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Abstract.

Universal decomposition, performance and categorical properties will be presented for quan-
tum automata in the form of three new theorems for the category of quantum automata
[1][1], quantum computers [2] , Qa,c, and their related quantum logics based on an exten-
sion of n-Lukasiewicz algebra [3] as well as their applications [4]. The category of quantum
automata and quantum computers is first defined, and then a complete proof is provided
for the existence of unique limits and colimits in this category. Both the new category of
quantum automata and the category of Boolean automata (abstract sequential machines)
are therefore bicomplete. However, as expected from standard quantum theory, the objects
in Qa,c, have associated Hilbert spaces with quantum operator algebras suitable for quantum
computations. New definitions are, therefore, introduced for the quantum groupoid
state–space [5] and the operator algebra of a quantum automaton and quantum computer.
These novel concepts are then compared with generalized, dynamic bio-networks of self-
organized metabolic– replication– duplication (Enzyme-RNA-DNA =: Generalized
(M,R)–systems in refs. [6], [7], [8] and [9]) that are considerably more complex than a
’thermodynamically closed’, quantum automaton. The important question of bio-simulation
and modelling (refs. [10]–[11]) using quantum computations is also here addressed, and a
’no-go’ conjecture regarding the impossibility of completely simulating open, complex bio-
network systems by subcategories of closed quantum automata is put forward. The possible
extensions of quantum automata categories to higher dimensions through 2-categories [12]
of double groupoid [13] quantum automata, their functors and natural transformations of
such functors are proposed together with the suggestion of several, potential realizations
through technological implementation of quantum automata and quantum computers by
n-Lukasiewicz logic designs based on existing n-Lukasiewicz VLSI boards and /or nano-
automata [14].
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