “REXX Syntax Diagrams” on page 225.

2.2.1 Charin(name,start,length)
Used for character input from stream.

Charin will increase the read/write position in persistent streams (files) with
the number of characters read.

There are several ways to reset the state of the file. The most commonly
used is to issue an Rc = Charout(Filename) command, which will close the
file. When you reopen the file it will be positioned at the beginning. A start
value can also be given to provide the start position within the file. Charin
returns all characters that appear in the stream including control characters
such as line feed, carriage return, and end of file.

If the name parameter is omitted then characters will be read from the
default input stream, STDIN, which is usually the keyboard. Keyboard input
requires you to press the Enter key to input the data and continue
processing. An example of the use of Charin is as follows:

/* If the first line in CONFIG.SYS is */
/* IFS=C:\OS2\HPFS.IFS /CACHE.... */
Chr = Charin(′ C:\CONFIG.SYS′ , , 3)
/* would return IFS the first time, =C: the second time...*/
Chr = Charin(′ C:\CONFIG.SYS′ ,12 ,4)
/* would always return HPFS */
Chr = Charin(,,3)
/* would display Myn if user typed Myname */
Chr = Charin()
/* would display M if user typed Myname */

 Note

If you wish to get keyboard input without having to press the Enter key
then you can use the RexxUtil function SysGetKey. SysGetKey also
provides added function like Noecho to keep characters from echoing on
screen. SysGetKey is described in detail in Chapter 4, “ REXX Utilities
External Function Package (REXXUTIL)” on page 53.

Chapter 2. OS/2 REXX Specifics 19

2.2.2 Charout(name,string,start)
Used for character output to stream.

Charout will increase the read/write position in persistent streams (files) with
the number of characters written.

If name parameter is omitted then characters will be written to the standard
output stream, STDOUT, which is usually the display. A start value can be
given to move the write position in files. Rc = Charout(name) will close the
file.

Rc = Charout(′ C:\OUT.FIL′ , ′ Text to be written′ , 1)
/* would write the text to file beginning at */
/* the first position */
Rc = Charout(,′ I wrote this out′)
/* would display the text on screen without */
/* line feed */

2.2.3 Chars(name)
Used for character count in stream.

Will return the remaining number of characters in a stream from the current
read position to the end of file.

In VM which has a line-based file system Chars() will return 1 if there are
characters left in stream and 0 if there are not. So the best way to make a
program portable is to check if Chars() > 0.

20 OS/2 REXX

/* Show the contents of CONFIG.SYS file */
/* and report progress */
InFile = ′ C:\CONFIG.SYS′ /* Set intitial values */
I = 0
Size = Chars(InFile) /* Total size */
Do While Chars(InFile) > 0 /* while chars remaining */
I = I + 1 /* increment I by 1 */
Character = Charin(InFile) /* read 1 character in */
Rc = Charout(,Character) /* write it to display */
If I//100 = 0 then Do /* show remaining chars */
Say /* every 100th time */
Say ′ Characters remaining: ′ Chars(InFile)

End
End
Exit

Figure 10. Example of Charin, Charout and Chars

2.2.4 Linein(name,line,count)
Used for line input from stream.

Linein will also increase the read/write position in persistent streams.

You can only give the value 1 in OS/2 for the line parameter, which means
start read operation at line number one. The count parameter can be given
a value 0 which means that no characters are read and the file is only
opened, or 1 which is also the default and reads one line.

Line = Linein(′ C:\CONFIG.SYS′)
/* would give first line in CONFG.SYS */

2.2.5 Lineout(name,string,line)
Used for line output to stream.

Lineout will also increase the read/write position in persistent streams.

You can only give the value 1 in OS/2 for the line parameter, which means
write at the first character in file. Lineout(name) will close a file.

Chapter 2. OS/2 REXX Specifics 21

Line = Lineout(′ C:\OUT.FIL′ , ′ Write this in the file′)
/* would write the line in file */

2.2.6 Lines(name)
Used to check if data remains in stream.

Will return 1 if lines exist and 0 if no more lines exist in stream.

In VM Lines() will return the true number of lines left in stream. So the best
way to make a program portable is to check if Lines() > 0.

The following example might return an error in VM, because the logical value
of Lines() could be something other than 0 or 1. In OS/2 the example would
work fine. To make the program portable use Do While Lines(InFile) > 0
instead of Do While Lines(InFile).

/* Read through CONFIG.SYS line by line */
InFile = ′ C:\CONFIG.SYS′
Do While Lines(InFile)
Line = Linein(InFile)
Say Line

End
Rc = LineOut(InFile)
Exit

Figure 11. Example of Linein and Lines Commands

2.2.7 Stream(name,operation,streamcommand)
Used for querying state of stream and performing functions to stream like
opening the stream for read or write operations or setting the read or write
position in stream.

The name argument describes the name of stream.

The operation argument can have three values C, D or S. If you give C,
which stands for Command, as the second argument then the third argument
will be used as the command to be performed against the stream. D and S
will give the state of the stream, with D returning more information in ERROR
and NOTREADY states. State can return one of the following strings: ERROR,

22 OS/2 REXX

NOTREADY, READY, UNKNOWN. Figure 12 on page 23 shows Stream
command usage.

String = Stream(′ C:\CONFIG.SYS′ , ′ c′ , ′ query exists′)
/* Gives C:\CONFIG.SYS if file exists and */
/* gives a null string if it doesn′ t */
Rc = Stream(′ C:\CONFIG.SYS′ , ′ c′ , ′ open′)
/* Opens C:\CONFIG.SYS for read and write */
Rc = Stream(′ C:\CONFIG.SYS′ , ′ c′ , ′ open write′)
/* Opens C:\CONFIG.SYS for write operations */
Rc = Stream(′ C:\CONFIG.SYS′ , ′ c′ , ′ open read′)
/* Opens C:\CONFIG.SYS for read operations */
Rc = Stream(′ C:\CONFIG.SYS′ , ′ c′ , ′ close′)
/* close C:\CONFIG.SYS */
Rc = Stream(′ C:\CONFIG.SYS′ , ′ c′ , ′ seek = 5′)
/* seek position to absolute 5th character in file */
Rc = Stream(′ C:\CONFIG.SYS′ , ′ c′ , ′ seek + 5′)
/* move position ahead 5 characters */
Rc = Stream(′ C:\CONFIG.SYS′ , ′ c′ , ′ seek - 5′)
/* move position back 5 characters */
Rc = Stream(′ C:\CONFIG.SYS′ , ′ c′ , ′ seek < 5′)
/* move position back 5 characters from end of file*/

Figure 12. Examples of Stream Command Usage

2.2.8 Examples
Figure 13 on page 24 shows a VM example for reading a file into a stem
variable and writing the lines to an other file with timestamp as first line and
the rest concatenated to one single line. This example does not work for
OS/2.

Figure 14 on page 24, on the other hand, shows an example for reading a
file into a stem variable and writing the lines to another file with time stamp
as first line and the rest concatenated to one single line. This example
works both on OS/2 and VM.

Chapter 2. OS/2 REXX Specifics 23

/* Arguments InFile , Outfile
Example: InOut PROFILE EXEC A,OUT FILE A */

 Arg InFile ′ , ′ OutFile
 OutLine = ′ ′
′ EXECIO * DISKR ′ InFile′ (FINIS STEM TEXT.′ /* Read lines into stem */
′ EXECIO 1 DISKW ′ OutFile′ (STRING ′ DATE() TIME() /* Write timestamp */
 Do I = 1 to TEXT.0

OutLine = OutLine||Text.I /* Concatenate to one line */
 End
′ EXECIO 1 DISKW ′ OutFile′ (VAR OUTLINE′ /* Write line to OutFile */
′ FINIS ′ OutFile /* close file */

Exit

Figure 13. VM Specific Example of Reading a File Using EXECIO

/* Arguments InFile , Outfile
Example (VM): InOut PROFILE EXEC A,OUT FILE A
Example (OS/2): InOut C:\CONFIG.SYS,C:\OUT.FIL

 */

 Arg InFile ′ , ′ OutFile
 OutLine = ′ ′ /* Empty variable */
 Do While Lines(InFile) > 0 /* loop until EOF */

Text = Linein(InFile) /* get line from file */
OutLine = OutLine||Text /* concatenate lines */

 End
 Rc = Lineout(OutFile,DATE() TIME()) /* Write timestamp */
 Rc = Lineout(OutFile,OutLine)
 Rc = Lineout(InFile) /* Close input file */
 Rc = Lineout(OutFile) /* Close output file */

Exit

Figure 14. OS/2 and VM Independent Example of Reading a File

24 OS/2 REXX

2.3 RxQueue
Most VM REXX programmers are also familiar with MAKEBUF, DROPBUF
and DESBUF for creating, dropping and clearing console and program stacks.
OS/2, however, uses the RXQUEUE function instead to create and delete
queues.

The usage of PULL, PUSH and QUEUE for placing data in and getting data
from the stack and QUEUED for querying number of lines in stack work the
same way in all REXX environments.

2.3.1 PUSH
Will place lines to the currently active queue. Data will be placed LIFO (Last
In First Out). For example:

Push ′ 1 ′
Push ′ 2 ′
Push ′ 3 ′
Do 3
Pull Data
Say Data

End

Will display:

3
2
1

2.3.2 QUEUE
Will place lines to the currently active queue. Data will be placed FIFO (First
In First Out). For Example:

Queue ′ 1 ′
Queue ′ 2 ′
Queue ′ 3 ′
Do 3
Pull Data
Say Data

End

Will display:

1
2
3

Chapter 2. OS/2 REXX Specifics 25

There are two kinds of queues in OS/2 REXX namely the session queue and
private queues. The session queue is automatically provided for each OS/2
session and its name is always SESSION. For instance, each OS/2 command
prompt is a session. So queuing lines to the SESSION queue will not make
those lines available for other programs started from other command
prompts. Also, starting a program with the START or DETATCH commands
will start new sessions so the queued lines will not become available to the
started programs. In other words, the example in Figure 15, will not display
anything if you use START /F GETSQ. It will, however, display 10 lines if
started with CALL. This is because the session queue will then be running in
the same session as PUTSQ.CMD. To overcome this you must use the
private queues. See 2.3.3, “Private Queues Using RXQUEUE” on how to do
this.

/* PUT2SQ.CMD */
/* Queue lines to Session queue */
Do I = 1 to 10
Queue ′ This is line number ′ I /* Put 10 lines in SESSION QUEUE */

End
Call GETSQ /* Run GETSQ.CMD in this session */

Figure 15. Example of Loading and Displaying a Session Queue

/* GETSQ.CMD */
/* Get lines from SESSION queue */
Do Queued()
Pull Line
Say Line

End

Figure 16. Example of Displaying a Session Queue

2.3.3 Private Queues Using RXQUEUE
Private queues are created and deleted by your program so they are similar
to the VM MAKEBUF. However, in OS/2 the program that wishes to use a
queue must know the name of the queue and every queue must have a
unique name. The parameters for handling queues with RXQUEUE are:

RXQUEUE(′create ′,queuename)

Creates a new queue with the name provided in the optional
parameter queuename. If no name is provided then OS/2 will

26 OS/2 REXX

automatically give the queue a unique name. Also if a queue
exists with the name given in the queuename parameter then
OS/2 will provide a new name for the queue that is being created.
This could give unpredictable results in some cases.

An example of how to check that the created queue name is what
is expected is:

QN = ′ QUE1′
NewQ = RXQUEUE(′ create′ , QN)
If NewQ <> QN then
Say ′ Queue with the name ′ QN′ already exists′

RXQUEUE(′set ′,queuename)

Make a queuename the active queue.

RXQUEUE(′get ′)

Get name of currently active queue.

RXQUEUE(′delete ′,queuename)

Delete the queue with the name queuename.

The following four figures show the use of private queues. Figure 17 creates
3 queues and lets OS/2 handle the naming of the queues. It then calls two
other procedures in the same command file: one to place data in those
queues, Figure 18 on page 28, and another to show the contents of the
queues, Figure 19 on page 28. The displayed output is shown in Figure 20
on page 29.

/* SHUFFLE.CMD */
Call Create /* create the queues */
Call SetUp /* set queues active and queue */
Call Show /* show result */
Exit

Create:
Do I = 1 to 3
Q.I = RXQUEUE(′ create′) /* create an array of 3 queues */

End
Return

Figure 17. Private Queue Part 1, Create Queues

Chapter 2. OS/2 REXX Specifics 27

Setup:
Do I = 1 to 10 /* loop 10 times */
Select
When I//3 = 0 then Do /* if i//3 remainder = 0 then */
Rc = RXQUEUE(′ set′ , Q.3) /* set queue to third queue */
Queue ′ Number ′ I /* queue data */

End
When I//2 = 0 then Do /* if i//2 remainder = 0 then */
Rc = RXQUEUE(′ set′ , Q.2) /* set queue to second queue */
Queue ′ Number ′ I /* queue data */

End
Otherwise Do /* otherwise */
Rc = RXQUEUE(′ set′ , Q.1) /* set queue to first queue */
Queue ′ Number ′ I /* queue data */

End
End /* Select */

End /* I = 1 to 10 */
Return

Figure 18. Private Queue Part 2, Place Data in Queues

Show:
Do I = 1 to 3
Rc = RXQUEUE(′ set′ , Q.I) /* set active queue */
Say ′ Queue number ′ I′ with name ′ Q.I /* show name */
Do Queued() /* show queued data */
Pull Stuff
Say Stuff

End
End
Do I = 1 to 3
Say ′ Now deleting queue ′ Q.I
Rc = RXQUEUE(′ delete′ , Q.I) /* delete the queues */

End
Return

Figure 19. Private Queue Part 3, Show Contents

28 OS/2 REXX

Queue number 1 with name S19Q0322109576
NUMBER 1
NUMBER 5
NUMBER 7
Queue number 2 with name S19Q0322109632
NUMBER 2
NUMBER 4
NUMBER 8
NUMBER 10
Queue number 3 with name S19Q0322109688
NUMBER 3
NUMBER 6
NUMBER 9
Now deleting queue S19Q0322109576
Now deleting queue S19Q0322109632
Now deleting queue S19Q0322109688

The queue names will vary every time program
is run.
*/

Figure 20. Displayed Output from Private Queue Example

Chapter 2. OS/2 REXX Specifics 29

Figure 21 and Figure 22 on page 31 are examples of using queues to
transfer data over separate sessions.

/* PUT2QUE.CMD */
/* Put lines to private queue */
/* Add REXXUTIL function SysSleep */
call RxFuncAdd ′ SysSleep′ , ′ RexxUtil′ , ′ SysSleep′

NQ = ′ QUE1′ /* put queue name into variable */
NewQ = RXQUEUE(′ create′ , NQ) /* create new queue */
If NewQ <> NQ then Do /* if queue name already exists */
Say ′ Queue with the name ′ NQ′ already exists, exiting program′
Rc = RXQUEUE(′ delete′ , NewQ) /* show message, delete queue and*/
Exit /* exit */

End
OQ = RXQUEUE(′ Set′ , NewQ) /* establish new queue */
push date() time() /* push date and time */
Do I = 1 to 10
Queue ′ Line number ′ I /* queue 10 lines to queue */

End
′ START /F /C GETFROMQ ′ /* start GETFROMQ.CMD */

/* /F = foreground /C = close */
/* session after termination */

Do while queued() > 0 /* display lines in private queue*/
Call SysSleep 1 /* wait for 1 second */
Say queued() /* display num.of lines remaining*/

End

Exit 0

Figure 21. Private Queue Across Two Separate Sessions Part 1

30 OS/2 REXX

/* GETFROMQ.CMD */
/* get lines from private queue */
/* Add REXXUTIL function SysSleep */
call RxFuncAdd ′ SysSleep′ , ′ RexxUtil′ , ′ SysSleep′
oq = RXQUEUE(′ Set′ , ′ QUE1′) /* establish new queue */
Do Queued() /* loop for amount of lines */
Call SysSleep 1 /* sleep for 1 second */
Pull Line /* pull a line out of queue */
Say ′ Pulled ′ Line′ out of QUE1′ /* display line */

End
Curq = RXQUEUE(′ Get′) /* get name of current queue */
Call RXQUEUE ′ Delete′ , curq /* destroy unique queue created */

Exit 0

Figure 22. Private Queue Across Two Separate Sessions Part 2

OS/2 REXX doesn′ t currently have global compound variables so queues can
provide a simple way of exchanging data between separate programs. They
can also be useful in multitasking when you want to control when a process
is finished. Figure 23 is an example of how to place keyboard input into a
separate session.

/* QGETKEY.CMD */
/* Get keyboard input from called program */
/* pass queuename to KEYS2Q.CMD and communicate through it */
/* if ESC (x′1B′) pressed then leave */
NewQueue = RXQUEUE(′ create′)
OldQueue = RXQUEUE(′ Set′ , NewQueue) /* set NewQueue active */

′ START /WIN KEYS2Q′ NewQueue /* start windowed session */

Do Forever /* never ending loop */
If Queued() > 0 then do /* if chars queued then act */
parse pull Char /* pull mixed case */
If C2X(Char) = ′1B′ Then Leave /* A way out (ESC) */
Rc = Charout(,Char) /* output char to screen */

End
End
Rc = RXQUEUE(′ delete′ , NewQueue) /* delete the queue */

Exit

Figure 23 (Part 1 of 2). Private Queue, Input in Separate Session Part 1

Chapter 2. OS/2 REXX Specifics 31

/* KEYS2Q.CMD */
/* Get keyboard input and pass it to calling program */
/* get queuename as argument and use it to pass data */
/* if ESC (x′1B′) pressed then leave */
/* Add RexxUtil function SysGetKey */
call RxFuncAdd ′ SysGetKey′ , ′ RexxUtil′ , ′ SysGetKey′
Arg QueueName /* Queue name as argument */
QueueName = Strip(QueueName) /* strip blanks */
OldQueue=RXQUEUE(′ Set′ , QueueName) /* set QueueName active */
Do Forever /* eternal loop */
KeyPressed = SysGetKey() /* get key from keyboard */
Queue KeyPressed /* place it in queue */
If C2X(KeyPressed) = ′1B′ Then Leave /* A way out (ESC) */

End
′ @EXIT′

Figure 23 (Part 2 of 2). Private Queue, Input in Separate Session Part 1

Queues can also be useful when getting output from system commands into
REXX. Figure 24 on page 33 illustrates the use of REXX to get command
output and error output into a REXX program and then manipulating it, for
example, to show more information about the error situation via HELPMSG.

32 OS/2 REXX

/* ENV2Q.CMD */
/* Get environment values from queue, demonstrates the use of */
/* REXX to get STDOUT and STDERR output from system commands */
/* through RXQUEUE */
/* Add REXXUTIL function SysGetKey */
Call RxFuncAdd ′ SysGetKey′ , ′ RexxUtil′ , ′ SysGetKey′
/* Add REXXUTIL function SysSleep */
Call RxFuncAdd ′ SysSleep′ , ′ RexxUtil′ , ′ SysSleep′
/* Add REXXUTIL function SysCls */
Call RxFuncAdd ′ SysCls′ , ′ RexxUtil′ , ′ SysCls′
Call SET2Q
Call YN
Call DIR2Q
Call YN
Call MDI2Q
Call YN
Call NET2Q
Exit

YN:

Do 2
Say

End
Say ″Do you wish to continue (Y/N)?″
Ans = SysGetKey(″noecho″)
If Pos(Ans,′ Yy′) > 0 then nop
Else Exit

Return

Figure 24. System Output to REXX Part 1, Main Body

Chapter 2. OS/2 REXX Specifics 33

SET2Q:

Say ″Using REXX to filter out information from the SET command:″
′ @SET | RXQUEUE′ /* give SET command and pipe */

/* through RXQUEUE */

Do While Queued() > 0 /* loop while lines exist in queue */
Pull SetValue /* pull a value from queue */
SetValue = ′ ′ SetValue /* add blank to beginning */

/* (simplifies the search) */
Select /* find out which value it is */

/* and act accordingly */
When Pos(′ BOOKSHELF=′ , SetValue) > 0 then Do
Say ″Your BookShelf has the following entries:″

/* show only the actual value */
/* without BOOKSHELF= by finding out */
/* the position of = and taking only */
/* the string after it */

Say ″ ″ Substr(SetValue,Pos(′ = ′ , SetValue)+1)
Say

End
When Pos(′ HELP=′ , SetValue) > 0 then Do
Say ″Your Help has the following entries:″
Say ″ ″ Substr(SetValue,Pos(′ = ′ , SetValue)+1)
Say

End
When Pos(′ PATH=′ , SetValue) > 0 then PathValue = SetValue

/* Process path after everything is */
/* pulled out of the queue because */
/* will be using PULL for keyboard */
/* later */

Otherwise nop
End

End

Figure 25. System Output to REXX through Queues Part 1

34 OS/2 REXX

Say ″Your Path has the following value:″
Say ″ ″ Substr(PathValue,Pos(′ = ′ , PathValue)+1)
Say
Say ″Do you wish to add a directory to the current path″
Say ″for this session (Y/N)?″
Key = SysGetKey(″noecho″) /* get key from keyboard without */

/* showing it */
Key = Translate(Key,′ YN′ , ′ yn′) /* translate to uppercase */
If Key = Y Then Do
Say ″Give the fully qualified name for the directory″ ,

″you want to add:″
Pull DirName /* pull directory name from kbd */
DirName = Strip(DirName) /* take away leading and trailing */

/* blanks */
Dirname = Strip(DirName,,′ ; ′) / * take away semicolons */

/* if last character in path is */
/* semicolon, don′ t add one */

If LastPos(′ ; ′ , PathValue) = Length(PathValue) then
NewValue = PathValue||DirName||′ ; ′

Else /* else add one */
NewValue = PathValue||′ ; ′ | | DirName||′ ; ′

′ @′ NewValue /* execute string as command without*/
/* echoing to screen (@) */

Say ″Your new path is now:″
Say NewValue /* say new path */

End
Return

Figure 26. System Output to REXX through Queues Part 2

Chapter 2. OS/2 REXX Specifics 35

DIR2Q:

Call SysCls /* clear screen */
I = 0 /* set initial values */
Quiet = 0 /* variable quiet will be used in */

/* boolean operations so it has to */
/* have initial value 1 (TRUE) or */
/* 2 (FALSE) */

Say ″These are the contents of your current directory:″
′ @DIR | RXQUEUE′ /* give DIR command without ECHO */
Do While Queued() > 0
I = I + 1
If I//14 = 0 & \Quiet Then Do /* pause every 14th row */
Say ″Push any key to continue. ESC to terminate.″
Key = SysGetKey(″noecho″)
If C2X(Key) = ′1B′ Then Quiet = 1

End
Pull DirEntry
If \Quiet Then Say DirEntry /* if not quiet mode show entry*/

End

Return

Figure 27. System Output to REXX through Queues Part 3

36 OS/2 REXX

MDI2Q:
Call SysCls
Say ″Now showing how to get error messages from OS/2 commands:″
Say ″Giving a MD (Make Directory) command with an invalid″ ,

″character (*) in it:″
Call SysSleep 3 /* Sleep for 3 seconds */
′ @MD C:*DUMMY 2>&1 | RXQUEUE′ /* Pipe STDERR info to RXQUUE*/
Do While Queued()
Pull Stuff
Say ″Sorry, can′ t do it″
Say ″This is what the system said:″Stuff
Say ″This is what it meant:″
MessageNum = Strip(Word(Stuff,1),,′ : ′) / * message number */

/* is first word without colon */
′ @HELPMSG′ MessageNum /* display extended help */

End

Return

Figure 28. System Output to REXX through Queues Part 4

NET2Q:

Call SysCls
/* show the same with LAN requester NET command */
Say ″Now trying to get error message from NET commands:″
Call SysSleep 3
′ @NET START REQ1 2>&1 | RXQUEUE′
Do While Queued() > 0
Pull Stuff
Say ″No way:″ stuff
MessageNum = Strip(Word(Stuff,1),,′ : ′)
′ @HELPMSG′ MessageNum

End

Return

Figure 29. System Output to REXX through Queues Part 5

Chapter 2. OS/2 REXX Specifics 37

2.3.4 LIFO, FIFO and CLEAR
In OS/2 REXX data is placed in queues First In First Out (FIFO) by default.
Figure 30 shows how the default order can be changed to Last In First Out
(LIFO). The example creates a private queue, reads a file in LIFO, pulls and
then it displays the last line. Then it clears all lines in the queue using:

′ @RXQUEUE ′ nq′ /CLEAR′

Next it places data in the queue FIFO and pulls and displays the first line.

/* RXLIFO.CMD */
/* Get first and last line in this command file */
/* Demonstrate use of /LIFO and /FIFO and /CLEAR */
Parse Source . . Myname /* Get the name of this file */

NQ = RXQUEUE(′ create′) /* Create a new queue */
OQ = RXQUEUE(′ set′ , NQ) /* Set new queue active */
′ @RXQUEUE ′ nq′ /LIFO < ′ Myname /* Queue all lines LIFO */
Pull Last /* Pull last line */
Say ′ Last line in ′ Myname′ is:′ / * Display line */
Say Last

′ @RXQUEUE ′ nq′ /CLEAR′ /* Clear queue */
′ @RXQUEUE ′ nq′ /FIFO < ′ Myname /* Queue all lines FIFO */
Pull First /* Pull first line */
Say ′ First line in ′ Myname′ is:′ / * Display line */
Say First
′ @RXQUEUE ′ nq′ /CLEAR′ /* Clear queue */
Rc = RXQUEUE(′ delete′ , NQ) /* Delete queue */

Figure 30. LIFO, FIFO and CLEAR with RXQUEUE

2.4 Printing
Printing from OS/2 REXX can be done basically with the OS/2 command
PRINT or COPY. You can also redirect program output to a printer by using
> . For example DIR > LPT1: or TYPE C:\CONFIG.SYS > LPT2:. If you wish
to print individual lines or characters you can use the REXX functions Lineout
or Charout. An example of using Lineout to print lines is in Figure 8 on
page 17.

38 OS/2 REXX

2.4.1 PRINT Command
You can use the OS/2 PRINT command to print files to a specified printer, to
cancel an active print job or to cancel all print jobs on a specified print
queue. For example: PRINT /D:LPT2 C:\LISTING\REPORT.STA will print the
file REPORT.STA on the printer attached to LPT2. PRINT /C will cancel the
file that is currently printing on the default print device. PRINT /D:LPT2 /T
will cancel all files in the LPT2 print queue and any file currently printing on
the same device.

2.4.2 Lineout and Charout
It is possible to direct output to a printer using Lineout or Charout by
specifying the LPT port or PRN as the output device. For example: R c =
Lineout(′LPT1: ′,′Text to be printed ′) will print the text to the printer connected
to LPT1 port. Following is an example of printing on the LPT1 port as two
separate print jobs. Lineout(′LPT1:′) will close the spool. Closing the
command file with Exit, Return or when the program has otherwise ended
will also close the spool.

/* Print 10 lines as first job, close spool */
/* and print next 10 lines */
Do I = 1 to 20
Rc = Lineout(′ LPT1:′ , ′ Line number ′ I)
If I = 10 then Rc = Lineout(′ LPT1:′)

End

The examples for Lineout apply also to Charout.

Directing trace output from a program to the printer is also useful in many
cases. This can be done simply by directing the STDERR output from the
program to the printer. Trace uses STDERR so the following works for trace
output. TRACEOUT.CMD 2> LPT1: . Don′ t use any blanks between 2 and >.

2.4.3 Printer Objects
OS/2 REXX doesn′ t currently provide very many ways of interacting with the
installed printer objects. It does however enable some amount of interaction.
Included are three program listings describing the use of the RexxUtil
function SysIni. SysIni is discussed in detail in Chapter 4, “ REXX Utilities
External Function Package (REXXUTIL)” on page 53.

PRPATH.CMD shown in Figure 31 on page 40 describes how to change the
default printer driver installation path. After using the CD-ROM installation

Chapter 2. OS/2 REXX Specifics 39

the path for installing new printer drivers points to the original installation
path. After diskette or remote (CID) installation the path is A:. PRPATH.CMD
allows you to change this to whichever directory you want, for instance to a
directory on the network print server. This could prove useful for system
administrators.

/* Procedure to query or change the printer driver directory */
Parse Upper Arg Path . /* New path as argument */
Inifile = ′ USER′ /* Information stored in USER inifile (OS2.INI) */
App = ′ PM_INSTALL′ /* Application name in INI file */
Key = ′ PDR_DIR′ /* Key for path information */
Key2 = ′ MEDIA′ /* Key for media information */
Call RxFuncAdd ′ SysIni′ , ′ RexxUtil′ , ′ SysIni′ /* Add SysIni function */
If Path = ″″ Then Do /* If no path specified, query path and display */
Path = SysIni(′ USER′ , App, Key)
If path = ′ ERROR:′ Then Do /* No information found for PM_INSTALL */

/* PDR_DIR */
Say ″The key ′ ″ key″ ′ for the application ′ ″ App″ ′ ″
Say ″was not found in the ′ ″ Inifile″ ′ inifile.″
Say ″You must give a path if you wish to set one.″

End
Else /* Say printer driver path */
Say ″The actual printer driver path is:″ Path

End
Else Do
OldPath = SysIni(′ USER′ , App, Key) /* Save previous information */
If OldPath = ′ ERROR:′ Then Do /* Not found */
Say ″The key ′ ″ key″ ′ for the application ′ ″ App″ ′ ″
Say ″was not found in the ′ ″ Inifile″ ′ inifile.″
Say ″The new path will be set to:″Path

End
If Left(Path, 2) = ′ A:′ Then Media = ′ DISKETTE′
Else Media = ′ REMOVABLE′ /* A drive=removable others not */
If Right(Path, 1) = ′ \′ Then Path = Left(Path, Length(Path) - 1)

/* Remove last backslash */
Result = SysIni(′ USER′ , App, Key, Path) /* Change path */
Result = SysIni(′ USER′ , App, Key2, Media) /* Change media */
Say ″The printer driver directory was changed to″ Path

End

Figure 31. Change Printer Driver Installation Path

PRTIMOUT.CMD shown in Figure 32 on page 41 describes how to set the
printer timeout value. Note that this is not the timeout value for the port.
That value is set on the Output page of any printer object Settings notebook

40 OS/2 REXX

by double clicking on the desired port. The value set in PRTIMOUT.CMD
determines how long the printer error message box indicating that the
printer is off-line or out of paper will display before an automatic retry is
issued by the system. The system default for this timeout is 180 seconds, or
three minutes.

/* Set the timeout for the printer offline menu */
Parse Upper Arg Timeout . /* Timeout value as argument */
Inifile = ′ SYSTEM′ /* Stored in SYSTEM inifile OS2SYS.INI */
App = ′ PM_SPOOLER_MSGBOX′ /* Application name */
Key = ′ TIMEOUT′ /* Key for application */
Call RxFuncAdd ′ SysIni′ , ′ RexxUtil′ , ′ SysIni′ /* Add SysIni function */
If Timeout = ′ ′ Then Do /* If no timeout as argument */
Timeout = SysIni(Inifile, App, Key)
If Timeout = ′ ERROR:′ Then Do
Say ″The key ′ ″ key″ ′ for the application ′ ″ App″ ′ ″
Say ″was not found in the ′ ″ Inifile″ ′ inifile. The system″
Say ″uses the default value of 180 seconds.″

End
Else Say ″The timeout value for the printer offline menu is″ ,

Timeout ″seconds.″ /* Show current timeout value */
End
Else Do
If Datatype(Timeout, ′ W′) = 0 Then Do /* Value has to be numeric */
Say ″Parameter″ Timeout ″is not numeric.″
Exit 1

End
Result = SysIni(Inifile, App, Key, Timeout) /* Change value */
Say ″The timeout value for the printer offline menu has been″
Say ″set to″ Timeout ″seconds.″

End

Figure 32. Set Timeout Value for the Printer Offl ine Menu

PRTPORT.CMD shown in Figure 33 describes how to add printer ports LPT4
to LPT9 to OS2SYS.INI.

/* Add LPT4 to LPT9 into OS2SYS.INI */
call RxFuncAdd ′ SysIni′ , ′ RexxUtil′ , ′ SysIni′
Do I = 4 to 9
Call SysIni ′ SYSTEM′ , ′ PM_SPOOLER_PORT′ , ′ LPT′ | | i, ′ ; ′ | | ′ 0 0 ′ x

End

Figure 33. Set Printer Ports LPT1 to LPT9

Chapter 2. OS/2 REXX Specifics 41

2.5 PMREXX, REXXTRY and RxMessageBox
Some PM features can be included in your REXX program by using PMREXX
and RxMessageBox. If you need more PM features see Chapter 10, “Visual
REXX Builders” on page 177 which explains some of the visual builders
available today.

2.5.1 PMREXX
PMREXX is a windowed Presentation Manager application that enables you
to browse the output of your REXX procedures. REXXTRY is a command
that lets you interactively run one or more REXX instructions.

By using PMREXX, you add the following features to REXX:

• A window to display the output of a REXX procedure, such as:

− The SAY instruction output

− The STDOUT and STDERR outputs from secondary processes started
from a REXX procedures file

− The REXX TRACE output (not to be confused with OS/2 tracing)

• Input window for:

− The PULL instruction in all of its forms

− The STDIN data for secondary processes started from a REXX
procedures file

• Browsing, scrolling, and clipboard capability for REXX output

• Selection of fonts for the output window

• Simple environment for experimenting with REXX instructions through the
use of the REXXTRY.CMD program

Figure 35 on page 44 demonstrates the use of PMREXX to provide a PM
front-end to non-PM REXX programs. The command can be started either by
typing RXCALC , which will start the program in an OS/2 window, or by typing
START PMREXX RXCALC , which will start the program using PMREXX.

42 OS/2 REXX

/* RXCALC.CMD */
/* REXX calculator example using PMREXX */
/* Add RexxUtil function SysCls */
Call RxFuncAdd ′ SysCls′ , ′ RexxUtil′ , ′ SysCls′
Env = Address() /* Check environment PMREXX if PMREXX */

/* Else CMD */
Line = ′ ′ /* Initialize some values */
V = ′ ′
LFeed = ′0d0a′ x /* Linefeed for messagebox */
Call Main /* Call the main process */

Exit

Main:

Do Forever /* Do until exit */
Signal on Syntax /* If syntax error then signal Syntax */
If Line = ′ EXIT′ then Exit /* Leave loop */
Call Menu /* Show the menu */
Interpret ′ V =′ Line /* Interpret line to REXX */
Call SysCls /* Clear screen */

End

Return

Figure 34. PMREXX Example - RXCALC.CMD

Chapter 2. OS/2 REXX Specifics 43

Menu: /* Show the menu */

Say
Say ′ You can use the following functions:′
Say
Say ′ + : Add The result will be in the variable V′
Say ′ - : Subtract which can also be used in calculation′
Say ′ * : Multiply′
Say ′ ** : Exponent′
Say ′ / : Divide′
Say ′ // : Remainder′
Say ′ % : Integer divide′
Say
Say ′ You can also use parenthesis′
Say ′ Type EXIT to exit′
Say Line /* Show previous input if any */
Say ′ Result=′ V /* Show previous result */

Pull Line

Return

Syntax: /* Syntax error */
/* Build the strings for RxMessageBox */

Msg = ′ Error in the calculation !′ LFeed||Line
Title = ′ Syntax Error′
Button = ′ OK′
Type = ′ ERROR′
Msgx=c2x(Msg′ # ′Title′ # ′Button′ # ′Type)
If Env = ′ PMREXX′ Then /* If PMREXX then just show message*/
Action=RxMessageBox(Msg,Title,Button,Type)

Else /* Else start RXMSG.CMD in PM session and show msg */
′ @START /PM CMD.EXE /C RXMSG.CMD ′ Msgx

/* Pass values as Hex RXMSG.CMD will translate to chars */
Line = ′ ′ /* Empty input and result */
V = ′ ′
Signal Main /* Signal main process */

Return

Figure 35. REXX Calculator for PMREXX

Running the program through PMREXX will produce the window shown in
Figure 36 on page 45.

44 OS/2 REXX

Figure 36. PMREXX Window for RXCALC

/* RXMSG.CMD */
/* Show messages in PM Message box */
Arg Message
Msg = x2c(Message)
Parse Var Msg Msg′ # ′Title′ # ′Button′ # ′Type
OQ = RxQueue(′ set′ , Qn)
/* Arguments passed in Hexadecimal format to ensure correct result */
/* Hex values then changed to characters and RxMessageBox */
/* Called with the character values */
Action=RxMessageBox(Msg,Title,Button,Type)

Exit

Figure 37. Using RxMessageBox from Non-PM Programs

If an error is encountered the message in Figure 38 on page 46 is displayed.

Chapter 2. OS/2 REXX Specifics 45

Figure 38. RxMessageBox for RXCALC.CMD

Once the output of the REXX procedure is displayed in PMREXX, you can
select the menu-bar choices to take advantage of the following PMREXX
browsing features:

File Save, Save As, and Exit the process

Edit Copy, Paste to the input, Clear the output, and Select All lines

Options Restart the process, Interactive Trace, and Set font

Actions Halt procedure, Trace next clause, Redo the last cause, and Set
Trace off

Help Help index, General help, Keys help, and Using help

2.5.2 REXXTRY
REXXTRY is a REXX program. As with other REXX programs, REXXTRY can
be run in an OS/2 full-screen or window session, or with PMREXX.

You can use REXXTRY to run different REXX instructions and observe the
results. REXXTRY is also useful when you want to perform a REXX operation
only once, since it is easier than creating, running, and erasing a .CMD file.

46 OS/2 REXX

Here are some examples of how to use the REXXTRY command:

REXXTRY say 1+2
The operation is performed and 3 is displayed.
REXXTRY say 2+3; say 3+4
5 and 7 are displayed.

2.5.3 RxMessageBox
RxMessageBox allows you to display a message box from a REXX program
running in an OS/2 session (that is, running in PMREXX or called from a
Presentation Manager application). You can also display a message box
from a non-PM .CMD file by starting a command file through CMD.EXE line
which is shown in Figure 34 on page 43 and Figure 37 on page 45. The
syntax of the RxMessageBox command is action = RxMessageBox(text, title,
button, icon) where:

text Is the text of the message that appears in the message box.

title Is the title of the message box. The default title is ″Error″.

button Is the style of buttons used with the message box. The allowed
styles are:

OK A single OK button (the default)

OKCANCEL An OK button and a Cancel button

CANCEL A single Cancel button

ENTER A single Enter button

ENTERCANCEL An Enter button and a Cancel button

RETRYCANCEL A Retry button and a Cancel button

ABORTRETRYIGNORE An Abort button, a Retry button and an
Ignore button

YESNO A Yes button and a No button

YESNOCANCEL A Yes button, a No button and a Cancel button

icon Is the style of icon displayed in the message box. The allowed
styles are:

NONE No icon is displayed

HAND The hand icon is displayed

QUESTION A question mark icon is displayed

EXCLAMATION An exclamation mark icon is displayed

Chapter 2. OS/2 REXX Specifics 47

ASTERISK An asterisk icon is displayed

INFORMATION The information icon is displayed

QUERY The query icon is displayed

WARNING The warning icon is displayed

ERROR The error icon is displayed

action Is the button that was selected on the message box. Possible
values are:

1: OK key

2 Cancel key

3 Abort key

4 Retry key

5 Ignore key

6 Yes key

7 No key

8 Enter

For example:

/* Give option to quit */
if RxMessageBox(″Shall we continue″ , , ″YesNo″, ″Query″) = 7
Then Exit /* ″No″ key given, exit */

48 OS/2 REXX

Chapter 3. External Functions

REXX programs can invoke functions that are physically located in other files.
These external functions can be written in REXX, or in compiled languages.
For external functions written in REXX, the function is called in the same
manner as if it were an internal function.

/* Main REXX program */
answer = ADDFUNC(var1,var2) /* invokes ADDFUNC.CMD */

Figure 39. Calling External REXX Function

When the main program processes the call to ADDFUNC, the main program
is searched first for a function called ADDFUNC. If it is not found, then a disk
search is performed that looks for a file called ADDFUNC.CMD.

External functions written in compiled languages must be registered with the
calling REXX program before they can be invoked. This type of external
function is contained in an executable file (.EXE) or a dynamic link library
(.DLL). The rest of this chapter focuses on external functions written in
compiled languages.

3.1 Usefulness
The fact that REXX programs can access external functions written in
compiled languages makes REXX much more powerful. The horizons of what
can be accomplished through REXX are broadened. Some of the
opportunities provided by being able to access externally compiled functions
are:

• Provides interface to other languages, such as C

• Do not have to rewrite in REXX existing functions that are written in other
languages

• Can take advantage of the speed of compiled languages

• Provides a way to accomplish tasks that cannot be performed in REXX
code

• Access to APIs for various software packages, for example DB2/2,
EHLLAPI

 Copyright IBM Corp. 1993 49

3.2 How to Register External Functions
REXX programs require external functions to be registered. Registering a
function makes the location of the function known to the REXX program.
Once registered, functions are available to all REXX programs running on
your system until they are dropped. When they are dropped, all REXX
programs running on your system lose access to these functions. Therefore
we recommend that you do not drop functions at the end of your programs.
Also, for workstations that use the same external functions on a regular
basis, it is wise to write a REXX procedure that registers these functions and
invoke that procedure in the STARTUP.CMD. This removes the overhead of
registering these functions from your applications. The function RxFuncAdd
is used to register external functions. Figure 40 is an example of registering
an external function. Here is a description of the three parameters that
RxFuncAdd requires:

 1. The first parameter is the name your REXX program wil l use to call the
function.

 2. The second parameter is the name of the file containing the function.

 3. The third parameter is the name of the routine in the file that contains
the function.

RxFuncQuery is a REXX function that checks to see if a function is
registered. It returns 0 if the function is already registered.

/* Register function SQLDBS located in file SQLAR.DLL, routine SQLDBS */
if RxFuncQuery(′ SQLDBS′) <> 0 then do /* if not registered */
rc = RxFuncAdd(′ SQLDBS′ , ′SQLAR′ , ′SQLDBS′)
if rc \= 0 then do
say ″Error registering SQLDBS: rc = ″ rc
return

 end /* Do */
end

Figure 40. Register an External Function

The function RxFuncDrop is used to drop external functions. The only
parameter required is the name of the function to be dropped. Figure 41 on
page 51 is an example of dropping a function.

50 OS/2 REXX

/*Drop function named SQLDBS */
Call RxFuncDrop ′ SQLDBS′

Figure 41. Drop an External Function

3.3 Example - Accessing User Profile Management Services
REXX does not have a direct interface to User Profile Management Services
APIs. However, by using external functions, a REXX program can take
advantage of a C program that has accessed a UPM API. The following
example, which is on the diskette, is of a REXX program invoking a C
function in a DLL. The C function queries UPM to determine the local user ID
name, and returns the name to the calling REXX program. Figure 42
contains the REXX program. The C coding required to make a C function
available to REXX is discussed in detail in Chapter 6, “ REXX and C” on
page 93. Note that in order to run this example on your machine, the UPM
DLL must be installed (UPM.DLL). This is because the C function QryUserID
is using functions in the UPM DLL.

/* Query local userid */
/* function name is QryUserID */
/* located in QRYRXUSR.DLL */
/* routine is QryUserID */
Call RxFuncAdd ′ QryUserID′ , ′ qryrxusr′ , ′ QryUserID′

Say QryUserID()

Figure 42. UPMUSRID.CMD

Chapter 3. External Functions 51

3.4 Some Established External Function Packages
There are a number of external function packages produced commercially
that are designed to extend the REXX language in specific ways. The most
prevalent is the REXXUTILS package, which is a DLL containing functions for
manipulating Workplace Shell classes and objects, manipulating OS/2 files
and directories, and performing text screen input and output. REXXUTILS is
provided with OS/2. See Chapter 4, “ REXX Utilities External Function
Package (REXXUTIL)” on page 53 for a detailed look at the REXXUTILS
package.

The EHLLAPI function in the SAAHLAPI DLL gives REXX programs the ability
to invoke EHLLAPI commands. SAAHLAPI.DLL is provided by CM/2.

SQLDBS and SQLEXEC are functions that give REXX programs access to
DB2/2 APIs. These functions are provided by DB2/2.

52 OS/2 REXX

Chapter 4. REXX Utilities External Function Package
(REXXUTIL)

REXXUTIL is a Dynamic Link Library (DLL) which provides OS/2 REXX
specific functions for manipulating Workplace Shell classes and objects,
manipulating OS/2 files and directories, performing text screen input and
output and performing OS/2 system commands. The REXXUTILs package is
shipped as a part of OS/2 2.1.

This chapter will focus on some of the most useful features in REXXUTILs
although some of the utilities are used in examples throughout this book.

The complete description of the commands listed in this chapter can be
found in the OS/2 Command Reference or the online version which is located
in the Information folder on the default desktop.

The functions related to manipulating the Workplace Shell objects are
described in detail in Chapter 5, “The Workplace Shell and REXX” on
page 69. External function packages are described in detail in Chapter 3,
“External Functions” on page 49.

To use a REXXUTIL function in a REXX program, you must first register the
function using the function RxFuncAdd. You have a choice of registering one
function using RxFuncAdd or you can register all functions by first registering
SysLoadFuncs via RxFuncAdd and then use SysLoadFuncs to register all
functions in REXXUTIL.DLL. The following is an example of registering one
function (SysGetKey):

Call RxFuncAdd ′ SysGetKey′ , ′ RexxUtil′ , ′ SysGetKey′

To register all REXXUTIL functions:

Call RxFuncAdd ′ SysLoadFuncs′ , ′ RexxUtil′ , ′ SysLoadFuncs′
Call SysLoadFuncs

Once the REXXUTIL functions are loaded by SysLoadFuncs they are usable
by all OS/2 sessions.

The installation example consisting of three .CMD files: 4199.CMD,
CONFUPD.CMD and MAKEFOLD.CMD, give a practical example of the usage
of the functions described in this chapter. These .CMD files are used to
install the sample programs from the diskette to a hard disk. 4199.CMD
begins by registering all the REXXUTIL functions as follows:

 Copyright IBM Corp. 1993 53

Call RxFuncAdd ′ SysLoadFuncs′ , ′ RexxUtil′ , ′ SysLoadFuncs′
Call SysLoadFuncs

4.1 Drives, Directories and Files
REXXUTIL has some very useful functions for querying, searching and
manipulating files and directories as well as listing and querying drives on
your system:

• SysDriveMap

• SysDriveInfo

• SysFileDelete

• SysFileSearch

• SysFileTree

• SysMkDir

• SysRmDir

• SysSearchPath

4.1.1 SysDriveMap
SysDriveMap is used to get information about drives available to your
system. SysDriveMap takes two arguments: the drive to start with, defaulting
to C: and the report option which can be given a value of:

USED Reports drives which are accessible or in use. This is the default
option and includes all local and remote (LAN-attached) drives.

FREE Reports drives which are free or not in use.

LOCAL Reports only those drives which reside on your workstation.

REMOTE Reports only those drives which are remote drives such as
redirected LAN resources.

DETACHED Reports drives which are detached LAN resources like a LAN
drive that is assigned to your workstation but detached after a
timeout.

For example the following code will list all your drive information beginning
at the drive given as argument:

54 OS/2 REXX

Arg First
If First=′ ′ then First=′ C:′
Say ′ USED: ′ SysDriveMap(First,′ USED′)
Say ′ FREE: ′ SysDriveMap(First,′ FREE′)
Say ′ LOCAL: ′ SysDriveMap(First,′ LOCAL′)
Say ′ REMOTE: ′ SysDriveMap(First,′ REMOTE′)
Say ′ DETACHED:′ SysDriveMap(First,′ DETACHED′)

If your workstation has local drives C: and D: and LAN-attached drives E: and
F: the previous example will display the following information given an
argument C:.

USED: C: D: E: F:
FREE: G: H: I: J: K: L: M: N: O: P: Q: R: S: T: U: V: W: X: Y: Z:
LOCAL: C: D:
REMOTE: E: F:
DETACHED:

The following code is used in 4199.CMD to check if the drive that the user
gives as input is actually usable by the system:

Chapter 4. REXX Utilities External Function Package (REXXUTIL) 55

Drives:
/* Check if wanted drive in use */

Arg Svalue /* Search value as argument for example F: */
Valid = 0

Drives = SysDriveMap(′ C:′ , ′ USED′) / * All used drives */
If (Pos(Svalue,Drives) = 0) | (Strip(Svalue) = ′ ′) then Do Until Valid
Say ′ You have the following Drives:′ / * No drive or invalid drive*/
Say ′ Select the number of the drive you wish to install on:′
Do I = 1 to Words(Drives) /* Give selection list of */
Say I′ ′ Word(Drives,I) /* all accesible drives */

End
Pull Number
If (Datatype(Number,′ W′) = 1) & (0 < Number) & (Number <= Words(Drives))
then Valid = 1

Else Do
Say ′ You typed in an invalid number ′ Number′ ! ′
Say ′ Please choose a number between 1 and ′ Words(Drives)

End
End
If Valid then Rv = Word(Drives,Number)
Else Rv = Svalue

Return Rv

4.1.2 SysDriveInfo
SysDriveInfo can be used to give information on total and used space on any
disk drive usable by your system. It also gives you the label information. The
only parameter given is the drive of interest. Information will be returned in
the form of Drive: Free Total Label. If the drive is not accessible a null string
is returned. The following code example lists all drives in your system and
gives information about space usage and labels.

56 OS/2 REXX

Call Dinfo ′ LOCAL′
Call Dinfo ′ REMOTE′
Exit

Dinfo:
Arg Where
Drives = SysDriveMap(′ C:′ , Where)
Say Where ′ DRIVES′
Say Left(′ DISK′ , 4) Right(′ FREE_SPACE′ ,12) Right(′ TOTAL_SIZE′ , 1 2) ,

Right(′ USED′ ,12) Left(′ LABEL′ , 20)
Do I = 1 to Words(Drives)
Parse Value SysDriveInfo(Word(Drives,I)) With Disk Free Total Label
Say Left(Disk,4) Right(Free,12) Right(Total,12),

Right(Total-Free,12) Left(Label,20)
End
Return

The previous example will give output in the following form:

LOCAL DRIVES
DISK FREE_SPACE TOTAL_SIZE USED LABEL
C: 25556992 104634368 79077376 OS2
D: 156990976 210747392 53756416
REMOTE DRIVES
DISK FREE_SPACE TOTAL_SIZE USED LABEL
E: 28792832 52412416 23619584
F: 160555008 318750720 158195712

The following is used in 4199.CMD to check if the disk the user wants to
install has enough free space.

Needed = ′252000′
Parse Value SysDriveInfo(Rv) With . Free Size Label
If Free < Needed then Do
Say ′ You do not have enough disk space on disk ′ Rv
Say ′ You need ′ Needed′ bytes, You have ′ Free′ bytes′
Say ′ You need to free ′ Needed - Free′ bytes′
Say ′ Exiting installation..′
Exit

End

Chapter 4. REXX Utilities External Function Package (REXXUTIL) 57

4.1.3 SysFileDelete
Deletes a file given as a parameter. For example:

 Rc = SysFileDelete(TempFile) /* Delete temporary file */

4.1.4 SysFileTree
SysFileTree is used to search for files and/or directories. It can also be used
to change file attributes of the files that match the search specification. The
following example from 4199.CMD uses SysFileTree to find out if the
user-entered directory exists. The first parameter is the search specification,
for example F:\SAMPLES, and the second parameter, in this case File, is the
name of the stem which will hold the output. File.0 will have the number of
matching values so if it is 0 then directory was not found. Parameter OD
means (O) return only fully qualified name of directory and no additional
information. (D) look only for directories.

Paths:

Arg Svalue /* Path to search for as argument */
/* For example F:\SAMPLES */

Call SysFileTree Svalue, ′ File′ , ′ OD′
If File.0 = 0 Then Do
Say ′ Directory′ Svalue ′ does not exist′
Exit

End
Else Return Svalue /* Directory found */

4.1.5 SysFileSearch
SysFileSearch can be used to search for text strings in a given file. It takes
four arguments: Target, File, Stem and Options. Target contains the text to
be searched for, File contains the file to search in and Stem contains the
stem that will hold the lines containing the target lines. Stem.0 will contain
the number of lines found. If no lines are found then stem.0 will contain 0.
The options can contain either C for case sensitive search, N for reporting
line numbers of lines matching the search argument or both of these. If no
options are given then the search will be case insensitive without line
numbers.

58 OS/2 REXX

The following code from CONFUPD.CMD searches for a given directory in the
PATH= statement in CONFIG.SYS.

/**/
Parse Source . . Myname /* Find full path of this .CMD file */
Arg Add2Path /* Get path as argument */
BootDrive=Filespec(′ Drive′ , Value(′ SYSTEM_INI′ , , ′ OS2ENVIRONMENT′))

/* Find out bootdrive */
SysFile = BootDrive||′ \CONFIG.SYS′ /* Full path of CONFIG.SYS */
/* Get all statements with PATH= from CONFIG.SYS */
Rc = SysFileSearch(′ PATH=′ , SysFile,′ PVALS.′ , ′ N′)
If Rc <> 0 then Do /* Error opening CONFIG.SYS */
Say ′ Could not open ′ SysFile
Say ′ Error number from SysFileSearch = ′ Rc
Exit

End
Found = 1 /* Set found to TRUE */
Do I = 1 to PVals.0 /* Step through found lines */
If Pos(′ PATH=′ , PVals.I) > 0 then Do
/* PATH statement (notice blank in front to distinguish from */
/* from DPATH, LIBPATH etc. */
If Word(PVals.I,2) = ′ REM′ then Iterate I /* Remark, no action */
If Pos(′ ; ′ Add2Path′ ; ′ , PVals.I) <> 0 then nop

/* Already exists in PATH */
Else Do
NewPath = Strip(Pvals.I,′ T′ , ′ ; ′) | | ′ ; ′ Add2Path′ ; ′
/* Strip trailing ; and concatenate new path with trailing ; */
Parse Var NewPath Lineno NewPath /* Separate line number and */
Found = 0 /* actual string */

End
End

End
If Found Then Exit /* Already in path, no need to add */
Else Call Update /* Update CONFIG.SYS with new path */

Exit

Chapter 4. REXX Utilities External Function Package (REXXUTIL) 59

4.1.6 SysMkDir
SysMkDir can be used instead of the OS/2 command MD to create a
directory. SysMkDir will give a return code 0 if the operation is successful.
Without using SysMkDir your program could only check for a successful
operation by redirecting the STDERR output to RXQUEUE and then pulling the
error output from the queue. Following is an example from 4199.CMD of
using SysMkDir to create a directory.

CreateDir:

Rc = SysMkDir(Svalue) /* Create directory */
If Rc = 0 then Rv = Svalue
Else Do
Say ′ Could not create directory′ Svalue
Exit

End

Return Rv

4.1.7 SysSearchPath
SysSearchPath can be used to search for a specific file in all directories
listed in PATH, DPATH, LIBPATH etc. For example:

View = SysSearchPath(′ PATH′ , ′ VIEW.EXE′) /* Search all directories */
/* in path for VIEW.EXE */

Will return C:\OS2\VIEW.EXE if VIEW.EXE is located in C:\OS2 and that
directory exists in the PATH statement.

4.2 Workplace Shell Objects
REXXUTIL has some very useful functions for creating and destroying objects
and altering the properties of objects. These functions include:

• SysCreateObject

• SysDeregisterObjectClass

• SysDestroyObject

60 OS/2 REXX

• SysGetEa

• SysIni

• SysPutEa

• SysQueryClassList

• SysRegisterObjectClass

• SysSetIcon

• SysSetObjectData

This section will discuss some of these functions as they are used in
MAKEFOLD.CMD. Chapter 5, “The Workplace Shell and REXX” on page 69
describes the usage of these functions in interacting with the Workplace
Shell in more detail.

4.2.1 SysCreateObject
MAKEFOLD.CMD is used as a part of the installation program to create a
folder on the desktop and then fill that folder with the .CMD, .EXE and .INF
files from the samples disk with different icons for each type of object.

The first part of the program sets up some variables used later on in the
program. The Directry variable is passed to the program as argument and
contains the physical path of the objects. Fid contains the object id for the
folder and is used both in creating the folder and populating the folder with
program objects. Variable View will contain the full path of VIEW.EXE. The
rest of the variables contain the Icon and Bitmap files. The setup variables
are as follows:

bmap = Directry||′ \4199.BMP′ /* Background bitmap */
SampIcon = Directry||′ \4199SAMP.ICO′ /* Folder icon */
CmdIcon = Directry||′ \4199RX.ICO′ /* .CMD file icon */
VisIcon = Directry||′ \4199VIS.ICO′ /* Icon for visual builders */
RedIcon = Directry||′ \4199RED.ICO′ /* .INF icon */
Fid = ′4199FOLD′ /* Folder id */
View = SysSearchPath(′ PATH′ , ′ VIEW.EXE′) /* Search all directories */

/* in path for VIEW.EXE */

The second part creates the folder on the desktop for the sample programs
and .INF files.

The first parameter holds the object class for the folder. OS/2 has an object
class WPFolder for folder objects, which has preset object properties such as

Chapter 4. REXX Utilities External Function Package (REXXUTIL) 61

button appearance, object open behavior, font information etc. so we use that
in creating the folder.

The second parameter is the name of the folder. This is not the object ID, but
the name which will appear in the title bar of the object, the icon of the
object, the Window List etc.

The third parameter describes the location where the folder will be created.
There are many locations on the standard desktop to choose from like
<WP_INFO>, <WP_GAMES> etc. but as we want to install the folder to the
desktop we choose <WP_DESKTOP>.

In the fourth parameter we give the folder an ID which will allow us to
reference the object later when installing objects to the folder. Following is
the SysCreateObject command for creating the folder:

Rc = SysCreateObject(′ WPFolder′ , , /* Object class */
′ GG24-4199 Samples′ , , / * Name of folder */
′<WP_DESKTOP>′ , , /* Location of folder */
′ OBJECTID=<′ Fid′ > ′) /* Object id for folder */

/* 4199FOLD */

4.2.2 SysSetObjectData
SysCreateObject allows you to set additional properties through the setup
string which is described in Appendix C, “OS/2 Workplace Shell Setup
Strings and Color Definitions” on page 269. These properties can also be
set by SysSetObjectData. Following is a piece of code which will set the icon
for the folder (ICONFILE=′SampIcon) open the folder (OPEN=DEFAULT), set
the background bitmap (BACKGROUND= ′bmap) and set the font associated
with the icons in the folder to Courier Bold 14 (ICONFONT=14.Courier Bold).

/* Set object data for folder */
Rc = SysSetObjectData(′ < ′Fid′ > ′ , , /* Object id */

′ ICONFILE=′ SampIcon, /* Iconfile */
′ ; OPEN=DEFAULT′ | | , /* Open folder */
′ ; BACKGROUND=′ bmap||, /* Background bitmap*/
′ ; ICONFONT=14.Courier Bold′ x2c(0)) /* Font */

62 OS/2 REXX

The next step is to populate the folder with various program objects. There
is an object class called WPProgram in OS/2 which can be used in creating
program objects. You can give additional parameters to program objects like
PROGTYPE and EXENAME. Progtype describes the type of program. PM
means a PM program and WINDOWABLEVIO means windowable program.
Both of these can be associated with .CMD files. EXENAME holds the full
path of the program, for example C:\REXX\GEA.CMD. The following is an
example from MAKEFOLD.CMD to populate the samples folder with REXX
.CMD files.

′ @DIR /F /B ′ Directry′ *.CMD | RXQUEUE′ /* List .CMD files */
Do Queued() /* Process queued filenames */
Pull Name /* Pull name of file */
Parse Var Name Name′ . ′ Ext /* Don′ t use extention in name*/
Rc = SysCreateObject(′ WPProgram′ , , /* Create program object */

Name,, /* Name of object */
′ < ′Fid′ > ′ , , /* Location (folder)of object */
′ PROGTYPE=PM′ , /* PM application */
′ ; ICONFILE=′ CmdIcon, /* Iconfile */
′ ; EXENAME=′ Directry′ \′ Name′ . ′ Ext,,

/* Full path of command file */
′ f′) /* Fail if already exists */

End

 Note

If you want to extend your SysCreateObject call to several lines you can
use double commas like in the previous example. In the setup string you
should also use double vertical bars to ensure that the strings are
concatenated without extra blanks like in the following code from
MAKEFOLD.CMD to populate the samples folder with the .EXE files from
the samples diskette.

Chapter 4. REXX Utilities External Function Package (REXXUTIL) 63

′ @DIR /F /B ′ Directry′ *.EXE | RXQUEUE′
Do Queued()
Pull Name
Parse Var Name Name′ . ′ Ext
Rc = SysCreateObject(′ WPProgram′ , ,

Name,,
′ < ′Fid′ > ′ , ,
′ PROGTYPE=PM′ ,
′ ; ICONFILE=′ VisIcon||,
′ ; EXENAME=′ Directry′ \′ Name′ . ′ Ext)

End

In the SysCreateObject setup string it is also possible to give parameters to
the program object with PARAMETERS=. The following code creates an
object for VIEW.EXE with an .INF file as a parameter.

′ @DIR /F /B ′ Directry′ *.INF | RXQUEUE′
Do Queued()
Pull Name
Rc = SysCreateObject(′ WPProgram′ , ,

Name,,
′ < ′Fid′ > ′ , ,
′ PROGTYPE=PM′ ,
′ ; ICONFILE=′ RedIcon||,
′ ; EXENAME=′ View||,
′ ; PARAMETERS=′ Directry′ \′ Name,,
′ r′)

/* VIEW.EXE with .INF as parameter */
End

EXIT

4.3 Miscalleneus Functions
Other useful REXXUTIL functions for screen and keyboard I/O and other OS/2
specific functions include:

• SysCls

• SysCurPos

• SysCurState

64 OS/2 REXX

• SysGetKey

• SysSleep

• SysTextScreenRead

• SysTextScreenSize

These functions will be explained here using a directory list utility,
FLIST.CMD, that allows you to list a directory, scroll backwards and forwards
and edit a file selected with cursor.

4.3.1 SysCls
SysCls clears the screen:

Call SysCls

4.3.2 SysCurPos
SysCurPos positions the cursor to a specified location on a text screen. It
takes two arguments: Row and Column. For example:

Row = 1
Rc = SysCurPos(Row,Length(File.1)) /* Position cursor to end */

/* of first entry */

4.3.3 SysCurState
SysCurState allows you to change the cursor state. It can give an argument
ON which will display the cursor, or OFF which will hide it. For example:

Call SysCurState ′ OFF′ /* Hide cursor */

Chapter 4. REXX Utilities External Function Package (REXXUTIL) 65

4.3.4 SysGetKey
SysGetKey is one of the most useful REXXUTIL functions. It allows you to
intercept keystrokes from the keyboard buffer or wait for a keystroke. It can
also suppress display of the character given the argument NOECHO.

Extended keystrokes place two values in the keyboard buffer the first
containing either decimal 0 or decimal 224. So in order to query an extended
key you must issue two SysGetKey calls. Following is an example from
FLIST.CMD to query some keys used in the directory listing:

Getkey: Procedure
Key = c2d(SysGetKey(′ noecho′)) /* Get keystroke */
If Key=0 | Key=224 /* Extended keystroke */
Then Ext_Key = c2d(SysGetKey(′ noecho′))

Select
When Key = 27 then key = ′ ESC′
When Key = 0 | Key = 224 Then Select /* Second value tells key */
When Ext_Key = 59 Then Key = ′ F01′
When Ext_Key = 60 Then Key = ′ F02′
When Ext_Key = 61 Then Key = ′ F03′
When Ext_Key = 62 Then Key = ′ F04′
When Ext_Key = 80 Then Key = ′ AR_DN′
When Ext_Key = 72 Then Key = ′ AR_UP′
When Ext_Key = 79 Then Key = ′ END′
When Ext_Key = 71 Then Key = ′ HOME′
Otherwise nop

End /* select */
Otherwise nop

End /* select */
Return Key

4.3.5 SysSleep
SysSleep allows the system to wait a specified number of full seconds which
are given as an argument. For example:

Call SysSleep 3 /* Wait 3 seconds */

66 OS/2 REXX

4.3.6 SysTextScreenRead
Reads a specified number of characters from a specified location of the
screen. Can be given three arguments: row, column and length. For
example:

/* Read in the entire screen */
screen = SysTextScreenRead(0, 0)
/* Reads in one line starting from second row */
line = SysTextScreenRead(2, 0, 80)

4.3.7 SysTextScreenSize
Gives the size of a text screen for example an OS/2 window. Returns the
number of rows and columns. For example:

Parse Value SysTextScreenSize() With Rows Cols

Chapter 4. REXX Utilities External Function Package (REXXUTIL) 67

68 OS/2 REXX

Chapter 5. The Workplace Shell and REXX

The Workplace Shell (WPS) is a sophisticated user interface to OS/2 that
utilizes the object-oriented concept. It uses a desktop, objects, and icons to
represent the makeup of your system. The desktop is the background of the
screen that contains the visual representation of your system. Objects refer
to things such as application programs, data files, directories, and devices.
Icons are the visual representation of objects on the desktop. The Workplace
Shell can be customized to fit particular needs. The REXXUTIL external
function package contains functions that are very useful in Workplace Shell
customization. This chapter takes a look at these REXX functions, and
different ways that they can be used to manipulate the Workplace Shell.

5.1 Objects and Object Classes
Since the Workplace Shell is an object-oriented system, it is important to
have some knowledge of objects and object classes. All objects are
members of an object class. Object classes define specific properties that
objects in the class inherit. The structure is such that object classes can
have subclasses. The concept is similar to classification of animals, so this
analogy is often used to describe objects and object classes.

We can say that Mammals is an object class. All objects that are in the
Mammal class have certain properties. For example, they are warm
blooded. Subclasses of Mammals could be: Dog object class, and Man
object class. The Dog class has certain properties. For example, they have
four legs, and they bark. The Man class has certain properties. For example
they have two legs.

Mammal
Man
Dog

Figure 43. The Mammal Class Hierarchy

Figure 43 is a representation of the object class hierarchy we just described.
Object classes are categorizations based on properties that are used to
define types of objects.

 Copyright IBM Corp. 1993 69

Objects are the actual instances of the object class. For example, the golden
retriever down the street is an object of the Dog class. We know it has four
legs and barks. We also know it is warm blooded.

Now let us look at the object classes that have been defined for the
Workplace Shell. Figure 44 is a representation of the Workplace Shell class
hierarchy. These are the default object classes. Additional object classes
can be defined to the Workplace Shell using the REXXUTIL function
SysRegisterObjectClass. Object classes are actually DLLs that define the
properties of the class. Note that all object classes are subclasses of object
class WPObject. Note that there are three major object classes below
WPObject:

• WPFileSystem

• WPAbstract

• WPTransient

WPObject
WPFileSystem WPAbstract WPTransient
WPDataFile WPClock WPCnrView
WPBitmap WPCountry WPDiskCV
WPIcon WPDisk WPFolderCV
WPPointer WPKeyboard WPFilter
WPProgramFile WPMouse WPFinder
WPCommandFile WPPalette WPMinWindow

WPMet WPSchemePalette WPJob
WPPif WPColorPalette WPPort

WPFolder WPFontPalette WPPrinterDriver
WPDesktop WPProgram WPQueueDriver
WPStartup WPPrinter
WPDrives WPRPrinter
WPMinWinViewer WPShadow
WPFindFolder WPNetLink
WPNetgrp WPShredder
WPNetwork WPSound
WPServer WPSpecialNeeds
WPSharedDir WPSpool
WPTemplates WPSystem
WPRootFolder WPPower

Figure 44. The Workplace Shell Object Class Hierarchy

70 OS/2 REXX

5.1.1 WPFileSystem
Objects that are in the WPFileSystem object class structure typically
represent files or directories that are located on the hard disk. For example,
objects of the WPFolder class represent directories in the file system.
Objects of the WPDataFile class represent files. For example, the file
OS2LOGO.BMP is an instance of the object class WPBitmap, which is a
subclass of the WPDataFile object class. WPFileSystem objects store specific
information about their properties in the extended attributes of the object file.
An example of the type of data stored in the extended attributes is the icon
that represents a file. The extended attributes of a file are accessible by
REXX using the REXXUTIL functions SysGetEA, SysPutEA and SysSetIcon.

5.1.2 WPAbstract
WPAbstract objects do not necessarily represent files on your hard disk.
They may reference, or point to, files however. We will see this in more
detail later. WPAbstract objects can represent things like device drivers and
system settings. They can contain information about the configuration and
customization of your workstation. For example, the mouse driver is an
object of the class WPMouse. They can also represent executable programs.
They may represent references to applications installed on your system.
Since WPAbstract objects do not necessarily have a file associated with
them, specific information about their properties are stored in the system
initialization files, OS2.INI, and OS2SYS.INI.

OS2.INI, called the user INI, and OS2SYS.INI, called the system INI, are used
by OS/2 on startup of a workstation to determine the configuration of the
workstation. The OS2.INI file contains information that the user may want to
change. Things like colors, country settings, and mouse settings are stored
here. The REXXUTIL function SysIni provides a way to read and write
OS2.INI data. In addition, the SysCreateObject, SysSetObjectData, and
SysDestroyObject REXXUTIL functions can manipulate WPAbstract objects by
updating the OS2.INI.

5.1.3 WPTransient
Objects of the class WPTransient may contain specific data about their
properties, but that data does not need to be saved by the Workplace Shell.
As such, there are no REXXUTIL functions to access object data for
WPTransient objects. An example of a WPTransient object is a print job.

Chapter 5. The Workplace Shell and REXX 71

5.2 Creating Objects
SysCreateObject is a REXXUTIL function that can be very effective in
customizing the Workplace Shell. Typically the classes of objects that are
manipulated with SysCreateObject are WPFolder, WPProgram, and
WPShadow of the WPAbstract class. Here is an example to show you how
SysCreateObject can be used to customize a desktop. Remember that to
use external functions, they must be registered using RxFuncAdd.

The PC Company of IBM has asked us to write a REXX program that will
create the following:

• PC Company folder on the desktop

• PC application in the PC Company folder

• Shadow of an OS/2 command prompt on the desktop for easy access

Using REXX to create new objects is easy if you use a fill in the blank
approach. Whether creating a folder object, a program object, or one of
many other objects, certain blanks must be filled in, and then it is just a
matter of typing. The hard part is figuring out what needs to go in the
blanks. This will become much clearer as we go through a few examples.

5.2.1 Creating a Folder Object
Following are the blanks that must be filled in for the SysCreateObject
function:

• Classname

• Title

• Location

• Setup

• Duplicateflag

As requested by the PC Company, we must create the PC Company folder on
the desktop. Let′s walk through this first example, remembering the blanks
to fill in. If necessary, refer to Appendix C, “OS/2 Workplace Shell Setup
Strings and Color Definitions” on page 269 for the setup string parameters in
the WPFolder class.

 1. The first blank is classname. Since we are trying to create a folder, fill in
this blank with WPFolder.

 2. The second blank is the title, which has already been given: PC
Company^Folder (the caret separates these on two lines).

72 OS/2 REXX

 3. The third blank, location, also has been given to us: they requested it to
be on the desktop. Therefore, put the object ID of the Desktop,
<WP_DESKTOP>, into the location blank. An object ID is any string that
begins wi th < and ends w i t h > . The object ID, as we shall see later
in this chapter, is a unique identifier for an object. It is needed to locate
and to make changes to objects.

 4. The fourth blank, setup (which is optional), is usually simple when
creating a folder. Give the folder the object ID
<PC_COMPANY_FOLDER>. Note that the underscores could have been
spaces, but underscores are usually used for consistency with the
existing object IDs.

 5. The fifth and final blank, duplicateflag (also optional), is used to
determine what to do if the object already exists. Here are the options
for duplicateflag. The default is FAIL.

• REPLACE - Delete the old object and create a new object

• FAIL - Will not do anything if object already exists

• UPDATE - Update an object

• DELETE - Delete an object

That′s all it takes to create a new folder on your desktop. Figure 45 shows
the REXX code.

/* Fill in the blanks as parameters to pass to SysCreateObject */

classname=′ WPFolder′
title= ′ PC Company^Folder′
location= ′<WP_DESKTOP>′
setup= ′ OBJECTID=<PC_COMPANY_FOLDER>;′

result = SysCreateObject(classname, title, location, setup, ′ f′)

Figure 45. Create Folder Object

Chapter 5. The Workplace Shell and REXX 73

5.2.2 Creating a Program Object
Now that the PC Company folder is on the desktop, the next step is to create
the PC application inside that folder. Refer to Appendix C, “OS/2 Workplace
Shell Setup Strings and Color Definitions” on page 269, which shows the
setup string parameters for the WPProgram class. WPProgram objects are
references, or pointers, to programs residing on disk. We need to decide
how to fill in the blanks to create this program object, just as we did when
creating the folder.

 1. The classname needs to be WPProgram since we will be creating a
program object.

 2. The title is easy: use PC Application.

 3. Since we want to put the program object inside the folder that we
created, use that folder′s object ID, <PC_COMPANY_FOLDER>.

 4. The setup field for a program object has a few more options than for a
folder object. First, let′s give the program object the object ID
<PC_APPLICATION>.

 5. Next, tell the program object the path and name of the program that we
want it to run. Instead of writing a real C&C application, use the OS/2
command processor. For the EXENAME field, use C:\OS2\CMD.EXE
(assuming that OS/2 is installed on the C: drive).

 6. The last field, PROGTYPE, tells what kind of program it is. Set this up as
an OS/2 window; use WINDOWABLEVIO as the value.

That is all we need to do to create this program object. Figure 46 shows the
REXX code for creating this program object.

/* Fill in the blanks as parameters to pass to SysCreateObject. */

classname=′ WPProgram′
title= ′ PC^Application′
location= ′<PC_COMPANY_FOLDER>′
setup= ′ OBJECTID=<PC_APPLICATION>;′ | | ,

′ EXENAME=C:\OS2\CMD.EXE;′ | | ,
′ PROGTYPE=WINDOWABLEVIO;′

result = SysCreateObject(classname, title, location, setup, ′ f′)

Figure 46. Create Program Object

74 OS/2 REXX

5.2.3 Creating a Shadow Object
To finish the request from PC Company, one more task must be completed,
and that is to create a shadow of the OS/2 window command prompt and
place it on the desktop for easy access. The SysCreateObject function will
be used again, but with WPShadow as the classname.

WPShadow is the object class name for shadow objects. Shadow objects are
pointers to files or other objects. They contain the location of the object that
they are shadowing. Manipulation of the shadow object is reflected in the
object that it is pointing to. The only actions you can take on a shadow
object that do not affect the original object are move, copy, and delete.
Shadow objects are very useful when working with data files. We will see
that later in this chapter. A shadow is probably the easiest object to create.
Let′s go through the program and fill in the blanks.

 1. The classname needs to be WPShadow since we are creating a shadow.

 2. The title can be anything, so call it OS/2 Window^Shadow. Again, the
caret symbol separates the first line from the second.

 3. .The location field shows where to place the object, so use
<WP_DESKTOP> since we want the shadow to be placed on the
desktop.

 4. The SHADOWID field is asking what object we want to have shadowed.
In this case, we are creating a shadow of the OS/2 window command
prompt, for which the object ID is <WP_OS2WIN>.

Figure 47 shows the REXX code to create a shadow object.

/* Fill in the blanks as parameters to pass to SysCreateObject */

classname=′ WPShadow′
title= ′ OS/2 Window¬Shadow′
location= ′<WP_DESKTOP>′
setup= ′ SHADOWID=<WP_OS2WIN>′
result = SysCreateObject(classname, title, location, setup, ′ f′)

Figure 47. Create a Shadow Object

Chapter 5. The Workplace Shell and REXX 75

5.2.4 Creating a Program Object in the Startup Folder
Programs that are in the Startup folder are executed whenever the system is
initialized. This is useful if you wish to have a system come up and
immediately start an application, for example. For a workstation that will be
running REXX programs, it is convenient to register external functions during
the system startup. Remember, once external functions are registered, they
are available to all REXX programs running on the system as long as they
are not dropped. Program WPSREG.CMD, shown in Figure 48, creates a
program object on the desktop. The program that it references registers the
REXXUTIL function package. It then creates a shadow of that program object
in the Startup folder.

The program REGFUNC.CMD and shown in Figure 49 registers the REXXUTIL
external function package.

/* create program object for regfunc.CMD */
classname = ′ WPProgram′
title=′ Register REXXUTIL′
location=′<WP_DESKTOP>′
setup=′ OBJECTID=<REGFUNC_CMD>;′ | | ,

′ PROGTYPE=WINDOWABLEVIO;′ | | ,
′ EXENAME=E:\REXXUTIL\REGFUNC.CMD;′

result = SysCreateObject(classname,title,location,setup, ′ U′)

/* create shadow of that program object */
classname = ′ WPShadow′
title= ′ Register REXXUTIL′
location=′<WP_START>′
setup=′ SHADOWID=<REGFUNC_CMD>;OBJECTID=<SHAD_REGFUNC_CMD>′

result = SysCreateObject(classname,title,location,setup, ′ U′)
return

Figure 48. Create Program Object in Startup Folder - WPSREG.CMD

/* register REXXUTIL functions */
call RxFuncAdd ′ SysLoadFuncs′ , ′ RexxUtil′ , ′ SysLoadFuncs′
call SysLoadFuncs
return

Figure 49. REGFUNC.CMD

76 OS/2 REXX

5.3 Creating Drag and Drop REXX Programs
Dragging a data file with the mouse and dropping it onto a program
reference object is a feature of the Workplace Shell. For example, the
Shredder object utilizes this feature. To discard data, objects can be
dragged to and dropped on the Shredder object. When the mouse button is
released, the program referenced by the shredder object attempts to delete
files associated with the object. In this section we will show you how to
create a WPProgram object referring to a REXX program so that it can
handle drag and drop.

REXX program objects are created the same way other program reference
objects are created. The EXENAME parameter of the setup string is set to
the path and filename of the REXX program. To allow the drag and drop
feature to occur, we need to associate files to the program object.
Associating a file to a program in this way means that the program will
accept the file name as an input parameter when the file′s object is dropped
on the program′s object. This means that the program must be written to
accept a file name as the incoming parameter.

To associate a file or group of files to a program object we can use the
ASSOCTYPE or ASSOCFILTER parameters in the setup string. They are
discussed in more detail in Appendix C, “OS/2 Workplace Shell Setup
Strings and Color Definitions” on page 269. For example, ASSOCTYPE =
″Plain Text″ means that the program can accept any ASCII text file as input.
Wildcards can be used to specify groups of file types. For example,
ASSOCTYPE = *.CMD means that only files with the extension .CMD are
associated with this program object. Figure 50 on page 78 shows the REXX
code for creating a REXX program object that plain text files can associate
to. Plain text files can be dropped on the GEA.CMD program reference
object. GEA.CMD reads the extended attributes of the input file name and
loads the icon data into the icon editor. Any changes made to the icon are
then loaded back into the extended attributes. The details of this progam will
be discussed in :hdref=wpsea.. Since the code is on the diskette, you can
try out the drag and drop feature with this program. Note that you will not be
able to drag and drop objects that do not reference plain text files. For
example, the Templates folder cannot be dropped on the GEA.CMD program
object since it does not represent a plain text file.

Chapter 5. The Workplace Shell and REXX 77

classname = ′ WPProgram′
title=′ Update Icon′
location=′<WP_DESKTOP>′
setup=′ OBJECTID=<GEA_CMD>;′ | | ,

′ PROGTYPE=WINDOWABLEVIO;′ | | ,
′ EXENAME=E:\REXXUTIL\GEA.CMD;′ | | ,
′ ASSOCTYPE=Plain Text;′

result = SysCreateObject(classname,title,location,setup, ′ U′)

Figure 50. Associate Files to Program Object - WPSDRAG.CMD

5.4 Creating (Shadow) Objects Associated With Data Files
There are a number of ways to represent data files in the Workplace Shell.

To create a shadow object that references a data file you need to supply the
physical location of the data file. The shadow object will exist on the desktop,
but the data file it refers to can exist anywhere on the system. This allows
you to physically store data files in subdirectories where it makes sense
logically, yet still be able to represent data files on the desktop. The shadow
object can now be used to manipulate that data file, as if the data file was
actually on the desktop. Figure 51 shows the REXX code to create a shadow
of a data file.

classname = ′ WPShadow′
title= ′ TESTFILE′
location=′<WP_DESKTOP>′
setup=′ SHADOWID=E:\REXXUTIL\TESTFILE.DAT;OBJECTID=<SHAD_TESTFILE>′

result = SysCreateObject(classname,title,location,setup, ′ U′)

Figure 51. Create Shadow of a Data File

78 OS/2 REXX

5.5 Modifying Workplace Shell Objects
Once you have created objects, you will almost always come across
situations where you need to change the data associated with those objects
in some way. There also may be system or application objects that you did
not create that you need to modify in some way. The REXXUTIL functions
SysCreateObject, SysSetObjectData, SysIni, and SysDestroyObject are very
useful in customizing Workplace Shell objects. We have found that there are
instances where a number of these functions could be used to accomplish
the same thing. For example, both SysSetObjectData and SysCreateObject
(with duplicateflag set to UPDATE) can set an icon to a object, among others.
Since we are dealing with WPAbstract objects here, and their data is stored
in the INI files, these four functions can all be used to access and modify INI
data. Before we get into a discussion about modifying Workplace Shell
objects, we need to talk about object IDs, RC files, and INI files.

5.5.1 Object IDs
An object ID uniquely identifies an object to the Workplace Shell. It is most
often used with REXX, since you can only modify an object using its object
ID. One exception to this is a file system object. If the object is a folder,
which is a subdirectory in the file system, it can be identified using its fully
qualified path name instead of an object ID. Each base operating system
object on an OS/2 2.1 desktop has an object ID. Objects that belong to other
applications may or may not have object IDs, depending on the installation
program of that particular application. There are several ways to identify the
object ID for a particular object. One method is to look into the \OS2\INI.RC
file to see the base OS/2 object IDs and other information. This will not
contain information for object IDs added to the system after the initial system
installation. The \OS2\OS2.INI file contains information for all objects in the
Workplace Shell. This includes objects added to the Workplace Shell by
application installations, as well as objects that you have created.
SysCreateObject writes information to the \OS2\OS2.INI.

5.5.2 RC Files
The \OS2\INI.RC file contains information on all base OS/2 object IDs. This
RC file is used to initially create the \OS2\OS2.INI file, which is used to set up
the Workplace Shell. Although there are many lines in this file, we are
interested in the ones that begin with PM_InstallObject. Each line defines
how to create an individual object that is installed with the base operating
system. For example, the following line says to install an object with the title
System Clock, with the class of WPClock, in the folder that has an object ID

Chapter 5. The Workplace Shell and REXX 79

of <WP_CONFIG> (the System Setup folder), and assign this object the
object ID of <WP_CLOCK>:

″PM_InstallObject″ ″SystemClock;WPClock:<WP_CONFIG>″″OBJECTID=<WP_CLOCK>″

By understanding how this one object is created, you should be able to
review the PM_InstallObject lines to understand how all the objects get
installed. Additionally, you can identify the object ID for any given object.
Since this file contains readable text, REXX programs can write to and read
from the RC file just like any other text file.

5.5.3 User INI File
There is another way to find information about object IDs that will work for all
base operating system objects as well as any object ID that has been added
since the initial installation. The user INI, \OS2\OS2.INI, a binary file that
cannot be easily read, contains much information about the system
configuration, including object IDs. The REXXUTIL function SysIni allows you
to read and write INI data. Figure 52 on page 81 shows a sample program
that displays all object IDs on a system by reading the \OS2\OS2.INI file. It
uses SysIni to read this information. Refer to 5.7, “SysIni” on page 84 for a
discussion on writing to INI files and reading from the INI files using SysIni.
This method of finding object IDs is important. It is the only one that enables
you to see the object IDs for objects other than the operating system objects,
including the ones you have created. You should now understand how to
find object IDs for all base operating system objects. You also have a
program that can be run on any OS/2 2.1 system to identify the object IDs on
that system. It is included in the MLAMBDLL.INF file on the diskette.

80 OS/2 REXX

/* List ObjectIds */
App=′ PM_Workplace:Location′
call SysIni ′ USER′ , App, ′ All:′ , ′ Keys′
if Result \= ′ ERROR:′ then do

Call SysCls
Say ′ ′ ; Say ′ ′ ; Say ′ Listing ObjectId information′ ; Say ′ ′ ;
parse value SysTextScreenSize() with row col
j=row-10
Do i=1 to Keys.0

If trunc(i/j)==i/j Then Do
Say ′ ′ ; Say ′ Press any key to show next screen...′
key=SysGetKey()
Call SysCls
Say ′ ′ ; Say ′ ′ ; Say ′ Listing ObjectId information′ ; Say ′ ′ ;

End
Say Keys.i

End
End
Else Say ′ Error querying for′ App
Return

Figure 52. REXX Program to Display Al l Installed Object IDs

5.5.4 SysSetObjectData
The SysSetObjectData function is a powerful tool that can modify the settings
of an existing object. The settings that you can modify can be placed in the
setup string of a SysSetObjectData call. The following four examples
illustrate the power of this function.

For the first example, open any object on the desktop by specifying

OPEN= DEFAULT

and an object ID (or a fully qualified path name). Figure 53 on page 82
shows sample code to open the Start Here object. It would be easy to modify
the code so that it can accept a string as a parameter passed to it. By doing
this, you can have a simple program that can open any object from the
command line.

Chapter 5. The Workplace Shell and REXX 81

/* REXX code to open an object */

object= ′<WP_STHR>′
setup= ′ OPEN=DEFAULT;′

result = SysSetObjectData(object, setup)

Figure 53. SysSetObjectData to Open an Object

A second example uses REXX to help system performance. Try opening the
Templates folder. If it is set to the default Non-grid , it will take some time for
it to open, even on the fastest systems. Now, open the settings and change
the Icon view to Flowed . See how long it takes to open the folder. The
difference should be visible (above and beyond the expected performance
increase of opening a folder immediately after closing, since the data is likely
to still be in the cache). Figure 54 shows the REXX code to change the icon
view setting to flowed.

/* FLOWOBJ.CMD REXX program to set Icon View to Flowed */

result = SysSetObjectData(′<WP_TEMPS>′ , ′ ICONVIEW=FLOWED′)

Figure 54. SysSetObjectData to Change Icon View Setting

The third example of the SysSetObjectData function provides some security
for the WPS. Security refers to protecting end users from making mistakes
rather than protecting against theft, vandalism, and so on. Many users have
requested this type of protection. One way to provide it is through REXX.
For example, it can be very dangerous to test drag-and-drop techniques
when using the Shredder as the target. However, a new user may not be
aware of this. One solution is to protect a specific item from being deleted.
Figure 55 shows a program that does exactly that; it marks the OS/2
Command Reference object as undeletable.

/* NoDelObj.CMD REXX program to set NODELETE=YES */

object= ′<WP_CMDREF>′
setup= ′ NODELETE=YES;′

result = SysSetObjectData(object, setup)

Figure 55. SysSetObjectData to Make an Object Undeletable

82 OS/2 REXX

Hiding objects is another form of protection. Some OS/2 systems are
designed for end users who run only two or three applications. Some
administrators have requested a way to protect the user from accessing
certain objects on the desktop that they have no need to use. One way to
keep the user from accessing an object is to delete it. However, this is
undesirable because the administrator may later want to customize the
desktop further and if the object was deleted he would be unable to do that.
A better solution is to make the object invisible by hiding it. This is easy to
do with REXX and the SysSetObjectData function. When the administrator
wants to modify the system, it is also easy to make an object visible.
Figure 56 shows an example that can be used to hide the Shredder object.
To reverse this procedure, change NOTVISIBLE to NO and run the program
again.

/* HIDEOBJ.CMD REXX program to hide an object */

object= ′<WP_SHRED>′
setup= ′ NOTVISIBLE=YES;′

result = SysSetObjectData(object, setup)

Figure 56. SysSetObjectData to Hide an Object

Icons are pictures used to represent objects on the desktop. Icon data can
be stored in the extended attributes of a WPFileSystem object. This method
of storing icon data will be addressed in more detail in 5.8, “Extended
Attributes” on page 89. Objects can also be associated with icons. Icon
files have the file extension .ICO. They contain binary data that represents a
picture of some form. SysSetObjectData can be used to associate an object
to an icon file. This is especially useful for WPAbstract objects. Figure 57
shows an example of associating an object to an icon file.

/* Associate Workframe/2 Icon to Sample Folder Object */

rc = SysSetObjectData(′<DB2/2_SAMPLE_FOLDER>′ , ′ ICONFILE=E:\IBMWF\WF.ICO;′)

Figure 57. SysSetObjectData to Associate Object with Icon

Chapter 5. The Workplace Shell and REXX 83

5.6 Moving Objects
Once an object has been created, it may be necessary at some point to
move the object from one folder to another. There is no simple command for
moving the location of an object. Instead, the process for moving an object ′s
location consists of three steps:

 1. Save the current settings.

 2. Destroy the object.

 3. Create the object in the new location.

Saving the current settings refers to the settings that are in the user INI for
the object. These settings were most likely placed in the user INI by the
SysCreateObject function and possibly updated by with the SysSetObjectData
function, using the setup string parameters. You will need this data when
you recreate the object in the new location. The question is: How do you get
the object′s settings data out of the user INI? There are a couple of ways.
The first is to use the SysIni function to retrieve the data. This requires
knowledge of the keys applicable to the object, and manipulation of hex data
to get the information in readable form. Another method is to use a
Workplace Shell management product, such as DeskMan/2**. DeskMan/2
has a backup feature that will allow you to recreate any object on the
desktop. To do this, DeskMan/2 generates REXX code that retrieves the
object′s settings data from the user INI and builds a SysCreateObject
function call. This REXX code is available to the DeskMan/2 user. Since
DeskMan/2 develops the REXX code to recreate the object in the same
location, all you need to do is alter the REXX code to reflect the new location.

Before invoking the code to recreate the object in the new location, the
current object should be destroyed. This can be accomplished by using the
SysDestroyObject function. This function requires the object ID of the object
that is to be destroyed. For the syntax of SysDestroyObject, refer to
Appendix A, “REXX Syntax Diagrams” on page 225.

5.7 SysIni
The \OS2\OS2.INI file, or user INI, contains many OS/2 customization and
configuration parameters. An associated file \OS2\OS2SYS.INI, or system
INI, stores information about printers and other hardware devices. Both are
binary files and cannot be edited with a normal text editor. However, both
files are compiled from text versions of the files \OS2\INI.RC and
\OS2\INISYS.RC respectively. Before beginning to work with these INI files,

84 OS/2 REXX

you should understand their significance. These two files and the desktop
subdirectory contain most of the information about the entire Workplace Shell
desktop. The REXXUTIL function SysIni can be used to both read information
from the INI files and write information to the INI files.

 Note

Be sure that you have backups of the two INI files before beginning to
work with them.

5.7.1 Using SysIni to Change System Settings
How can we use the SysIni function to help complete customization of the
desktop? The SysIni function is easy to use; the difficult part is knowing what
values to supply to pass as parameters to the function. For example, one of
the first things most users change is the background color of their desktops
to something other than the default gray. Once the parameters are known,
this is easily accomplished, as shown in Figure 58 on page 86. Note that
some changes made to the INI file will be visible only after a reboot and
reinitialization of the Workplace Shell. For example, the background color
change requires a reboot to take effect. Also, the three numbers passed as
the value represent the RGB values for the desired color. The easiest way
to determine these numbers is to change the desktop color of the
background manually, following these steps:

 1. On the desktop, use the right mouse button to bring up the System Menu.

 2. Select System setup . This opens the System Setup folder.

 3. Double click on the Color Palette icon.

 4. Select Edit color...

 5. Select V a l u e s > >

 6. The RGB values are displayed.

Appendix C, “OS/2 Workplace Shell Setup Strings and Color Definitions” on
page 269 contains the RGB values for the 16 default solid colors of OS/2 2.1
if you wish to use those.

Chapter 5. The Workplace Shell and REXX 85

/* Note: SysIni calls do not take effect until reboot */

/* The three numbers for the value represent the RGB values */

application= ′ PM_Colors′
keyname= ′ Background′
value= ′002 217 217′

call SysIni ′ USER′ , application, keyname, value

Figure 58. SysIni to Change Desktop Background Color

The SysIni function also enables you to modify objects that are located in the
System Setup folder within the OS/2 System folder. The system object is one
of the most important objects because it has a Settings Notebook that
controls the way OS/2 runs, including confirmations, default controls for the
windows, print screen, and so on. Examples of objects that can be changed
with the SysIni function follow.

First, some people like to disable the PrintScreen function on the keyboard,
since they don ′ t normally use it and they sometimes press it by mistake.
This wastes both processor time and the printer′s toner, so it is preferable to
turn it on only when needed. Another performance aid is to turn off the
animation feature. Animation makes the windows look nice when opening
and closing, but it takes longer. Finally, some prefer to have the windows
hidden and the Hidden button displayed (the small square). These are not
the system defaults. Figure 59 on page 87 shows how to change the INI
values with REXX code.

86 OS/2 REXX

/* INISTUFF.CMD REXX code to change some INI stuff */

application= ′ PM_ControlPanel′
keyname= ′ PrintScreen′
value= ′ 0 ′ | | ′ 0 0 ′ x
call SysIni ′ USER′ , application, keyname, value

application= ′ PM_ControlPanel′
keyname= ′ Animation′
value= ′00000000′x
call SysIni ′ USER′ , application, keyname, value

application= ′ PM_ControlPanel′
keyname= ′ MinButtonType′
value= ′ 1 ′ | | ′ 0 0 ′ x
call SysIni ′ USER′ , application, keyname, value

application= ′ PM_ControlPanel′
keyname= ′ HiddenMinWindows′
value= ′ 1 ′ | | ′ 0 0 ′ x
call SysIni ′ USER′ , application, keyname, value

Figure 59. SysIni to Change System Settings

The largest stumbling block is learning which parameters change which
settings. One way to overcome this is to use an INI editor to see the
contents of a file. There are many variations available from sources such as
bulletin boards. EDTINI and INIMAINT are two of the most popular. Once
you have an editor, it is easy to browse through the file to see the different
application names, application keys, and values. It may still require some
trial and error to identify values associated with settings.

5.7.2 Using SysIni to Read INI Data
Since the INI files contain system information, it is helpful to be able to read
that information at times. Each INI file is broken up into a number of sections
called applications. Each application is then further broken up into a number
of keys. Pieces of data, called key values, are then associated with each of
the key names. For example the system colors are stored in an application
called PM_Colors. Within PM_Colors there are a number of keys relating to
parts of the system we are able to change the color of. If we were to look at
the key name IconText we might find the key value ″0 0 0″ which tells
OS/2 to make the color of icon text black.

Chapter 5. The Workplace Shell and REXX 87

SysIni can be used to retrieve a single key value, all keys for an application,
and the names of all applications. We saw in 5.5, “Modifying Workplace
Shell Objects” on page 79 that the SysIni function can be used to read all
existing object IDs from the user INI file. It does this by reading all key
values in the application called PM_Workplace:Location. For the syntax of
the SysIni function, see Appendix A, “REXX Syntax Diagrams” on page 225.
Figure 60 contains a sample usage of the SysIni function to read the user INI.

/* List ObjectIds */
App=′ PM_Workplace:Location′
call SysIni ′ USER′ , App, ′ All:′ , ′ Keys′ �1�
if Result \= ′ ERROR:′ then do

Call SysCls
Say ′ ′ ; Say ′ ′ ; Say ′ Listing ObjectId information′ ; Say ′ ′ ;
parse value SysTextScreenSize() with row col
j=row-10
Do i=1 to Keys.0 �2�

If trunc(i/j)==i/j Then Do
Say ′ ′ ; Say ′ Press any key to show next screen...′
key=SysGetKey()
Call SysCls
Say ′ ′ ; Say ′ ′ ; Say ′ Listing ObjectId information′ ; Say ′ ′ ;

End
Say Keys.i �3�

End
End
Else Say ′ Error querying for′ App
Return

Figure 60. REXX Program to Display Al l Installed Object IDs

Notes:

�1�′USER′ signifies that the user INI file, OS2.INI, is to be read. The
application to be read is PM_Workplace:Location. ′All:′ signifies that
all the keys in the application are to be read. Keys is a stem variable
that will be loaded with the INI data.

�2�The first element of the stem variable is loaded with the number of
key values returned. In this case, it is Keys.0.

�3�The remaining stem variable elements contain the key data.

88 OS/2 REXX

5.8 Extended Attributes
Files contain information that can be read and written using standard REXX
I/O functions like Linein, Lineout, Charin, and Charout. If it is a plain text file
this data can be viewed and edited. Files can also contain additional
information in the extended attributes portion of a file. The extended
attributes portion has a structure, and data can be written to, and read from,
the extended attributes using the REXXUTIL functions SysGetEA and
SysPutEA. The extended attributes headers used by the Workplace Shell
are:

• .CLASSINFO

• .ICON

• .LONGNAME

• .TYPE

For an example of the type of data that can be stored in the extended
attributes, look at the icon view of the file GEA.CMD that is on the diskette.
To look at an icon view of the file, double click on the Drives icon on the
desktop. Traverse through the drives and directories to where GEA.CMD is
stored. The icon view shows an icon similar to the Start Here icon. This icon
data is stored in the GEA.CMD extended attributes as binary data.

GEA.CMD is a program that can be invoked via drag and drop. It uses
SysGetEA to retrieve icon information from the extended attributes of any
text file that is dropped on it. It will then start an icon editor session using
the icon data. You can then make changes to the icon. When you leave the
icon editor, GEA.CMD will load the new icon data back into the file ′s
extended attributes using SysSetIcon. SysSetIcon is a REXXUTIL function
that loads icon data into extended attributes. It is an alternative to SysPutEA
when loading icon data into the extended attributes of a file. In order to see
any changes reflected in the icon, you can go into the settings on the text file
to force the Workplace Shell to look at the extended attributes. Figure 61 on
page 90 displays the GEA.CMD program.

Chapter 5. The Workplace Shell and REXX 89

/* GEA.CMD - view, change extended attribute icon data. */
/* Uses SysGetEA, SysSetIcon, Icon Editor */
/* Input argument: */
/* filename */
Arg Fn
/* register REXXUTIL functions */
call RxFuncAdd ′ SysLoadFuncs′ , ′ RexxUtil′ , ′ SysLoadFuncs′
call SysLoadFuncs

TmpName = ′ TEMP$.ICO′
if (Stream(TmpName,′ c′ , ′ query exists′) <> ′ ′) then /* temp file exists */

′ ERASE ′ TmpName

/* display typeinfo, classinfo, and longname data */
if SysGetEA(Fn, ″ .type″, ″TYPEINFO″) = 0 then do �1�
parse var typeinfo 11 type .
say ′ Type of file:′ Type

end
if SysGetEA(Fn, ″ .classinfo″, ″CLASSINFO″) = 0 then do
parse var classinfo 13 class 23
say ′ Class of file:′ Class

end
if SysGetEA(Fn, ″ .longname″, ″NAME″) = 0 then do
parse var Name 5 Name
say ′ Name of object:′ Name

end

/* load icon data to temp file */
if SysGetEA(Fn, ″ .icon″, ″ICON″) = 0 then do
Parse Var ICON AInfo 5 ICON
Do I = 1 to Length(ICON)
Rc = Charout(TmpName,Substr(Icon,I,1)) �2�

End
If Length(Icon) \= 0 then Rc = Charout(TmpName)

end
say

Figure 61 (Part 1 of 2). GEA.CMD

90 OS/2 REXX

say ′ Icon data for file ′ fn ′ will now be loaded into the icon editor.′
say ′ You can make changes to the icon.′
say ′ If this is a brand new icon, you will be prompted to save ′
say ′ the data to a file. Save it to ′ TmpName ′ . ′
say ′ When you are ready, press the Enter key′
rc=SysGetKey()

/* invoke icon editor */
′ @ICONEDIT ′ TmpName �3�
/* write changes to icon to extended attributes */
Rc = SysSetIcon(fn, TmpName) �4�
′ @DEL ′ TmpName
return

Figure 61 (Part 2 of 2). GEA.CMD

Notes:

�1�The first parameter is the file name. type is the name of the
extended attribute. TYPEINFO is the variable name that the extended
attribute value will be loaded into.

�2�Write the icon binary data to a temporary file.

�3�Start the Icon Editor.

�4�Write icon binary data to extended attributes.

Chapter 5. The Workplace Shell and REXX 91

92 OS/2 REXX

Chapter 6. REXX and C

REXX and the C language are very closely related. In fact, the REXX
interpreter is a C Dynamic Link Library (DLL). The REXXUTIL functions are
also written in C. As a result, there is a specific protocol that allows REXX
programs to call C functions, and C programs to call REXX functions. The
ability of REXX programs to call C functions greatly expands the boundaries
of what REXX programs can accomplish. Conversely it may be better for C
programs to call REXX programs in certain situations to take advantage of
the powerful string parsing and Workplace Shell functions available in REXX.
For a discussion on how to call C functions from REXX programs, refer to
Chapter 3, “External Functions” on page 49. This chapter will discuss in
detail how to write C functions that are accessible by REXX, as well as an
in-depth look at how to call REXX functions from C programs. An excellent
source of information on this topic is the OS/2 2.1 Developer ′s Toolkit online
REXX Reference.

6.1 Creating C Functions for REXX
When you use RxFuncAdd to register an external function, you are telling the
REXX interpreter where the external function is located. For example, in
Figure 62 the function SysCls is located in the DLL called REXXUTIL.DLL.

Call RxFuncAdd ′ SysCls′ ′ Rexxutil′ ′ SysCls′

Figure 62. Register SysCls

Dynamic link libraries consist of one or more C functions that are available
for use by running programs. In order for REXX to use these functions, they
must contain statements that use a certain protocol defined for interaction
between REXX and C. Since the only data type in REXX is the string, this
protocol is based on passing string data between REXX and C. In this
section we will discuss how to write DLLs that are accessible by REXX
programs. In order to create these DLLs you need a C compiler, and the
REXXSAA.H header file which comes with the OS/2 2.1 Developer′s Toolkit.

 Copyright IBM Corp. 1993 93

6.1.1 RXSTRING
RXSTRING is a C data type defined specifically to handle REXX strings. This
is the basis for handling parameters passed from REXX to C, and for values
returned from C functions to REXX. The C program receives arguments in
RXSTRING data types. Depending on the function, the arguments may be
converted to another C data type to perform some operation. The return
value is converted to data type RXSTRING before being passed back to the
REXX program. Figure 63 is the layout of the RXSTRING data type.
PRXSTRING is a type defined to be a pointer to RXSTRING.

typedef struct {
ULONG strlength; /* length of string */
PCH strptr; /* pointer to string */

} RXSTRING;

typedef RXSTRING *PRXSTRING; /* pointer to an RXSTRING */

Figure 63. RXSTRING

6.1.2 Writing the C Function
There are specific steps that must be taken to make a C function REXX
accessible. They are:

 1. Include REXX functions with the statement: #define INCL_RXFUNC.

 2. Include REXX header file with the statement: #include < r e x x s a a . h > .

 3. Declare function as a REXX interface with REXXFunctionHandler.

 4. Convert RXSTRING parameters to C data types if necessary.

 5. Load return string into RXSTRING.

To get started, we will look at a simple C function called QryUserID that was
written to provide REXX with access to a User Profile Management Services
API. APIs for User Profile Management Services are not directly available to
REXX programs. They are available to C. QryUserID allows a REXX program
to obtain the user ID of the local logon in UPM. Figure 64 on page 95 shows
the C source of QRYRXUSR.C, which contains the QryUserID function code.
QryUserID takes no input arguments, and returns a string that contains a
user ID.

94 OS/2 REXX

/* QRYRXUSR.C Query local user ID from Rexx */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define INCL_32
#include <upm.h>

#define INCL_RXFUNC �1�
#include ″rexxsaa.h″ �2�

/* macro to build RXSTRING that is returned from C function*/
#define BUILDRXSTRING(t, s) { \
strcpy((t)->strptr,(s));\
(t)->strlength = strlen((s)); \

}
RexxFunctionHandler QryUserID; �3�
/*---*/
/* Return the logged on local user ID */
/*---*/
ULONG QryUserID(�4�
PUCHAR Name, /* Function name */
ULONG argc, /* Number of arguments */
RXSTRING argv[], /* List of argument strings */
PSZ Queuename, /* Curre queue name */
PRXSTRING Retstr) /* Returned result string */
 {
LONG i;
UCHAR str[80];
UCHAR usr[UPM_UIDLEN + 1];
int rc;
USHORT utp;

Figure 64 (Part 1 of 2). QryUserID

Chapter 6. REXX and C 95

if (argc>0) /* Accept no args */
return(40);

rc = UPMELOCU(usr, &utp); /* call UPM API */

if (rc == UPM_OK)
strcpy(str, usr); /* place user ID into var str*/

else
strcpy(str,″″) ;

/* place user ID in RXSTRING */
BUILDRXSTRING(Retstr,str); �5�

return(0);
 }

Figure 64 (Part 2 of 2). QryUserID

Notes:

�1� Include REXX functions contained in REXXSAA.H.

�2� Include REXXSAA.H.

�3� Identify that this function is REXX accessible.

�4� Function parameter list must contain these arguments. The actual
arguments passed from the REXX program are contained in the array
argv[] , which is of type RXSTRING.

�5�BUILDRXSTRING is a macro defined earlier that takes a string and
puts it into the variable of type RXSTRING that will be returned to the
calling REXX program.

Figure 65 on page 97 contains a REXX program called GetUser that registers
and then invokes the GetUPMID function. Note that external functions can
also be called as subroutines, just like internal functions. If an external
function is called as a subroutine, then the returned value will be located in
the REXX variable RESULT.

96 OS/2 REXX

/* Get local user ID */
/* function name GetUPMID, located in QRYRXUSR.DLL */
Call RxFuncAdd ′ GetUPMID′ , ′ extfunc′ , ′ GetUPMID′

user = GetUPMID()
say ′ local user is: ′ user
return

Figure 65. GETUSER.CMD

6.1.3 Parameter Handling
We have already talked about the use of RXSTRING to pass parameters
between REXX and C. Since C has many other data types besides character
strings, we need to take a look at manipulating the RXSTRING data in C. C
strings require a null character at the end of the string. The REXX interpreter
will place the null character at the end of parameter strings sent to C. This
is a convenience; however, it brings up a cause for concern. If a REXX string
being passed to C has other nulls embedded in it, the C string functions will
not work correctly. C assumes the null character means end of string.
There are a number of macros defined in REXXSAA.H that are helpful in
handling parameters. For example, RXVALIDSTRING returns a true value if
there is data in the RXSTRING.

RXSTRING.LIB, a library of functions that comes with the OS/2 2.1
Developer ′s Toolkit, contains useful functions for converting, copying, and
comparing RXSTRING variables. For example, the RXTOI function converts
an RXSTRING to an integer. The example in Figure 66 on page 98 shows
the function SysCurPos, taken from the REXXUTIL function package.
SysCurPos can receive two input parameters, which represent the row and
column that the screen cursor should be moved to. If no parameters are
received, SysCurPos returns the current row and column position of the
cursor. Note that the includes and function handler information are not
shown in the figure.

Chapter 6. REXX and C 97

/* Function: SysCurPos - positions cursor in OS/2 session */

#define NO_UTIL_ERROR ″0″ /* return string */
#define INVALID_ROUTINE 40 /* Raise Rexx error */
#define VALID_ROUTINE 0 /* Successful completion */
#define BUILDRXSTRING(t, s) { \
strcpy((t)->strptr,(s));\
(t)->strlength = strlen((s)); \

}
ULONG SysCurPos(CHAR *name, ULONG numargs, RXSTRING args[],

CHAR *queuename, RXSTRING *retstr)
{
USHORT start_row; /* Row at start */
USHORT start_col; /* Col at start */
LONG new_row; /* Row to change to */
LONG new_col; /* Col to change to */

BUILDRXSTRING(retstr, NO_UTIL_ERROR); �1�
/* check number of arguments */
if ((numargs != 0 && numargs != 2)) /* wrong number? */
return INVALID_ROUTINE; /* raise an error */

Figure 66 (Part 1 of 2). SysCurPos

98 OS/2 REXX

VioGetCurPos(&start_row, &start_col, (HVIO) 0); /* get position */

/*convert integers to strings and load into RXSTRING return variable*/
sprintf(retstr->strptr, ″%d %d″ , (int)start_row, (int)start_col); �2�
retstr->strlength = strlen(retstr->strptr); �3�

/* use rexxsaa.h macro to check validity of input arguments */
if (numargs != 0) { /* reset position to given */ �4�
if (!RXVALIDSTRING(args[0]) || /* not real arguments given? */

!RXVALIDSTRING(args[1]))
return INVALID_ROUTINE; /* raise an error */

/* convert row to binary */
if (!string2long(args[0].strptr, &new_row) || new_row < 0)
return INVALID_ROUTINE; /* return error */

/* convert row to binary */
if (!string2long(args[1].strptr, &new_col) || new_col < 0)
return INVALID_ROUTINE; /* return error */

/* Set the cursor position, using the input values. */
VioSetCurPos((USHORT) new_row, (USHORT) new_col, (HVIO) 0);

}

return VALID_ROUTINE; /* no error on call */
}

Figure 66 (Part 2 of 2). SysCurPos

Notes:

�1�BUILDRXSTRING macro is placing the string ″0″ places in the
RXSTRING variable retstr, which is used as the return string to the
calling REXX program.

�2� In the case where SysCurPos is called with no arguments, load
the cursor row and column into the RXSTRING variable retstr, which is
used as the return string to the calling REXX program.

�3� Load the return string length into the RXSTRING.

�4� Use RXVALIDSTRING from REXXSAA.H to check validity of input
arguments.

Chapter 6. REXX and C 99

6.2 Creating DLLs Callable by REXX Programs
To create a DLL of C functions you need a C compiler. We used the IBM C
Set/2 compiler. Figure 67 contains the commands used to compile and link
EXTFUNC.C, which contains three C functions that are available to REXX.
They are:

 1. The LockPC function uses calls to Presentation Manager (PM) to lock the
PC until the correct password is given.

 2. The Shutdown function uses calls to PM to perform a system shutdown.

 3. The GetUPMID function returns the current local UPM user ID.

Make sure to include any libraries that your functions need in the link step.
For example, the GetUPMID function needs access to the UPM.LIB, so it was
included in the link step. The compile and link steps can be invoked from the
OS/2 command line, or as part of a REXX program. The IBM WorkFrame/2
provides an environment for developing, compiling, and linking C code as
well. The result of these compile and link commands is a file called
EXTFUNC.DLL, which can be registered by REXX programs.

icc /Gd- /Ge- /O- /Ic:\muglib /C+ extfunc.c
link386 extfunc /NOI,extfunc.dll,,c:\muglib\upm.lib,extfunc.def

Figure 67. Creating DLL Compile and Link Steps - GENEXT.CMD

The EXTFUNC.DEF is a definition file. This file contains an EXPORT
statement, which lists the function names in the DLL. In order for programs
to access a function in the DLL, the function name must appear in the
EXPORT list. This list is used in the link step during the generation of entry
points into the functions. Figure 68 is the definition file for EXTFUNC.

LIBRARY extfunc INITINSTANCE TERMINSTANCE

EXPORTS LockPC
GetUPMID
Shutdown

Figure 68. EXTFUNC.DEF

100 OS/2 REXX

Figure 69 on page 101 is an example REXX program that registers the
functions in the EXTFUNC.DLL and then calls each one. The examples
shown in this chapter, as well as the EXTFUNC.DLL and EXTFUNC.C, are on
the diskette. Your REXX programs must be able to access a DLL in order to
use it. The safest way to do that is to include your DLL in the LIBPATH in the
CONFIG.SYS.

/* Register and call EXTFUNC functions */
call RxFuncAdd ′ LockPC′ , ′Extfunc′ , ′LockPC′
call RxFuncAdd ′ Getlocal′ , ′Extfunc′ , ′GetUPMID′
call RxFuncAdd ′ ShutPC′ , ′Extfunc′ , ′Shutdown′

call LockPC
say ′ local logon user is ′ Getlocal()
call ShutPC

return

Figure 69. Using EXTFUNC.DLL Functions - CALLEXT.CMD

6.3 Calling REXX from C (REXXSTART Function)
There may be instances where C programs may need to call REXX. For
example, there may be an application written in REXX that a C program
needs to invoke. It may be beneficial to invoke the REXX routine, rather than
rewrite in C. Since the REXX interpreter is an OS/2 DLL, for C to call REXX
is a very straightforward process. The OS/2 Developer′s Toolkit contains
information on this topic.

The REXXSTART function from REXXSAA.H invokes the REXX interpreter,
allowing C programs to call REXX programs. As discussed earlier in this
chapter, REXXSAA.H also has some useful macros. For example,
MAKERXSTRING loads string data and string length into an RXSTRING
variable. Returned values from REXX programs are accessible by the calling
C program. They are in RXSTRING format. Figure 70 on page 102 is an
example of a C program REXXDB2.C calling the REXX program GETDB.CMD.
GETDB.CMD lists the databases available, and prompts the user to select a
database. The database name is returned to the calling program.
REXXDB2.C invokes GETDB.CMD, and then prints out the database name
selected.

Chapter 6. REXX and C 101

/* File Name: REXXDB2.C */

#define INCL_REXXSAA
#include <rexxsaa.h> /* needed for RexxStart() */
#include <stdio.h> /* needed for printf() */
#include <string.h> /* needed for strlen() */

int main(void); /* main entry point */

int main()
{
RXSTRING arg; /* argument string for REXX */
RXSTRING rexxretval; /* return value from REXX */

UCHAR *str = ″″ ; /* string sent to REXX */

APIRET rc; /* return code from REXX */
 SHORT rexxrc = 0; /* return code from function */

MAKERXSTRING(arg, str, strlen(str));/* create input argument */�1�

rc=RexxStart((LONG) 0, /* number of arguments */
(PRXSTRING) &arg, /* array of arguments */
(PSZ) ″GETDB.CMD″ , / * name of REXX file */
(PRXSTRING) 0, /* No INSTORE used */
(PSZ) 0, /* Default Command environment*/�2�
(LONG) RXSUBROUTINE, /* Code for how invoked */
(PRXSYSEXIT) 0, /* No EXITs on this call */
(PSHORT) &rexxrc, /* Rexx program output */
(PRXSTRING) &rexxretval); /* Rexx program output */

Printf(″Database name returned is: %s″ ,rexxretval.strptr);�3�
DosFreeMem(rexxretval.strptr); /* Release storage */�4�

/* given to us by REXX. */
return 0;
}

Figure 70. Calling REXX From C Example - REXXDB2.C

102 OS/2 REXX

Notes:

�1� MAKERXSTRING from REXXSAA.H loads information into an
RXSTRING.

�2� Command environment is determined by REXX file extension
unless it is overwritten here. In this case the command environment
is CMD, since the REXX file is GETDB.CMD.

�3� Return string from the REXX program is located in the variable
listed in the last parameter of the REXXSTART call.

�4� Release RXSTRING storage.

Chapter 6. REXX and C 103

104 OS/2 REXX

Chapter 7. Multimedia REXX

OS/2 REXX can use the Multimedia Presentation Manager/2 (MMPM/2)
capabilities that are shipped with OS/2 2.1 by use of Media Control Interface
(MCI) textual string commands.

MCI provides a view of the OS/2 multimedia system that is similar to that of
a video and audio home entertainment system. Each component in the
system is known as a media device, and can be controlled by a set of textual
string-oriented commands.

Media devices can be both internal and external hardware devices. Some
devices are compound devices and can open files, such as waveaudio or
Musical Instrument Digital Interface (MIDI). MCI can, for instance, be used
for opening and positioning files and controlling the related Media Player.

Other devices are controllable external devices that can be controlled
directly, such as a Compact Disk - Read Only Memory (CD-ROM) device or
videodisc. You can for instance open or close the tray in a CD-ROM device
or play the Compact Disk (CD). The devices suported by MMPM/2 include:

Videotape A videotape player or recorder.

Videodisc A videodisc player.

CDaudio A CD-ROM device which supports standard compact disc
playback.

Waveaudio A device which supports digital audio files (″sound board″).

Sequencer A device which supports MIDI files.

Digitalvideo A device which supports audio/video files, either
hardware-assisted or software motion video-only.

 Note

Digitalvideo, image devices or clipboard cut-and-paste operations require
a PM environment to function. Therefore, they cannot be executed from a
command file unless the file is run through either PMREXX, using ′START
/PM CMD.EXE cmdfile′ or a program created with one of the visual
builders like the example program RXPLAY.EXE on the samples diskette.

 Copyright IBM Corp. 1993 105

7.1 MMPM/2 Installation
Although MMPM/2 is shipped with OS/2 2.1, it is not automatically installed
during OS/2 installation. It must be installed using the command MINSTALL
from the first MMPM/2 diskette.

7.2 Using MCI from REXX
This chapter intends to demonstrate some important issues in building a
MMPM/2 REXX application. The samples diskette also contains a sample
application:RXPLAY.EXE, which can be used to explore the use of MMPM/2
REXX commands.

7.2.1 Registering MMPM/2 Functions
The MCI REXX functions are supplied in the MCIAPI.DLL external function
package. External functions are described in detail in Chapter 3, “External
Functions” on page 49. In order to use the REXX MCI interface commands
you must first register them with the following code:

rc = RxFuncAdd(′ mciRxInit′ , ′ MCIAPI′ , ′ mciRxInit′)
Call mciRxInit

Figure 71. Registering REXX MMPM/2

After registration the commands are useable within your system until a
shutdown is performed or the function mciRxExit is performed. In addition to
mciRxInit and mciRxExit there are two functions you need for building
MMPM/2 applications in REXX:

mciRxSendString For sending the MCI command strings.

mciRxGetErrorString For getting error information on a return code from
mciRxSendString.

7.2.2 Checking if MMPM/2 is Installed
In order to use MCI, MMPM/2 must be installed on your machine. The
following code checks the presence of the OS/2 MMBASE environment
variable which is set by MMPM/2 installation and contains the path that
MMPM/2 is installed in:

106 OS/2 REXX

MMpath = value(″MMBASE″ , , ″OS2ENVIRONMENT″)
If MMpath = ′ ′ Then Do
Say ′ Cannot locate MMPM/2 on the system!′
Exit

End
Else MMpath = Strip(MMdrive,,′ ; ′)

Figure 72. Checking if MMPM/2 is Installed

7.2.3 Opening a Media Device
To use a media device it must first be opened. This can be done in REXX
either by opening a file or opening a media device. If a file is opened then
the Media Control Interface can use the extended attributes or file
extensions associated with the file to select the controlling device to like in
the following example:

Rc = mciRxSendString(′ open c:\vid\a.avi alias player wait′ , ′ Ret′ , ′ 0 ′ , ′ 0 ′)

Figure 73. Opening a File and a Media Device

 Note

The last two parameters in the mciRxSendString command are reserved
for future use for notifying window handle and user parameter and must
always be set to 0.

An alias name can also be provided for further reference to the device, and it
is good practice to do so as in Figure 74. However if an alias name is not
provided then open will return a device id for the device on a succesful open.

Rc = mciRxSendString(′ open digitalvideo alias player wait′ , ′ Ret′ , ′ 0 ′ , ′ 0 ′)

Figure 74. Opening a Media Device

 Note

It is possible to open a device as shareable, but since a REXX command
file cannot receive notification on when it is gaining or losing access on a
MCI device, the shareable option should not be used.

Chapter 7. Mult imedia REXX 107

7.2.4 Error Checking
A mciRxSendString call always returns 0 on a successful execution. If the
return code is not 0 then the mciRxGetErrorString function can be used to
determine the cause of the error:

Rt = mciRxSendString(′ open c:\vid\a.avi alias player wait′ , ′ Ret′ , ′ 0 ′ , ′ 0 ′)
If Rt <> 0 Then Do
ErrRc = mciRxGetErrorString(Rt,ErrorString)
Say ′ Unsuccessful execution!′
Say ′ Error code =′ Rt
Say ′ Error info =′ ErrorString

End

Figure 75. Error Checking in MMPM/2 REXX

7.2.5 MCI Commands
After a device is opened there are several commands that can be executed
to control the device. The commands are:

ACQUIRE Gains the use of physical recources associated with a device.

CAPABILITY Requests information about a particular capability of a device.

CLOSE Closes a device.

CONNECTOR Enables, disables or queries the status of connectors, for
example line in connector, on a device.

INFO Returns product information on a device.

LOAD Loads a file into a previously opened device.

OPEN Opens a device.

PAUSE Pauses a device.

PLAY Begins playing a previously loaded file on a device.

RECORD Starts recording data.

RELEASE Releases resources that were previously acquired.

RESUME Resumes playing from a paused state.

SAVE Saves data for a device.

SEEK Moves to a specified position in a file and stops.

SET Changes settings for a device.

108 OS/2 REXX

STATUS Queries the status of a device.

STOP Stops a device.

All commands are executed through mciRxSendString either by using:

Call mciRxSendString(′ command object parms′ , ′ RetVar′ , ′ 0 ′ , ′ 0 ′)

or using:

Rc = mciRxSendString(′ command object parms′ , ′ RetVar′ , ′ 0 ′ , ′ 0 ′)

Those commands that return string information through the use of the return
variable (RetVar in the previous example) must always use a Wait keyword
after the command parameters. The following chapters describe the usage
of these commands in more detail. See the online Multimedia REXX
Reference which is located in the Multimedia folder on the default desktop
for a complete description of the commands.

7.2.6 ACQUIRE
Rc = mciRxSendString(′ ACQUIRE object items WAIT′ , ′ RetVar′ , ′ 0 ′ , ′ 0 ′)

Gains the use of the physical resources associated with the object. The
following optional items modify the basic command:

Exclusive Obtains exclusive use of the resources associated with the object.
No other applications can obtain use of the device until the
RELEASE command is executed. Has no affect unless the device
is opened as shareable.

Exclusive instance Obtains exclusive use of only the resources needed by the
object. Other applications may be able to use the same device
concurrently, depending upon the number and types of resources
they require.

Queue Requests use of the resources associated with the object. If
another application has exclusive use of the same physical
resources, then this command will wait until the resources can be
acquired.

7.2.7 CAPABILITY
Rc = mciRxSendString(′ CAPABILITY object items WAIT′ , ′ RetVar′ , ′ 0 ′ , ′ 0 ′)

Requests information about a particular capability of a device. The WAIT
keyword must be specified in order to receive the returned string
information. Following is an example of using CAPAPILITY to check if the
digitalvideo device can record:

Chapter 7. Mult imedia REXX 109

Rc = mciRxSendString(′ open digitalvideo alias player wait′ , ′ Ret′ , ′ 0 ′ , ′ 0 ′)
Rc = mciRxSendString(′ CAPABILITY player can record WAIT′ , ′ RetV′ , ′ 0 ′ , ′ 0 ′)
If RetV = ′ TRUE′ then
Say ′ Device can record.′

Else
Say ′ Device cannot record.′

7.2.8 CLOSE object
Closes the device context and frees resources. The object to close should
be the same one used when the device context was initially opened. for
example:

Rc = mciRxSendString(′ open digitalvideo alias player wait′ , ′ Ret′ , ′ 0 ′ , ′ 0 ′)
Rc = mciRxSendString(′ CAPABILITY player can record WAIT′ , ′ RetV′ , ′ 0 ′ , ′ 0 ′)
If RetV = ′ TRUE′ then
Say ′ Device can record.′

Else Do
Say ′ Device cannot record.′
Rc = mciRxSendString(′ close player′ , ′ Ret′ , ′ 0 ′ , ′ 0 ′)

End

7.2.9 CONNECTOR
Rc = mciRxSendString(′ CONNECTOR object action items WAIT′ , ′ RetV′ , ′ 0 ′ , ′ 0 ′)

Enables, disables or queries the status of connectors, for example line in
connector, on a device. Object is any MCI object described in Chapter 7,
“Multimedia REXX” on page 105. Action is one of the following:

• Enable

• Disable

• Query

Items is one of the following:

• Number <connector number>

• Type <connector type>

• Both of the previous

The following example queries the wave stream capability of an alias:

110 OS/2 REXX

Rc = mciRxSendString(′ CONNECTOR player query type wave stream WAIT′ , ,
′ RetV′ , ′ 0 ′ , ′ 0 ′)

If RetV = ′ TRUE′ Then
Say ′ Wave stream exists.′

Else
Say ′ Wave stream does not exist.′

Figure 76. Usage of Connector to Query Wave Stream Capability

7.2.10 INFO
Returns product information for a particular device. For example:

Rc = mciRxSendString(′ INFO Digitalvido product WAIT′ , ′ RetV′ , ′ 0 ′ , ′ 0 ′)
If RetV = ′ Software Motion Video′ Then
Say ″It′ s part of OS/2!″

7.2.11 Load
Loads a file into a previously opened device. If a device is not already open
you can use Open to load the file like in the following example:

If Alias <> ′ ′ then
Rcc=mciRxSendString(′ load Player C:\MC.AVI wait′ , ′ RetV′ , ′ 0 ′ , ′ 0 ′)

Else
Rcc=mciRxSendString(′ open C:\MC.AVI alias Player wait′ , ′ RetV′ , ′ 0 ′ , ′ 0 ′)

If Rcc <> 0 then Do
MacRC = mciRxGetErrorString(Rcc, ′ ErrStVar′)
Say ′ File load failed.′
Say ′ Error code:′ Rcc
Say ′ Error message:′ ErrStVar
Return

End

Figure 77. Load a File to a Device

Chapter 7. Mult imedia REXX 111

7.2.12 PAUSE
Stops playing a file. The difference between PAUSE and STOP is device
dependent. On video devices, PAUSE generally continues to display the last
frame, whereas STOP causes the display to blank. A device that is paused
can frequently begin playing again with less latency than if it were stopped.
RESUME or PLAY can be used to continue playing. Example in Figure 78
demonstrates use of PAUSE by opening a video file,starting to play for 2
seconds and pausing to wait for input:

rc = RxFuncAdd(′ mciRxInit′ , ′ MCIAPI′ , ′ mciRxInit′)
Call mciRxInit
rc = RxFuncAdd(′ SysSleep′ , ′ RexxUtil′ , ′ SysSleep′)

Rc=mciRxSendString(′ open digitalvideo alias player wait′ , ′ RV′ , ′ 0 ′ , ′ 0 ′)
Call mciRxSendString ′ load player D:\MM\FISHB15.AVI wait′ , ′ RV′ , ′ 0 ′ , ′ 0 ′
Call mciRxSendString ′ play player′ , ′ RetStr′ , ′ 0 ′ , ′ 0 ′
Call SysSleep 2
Call mciRxSendString ′ pause player′ , ′ RetStr′ , ′ 0 ′ , ′ 0 ′
Say ′ Continue Y/N?′
Pull Ans
Ans = Translate(Ans,′ Y′ , ′ y′)
If Ans = ′ Y′ then
Call mciRxSendString ′ resume player′ , ′ RetStr′ , ′ 0 ′ , ′ 0 ′

Say ′ Press enter to terminate.′
Pull
Call mciRxSendString ′ close player′ , ′ RetStr′ , ′ 0 ′ , ′ 0 ′
 Rc = mciRxExit

Figure 78. PAUSPLAY.CMD, Play a Video From a REXX .CMD File

7.2.13 PLAY
Plays a file loaded to a device. The starting position can be defined using
the from parameter. The ending position can be defined using the to
parameter. For example:

Rc = mciRxSendString(′ play player from 1 to 13000′ , ′ RetV′ , ′ 0 ′ , ′ 0 ′)

112 OS/2 REXX

7.2.14 RECORD
Starts recording data. By default, recording does not overwrite existing data
but rather inserts data at the current position. On devices (such as audio or
video tape) that cannot support inserting data, recording overwrites existing
data by default. The following items modify the basic command:

• insert

• overwrite

• from pos

• to pos

Example for recording data:

Rc = mciRxSendString(′ record player insert′ , ′ RetV′ , ′ 0 ′ , ′ 0 ′)

7.2.15 RELEASE
Releases previously acquired resources. For example:

Rc = mciRxSendString(′ acquire player exclusive wait′ , ′ RetV′ , ′ 0 ′ , ′ 0 ′)
Rc = mciRxSendString(′ play player wait′ , ′ RetV′ , ′ 0 ′ , ′ 0 ′)
Rc = mciRxSendString(′ release player return resource′ , ′ RetV′ , ′ 0 ′ , ′ 0 ′)

7.2.16 RESUME
Resumes playing or recording from a previously paused state. For example:

Call mciRxSendString ′ pause player′ , ′ RetStr′ , ′ 0 ′ , ′ 0 ′
Say ′ Continue Y/N?′
Pull Ans
Ans = Translate(Ans,′ Y′ , ′ y′)
If Ans = ′ Y′ then
Call mciRxSendString ′ resume player′ , ′ RetStr′ , ′ 0 ′ , ′ 0 ′

Chapter 7. Mult imedia REXX 113

7.2.17 SAVE
Saves data for a device. The destination path and name of the file to be
saved can be specified. If a filename was specified during the LOAD
command, then you do not need to specify a filename when saving the file;
the data will be saved using the current filename. If an untitled file was
loaded, then a filename must be specified, or an error will be returned. For
example:

Call mciRxSendString ′ save player′ , ′ RetStr′ , ′ 0 ′ , ′ 0 ′

7.2.18 SEEK
Finds a specified position and stops. Can be given the parameter end , start
or a position. For example:

rc = RxFuncAdd(′ mciRxInit′ , ′ MCIAPI′ , ′ mciRxInit′)
Call mciRxInit
Rc=mciRxSendString(′ open digitalvideo alias player wait′ , ′ RV′ , ′ 0 ′ , ′ 0 ′)
Call mciRxSendString ′ load player D:\MM\FISHB15.AVI wait′ , ′ RV′ , ′ 0 ′ , ′ 0 ′
Do Forever
Call mciRxSendString ′ play player wait′ , ′ RetStr′ , ′ 0 ′ , ′ 0 ′
Call mciRxSendString ′ seek player to start′ , ′ RetStr′ , ′ 0 ′ , ′ 0 ′
Say ′ Continue Y/N?′
Pull Ans
Ans = Translate(Ans,′ Y′ , ′ y′)
If Ans <> ′ Y′ then Leave

End
Call mciRxSendString ′ close player′ , ′ RetStr′ , ′ 0 ′ , ′ 0 ′
Rc = mciRxExit

Figure 79. Play a Video Continuously From a REXX .CMD File

7.2.19 SET
Establishes the desired settings for a device. For example set the speed
format to frames per second:

Call mciRxSendString ′ set player speed format fps wait′ , ′ Rv′ , ′ 0 ′ , ′ 0 ′

114 OS/2 REXX

7.2.20 STATUS
Obtains status information for a device. For example get the length of a
previously loaded file:

Call mciRxSendString ′ status player length wait′ , ′ Len′ , ′ 0 ′ , ′ 0 ′
Say ′ Length of file is:′ Len

7.2.21 STOP
Stops a device.

7.3 RXPLAY.EXE
As digitalvideo and image devices require a PM environment, a logical
environment for building multimedia applications for those devices with REXX
is a visual builder.

Chapter 10, “Visual REXX Builders” on page 177 describes two of the most
commonly used visual builders. We used VisPro/REXX 1.1 to build a small
application, RXPLAY.EXE to demonstrate the use of REXX MCI commands.
RXPLAY.EXE is included in the samples diskette. The source is also included
in the 4199VP folder on the samples diskette. To start using RXPLAY.EXE, go
to the drive and directory it exists on and type RXPLAY. You will get a
window like in Figure 80 on page 116. The window contains a menubar with
File , Device open , Device close and Help items. There is also a REXX syntax
list box, which at startup shows the syntax for registering the REXX MCI
functions. All actions that are performed with the player will provide the
REXX syntax for that particular action in the REXX syntax list box. There are
also five pushbuttons:

• < < for rewinding the player.

• Pause for pausing the player.

• Play for playing the player.

• Help to display the MMPM/2 REXX online reference.

• Copy to for copying the code from the REXX syntax list box to a file.

Chapter 7. Mult imedia REXX 115

Included is also a slider to set the position of the file in the player and
vertical and horizontal slider to position the media player on screen. On the
bottom there are three drop down list boxes:

• Commands for performing commands to the player.

• Status for displaying status information for the player.

• Capability for displaying capability information for the player.

Figure 80. RXPLAY.EXE MMPM/2 REXX Player

116 OS/2 REXX

To start testing the REXX multimedia capabilities first open a device by
selecting Device open and then select a device from the list of devices like in
Figure 81. The program now tries to open the selected device. If the device
cannot be opened a message box will appear giving information why the
device could not be opened and the corresponding REXX code will appear in
the REXX syntax window.

Figure 81. MMPM/2 REXX Player Device Open

Chapter 7. Mult imedia REXX 117

Then select File and Open to open a file. A file can also be opened without
first opening a device, which would give a different REXX code. You now get
a standard file open dialog with the directory set to MMOS2MOVIES
directory on your MMPM/2 installation drive like in Figure 82. After selecting
a file, wait until a figure describing the length of the file being played
appears on the right side of the slider.

Figure 82. MMPM/2 REXX Player File Open

118 OS/2 REXX

Now you can start demonstrating with the pushbuttons, sliders and drop
down boxes. For instance if you have selected an .AVI file and press the
Play pushbutton the media player is started. The Window position sliders
can be used to position the media player on the screen like in Figure 83.

Figure 83. MMPM/2 REXX Player Position Media Player

Chapter 7. Mult imedia REXX 119

Use the Commands drop down list box to demonstrate with additional
commands like in Figure 84.

Figure 84. MMPM/2 REXX Player Command List

 Note

Some commands have * in front of them. Those commands do not
execute, they only provide the REXX syntax.

120 OS/2 REXX

The Status list box provides status information common to all MCI devices
like in Figure 85 Some information refers to the file being played, like length
and position.

Figure 85. MMPM/2 REXX Player Status List

Chapter 7. Mult imedia REXX 121

The Capability list box provides capability information regarding the selected
device like in Figure 86.

Figure 86. MMPM/2 REXX Player Status List

122 OS/2 REXX

The code information in the REXX syntax list box can at any time be saved to
a file by using the Save to pushbutton. This always appends to a file and
does not overwrite so you can use it to gather the rexx code you want into a
file. Using the Save as pushbutton gives you the Save as dialog, as
inFigure 87

Figure 87. MMPM/2 REXX Player Save to File

 Note

Also the informational messages from the REXX syntax window are
copied to the file.

Chapter 7. Mult imedia REXX 123

Choosing Help - Information from the menubar will give you a small message
box on information about the MMPM/2 REXX Player like in Figure 88.

Figure 88. MMPM/2 REXX Player Information

124 OS/2 REXX

Chapter 8. REXX Interfaces to CM/2 EHLLAPI

Communications Manager/2 (CM/2) is an extension of OS/2 that provides the
capability of connecting a workstation to host machines. The physical
connection to the host machine can be made by cable to a local host, or by
networks to local and remote host machines. CM/2 provides a way for a
workstation user to communicate with a host by emulating a 3270 or 5250
host session. In other words your workstation can act as a 3270 or 5250
display terminal. CM/2′s emulator provides a PM window that displays a
host session and allows keyboard entry to the host session.

CM/2 also provides APIs to the emulator that make it possible to write
programs that can manipulate host sessions. Through these APIs programs
can read the host screen data, send keystrokes to the host session, send and
receive files, and make changes to the PM presentation space. These APIs
are contained in a package called Emulator High-Level Language Application
Programming Interface (EHLLAPI). EHLLAPI can provide an interface to 3270
and 5250 sessions. This chapter will focus on REXX EHLLAPI APIs and their
interaction with 3270 sessions. For more information on EHLLAPI, refer to
IBM Communications Manager/2 Version 1.0 EHLLAPI Programming
Reference.

8.1 EHLLAPI Uses
The concept of automating a host session is an interesting one, and it can be
a very useful one. Here are some of the things REXX EHLLAPI programs can
accomplish:

• Automate repetitive tasks.

• Mask complete applications from the user.

• Consolidate several complicated tasks into one simple task.

• Simplify existing host applications.

• Monitor response time and availability.

• Monitor events that are diverse in nature.

• Automate console operations.

One of the more common uses of EHLLAPI is to automate the use of host
legacy systems for repetitive tasks. A REXX EHLLAPI program can eliminate
the time consuming task of users scrolling through screen after screen on
one or more host systems to perform data entry or data retrieval. The REXX

 Copyright IBM Corp. 1993 125

EHLLAPI program can perform these tasks automatically. In order to write a
program to automate this type of task, we need to be able to do the
following:

• Connect to a host session

• Read data from the host session

− To identify which screen is currently displayed

− To save data vital to the task that is being automated

• Send keystrokes to the host

− To advance to the next screen

− To write data to the screen entry fields

• Determine host availability

− To know when your keystrokes have been accepted

• Disconnect from a host session.

8.2 Calling EHLLAPI Functions from REXX Programs
 All EHLLAPI functions are invoked from REXX through the same function
call. This one function, called HLLAPISRV, must be registered, since it is an
external function. The first parameter of the call determines which function
will be invoked. The HLLAPISRV function is located in SAAHLAPI.DLL. The
subdirectory where SAAHLAPI.DLL resides on your system must appear in
the LIBPATH statement in CONFIG.SYS in order use EHLLAPI. Figure 89 on
page 127 shows how to register the EHLLAPI function, and then uses the
HLLAPISRV function to connect to a host presentation space window. Note
that the function is registered as HLLAPI, so that is what is used in the
program as the function name. It is a common practice to call the EHLLAPI
function HLLAPI, although it is not required. Appendix D, “CM/2 REXX
EHLLAPI Reference” on page 295 contains the function names that can be
used as the first parameter in HLLAPI calls.

126 OS/2 REXX

 /* load hllapi functions */
 if Rxfuncquery(′ hllapi′) then

call Rxfuncadd ′ HLLAPI′ , ′ SAAHLAPI′ , ′ HLLAPISRV′

 rc= hllapi(′ Connect_PM′ , ′ B′) /* connect to B host session window*/

Figure 89. Register HLLAPISRV and Connect to Presentation Space Window

8.3 Connecting and Disconnecting Host Sessions
To communicate with a host session, an application must be connected using
one or more of the following functions:

• Connect - Allows sending or monitoring host presentation space
activities.

• Connect_PM - Provides for Presentation Manager window manipulation
and monitoring.

 rc= hllapi(′ Connect′ , ′ A′) /* connect to host session A */

Figure 90. Connect to Host Session

It is important to disconnect your application from the host session before the
application terminates. This frees the host session to be connected to other
applications. To disconnect an application from a host session, one or more
of the following functions must be used, depending on how the application
was originally connected:

• Disconnect - Disconnect from host session.

• Disconnect_PM - Disconnect from Presentation Manager window.

 rc= hllapi(′ Disconnect′) /* disconnect from host session */

Figure 91. Disconnect from Host Session

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 127

8.4 Reading the Host Screen
Reading host screen data is useful for a couple of reasons. First of all, for
example, as your program traverses through the different screens of a host
application, reading the host screen data allows your program to determine
which screen is currently being displayed. Second, it may be required for
your program to capture data from a host screen into REXX variables for
some type of manipulation.

There are a couple of EHLLAPI functions that provide a way to read the host
session screen into a variable:

• Copy_PS - returns a string containing the entire contents of the
presentation space.

• Copy_PS_To_Str - returns a string containing a specified portion of the
contents of the presentation space.

• Copy_OIA - returns a string containing the contents of the Operator
Information Area (OIA).

• Copy_Field_To_String - transfers characters from a target field into a data
string.

Copy_OIA is useful for determining if the host is input inhibited, for example.
Copy_Field_To_String can be used on host screens that have defined fields.
We will focus on Copy_PS and Copy_PS_To_Str in this section.

Since Copy_PS and Copy_PS_To_Str return a string representing the
presentation space, this string is more useful if we know the dimensions of
the presentation space. Since the presentation space in CM/2 can differ in
size, we need a way to determine the current number of rows and columns.
The Query_Session_Status EHLLAPI function provides a way to get this
information.

8.4.1 How to Obtain the Presentation Space Dimensions
The Query_Session_Status function returns a string of data pertaining to the
session requested. Part of this data is a binary representation of the number
of rows and the number of columns in the presentation space. Using built-in
REXX functions we can convert this binary data into decimal. Refer to
Figure 92 on page 129 for the code to accomplish this. We will see how this
information is used in conjunction with the Copy_PS_To_String function in
8.4.2, “Copying the Presentation Space” on page 129.

128 OS/2 REXX

rc=hllapi(′ Query_Session_Status′ , ′ A′) /* query A session */

parse var rc 12 bin_row 14 bin_col 16 /* get binary row, ol values */

row_num = c2d(reverse(bin_row)) /* convert to decimal */
col_num = c2d(reverse(bin_col))
say row_num ′ rows ′
say col_num ′ columns′

Figure 92. Obtain Presentation Space Row and Column Values

8.4.2 Copying the Presentation Space
Copy_PS_To_Str returns a portion of the presentation space as a string. It
takes a starting position and a length as input parameters. If you know the
dimensions of the presentation space and the portion of the host screen you
wish to copy, this function is very useful. For example, to copy the last row
of the host screen into a variable called last_row, you could invoke the code
shown in Figure 93.

rc=hllapi(′ Query_Session_Status′ , session)
parse var rc 12 bin_row 14 bin_col 16 /* get binary */
row_num = c2d(reverse(bin_row)) /* convert to decimal */
col_num = c2d(reverse(bin_col))
ps_num = row_num * col_num /*total presentation space */
last_row_pos = ps_num - col_num + 1 /* beginning of last row */

rdrfile= hllapi(′ Copy_PS_to_Str′ , last_row_pos,col_num) /* copy row */
say last_row

Figure 93. Copy Last Row of Host Screen

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 129

Note - Presentation Space Positions

The presentation space is a grid made up of a specified number of rows
and columns. The positions of the characters in the presentation space
are numbered sequentially, beginning with position 1 in the upper
left-hand corner of the presentation space, and continuing to the last
position which is in the bottom right-hand corner. The positions are
numbered sequentially going left to right across a row, and then wrap to
the next row. For example, in a 24x80 presentation space:

• Position 1 is the first column of row 1.

• Position 80 is the last column of row 1.

• Position 81 is the first column of row 2.

• Position 1920 is the last column of row 24.

Copy_PS copies the entire presentation space to a string. If we know the
dimensions of the presentation space we can create an array that represents
the current host screen.

8.4.3 Searching the Presentation Space
There are times when you need to identify which host screen is currently in
the presentation space. As your program is traversing through a host
application′s screens, for example, it is a good idea to look for a unique
string value that represents a certain host screen. This can be done by
using Copy_PS to copy the presentation space to a string, and then using a
REXX built-in function to search for the unique string. A more straightforward
method is to use the EHLLAPI Search_PS function. Search_PS can search
the entire presentation space, or search a section of it starting at a specified
position. The returned value is the position of the start of the string. The
returned value is 0 if the string is not found. Search_PS searches the
currently connected host session. For example, to search a 24x80
presentation space for the string ″VM READ″ in the last row:

 pos= hllapi(′ Search_PS′ , ′ VM READ′ ,1841) /* start in last row */

 if (pos > 0) then /* found VMREAD */
say ′ Found VM READ in position ′ pos

Figure 94. Search Presentation Space

130 OS/2 REXX

8.5 Sending Keystrokes to the Host Session
Using EHLLAPI you can simulate keyboard entry to host sessions. This is
useful for data entry, clearing screens, issuing commands, using PF keys and
the Enter key, and any other keystroke that you could manually send to a
host session. Special keys on the keypad are represented with specific
character strings. For example, the Enter key is represented by the string
′@E′. A complete list of keyboard mnemonics is provided in Appendix D,
“CM/2 REXX EHLLAPI Reference” on page 295. The EHLLAPI function to
send keystrokes to a host session is Sendkey. Sendkey takes one
parameter, which is the string of keystrokes that are to be sent to the
currently connected host session. Refer to Figure 95 for examples of the
usage of the Sendkey function.

/* enter Rdrlist command */
 rc= hllapi(′ Sendkey′ , ′ Rdrlist′ | | ′ @E′)

/* clear screen */
 rc= hllapi(′ Sendkey′ , ′ @C′)

Figure 95. Sendkey Function

The Copy_Str_To_PS function will copy a data string to the presentation
space. The string is copied starting in the position specified on the call. This
can be useful for data entry. It executes faster than Sendkey in most
situations. It does not support the keyboard mnemonics listed in
Appendix D, “CM/2 REXX EHLLAPI Reference” on page 295.

8.6 Determining Host Availability
In the example in Figure 95, how do we know if the Rdrlist command
completed and the host is available before we issue the clear screen
keystroke? Do we need to know? Depending on the situation, you probably
do need to know. Consider this example. Suppose after issuing the Rdrlist
command, you wanted your program to copy the presentation space to
determine how many reader files there are. If the timing isn′ t right for
whatever reason, the host may still be processing the Rdrlist command when
your program issued the Copy_PS_To_Str function call. The resulting string
created by Copy_PS_To_Str will not contain what you want it to. It will copy
the current screen, which just contains the echo of the Rdrlist command.
The host hasn′ t finished processing yet. In many situations the REXX
EHLLAPI program will be faster than your host session.

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 131

rc= hllapi(′ Sendkey′ , ′ Rdrlist′ | | ′ @E′)

/* copy first row of rdrlist screen - contains number of reader files */
rdrfile= hllapi(′ Copy_PS_to_Str′ ,1 ,80)

Figure 96. Invoking Rdrlist with No Host Checking

EHLLAPI provides function calls that allow you to determine if the host has
completed a command and is available for more input. Depending on the
environment, there are different combinations of these calls that can give
more reliable feedback as to whether or not the host has completed
processing keystrokes. In addition, your program must be coded so that it
will wait for the host command to process before continuing. This area is
probably the single most challenging aspect of EHLLAPI programming. Often
programmers develop their own functions that are a combination of the
EHLLAPI functions to achieve the desired results. Here is a list of EHLLAPI
functions that can help in determining host availiability:

• Copy_OIA

• Pause

• Query_Host_Update

• Start_Host_Notify

• Stop_Host_Notify

• Wait

8.6.1 Using Screen Changes to Manage Host Availability
One of the safest techniques when determining if the host has completed
processing of a command is to use Search_PS to look for a string on the
screen that would not be there before the command is processed. It is a
string that would only appear on the updated screen. If Search_PS finds the
string, then the command has been processed. The Search_PS must be in a
loop of some kind, since we need to wait for the host to complete the
command before the program continues. For example, if the Rdrlist
command is issued on the host, one of two things will happen as a result.
Either there are no reader files, and the string ″No files in your reader″ is
displayed on the screen, or there are reader files and the Rdrlist screen is
displayed. We can expand on Figure 96 to wait for one of these two
possibilities to happen. Take a look at Figure 97 on page 133.

132 OS/2 REXX

 rc= hllapi(′ Sendkey′ , ′ Rdrlist′ | | ′ @E′)

do until (rc1>0 | rc2>0)
/* search for unique string found in rdrlist screen */
rc1=hllapi(′ Search_PS′ , ′ Filename Filetype Class′ , 81)

/* search for no rdr files string */
rc2=hllapi(′ Search_PS′ , ′ No files in your reader′ , 1)

end /* Do loop */

if rc1>0 then
/* copy first row of rdrlist screen */
rdrfile= hllapi(′ Copy_PS_to_Str′ ,1 ,80)

else
say ′ No reader files ′

Figure 97. Invoking Rdrlist with Host Checking

This method is very slow. The continuous calls to Search_PS slows down
the host as it processes the Rdrlist command. Also, this solution will not
leave the loop until the Rdrlist command has completed processing and one
of the resulting strings has been displayed in the presentation space. The
question that comes up now is what happens if neither one of those strings is
displayed. For example, what if there was a message on the screen that
holds the screen until a clear screen key is issued. What if the host is
extremely slow? Would you want to wait for the host, or exit the program
and try later? What if the host has dropped the connection? Your loop will
turn into a forever loop.

There are bits in the system that determine if the host is busy, and when the
host has been updated. There are EHLLAPI functions that check these bits.
These functions can help you determine host availability, and determine
when commands issued to the host have been processed. We have found
that these functions may not always give you the desired results. It is best to
devise a combination of these function calls that works in your environment.
For example we have found that the OIA bits are not always reliable in
determining if the host is available, since the OIA busy clock flickers
sometimes and the bits turn on and off a number of times before the
command has actually processed and the host is available.

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 133

8.6.2 Query Host Update Function
The Query_Host_Update function determines if the OIA or presentation space
for the session has been updated. In order to use the Query_Host_Update
function, a Start_Host_Notify function call must have previously been issued.
The Start_Host_Notify function watches to see if the host presentation space
or OIA has been updated. Query_Host_Update returns a value of 0 if no
updates were made since the last call. It returns a value of 22 if the
presentation space has been updated since the last call. Figure 98 is an
example of the usage of the Query_Host_Update function. The
Stop_Host_Notify function ends the watch on the update of the presentation
space and the OIA. Any presentation space or OIA updates that occur
outside of the Start_Host_Notify and Stop_Host_Notify grouping will not be
recognized by Query_Host_Update.

/*start checking host update bit */
/* P option is for presentation space updates*/
 rc = hllapi(′ Start_Host_Notify′ , session, ′ P′)

 rc= hllapi(′ Sendkey′ , ′ Rdrlist′ | | ′ @E′)

do until host_status=22 /* presentation space updated */
host_status= hllapi(′ Query_Host_Update′ , session)

end

/* stop checking host update bit */
rc=hllapi(′ Stop_Host_Notify′ , session)

/* search for unique string found in rdrlist screen */
 rc1=hllapi(′ Search_PS′ , ′ Filename Filetype Class′ , 81)

/* search for no rdr files string */
 rc2=hllapi(′ Search_PS′ , ′ No files in your reader′ , 1)

 if rc1>0 then
/* copy first row of rdrlist screen */

rdrfile= hllapi(′ Copy_PS_to_Str′ ,1 ,80)

Figure 98. Query Host Update Function

134 OS/2 REXX

The flaw with this approach is that the do until loop could go on forever if the
host is hung. Also, there are instances where the update bit is changed
before the screen is actually updated. Another approach would be to use the
Pause function instead of the Query_Host_Update function.

8.6.3 Pause Function
The Pause function causes a timed pause of n 1/2-second intervals to occur.
It will return a value of 0 when the timer has expired. By changing the
default, however, the Pause function will end when the host presentation
space or OIA is updated. It will return a value of 26 in this instance and will
not wait for the timer to expire. The Set_Session_Parameters function must
be used to change the default for the Pause function. It needs to be changed
to ″IPAUSE″. Figure 99 shows an example usage of the Pause function.

/* IPAUSE to break out of pause function */
rc= hllapi(′ Set_session_parms′ , ′ IPAUSE′)

rc=hllapi(′ Start_Host_Notify′ , session, ′ P′)
rc=hllapi(′ Sendkey′ , ′ rdrlist′ | | ′ @E′)

pause_value= hllapi(′ Pause′ ,120,session′ # ′) /*pause for 60 seconds */
if pause_value = 26 then do
/* search for unique string found in rdrlist screen */
rc1=hllapi(′ Search_PS′ , ′ Filename Filetype Class′ , 81)

/* search for no rdr files string */
rc2=hllapi(′ Search_PS′ , ′ No files in your reader′ , 1)
if rc1>0 then do
/*copy first row of rdrlist screen */
rdrfile= hllapi(′ Copy_PS_to_Str′ ,1 ,80)

end
end
else
if pause_value=0 then say ′ host timeout′

rc=hllapi(′ Stop_Host_Notify′ , session)

Figure 99. Pause Function

There are potential problems with this approach as well. There may be
situations where the OIA bit is changed before the presentation space has
actually been updated with the new screen. The Pause is terminated when

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 135

either the presentation space is updated or the OIA is updated, so your
program may continue before the presentation space has actually been
updated.

8.6.4 Wait Function
The Wait function is used to determine if the host is available. Wait returns a
value of 0 if the keyboard is unlocked and ready for input. In its default state,
Wait will wait for up to one minute for the host to become available. If the
host is not available after one minute, it will time out with a non-zero return
value. The one minute default can be changed to wait indefinitely, although
that is not recommended since your program will basically be hung as long
as the host is. See Figure 100 for an example of its usage.

 rc= hllapi(′ Sendkey′ , ′ Rdrlist′ | | ′ @E′)
 rc= hllapi(′ Wait′)
 if rc=0 then do /* host command finished processing */
/* search for unique string found in rdrlist screen */
rc1=hllapi(′ Search_PS′ , ′ Filename Filetype Class′ , 81)

/* search for no rdr files string */
rc2=hllapi(′ Search_PS′ , ′ No files in your reader′ , 1)

if rc1>0 then
/* copy first row of rdrlist screen */
rdrfile= hllapi(′ Copy_PS_to_Str′ ,1 ,80)

 end

 else if ((rc=4) | (rc=5)) then do /*host busy or kbd locked */
say ′ host timeout′
return

 end

Figure 100. Wait Function

8.6.5 A Sample Host Checking Algorithm
There are many creative routines that can and have been written using
combinations of these functions to manage host availability and presentation
space updates. We have found that Wait, Pause, and Query_Host_Update
will all give return values indicating that the presentation space has been
updated when in actuality it has not been. We have developed a routine that

136 OS/2 REXX

uses a combination of these three functions to provide a more reliable check
to see if the presentation space has been updated and the host is available.
It allows for a host settle time, which will ignore the premature setting of the
update bit. This can be adjusted to fit the environment that the program will
be running on. It also has a timeout feature so that you can decide how long
your program will wait for the host before giving up.

/* IPAUSE to break out of pause function */
rc= hllapi(′ Set_session_parms′ , ′ IPAUSE′)
timeout_value=60 /* 60 seconds max wait time for host */
rc=hllapi(′ Start_Host_Notify′ , session, ′ P′)

rc= hllapi(′ Sendkey′ , ′ Rdrlist′ | | ′ @E′)

rc= hllapi(′ Wait′) /* wait for update bit */
rc=TIME(′ R′) /* reset timer */
/* loop until update has completed or timout reached */
do until ((pause_value=0) | (elapsed_time>timeout_value))
pause_value= hllapi(′ Pause′ , 6 , session′ # ′) /*settle time of 3 seconds*/
rc=hllapi(′ Query_Host_Update′ , session) /* clears update bit */
elapsed_time=TIME(′ E′) /* get elapsed time */

end
rc=hllapi(′ Stop_Host_Notify′ , session)

if elapsed_time > timeout_value then do
say ′ host timeout′
return

end

/* copy first row of rdrlist screen */
rdrfile= hllapi(′ Copy_PS_to_Str′ ,1 ,80)

Figure 101. Host Check Using Wait, Pause, and Query_Host_Update

8.7 A Sample EHLLAPI Program - EHLRDR.CMD
EHLRDR.CMD, which can be found on the diskette, is a REXX program that
uses the EHLLAPI to determine the number of NOTE files currently in a VM
Rdrlist. We will break the program up into sections and analyze how it
works.

Figure 102 on page 138 shows the main routine of EHLRDR.CMD.
Get_PS_Dimensions is a routine that obtains the dimensions of the host

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 137

presentation space. The program will only attempt to process the Rdrlist if
the host is in a VM READY or RUNNING state. FinishUp restores all defaults
and disconnects from the host presentation space.

parse arg session /* host session to work with */
session=STRIP(session)
if session = ′ ′ then

session = ′ A′

/* load hllapi functions */
if Rxfuncquery(′ hllapi′) then
call Rxfuncadd ′ HLLAPI′ , ′ SAAHLAPI′ , ′ HLLAPISRV′

/* connect to session */
rc= hllapi(′ Connect′ , session)
rc= hllapi(′ Set_session_parms′ , ′ IPAUSE′) /* for Pause function */

call Get_PS_Dimensions
ps_num = row_num * col_num /*total presentation space */
cms_last_row = ps_num - col_num + 1 /* beginning of last row */

/* determine current state of VM session */
rc1= hllapi(′ Search_PS′ , ′ VM READ′ , cms_last_row)
rc2= hllapi(′ Search_PS′ , ′ RUNNING′ , cms_last_row)

if (rc1>0 | rc2>0) then /* found VMREAD or RUNNING */
call ProcessRdrList

else
say ′ Host is not in a VM READY or VM RUNNING state.′

′ Terminating program.′

Call FinishUp

return

Figure 102. Main Routine of EHLRDR.CMD

138 OS/2 REXX

/**/
Get_PS_Dimensions: /*Procedure Expose row_num col_num */

rc=hllapi(′ Query_Session_Status′ , session)
parse var rc 12 bin_row 14 bin_col 16 /* get binary */
row_num = c2d(reverse(bin_row)) /* convert to decimal */
col_num = c2d(reverse(bin_col))

return

Figure 103. Get_PS_Dimensions Routine

/**/
FinishUp:

 rc= hllapi(′ Disconnect′)
 rc=hllapi(′ Reset_System′) /* restore defaults */

Return

Figure 104. FinishUp Routine

The Sendkey_and_wait routine is derived from the host availability check
routine in Figure 101 on page 137. It will send a string of data to a host
session and wait until the host has processed the data and becomes
available again. Note that this means data strings passed to this routine
should force the host to do some processing, which usually means an Enter
key or PF key mnemonic will be concatenated to the end of the string. If the
data string consists of only text data being written to the host, depending on
how the host application is developed the host update bit will not be updated
and the Sendkey_and_wait routine will simply timeout. Figure 105 on
page 140 shows the Sendkey_and_wait routine.

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 139

/**/
Sendkey_and_wait:
parse arg session, keystring
host_value=0 /* set return value */
timeout_value=60
rc=hllapi(′ Start_Host_Notify′ , session, ′ P′)
rc= hllapi(′ Sendkey′ , keystring)
rc= hllapi(′ Wait′) /* wait for update bit */
rc=TIME(′ R′) /* reset timer */

/* loop until update has completed or timout reached */
do until ((pause_value=0) | (elapsed_time>timeout_value))
pause_value= hllapi(′ Pause′ , 6 , session′ # ′) /*3 second settle time */

 qhu_value=hllapi(′ Query_Host_Update′ , session) /* clears update bit */
elapsed_time=TIME(′ E′) /* get elapsed time */

end
rc=hllapi(′ Stop_Host_Notify′ , session)

if elapsed_time > timeout_value then /* set return value */
host_value=99

return host_value

Figure 105. Sendkey_and_wait Routine

Host_error is a routine that could be tailored for a specific environment. It is
used here as an error handler for host timeouts on calls to
Sendkey_and_wait.

/**/
Host_error:

/* could call a diagnostic routine here to determine the problem */
/* possibly the host dropped the connection and you must logon again */

say ′ host timeout error. Terminating program.′
return

Figure 106. Host_error Routine

Get_To_RdrList_Screen and Leave_Rdr_List_Screen utilize the
Sendkey_and_wait routine and Search_PS to get in and out of the Rdrlist
environment. Notice that Get_To_RdrList_Screen will issue the clear screen
keystroke to the host if necessary.

140 OS/2 REXX

/**/
Get_To_Rdrlist_Screen:
parse arg session, cms_last_row
keystring=′ Rdrlist′ | | ′ @E′
if Sendkey_and_wait(session, keystring) = 99 then do

call host_error
return 99

end

/* clear screen if necessary */
rchold= hllapi(′ Search_PS′ , ′ HOLDING′ , cms_last_row)
rcmore= hllapi(′ Search_PS′ , ′ MORE...′ , cms_last_row)
do while ((rchold > 0 | rcmore>0))
keystring=′ @C′
if Sendkey_and_wait(session, keystring) = 99 then do

call host_error
return 99

end
rchold= hllapi(′ Search_PS′ , ′ HOLDING′ , cms_last_row)
rcmore= hllapi(′ Search_PS′ , ′ MORE...′ , cms_last_row)

end /* do loop */

rc1=hllapi(′ Search_PS′ , ′ Filename Filetype Class′ ,81) /* start in row 2*/
rc2=hllapi(′ Search_PS′ , ′ No files in your reader′ , 1)
if rc2>0 then do
say ′ No reader files. Terminating program.′
return 88

end
if rc1=0 then do
say ′ possible system error - Rdrlist screen did not appear′
return 77

end

return 0

Figure 107. Get_To_RdrList_Screen Routine

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 141

/**/
Leave_Rdrlist_Screen:
parse arg session

keystring=′ @3′ /* pf3 to leave rdrlist */
if Sendkey_and_wait(session, keystring) = 99 then do
call host_error
return 99

end

rcready= hllapi(′ Search_PS′ , ′ Ready;′ , 1)
if (rcready=0) then do

say ′ possible system error - problem leaving rdrlist′
return 77

end

return 0

Figure 108. Leave_RdrList_Screen Routine

ProcessRdrList is the routine that scans the reader looking for files with a file
type of NOTE. In order to manage the Rdrlist screen, the details of the layout
of the screen must be incorporated into the program. This brings up another
issue with writing programs using EHLLAPI that manipulate host screens. In
many situations if the host application developers change the layout of a host
screen, then your EHLLAPI program that uses that host screen will have to
change as well.

Notice that the program reads data a line at a time from the host screen by
using Copy_PS_To_Str and keeping track of the current location on the
screen. The program must also be able to determine when the bottom of the
screen has been reached so it can issue a PF8 keystroke to advance to the
next screen.

142 OS/2 REXX

/**/
ProcessRdrList: Procedure Expose session row_num col_num cms_last_row

/* turn host messages off - avoid screen holds */
keystring=′ SET MSG OFF′ | | ′ @E′ /* @E is the symbol for enter key */
if Sendkey_and_wait(session, keystring) = 99 then do

call host_error
return

end

if Get_To_RdrList_Screen(session, cms_last_row) \= 0 then
return

/* write header to display */
say ′ You have notes from the following users′
say ′ waiting in your VM reader:′
say
say ′ USERID NODE′
say ′ -------- --------′
/*look for note files */
line=1 /* rdrlist next screen indicator */
note_cnt=0 /* number of note files in rdr */

row_3=col_num*2 + 1 /* set position values for key rows */
row_4=col_num*3 + 1

/* set ptr to 1st position of row 3 of screen */
row_ptr=row_3
last_rdr_row= (row_num*col_num) - (5*col_num) + 1
rdrfile= hllapi(′ Copy_PS_to_Str′ , row_ptr,col_num) /* copy row */
/* string is not a blank line, therefore not end of rdr list */
do while VERIFY(rdrfile,′ ′)>0
if (Substr(rdrfile,16,8) = ″NOTE ″) then do /* check filetype */
parse var rdrfile 31 userid 39 40 node 48
say userid ′ ′ node

note_cnt = note_cnt+1
end

Figure 109 (Part 1 of 2). ProcessRdrList

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 143

row_ptr=row_ptr+col_num /* increment pointer to next row */
if row_ptr= last_rdr_row then do /* need to get to next screen */

row_ptr = row_4 /* row 3 is a repeat from prior screen */
line=line+row_num-8 /* next screen indicator */

keystring=′ @8′
if Sendkey_and_wait(session, keystring) = 99 then do
call host_error
return

end
rc1=hllapi(′ Search_PS′ , ′ Line=′ | | line,1) /* look for next screen */
if (rc1=0) then do
say ′ possible system error - next Rdrlist screen did not appear′
return

end
 end /* if then */

/* copy next row to string */
rdrfile= hllapi(′ Copy_PS_to_Str′ , row_ptr,col_num)

end /* do loop */
say
say ′ There are a total of ′ note_cnt ′ notes in your VM reader′

rc=Leave_Rdrlist_Screen(session)

keystring=′ SET MSG ON′ | | ′ @E′ /* turn messages on */
if Sendkey_and_wait(session, keystring) = 99 then do
call host_error
return

end

Return

Figure 109 (Part 2 of 2). ProcessRdrList

144 OS/2 REXX

8.8 Sending and Receiving Files
The CM/2 Send and Receive functions are accessible through EHLLAPI via
the Send_file and Receive_file functions respectively. The Send_file function
allows you to send files from a PC to a host session. The Receive_file
function allows you to receive files at a PC from a host session. To use the
Send_file and Receive_file functions successfully, you must not :

• Be connected to the same session

• Have another file transfer application active on the same session

• Have another EHLLAPI application active on the same session

For more information on the CM/2 Send and Receive functions refer to
Communications Manager/2 User′s Guide. Defaults can be changed using
the Set_session_parms function.

8.8.1 Example - EHLSF.CMD
EHLSF.CMD is a REXX program that uses the EHLLAPI Send_file function to
send the user INI (OS2.INI) and the system INI (OS2SYS.INI) to a host
session. The Send_file function requires the full path name of the file being
sent. The full path name for the INI files is obtained from the
OS2ENVIRONMENT variable in this example. The timeout for the file transfer
is set for 5 minutes through a call to Set_session_parms.

The main routine checks to see if the host is in a VM READY or RUNNING
state, and then disconnects. The program cannot be connected to the host
session when the Send_file call is issued. The main routine then calls the
SendIniFiles routine.

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 145

/*EHLSF.CMD */
/* send OS2.INI , OS2SYS.INI files to host for backup */

parse arg session /* host session to work with */
if session = ′ ′ then

session = ′ A′
 /* load hllapi functions */
 if Rxfuncquery(′ hllapi′) then

call Rxfuncadd ′ HLLAPI′ , ′ SAAHLAPI′ , ′ HLLAPISRV′

 /* connect to session */
 rc= hllapi(′ Connect′ , session) /* connect to host session */
 rc= hllapi(′ Set_session_parms′ , ′ TIMEOUT=J′) /* 5 minutes timeout */

/* on send, receive */
/* check status of VM session */
 rc1= hllapi(′ Search_PS′ , ′ VM READ′ , 1)
 rc2= hllapi(′ Search_PS′ , ′ RUNNING′ , 1)

/* must disconnect before sending file */
 rc= hllapi(′ Disconnect′)

 if (rc1>0 | rc2>0) then /* found VMREAD or RUNNING */
call SendIniFiles

 else
say ′ host is not in a VM READY or VM RUNNING state.′
say ′ Terminating program.′

return

Figure 110. EHLSF.CMD Main Routine

The SendIniFiles function prepares the string that is used in the Send_file
call, and then issues the calls to send the INI files to the host session.

146 OS/2 REXX

/**/
SendIniFiles: Procedure Expose session

/* get path of system and user INI files */
os2ini=VALUE(SYSTEM_INI,,OS2ENVIRONMENT)
userini=VALUE(USER_INI,,OS2ENVIRONMENT)

/* concatenate host session , filename */
os2_ini_string=os2ini session||′ : ′ ′ OS2SYS INI A ′
user_ini_string=userini session||′ : ′ ′ OS2 INI A ′

/* send system INI file to host */
rc=hllapi(′ Send_file′ , os2_ini_string)
if rc \=3 then
say ′ Error sending file ′ os2ini ′ to host session ′
say session||′ . RC = ′ rc

/* send user INI file to host */
rc=hllapi(′ Send_file′ , user_ini_string)
if rc \=3 then
say ′ Error sending file ′ os2ini ′ to host session ′
say session||′ . RC = ′ rc

return

Figure 111. EHLSF.CMD SendIniFiles Routine

8.8.2 Example - EHLRECV.CMD
EHLRECV.CMD is a REXX program that uses the EHLLAPI Receive_file
function to receive the user INI (OS2.INI) and the system INI (OS2SYS.INI)
from a host session. The Receive_file function requires the full path name
where the file will be received. The timeout for the file transfer is set to 5
minutes through a call to Set_session_parms.

The main routine checks to see if the host is in a VM READY or RUNNING
state, and then disconnects. The program cannot be connected to the host
session when the Receive_file call is issued. The main routine then calls the
ReceiveIniFiles routine.

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 147

/*EHLRCVE.CMD */
/* receive OS2.INI , OS2SYS.INI files from host */

parse arg session /* host session to work with */
if session = ′ ′ then

session = ′ A′

 /* load hllapi functions */
 if Rxfuncquery(′ hllapi′) then

call Rxfuncadd ′ HLLAPI′ , ′ SAAHLAPI′ , ′ HLLAPISRV′

 /* connect to session */
 rc= hllapi(′ Connect′ , session) /* connect to host session */
 rc= hllapi(′ Set_session_parms′ , ′ TIMEOUT=J′) /* 5 minute timeout */

/* on send, receive */

 rc1= hllapi(′ Search_PS′ , ′ VM READ′ , 1)
 rc2= hllapi(′ Search_PS′ , ′ RUNNING′ , 1)

/* must disconnect before sending file */
 rc= hllapi(′ Disconnect′)

 if (rc1>0 | rc2>0) then /* found VMREAD or RUNNING */
call ReceiveIniFiles

 else
say ′ host is not in a VM READY or VM RUNNING state.′
say ′ Terminating program.′

return

Figure 112. EHLRECV.CMD Main Routine

The ReceiveIniFiles function prepares the string that is used in the
Receive_file call, and then issues the calls to receive the INI files from the
host session.

148 OS/2 REXX

ReceiveIniFiles: Procedure Expose session

/* get path of system and user INI files */
os2ini=VALUE(SYSTEM_INI,,OS2ENVIRONMENT)
userini=VALUE(USER_INI,,OS2ENVIRONMENT)

/* overlay.ini extension with .bak */
os2ini=Overlay(″BAK″ ,os2ini,LENGTH(os2ini)-2)
userini=Overlay(″BAK″ ,userini,LENGTH(userini)-2)

/* concatenate host session , filename */
os2_ini_string= os2ini session||′ : ′ | | ′ OS2SYS INI A ′
user_ini_string= userini session||′ : ′ | | ′ OS2 INI A ′

/* receive system INI file from host */
rc=hllapi(′ Receive_file′ , os2_ini_string)
if rc \=3 then
say ′ Error receiving file ′ os2ini ′ from host session ′
say session||′ . RC = ′ rc

/* receive user INI file from host */
rc=hllapi(′ Receive_file′ , user_ini_string)
if rc \=3 then
say ′ Error receiving file ′ os2ini ′ from host session ′
say session||′ . RC = ′ rc

return

Figure 113. EHLRECV.CMD ReceiveIniFiles Routine

Chapter 8. REXX Interfaces to CM/2 EHLLAPI 149

8.9 Manipulating the Presentation Space Window
Thus far we have examined how EHLLAPI functions can manipulate the host
session presentation space. The EHLLAPI can also manipulate the
Presentation Manager window that contains a host session presentation
space. The EHLLAPI functions that interface with the PM window are the
following:

• Change_Switch_Name - Change the name of the session listed on the
Task List.

• Change_Window_Name - Change the window title bar.

• Connect_PM - Connect the REXX application to the presentation space
window.

• Disconnect_PM - Disconnect the REXX application from the presentation
space window.

• Get_Window_Status - Return the current presentation space window
status.

• Lock_PMSVC - Lock or unlock the presentation space window.

• Query_Window_Coord - Return the presentation space window
coordinates.

• Set_Window_Status - Change the presentation space window status.

Similar to issuing a Connect function call to connect to a host presentation
space, a Connect_PM function call is used to establish a connection between
a REXX program and the host presentation space window.

150 OS/2 REXX

Chapter 9. REXX Interfaces to DB2/2

Before DB2/2, Database Manager was the database solution for the OS/2
platform. There are some similarities between Database Manager and
DB2/2. For example, both provide the Query Manager facility, a Graphical
User Interface (GUI) application that can be used to perform many functions,
from creating and authorizing databases to issuing SQL statements and
updating tables. DB2/2 has some advantages over Database Manager,
however. DB2/2 has better performance and provides more consistency
across platforms. Since DB2* is IBM′s SAA database product, DB2 is
available in some form on most other platforms, for example VM, MVS, and
OS/400. Distributed Database Connection Services/2* (DDCS/2) and other
products provide the opportunity to link DB2/2 databases with DB2 databases
on other platforms, paving the way for database client/server applications.

DB2/2 provides an interface to REXX programs in three basic ways:

 1. The SQLDBS DB2/2 API allows REXX programs to invoke command-like
versions of DB2/2′s API set.

 2. The SQLEXEC DB2/2 API allows REXX programs to invoke SQL
statements.

 3. DB2/2 provides data structures that are accessible by REXX programs.

This chapter discusses how these interfaces can be used to create useful
REXX programs. Example programs are provided and explained. The
installation and setup required for REXX programs to access remote
workstation databases is also provided. Please refer to Appendix B, “OS/2
DB2/2 REXX Reference” on page 245 for information on SQLDBS and
SQLEXEC statements, as well as the DB2/2 data structures.

9.1 DB2/2 Installation and Setup
When installing DB2/2, you are prompted to enter the environment that your
workstation will be operating in:

 1. Stand-alone

 2. Client

 3. Client with local databases

 4. Server

 Copyright IBM Corp. 1993 151

In our environment we chose to have two Personal System/2* machines,
each with the server version of DB/2 installed. The workstations were both
on the same LAN, with both using LAPS and LAN Requester with NetBIOS.
So in effect, we have a multiple server environment, where each workstation
can be the client of the other. In other words, workstation 1 can act as a
client and access databases on workstation 2, and workstation 2 can act as a
client and access databases on workstation 1. In order to simplify things, we
will refer to a client workstation and a server workstation for the rest of this
chapter. Keep in mind that the client workstation has its own local databases
as well. We found that if coded properly, the same REXX program can
access and manipulate databases on either the local or remote workstation.
That is, it is transparent to the program which database is being accessed. If
cataloged, DB2/2 will find the database′s location.

9.2 How to Register DB2/2 Functions
The DB2/2 APIs provided for REXX are external function packages. They
must be registered by your REXX program, just like any other external
function package, by using RxFuncAdd. The two APIs are SQLDBS and
SQLEXEC. Just like other external function packages, once registered these
functions are available to all REXX programs running on your system until
they are dropped. When they are dropped, all REXX programs running on
your system lose access to these functions. Therefore we recommend that
you do not drop these functions at the end of your programs.

Also, for workstations that run REXX DB2/2 applications on a regular basis, it
is wise to write a REXX procedure that registers these functions and invoke
that procedure in the STARTUP.CMD. This removes the overhead of
registering these functions from your DB2/2 REXX applications. Figure 114 on
page 153 shows the REXX code for registering SQLDBS and SQLEXEC.

152 OS/2 REXX

/* Register SQLDBS if not already registered */
if Rxfuncquery(′ SQLDBS′) <> 0 then do
rc = RxFuncAdd(′ SQLDBS′ , ′SQLAR′ , ′SQLDBS′)
if rc \= 0 then do
say ″Error registering SQLDBS: rc = ″ rc
return

 end /* Do */
end

/* Register SQLEXEC if not already registered */
if Rxfuncquery(′ SQLEXEC′) <> 0 then do
rc = RxFuncAdd(′ SQLEXEC′ , ′ SQLAR′ , ′ SQLEXEC′)
if RC \= 0 then do
say ″Error registering SQLEXEC: rc = ″ rc
return

 end /* Do */
end

Figure 114. Registering SQLDBS and SQLEXEC

9.3 User Profile Management (UPM)
User Profile Management Services is an icon on the desktop. Through UPM
you can log on to a LAN (if you are connected to one), your local logon user
ID, and remote nodes (for example workstations). For this discussion on
DB2/2, we are interested in the local and node logons.

Access to databases located on a workstation is controlled through the
workstation′s local logon user ID. The default user ID is USERID. The default
password is PASSWORD. These can be changed using UPM. Through this
local logon you can authorize other nodes to be able to access your
workstation. In order for other nodes(for example remote workstations) to be
able to access your DB2/2 databases, those nodes must be authorized in
UPM. For example, the server workstation must authorize the client nodes.
To authorize a remote node (or group of remote nodes):

 1. Double click on the User Profile Management Services icon.

 2. Double click on the User Profile Management icon. If you are not logged
on to your local logon, you will be prompted to do so.

Chapter 9. REXX Interfaces to DB2/2 153

 3. A User Profile window wil l then appear. Your user type should be
Administrator, since this is your machine. Choose Manage from the
action bar.

 4. Choose Manage Users (or Manage Group to give a group of nodes the
same authorization).

 5. From here you are prompted to authorize new users, with radio buttons
for logon access (make sure it is yes if you want them to be able to
access your databases). Also, if you choose to require a password when
the node logs on to your machine, be sure that the user or application on
that node knows the password or they won′ t be able to access your
databases.

When a DB2/2 command is issued that attempts to access a cataloged
database on a remote node, if the workstation is not already logged on to the
remote node, DB2/2 will bring up a logon window, prompting you to log on to
that node. This is where the check will actually be made to see if the
workstation has UPM authority from the remote node.

9.4 DB2/2 Database Administration
In order for a client workstation to be able to access the server′s databases
and tables, certain authorizations have to take place on the server
workstation. In addition, the client workstation has to update its DB2/2
system catalog with information about the server databases. REXX programs
can perform many database administration functions through the use of the
SQLDBS and SQLEXEC APIs. See Appendix B, “OS/2 DB2/2 REXX
Reference” on page 245 for a complete listing of SQLDBS APIs and SQL
statements.

9.4.1 Server Workstation Database Administration
DB2/2 provides database security functions allowing the server to grant and
revoke database access to clients. These authorizations are specific by
client. In other words, it can be set up so that some clients have access to a
certain database, while others do not. You can also determine whether or
not you will allow a client to create a table in the server database. These
types of database authorizations can be done through the Query Manager.
They can also be done in REXX programs through SQL statements. The
following examples are part of the DB22DBA.CMD which is on the diskette.
Note that the workstation running the REXX program must have system
administrator authority in order for these database administration commands
to run successfully. The first example in Figure 115 on page 155 shows how

154 OS/2 REXX

to grant access to a database for a client using the SQL GRANT statement.
The second example shows how to revoke access to a database from a
client using the SQL REVOKE statement. Note that the GRANT and REVOKE
statements cannot be issued directly with SQLEXEC. They must be included
in a string and then invoked with SQLEXEC using the EXECUTE IMMEDIATE
statement. For the syntax of the GRANT and REVOKE statements and other
SQL statements, as well as a breakdown of which SQL statements can be
issued to SQLEXEC directly and which must use EXECUTE IMMEDIATE, refer
to Appendix B, “OS/2 DB2/2 REXX Reference” on page 245.

pull dbname /* database name */
pull authname /* node (workstation id) that */

/* you wish to authorize */

/* connect to database required for GRANT statement */
call sqlexec ′ CONNECT TO ′ dbname ′ IN SHARE MODE′ ;
if (SQLCA.SQLCODE <> 0) then do
say ′ Could not grant access to database ′ ,

dbname ′ for user ′ authname
return

end

/* GRANT cannot be executed directly from REXX */
/* EXECUTE IMMEDIATE needs to be used */
stmt1 =′ GRANT CONNECT ON DATABASE TO ′ authname
call sqlexec ′ EXECUTE IMMEDIATE :stmt1′ ;

if (SQLCA.SQLCODE <> 0) then
say ′ Could not grant access to database ′ ,

dbname ′ for user ′ authname
else
 say ′ Granted access to database ′ ,

dbname ′ for user ′ authname

/* clean up - disconnect from database - */
call sqlexec ′ CONNECT RESET′ ;

return

Figure 115. Grant Access to Database

Chapter 9. REXX Interfaces to DB2/2 155

pull dbname /* database name */
pull authname /* node (workstation id) that */

/* you wish to revoke */

/* connect to database required for REVOKE statement */
call sqlexec ′ CONNECT TO ′ dbname ′ IN SHARE MODE′ ;
if (SQLCA.SQLCODE <> 0) then do
say ′ Could not revoke access from database ′ ,

dbname ′ for user ′ authname
return

end

/* REVOKE cannot be executed directly from REXX */
/* EXECUTE IMMEDIATE needs to be used */
stmt1 =′ REVOKE CONNECT ON DATABASE FROM ′ authname
call sqlexec ′ EXECUTE IMMEDIATE :stmt1′ ;

if (SQLCA.SQLCODE <> 0) then
say ′ Could not revoke access from database ′ ,

dbname ′ for user ′ authname
else
 say ′ Revoked access from database ′ ,

dbname ′ for user ′ authname

/* clean up - disconnect from database - */
call sqlexec ′ CONNECT RESET′ ;

return

Figure 116. Revoke Access from Database

Granting a client access to a server database does not necessarily mean
that the client has access to tables and/or views in the database. DB2/2
provides another level of security, where the server can selectively grant and
revoke specific types of access to tables and views within the database.
These authorizations are specific by client. In other words, it can be set up
so that some clients have access to certain tables in a database, while
others do not. You can also determine whether or not you will allow a client
to update a table in the server database. These types of authorizations can
be done through the Query Manager. They can also be done in REXX
programs through SQL statements. The following examples are part of the
DB22DBA.CMD which is on the diskette. The first example shows how to
grant access to a table for a client using the SQL GRANT statement. The

156 OS/2 REXX

second example shows how to revoke access to a table from a client using
the SQL REVOKE statement.

pull dbname /* database name */
pull tablename /* table name */
pull authname /* node (workstation id) that */

/* you wish to authorize */

/* connect to database required for GRANT statement */
call sqlexec ′ CONNECT TO ′ dbname ′ IN SHARE MODE′ ;
if (SQLCA.SQLCODE <> 0) then do
say ′ Could not grant access to table ′

tablename ′ for user ′ authname
return

end

/* GRANT cannot be executed directly from REXX */
/* EXECUTE IMMEDIATE needs to be used */
stmt1 =′ GRANT SELECT ON TABLE ′ tablename ′ TO ′ authname
call sqlexec ′ EXECUTE IMMEDIATE :stmt1′ ;

if (SQLCA.SQLCODE <> 0) then
say ′ Could not grant access to table ′ ,

tablename ′ for user ′ authname
else
 say ′ Granted access to database ′ ,

dbname ′ for user ′ authname

/* clean up - disconnect from database - */
call sqlexec ′ CONNECT RESET′ ;

return

Figure 117. Grant Access to Table

Chapter 9. REXX Interfaces to DB2/2 157

pull dbname /* database name */
pull tablename /* table name */
pull authname /* node (workstation id) that */

/* you wish to revoke */

/* connect to database required for REVOKE statement */
call sqlexec ′ CONNECT TO ′ dbname ′ IN SHARE MODE′ ;
if (SQLCA.SQLCODE <> 0) then do
say ′ Could not revoke access from table ′ ,

tablename ′ for user ′ authname
return

end

/* REVOKE cannot be executed directly from REXX */
/* EXECUTE IMMEDIATE needs to be used */
stmt1 =′ REVOKE SELECT ON TABLE ′ tablename ′ FROM ′ authname
call sqlexec ′ EXECUTE IMMEDIATE :stmt1′ ;

if (SQLCA.SQLCODE <> 0) then
say ′ Could not revoke access from table ′ ,

tablename ′ for user ′ authname
else
 say ′ Revoked access from table ′ ,

tablename ′ for user ′ authname

/* clean up - disconnect from database - */
call sqlexec ′ CONNECT RESET′ ;

return

Figure 118. Revoke Access from Table

158 OS/2 REXX

9.4.2 Client Workstation Database Administration
Each workstation that has DB2/2 installed also has a database directory and
a node directory. The DB2/2 database directory contains information about
databases. Database name, database alias name, workstation name where
database resides, and database type are examples of what is entered in the
directory for each database. When DB2/2 is instructed to use a database in
some way (whether through Query Manager or a running program), DB2/2
uses the directory to determine where the database is located. If the
database is on another node, the node directory must be accessed to get
information about the node.

The node directory contains information such as node (workstation) name,
adapter number, and protocol used to connect to the node. This information
is used by DB2/2 to access remote databases.

Client workstations that need to access server workstation database(s) have
to catalog the server′s node in the client′s node directory, and the server′s
database(s) in the client′s database directory. These tasks can be
accomplished through the DBM command set, and can also be done through
REXX programs using the DB2/2 APIs.

Chapter 9. REXX Interfaces to DB2/2 159

The following examples are part of the DB22DBA.CMD which is on the
diskette. The first example, Figure 119 shows how to catalog a node in the
node directory using the CATALOG DB2/2 API. The node is connected via
APPC. APPN** and NetBIOS are also supported and examples are found in
the DB22DBA.CMD on the diskette.

/**/
/* APPC_CONNECTION */
/* This routine catalogs an APPC node */
/**/

say ′ Please enter the NODENAME′
pull nodename
say ′ Please enter the Local LU′ /*CM/2 SNA workstation name */
pull locallu

say ′ Please enter the Partner LU′ /* CM/2 SNA server name */
pull partnerlu

say ′ Please enter the SNA transmission service mode ′
pull mode

/* build string */
SQL_EndString = ′ LOCAL ′ locallu ′ REMOTE ′ partnerlu ′ MODE ′ mode
SQL_String = ′ CATALOG APPC NODE ′ nodename SQL_EndString
call SQLDBS SQL_String
if SQLCA.SQLCODE = 0 then do
say ′ Node ′ nodename ′ was sucessfully cataloged.′

else ′
say ′ catalog failed, return code = ′ SQLCA.SQLCODE

return

Figure 119. Catalog APPC Node

160 OS/2 REXX

The example in Figure 120 removes a node entry from the node directory
using the UNCATALOG statement. This is from DB22DBA.CMD on the
diskette. This example works for APPC, APPN, and NetBIOS nodes.

/***/
/* UNCATALOG_NODE */
/* This routine uncatalogs a node */
/***/

say ′ Please enter the name of the node to be uncataloged′
pull nodename
call SQLDBS ′ UNCATALOG NODE ′ nodename
if SQLCA.SQLCODE = 0 then
say ′ Node ′ nodename ′ was successfully uncataloged.′

else
say ′ Node ′ nodename ,

′ could not be uncataloged. Error = ′ SQLCA.SQLCODE
return

Figure 120. Uncatalog Node

Chapter 9. REXX Interfaces to DB2/2 161

The example in Figure 121, part of DB22DBA.CMD on the diskette, shows
how to catalog a remote database on the database directory using the
CATALOG DB2/2 API.

/***/
/* CATALOG_REMOTE */
/* This routine catalogs a remote database. */
/***/
say ′ Please enter the name of the database to be cataloged′
pull dbname

say ′ Please enter the database alias name′
pull alias

say ′ Please enter the node name this database is to be cataloged on:′
pull node

/* build string */
if alias = ″″ then
SQL_String = ′ CATALOG DATABASE ′ dbname ′ AT NODE ′ node

else
SQL_String = ′ CATALOG DATABASE ′ dbname ′ AS ′ alias ′ AT NODE ′ node

/* issue catalog database statement */
call SQLDBS SQL_String
if SQLCA.SQLCODE = 0 then
say ′ Database ′ dbname ′ at ′ node ,

′ was cataloged with the alias name′ alias
else
say ′ Database ′ dbname ′ at ′ node ,

′ was not cataloged. Error= ′ SQLCA.SQLCODE
return

Figure 121. Catalog Remote Database

The example in Figure 122 on page 163, part of DB22DBA.CMD on the
diskette, uncatalogs a database on the database directory using the
UNCATALOG DB2/2 API.

162 OS/2 REXX

/**/
/* UNCATALOG_DATABASE */
/* This routine removes a database from the system catalog. */
/**/
say ′ Please enter the name of the database to be uncataloged′
pull dbname
call SQLDBS ′ UNCATALOG DATABASE ′ dbname
if SQLCA.SQLCODE = 0 then
say ′ Database ′ dbname ′ was successfully uncataloged.′

else
say ′ Database ′ dbname ′ was not uncataloged. Error= ′ SQLCA.SQLCODE
return

Figure 122. UnCatalog Remote Database

9.5 Embedding Structured Query Language (SQL) Statements in
REXX Programs

SQL is available on all DB2 platforms. It is a powerful language designed
with many functions that allow you to use and manipulate the data in DB2
databases. Some examples of what SQL statements can do:

 1. Create tables and views.

 2. Add rows to a table.

 3. Update existing rows.

 4. Create reports based on select conditions.

 5. Grant authorities to a user.

In DB2/2, you can invoke SQL statements by using the Query Manager. You
can also embed SQL statements in REXX programs.

9.5.1 Static vs. Dynamic SQL
Static SQL statements are statements that are prepared prior to the
execution of the program that contains them. The complete SQL statement
must be known prior to the compilation of the program. During compilation,
an executable form of the SQL statement is created. Having said that, since
OS/2 REXX is an interpreted language and not a compiled language, static
SQL statements are not possible in REXX. All SQL statements in REXX

Chapter 9. REXX Interfaces to DB2/2 163

programs are prepared when the program runs. The term used for this type
of statement is dynamic SQL statement.

Both static and dynamic SQL statements have advantages. Static SQL
statements often process faster than dynamic SQL statements because the
overhead of preparing the statement is done before the program actually
runs. However, dynamic statements offer more flexibility because the actual
form of the SQL statement does not need to be known before the program
runs. For example, if you want to use the SELECT statement to query a table
and load the results into variables, in a static SQL situation you would need
to know the number of columns in the table and their names before your
program is compiled. If there are changes to the table, chances are your
program would have to be recompiled. Using a dynamic SQL statement in
this situation, the number of columns, their names, lengths, and data types
do not need to be known in advance. They can be obtained during the
execution of the program. This use of dynamic SQL is called a varying list
SELECT, and it can be very useful. There is an example of this on the
diskette called SELECT.CMD. This will also be discussed in greater detail
later in this chapter.

 There are certain SQL statements that can be passed directly to the
SQLEXEC API. Others require the use of the PREPARE statement before a
call to SQLEXEC can be made, or they must be prefaced by the EXECUTE
IMMEDIATE statement. A breakdown of the SQL statements is provided in
Appendix B, “OS/2 DB2/2 REXX Reference” on page 245.

9.5.2 SELECT Statement
Before we get into the varying list use of the SELECT statement discussed
earlier, take a look at a less complex usage of a SELECT in a REXX program.
The example in Figure 123 on page 165 is taken from GETTABLE.CMD,
which can be found on the diskette. In this example, the table
SYSIBM.SYSTABLES is being queried in order to get a list of tables that are
associated with a given database.

Note the convention for table names. It is the creator name concatenated to
the table name with a period. So in this case the creator is SYSIBM and the
table name is SYSTABLES. If the creator name is not used when referring to
a table, the default is the workstation ID that the program is running on. We
recommend that you always use the full table name, as this will make your
code flexible in that it can refer to tables on other systems. The columns in
SYSIBM.SYSTABLES that we want to retrieve are the table name and the
table creator. For each row retrieved, we display the table name and table
creator. The SELECT could conceivably produce a result of multiple rows.

164 OS/2 REXX

The way that the program traverses through the rows is by using a cursor.
The cursor points to the row currently being processed, beginning with the
first row. The cursor is incremented to point to the next row by DB2/2
automatically when you request the next row using the FETCH statement.
These are the steps used to code this type of program:

 1. CONNECT to the database.

 2. Create the SELECT statement.

 3. Use the PREPARE statement to dynamically build the SELECT statement.

 4. Use the DECLARE statement to define a cursor and associate the cursor
to the SELECT statement.

 5. Use the OPEN statement to initialize the cursor pointing to the first row.

 6. Use the FETCH statement in a loop to retrieve rows into variables.

 7. Use the CLOSE statement to release the cursor.

 8. Use the COMMIT statement to complete the unit of work.

/* This function lists all tables for a given database. */
/**/
parse arg dbname /* database name */

/**** connect to database *****/
call sqlexec ′ CONNECT TO ′ dbname ′ IN SHARE MODE′ ;
if (SQLCA.SQLCODE <> 0) then call Error_handling routine

st = ″SELECT name,creator FROM sysibm.systables ″ , �1�
″ WHERE creator <> ? AND creator <> ?″ ;

call sqlexec ′ PREPARE s1 FROM &:.st′ ; �2�
if (SQLCA.SQLCODE <> 0) then call Error_handling routine

call sqlexec ′ DECLARE c1 CURSOR FOR s1′ ; �3�
if (SQLCA.SQLCODE <> 0) then call Error_handling routine

parm_var1= ″SYSIBM″ ; /* do not view system tables */
parm_var2= ″QRWSYS″ ; /* do not view system tables */

call sqlexec ′ OPEN c1 USING &:.parm_var1,&:.parm_var2′ ; �4�

Figure 123 (Part 1 of 2). SELECT Statement Example

Chapter 9. REXX Interfaces to DB2/2 165

call sqlexec ′ FETCH c1 INTO &:.table_name,&:.creator_name′ ; �5�
if (SQLCA.SQLCODE <> 0) then call Error_handling routine

/* loop through query results, display table names */
do while (SQLCA.SQLCODE = 0)
if (SQLCA.SQLCODE = 0) then do
say ′ Table = ′ table_name ′ Creator = ′ creator_name
say ″″

end
call sqlexec ′ FETCH c1 INTO &:.table_name,&:.creator_name′ ; �6�

end /* end Do */

call sqlexec ′ CLOSE c1′ ;
if (SQLCA.SQLCODE <> 0) then call Error_handling routine
call sqlexec ′ COMMIT′ ;
if (SQLCA.SQLCODE <> 0) then call Error_handling routine
/* clean up - disconnect from database */
call sqlexec ′ CONNECT RESET′ ;
if (SQLCA.SQLCODE <> 0) then call Error_handling routine
return

Figure 123 (Part 2 of 2). SELECT Statement Example

Notes:

�1�The SELECT statement is created using ? as a place holder for an
unknown value. This place holder will be resolved in the OPEN cursor
statement.

�2�The PREPARE statement validates the SQL SELECT statement and
prepares it for execution. Note that statement names must fall in the
range S1 to S100.

�3�The DECLARE statement associates cursor C1 with statement S1.
Note that cursor names must fall in the range C1 to C100, with C51 to
C100 only used for cursors declared with the WITH HOLD option.

�4�The OPEN statement replaces the question marks in the SELECT
statement with the values of parm_var1 and parm_var2 respectively.
It also initalizes cursor C1 to point to the first row that satisfies the
SELECT conditions.

166 OS/2 REXX

�5�The FETCH statement is moving the NAME and CREATOR columns
from the current row into the REXX variables table_name and
creator_name respectively.

�6�Place another FETCH statement inside a loop to retrieve the
remaining rows.

9.5.3 Varying List SELECT
For situations where it is required to query, update or delete rows in a table,
and for whatever reason the table column names cannot be hard coded into
the program, the varying list SELECT technique can be used. It may be that
you do not know ahead of time how many columns are in a table or what
their names are. It may be that you need your program to be flexible enough
to work on different tables, and adapt to changes in those tables. The term
varying list SELECT means that when the program is started, the number and
types of columns to be returned are not known. DB2/2 has a data structure
call SQLDA which provides very useful information about the columns in a
table. These are the steps used to code this type of program:

 1. CONNECT to the database.

 2. Create the SELECT statement.

 3. Use the DECLARE statement to define a cursor and associate the cursor
to the SELECT statement.

 4. Use the PREPARE statement with the INTO clause to dynamically build
the SELECT statement and specify a REXX variable into which column
information from the SQLDA will be loaded.

 5. Use the DESCRIBE statement to load column information from the SQLDA
into a REXX array variable.

 6. Use the OPEN statement to initialize the cursor pointing to the first row.

 7. Use the FETCH statement with the USING DESCRIPTOR clause in a loop
to retrieve rows into the REXX array variable.

 8. Use the CLOSE statement to release the cursor.

 9. Use the COMMIT statement to complete the unit of work.

The structure of the SQLDA can be found in Appendix B, “OS/2 DB2/2 REXX
Reference” on page 245. It builds a two-dimensional array consisting of n
columns with 5 elements for each column. These 5 elements contain
information about the column. One comment regarding the SQLLEN element:
SQLLEN contains the length of a column. We have noticed that if the column
has a decimal length, the SQLLEN element will not be filled in for that

Chapter 9. REXX Interfaces to DB2/2 167

column. For example, if a column has a length of 7.2, the SQLLEN element
will be uninitialized, meaning its value is ″SQLLEN″.

The example in Figure 124, taken from SELECT.CMD on the diskette, is an
example of the varying list SELECT. This example queries a table, and
writes each row of the query results to a file.

/* Run a varying list SELECT and load the results into TABLE.DAT */

/**** connect to database *****/
call sqlexec ′ CONNECT TO ′ dbname ′ IN SHARE MODE′ ;
if (SQLCA.SQLCODE <> 0) then call Error_Handling_routine

st1 = ″SELECT * FROM ″ creator||′ . ′ | | tablename
if (SQLCA.SQLCODE <> 0) then call Error_Handling_routine

call SQLEXEC ′ DECLARE c1 CURSOR FOR s1′
if (SQLCA.SQLCODE <> 0) then call Error_Handling_routine

call SQLEXEC ′ PREPARE s1 INTO &:.sqldavar FROM :st1′ �1�
if (SQLCA.SQLCODE <> 0) then call Error_Handling_routine

call SQLEXEC ′ DESCRIBE s1 INTO &:.sqldavar′ �2�
if (SQLCA.SQLCODE <> 0) then call Error_Handling_routine

call SQLEXEC ′ OPEN c1′
if (SQLCA.SQLCODE <> 0) then call Error_Handling_routine

Figure 124 (Part 1 of 2). Varying List SELECT

168 OS/2 REXX

call SQLEXEC ′ FETCH c1 USING DESCRIPTOR &:.sqldavar′ �3�
if (SQLCA.SQLCODE <> 0) then call Error_Handling_routine

′ ERASE TABLE.DAT > NULL′ /* erase TABLE.DAT if it already exists */

do while (SQLCA.SQLCODE = 0) /* loop through rows */
outrec = ′ ′
do col = 1 to sqldavar.sqld /* loop through columns in a row */

if (sqldavar.col.sqlind) = -1 then /* null field */ �4�
outrec = outrec CENTER(′ -′ , sqldavar.col.sqllen)

else
outrec = outrec sqldavar.col.sqldata �5�

end /* do */
call LINEOUT ′ TABLE.DAT′ , outrec /* write output record */
call SQLEXEC ′ FETCH c1 USING DESCRIPTOR &:.sqldavar′ /* next row*/

end /* do */
call sqlexec ′ CLOSE c1′ ;
if (SQLCA.SQLCODE <> 0) then call Error_Handling_routine
call SQLEXEC ′ COMMIT′
 if (SQLCA.SQLCODE <> 0) then call Error_Handling_routine
call sqlexec ′ CONNECT RESET′ ;
if (SQLCA.SQLCODE <> 0) then call Error_Handling_routine
return

Figure 124 (Part 2 of 2). Varying List SELECT

Notes:

�1�The PREPARE statement validates the SELECT statement and
prepares it for execution. It names the REXX variable that the SQLDA
information will be loaded to.

�2�The DESCRIBE statement loads column information into the REXX
array variable.

�3�The FETCH statement with the USING DESCRIPTOR clause loads
the row data into the REXX array variable.

�4�The SQLIND field of the SQLDA tells if the field is null.

�5�The SQLDATA field of the SQLDA contains the actual data stored in
the column for the current row. Loop through columns of a row and
build an output record. Note that SQLDA.SQLD contains the number
of columns in the row.

Chapter 9. REXX Interfaces to DB2/2 169

9.5.4 Changing Table Data
Adding rows to a table, deleting rows from a table, and updating existing
table rows can all be accomplished through REXX programs using SQL
statements. To perform these actions on a table, the user must have update
authority on the table.

9.5.5 Adding Rows to a Table
In an application that is adding rows to a table, the techniques discussed in
the previous section on varying list SELECT can be very helpful. Issuing the
PREPARE statement for a SELECT statement using the INTO clause loads the
SQLDA column information of a table into a variable. This column
information can be useful in edit checking rows before you attempt to add
them to a table. The SELECT is never actually executed, but it serves a
purpose by allowing the SQLDA information to become available via the
PREPARE statement. Edit checking on data types, column length, and null
value is possible using the information from the SQLDA. The process for
adding rows in this method is:

 1. CONNECT to the database.

 2. Build a dummy SELECT statement.

 3. PREPARE the SELECT statement using the INTO clause.

 4. Use SQLDA information to prompt user for input, perform edit checking,
etc.

 5. Build an INSERT statement.

 6. Issue an EXECUTE IMMEDIATE on the INSERT statement.

 7. COMMIT the work.

The example in Figure 125 on page 171 shows the usage of the INSERT
statement. This example is taken from ADDREC.CMD on the diskette, which
shows the preparation of the SELECT statement as well.

170 OS/2 REXX

creator = ′ WORKID′
tbname = ′ BASEBALL′
fields = lastname||′ , ′ | | firstname||′ , ′ | | middle /* column names */
values = ′ MANTLE′ | | ′ , ′ | | ′ MICKEY′ | | ′ , ′ | | ′ C′ /* new row values */

st1 = ″INSERT INTO ″ creator||′ . ′ | | tbname ″(″fields″) VALUES (″values″)″
call SQLEXEC ′ EXECUTE IMMEDIATE :st1′
if (SQLCA.SQLCODE <> 0) then call Error_Handling_routine

Figure 125. Adding a Row

9.5.6 Updating Rows
There are several ways to update existing table rows in REXX programs
using the SQL UPDATE statement. Updating row by row, using a cursor, is a
similar process to the SELECT examples discussed previously. An example
of this type of update will be explained later in this section. Mass updates of
multiple rows is another way to use the UPDATE statement. That is, certain
rows of the table are selected by using a WHERE clause. These rows are
then each updated in the same columns with the same information. This
update of potentially multiple rows is performed with one UPDATE statement.
This is a very powerful use of the UPDATE statement. The example in
Figure 126 on page 172 shows how to do an update to change all employees
with DEPT ′951A′ to DEPT ′884A′.

Updating rows one at a time, instead of a mass update, may be preferable
for some applications. It may be that for each row selected, a user prompt is
required to receive changes for that particular row. As discussed in 9.5.5,
“Adding Rows to a Table” on page 170, obtaining the SQLDA information
can be very useful for getting the row definition and edit checking the user
input before the update is attempted, although it is not necessary. The
example in Figure 127 on page 172 is an example of updating row by row. It
is taken from UPDTREC.CMD on the diskette.

Chapter 9. REXX Interfaces to DB2/2 171

/* Mass Update */
creator=′ WORKID′
tbname=′ EMPLOYEE′
old_dept=′951A′
new_dept=′884A′

call sqlexec ′ CONNECT TO ′ dbname
if (SQLCA.SQLCODE <> 0) then Call Error_Handling_Routine

st1 = ′ UPDATE ′ creator||′ . ′ | | tbname ′ SET DEPT= ′ | | new_dept ,
′ WHERE DEPT=′ | | old_dept

call sqlexec ′ EXECUTE IMMEDIATE &:.st1′
if (SQLCA.SQLCODE <> 0) then Call Error_Handling_Routine

return

Figure 126. Mass Update

/* Update rows */
column1 = ′ PLAYER′
column2 = ′ POSITION′
column3 = ′ TEAM′
call sqlexec ′ CONNECT TO ′ dbname
if (SQLCA.SQLCODE <> 0) then Call Error_Handling_Routine
st1 =″SELECT ″ column1||′ , ′ | | column2 ″ FROM WORKID.ROSTER WHERE ″ , �1�

column3||″= ′YANKEES′ FOR UPDATE OF ″ column2

call SQLEXEC ′ DECLARE c1 CURSOR FOR s1′
if (SQLCA.SQLCODE <> 0) then Call Error_Handling_Routine
call SQLEXEC ′ PREPARE s1 FROM &:.st1′
call SQLEXEC ′ OPEN c1′
if (SQLCA.SQLCODE <> 0) then Call Error_Handling_Routine

Figure 127 (Part 1 of 2). Update Row by Row

172 OS/2 REXX

call SQLEXEC ′ FETCH c1 INTO &:.var1,&:.var2′ �2�
if (SQLCA.SQLCODE <> 0) then Call Error_Handling_Routine
do while (SQLCA.SQLCODE = 0) /* loop through rows selected */
/* display fields, prompt user for change value */
say column1 ′ = ′ var1 ′ , ′ column2 ′ = ′ var2
say ′ Enter new value for ′ column2
pull newvalue �3�

/* build update statement using value entered by user */
updt = ′ UPDATE WORKID.ROSTER SET ′ column2||″ = ′ ″ | |newvalue||″ ′ ″ | | ′ ,

WHERE CURRENT OF c1′ �4�
call SQLEXEC ′ EXECUTE IMMEDIATE :updt′
if (SQLCA.SQLCODE <> 0) then Call Error_Handling_Routine
call SQLEXEC ′ FETCH c1 INTO &:.var1,&:.var2′

end /* do */

/* clean up - close cursor and commit work */
call sqlexec ′ CLOSE c1′ ;
if (SQLCA.SQLCODE <> 0) then Call Error_Handling_Routine
call SQLEXEC ′ COMMIT′
if (SQLCA.SQLCODE <> 0) then Call Error_Handling_Routine
return

Figure 127 (Part 2 of 2). Update Row by Row

Notes:

�1�Selecting PLAYER and POSITION columns from the table only for
rows where the team is YANKEES. Column position is updated.

�2�FETCH acts on the row that the cursor c1 is pointing to. Currently,
c1 is pointing to the first row that satisfied the SELECT conditions.
The FETCH loads the value of columns PLAYER and POSITION into
variables var1 and var2 respectively.

�3�The current values for PLAYER and POSITION for this row are
displayed, and the user is prompted to enter a new value for
POSITION. This is where using the SQLDA could provide column
information useful in edit checking.

�4�For current row, POSITION column is updated with user entered
value.

Chapter 9. REXX Interfaces to DB2/2 173

9.6 Error Handling
DB2/2 provides information in the SQLCA data structure that is useful in
return code checking and error determination. The complete SQLCA data
structure is provided in Appendix B, “OS/2 DB2/2 REXX Reference” on
page 245. SQLCA.SQCODE is filled with a return code value after every call
to the SQLEXEC and SQLDBS APIs. Another source of information is the
SQLMSG variable, which contains the description of the SQL return code
found in SQLCA.SQLCODE. A way to get a more detailed explanation of the
SQL error is to bring up the DB2/2 online documentation. An example of this
is provided in Figure 128, which is taken from SQLERR.CMD on the diskette.

/* SQLERR */
arg sqlcode

sqlcode = STRIP(sqlcode,′ L′ , ′ -′) /* remove - sign */
sqlcode = RIGHT(sqlcode,4,′ 0 ′) /* pad with zeros on the left */
′ VIEW DBMSG.INF SQL′ | | sqlcode /* bring up DBM information file */

return

Figure 128. SQL Error Handling

9.7 Testing Observations
Our testing environment for the sample code found on the diskette, as
described at the beginning of this chapter, was two PS/2 machines on the
same LAN.
 Here are a few observations we made that apply to this environment as well
as others:

 1. Before accessing a database on a remote workstation, the remote
database must have been started. If not you will most likely receive a
SQL -30080 return code, which is a timeout condition.

 2. If the remote user has the database open in Query Manager, you may be
locked out of the database - again a return code of -30080.

 3. To allow your REXX code to work on remote databases, you must refer to
tables with their full name (owner.tablename).

 4. Make sure you have set up all the User Profile Management, database,
and table authorizations you need!

174 OS/2 REXX

9.8 Database Application Remote Interface (DARI)
The DARI is provided by DB2/2 to help improve performance of applications
that are accessing remote databases. The remote database must be on a
DB2/2 Server machine. The concept is simple. To reduce network traffic,
keep your DB2/2 procedures on the server machine, not the client machine.
This way the client does not have to send program instructions over the
network, since the program already exists on the server. The client just
needs to tell the server to run the program. To do this, a small procedure is
needed on the client machine to tell the server to start a program. Chapter 6
of the IBM Database 2 OS/2 Programming Reference provides examples of
client and server procedures and how to invoke them. Additional
performance benefits may be realized because only the rows that are
actually needed by the client are returned over the network to the client.
Also, in most installations, the server machine is equipped with increased
memory, disk space, and possibly a faster processor than a client machine.

Chapter 9. REXX Interfaces to DB2/2 175

176 OS/2 REXX

Chapter 10. Visual REXX Builders

Visual REXX builders in OS/2 are software products that interface with the
Presentation Manager (PM), utilizing PM′s Graphical User Interface (GUI)
features. Visual REXX builders provide a GUI for the design and
development of REXX programs. The real exciting part is that the REXX
programs that are developed can take advantage of PM as well. For
example, a visual REXX builder product can provide function calls that allow
a REXX program to create and manipulate:

• Windows

• Dialog boxes

• Entry fields

• Radio buttons

• Action bars

Visual REXX builders provide a way to create application prototypes quickly.
They also provide a way to take existing REXX applications and convert them
into applications that take advantage of OS/2′s PM interface. Two of the
most popular visual REXX builders on the market are Watcom ′s VX-REXX,
and Hockware′s VisPro/REXX. In this chapter we take an existing REXX
application and convert it into a VX-REXX program, as well as a VisPro/REXX
program. Refer to “Related Publications” on page xxii for a listing of
VX-REXX and VisPro/REXX books that you may find helpful.

10.1 VisPro/REXX
VisPro/REXX is a visual programming environment for the OS/2 2.1 REXX
language. It is completely integrated with the OS/2 2.1 Workplace Shell.
VisPro/REXX offers:

• Multiple views including Layout, Event tree and List

• Drag-Drop programming

• Pop-up menus

• Setting notebooks

• Buttons, Lists, Graphics, Sliders and all the CUA ′91 controls

• Business graphics

 Copyright IBM Corp. 1993 177

VisPro/REXX supports:

• APPC, EHLLAPI, DB2/2 and all other external functions that OS/2 REXX
supports.

• The OS/2 font and color palettes.

VisPro/REXX can be useful if you, for instance wish to:

• Quickly prototype and develop OS/2 2.1 CUA ′91 applications.

• Generate a small, single .EXE file for license-free distribution.

• Build client/server programs.

• Migrate existing REXX procedures to the OS/2 2.1 GUI environment.

System requirements for VisPro/REXX are:

• OS/2 2.1 with at least 5MB memory

• At least 2MB of free hard disk space

The Refresh Release V1.1 shipped 26th August 1993 adds support for:

• Easy multithreading - the user interface is separate from the REXX code.

• STDIO window - command output/input by a separate window.

• Easy command interface - just enclose external commands in quotes.

VisPro/REXX ships in two versions, the full version and the BRONZE edition.
The BRONZE version differs from the current release in that it lacks:

• Container control

• Slider control

• Notebook control

• Business graphics

An evaluation package is also available from HockWare. This package
includes a demo of VisPro/REXX and the evaluation copy. The evaluation
copy has some limitations on the size of the application you can create, and
it does not allow you to create an .EXE file.

178 OS/2 REXX

10.2 VX-REXX
Watcom′s VX-REXX is an easy to use development environment for creating
applications that leverage the capabilities of OS/2 2.1 and exploit the
Presentation Manager Graphical User Interface. The following are some of
the features that are a part of VX-REXX:

• Project management

• Graphic design of PM objects

• Customization of object properties

• Drag and drop objects to create source code

• Support for APPC, EHLLAPI, DB2/2 and all other external functions that
OS/2 REXX 2. supports

• Source level debugger

• No run time licensing fees

• Creation of executable files

10.3 Example - SELECT.CMD
SELECT.CMD is a REXX program that uses DB2/2 APIs to select data from a
table. Subroutines GETDB.CMD and GETTABLE.CMD are called from
SELECT.CMD. All three of these programs are explained in detail in
Chapter 9, “REXX Interfaces to DB2/2” on page 151. It uses STDIN and
STDOUT to communicate with the user. It displays all existing databases
and prompts the user to select one. It then displays all tables for the
database selected and prompts the user to select one. It then loads all rows
of the table selected into a file and opens an E editor session on the file. We
took this program and converted it into a visual REXX program using
VX-REXX. We did the same using VisPro/REXX. This example should give
you an idea of how much more effective and easy to use a GUI is versus
STDIN and STDOUT from a user′s perspective. It also will provide you with
examples of how to create visual REXX programs containing basic GUI
features in both VisPro/REXX and VX-REXX.

Visual REXX programming is more of an event-driven, object-oriented
environment than traditional top down, procedural programming. There are
a number of different ways to visualize even a small application like this one.
You need to think about what makes the most sense from a user perspective
and a programming perspective.

Chapter 10. Visual REXX Builders 179

Before jumping into writing the application, it is wise to spend some time
planning how the GUI will look and operate. For the SELECT.CMD program
we decided to have a main window with a list box, listing all available
databases. Once the user selects a database, a second window, our Table
window, appears. This window contains a list box, listing all tables for the
selected database. Once the user selects a table, the query is run and an E
editor session is opened containing the query results. When the user wishes
to leave the Table window, they can click on the Cancel push button. To
leave the application, they can select the Exit option from the menu bar on
the primary window.

There are other details which need to be thought about. For example, will the
secondary window be modal, modeless, or system modal? We chose modal,
which means that other windows in the application cannot be activated while
the Table window is active. System modal means that no other window or
icon on the desktop can be activated while the Table window is active.
Modeless in this situation means that the user can activate other windows
while the Table window is active. These are ways to control user activity.
You need to think about what potential problems can be caused by user
actions. There are other options to consider that we will look at as we go
through the examples.

10.4 SELECT.CMD with VisPro/REXX
The following example is a step by step approach for converting the
SELECT.CMD standard REXX application into a VisPro/REXX application. The
level of VisPro/REXX used is Release 1.1.

10.4.1 Initial Setup
To open a VisPro/REXX session, double click on the HockWare VisPro/REXX
icon to open the Projects folder. By default the Projects folder has the
following objects:

• Project

• Samples

• Color Palette

• Font Palette

• REXX Information

• Tutorial/Demo

180 OS/2 REXX

To start creating SELECT.CMD with VisPro/REXX, drag a project from the
Project template icon using mouse button 2. The fastest way to change the
name of the new project is to press down the Alt-key and click on mouse
button 1 and write the new name: SELECT.

To open the project double click on the new project and you have a new
folder with three icons in it:

Figure 129. Project Folder in VisPro/REXX

The Main icon contains the main form of the new project, the Form icon can
be used to create additional windows for the program and the SubProcs can
be used for general routines for the program.

10.4.2 The Main Form
To start creating the program first double click on Main . If you are starting a
VisPro/REXX project for the first time, you are prompted for your name and
the serial number of your VisPro/REXX copy. You now get the Layout view of
the main form with icons representing the objects that can be used for
visually creating a window.

Chapter 10. Visual REXX Builders 181

Figure 130. Layout View in VisPro/REXX

The main form also has a menu bar with items used to create, test and
customize the project. The menu bar items include:

• Form

− Open for opening the settings for the form or the views to the form.

− When for creating events associated wit opening or closing the form
or a subform.

− Test for testing the program.

− Build for building a standalone .EXE file.

− Save for saving the project.

• Selected

− Open Settings... for opening the settings of selected objects. You
must first select objects with mouse button 1.

− When for creating events associated with objects.

− Arrange for arranging objects.

• Edit for cut and paste operations.

• View for different views of the form.

182 OS/2 REXX

• Tools for dragging objects to the form.

• Help for online help.

Objects can be dragged to a window by first selecting them with mouse
button 1 and then positioning the pointer where you want the object and
pressing mouse button 1 again. To resize the objects they must first be
selected with mouse button 1 and then you can use mouse button 2 to resize
them. The properties of an object can then be changed by pressing mouse
button 2 inside the object and selecting Open Settings . This gives you a
notebook of the changeable properties unique to each object. The objects in
VisPro/REXX are:

BusinessGraphic An object for creating business graphics.
.

CheckBox A box that the user can toggle on or off by clicking the
pointing device or using the keyboard.

ComboBox A combination of the EntryField and ListBox objects.
Text can be entered in to the entry field. If the user
selects an item from the list box, it is copied into the
entry field.

DescriptiveText Used to display text.

EntryField Provides method for user to input data.

Container A container for objects.

Graphic A method to display images, such as bitmaps, pointers
and icons.

GroupBox A container for other objects.

ListBox List of items from which the user can make a selection.

MultiLineEntryField Provides method for user to input multiple lines of
data.

Notebook An object to create notebooks.

Plain Window Provides a free form window, where you can for
instance capture mouse and keyboard events.

PushButton A button that the user can select by clicking the
pointing device or using the keyboard.

RadioButton A button usually found in a group that the user can
select by clicking the pointing device or using the
keyboard. Only one radio button in the group can be
selected at a time.

Chapter 10. Visual REXX Builders 183

Spin button A scrollable ring of choices from which the user can
make a selection.

Slider A slider to create for instance progress indicators.
.

Valueset A set of graphics or text objects.
.

10.4.3 Main Wi ndow Layout
In the main form for SELECT.CMD you need three objects: a list box for
displaying the available databases, a push button for selecting a database,
and a text field.

 1. Select the list box with mouse button 1 and position the mouse pointer to
where you want the lower-left corner of the list box.

 2. Press mouse button 2 inside the list box and select Open Settings... .

 3. Deselect Horizontal scroll bar .

 4. Close settings.

 5. Resize the list box using mouse button 2.

 6. Select and position a text field just above the list box.

 7. Change the caption of the text field to ″Select a Database″ by holding
down the Alt key and pressing mouse button 1, and then edit the text.

 8. Select and position the push button on the right side next to the list box
and change the caption to ″∼ Press to Select″ by using Alt and mouse
button 1.

Now we have the general layout for the main form:

184 OS/2 REXX

Figure 131. Main Form Layout in VisPro/REXX

There are some additional items that we want to change. For instance the
default style for the form is plain which means that the form is not sizeable.
To change this click on Form then click on Open and Settings . This gives
you the settings notebook for the main form:

Chapter 10. Visual REXX Builders 185

Figure 132. Form Settings Notebook in VisPro/REXX

The settings notebook allows you to change the appearance of the form. The
Style page allows you to change the form to plain, sizeable or scrollable.
Press the Sizeable radio button to change the form to sizeable.

10.4.4 Adding a Menu Bar
It is also possible to create a menu bar through the Menu page of the
settings notebook. To add a menu bar to the form click on the Menu page
and click on Add Menu . A new submenu item is now added to the Menu Bar
Designer. Click on the submenu icon and change the caption of the
submenu to ∼ File using Alt-mouse button 1. The ∼ character before File
provides an accelerator function to the menu item and the character after the
∼ is underscored. The menu is then accessible by pressing Alt-F . Now click
on the menu icon on the left side of the text to apply the changed caption
and to bring focus on the File menu item. Then add an item to the menu by
pressing Add item . Click on the new menu item and change its caption to
E∼ xit using Alt-mouse button 1. Click on the menu icon on the left side of
the text to apply the changed caption and to bring focus on the Exit menu
item. Your Menu Bar Designer should now look like Figure 133 on page 187.

186 OS/2 REXX

Figure 133. Menu Bar Designer in VisPro/REXX

To add an event to the Exit menu item press When clicked . You now get the
code window for the Exit event as shown in Figure 134 on page 188. The
code window allows you to write code associated with the Exit event. There
is a preset line of code: Arg window self at the beginning of the code
window. Do not remove this code for it gives the window handle and the
event handle to your code.

In VisPro/REXX there are several ways to code your application. You can
either write the code yourself, add code from the Add menu or drag objects
into the code window and then select the code from a selection list. In this
case we use the Add menu to add code to close the window. Click mouse
button 2 inside the code window to get the pop up menu for the code
window. Click on Add to get the Add menu. Choose Window management
and Close window . VisPro/REXX now adds the following line of code to the
code window:

CALL VpWindow window,′ CLOSE′

Your code window should look like Figure 134 on page 188.

Chapter 10. Visual REXX Builders 187

Figure 134. Code Window in VisPro/REXX

Close the code window. Close Settings notebook. That′s all you need;
choosing Exit from the menu now closes the program.

If you want to test the program, for example, to see what the form looks like
and how your events work you can do it at any time by selecting Test from
the Form menu. We now have the layout of the main form and one event but
to make the program useful we need to add the code from the SELECT.CMD
to the program.

10.4.5 Copying REXX Code
To insert the code to load all available databases to the listbox when the
program starts we use the When Opened event.

 1. Select Form

 2. Select When

 3. Select Opened

You now get the code window for the event that is associated with starting
the program.

188 OS/2 REXX

In the code window first change the title bar of the form when it is opened.
To do this:

 1. Place the cursor on the next line after Arg window

 2. Press mouse button 2

 3. Select Add

 4. Select Window management

 5. Select Set window title

 6. Change value to ″Available Databases ″

Figure 135. Add Window Management in Code Window in VisPro/REXX

SELECT.CMD calls GETDB.CMD to list all available (cataloged) databases.
This is the code we want to use in the main form to display the databases in
a list box when the form is opened. Edit GETDB.CMD with an editor and
select all lines and copy them to clipboard. To do this with E-editor:

 1. Select Edit

 2. Select Select all

 3. Select Edit

 4. Select Copy

Chapter 10. Visual REXX Builders 189

Now go back to the When opened event and select Edit - Paste or mouse
button 2 and Paste. The code from GETDB.CMD has to be changed a little bit
to work in a graphical frontend. For instance VisPro/REXX 1.0 has no
input/output console so the Say, Pull and CLS instructions do not work. Even
though Version 1.1 has a console it is not the correct way to do screen I/O in
a graphical front-end. The next step is to provide the message output in
message boxes.

In the beginning of GETDB.CMD there are two parts to register the SQLDBS
and SQLEXEC functions. If the registering is not successful then an error
message is displayed using say:

if rxfuncquery(′ SQLDBS′) <> 0 then do
rcy = rxfuncadd(′ SQLDBS′ , ′ SQLAR′ , ′ SQLDBS′) ;
if RCY \= 0 then do
say ″Error registering SQLDBS: rc = ″ rcy
return

end
end

In a graphical interface we can instead show a message box showing the
error message:

 1. Insert a line just before the say instruction.

 2. Position the cursor on the empty line and press mouse button 2.

 3. Select Add .

 4. Select Message boxes .

 5. Select Plain .

You now get the following line of code:

response=VpMessageBox(window,′ title′ , ′ message′)

 1. Replace the ′ title′ text with a title for the message box, in this case
′Error′.

 2. Replace the ′message ′ text with a message text for the message box, in
this case ′Error registering SQLDBS: rc = ′ rc .

 3. Delete the line with the Say instruction.

Repeat the above steps for the SQLEXEC registration part.

190 OS/2 REXX

The following code lists all cataloged databases on your system.

/* loop through list of databases and display them
do i=1 to scan_db.2 /* scan_db.2 contains number of databases

call SQLDBS ′ GET DATABASE DIRECTORY ENTRY :scan_db.1 USING :entry′
say ′ ′ entry.2
say

end /* end do loop */

Now we want to display the databases in a list box instead of using Say to
display them. This can be done using drag and drop programming.

10.4.6 Drag and Drop Programming
 1. Insert a line just before the Say instruction.

 2. Go to the main form and select View - Event tree view .

 3. Position the Event Tree View and When Opened windows so that you can
drag the List Box icon from the Event Tree View with mouse button 2 to
inside the code in When Opened as shown in Figure 136.

Figure 136. Drag and Drop Programming in VisPro/REXX

Chapter 10. Visual REXX Builders 191

When mouse button 2 is released you get a Create Link selection list
containing all activities you can perform regarding the object that is
being dragged as shown in Figure 137 on page 192.

Figure 137. Create Link in VisPro/REXX

 4. Select Add item sorted ascending which wil l produce the following line of
code in the program:

/* Add item sorted ascending List Box */
CALL VpAddItem window,1000,′ ASCENDING′ , value

 5. Change value to entry.2 which is the variable containing the database
name.

 6. Delete all the other Say and Pull instructions and the CLS instruction
from the code because all other messages are handled through the
SQLERR.CMD routine.

 7. Close the code window.

Now you have a program that lists all cataloged databases in a list box. The
next stage is to enable selecting a database from the list box and listing all
its tables.

192 OS/2 REXX

10.4.7 Creating a Secondary Form
A secondary form can be created in the Project icon view for the SELECT
project by dragging a new form from the Form icon. The form must be
dragged into the same folder as the main form. Then do the following:

 1. Rename the subform to Tables using Alt - mouse button 1.

 2. Open the Tables form by double clicking on it. Add a list box, a push
button and a text field to it like in the main form.

 3. Change the caption of the push button to ∼ Cancel using Alt - mouse
button 1.

 4. Add the close window event to the pushbutton by pointing the mouse
pointer at it and selecting: mouse button 2 - When - Clicked/selected and
then mouse button 2 - Add - Window management - Close window .

 5. Delete the caption of the text field using Alt - Mouse button 1. The
caption will be given a value in the When Opened event described in
10.4.9, “List Tables” on page 196.

The secondary form should now look like Figure 138.

Figure 138. Tables Form in VisPro/REXX

Chapter 10. Visual REXX Builders 193

Leave the Tables form open and go back to the main form to create the
events for opening the subform.

10.4.8 Creating Events
To create an event for displaying the Tables form when the Press to Select
push button is pressed do the following:

 1. Position the mouse pointer inside the push button.

 2. Press mouse button 2.

 3. Select When .

 4. Select Clicked/selected .

You now get the code window for the event associated with pressing the
push button. When pressing the push button you want to know what the
selected value in the list box is. To do this drag the list box into the code
window using mouse button 2. Select Get item value . You now get the
following code:

value = VpGetItemValue(window,1000)

Change value to dbname as we will later use this variable to list tables in
GETTABLE.CMD. Open the Tables form and then select Form - Create link
from the menu bar. Then go back to the Clicked/selected event for the push
button in the Main form and use paste. This will create a link from the push
button to the secondary form so that when the push button is clicked the
secondary form is opened. VisPro/REXX now inserts the following code:

value=VpOpenForm(window, 257, ′ topic name′)

Change ′ topic name ′ to dbname without quotes. Topic is a special variable
in VisPro/REXX which can be used to pass arguments between forms. The
Topic variable is also globally known to all events in the form.

 Note

A VisPro/REXX program can also receive parameters through use of the
Topic variable in the Main form.

194 OS/2 REXX

To ensure that something is selected add I f dbname <> ′′ then into the
code. Then:

 1. Insert a line just after the VpOpenForm instruction.

 2. Position the cursor on the empty line and press mouse button 2.

 3. Select Add .

 4. Select Message boxes .

 5. Select Plain .

 6. Replace the ′ title′ text with a title for the message box, in this case
′Error′.

 7. Replace the ′message ′ text with a message text for the message box, in
this case ′Highlight Database before Selecting.′

The push button click event should now contain the following code:

s c a l e = ″0.9″.

/* Get item value List Box */
dbname = VpGetItemValue(window,1000)
/* Open the form D:\VisProRx\Projects\Project!5\Form!1*/
If dbname <> ′ ′ then
value=VpOpenForm(window, 257, dbname)

else
response=VpMessageBox(window,′ Error′ , ′ Highlight Database Before Selecting′)

Copy this code to the clipboard and:

 1. Close the code window.

 2. Position the mouse pointer inside the list box in the main form.

 3. Press mouse button 2 .

 4. Select When .

 5. Select Mouse button 1 double click .

 6. Paste the code from the push button.

Now the same code in the Main form will be executed both when the push
button is pressed and when a line is double clicked in the list box.

Chapter 10. Visual REXX Builders 195

10.4.9 List Tables
To list the tables belonging to a database go to the secondary form: Tables.

 1. Select Form .

 2. Select When .

 3. Select Opened .

Now you are in the code view of the event that is executed when the Tables
form is opened. First change the title bar of the form:

 1. Place the cursor on the next line after Arg window.

 2. Press mouse button 2 .

 3. Select Add .

 4. Select Window management .

 5. Select Set window title .

 6. Change value to ′Select a Table to Query ′ .

Then add dbname = Topic into the code to get the dbname that was passed
as an argument to the form.

 Note

All events in VisPro/REXX are handled separately so variables are unique
to events. Therefore you have to pass values either by using the Topic
special variable or setting variables as global variables in the Variables
page of the form settings. Variables that are set as global in the main
form are global to all events and forms. Variables that are set as global
on subforms are global to the events in that form only.

Next set the caption of the text field:

 1. Drag the text field into the code window using mouse button 2.

 2. Select Set item value .

 3. Change value to dbname ′Tables ′ .

Next copy all the lines from GETTABLE.CMD using an editor and paste them
into the code window.

196 OS/2 REXX

10.4.10 GETTABLE.CMD
GETTABLE.CMD takes dbname as an argument but since we already got the
dbname from the Topic variable the parse arg dbname line must be removed.
To fill the list box with table names do the following:

 1. Insert a new line and position the cursor after the following line in the
code:

say ′ Table = ′ STRIP(creator_name)||′ . ′ | | STRIP(table_name)

 2. Change the line so it wil l read:

Table = STRIP(creator_name)||′ . ′ | | STRIP(table_name)

 3. Drag the list box from the Tables form into the empty line using mouse
button 2 and release the button.

 4. Select Add item sorted ascending .

 5. Change value to Table .

Now remove all Say , Pull and CLS statements from the code. The return
values can also be removed since the program does not return anything.
Instead of Return ″ERROR″ it should just have Return for the sake of clarity.

10.4.11 SubProcs - SQLERR.CMD
SQLERR.CMD is used for handling error codes from various DB2/2
commands and is called by many events in this program. To make this code
available to all the events it must be made a subroutine. This can be done
by copying SQLERR.CMD to the SubProcs folder located in the Project folder
for SELECT project. The copying can be done for instance by opening the
directory containing SQLERR.CMD through the Drives icon for the drive
containing the file and dragging the .CMD file to the SubProcs folder with
mouse button 2 while holding down the Ctrl key.

Chapter 10. Visual REXX Builders 197

 Note

• When adding subroutines to a SubProcs folder, make certain that the
file name does not have an extension and is in uppercase.

• All subroutines within the SubProcs folder will be included as part of
the resulting .EXE file when doing a build.

10.4.12 Show Table Rows
The last part of the program takes the table name from the list box in the
Tables form, selects all lines in the table and displays them using E - editor.
For this we first need the selected value from the table:

 1. Position the mouse pointer inside the list box in the Tables form.

 2. Press mouse button 2 .

 3. Select When .

 4. Select Mouse button 1 double click .

 5. Drag the list box into the code with mouse button 2 and release button.

 6. Select Get item value from the Create link list.

 7. Change value to creator_table

 8. Add dbname = Topic to the code.

 9. Copy and paste lines from SELECT.CMD from the following statement to
the end of the file:

call sqlexec ′ CONNECT RESET′ ;

10. Remove all Say statements.

10.4.13 Build the Application
The application is now ready to be built into a stand-alone .EXE file. First
test the application using Form - Test . If everything works use Form - Build
to build the .EXE file.

198 OS/2 REXX

 Note

When VisPro/REXX builds the application it does not give a message
saying when the build process is finished. You just have to wait until disk
activity stops to ensure that the build process is finished. Trying to run
the RUN.EXE file before the build process is finished will result in an error
message and may cause some problems later.

VisPro/REXX always names the .EXE file to RUN.EXE, which can then be
renamed to anything you want.

10.4.14 Tip on Adding an Icon to the .EXE file
VisPro/REXX has no menu-driven interface to include an .ICO file along with
the .EXE file. If you wish to include an ICON with the application and still be
able to distribute just one file, do the following:

 1. Build your .EXE as normal.

 2. Edit DELETE.ME1 and add a line at the end like this:

ICON 1 ″X:\\MYDIR\\MY.ICO″.

 3. Make sure there is a carriage return after the above line.

 4. Get an OS/2 window up, and go to your project directory, that is:

cd C:\VISPRORX\PROJECTS\MYPROJECT.

 5. Type:

RC -R DELETE.ME1.

 6. When this finishes successfully, type the following:

COPY C:\VISPRORX\TEMPLATE.EXE RUN.EXE.

Chapter 10. Visual REXX Builders 199

 7. Then type:

RC DELETE.RES RUN.EXE.

You now have a default icon for your EXE!

10.5 SELECT.CMD with VX-REXX
The following example is a step-by-step approach for converting the
SELECT.CMD standard REXX application into a VX-REXX application. The
level of VX-REXX used is Release 1.01.

10.5.1 Initial Setup
To open a VX-REXX session, double click on the WATCOM VX-REXX icon.
Then double click on the VX-REXX icon. This opens a new VX-REXX project
environment. The tool palette on the right contains icons that represent
different types of Presentation Manager objects. These can be used to
customize windows. Here is a description of the objects represented in the
tool palette:

CheckBox A box that the user can toggle on or off by clicking the
pointing device or using the keyboard.

ComboBox A combination of the EntryField and ListBox objects.
Text can be entered into the entry field. If the user
selects an item from the list box, it is copied into the
entry field.

DescriptiveText Used to display text.

DropDownComboBox A combination of the EntryField and ListBox objects.
Text can be entered into the entry field. When the
arrow button is selected, the list box appears. If the
user selects an item from the list box, it is copied into
the entry field.

EntryField Provides method for user to input data.

GroupBox A container for other objects.

ImagePushButton A PushButton object that can have a bitmap or icon as
the face of the button.

200 OS/2 REXX

ImageRadioButton A RadioButton object that can have a bitmap or icon as
the face of the button.

ListBox List of items from which the user can make a selection.

MultiLineEntryField Provides method for user to input multiple lines of
data.

PictureBox A method to display images, such as bitmaps and
metafiles.

PushButton A button that the user can select by clicking the
pointing device or using the keyboard.

RadioButton A button usually found in a group that the user can
select by clicking the pointing device or using the
keyboard. Only one radio button in the group can be
selected at a time.

Spin button A scrollable ring of choices from which the user can
make a selection.

The Window1 object has already been created, since at least one window will
be needed for any visual REXX application. Here are a couple of quick
pointers about the VX-REXX menu bar:

• Use Project for saving projects, opening new projects, and creating .exe
files out of projects.

• Use Windows for a list of all windows in the application (Window list) and
a list of all REXX subroutines in the application (Section list).

• Use Run to test your application.

Chapter 10. Visual REXX Builders 201

Figure 139. VX-REXX Initial Screen

10.5.2 Primary Wi ndow Setup (Window1)
Object Window1 is the first thing displayed when the SELECT application is
executed. We need to customize this window in a few ways. First, we can
put a window title in the title bar:

 1. With the mouse pointer inside Window1, click on mousebutton 2.

 2. Click on Properties . These are the settings for Window1. There are
many customizations that can be made here, from sizing the window to
chaging background color.

 3. To update the title bar with the name of our application, bring up the Text
page by clicking on Text . In the Caption field, enter the following string:

Available Databases

202 OS/2 REXX

Figure 140. Text Page of Window1 Properties

 4. While in the Properties window, we can provide maximize and minimize
buttons for the window, along with a system menu by selecting those
options on the Frame page.

 5. Close the Properties window. Notice the changes we just made are now
reflected in Window1.

Chapter 10. Visual REXX Builders 203

Figure 141. Window1

Next we need to create a menu bar for Window1. To do this:

 1. With the mouse pointer inside Window1, click on mousebutton 2.

 2. Click on Menu editor... . This is where you can create menu bar items.

 3. Create a level 1 menu item called File by typing the word File in the
Caption entry field.

 4. Click on Insert . The variable name Menu1 is generated for you.
Although you can change this variable name, we will leave it as is for
this example. The menu item File is highlighted in the list box on the
right.

 5. Now we need to create a level 2 menu item called Close file. In the list
box, aim the mouse pointer at the area just under the File item.

 6. Click on mousebutton 1 to highlight the area just below File.

 7. Use the Level spin button to make sure the Level field is 2.

 8. Type the words Close file in the Caption entry field.

 9. Click on Insert . The variable name Menu2 is generated for you.

10. The up and down arrow selections on the editor are used to position the
menu items if necessary.

204 OS/2 REXX

Accelerator keys are used as an alternative way to choose a menu item. For
example, type the letter C in the Accelerator entry field. Now click on
Change to have this change relected. Now a user can choose the Close file
option by selecting it with the mouse or by typing the accelerator key C.

Figure 142. Menu Editor

When the user selects Close file, we want the program to end. To put some
REXX code behind this menu item, click on Edit event with the Close file
menu item highlighted. This brings up an edit session for subroutine
Menu2_Click. Whatever code is placed here will execute whenever a user
clicks on Close file. Since we want the program to end, type:

call quit

This will end the program. How did we know that? We read the manual.
Quit is a VX-REXX generated subroutine that ends the application. Close the
edit session. We are now done with the menu editor. Click on OK to close
the menu editor window.

Next we need to create a ListBox object. To do this:

 1. Select the ListBox object type from the tool palette by pointing to it and
clicking on mousebutton 1. If you are not sure which icon represents the
ListBox object, remember that a description of what the mouse is

Chapter 10. Visual REXX Builders 205

pointing to is located on the bar just below the VX-REXX menu bar. You
can also refer to 10.5.1, “ Initial Setup” on page 200.

 2. Move the mouse over Window1 to where you want to place the ListBox
object.

 3. Hold down mousebutton 1 and stretch out the dimensions of the ListBox
object to the size that you want. Notice that the starting point is the
upper-left corner of the ListBox object, so you must stretch it out to the
right and down.

We also want to create a push button. This will be pushed by the user to
select a database. Use the tool palette to create a push button in the same
manner that we just created the ListBox object. We need to customize this
push button. With the mouse pointing at the push button, click on
mousebutton 2. Click on Properties . Go to the Text page to change the
caption to:

Press to Select

We can create an accelerator key for objects as well. A way to create an
accelerator is to use the tilde character in the caption of the object. The first
character after the tilde is the accelerator. For example, to create an
accelerator character P for the push button, change the caption to ∼ Press to
Select. Close the Properties window. Notice that the push button display
has the P underlined. This signifies to the user that P is the accelerator for
this object. Note that when an object is activated, the black dots on the
border can be used to resize the object.

Using the tool palette create a DescriptiveText object whose caption is:

Select a Database

Place it just above the ListBox object.

206 OS/2 REXX

Figure 143. Window1 Customized

10.5.3 Program Initialization
Now that the primary window appears the way we want it to, we can look at
how to take our existing SELECT.CMD application and incorporate it into this
VX-REXX application that we are building. When the SELECT.CMD is
invoked, the GETDB.CMD routine is called. This routine does a number of
things before the user is prompted to do anything:

• If necessary, the functions SQLDBS and SQLEXEC are registered.

• If necessary, the Database Manager is started.

• A list of all available databases is displayed.

These things need to be done in the VX-REXX version of this application as
well. In VX-REXX applications there is a routine called Init that is invoked
when an application is started. So we can copy the lines of code from our
GETDB.CMD into the Init routine. To bring up an edit session of the Init
routine, do the following:

 1. Click on Windows on the VX-REXX menu bar.

 2. Click on Section List . This brings up a list of all the REXX routines in this
application.

Chapter 10. Visual REXX Builders 207

 3. Double click on Init .

An easy way to copy the lines of code from the GETDB.CMD program into the
Init routine is to create a subroutine in the Init routine and use the Import
facility to place the GETDB.CMD code in the subroutine:

 1. From the Init edit session, create a subroutine called GetDB. Make a call
to the GetDB just before the call to VRMethod that activates the window.

 2. Position the cursor under the GetDB label you just created.

 3. Click on Edit on the edit session menu bar.

 4. Click on Import... .

 5. Find the correct drive and directory and then highlight the GetDB.CMD
file.

 6. Click on Import .

Figure 144. Init Routine

We need to replace the Say commands that displayed error notices with calls
to VRMessage, which creates message boxes. Since we are in a visual, GUI
environment, message boxes are more desirable than straight text displays
using the Say command. To display a dialog message box, do the following:

208 OS/2 REXX

 1. Position the cursor in the edit session where you want to insert the
VRMessage call. For example, we will create a message box to replace
the following statement:

say ″Error registering SQLDBS: rc = ″ rc

 2. Click on Edit on the edit session menu bar.

 3. Click on Insert code... .

 4. Double click on Message Dialog in the Dialog list.

 5. Type the following into the Text entry field:

″Error registering SQLDBS. RC = ″ rc

This is the text string that appears in the message box. Make sure the
Quoted string box is unchecked. If this box is checked, quotes will be put
around whatever you enter in that field.

 6. Type the word Error in the Title entry field. This is the title of the
message box. Leave the Quoted string box checked.

 7. Choose Error from the Icon type l ist box. This is the icon that wil l appear
in the message box.

 8. Type the following into the Button list entry field.

;OK

The colon is used as a separator. OK is the caption for the button that
will appear on the message box. More than one button can be
displayed.

 9. We wil l not use a Default or Escape parameter for this example. Click on
OK .

The code for the message box is created. Use this technique to replace all
Say statements where appropriate. Informational Say statements can be
removed, since the GUI will make them unnecessary.

Chapter 10. Visual REXX Builders 209

Figure 145. Creating a Message Box

Figure 146. Message Box Code

210 OS/2 REXX

There is one other thing we need to take care of here. How do we load the
database names into the ListBox object? In the loop where the database
names are read from the database catalog and displayed on the screen, we
need to change that to load the ListBox object instead of displaying to the
screen. VX-REXX provides a visual way to add this code. Do the following:

 1. In the edit session of the Init routine, move the cursor to a new line
where you want the code to be added. This new line of code should
replace the following line:

say ′ ′ entry.2

 2. With the mouse pointing to the ListBox object, hold down mousebutton 2
and drag the listbox over to the edit session. You will see a line
connecting the ListBox object and the edit session.

 3. Let go of mousebutton 2 where you want the code to be added.

Figure 147. Drag ListBox Object

 4. A window wil l appear. There are a list of actions that you can take for
ListBox objects. In this case we want to add a string to the ListBox
object, so double click on Add a String .

Chapter 10. Visual REXX Builders 211

 5. You are prompted to enter a string name. This is the value or variable
that will be added to the ListBox object. We are using the variable
entry.2, so type that in. It is a variable so uncheck the Quoted string box.

 6. Click on OK . The call to VX-REXX function VRMethod with the correct
parameters is added to the Init routine automatically.

 7. Remove the pull statement. The user wil l interact with the program by
clicking on a database to select it. It is no longer necessary for the user
to type in a database name.

 8. The return statement no longer needs to return a value.

 9. Close the Init edit session.

Figure 148. Init Routine Code to Load ListBox Object

10.5.4 Create the Table Window
When the user selects a database, we need to bring up a secondary window
that displays a ListBox object containing all the tables for that database. To
create a secondary window, do the following:

 1. Click on Windows on the VX-REXX menu bar.

 2. Click on Window list .

212 OS/2 REXX

 3. This brings up a list of all windows in the application. So far we just have
Window1. Click on Window on the Windows menu bar.

 4. Click on New Window . You have created a secondary window called
SW_1.

Now we need to customize the window. Refer to 10.5.2, “ Primary Window
Setup (Window1)” on page 202 if necessary for a description of the
customization of Window1. Customize window SW_1 as follows:

 1. Change the title bar caption to:

Select a Table to Query

 2. Provide maximize and minimize buttons, and a system menu for the
window.

 3. Change the name of the window from SW_1 to Table using the General
page of the Properties window.

 4. Make this a modal window by using the Style page of the Properties
window.

 5. Create a ListBox object.

 6. Create a DescriptiveText object, and position it just above the ListBox
object. No caption is needed. We will add a caption later in 10.5.7,
“Creating the Table Window” on page 218.

 7. Create a push button object. The caption should be:

Cancel

Chapter 10. Visual REXX Builders 213

Figure 149. Table Window

10.5.5 Selecting a Database
The user needs to be able to select a database from the ListBox object in
Window1. We have a push button on Window1 that we want the user to click
on when they have highlighted the database they want to use. This will be
the event that triggers our REXX code to bring up the Table window, with its
ListBox object loaded with the selected database′s table names. To put the
REXX code in the right place, do the following:

 1. With the mouse pointing to the push button on Window1, click on
mousebutton 2.

 2. Click on Events . This brings up a list of possible events for push buttons.

 3. Click on Click . This wil l bring up an edit session for the routine
PB_1_Click. PB_1_Click will be invoked when a user clicks on the push
button.

Before we can create a list of table names, we need to know the name of the
database selected by the user. To create this code, we can use the same
drag and drop method we used to load the database ListBox object:

 1. Drag and drop the database ListBox object to the edit session.

214 OS/2 REXX

 2. Double click on Selected in the Get Property l ist of the Select an action
window. This will generate the code that gets the position of the selected
field in the ListBox object. Position refers to a row of the ListBox object.

 3. Perform drag and drop with the database ListBox object again. This time
double click on Get a string from the Select an action window. Enter the
variable name selected in the Position field. This variable holds the
position of the selected field.

 4. Click on OK . This wil l generate the code that gets the selected string
from the ListBox object and places it in a variable called string.

 5. Rename the variable named string to dbname. The rest of the
application expects the database name to be in dbname.

Figure 150. PB_1_Click Routine

 We need to think about all the possible things a user can do with this
window. For example, what if they haven′ t highlighted a database yet and
they click on the push button, signifying they have selected a database? We
need some code to handle this situation. If no field is highlighted in the
ListBox object, the VRGet function will return a 0 for the position of the
selected field. We need to check for this and display a message box to the
user. To display a dialog message box, do the following:

Chapter 10. Visual REXX Builders 215

 1. In the edit session for PB_1_Click, click on Edit on the edit session menu
bar.

 2. Click on Insert code... .

 3. Double click on Message Dialog in the Dialog list.

 4. Type the following into the Text entry field:

Highlight Database Before Selecting

This is the text string that appears in the message box.

 5. Type the word Error in the Title entry field. This is the title of the
message box.

 6. Choose Error from the Icon type l ist box. This is the icon that wil l appear
in the message box.

 7. Type the following into the Button list entry field.

;OK

The colon is used as a separator. OK is the caption for the button that
will appear on the message box. More than one button can be
displayed.

 8. We wil l not use Default or Escape parameters for this example. Click on
OK .

The code for the message box is created. We need to write an IF statement
so that this message box is only displayed if no database was selected.

216 OS/2 REXX

Figure 151. PB_1_Click Routine with Generated Code

10.5.6 Loading the Table Window
We are still in the PB_1_Click routine. We have the name of the database
selected, so we are ready to bring up the Table window. To generate the
code to create a secondary window, do the following:

 1. Position the cursor in the edit session where you want the code to load a
secondary window to be added.

 2. Click on Edit on the edit session menu bar.

 3. Click on Insert code... .

 4. Double click on Load a secondary window from the Object list.

 5. Enter Table in the window field, since this is the name of the table we
want to load. Uncheck the Quoted string box, since Table is a variable
name.

 6. Click on OK . The call to load the Table window is generated.

 7. Close the edit session.

Now the user can click on the Window1 push button to select a database.
We also want to provide the user with the option of selecting a database by

Chapter 10. Visual REXX Builders 217

double clicking on a database in the ListBox object. We need to do the
following:

 1. With the mouse pointing at the Window1 ListBox object, click on
mousebutton 2.

 2. Click on Events .

 3. Click on Double click .

Now we are in the edit session for routine LB_1_DoubleClick. The routine is
named this way because the ListBox object is named LB_1 by default (we
could have changed it), and the event that will trigger this code to run is a
double click on LB_1. We want to get the name of the database selected and
load the Table window. Does this sound familiar? We already wrote this
code. It is in the PB_1_Click routine. So we can just put the following code
in the LB_1_DoubleClick routine:

call PB_1_Click

This is one way to handle common routines. Some may say this is a
dangerous method, because if you ever delete the push button, you must
remember to move the PB_1_Click routine code into the LB_1_DoubleClick
routine. Another way to handle this would be to create a general routine
(more about these in 10.5.10, “ General Routines” on page 222) that contains
the code, and have both PB_1_Click and LB_1_Click call the general routine.
Close the edit session.

10.5.7 Creating the Table Window
Now we can import the code from GETTABLE.CMD into our application. We
want this code to run when the Table window is created. There is a routine
that is called when the Table window is created. To bring up an edit session
for that routine, do the following:

 1. With your mouse pointing at the Table window, click on mousebutton 2.

 2. Click on Events .

 3. Click on Create .

We are now in an edit session for the routine called Table_Create. To
include the code from GETTABLE.CMD, follow the same method of importing
code as was used in 10.5.3, “ Program Initialization” on page 207. Here are
some pointers:

 1. To load the table names into the ListBox object in the Table window,
follow the same procedure that was used to load database names into
the Window1 ListBox object. Remember that this code is located in the
Init routine if you need a reference. Use the drag and drop technique to

218 OS/2 REXX

generate the call to load the ListBox object. The code that must be
changed is:

say ′ Table = ′ STRIP(creator_name)||′ . ′ | | STRIP(table_name)

 2. Remember to remove unnecessary Say statements and replace error
messages with calls to VRMessage.

 3. The parse arg dbname line is not needed, since dbname is a global
variable.

 4. The pull statement is not necessary, since the user wil l select the table
from the ListBox object.

 5. A value does not need to be returned from this routine.

It would be nice if there was a caption in the Table window that contained the
name of the database these tables belonged to. We have a DescriptiveText
object in the Table window, positioned just above the ListBox object. In the
Table_create routine we can use the VRSet call to set the caption for the
object to the name of the database that was selected. Refer to Figure 152.
We are now finished with the TableCreate routine.

Figure 152. TableCreate Routine

Chapter 10. Visual REXX Builders 219

10.5.8 Selecting a Table
We will use a double click on a table in the Table window′s ListBox object as
the method by which the user can select a table. This event will trigger a
REXX subroutine. This subroutine is where we need to put the code from
SELECT.CMD that runs the DB2/2 SELECT statement, loads the results into a
file, and brings up the file in an E editor session. To get the code in the right
subroutine, do the following:

 1. With the mouse pointing at the Table window ListBox object, click on
mousebutton 2.

 2. Click on Events .

 3. Click on Double click .

 4. Now we are in the edit session. Try to cut and paste the code needed
from SELECT.CMD. Cut and paste is an alternative to the import
technique, which we used for GETTABLE.CMD and GETDB.CMD. You will
need to copy the code from just below the call to GETTABLE down to the
end of the program.

 5. In order to get the name of the table selected, follow the same drag and
drop technique used to get the database name selected from the ListBox
object in Window1. A description of this is located in 10.5.5, “ Selecting a
Database” on page 214.

 6. Remember to replace or remove Say statements.

 7. Close the edit session when you are finished.

220 OS/2 REXX

Figure 153. LB_2_DoubleClick Routine

10.5.9 Cancel from Table Window
Since the Table window is modal, when the Table window is active the user
cannot make any other window in the application active. We need to provide
the user with a way to leave the Table window. We will use the Cancel push
button that we created on the Table window.

 1. With the mouse pointing to the push button on the Table window, click on
mousebutton 2.

 2. Click on Events .

 3. Click on Click . This brings up an edit session for the subroutine that is
invoked when the user clicks on the push button. We need to put code
here that will remove the Table window.

 4. Use the VRDestroy function. Add the following code:

call VRDestroy ″Table″

 5. Close the edit session.

Chapter 10. Visual REXX Builders 221

10.5.10 General Routines
 There are two types of routines in VX-REXX: event routines, and general
routines. So far, we have looked primarily at event routines. These are
routines that are invoked based on an event that was caused by the user
interacting with the GUI. For example, clicking on a push button is a user
initiated event. General routines are routines that are not invoked as a
direct result of a GUI event. They are routines in the more traditional sense,
used to break up a a program into logical units. In the SELECT.CMD
program, there is an error handling routine called SQLERR.CMD. We want to
include this routine in our VX-REXX version. It will be a general routine since
it is not tied to a particular event directly. Do the following to bring up an
edit session for a new general routine:

 1. Click on Windows on the VX-REXX menu bar.

 2. Click on Section list . This is the current list of routines in the application.

 3. Click on Section on the Sections menu bar.

 4. Click on New... .

 5. Type Sqlerr for the name of the new section.

 6. Click on OK .

 7. Import the SQLERR.CMD code into the edit session.

 8. Close the edit session.

222 OS/2 REXX

Figure 154. Sqlerr Routine

10.5.11 Testing Applications
VX-REXX provides a very easy to use test facility. You can run an application
from within the development environment. You can also run the application
in debug mode. The debugger contains all the main debug features like
setting breakpoints, watching variables, stepping through lines of code, etc.
To test your application, do the following:

 1. Click on Run from the VX-REXX menu bar.

 2. Click on Run project or Debug project .

There are a couple of common mistakes that we experienced using the
VX-REXX application:

• When function calls are generated for you, be sure there are no quotes
around variable names in the parameter list.

• When importing code, be sure to remove the extra return statement if
necessary.

Chapter 10. Visual REXX Builders 223

Figure 155. Select Application

10.5.12 Creating the Executable Version
VX-REXX provides a facility to take an application and create an .EXE
version. This version can be executed on any machine that has the
VROBJ.DLL of the VX-REXX package installed and placed in the LIBPATH of
CONFIG.SYS. This run time DLL does not require a license. To create the
.EXE version:

 1. Click on Project on the VX-REXX menu bar.

 2. Click on Make EXE file... .

The files associated with the SELECT project are:

• SEL121.VRP

• SEL121.VRX

• SEL121.VRY

• SEL121.EXE

you can invoke the SEL121 program in the same manner as you would
invoke any executable file.

224 OS/2 REXX

Appendix A. REXX Syntax Diagrams

We have included this appendix to give you a quick reference to the syntax of
OS/2 REXX. For complete details of the parameters and usage of these
statements, please refer to the OS/2 REXX online documentation or the
Procedures Language/2 REXX Reference, of the OS/2 2.0 Technical Library.

Throughout this section, syntax is described using the structure defined
below:

• Read the syntax diagrams from left to right, from top to bottom, following
the path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the
next line.

The �─── symbol indicates that a statement is continued from the
previous line.

The ───�� symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with
the �─── symbol and end with the ───� symbol.

• Required items appear on the horizontal line (the main path).

��──STATEMENT──required_item───��

• Optional items appear below the main path.

��──STATEMENT─ ──┬ ┬─────────────── ────────────────────────────────────��
 └ ┘─optional_item─

• If you can choose from two or more items, they appear vertically, in a
stack.

If you must choose one of the items, one item of the stack appears on the
main path.

��──STATEMENT─ ──┬ ┬─required_choice1─ ─────────────────────────────────��
└ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below
the main path.

 Copyright IBM Corp. 1993 225

��──STATEMENT─ ──┬ ┬────────────────── ─────────────────────────────────��
├ ┤─optional_choice1─
└ ┘─optional_choice2─

• If one of the items is the default, it will appear above the main path and
the remaining choices will be shown below.

┌ ┐─default_choice──
��──STATEMENT─ ──┼ ┼───────────────── ──────────────────────────────────��

├ ┤─optional_choice─
└ ┘─optional_choice─

• An arrow returning to the left above the main line indicates an item that
can be repeated.

┌ ┐───────────────────
��──STATEMENT─ ───� ┴─repeatable_item─ ──────────────────────────────────��

A repeat arrow above a stack indicates that you can repeat the items in
the stack.

• Keywords appear in uppercase (for example, PARM1). They must be
spelled exactly as shown. Variables appear in all lowercase letters (for
example, parmx). They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols
are shown, you must enter them as part of the syntax.

A.1 Keyword Instructions

��──ADDRESS─ ──┬ ┬───────────────────────────── ─;───────────────────��
├ ┤─environment─ ──┬ ┬────────────
│ │└ ┘─expression─
└ ┘──┬ ┬─────── ─expression1──────
└ ┘─VALUE─

��──ARG─ ──┬ ┬─────────────── ─;─────────────────────────────────────��
└ ┘─template list─

226 OS/2 REXX

┌ ┐─,──────────────
��──CALL─ ──┬ ┬─name─ ───� ┴──┬ ┬──────────── ──────────── ─;─────────────��

│ │└ ┘─expression─
├ ┤─OFF─ ──┬ ┬─ERROR──── ───────────────────
│ │├ ┤─FAILURE──
│ │├ ┤─HALT─────
│ │└ ┘─NOTREADY─
└ ┘─ON─ ──┬ ┬─ERROR──── ──┬ ┬────────────────

├ ┤─FAILURE── └ ┘─NAME──trapname─
├ ┤─HALT─────
└ ┘─NOTREADY─

��──DO─ ──┬ ┬─────────── ──┬ ┬───────────── ─;─ ──┬ ┬───────────────── ─END───�
└ ┘─repetitor─ └ ┘─conditional─ │ │┌ ┐───────────────

└ ┘───� ┴─instruction─

�─ ──┬ ┬────── ─;───��
└ ┘─name─

repetitor:

��─ ──┬ ┬─name=expri─ ──┬ ┬─────────── ──┬ ┬─────────── ──┬ ┬──────────── ────��
│ │└ ┘─TO──exprt─ └ ┘─BY──exprb─ └ ┘─FOR──exprf─
├ ┤─FOREVER──
└ ┘─exprr──

conditional:

��─ ──┬ ┬─WHILE──exprw─ ──��
└ ┘─UNTIL──expru─

 ┌ ┐────────────
��──DROP─ ───� ┴┬ ┬──name ── ─;───��

└ ┘──(name)

��──EXIT─ ──┬ ┬──────────── ─;───────────────────────────────────────��
 └ ┘─expression─

Appendix A. REXX Syntax Diagrams 227

��──IF──expression─ ──┬ ┬─── ─THEN─ ──┬ ┬─── ─instruction────────────────�
└ ┘─;─ └ ┘─;─

�─ ──┬ ┬────────────────────────── ──────────────────────────────────��
└ ┘─ELSE─ ──┬ ┬─── ─instruction─

└ ┘─;─

��──INTERPRET──expression──;──────────────────────────────────────��

��──ITERATE─ ──┬ ┬────── ─;──��
└ ┘─name─

��──LEAVE─ ──┬ ┬────── ─;──��
└ ┘─name─

��──NOP──;──��

��──NUMERIC─ ──┬ ┬─DIGITS─ ──┬ ┬───────────── ───────── ─;──────────────��
│ │└ ┘─expression1─
│ │┌ ┐─SCIENTIFIC─────────────
├ ┤─FORM─ ──┼ ┼────────────────────────
│ │├ ┤─ENGINEERING────────────
│ │└ ┘──┬ ┬─────── ─expression2─
│ │└ ┘─VALUE─
└ ┘─FUZZ─ ──┬ ┬───────────── ───────────

└ ┘─expression3─

��──OPTIONS──expression──;──��

228 OS/2 REXX

��──PARSE─ ──┬ ┬─────── ──┬ ┬─ARG───────────────────────── ──┬ ┬─────────────── ─;───────��
└ ┘─UPPER─ ├ ┤─LINEIN────────────────────── └ ┘─template list─

├ ┤─PULL────────────────────────
├ ┤─SOURCE──────────────────────
├ ┤─VALUE─ ──┬ ┬──────────── ─WITH─
│ │└ ┘─expression─
├ ┤─VAR──name───────────────────
└ ┘─VERSION─────────────────────

��──PROCEDURE─ ──┬ ┬────────────────────── ─;────────────────────────��
│ │┌ ┐────────────
└ ┘─EXPOSE─ ───� ┴┬ ┬──name ──

└ ┘──(name)

��──PULL─ ──┬ ┬─────────────── ─;────────────────────────────────────��
└ ┘─template list─

��──PUSH─ ──┬ ┬──────────── ─;───────────────────────────────────────��
└ ┘─expression─

��──QUEUE─ ──┬ ┬──────────── ─;──────────────────────────────────────��
└ ┘─expression─

��──RETURN─ ──┬ ┬──────────── ─;─────────────────────────────────────��
 └ ┘─expression─

��──SAY─ ──┬ ┬──────────── ─;──��
└ ┘─expression─

Appendix A. REXX Syntax Diagrams 229

��─ ──SELECT; ───�

┌ ┐───
�─ ───� ┴─WHEN──expression─ ──┬ ┬─── ─THEN─ ──┬ ┬─── ─instruction─ ──────────�

└ ┘─;─ └ ┘─;─

�─ ──┬ ┬─────────────────────────────────────── ─END──;──────────────��
└ ┘─OTHERWISE─ ──┬ ┬─── ──┬ ┬─────────────────

└ ┘─;─ │ │┌ ┐───────────────
└ ┘───� ┴─instruction─

��──SIGNAL─ ──┬ ┬─labelname──────────────────────────── ─;───────────��
├ ┤──┬ ┬─────── ─expression────────────────
│ │└ ┘─VALUE─
├ ┤ ─OFF─ ──┬ ┬─ERROR──── ───────────────────
│ │├ ┤─FAILURE──
│ │├ ┤─HALT─────
│ │├ ┤─NOTREADY─
│ │├ ┤─NOVALUE──
│ │└ ┘─SYNTAX───
└ ┘ ─ON─ ──┬ ┬─ERROR──── ──┬ ┬────────────────

├ ┤─FAILURE── └ ┘─NAME──trapname─
├ ┤─HALT─────
├ ┤─NOTREADY─
├ ┤─NOVALUE──
└ ┘─SYNTAX───

230 OS/2 REXX

��──TRACE─ ──┬ ┬──┬ ┬──────── ──────────────────── ─;─────────────────────��
│ │└ ┘─number─
│ │┌ ┐─────────── ┌ ┐─Normal────────
└ ┘───� ┴─ ───┬ ┬─── ──┼ ┼───────────────

└ ┘─?─ ├ ┤─All───────────
├ ┤─Commands──────
├ ┤─Error─────────
├ ┤─Failure───────
├ ┤─Intermediates─
├ ┤─Labels────────
├ ┤─Off───────────
└ ┘─Results───────

Or, alternatively:

��──TRACE─ ──┬ ┬─────────────────────── ─;──────────────────────────────��
├ ┤─string────────────────
├ ┤─symbol────────────────
└ ┘──┬ ┬─────── ─expression─
└ ┘─VALUE─

A.2 Functions

A.2.1 Bu ilt-in Functions

��─ ──ABBREV(information,info ──┬ ┬───────── ─)───────────────────────��
└ ┘──,length

��─ ──ABS(number) ──��

��─ ──ADDRESS() ──��

Appendix A. REXX Syntax Diagrams 231

��─ ──ARG(──┬ ┬──────────────── ─)───────────────────────────────────��
└ ┘─n─ ──┬ ┬─────────

└ ┘──,option

��─ ──BEEP(frequency,duration) ─────────────────────────────────────��

��─ ──BITAND(string1 ──┬ ┬────────────────────────── ─)───────────────��
└ ┘─,─ ──┬ ┬───────── ──┬ ┬──────

└ ┘─string2─ └ ┘──,pad

��─ ──BITOR(string1 ──┬ ┬────────────────────────── ─)────────────────��
└ ┘─,─ ──┬ ┬───────── ──┬ ┬──────

└ ┘─string2─ └ ┘──,pad

��─ ──BITXOR(string1 ──┬ ┬────────────────────────── ─)───────────────��
└ ┘─,─ ──┬ ┬───────── ──┬ ┬──────

└ ┘─string2─ └ ┘──,pad

��─ ──B2X(binary_string) ───��

��─ ──┬ ┬──CENTER(──string,length ──┬ ┬────── ─)───────────────────────��
└ ┘──CENTRE(└ ┘──,pad

��─ ──CHARIN(──┬ ┬────── ──┬ ┬─────────────────────────── ─)───────────��
└ ┘─name─ └ ┘─,─ ──┬ ┬─────── ──┬ ┬─────────

└ ┘─start─ └ ┘──,length

232 OS/2 REXX

��─ ──CHAROUT(──┬ ┬────── ──┬ ┬─────────────────────────── ─)──────────��
└ ┘─name─ └ ┘─,─ ──┬ ┬──────── ──┬ ┬────────

└ ┘─string─ └ ┘──,start

��─ ──CHARS(──┬ ┬────── ─)───��
└ ┘─name─

��─ ──COMPARE(string1,string2 ──┬ ┬────── ─)──────────────────────────��
└ ┘──,pad

��─ ──CONDITION(──┬ ┬──────── ─)─────────────────────────────────────��
└ ┘─option─

��─ ──COPIES(string,n) ───��

��─ ──C2D(string ──┬ ┬──── ─)───��
└ ┘──,n

��─ ──C2X(string) ──��

��─ ──DATATYPE(string ──┬ ┬─────── ─)─────────────────────────────────��
└ ┘──,type

��─ ──DATE(──┬ ┬──────── ─)──��
└ ┘─option─

Appendix A. REXX Syntax Diagrams 233

��─ ──DATE(──┬ ┬──────── ─)──��
└ ┘─option─

��─ ──DELSTR(string,n ──┬ ┬───────── ─)───────────────────────────────��
└ ┘──,length

��─ ──DELWORD(string,n ──┬ ┬───────── ─)──────────────────────────────��
└ ┘──,length

��─ ──DIGITS() ───��

��─ ──directory(──┬ ┬────────────── ─)───────────────────────────────��
└ ┘─newdirectory─

��─ ──D2C(wholenumber ──┬ ┬──── ─)────────────────────────────────────��
└ ┘──,n

��─ ──D2X(wholenumber ──┬ ┬──── ─)────────────────────────────────────��
└ ┘──,n

��─ ──ENDLOCAL() ───��

��─ ──ERRORTEXT(n) ───��

234 OS/2 REXX

��─ ──FILESPEC(option,filespec) ────────────────────────────────────��

��─ ──FORM() ───��

��─ ──FORMAT(number ───�

�─ ──┬ ┬─── ─)─────────────��
└ ┘─,─ ──┬ ┬──────── ──┬ ┬──

 └ ┘─before─ └ ┘─,─ ──┬ ┬─────── ──┬ ┬────────────────────────
└ ┘─after─ └ ┘─,─ ──┬ ┬────── ──┬ ┬───────

└ ┘─expp─ └ ┘──,expt

��─ ──FUZZ() ───��

��─ ──INSERT(new,target ──┬ ┬─────────────────────────────────────── ─)───────────────��
└ ┘─,─ ──┬ ┬─── ──┬ ┬─────────────────────────

└ ┘─n─ └ ┘─,─ ──┬ ┬──────── ──┬ ┬──────
└ ┘─length─ └ ┘──,pad

��─ ──LASTPOS(needle,haystack ──┬ ┬──────── ─)────────────────────────��
└ ┘──,start

��─ ──LEFT(string,length ──┬ ┬────── ─)───────────────────────────────��
└ ┘──,pad

��─ ──LENGTH(string) ───��

Appendix A. REXX Syntax Diagrams 235

��─ ──LINEIN(──┬ ┬────── ──┬ ┬───────────────────────── ─)─────────────��
└ ┘─name─ └ ┘─,─ ──┬ ┬────── ──┬ ┬────────

└ ┘─line─ └ ┘──,count

��─ ──LINEOUT(──┬ ┬────── ──┬ ┬────────────────────────── ─)───────────��
└ ┘─name─ └ ┘─,─ ──┬ ┬──────── ──┬ ┬───────

└ ┘─string─ └ ┘──,line

��─ ──LINES(──┬ ┬────── ─)───��
└ ┘─name─

┌ ┐─,──────
��─ ──MAX(───� ┴─number─ ─)───��

┌ ┐─,──────
��─ ──MIN(───� ┴─number─ ─)───��

��─ ──OVERLAY(new,target ──┬ ┬─────────────────────────────────────── ─)──────────────��
└ ┘─,─ ──┬ ┬─── ──┬ ┬─────────────────────────

└ ┘─n─ └ ┘─,─ ──┬ ┬──────── ──┬ ┬──────
└ ┘─length─ └ ┘──,pad

��─ ──POS(needle,haystack ──┬ ┬──────── ─)────────────────────────────��
└ ┘──,start

��─ ──QUEUED() ───��

236 OS/2 REXX

��─ ──RANDOM(──┬ ┬────────────────────────────── ─)──────────────────��
├ ┤─max──────────────────────────
└ ┘──┬ ┬──min, ──┬ ┬───── ──┬ ┬───────
└ ┘─,──── └ ┘─max─ └ ┘──,seed

��─ ──REVERSE(string) ──��

��─ ──RIGHT(string,length ──┬ ┬────── ─)──────────────────────────────��
└ ┘──,pad

��─ ──SETLOCAL() ───��

��─ ──SIGN(number) ───��

��─ ──SOURCELINE(──┬ ┬─── ─)───��
└ ┘─n─

��─ ──SPACE(string ──┬ ┬──────────────────── ─)───────────────────────��
└ ┘─,─ ──┬ ┬─── ──┬ ┬──────

└ ┘─n─ └ ┘──,pad

��─ ──STREAM(name ──┬ ┬────────────────────────────────── ────────────��
│ │┌ ┐─State─────────────────────
└ ┘─,─ ──┼ ┼───────────────────────────

├ ┤─Command──,──streamcommand─
└ ┘─Description───────────────

Appendix A. REXX Syntax Diagrams 237

��─ ──STRIP(string ──┬ ┬────────────────────────── ─)─────────────────��
└ ┘─,─ ──┬ ┬──────── ──┬ ┬───────

└ ┘─option─ └ ┘──,char

��─ ──SUBSTR(string,n ──┬ ┬───────────────────────── ─)───────────────��
└ ┘─,─ ──┬ ┬──────── ──┬ ┬──────

└ ┘─length─ └ ┘──,pad

��─ ──SUBWORD(string,n ──┬ ┬───────── ─)──────────────────────────────��
└ ┘──,length

��─ ──SYMBOL(name) ───��

��─ ──TIME(──┬ ┬──────── ─)──��
└ ┘─option─

��─ ──TRACE(──┬ ┬──────── ─)───��
└ ┘─option─

��─ ──TRANSLATE(string ──┬ ┬── ─)───────────��
└ ┘─,─ ──┬ ┬──────── ──┬ ┬─────────────────────────

└ ┘─tableo─ └ ┘─,─ ──┬ ┬──────── ──┬ ┬──────
└ ┘─tablei─ └ ┘──,pad

��─ ──TRUNC(number ──┬ ┬──── ─)───────────────────────────────────────��
└ ┘──,n

238 OS/2 REXX

��─ ──VALUE(name ──┬ ┬──────────────────────────────── ─)─────────────��
└ ┘─,─ ──┬ ┬────────── ──┬ ┬───────────

└ ┘─newvalue─ └ ┘──,selector

��─ ──VERIFY(string,reference ──┬ ┬─────────────────────────── ─)─────��
└ ┘─,─ ──┬ ┬──────── ──┬ ┬────────

└ ┘─option─ └ ┘──,start

��─ ──WORD(string,n) ───��

��─ ──WORDINDEX(string,n) ──��

��─ ──WORDLENGTH(string,n) ───��

��─ ──WORDPOS(phrase,string ──┬ ┬──────── ─)──────────────────────────��
└ ┘──,start

��─ ──WORDS(string) ──��

��─ ──XRANGE(──┬ ┬─────── ──┬ ┬────── ─)───────────────────────────────��
└ ┘─start─ └ ┘──,end

��─ ──X2B(hexstring) ───��

Appendix A. REXX Syntax Diagrams 239

��─ ──X2C(hexstring) ───��

��─ ──X2D(hexstring ──┬ ┬──── ─)──────────────────────────────────────��
└ ┘──,n

A.2.2 OS/2 API Functions

��─ ──RXFUNCADD(name,module,procedure) ───��

��─ ──RXFUNCDROP(name) ───��

��─ ──RXFUNCQUERY(name) ──��

��──RXQUEUE──(─ ──┬ ┬─″Get″──────────────────── ─)───────────────────────────────────��
├ ┤─″Set″──newqueuename──────
├ ┤─″Delete″──queuename──────
└ ┘─″Create″─ ──┬ ┬────────────

└ ┘──,queuename

action = RxMessageBox(text, [title], [button], [icon])

A.2.3 REXX Utils Functions

SysCls ()

result = SysCreateObject(classname, title, location <,setup>,
 <,duplicateflag>)

240 OS/2 REXX

pos = SysCurPos(row, col)

SysCurState state

result = SysDestroyObject(name)

result = SysDeregisterObjectClass(classname)

info = SysDriveInfo (drive)

map = SysDriveMap ([drive], [opt])

call SysDropFuncs

rc = SysFileDelete(file)

rc = SysFileTree(filespec, stem, [options], [tattrib], [nattrib])

Appendix A. REXX Syntax Diagrams 241

call SysFileSearch target, file, stem, [options]

result = SysGetEA(file, name, variable)

key = SysGetKey([opt])

msg = SysGetMessage(num, [file] [str1],...[str9])

result = SysIni ([inifile], app, key, val, stem)

rc = SysMkDir(dirspec)

ver = SysOS2Ver()

result = SysPutEA(file, name, value)

call SysQueryClassList stem

242 OS/2 REXX

result = SysRegisterObjectClass(classname, modulename)

rc = SysRmDir(dirspec)

filespec = SysSearchPath(path, filename)

result = SysSetIcon(filename, iconfilename)

result = SysSetObjectData(name, <,setup>)

call SysSleep secs

file = SysTempFileName(template, [filter])

string = SysTextScreenRead(row, col, [len])

result = SysTextScreenSize()

Appendix A. REXX Syntax Diagrams 243

result = SysWaitNamedPipe(name, [timeout])

244 OS/2 REXX

Appendix B. OS/2 DB2/2 REXX Reference

We have included this appendix to give you a quick reference to the syntax of
DB2/2 REXX APIs, SQL statements, and SQL Data Structures. For complete
details of the parameters and usage of these statements, please refer to the
IBM Database 2 OS/2 Programming Reference and the IBM Database 2 OS/2
Structured Query Language(SQL) Reference. The DB2/2 online
documentation is another source for this information.

B.1 REXX DB2/2 API Syntax
Use the SQLDBS routine to call DB2/2 APIs with the following syntax:

call SQLDBS ′ command string′

Enclose the command string in single quotes.

The following pages describe the correct syntax for calling DB2/2 APIs using
the SQLDBS routine.

BACKUP DATABASE dbname [{ALL|CHANGES}] TO drive

BIND filename TO DATABASE dbname [USING values] [MESSAGES
 msgfile]

CATALOG DATABASE dbname [AS alias] {ON drive|AT NODE nodename}
[[IN codepage] WITH comment]

CATALOG DCS DATABASE dbname [AS tdbname]
[AR ar]
[PARMS ″parms ″]
[[IN codepage] WITH ″comment ″]

 Copyright IBM Corp. 1993 245

CATALOG [APPC] NODE nodename [LOCAL locallu] REMOTE
 partnerlu [MODE mode] [[IN codepage] WITH comment
]

CATALOG APPN NODE nodename [NETWORKID netid] REMOTE partnerlu
[LOCAL locallu] [MODE mode]
[[IN codepage] WITH comment]

CATALOG NETBIOS NODE nodename REMOTE partnerlu ADAPTER
adapternum

[[IN codepage] WITH comment]

CHANGE DATABASE dbname COMMENT [ON drive] [IN
 codepage] WITH comment

CHANGE SQLISL TO {RR|CS|UR}

CLOSE DATABASE DIRECTORY scanid

CLOSE DCS DIRECTORY

246 OS/2 REXX

CLOSE NODE DIRECTORY scanid

COLLECT { SYSTEM | DATABASE | ALL } STATUS
[{ FOR DATABASE dbname | ON drive }] USING values

CREATE DATABASE dbname [ON drive] [[IN
 codepage] WITH comment]

[COLLATE {SYSTEM | NONE | USER udcs}]

INVOKE progname
[USING value] [INPUT DESCRIPTOR inda] [OUTPUT

 DESCRIPTOR outda]

DROP DATABASE dbname

EXPORT stmt FROM dbname TO datafile OF filetype
[MODIFIED BY filetmod] [USING dcoldata] MESSAGES

 msgfile:

CONTINUE EXPORT

STOP EXPORT

FREE STATUS RESOURCES

Appendix B. OS/2 DB2/2 REXX Reference 247

GET AUTHORIZATIONS value

GET DATABASE CONFIGURATION FOR dbname USING values

GET DATABASE MANAGER CONFIGURATION USING values

GET MESSAGE INTO msg [LINEWIDTH width]

GET DATABASE DIRECTORY ENTRY scanid [USING value]

GET DATABASE STATUS USING values

GET NODE DIRECTORY ENTRY scanid [USING values]

GET USER STATUS FOR DATABASE dbname USING values

248 OS/2 REXX

IMPORT TO dbname FROM datafile OF filetype
[MODIFIED BY filetmod] [METHOD {L|N|P} USING dcoldata]
{INSERT|REPLACE|CREATE|INSERT_UPDATE|REPLACE_CREATE}
INTO tname [(columns)]
MESSAGES msgfile

CONTINUE IMPORT

STOP IMPORT

INSTALL SIGNAL HANDLER

INTERRUPT

MIGRATE DATABASE dbname

OPEN DCS DIRECTORY

OPEN DATABASE DIRECTORY ON drive USING value

OPEN NODE DIRECTORY USING value

REORG TABLE tablename IN dbname [INDEX iname] [USE
path]

Appendix B. OS/2 DB2/2 REXX Reference 249

RESET DATABASE CONFIGURATION FOR dbname

RESET DATABASE MANAGER CONFIGURATION

RESTART DATABASE dbname

RESTORE DATABASE dbname FROM drive [TO
dbdrive] [WITHOUT ROLLING FORWARD]

CONTINUE RESTORE

STOP RESTORE

ROLLFORWARD DATABASE dbname [{ TO {isotime | END
OF LOGS} [AND STOP] } |

STOP | QUERY STATUS] [USING values]

RUNSTATS ON TABLE tname [{AND | USING | FOR} INDEXES
{ALL|USING values}] [SHRLEVEL {REFERENCE|CHANGE}]

START DATABASE MANAGER

STOP DATABASE MANAGER

250 OS/2 REXX

UNCATALOG DATABASE dbname

UNCATALOG DCS DATABASE dbname [USING values]

UNCATALOG NODE nodename

UPDATE DATABASE CONFIGURATION FOR dbname USING values

UPDATE DATABASE MANAGER CONFIGURATION USING values

B.2 SQL Statements Syntax
This section contains syntax diagrams for SQL statements that can be
invoked from REXX programs.

In this section, syntax is described using the structure defined below:

• Read the syntax diagrams from left to right, from top to bottom, following
the path of the line.

The ��─── symbol indicates the beginning of a statement.

The ───� symbol indicates that the statement syntax is continued on the
next line.

The �─── symbol indicates that a statement is continued from the
previous line.

The ───�� symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start with
the �─── symbol and end with the ───� symbol.

Appendix B. OS/2 DB2/2 REXX Reference 251

• Required items appear on the horizontal line (the main path).

��──STATEMENT──required_item───��

• Optional items appear below the main path.

��──STATEMENT─ ──┬ ┬─────────────── ────────────────────────────────────��
 └ ┘─optional_item─

• If you can choose from two or more items, they appear vertically, in a
stack.

If you must choose one of the items, one item of the stack appears on the
main path.

��──STATEMENT─ ──┬ ┬─required_choice1─ ─────────────────────────────────��
└ ┘─required_choice2─

If choosing one of the items is optional, the entire stack appears below
the main path.

��──STATEMENT─ ──┬ ┬────────────────── ─────────────────────────────────��
├ ┤─optional_choice1─
└ ┘─optional_choice2─

• If one of the items is the default, it will appear above the main path and
the remaining choices will be shown below.

┌ ┐─default_choice──
��──STATEMENT─ ──┼ ┼───────────────── ──────────────────────────────────��

├ ┤─optional_choice─
└ ┘─optional_choice─

• An arrow returning to the left above the main line indicates an item that
can be repeated.

┌ ┐───────────────────
��──STATEMENT─ ───� ┴─repeatable_item─ ──────────────────────────────────��

A repeat arrow above a stack indicates that you can repeat the items in
the stack.

• Keywords appear in uppercase (for example, PARM1). They must be
spelled exactly as shown. Variables appear in all lowercase letters (for
example, parmx). They represent user-supplied names or values.

252 OS/2 REXX

• If punctuation marks, parentheses, arithmetic operators, or such symbols
are shown, you must enter them as part of the syntax.

B.2.1 SQL Statements Passed Directly to SQLEXEC

��──CLOSE──cursor_name──��

┌ ┐─WORK─
��──COMMIT─ ──┴ ┴────── ───��

��──CONNECT──�

�─ ──┬ ┬── ────────��
├ ┤─RESET──
└ ┘─TO─ ──┬ ┬─server_name─── ──┬ ┬─────────────────────────

└ ┘─host_variable─ └ ┘─IN─ ──┬ ┬─SHARE───── ─MODE─
└ ┘─EXCLUSIVE─

��──DECLARE──cursor_name──CURSOR─ ──┬ ┬─────────── ─FOR───────────────�
└ ┘─WITH HOLD─

�─ ──┬ ┬─select_statement─ ──��
└ ┘─statement_name───

��──DESCRIBE──statement_name──INTO──descriptor_name───────────────��

��──EXECUTE──statement_name──�

�─ ──┬ ┬──────────────────────────────────── ────────────────────────��
│ │┌ ┐─ ,────────────
├ ┤─USING─ ───� ┴─host_variable─ ──────────
└ ┘─USING──DESCRIPTOR──descriptor_name─

Appendix B. OS/2 DB2/2 REXX Reference 253

��──EXECUTE IMMEDIATE──host_variable──────────────────────────────��

┌ ┐─ ,────────────
��──FETCH──cursor_name─ ──┬ ┬─INTO─ ───� ┴─host_variable─ ────────── ────��

└ ┘─USING DESCRIPTOR──descriptor_name─

��──OPEN──cursor_name─ ──┬ ┬──────────────────────────────────── ────��
│ │┌ ┐─ ,────────────
├ ┤─USING─ ───� ┴─host_variable─ ──────────
└ ┘─USING──DESCRIPTOR──descriptor_name─

��──PREPARE──statement_name─ ──┬ ┬─────────────────────── ─FROM───────�
└ ┘─INTO──descriptor_name─

�──host_variable──��

┌ ┐─WORK─
��──ROLLBACK─ ──┴ ┴────── ───��

B.2.2 Dynamic REXX SQL Statements
These statements cannot be used by the SQLEXEC REXX API directly. They
must be dynamically prepared before they can be executed. This can be
done in one of two ways:

 1. The statement string is used as the parameter in an EXECUTE
IMMEDIATE statement.

 2. The statement string is used as the parameter in a PREPARE statement
and then an EXECUTE statement.

254 OS/2 REXX

��──ALTER TABLE──table_name──�

┌ ┐──
�─ ───� ┴┬ ┬─ADD──column_definition───────────── ──────────────────────��

│ │┌ ┐─,───────────
├ ┤─PRIMARY KEY──(─ ───� ┴─column_name─ ─)─
├ ┤─referential_constraint─────────────
├ ┤─DROP PRIMARY KEY───────────────────
└ ┘─DROP FOREIGN KEY──constraint_name──

column_definition

��──column_name──data_type──�

┌ ┐──
�─ ───� ┴┬ ┬── ─────────��

├ ┤─FOR BIT DATA───────────────────────────────────────
├ ┤─NOT NULL WITH DEFAULT──────────────────────────────
└ ┘──┬ ┬───────────────── ─REFERENCES──table_name──rules─
└ ┘─constraint_name─

referential_constraint

┌ ┐─,───────────
��──FOREIGN KEY─ ──┬ ┬───────────────── ─(─ ───� ┴─key_colname─ ─)───────────�
 └ ┘─constraint_name─

�──REFERENCES──table_name──rules─────────────────────────────────────��

rules

��─ ──┬ ┬───────────────────────────────────── ─────────────────────────��
├ ┤─delete_rule─ ──┬ ┬────────────────────
│ │└ ┘─ON UPDATE RESTRICT─
└ ┘─ON UPDATE RESTRICT─ ──┬ ┬─────────────

└ ┘─delete_rule─

delete_rule

┌ ┐─ON DELETE RESTRICT─
��─ ──┼ ┼──────────────────── ──��

├ ┤─ON DELETE CASCADE──
└ ┘─ON DELETE SET NULL─

Appendix B. OS/2 DB2/2 REXX Reference 255

��──COMMENT ON─ ──┬ ┬─TABLE─ ──┬ ┬─table_name─ ───────────── ─IS─────────�
│ │└ ┘─view_name──
└ ┘─COLUMN─ ──┬ ┬─table_name.column_name─

└ ┘─view_name.column_name──

�──string_constant──��

��──CREATE─ ──┬ ┬──────── ─INDEX──index_name──ON──table_name──(───────�
└ ┘─UNIQUE─

┌ ┐─,─────────────────────
│ │┌ ┐─ASC──

�─ ───� ┴─column_name─ ──┼ ┼────── ─)───────────────────────────────────��
└ ┘─DESC─

��──CREATE TABLE──table_name───────────────────────────────────────�

┌ ┐──
�─ ───� ┴┬ ┬─column_definition────────────────── ──────────────────────��

│ │┌ ┐─,───────────
├ ┤─PRIMARY KEY──(─ ───� ┴─column_name─ ─)─
└ ┘─referential_constraint─────────────

256 OS/2 REXX

column_definition

��──column_name──data_type──�

┌ ┐──
�─ ───� ┴┬ ┬── ─────────��

├ ┤─FOR BIT DATA───────────────────────────────────────
├ ┤──┬ ┬────────── ──┬ ┬────────────── ──┬ ┬───────────── ───
│ │└ ┘─NOT NULL─ └ ┘─WITH DEFAULT─ └ ┘─PRIMARY KEY─
└ ┘──┬ ┬───────────────── ─REFERENCES──table_name──rules─
└ ┘─constraint_name─

referential_constraint

┌ ┐─,───────────
��──FOREIGN KEY─ ──┬ ┬───────────────── ─(─ ───� ┴─key_colname─ ─)───────────�
 └ ┘─constraint_name─

�──REFERENCES──table_name──rules─────────────────────────────────────��

rules

��─ ──┬ ┬───────────────────────────────────── ─────────────────────────��
├ ┤─delete_rule─ ──┬ ┬────────────────────
│ │└ ┘─ON UPDATE RESTRICT─
└ ┘─ON UPDATE RESTRICT─ ──┬ ┬─────────────

└ ┘─delete_rule─

delete_rule

┌ ┐─ON DELETE RESTRICT─
��─ ──┼ ┼──────────────────── ──��

├ ┤─ON DELETE CASCADE──
└ ┘─ON DELETE SET NULL─

��──CREATE VIEW──view_name─ ──┬ ┬─────────────────────── ─AS──────────�
│ │┌ ┐─,───────────
└ ┘─(─ ───� ┴─column_name─ ─)─

�──fullselect─ ──┬ ┬─────────────────── ─────────────────────────────��
└ ┘─WITH CHECK OPTION─

Appendix B. OS/2 DB2/2 REXX Reference 257

searched DELETE

��──DELETE FROM─ ──┬ ┬─table_name─ ──┬ ┬────────────────── ──────────�
└ ┘─view_name── └ ┘─correlation_name─

�─ ──┬ ┬───────────────────────── ────────────────────────────────��
└ ┘─WHERE──search_condition─

positioned DELETE

��──DELETE FROM─ ──┬ ┬─table_name─ ─WHERE CURRENT OF───────────────�
└ ┘─view_name──

�──cursor_name───��

��──DROP─ ──┬ ┬─INDEX──index_name───── ──────────────────────────────��
├ ┤─PACKAGE──package_name─
├ ┤─TABLE──table_name─────
└ ┘─VIEW──view_name───────

��──GRANT CONTROL ON INDEX──index_name──TO─────────────────────────�

┌ ┐─,────────────────────
�─ ───� ┴┬ ┬─authorization_name─ ──────────────────────────────────────��

└ ┘─PUBLIC─────────────

258 OS/2 REXX

┌ ┐─,───────────
��──GRANT─ ───� ┴┬ ┬─BINDADD─── ─ON DATABASE──TO────────────────────────�

├ ┤─CONNECT───
├ ┤─CREATETAB─
└ ┘─DBADM─────

┌ ┐─,────────────────────
�─ ───� ┴┬ ┬─authorization_name─ ──────────────────────────────────────��

└ ┘─PUBLIC─────────────

 ┌ ┐─,─────────
��──GRANT─ ───� ┴┬ ┬─BIND──── ─ON──PACKAGE──package_name────────────────�

├ ┤─CONTROL─
└ ┘─EXECUTE─

┌ ┐─,────────────────────
�──package_name──TO─ ───� ┴┬ ┬─authorization_name─ ────────────────────��

└ ┘─PUBLIC─────────────

┌ ┐─PRIVILEGES─ ┌ ┐─TABLE─
��──GRANT─ ──┬ ┬─ALL─ ──┴ ┴──────────── ─ON─ ──┴ ┴─────── ─────────────────�
 │ │┌ ┐─,────────────
 └ ┘───� ┴┬ ┬─ALTER────── ───

├ ┤─CONTROL────
├ ┤─DELETE─────
├ ┤─INDEX──────
├ ┤─INSERT─────
├ ┤─REFERENCES─
├ ┤─SELECT─────
└ ┘─UPDATE─────

┌ ┐─,────────────────────
�─ ──┬ ┬─table_name─ ─TO─ ───� ┴┬ ┬─authorization_name─ ──────────────────��

└ ┘─view_name── └ ┘─PUBLIC─────────────

Appendix B. OS/2 DB2/2 REXX Reference 259

��──INSERT INTO─ ──┬ ┬─table_name─ ──┬ ┬─────────────────────── ────────�
└ ┘─view_name── │ │┌ ┐─,───────────

└ ┘─(─ ───� ┴─column_name─ ─)─

┌ ┐─,──────────────────
�─ ──┬ ┬─VALUES──(─ ───� ┴┬ ┬─constant───────── ─)─ ──────────────────────��

│ │├ ┤─host_variable────
│ │├ ┤─NULL─────────────
│ │└ ┘─special_register─
└ ┘─fullselect───────────────────────────

��──LOCK TABLE──table_name──IN─ ──┬ ┬─SHARE───── ─MODE───────────────��
└ ┘─EXCLUSIVE─

��──REVOKE CONTROL ON INDEX──index_name──FROM──────────────────────�

┌ ┐─,────────────────────
�─ ───� ┴┬ ┬─authorization_name─ ──────────────────────────────────────��

└ ┘─PUBLIC─────────────

┌ ┐─,───────────
��──REVOKE─ ───� ┴┬ ┬─BINDADD─── ─ON DATABASE──FROM─────────────────────�

├ ┤─CONNECT───
├ ┤─CREATETAB─
└ ┘─DBADM─────

┌ ┐─,────────────────────
�─ ───� ┴┬ ┬─authorization_name─ ──────────────────────────────────────��

└ ┘─PUBLIC─────────────

260 OS/2 REXX

┌ ┐─,─────────
��──REVOKE─ ───� ┴┬ ┬─BIND──── ─ON──PACKAGE──package_name───────────────�

├ ┤─CONTROL─
└ ┘─EXECUTE─

┌ ┐─,────────────────────
�──package_name──FROM─ ───� ┴┬ ┬─authorization_name─ ──────────────────��

└ ┘─PUBLIC─────────────

┌ ┐─PRIVILEGES─ ┌ ┐─TABLE─
��──REVOKE─ ──┬ ┬─ALL─ ──┴ ┴──────────── ─ON─ ──┴ ┴─────── ────────────────�

│ │┌ ┐─,────────────
└ ┘───� ┴┬ ┬─ALTER────── ───

├ ┤─CONTROL────
├ ┤─DELETE─────
├ ┤─INDEX──────
├ ┤─INSERT─────
├ ┤─REFERENCES─
├ ┤─SELECT─────
└ ┘─UPDATE─────

┌ ┐─,────────────────────
�─ ──┬ ┬─table_name─ ─FROM─ ───� ┴┬ ┬─authorization_name─ ────────────────��

└ ┘─view_name── └ ┘─PUBLIC─────────────

��──SELECT──select_clause──from_clause─ ──┬ ┬────────────── ──────────�
└ ┘─where_clause─

�─ ──┬ ┬───────────────── ──┬ ┬─────────────── ────────────────────────��
└ ┘─group_by_clause─ └ ┘─having_clause─

Appendix B. OS/2 DB2/2 REXX Reference 261

searched UPDATE

��──UPDATE─ ──┬ ┬─table_name─ ──┬ ┬────────────────── ─SET───────────�
 └ ┘─view_name── └ ┘─correlation_name─

┌ ┐─,─────────────────────────────
�─ ───� ┴─column_name =─ ──┬ ┬─expression─ ───────────────────────────�

└ ┘─NULL───────

�─ ──┬ ┬───────────────────────── ────────────────────────────────��
└ ┘─WHERE──search_condition─

positioned UPDATE

��──UPDATE─ ──┬ ┬─table_name─ ─SET─────────────────────────────────�
 └ ┘─view_name──

┌ ┐─,─────────────────────────────
�─ ───� ┴─column_name =─ ──┬ ┬─expression─ ─WHERE CURRENT OF──────────�

└ ┘─NULL───────

�──cursor_name───��

B.3 SQL REXX Data Structures
This section lists REXX variable equivalents for data structures used to
access DB2/2. In the examples, XXX represents any valid variable name, as
defined by the application. In some cases, predefined occurrences of
structures are supplied by DB2/2. The names of these occurrences are
listed.

B.3.1 SQLCA
XXX.SQLCODE /* SQL return code */
XXX.SQLERRML /* Length for SQLERRMC */
XXX.SQLERRMC /* Error message tokens */
XXX.SQLERRP /* Diagnostic information */
XXX.SQLERRD.1 /* Diagnostic information */
XXX.SQLERRD.2

262 OS/2 REXX

.

.

.
XXX.SQLERRD.6
XXX.SQLWARN.0 /* Warning flags */
XXX.SQLWARN.1
 .
 .
 .
XXX.SQLWARN.10
XXX.SQLSTATE /* SQLSTATE */

One predefined occurrence of this structure is provided, called SQLCA.
DB2/2 updates this occurrence after every executed SQL statement and
DB2/2 API call.

B.3.2 SQLDA
XXX.SQLD /* Number of SQLVAR elements used */
XXX.1 - XXX.n /* SQLVAR element */
XXX.n.SQLTYPE /* Data type */
XXX.n.SQLLEN /* Data length */
XXX.n.SQLDATA /* Data value */
XXX.n.SQLIND /* Null indicator */
XXX.n.SQLNAME /* Column name */

Notes:

 1. The SQLN field is not required or used.

 2. If SQLTYPE is DECIMAL, SQLLEN is a compound symbol. The first
number, XXX.n.SQLLEN.PRECISION, is the width of the decimal, or
precision. The second, XXX.n.SQLLEN.SCALE, is the number of digits
after the decimal point, or the scale.

Two predefined occurrences of this structure are provided when the
Database Application Remote Interface is used. These occurrences are
defined at the location of a server procedure as follows:

• SQLRIDA

The input sqlda as passed from the client application.

• SQLRODA

The output sqlda as passed from the client application.

Appendix B. OS/2 DB2/2 REXX Reference 263

B.3.3 SQLCHAR
XXX.LENGTH
XXX.DATA

One predefined occurrence of this structure is provided when the Database
Application Remote Interface is used. This occurrence is defined at the
location of a server procedure as follows:

• SQLRDAT

The input data as passed from the client application.

B.3.4 SQLOPT
XXX.0 /* Number of options used (1 to 4) */
XXX.1 /* Date and time format (DEF, USA, EUR, ISO, JIS, LOC) */
XXX.2 /* Isolation level (RR, CS, UR) */
XXX.3 /* Blocking (ALL, UNAMBIG, NO) */
XXX.4 /* Authorization ID */

B.3.5 SQLEDINFO
XXX.0 /* Number of elements in the variable (always 9) */
XXX.1 /* Alias */
XXX.2 /* Database name */
XXX.3 /* Drive */
XXX.4 /* Database subdirectory */
XXX.5 /* Node name */
XXX.6 /* Release information */
XXX.7 /* Comment */
XXX.8 /* Codepage */
XXX.9 /* Entry type */

B.3.6 SQL_DIR_ENTRY
XXX.0 /* Number of fields returned (7) */
XXX.1 /* Release */
XXX.2 /* Local database name */
XXX.3 /* Target database name */
XXX.4 /* Application requester name */
XXX.5 /* Parameter string */
XXX.6 /* Comment */
XXX.7 /* Code page */

264 OS/2 REXX

B.3.7 SQLENINFO
XXX.0 /* Number of elements (9) */
XXX.1 /* Node name */
XXX.2 /* Local LU */
XXX.3 /* Partner LU */
XXX.4 /* Mode */
XXX.5 /* Comment */
XXX.6 /* Codepage */
XXX.7 /* Protocol */
XXX.8 /* Adapter */
XXX.9 /* Network ID */

B.3.8 SQLESYSTAT and SQLEDBSTAT
XXX.0 /* Number of elements (7 or 16) */
XXX.1 /* Number of databases remaining */
XXX.2 /* Current time */
XXX.3 /* Time zone */
XXX.4 /* Product name */
XXX.5 /* Component ID */
XXX.6 /* Release level */
XXX.7 /* Last backup */
XXX.8 /* Last backup (database) */
XXX.9 /* Time zone (database) */
XXX.10 /* Number of current connects */
XXX.11 /* Database alias */
XXX.12 /* Database name */
XXX.13 /* Location */
XXX.14 /* Drive */
XXX.15 /* Node name */
XXX.16 /* Type */

Notes:

 1. XXX.0 contains the number of fields returned. This is set to 7 for a
system status request or if no databases exist. It is set to 16 if system
status and database status are collected.

 2. XXX.1 is set to 0 if system status only was requested. If database status
was requested but no databases exist, system status is returned and this
value is set to -1. If a database name was specified, system status and
database status are returned and this value is set to 0. Otherwise,
system status and database status are returned and this value contains
the number of databases remaining that have not had their status
information returned. The additional information is retrieved with the GET
NEXT DATABASE STATUS BLOCK API.

Appendix B. OS/2 DB2/2 REXX Reference 265

B.3.9 SQLEUSRSTAT
XXX.0 /* Number of sets of user status returned (n) */
XXX.n.0 /* Number of elements for each user (10) */
XXX.n.1 /* Number of transactions since connect */
XXX.n.2 /* Number of requests since connect */
XXX.n.3 /* Number of requests for the current transaction */
XXX.n.4 /* Elapsed time since connect */
XXX.n.5 /* Elapsed time for the current transaction */
XXX.n.6 /* Authorization ID */
XXX.n.7 /* Node name */
XXX.n.8 /* Authority level */
XXX.n.9 /* Transaction state */
XXX.n.10 /* Lock state */

B.3.10 SQLDCOL
XXX.0 /* Number of entries in the variable (n) */
XXX.1 /* Starting location of column 1 */
XXX.2 /* Ending location of column 1 */
XXX.3 /* Starting location of column 2 */
XXX.4 /* Ending location of column 2 */
 .
 .
 .
XXX.n-1 /* Starting location of column n/2 */
XXX.n /* Ending location of column n/2 */
SQLFUPD
XXX.0 /* Number of entries in the variable (n) */
XXX.1 /* Token 1 */
XXX.2 /* Value corresponding to token 1 */
XXX.3 /* Token 2 */
XXX.4 /* Value corresponding to token 2 */
 .
 .
 .
XXX.n-1 /* Token n/2 */
XXX.n /* Value corresponding to token n/2 */

B.3.11 SQL_AUTHORIZATIONS
XXX.0 /* Number of elements (10) */
XXX.1 /* Direct SYSADM */
XXX.2 /* Direct DBADM */
XXX.3 /* Direct CREATETAB */
XXX.4 /* Direct BINDADD */
XXX.5 /* Direct SYSADM */

266 OS/2 REXX

XXX.6 /* Indirect SYSADM */
XXX.7 /* Indirect DBADM */
XXX.8 /* Indirect CREATETAB */
XXX.9 /* Indirect BINDADD */
XXX.10 /* Indirect SYSADM */

Appendix B. OS/2 DB2/2 REXX Reference 267

268 OS/2 REXX

Appendix C. OS/2 Workplace Shell Setup Strings and Color
Definitions

We have included this appendix to give you a detailed look at the setup
string parameters used in the SysCreateObject and SysSetObjectData
REXXUTIL function calls for WPFolder and WPProgram objects. The
MLAMBDLL.INF file on the diskette contains this information as well as
sample code that utilizes REXXUTIL functions. In addition, the RGB color
values for the 16 fixed colors of OS/2 2.1 are listed in this appendix.

C.1 WPFolder Setup String Parameters
WPFolder objects are a visual representation on the desktop of directories in
the file system. WPFolder objects can be created with the REXXUTIL function
SysCreateObject, and customized with the REXXUTIL function
SysSetObjectData. Both of these function calls accept setup string
parameters. This section contains a description of valid setup string
parameters for WPFolder objects.

Figure 156. Open Options of a Folder

 Copyright IBM Corp. 1993 269

Figure 157. View Page of a Folder Settings Notebook

270 OS/2 REXX

Table 1. WPFolder View Setup String Parameters

Keyname Value Description

OPEN ICON Open icon view when object is
created/updated.

TREE Open tree view when object is
created/updated.

DETAILS Open details view when object
is created/updated.

ICONVIEW s1 [,s2,...sn] Set icon view to specified
style(s).

Styles for ICONVIEW:

FLOWED flowed list items

NONFLOWED non-flowed list items

NONGRID non-gridded icon view

NORMAL normal size icons

MINI small icons

INVISIBLE no icons

TREEVIEW s1 [,s2,...sn] Set tree view to specified
style(s).

Styles for TREEVIEW:

NORMAL normal size icons

MINI small icons

INVISIBLE no icons

LINES lines in tree view

NOLINES no lines in tree view

ICONFONT value Font size and facename. See
Font Notes following.

TREEFONT value Font size and facename. See
Font Notes following

DETAILSFONT value Font size and facename. See
Font Notes following

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 271

Font Notes

The format for the value is:

size.facename fontstyle

For example, code to change the Information Folder icon view font:

“ICONFONT=8.Courier Bold′ ”

FaceName: Courier FontStyle: Normal

′ ICONFONT=8.Courier′

FaceName: Courier FontStyle: Bold Italic

′ TREEFONT=8.Courier Bold Italic′

Note that the ″ ″ are used in the .INI files but not in the .RC files.

 Hint

To find out what the string should look like, create a folder, name it
something simple like MYFOLD, then manually change the font size/name
using the Open/Settings/Change font button. Close the settings, then
from an OS/2 command line first determine the name of your desktop, for
a typical 2.0 FAT file system it would be something like C:OS!2_2.0_D. (It
gets easier for 2.1 where the desktop is normally named C:DESKTOP.)
Then locate the folder you created C:OS!2_2.0_DMYFOLD. Then enter:

EAUTIL C:OS!2_2.0_DMYFOLD MYFOLD.EAS /S /P

This will create a MYFOLD.EAS file. Use a browse program to view this
file and you′ ll see the values required.

272 OS/2 REXX

C.1.1 WPFolder Background Setup String Parameters

Figure 158. Background Page of a Folder Settings Notebook

Table 2. WPFolder Background Setup String Parameters

Keyname Value Description

BACKGROUND filename Sets the folder background.
′ f i lename ′ is the name of a file
in the OS2BITMAP directory of
the boot drive.

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 273

C.1.2 WPFolder File Setup String Parameters

Figure 159. File Page of a Folder Settings Notebook

Table 3. WPFolder File Setup String Parameters

Keyname Value Description

WORKAREA YES Make the folder a Workarea
folder

NO Make the folder a normal
non-workarea folder.

274 OS/2 REXX

C.1.3 WPFolder Window Setup String Parameters

Figure 160. Window Page of a Folder Settings Notebook

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 275

Table 4. WPFolder Window Setup String Parameters

Keyname Value Description

MINWIN HIDE Views of this object will hide
when their minimize button is
selected.

VIEWER Views of this object will
minimize to the minimized
window viewer when their
minimize button is selected.

DESKTOP Views of this object will
minimize to the desktop when
their minimize button is
selected.

VIEWBUTTON HIDE Views of this object will have a
hide button as opposed to a
minimize button.

MINIMIZE Views of this object will have a
minimize button as opposed to a
hide button.

CCVIEW YES New views of this object will be
created every time the user
selects open.

NO Open views of this object will
resurface when the user selects
open.

276 OS/2 REXX

C.1.4 WPFolder General Setup String Parameters

Figure 161. General Page of a Folder Settings Notebook

Table 5. WPFolder General Setup String Parameters

Keyname Value Description

TEMPLATE YES Creates object as a template.

NO Resets object′s template
property.

TITLE value Can be used to assign a
name/title to an object.

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 277

C.1.5 WPFolder Icon Related Setup String Parameters

Table 6. WPFolder Icon Related Setup String Parameters

Keyname Value Description

ICONFILE fi lename This sets the object′s icon.

ICONRESOURCE id module This sets the object′s icon. ′ id ′
is the identity of an icon
resource in the ′module ′
dynamic link library (DLL). For
example:

ICONRESOURCE=73 PMWP;

This would indicate resource 73
in PMWP.DLL.

ICONPOS l b This sets the object′s initial icon
position. The l and b values
represent the position in the
object ′s folder in percentage
coordinates.

ICONVIEWPOS l b w h This sets the object′s initial size.
The values represent relative
position in percentage
coordinates. For example:
ICONPOS=25 25 50 50 would
create a folder whose bottom
left corner is 25% from the left
and 25% from the bottom and
half the screen width/height.

C.1.6 WPFolder Miscellaneous Setup String Parameters

278 OS/2 REXX

Table 7. WPFolder Miscellaneous Setup String Parameters

Keyname Value Description

OBJECTID < n a m e > This sets the object′s identity.
The object ID will stay with the
object even if it is moved or
renamed. An object ID is any
unique string preceded with a
′ < ′ and terminated with a ′ > ′ .
This may also be a real name
specified as a fully qualified
path name. IMPORTANT: For
any object you create you
should use a unique OBJECTID!
Do this for two reasons:

 1. If you use an object ID it
signifies a unique object
that will not be recreated if
you use the ″FailIfExists″
flag in your REXX call. Not
using an object ID would
cause multiple objects to be
created if the same program
was run over and over.

 2. Should you need to later
delete it or change your
object, you can use this
object ID in your REXX call
to refer to it. Also one
should not use an object ID
that starts with ″WP_″ as
many OS/2 objects use
them; consider them
reserved characters.

HELPPANEL id This sets the object′s default
help panel.

HELPLIBRARY filename This sets the help library.

OPEN SETTINGS Open settings view of object
when created/updated.

DEFAULT Open default view of object
when created/updated. Don′ t
forget for folder objects you can
use OPEN with these values:
ICON, TREE, DETAILS

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 279

C.1.7 WPFolder Object Properties Setup String Parameters

Table 8. WPFolder Object Properties Setup String Parameters

Keyname Value Description

NODELETE YES Will not allow you to delete the object.

NO Resets the object′s no delete property.

NOCOPY YES Will not allow you to make a copy.

NO Resets the object′s no copy property.

NOMOVE YES Will not allow you to move the object to
another folder and will create shadow on a
move.

NO Resets the object′s no move property.

NODRAG YES Will not allow you to drag the object.

NO Resets the object′s no drag property.

NOLINK YES Will not allow you to create a shadow link.

NO Resets the object′s no link property.

NOSHADOW YES Will not allow you to create a shadow link.

NO Resets the object′s no shadow property.

NORENAME YES Will not allow you to rename the object.

NO Resets the object′s no rename property.

NOPRINT YES Will not allow you to print it.

NO Resets the object′s no print property.

NOTVISIBLE YES Will not display the object.

NO Resets the object′s not visible property.

C.2 WPProgram Setup String Parameters
WPProgram objects are a visual representation on the desktop of program
files in the file system. WPProgram objects can be created with the
REXXUTIL function SysCreateObject, and customized with the REXXUTIL
function SysSetObjectData. Both of these function calls accept setup string
parameters. This section contains a description of valid setup string
parameters for WPProgram objects.

280 OS/2 REXX

C.2.1 WPProgram Setup String Parameters

Figure 162. Program Page of a Program Settings Notebook

Table 9. WPProgram Program Setup String Parameters

Keyname Value Description

EXENAME filename Sets path and name of the program.

PARAMETERS params Sets the parameters list, which may include
substitution characters. See the Programs
Parameters Substitution characters table.

STARTUPDIR pathname Sets the working directory.

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 281

C.2.2 WPProgram Parameters Substitution Characters

Table 10. Program Parameters Substitution Characters

Parameter Description

[] (bracket blank bracket) You are prompted to type
any parameters you want to use.

[text] Characters placed inside of the brackets are
displayed as the prompt string.

no parm If the program object is started by clicking on it no
parameters are passed. If you start the program
object by dragging a file over it, the full file name is
passed.

% No parameters are passed. Useful for program
objects. You may want to start from a folder′s
pop-up menu.

% * Enables you to open a data file object in one of two
ways. You can drag the data file object to the
program object and drop it. Or, you can open a data
file object that you associated to a program.

%**P Insert drive and path information without the last
backslash ().

%**D Insert drive with ′:′ or UNC name.

%**N Insert file name without extension.

%**F Insert file name with extension.

%**E Insert extension without leading dot. In HPFS, the
extension always comes after the last dot.

282 OS/2 REXX

C.2.3 WPProgram Session Setup String Parameters

Table 11. WPProgram Session Setup String Parameters

Keyname Value Description

MINIMIZED YES Start program minimized.

MAXIMIZED YES Start program maximized.

NOAUTOCLOSE YES Leaves the window open upon program
termination.

NO Closes the window when the program
terminates.

PROGTYPE value Sets the session value. See Table 12 on
page 285 for the possible values.

SET XXX=VVV XXX is any environment variable. VVV sets
the value of the environment variable.
When used will wipe out many variables you
may assume were set. Check environment
space closely when using. Also used to
specify DOS settings for DOS and Windows
programs. See Table 13 on page 286 for
DOS and WIN-OS2 settings.

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 283

C.2.4 WPProgram Session Setup String Parameters for PROGTYPE

Figure 163. Session Page of a Program Settings Notebook

284 OS/2 REXX

Table 12. WPProgram Session Setup String Parameters for PROGTYPE=

Value Description

OS/2 session values:

PM Sets the session type to PM

FULLSCREEN Sets the session type to OS/2 full
screen

WINDOWABLEVIO Sets the session type to OS/2
windowed

DOS session values:

VDM Sets the session type to DOS full
screen

WINDOWEDVDM Sets the session type to DOS
windowed

WIN-OS/2 session values:

WIN WIN-OS2 full screen

WINDOWEDWIN WIN-OS2 windowed, NOT a separate
VDM session

SEPARATEWIN WIN-OS2 windowed, Separate VDM
session

OS/2 2.1 systems session values:

PROG_31_STD WIN-OS2 full screen, Windows 3.1
Standard mode.

PROG_31_STDSEAMLESSVDM WIN-OS2 windowed, Separate VDM
session, 3.1 Standard mode

PROG_31_STDSEAMLESSCOMMON WIN-OS2 windowed, NOT a separate
VDM session, 3.1 Standard mode

PROG_31_ENH WIN-OS/2 full screen, NOT a separate
VDM session, 3.1 Enhanced
Compatibi l i ty

PROG_31_ENHSEAMLESSVDM WIN-OS2 windowed, Separate VDM
session, 3.1 Enhanced Compatibility

PROG_31_ENHSEAMLESSCOMMON WIN-OS2 windowed, NOT a separate
VDM session, 3.1 Enhanced
Compatibi l i ty

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 285

C.2.5 WPProgram DOS and WIN-OS2 Settings

Figure 164. Settings Dialog on the Session Page of a Program Settings Notebook

Table 13 (Page 1 of 5). DOS and WIN-OS2 Settings Fields < d e f a u l t >

Keyname Value

WIN_RUNMODE Use the PROGTYPE parameter
mentioned previously to define a
enhanced mode WIN-OS2 program
(Also see note 4 from above)

WIN_DDE (See note 4 above)

WIN_CLIPBOARD (See note 4 above)

AUDIO_ADAPTER_SHARING 1 0

COM_DIRECT_ACCESS 1 < 0 >

COM_HOLD 1 < 0 >

COM_RECEIVE_BUFFER_FLUSH Val id set t ings: <NONE>
ALL
RECEIVE DATA

INTERRUPT ENABLE
SWITCH TO

FOREGROUND

COM_SELECT Val id sett ings: <ALL> COM1 COM2
COM3 COM4 NONE

DOS_AUTOEXEC C:AUTOEXEC.BAT Use full BATch file
name also you can pass parameters

286 OS/2 REXX

Table 13 (Page 2 of 5). DOS and WIN-OS2 Settings Fields < d e f a u l t >

Keyname Value

DOS_BACKGROUND_EXECUTION < 1 > 0

DOS_BREAK 1 < 0 >

DOS_DEVICE Default: empty Remember to separate
any used with “,” for new line

DOS_FCBS Limits: 0-255, default 16

DOS_FCBS_KEEP Limits: 0-255, default 8

DOS_FILES Limits: 20-255, default 20

DOS_HIGH 1 < 0 >

DOS_LASTDRIVE Limits: last physical drive to Z, default
Z

DOS_RMSIZE Limits: 128-640, default 640,
increments of 16

DOS_SHELL Default:
″?:OS2MDOSCOMMAND.COM ″
″?:OS2MDOS /P″ where ? is the
boot drive

DOS_STARTUP_DRIVE Default: empty Accepts text; like A: or
C:DISKSDRDOS.IMG

DOS_UMB 1 < 0 >

DOS_VERSION Default: DCJSS02.EXE,3,40,255
DFIA0MOD.SYS,3,40,255
DXMA0MOD.SYS,3,40,255
IBMCACHE.COM,3,40,255
IBMCACHE.SYS,3,40,255
ISAM.EXE,3,40,255
ISAM2.EXE,3,40,255
ISQL.EXE,3,40,255
NET3.COM,3,40,255
EXCEL.EXE,10,10,4
PSCPG.COM,3,40,255
SAF.EXE,3,40,255
WIN200.BIN,10,10,4

Remember what you put here will
replace the existing list of items so be
careful, also remember to use carets
in front of any commas you need.
Example:

SET DOS_VERSION=IBMCACHE.SYS,3,40,255

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 287

Table 13 (Page 3 of 5). DOS and WIN-OS2 Settings Fields < d e f a u l t >

Keyname Value

DPMI_DOS_API Val id set t ings: <AUTO> ENABLED
DISABLED

DPMI_MEMORY_LIMIT Limits: 0-512, default 4

DPMI_NETWORK_BUFF_SIZE Limits: 1-64, default 8

EMS_FRAME_LOCATION Valid sett ings: <AUTO> NONE C000
C400 C800 CC00 D000 D400 D800
DC00 8000 8400 8800 8C00 9000

EMS_HIGH_OS_MAP_REGION Limits: 0-96, default 32, note
increments of 16

EMS_LOW_OS_MAP_REGION Limits: 0-576, default 384, note
increments of 16

EMS_MEMORY_LIMIT Limits: 0-32768, default 2048, note
increments of 16

HW_NOSOUND 1 < 0 >

HW_ROM_TO_RAM 1 < 0 >

HW_TIMER 1 < 0 >

IDLE_SECONDS Limits: 0-60, default 0

IDLE_SENSITIVITY Limits: 1-100, default 75

INT_DURING_IO 1 < 0 >

KBD_ALTHOME_BYPASS 1 < 0 >

KBD_BUFFER_EXTEND < 1 > 0

KBD_CTRL_BYPASS Val id set t ings: <NONE> ALT_ESC
CTRL_ESC

KBD_RATE_LOCK 1 < 0 >

MEM_EXCLUDE_REGIONS Initially empty, you can specify a
range of memory to exclude or you
can supply a single address for the
beginning of a 4KB region, if you need
several regions separate them with a
comma (don ′ t forget to use the caret
since commas are special setup string
parameters) Example:

SET MEM_EXCLUDE_REGIONS=C0000,
D0000-D8000

288 OS/2 REXX

Table 13 (Page 4 of 5). DOS and WIN-OS2 Settings Fields < d e f a u l t >

Keyname Value

MEM_INCLUDE_REGIONS Initially empty, you can specify a
range of memory to include or you
can supply a single address for the
beginning of a 4KB region, if you need
several regions separate them with a
comma (don ′ t forget to use the caret
since commas are special setup string
parameters) Example:

′ SET MEM_INCLUDE_REGIONS=C0000,
D0000-D7FFF

NOTE: The include region D0000-D8000
will include the entire memory
between D8000 and D8FFFF.

MOUSE_EXCLUSIVE_ACCESS 1 < 0 >

NETWARE_RESOURCES Valid settings: NONE PRIVATE
GLOBAL

Special note, you use the words to
change the value BUT the string
MUST be 7 characters long! Example:

SET NETWARE_RESOURCES=GLOBAL

PRINT_SEPARATE_OUTPUT < 1 > 0

PRINT_TIMEOUT Limits: 0-3600, default 15

TOUCH_EXCLUSIVE_ACCESS 1 0

VIDEO_8514A_XGA_IOTRAP < 1 > 0

VIDEO_FASTPASTE 1 < 0 >

VIDEO_MODE_RESTRICTION Val id set t ings: <NONE> CGA MONO
Special note, you use the words to
change the value BUT the string
MUST be 15 characters long!
Example:

SET VIDEO_MODE_RESTRICTION=CGA

VIDEO_ONDEMAND_MEMORY < 1 > 0

VIDEO_RETRACE_EMULATION < 1 > 0

VIDEO_ROM_EMULATION < 1 > 0

VIDEO_SWITCH_NOTIFICATION 1 < 0 >

VIDEO_WINDOW_REFRESH Limits: 1-600, default 1

XMS_HANDLES Limits: 0-128, default 32

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 289

Important Notes on DOS and WIN-OS2 Settings

• To change these values you use: keyname=value. For example:

SET DOS_FILES=45;SET DOS_HIGH=1;

Also note that on the settings page you click on ON or OFF for some
values. From an .RC file you use 1 for ON, 0 for OFF. For example:

SET COM_HOLD=1;

sets to ON to keep the communications ports open until the session
ends.

• Some settings may already have default values, like DOS_VERSION.
You must be careful since any action against that setting is treated as
a replacement (even if you are using the updateifexist duplicate flag
value). So if you wanted to add one item to DOS_VERSION, you
should also include all of the existing values.

• Some settings are new once you′ve installed the OS/2 V2 Service
Pack or upgraded to OS/2 V2.1. As well some may not be on your
workstation due to your hardware configuration, for instance use of
VIDEO_8514A_XGA_IOTRAP is only available on certain systems.

• WIN-OS2 Settings are new to V2 users and appear once the Service
Pack is installed or you have upgraded to OS/2 V2.1.

Table 13 (Page 5 of 5). DOS and WIN-OS2 Settings Fields < d e f a u l t >

Keyname Value

XMS_MEMORY_LIMIT Limits: 0-16384, default 2048,
increment of 4

XMS_MINIMUM_HMA Limits: 0-63, default 0

C.2.6 WPProgram Association Setup String Parameters

290 OS/2 REXX

Figure 165. Association Page of a Program Settings Notebook

Preserving existing values

When using ASSOCFILTER and/or ASSOCTYPE include two commas at
the end of your string to preserve any settings that are already applied.
For example:

ASSOCTYPE=Metafile,PIF file,,;ASSOCFILTER=*.MET,*.PIF,,; ...

Table 14. WPProgram Association Setup String Parameters

Keyname Value Description

ASSOCFILTER filters Sets the filename filter for files associated to
this program. Multiple fi lters are separated by
commas. See notes about preserving existing
filter values below.

ASSOCTYPE type Sets the type of files associated to this
program. Multiple fi lters are separated by
commas. See notes about preserving existing
associate types below.

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 291

C.2.7 WPProgram Window Setup String Parameters

Figure 166. Window Page of a Program Settings Notebook

Table 15. WPProgram Window Setup String Parameters

Keyname Value Description

MINWIN HIDE Views of this object will hide when their
minimize button is selected.

VIEWER Views of this object will minimize to the
minimized window viewer when their minimize
button is selected.

DESKTOP Views of this object will minimize to the
Desktop when their minimize button is
selected.

CCVIEW YES New views of this object will be created every
time the user selects open.

NO Open views of this object will resurface when
the user selects open.

292 OS/2 REXX

C.3 RGB Values for Fixed Colors of OS/2 2.1

Table 16. RGB Values for the 16 Fixed Colors of OS/2 2.1

Color R (Red) G (Green) B (Blue)

Black 0 0 0

Blue 0 0 255

Brown 128 128 0

Cyan 0 255 255

Dark Blue 0 0 128

Dark Cyan 0 128 128

Dark Gray 128 128 128

Dark Green 0 128 0

Dark Pink 128 0 128

Dark Red 128 0 0

Green 0 255 0

Intense White 255 255 255

Light Gray 204 204 204

Pink 255 0 255

Red 255 0 0

Yellow 255 255 0

Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions 293

294 OS/2 REXX

Appendix D. CM/2 REXX EHLLAPI Reference

We have included this appendix to give you a quick reference to the syntax of
the REXX EHLLAPI function calls and the EHLLAPI keyboard mnemonics. For
more information on EHLLAPI, refer to IBM Communications Manager/2
Version 1.0 EHLLAPI Programming Reference.

D.1 REXX EHLLAPI Functions
This section contains the syntax for calling the EHLLAPI functions from REXX
programs. It is assumed that the HLLAPISRV function in the SAAHLAPI.DLL
is registered in the calling REXX program as HLLAPI. Some functions may
require prerequisite function calls. For example, you need to issue a
Connect function call before issuing a Search_PS function call.

HLLAPI(′ Change_Switch_Name′ , session_id, type [, new_name])

HLLAPI(′ Change_window_name′ , session_id, type [, new_name])

HLLAPI(′ Connect′ , session_id)

HLLAPI(′ Connect_PM′ , session_id)

HLLAPI(′ Convert_pos′ , session_id, column | position [, row])

HLLAPI(′ Copy_field_to_str′ , pos, length)

 Copyright IBM Corp. 1993 295

HLLAPI(′ Copy_OIA′)

HLLAPI(′ Copy_PS′)

HLLAPI(′ Copy_PS_to_str′ , pos, length)

HLLAPI(′ Copy_str_to_field′ , string, pos)

HLLAPI(′ Copy_str_to_PS′ , string, pos)

HLLAPI(′ Disconnect′)

HLLAPI(′ Disconnect_PM′ , session_id)

HLLAPI(′ Find_field_len′ , search_option, pos)

HLLAPI(′ Find_field_pos′ , search_option, pos)

296 OS/2 REXX

HLLAPI(′ Get_key′ , session_id)

HLLAPI(′ Get_window_status′ , session_id)

HLLAPI(′ Intercept_status′ , session_id, status)

HLLAPI(′ Lock_PMSVC′ , session_id, status, queue_option)

HLLAPI(′ Lock_PS′ , session_id, status, queue_option)

HLLAPI(′ Pause′ , n [, sessname])

HLLAPI(′ Query_close_intercept′ , session_id)

HLLAPI(′ Query_cursor_pos′)

HLLAPI(′ Query_field_attr′ , pos)

Appendix D. CM/2 REXX EHLLAPI Reference 297

HLLAPI(′ Query_host_update′ , session_id)

HLLAPI(′ Query_session_status′ , session_id)

HLLAPI(′ Query_sessions′)

HLLAPI(′ Query_system′)

HLLAPI(′ Query_window_coord′ , session_id)

HLLAPI(′ Receive_file′ , string)

HLLAPI(′ Release′)

HLLAPI(′ Reserve′)

HLLAPI(′ Reset_system′)

298 OS/2 REXX

HLLAPI(′ Search_field′ , string, pos)

HLLAPI(′ Search_PS′ , string, pos)

HLLAPI(′ Send_file′ , string)

HLLAPI(′ Sendkey′ , string)

HLLAPI(′ Set_cursor_pos′ , pos)

HLLAPI(′ Set_session_parms′ , string)

HLLAPI(′ Set_window_status′ , session_id, option [, num1 | option1, num2])

HLLAPI(′ Start_close_intercept′ , session_id)

HLLAPI(′ Start_host_notify′ , session_id, option)

Appendix D. CM/2 REXX EHLLAPI Reference 299

HLLAPI(′ Start_keystroke_intercept′ , session_id, option)

HLLAPI(′ Stop_close_intercept′ , session_id)

HLLAPI(′ Stop_host_notify′ , session_id)

HLLAPI(′ Stop_keystroke_intercept′ , session_id)

HLLAPI(′ Wait′)

D.2 Keyboard Mnemonics
Keyboard mnemonics provide ASCII characters that represent the special
function keys of the personal computer keyboard. The tables in this section
contain the keyboard mnemonics for use with EHLLAPI.

300 OS/2 REXX

Table 17. Mnemonics with Uppercase Alphabetic Characters

ASCII Mnemonic Meaning Supported by
3270 Emulation

Supported by
5250 Emulation

@B Left Tab X X

@C Clear X X

@D Delete X X

@E Enter X X

@F Erase EOF X X

@H Help X

@I Insert X X

@J Jump (Set focus
under PM)

X X

@L Cursor Left X X

@N New Line X X

@O Space X

@P Print X X

@R Reset X X

@T Right Tab X X

@U Cursor Up X X

@V Cursor Down X X

@X DBCS (Reserved) X X

@Y Caps Lock (No
action)

X X

@Z Cursor Right X X

Table 18 (Page 1 of 2). Mnemonics with Lowercase Numbers or Letters

ASCII Mnemonic Meaning Supported by
3270 Emulation

Supported by
5250 Emulation

@0 Home X X

@1 PF1/F1 X X

@2 PF2/F2 X X

@3 PF3/F3 X X

@4 PF4/F4 X X

@5 PF5/F5 X X

Appendix D. CM/2 REXX EHLLAPI Reference 301

Table 18 (Page 2 of 2). Mnemonics with Lowercase Numbers or Letters

ASCII Mnemonic Meaning Supported by
3270 Emulation

Supported by
5250 Emulation

@6 PF6/F6 X X

@7 PF7/F7 X X

@8 PF8/F8 X X

@9 PF9/F9 X X

@a PF10/F10 X X

@b PF11/F11 X X

@c PF12/F12 X X

@d PF13 X X

@e PF14 X X

@f PF15 X X

@g PF16 X X

@h PF17 X X

@i PF18 X X

@j PF19 X X

@k PF20 X X

@l PF21 X X

@m PF22 X X

@n PF23 X X

@o PF24 X X

@p Plus Key X

@q End X X

@s Scrlk (No action) X X

@t Num lock (No
action)

X X

@u Page Up X

@v Page Down X

@x PA1 X X

@y PA2 X X

@z PA3 X X

302 OS/2 REXX

Table 19. Mnemonics with @A and @ Uppercase Alphabetic Characters

ASCII Mnemonic Meaning Supported by
3270 Emulation

Supported by
5250 Emulation

@A@C Test X

@A@D Word Delete X X

@A@E Field Exit X X

@A@F Erase Input X X

@A@H System Request X X

@A@I Inset Toggle X X

@A@J Cursor Select X X

@A@L Cursor Left Fast X X

@A@N Get Cursor X X

@A@O Locate Cursor X X

@A@Q Attention X X

@A@R Device Cancel
(Cancels Print
Presentation
Space)

X X

@A@T Print
Presentation
Space

X X

@A@U Cursor Up Fast X X

@A@V Cursor Down
Fast

X X

@A@X Hexadecimal X

@A@Y Cmd (Function)
Key

X

@A@Z Cursor Right
Fast

X X

Appendix D. CM/2 REXX EHLLAPI Reference 303

Table 20. Mnemonics with @A and @ Lowercase Alphabetic Characters

ASCII Mnemonic Meaning Supported by
3270 Emulation

Supported by
5250 Emulation

@A@9 Reverse Video X X

@A@a Destructive
Backspace

X X

@A@b Underscore X X

@A@c Reset Reverse
Video

X X

@A@d Red X X

@A@e Pink X X

@A@f Green X X

@A@g Yellow X X

@A@h Blue X X

@A@i Turqoise X X

@A@j White X X

@A@l Reset Host
Colors

X X

@A@n Go directly to
Session 1

@A@o Go directly to
Session 2

@A@p Go directly to
Session 3

@A@q Go directly to
Session 4

@A@r Go directly to
Session 5

@A@t Print (personal
computer)

X X

@A@y Forward Word
Tab

X X

@A@z Backward Word
Tab

X X

304 OS/2 REXX

Table 21. Mnemonics with @A and @ Alphanumeric (Special) Characters

ASCII Mnemonic Meaning Supported by
3270 Emulation

Supported by
5250 Emulation

@A@- Field - X

@ A @ + Field + X X

@ A @ < Record
Backspace

X

Table 22. ASCII Mnemonics Using Data Keys and Combinations of Shift (@S) and
@ Uppercase Alpha Keys

ASCII Mnemonic Meaning Supported by
3270 Emulation

Supported by
5250 Emulation

@S@A Erase EOL X X

@S@B Field Advance X X

@S@C Field Backspace X X

@S@D Valid Character
Backspace

X X

@S@E Print
Presentation
Space on Host

X

@S@J ChgScr

@S@K Auto

@S@P POR X X

@S@T Jump to Task
Manager

X X

@S@l Shift Lock

@S@x Dup X X

@S@y Field Mark X X

@r@s Break

@r@t Pause

Appendix D. CM/2 REXX EHLLAPI Reference 305

Table 23. Alphabetic Keys

ASCII Mnemonic Meaning Supported by
3270 Emulation

Supported by
5250 Emulation

a - z a - z X X

A - Z A - Z X X

0 - 9 0 - 9 X X

- - X X

X X

! ! X X

$ $ X X

% % X X

& & X X

″ ″ X X

′ ′ X X

((X X

)) X X

* * X X

+ + X X

. . X X

/ / X X

: : X X

; ; X X

< < X X

> > X X

= = X X

? ? X X

{ { X X

} } X X

[[X X

]] X X

| | X X

306 OS/2 REXX

Table 24. Mnemonics with Special Character Keys

ASCII Mnemonic Meaning Supported by
3270 Emulation

Supported by
5250 Emulation

@@ @ X X

@/ Overrun of
queue (Only in
the GET_KEY
function)

X X

@$ Alternate cursor
(the Presentation
Manager
interface only)

X X

@ < Backspace X X

Appendix D. CM/2 REXX EHLLAPI Reference 307

308 OS/2 REXX

Appendix E. Published Books, Manuals, and Papers on REXX

This is a list of published (that is, generally available) books, manuals, and
papers from referred journals that are closely associated with the REXX
language or one of its implementations.

This list is in three parts, each ordered roughly chronologically by first
edition:

 1. IBM Manuals, etc., with IBM order numbers.

 2. Other books and manuals.

 3. Papers.

E.1 Books and IBM Manuals Available Through Usual IBM Channels

E.1.1 Cross-system books
ZB35-5100 The REXX Language, 2nd Ed. -- Cowlishaw

SC26-4358 SAA CPI:Procedures Language Reference (Level 1)

SC24-5549 SAA CPI: REXX Level 2 Reference

G511-1430 IBM REXX Compiler and Library/370:

Introducing the Next Step in REXX <CMS, MVS>

SH19-8160 IBM REXX Compiler and Library/370:

User′s Guide and Reference < C M S , M V S >

LY19-6264 IBM REXX Compiler and Library/370:

Diagnosis Guide <CMS, MVS>

SB20-0020 The REXX Handbook - Ed. Goldberg & Smith

E.1.2 VM
SC24-5239 VM/SP: System Product Interpreter Reference

SC24-5238 VM/SP: System Product Interpreter User′s Guide

SX24-5126 VM/SP: System Product Interpreter Reference Summary

SB09-1326 VM/SP: System Product Interpreter Reference (Chinese)

SB09-1325 VM/SP: System Product Interpreter User′s Guide (Chinese)

 Copyright IBM Corp. 1993 309

SB09-9361 The System Product Interpreter (REXX) Examples and Techniques
- Brodock

SC12-1599 VM/SP: System Product Interpreter Handbuch (German:
SC24-5239, July 1984)

SC24-5357 VM/IS: Writing Simple Programs with REXX

SC23-0374 VM/XA: System Product Interpreter Reference

SC23-0375 VM/XA: System Product Interpreter User ′s Guide

GH19-8118 CMS REXX Compiler General Information

SH19-8120 CMS REXX Compiler User′s Guide & Reference

LY19-6262 CMS REXX Compiler Diagnosis Guide

LN19-9048 CMS REXX Compiler Diagnosis Guide Technical Newsletter

SH19-8146 CMS REXX Compiler User′s Guide and Reference - Supplement

GC24-5406 VM/SP: Program Update Info. -- REXX Language Enhancements

SC24-5465 VM/ESA: REXX/VM User′s Guide

SC24-5466 VM/ESA: REXX/VM Reference

SC24-5598 VM/ESA R2: REXX/VM Primer

LYC0-9075 VM/ESA V1: REXX/370 LISTING

E.1.3 MVS
SC28-1882 TSO/E Version 2 REXX/MVS User′s Guide

SC28-1883 TSO/E Version 2 REXX/MVS Reference

E.1.4 OS/2
S01F-0271 OS/2 Version 1.3 Procedures Language 2/REXX Reference

S01F-0272 OS/2 Version 1.3 Procedures Language 2/REXX User′s Guide

S10G-6268 OS/2 (Version 2.0) Procedures Language 2/REXX Reference

S10G-6269 OS/2 (Version 2.0) Procedures Language 2/REXX User′s Guide

SR28-5250 OS/2 (Version 2.1) REXX Handbook

310 OS/2 REXX

E.1.5 AS/400
SC24-5512 AS/400 Procedures Language 400/REXX Reference

SC24-5513 AS/400 Procedures Language 400/REXX Programmer′s Guide

SC24-5552 AS/400 Procedures Language 400/REXX Reference, Version 2

SC24-5553 AS/400 Procedures Language 400/REXX Programmer′s Guide,
Version 2

E.1.6 VSE
SC33-6528 VSE/ESA: REXX/VSE User′s Guide

SC33-6529 VSE/ESA: REXX/VSE Reference

LY33-9144 VSE/ESA: REXX/VSE Diagnosis Reference

GC33-6533 VSE/ESA: REXX/VSE Licensed Program Specifications

E.1.7 Applications and Other REXX-related Books
GG24-1615 Using REXX in Practice: EXEC2 to REXX Conversion Experiences

GG24-3401 REXX/EXEC Migration To VM/XA SP

SC33-0478 GDDM REXX Guide

SR21-0864 SRA VM Using the CMS System Product Interpreter

SH20-7051 VM/SP System Product Interpreter:SQL/Data System Interface:
Program Description/Operations Manual

GG66-3144 NetView Release 3: REXX Presentation Guide - Gibbons & Quigley

SC31-6135 NetView Customization - Writing Command Lists

GG66-3158 CMS Pipelines Tutorial - Hartmann, Kraines, and Lynn

GR28-2920 CUA 2001 VM Applications Core Functions Programmer ′s
Reference Guide (CUA support for VM REXX applications)

E.2 Non-IBM Books and Manuals
Modern Programming Using REXX - Robert P. O′ Hara and David R. Gomberg

In English: ISBN 0-13-597311-2 Prentice-Hall, 1985
ISBN 0-13-579329-5 (Second edition), 1988

The REXX Language - M. F. Cowlishaw
In English: ISBN 0-13-780735-X Prentice-Hall, 1985

ISBN 0-13-780651-5 (Second edition), 1990

Appendix E. Published Books, Manuals, and Papers on REXX 311

In German: ISBN 3-446-15195-8 Carl Hanser Verlag, 1988
ISBN 0-13-780784-8 P-H International, 1988

In Japanese: ISBN 4-7649-0136-6 Kindai-kagaku-sha, 1988

Personal REXX User′ s Guide (PC-DOS and OS/2 REXX) version 2.0
Mansfield Software Group, Inc., 1985-1990

ARexx User′ s Reference Manual (The REXX Language for the Amiga)
William S. Hawes, 1987

uniREXX Reference Manual (REXX for a variety of Unix systems)
The Workstation Group, 1990

Proceedings of the REXX Symposium for Developers and Users
SLAC Report-368, 235pp, June 11, 1990

REXX In the TSO Environment - Gabriel F. Gargiulo
ISBN 0-89435-354-3, QED Information Systems Inc.,
Order #CC3543; 320pp, 1990

Revised edition:
ISBN 0-89435-418-3, QED Information Systems Inc.,
471pp, 1993

Practical Usage of REXX - Anthony S. Rudd
ISBN 0-13-682790-X, Ellis Horwood (Simon & Schuster), 1990

Personal REXX User′ s Guide (PC-DOS and OS/2 REXX) version 3.0
Quercus Systems, 268pp, 1991

Portable/REXX for MS/DOS (Guide, Reference manual, Examples Reference,
Reference Summary, and Learning to Program with Portable/REXX)

REXX/Windows (Product Guide and Reference)
Keith Watts, Kilowatt Software, 1991

Proceedings of the REXX Symposium for Developers and Users
SLAC Report-379, 244pp, May 8-9, 1991

Using ARexx on the Amiga - Chris Zamara and Nick Sullivan
ISBN 1-55755-114-6, 424pp+diskette, Abacus, 1991

The REXX Handbook - Edited by Gabe Goldberg and Phil Smith III
ISBN 0-07-023682-8, 672pp, McGraw Hill, 1991

Amiga Programmer′ s Guide to ARexx - Eric Giguere
Commodore-Amiga, Inc., 1991

312 OS/2 REXX

Programming in REXX - Charles Daney
ISBN 0-07-015305-1, 300pp, McGraw Hill, 1992

Proceedings of the REXX Symposium for Developers and Users
SLAC Report-401, 401pp, May 3-5, 1992

The ARexx Cookbook - Merrill Callaway
ISBN 0-9632773-0-8, 221pp, Whitestone, 1992
(Companion diskette: ISBN 0-9632773-1-6)

REXX--Advanced Techniques for Programmers - Peter C. Kiesel
ISBN 0-07-034600-3, 239pp, McGraw Hill, 1993

REXX Tools and Techniques - Barry K. Nirmal
ISBN 0-89435-417-5, 264pp, QED, 1993

REXX Reference Summary Handbook (OS/2) - C. F. S. Nevada, Inc
C. F. S. Nevada, Inc, 20pp, 1993.

OS/2 2.1 REXX Handbook: Basics, Applications, and Tips - Hallett German
ISBN 0442-01734-0, 459pp, Van Nostrand Reinhold, 1993

E.2.1 Applications and other REXX-related books
Command Language Cookbook - Hallett German

ISBN 0-442-00801-5, 352pp, Van Nostrand Reinhold, 1992

Personal REXX User′ s Guide, Version 3.0 - OS/2 Supplement
Quercus Systems, 94pp, 1992

VisPro/REXX (Visual programming with REXX)
Hockware Inc, 196pp, 1993

REXX in der Praxis - Peter Kees
ISBN 3-486-22666-5, 279pp, Oldenbourg, 1993

E.3 Papers
The Design of the REXX Language - M. F. Cowlishaw

IBM Systems Journal, Vol 23, No. 4, 1984, pp326-335
Offprints can be ordered from IBM, number: G321-5228

REXX on TSO/E - G. E. Hoernes
IBM Systems Journal, Vol 28, No. 2, 1989, pp274-293
Offprints can be ordered from IBM, number: G321-5359

Appendix E. Published Books, Manuals, and Papers on REXX 313

Partial Compilation of REXX - R. Y. Pinter, P. Vortman, and Z. Weiss
IBM Systems Journal, Vol 30, No. 3, 1991, pp312-321
Offprints can be ordered from IBM, number: G321-5437

314 OS/2 REXX

List of Abbreviations

AIX Advanced Interactive
Executive

APPC advanced program to
program communication

ANSI American National
Standards Institute

APA all points addressable

API application program
interface

COBOL Common Business
Oriented Language

CPI-C Common Programming
Interface for
Communications

CUA Common User Access

CM/2 Communications
Manager/2

CMS Conversational Monitor
System

DARI Database Application
Remote Interface

DB2/2 Database 2 for OS/2

DDCS/2 Distributed Database
Connection Services/2

DLL Dynamic Link Library

EHLLAPI emulator high level
language application
programming interface

EPM enhanced editor for PM

GUI Graphical User
Interface

IBM International Business
Machines Corporation

ISO International
Organizations for
Standardization

ITSO International Technical
Support Organization

LAN local area network

MMPM/2 Multimedia Presentation
Manager

MVS Multiple Virtual Storage

OS/2 Operating System/2

OS/400 Operating System/400

OIA Operator Information
Area

PAS/2 Personal Application
System/2

PS/2 Personal System/2

PM Presentation Manager

PROFS Professional Office
System

REXX Restructured EXtended
eXecutor language

SAA Systems Application
Architecture

VM/SP Virtual Machine/System
Product

 Copyright IBM Corp. 1993 315

316 OS/2 REXX

Index

Numerics
3270 display terminal 125
4199.CMD 53, 55, 57, 58, 60
5250 display terminal 125

A
abbreviations 315
accelerator 186, 206
access remote database 152, 154
ACQUIRE command 108, 109
acquire use of device resources 109
acronyms 315
add menu bar 186
add printer ports 41
adding table rows 170
Advanced Interactive Executive 2
ALTER TABLE statement 255
Amiga 2
ANSI 3
APPC 160, 161, 178, 179
APPN 160, 161
ASSOCFILTER keyname 291
associate a file to a program object 77, 291
ASSOCTYPE keyname 291
AUDIO_ADAPTER_SHARING keyname 286
automate keystroke 131
automate the usage of host systems 125

B
BACKGROUND keyname 273
background page of folder settings

notebook 273
background setup string 273
BACKUP DATABASE statement 245
BIND statement 245
business graphics. 178

C
C

calling REXX programs 101
creating REXX callable functions 93, 94
relationship to REXX 93
REXXSTART function 101

CALL command 10
calling .EXE files
calling command files 11
cancel all print jobs on a specified print

queue 39
cancel an active print job 39
CAPABILITY command 108, 109
capture data from host screen 128
catalog 159
catalog a node 160
CATALOG DATABASE statement 245
CATALOG DCS DATABASE statement 245
CATALOG statement 246

catalog database 162, 163
CCVIEW keyname 276
CCVIEW keyword 292
CD 105
CD-ROM 105
change caption 186
change color of desktop 85
change cursor state 65
CHANGE DATABASE statement 246
change icon view for folder 272
CHANGE SQLISL statement 246
Change_Switch_Name function 150, 295
Change_Window_Name function 150, 295
character output to stream 20
CHARIN command

parameters 19
reset the state of a file 19

CHAROUT command
printing 38, 39
to close file 19
usage 20

 Copyright IBM Corp. 1993 317

CHARS command
usage 20

checking for data in stream 22
clear screen 65, 133
client workstation

access server database 152, 154
catalog database in server database

directory 162, 163
catalog node in server node directory 159
get access to server database 155, 156, 159
get access to server database table 156,

157
server authorization 154
uncatalog node in server node directory 161

CLOSE command 108, 110
CLOSE DATABASE DIRECTORY statement 246
CLOSE DCS DIRECTORY statement 246
close device context 110
CLOSE NODE DIRECTORY statement 247
CLOSE statement

syntax 253
usage 165, 167

CM/2 3, 125, 145
COBOL 3
COLLECT statement 247
color values 269, 293
COM_DIRECT_ACCESS keyname 286
COM_HOLD keyname 286
COM_RECEIVE_BUFFER_FLUSH keyname 286
COM_SELECT keyname 286
COMMENT ON statement 256
COMMIT statement

syntax 253
usage 165, 167, 170

Communications Manager/2 125
compact disk 105
CONFUPD.CMD 53, 59
Connect function 127, 295
CONNECT statement

syntax 253
usage 165, 167, 170

connect to presentation space window 127
Connect_PM function 127, 150, 295
CONNECTOR command 108, 110

controll ing a media player 105
Convert_Pos function 295
copy last row of host screen 129
Copy_Field_To_Str function 295
Copy_Field_To_String function 128
Copy_OIA function 128, 132, 296
Copy_PS function 128, 130, 296
Copy_PS_To_Str function 128, 131, 142, 296
Copy_PS_To_String function 128
Copy_Str_To_Field function 296
Copy_Str_To_PS function 131, 296
counting characters in a stream 20
CPI-C 4
create a shadow object that references a data

file 78
CREATE DATABASE statement 247
create directory 60
create event 194
CREATE statement 256
CREATE TABLE statement 256
CREATE VIEW statement 257
create window 181
creating queues 25
CUA 178
cursor

usage 165

D
DARI

description 175
performance benefits 175

database access errors 174
database administration 154
Database Application Remote Interface

description 175
performance benefits 175

database directory 159
Database Manager 151, 207
database security 153, 154
databases on other platforms 151
DB/2 catalog 159
DB2 151
DB2/2 3, 151, 159, 174, 178, 179

318 OS/2 REXX

DB2/2 catalog 154
DB2/2 installation 151
DB22DBA.CMD 154, 156, 160, 161
DDCS/2 151
debug 223
debugger 179, 223
DECLARE statement

syntax 253
usage 165, 167

delete a file 58
delete table rows 167
deleting queues 25
deleting table rows 170
DESCRIBE statement 253

usage 167
Deskman/2 84
desktop 69, 76, 85, 269, 272
DETACH command 11

multi tasking 15
usage 11, 14

DETAILSFONT keyname 271
DETATCH

queues 26
determining host availabil i ty 131, 132
device product information 111
device settings 114
device status 115
directing trace output from a program to the

printer 39
disable connector 110
Disconnect function 127, 296
Disconnect_PM function 127, 150, 296
disk drive space information 56
display all databases 179
displays all tables 179
Distributed Database Connection

Services/2 151
DOS settings keynames

AUDIO_ADAPTER_SHARING 286
COM_DIRECT_ACCESS 286
COM_HOLD 286
COM_RECEIVE_BUFFER_FLUSH 286
COM_SELECT 286
DOS_AUTOEXEC 286
DOS_BACKGROUND_EXECUTION 287

DOS settings keynames (continued)
DOS_BREAK 287
DOS_DEVICE 287
DOS_FCBS 287
DOS_FCBS_KEEP 287
DOS_FILES 287
DOS_HIGH 287
DOS_LASTDRIVE 287
DOS_RMSIZE 287
DOS_SHELL 287
DOS_STARTUP_DRIVE 287
DOS_UMB 287
DOS_VERSION 287
DPMI_DOS_API 288
DPMI_MEMORY_LIMIT 288
DPMI_NETWORK_BUFF_SIZE 288
EMS_FRAME_LOCATION 288
EMS_HIGH_OS_MAP_REGION 288
EMS_LOW_OS_MAP_REGION 288
EMS_MEMORY_LIMIT 288
HW_NOSOUND 288
HW_ROM_TO_RAM 288
HW_TIMER 288
IDLE_SECONDS 288
IDLE_SENSITIVITY 288
INT_DURING_IO 288
KBD_ALTHOME_BYPASS 288
KBD_BUFFER_EXTEND 288
KBD_CTRL_BYPASS 288
KBD_RATE_LOCK 288
MEM_EXCLUDE_REGIONS 288
MEM_INCLUDE_REGIONS 289
MOUSE_EXCLUSIVE_ACCESS 289
NETWARE_RESOURCES 289
PRINT_SEPARATE_OUTPUT 289
TOUCH_EXCLUSIVE_ACCESS 289
VIDEO_8514A_XGA_IOTRAP 289
VIDEO_FASTPASTE 289
VIDEO_MODE_RESTRICTION 289
VIDEO_ONDEMAND_MEMORY 289
VIDEO_RETRACE_EMULATION 289
VIDEO_ROM_EMULATION 289
VIDEO_SWITCH_NOTIFICATION 289
VIDEO_WINDOW_REFRESH 289
WIN_CLIPBOARD 286

Index 319

DOS settings keynames (continued)
WIN_DDE 286
WIN_RUNMODE 286
XMS_MEMORY_LIMIT 290
XMS_MINIMUM_HMA 290

DOS_AUTOEXEC keyname 286
DOS_BACKGROUND_EXECUTION

keyname 287
DOS_BREAK keyname 287
DOS_DEVICE keyname 287
DOS_FCBS keyname 287
DOS_FCBS_KEEP keyname 287
DOS_FILES keyname 287
DOS_HIGH keyname 287
DOS_LASTDRIVE keyname 287
DOS_RMSIZE keyname 287
DOS_SHELL keyname 287
DOS_STARTUP_DRIVE keyname 287
DOS_UMB keyname 287
DOS_VERSION keyname 287
DPMI_DOS_API keyname 288
DPMI_MEMORY_LIMIT keyname 288
DPMI_NETWORK_BUFF_SIZE keyname 288
drag and drop programming 77, 191, 196, 211,

214, 220
DROP DATABASE statement 247
DROP statement 258
dynamic l ink l ibrary

accessing 101
compiling and linking 100
description 93
how to create 100

dynamic SQL 163

E
EHLLAPI 3

description 125
host availabil i ty 131, 132, 136, 142
host availablity 133
host availablity issues 133
manipulate presentation space window 150
programming overview 126
syntax for function calls 295
usage 125

EHLLAPI (continued)
usage with visual REXX 178, 179

EHLRDR.CMD 137, 139, 140
EHLRECV.CMD 147
EHLSF.CMD 145, 146
EMS_FRAME_LOCATION keyname 288
EMS_HIGH_OS_MAP_REGION keyname 288
EMS_LOW_OS_MAP_REGION keyname 288
EMS_MEMORY_LIMIT keyname 288
enable connector 110
EPM 3
event creation 205
exchanging data between separate

programs 31
EXECUTE IMMEDIATE statement

syntax 254
usage 164, 170

EXECUTE statement 253
EXENAME keyname 281
EXPORT statement 247
extended attributes

description 89
headers 89

external functions
advantages 49
calling REXX functions 49
EHLLAPI function 52
how to register 50
register during system startup 76
REXXUTILS 52
SQLDBS 52
SQLEXEC 52

EXTFUNC.DEF 100
EXTFUNC.DLL 100

F
FETCH statement

syntax 254
usage 165

file I/O 4, 18
file page of folder settings notebook
file setup string 274
Find_Field_Len function 296

320 OS/2 REXX

Find_Field_Pos function 296
FLIST.CMD 65, 66
folder settings notebook

background page 273
file page 274
general page 277
view page 270
window page 275

font 271, 272
font size 271
form settings notebook 186
FREE STATUS RESOURCES statement 247
FULLSCREEN keyname 285

G
GEA.CMD 63, 77, 89
general page of folder settings notebook 277
GET AUTHORIZATIONS statement 248
GET DATABASE CONFIGURATION

statement 248
GET DATABASE DIRECTORY statement 248
GET DATABASE STATUS statement 248
GET MESSAGE statement 248
GET NODE DIRECTORY statement 248
GET USER STATUS statement 248
get window size 67
Get_Key function 297
Get_Window_Status function 150, 297
GETDB.CMD 101, 179, 189, 190, 207, 208, 220
GETTABLE.CMD 164, 179, 194, 197, 218, 220
getting output from system commands 32, 33,

35, 37
getupmid function 100
GETUSER.CMD 96
grant access to database 155, 156
grant access to table 156, 157
GRANT statement

grant access to database 155, 156
grant access to table 156, 157
syntax 258, 259

graphical user interface 177
GUI 177, 178, 208, 222

H
hardware devices 105
HELPLIBRARY keyname 279
HELPPANEL keyname 279
HLLAPI 126
HLLAPISRV 126, 127
Hockware 177
host availabil i ty 131, 132, 136, 142
host availabil i ty sample algorithm 136
host presentation space

availabil ity issues 132
obtain dimensions 128, 129

host session status 145
host settle time 137
host systems automation 125
host timing issue 131
HW_NOSOUND keyname 288
HW_ROM_TO_RAM keyname 288
HW_TIMER keyname 288

I
I/O 18
IBM workframe/2 100
icon 279

associate to object 62, 83
description 83
setup string 278
VisPro/REXX 199

icon editor 77
ICONFILE keyname 278
ICONFONT 272
ICONFONT keyname 271
ICONPOS keyname 278
ICONRESOURCE keyname 278
ICONVIEW keyname 271
ICONVIEWPOS keyname 278
IDLE_SECONDS keyname 288
IDLE_SENSITIVITY keyname 288
IMPORT statement 249
INFO command 108, 111
INI editor 87
INI.RC 79

Index 321

INSERT statement 260
add row to table 170
syntax 260

INSTALL statement 249
INT_DURING_IO keyname 288
intercept keystrokes 66
Intercept_Status function 297
INTERRUPT statement 249
INVOKE statement 247
ISO 3

K
KBD_ALTHOME_BYPASS keyname 288
KBD_BUFFER_EXTEND keyname 288
KBD_CTRL_BYPASS keyname 288
KBD_RATE_LOCK keyname 288
key 87
keyboard mnemonics

@A and @ alphanumeric special
characters 305

@A and @ lowercase alphabetic
characters 304

@A and @ uppercase alphabetic
characters 303

data keys and combinations of shift (@S) and
@ uppercase alpha keys 305

definit ion 300
lowercase numbers or letters 301
special character keys 307
uppercase alphabetic characters 301
usage 131

L
LAN 152
LAN requester 152
LAPS 152
line input from a stream 21
line output to a stream 21
LINEIN command

usage 21
LINEOUT command

printing 38, 39
usage 21

LINES command
usage 22

list available drives 54
ListBox object 183
LOAD command 108, 111, 114
load file into device 111
LOCK TABLE statement 260
Lock_PMSVC function 150, 297
Lock_PS function 297
lockpc function 100
LOTUS 3

M
MAIN.CMD 10
MAKEFOLD.CMD 53, 61, 63
MAXIMIZED keyname 283
MCI

description 105
mciRxExit function 106
mciRxInit function 106
mciRxSendString function 106, 107, 108
RELEASE 109
usage 106

MCI commands
ACQUIRE 108, 109
CAPABILITY 108, 109
CLOSE 108, 110
CONNECTOR 108, 110
INFO 108, 111
LOAD 108, 111, 114
OPEN 108
PAUSE 108, 112
PLAY 108, 112
RECORD 108, 113
RELEASE 108, 113
RESUME 108, 113
SAVE 108, 114
SEEK 108, 114
SET 108, 114
STATUS 109, 115, 121
STOP 109, 112

mciRxExit function 106
mciRxInit function 106

322 OS/2 REXX

mciRxSendString function 106, 107, 108
Media Control Interface 105
media device

opening 107
media devices

description 105
open 117

MEM_EXCLUDE_REGIONS keyname 288
MEM_INCLUDE_REGIONS keyname 289
menu bar designer 186
MIDI 105
MIGRATE DATABASE statement 249
MINIMIZED keyname 283
MINSTALL command 106
MINWIN keyname 276
MINWIN keyword 292
MMPM/2 4

description 105
error checking 108
installation 106
register functions 106
usage 106

MMPM/2 devices
CDaudio 105
digitalvideo 105, 109, 115
sequencer 105
videodisc 105
videotape 105, 113
waveaudio 105

modal 180, 213, 221
modeless 180
MOUSE_EXCLUSIVE_ACCESS keyname 289
Multimedia Presentation Manager/2 105
multimedia REXX 105
multimedia REXX reference 109
mult iple server environment 152
MULTIPRT.CMD 17
multi tasking 15
mult i threading 178
Musical Instrument Digital Interface 105
MVS 2, 151

N
netbios 160, 161
NETWARE_RESOURCES keyname 289
NOAUTOCLOSE keyname 283
NOCOPY keyname 280
node directory 159
NODELETE keyname 280
NODRAG keyname 280
NOLINK keyname 280
NOMOVE keyname 280
NOPRINT keyname 280
NORENAME keyname 280
NOSHADOW keyname 280
Notebook object 183
NOTVISIBLE keyname 280

O
object

change icon view settings 82
creation 72, 74, 75, 76
description 69
hide 83
ID description 79
identify object ID 79
list object IDs 80
mark undeletable 82
modify 79
move 84
open 81
recreate 84
save settings 84
setup string 269
VisPro/REXX 183
VX-REXX 201
VX-REXX object creation 205

object class
description 69

object oriented 179
object properties setup string 280
OBJECTID keyname 279
obtain dimensions of presentation space 128,

129

Index 323

OIA 128, 133, 134, 135, 136
OIA update determination 134, 135
open a device as shareable 107
OPEN command 108
OPEN DATABASE DIRECTORY statement 249
OPEN DCS DIRECTORY statement 249
open device 117
OPEN keyname 271, 279
OPEN NODE DIRECTORY statement 249
open options of a folder 269
OPEN statement

syntax 254
usage 165, 167

opening a media device 107
Operating System/400 2
operator information area 128
OS/2 2.1 Developer′s Toolkit 93
OS/2 differences from VM

calling a subroutine 10
file i/o 18
multi tasking 9
queues 25, 26
reading files 22, 23

OS/2 fixed color values 293
OS/400 151
OS2.INI 79, 80, 84, 145, 147
OS2SYS.INI 84, 145, 147

P
PARAMETERS keyname 281
PAS/2 3
pause 66
PAUSE command 108, 112
Pause function 132, 135, 136, 297
Personal System/2 152
place keyboard input to a separate session 31
PLAY command 108, 112
plays a file loaded to a device 112
PM front-end to non-PM REXX programs 42
PM keyname 285
PM window 125
PMREXX 105
PMREXX application 45

description 42

position the cursor 65
PREPARE statement

syntax 254
usage 164, 165
usage with INTO clause 167, 170

Presenation Manager 63
presentation manager 177, 200

PMREXX application 42
presentation space

copy 129
copy presentation space 129
grid positions 130
search for string 130
search presentation space 130

presentation space window manipulation 150
PRIMOUT.CMD 40
PRINT command

cancel all print jobs on a specified print
queue 39

cancel an active print job 39
PRINT_SEPARATE_OUTPUT keyname 289
printer object

add printer ports 41
set the printer timeout value 41

printer objects
SysIni function 39

printing
directing trace output from a program to the

printer 39
redirecting program output to a printer 38

private queues 26
PROG_31_ENH keyname 285
PROG_31_ENHSEAMLESSCOMMON

keyname 285
PROG_31_ENHSEAMLESSVDM keyname 285
PROG_31_STD keyname 285
PROG_31_STDSEAMLESSCOMMON

keyname 285
PROG_31_STDSEAMLESSVDM keyname 285
program page of program settings

notebook 281
program parameters substitution

characters 282
program settings notebook

association page 291

324 OS/2 REXX

program settings notebook (continued)
association page of program settings

notebook 291
program page 281
session page 284
settings dialog on sesion page 286
window page 292

PROGTYPE keyname options
FULLSCREEN 285
PROG_31_ENH 285
PROG_31_ENHSEAMLESSCOMMON 285
PROG_31_ENHSEAMLESSVDM 285
PROG_31_STD 285
PROG_31_STDSEAMLESSCOMMON 285
PROG_31_STDSEAMLESSVDM 285
SEPARATEWIN 285
VDM 285
WINDOWABLEVIO 285
WINDOWEDVDM 285

PRPATH.CMD 40
PRTPORT.CMD 41
PULL 42
PULL command 25
PUSH command 25
PUTSQ.CMD 26

Q
QRYRXUSR.C 94
queries wave stream capabil ity 110
query connector status 110
Query Manager 151, 156, 159, 174
Query_Close_Intercept function 297
Query_Cursor_Pos function 297
Query_Field_Attr function 297
Query_Host_Update function 132, 134, 136, 298
Query_Session_Status function 128, 298
Query_Sessions function 298
Query_System function 298
Query_Window_Coord function 150, 298
querying state of stream 22
QUEUE command 25
QUEUED command 25
Queues

adding data FIFO 25

Queues (continued)
adding data LIFO 25
exchanging data between separate

programs 31
getting output from system commands 32,

33, 35, 37
place keyboard input to a separate

session 31

R
rdrl ist 131, 133, 137
read characters from screen 67
reading a host screen 128
receive fi les from host 145, 147
Receive function 145
Receive_file function 145, 147, 298
RECORD command 108, 113
recording data 113
recreate an object 84
redirecting program output to a printer 38
REGFUNC.CMD 76
register DB2/2 functions 152
RELEASE command 108, 109, 113
Release function 298
remote workstation database 151
remove a node entry from node directory 161
REORG TABLE statement 249
Reserve function 298
RESET DATABASE CONFIGURATION

statement 250
RESET DATABASE MANAGER CONFIGURATION

statement 250
reset the state of a file 19
Reset_System function 298
RESTART DATABASE statement 250
RESUME command 108, 113
resume playing 113
resume recording 113
retrieve table rows 164, 167, 168
revoke access from database 155, 156
revoke access from table 156, 157
REVOKE statement

revoke access from database 155, 156
revoke access from table 156, 157

Index 325

REVOKE statement (continued)
syntax 260, 261

REXX
discussion of advantages 2
discussion of disadvantages 4
discussion of interfaces 2
history 1

REXXDB2.C 101
REXXSAA.H

MAKERXSTRING macro 101
REXXSTART function 101
RXSTRING 94, 97
RXVALIDSTRING macro 99

REXXSTART function 101
REXXTRY application

description 42
REXXUTIL functions

description 53
registering 53
setup string 269

ROLLBACK statement 254
ROLLFORWARD DATABASE statement 250
RUNSTATS ON TABLE statement 250
RXCALC.CMD 42
RxFuncAdd function

register external functions 50
RxFuncDrop function

drop external function 50
RxfuncQuery function

check function registration 50
RxMessageBox function 45, 47
RXPLAY.EXE 105, 115
RXQUEUE command

private queues 26
usage with private queues 26

RXQUEUE function
usage 25

RXSTRING
definit ion 94
description 94
macros 97

RXSTRING.LIB 97

S
SAA 3, 9, 151
SAAHLAPI.DLL 126
SAVE command 108, 114
save device data 114
save the current object settings 84
SAY 42
screen changes 132
search drive for fi le 58
search file for text string 58
search for directory in CONFIG.SYS PATH 59
search path for file 60
Search_Field function 299
Search_PS function 130, 132, 133, 299
secondary window 180, 217
SEEK command 108, 114
SEL121.EXE 224
SEL121.VRP 224
SEL121.VRX 224
SEL121.VRY 224
select database 214
SELECT statement

adding table rows 170
syntax 261
usage 164, 165, 167
varying l ist 164, 167, 168

select table 220
SELECT.CMD 164, 168, 179, 180, 184, 188, 189,

198, 200, 207, 220, 222
send files to host 145
Send function 145
Send_file function 145, 299
sending keystrokes to host session 131
Sendkey function 131, 299
SEPARATEWIN keyname 285
server workstation

authorize client node 153, 154
authorize client to access database 154
catalog client node in node directory 159
grant database access to client

workstation 155, 156
grant database table access to client

workstation 156, 157, 159
uncatalog client node in node directory 161

326 OS/2 REXX

server workstation (continued)
uncatalog database in database

directory 162, 163
server workstation database 152

access client database 152
session page of program settings

notebook 284
session setup string 283
SET command 108, 114
set the printer timeout value 40
Set_Cursor_Pos function 299
Set_Session_Parameters function 135
Set_Session_Parms function 147, 299
Set_Window_Status function 150, 299
settings notebook 185
shredder object 77
shutdown function 100
simulate keyboard entry to host session 131
SQL

description 163
dynamic SQL 163
error handling 174
static SQL 163
syntax of data structures 262
syntax of prepared statements 254
syntax of statements 251
syntax of statements passed directly to

SQLEXEC 253
usage 151, 156

SQL_AUTHORIZATIONS data structure 266
SQL_DIR_ENTRY data structure 264
SQLCA data structure 174, 262
SQLCA.SQLCODE 174
SQLCHAR data structure 264
SQLDA data structure 167, 170, 171, 263
SQLDBS API 190, 207

error handling 174
register 152
usage 151

SQLDCOL data structure 266
SQLEDBSTAT data structure 265
SQLEDINFO data structure 264
SQLENINFO data structure 265
SQLERR.CMD 197, 222

SQLESYSTAT data structure 265
SQLEUSRSTAT data structure 266
SQLEXEC API 164, 190, 207

error handling 174
register 152
usage 151, 155

SQLFUPD data structure 266
SQLLEN 167
SQLMSG 174
SQLOPT data structure 264
START command

multi tasking 15
parameters 12
queues 26
usage 11

START DATABASE MANAGER statement 250
Start_Close_Intercept function 299
Start_Host_Notify function 132, 134, 299
Start_Keystroke_Intercept function 300
starting DOS commands 12, 13
starting OS/2 commands 11

START command 12
startup folder 76
STARTUP.CMD 152
STARTUPDIR keyname 281
static SQL 163
STATUS command 109, 115, 121
STDERR 42, 60
STDIN 42, 179

reading keyboard with Charin 19
STDOUT 42, 179
STOP command 109, 112
STOP DATABASE MANAGER statement 250
stop playing a file 112
Stop-Host_Notify function 300
Stop_Close_Intercept function 300
Stop_Host_Notify function 132, 134
Stop_Keystroke_Intercept function 300
STREAM command

usage 22
SUB.CMD 10
syntax diagrams 225
SysCls function

description 65

Index 327

SysCreateObject
create shadow object 78

SysCreateObject function
create folder object 61, 72
create program object 63, 74, 76
create shadow object 75
modify object 79
setup string 64, 77, 269, 280
usage 72

SysCurPos function
description 65
source code 97

SysCurState function
description 65

SysDriveInfo function
description 56

SysDriveMap function
description 54

SysFileDelete function
description 58

SysFileSearch function
description 58

SysFileTree function
description 58

SysGetEA function
usage 89

SysGetKey function
description 66

SYSIBM.SYSTABLES 164
SysIni function

add printer ports 41
application 87
change desktop colors 85
disable PrintScreen function 86
disable window animation feature 86
hide windows 86
key 87
modify object 79
modify System Setup Folder objects 86
printer objects 39
read INI data 87, 88
set the printer timeout value 41
usage 80, 84

SysLoadFuncs function 53

SysMkDir function
description 60

SysPutEA function 89
SysRegisterObjectClass function 70
SysSearchPath

description 60
SysSetIcon function 89
SysSetObjectData function

change icon view settings 82
description 81
hide object 83
mark object undeletable 82
modify object 79
open object 81
setup string 81, 269, 280
usage 62

SysSleep function
description 66

system INI 85, 145, 147
system modal 180
SysTextScreenRead function

description 67
SysTextScreenSize function

description 67

T
table names 174
TEMPLATE keyname 277
templates folder 77, 82
testing

VisPro/REXX 188
timed pause 135
timeout feature 137
TITLE keyname 277
TOUCH_EXCLUSIVE_ACCESS keyname 289
TREEFONT 272
TREEFONT keyname 271
TREEVIEW keyname 271

U
UNCATALOG DATABASE statement 251
UNCATALOG DCS DATABASE statement 251

328 OS/2 REXX

UNCATALOG NODE statement 251
UNCATALOG statment

usage 161
UPDATE DATABASE CONFIGURATION

statement 251
UPDATE DATABASE MANAGER

CONFIGURATION statement 251
UPDATE statement

syntax 262
usage 171
usage with WHERE clause 171

update table rows 167, 170, 171, 173
UPDTREC.CMD 171
UPM

accessing APIs from REXX 94
authorize nodes 153, 154
log on local 153, 154

use variables as commands 11
user INI 85, 145, 147
User Profile Management

accessing APIs from REXX 94
authorize nodes 153, 154
log on local 153, 154

User Profile Management(UPM)
accessing through external function call 51

V
varying list select 167
VDM keyname 285
VIDEO_8514A_XGA_IOTRAP keyname 289
VIDEO_FASTPASTE keyname 289
VIDEO_MODE_RESTRICTION keyname 289
VIDEO_ONDEMAND_MEMORY keyname 289
VIDEO_RETRACE_EMULATION keyname 289
VIDEO_ROM_EMULATION keyname 289
VIDEO_SWITCH_NOTIFICATION keyname 289
VIDEO_WINDOW_REFRESH keyname 289
view page of folder settings notebook 270
view setup string options 271
VIEWBUTTON keyname 276
VisPro/REXX 4

accelerator 186
add menu bar 186
associate icon to .EXE 199

VisPro/REXX (continued)
BusinessGraphic object 183
change caption 184
CheckBox object 183
ComboBox object 183
Container object 183
create event 194
create window 181
creating message box 190
DescriptiveText object 183
drag and drop programming 191, 196
EntryField object 183
event handling 196
form settings notebook 186
general routine 197
Graphic object 183
GroupBox object 183
intial setup 181
introduction 177
list tables 196
load list box 191
main form 181, 182, 184
menu bar designer 186
MultiLineEntryField object 183
parameter handling 194, 196
plain window 183
program init ial ization 189
PushButton object 183
RadioButton object 183
secondary form 193
settings notebook 185
slider object 184
spin button object 184
testing 188
usage with MMPM/2 115
Valueset 184

visual programming 177, 179
visual REXX 115, 177
VM 2, 151
VX-REXX 4

accelerator 205, 206
build application 224
CheckBox object 200
ComboBox object 200
create message box 209, 210, 215

Index 329

VX-REXX (continued)
create object 205
create secondary window 212
debugger 179, 223
description 179
DescriptiveText object 200, 213, 219
drag and drop programming 211, 214, 220
DropDownComboBox object 200
EntryField object 200
event 221
event creation 205
event routines 222
example with SELECT.CMD 200
general routines 222
GroupBox object 200
ImagePushButton object 200
ImageRadioButton object 201
initialize window 217
intial setup 200
introduction 177
ListBox object 201, 205, 211, 213, 214, 218,

220
load secondary window 217
menu bar 201
modal 221
modal window 213
MultiLineEntryField object 201
PictureBox object 201
program init ial ization 207
propert ies 213
properties window 203
PushButton object 201, 213
RadioButton object 201
secondary window 212
Spin button object 201
testing 223
tool palette 200
VROBJ.DLL 224
window 219
window object 202

W
wait for host 132

Wait function 136, 300
watch for OIA update 134
Watcom 177, 179
WIN keyname 285
WIN-OS2 settings keynames

AUDIO_ADAPTER_SHARING 286
COM_DIRECT_ACCESS 286
COM_HOLD 286
COM_RECEIVE_BUFFER_FLUSH 286
COM_SELECT 286
DOS settings notes 290
DOS_AUTOEXEC 286
DOS_BACKGROUND_EXECUTION 287
DOS_BREAK 287
DOS_DEVICE 287
DOS_FCBS 287
DOS_FCBS_KEEP 287
DOS_FILES 287
DOS_HIGH 287
DOS_LASTDRIVE 287
DOS_RMSIZE 287
DOS_SHELL 287
DOS_STARTUP_DRIVE 287
DOS_UMB 287
DOS_VERSION 287
DPMI_DOS_API 288
DPMI_MEMORY_LIMIT 288
DPMI_NETWORK_BUFF_SIZE 288
EMS_FRAME_LOCATION 288
EMS_HIGH_OS_MAP_REGION 288
EMS_LOW_OS_MAP_REGION 288
EMS_MEMORY_LIMIT 288
HW_NOSOUND 288
HW_ROM_TO_RAM 288
HW_TIMER 288
IDLE_SECONDS 288
IDLE_SENSITIVITY 288
INT_DURING_IO 288
KBD_ALTHOME_BYPASS 288
KBD_BUFFER_EXTEND 288
KBD_CTRL_BYPASS 288
KBD_RATE_LOCK 288
MEM_EXCLUDE_REGIONS 288
MEM_INCLUDE_REGIONS 289
MOUSE_EXCLUSIVE_ACCESS 289

330 OS/2 REXX

WIN-OS2 settings keynames (continued)
NETWARE_RESOURCES 289
PRINT_SEPARATE_OUTPUT 289
TOUCH_EXCLUSIVE_ACCESS 289
VIDEO_8514A_XGA_IOTRAP 289
VIDEO_FASTPASTE 289
VIDEO_MODE_RESTRICTION 289
VIDEO_ONDEMAND_MEMORY 289
VIDEO_RETRACE_EMULATION 289
VIDEO_ROM_EMULATION 289
VIDEO_SWITCH_NOTIFICATION 289
VIDEO_WINDOW_REFRESH 289
WIN-OS2 settings notes 290
WIN_CLIPBOARD 286
WIN_DDE 286
WIN_RUNMODE 286
XMS_MEMORY_LIMIT 290
XMS_MINIMUM_HMA 290

WIN_CLIPBOARD keyname 286
WIN_DDE keyname 286
WIN_RUNMODE keyname 286
window page of folder settings notebook 275
WINDOWABLEVIO keyname 285
WINDOWEDVDM keyname 285
WINDOWEDWIN keyname 285
WORKAREA keyname 274
workplace shell

change desktop colors 85
customization 72
description 69
extended attributes 89
list object IDs 80
object class hierarchy 70
object IDs 79
RC file description 79
representing data fi les 78
save object settings 84
usage with visual REXX 177
user INI file description 80

WPAbstract object 79
description 71

WPFileSystem object
description 71

WPFolder object
associate icon 83

WPFolder object (continued)
background setup string 273
create object 61
creation 72
file setup string 274
general setup string 277
icon setup string 278
miscellaneous setup string 279
object properties setup string 280
open options 269
populate with program objects 63
setup string 269
view options 271
window setup string 275

WPObject object 70
WPProgram object

associating files 77
association setup string 290, 291
creation 74, 76
DOS settings 286
parameters substitution characters 282
session setup string 283, 284
setup string 64, 280, 281
usage 63
WIN-OS2 settings 286
window setup string 292

WPSDRAG.CMD 77
WPShadow object

associate to data files 78
creation 75

WPSREG.CMD 76
WPTransient object

description 71

X
XMS_HANDLES keyname 289
XMS_MEMORY_LIMIT keyname 290
XMS_MINIMUM_HMA keyname 290

Index 331

IBML

Printed in U.S.A.

GG24-4199-00

	OS/2 REXX: From Bark to Byte
	Abstract
	Contents
	Figures
	Tables
	Special Notices
	Preface
	How This Document is Organized
	Related Publications
	International Technical Support Organization Publications
	Acknowledgments

	Chapter 1. Why REXX?
	Power of OS/ 2 2.1 REXX
	Example
	Sample 1 FAH2CEL. CMD

	Chapter 2. OS/2 REXX Specifics
	Calling from a REXX Procedure
	The REXX Call Instruction
	Calling OS/ 2 .EXE or Command Files
	Multitasking with START and DETACH
	File I/ O with OS/ 2 REXX
	Charin(name, start, length)
	Charout(name, string, start)
	Chars(name)
	Linein(name, line, count)
	Lineout(name, string, line)
	Lines(name)
	Stream(name, operation, streamcommand)
	Examples
	RxQueue
	PUSH
	QUEUE
	Private Queues Using RXQUEUE
	LIFO, FIFO and CLEAR
	Printing
	PRINT Command
	Lineout and Charout
	Printer Objects
	PMREXX, REXXTRY and RxMessageBox
	PMREXX
	REXXTRY
	RxMessageBox

	Chapter 3. External Functions
	Usefulness
	How to Register External Functions
	Example - Accessing User Profile Management Services
	Some Established External Function Packages

	Chapter 4. REXX Utilities External Function Package (REXXUTIL)
	Drives, Directories and Files
	SysDriveMap
	SysDriveInfo
	SysFileDelete
	SysFileTree
	SysFileSearch
	SysMkDir
	SysSearchPath
	Workplace Shell Objects
	SysCreateObject
	SysSetObjectData
	Miscalleneus Functions
	SysCls
	SysCurPos
	SysCurState
	SysGetKey
	SysSleep
	SysTextScreenRead
	SysTextScreenSize

	Chapter 5. The Workplace Shell and REXX
	Objects and Object Classes
	WPFileSystem
	WPAbstract
	WPTransient
	Creating Objects
	Creating a Folder Object
	Creating a Program Object
	Creating a Shadow Object
	Creating a Program Object in the Startup Folder
	Creating Drag and Drop REXX Programs
	Creating (Shadow) Objects Associated With Data Files
	Modifying Workplace Shell Objects
	Object IDs
	RC Files
	User INI File
	SysSetObjectData
	Moving Objects
	SysIni
	Using SysIni to Change System Settings
	Using SysIni to Read INI Data
	Extended Attributes

	Chapter 6. REXX and C
	Creating C Functions for REXX
	RXSTRING
	Writing the C Function
	Parameter Handling
	Creating DLLs Callable by REXX Programs
	Calling REXX from C (REXXSTART Function)

	Chapter 7. Multimedia REXX
	MMPM/ 2 Installation
	Using MCI from REXX
	Registering MMPM/ 2 Functions
	Checking if MMPM/ 2 is Installed
	Opening a Media Device
	Error Checking
	MCI Commands
	ACQUIRE
	CAPABILITY
	CLOSE object
	CONNECTOR
	INFO
	Load
	PAUSE
	PLAY
	RECORD
	RELEASE
	RESUME
	SAVE
	SEEK
	SET
	STATUS
	STOP
	RXPLAY. EXE

	Chapter 8. REXX Interfaces to CM/2 EHLLAPI
	EHLLAPI Uses
	Calling EHLLAPI Functions from REXX Programs
	Connecting and Disconnecting Host Sessions
	Reading the Host Screen
	How to Obtain the Presentation Space Dimensions
	Copying the Presentation Space
	Searching the Presentation Space
	Sending Keystrokes to the Host Session
	Determining Host Availability
	Using Screen Changes to Manage Host Availability
	Query Host Update Function
	Pause Function
	Wait Function
	A Sample Host Checking Algorithm
	A Sample EHLLAPI Program - EHLRDR. CMD
	Sending and Receiving Files
	Example - EHLSF. CMD
	Example - EHLRECV. CMD
	Manipulating the Presentation Space Window

	Chapter 9. REXX Interfaces to DB2/2
	DB2/ 2 Installation and Setup
	How to Register DB2/ 2 Functions
	User Profile Management (UPM)
	DB2/ 2 Database Administration
	Server Workstation Database Administration
	Client Workstation Database Administration
	Embedding Structured Query Language (SQL) Statements in
	REXX Programs
	Static vs. Dynamic SQL
	SELECT Statement
	Varying List SELECT
	Changing Table Data
	Adding Rows to a Table
	Updating Rows
	Error Handling
	Testing Observations
	Database Application Remote Interface (DARI)

	Chapter 10. Visual REXX Builders
	VisPro/ REXX
	VX- REXX
	Example - SELECT. CMD
	SELECT. CMD with VisPro/ REXX
	Initial Setup
	The Main Form
	Main Window Layout
	Adding a Menu Bar
	Copying REXX Code
	Drag and Drop Programming
	Creating a Secondary Form
	Creating Events
	List Tables
	GETTABLE. CMD
	SubProcs - SQLERR. CMD
	Show Table Rows
	Build the Application
	Tip on Adding an Icon to the .EXE file
	SELECT. CMD with VX- REXX
	Initial Setup
	Primary Window Setup (Window1)
	Program Initialization
	Create the Table Window
	Selecting a Database
	Loading the Table Window
	Creating the Table Window
	Selecting a Table
	Cancel from Table Window
	General Routines
	Testing Applications
	Creating the Executable Version

	Appendix A. REXX Syntax Diagrams
	A.1 Keyword Instructions
	A.2 Functions
	A.2.1 Built- in Functions
	A. 2.2 OS/ 2 API Functions
	A.2.3 REXX Utils Functions

	Appendix B. OS/2 DB2/2 REXX Reference
	B. 1 REXX DB2/ 2 API Syntax
	B. 2 SQL Statements Syntax
	B.2.1 SQL Statements Passed Directly to SQLEXEC
	B. 2.2 Dynamic REXX SQL Statements
	B. 3 SQL REXX Data Structures
	B. 3.1 SQLCA
	B. 3.2 SQLDA
	B. 3.3 SQLCHAR
	B. 3.4 SQLOPT
	B. 3.5 SQLEDINFO
	B. 3.6 SQL_ DIR_ ENTRY
	B. 3.7 SQLENINFO
	B. 3.8 SQLESYSTAT and SQLEDBSTAT
	B. 3.9 SQLEUSRSTAT
	B. 3.10 SQLDCOL
	B. 3.11 SQL_ AUTHORIZATIONS

	Appendix C. OS/2 Workplace Shell Setup Strings and Color Definitions
	C. 1 WPFolder Setup String Parameters
	C. 1.1 WPFolder Background Setup String Parameters
	C. 1.2 WPFolder File Setup String Parameters
	C. 1.3 WPFolder Window Setup String Parameters
	C. 1.4 WPFolder General Setup String Parameters
	C. 1.5 WPFolder Icon Related Setup String Parameters
	C. 1.6 WPFolder Miscellaneous Setup String Parameters
	C. 1.7 WPFolder Object Properties Setup String Parameters
	C. 2 WPProgram Setup String Parameters
	C. 2.1 WPProgram Setup String Parameters
	C. 2.2 WPProgram Parameters Substitution Characters
	C. 2.3 WPProgram Session Setup String Parameters
	C. 2.4 WPProgram Session Setup String Parameters for PROGTYPE
	C. 2.5 WPProgram DOS and WIN- OS2 Settings
	C. 2.6 WPProgram Association Setup String Parameters
	C. 2.7 WPProgram Window Setup String Parameters
	C. 3 RGB Values for Fixed Colors of OS/ 2 2.1

	Appendix D. CM/2 REXX EHLLAPI Reference
	D. 1 REXX EHLLAPI Functions
	D. 2 Keyboard Mnemonics

	Appendix E. Published Books, Manuals, and Papers on REXX
	E.1 Books and IBM Manuals Available Through Usual IBM Channels
	E.1.1 Cross-system books
	E.1.2 VM
	E.1.3 MVS
	E.1.4 OS/ 2
	E.1.5 AS/ 400
	E.1.6 VSE
	E. 1.7 Applications and Other REXX- related Books
	E.2 Non- IBM Books and Manuals
	E. 2.1 Applications and other REXX- related books
	E.3 Papers

	List of Abbreviations
	Index
	Numerics C
	A
	B
	D
	E F
	H
	G
	I
	K M
	L
	N
	O
	P
	R
	Q
	S
	T
	U
	V
	W
	X

