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Annotation

This work contributes to the methodology of an evaluation of elastic properties of cortical bo-
nes by ultrasonic wave inversion, whilst the bone is considered to be a linear elastic anisotropic
continuum. Velocities of acoustic waves are used as an input data into inverse problem and they
are experimentally detected by means of the ultrasonic based pulse-echo immersion technique.
This method was developed on composite structures such as plates and cylindrical shells. The
geometry of bone specimens is also implicated into algorithm by the model of wave propagation
through curvilinear anisotropic sample based on the simplified ray method. The stability of re-
sulting data is evaluated by the statistical method based on the Monte-Carlo simulation. Two
additional ultrasonic based experimental techniques, the pulse through transmission contact me-
thod and the resonant ultrasound spectroscopy (RUS), are tested here in order to validate and
improve a wave inversion access.

The immersion method based on the wave inversion has shown to be a reliable tool for
determination of some elastic constants only, the remaining coefficients need to be measured or
improved by another experimental method. The ultrasonic contact pulse through transmission
technique was rated as an acceptable experimental approach for this purposes. The RUS was
found to be an unsuitable method for the measurement of the elastic coefficients of the cortical
bone tissue.

List of the most often used symbols

General notation

a . scalar quantity
a ... vector quantity

cont

a . experimentally detected value of a via contact ultrasonic technique
a™mm . experimentally detected value of a via immersion ultrasonic technique
aiNe ... incident vector quantity

a, ... reflected vector quantity

a; ... transmitted vector quantity

Qj, Gy ... vector quantity component

Qs Aijkl ... component of a matrix or tensor

ac*p . experimentaly obtained value of a

a ... mean value of a

qlundistorted) . result of some algorithm undistorted by errors

grad, ... gradient in coordinates a

min ... minimum with respect to a

a ... time derivation od a

Mathematical symbols

1 ... unit matrix

R"™ ... space of n-dimensional real vectors
e . Eulerian constant

i . Imaginary unit

L ... Lagrangian

dij ... Kronecker symbol

s . circular constant
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. matrix of elastic coefficients [Pa]
. tensor of elastic coefficients [Pa)
.. thickness of specimen [m]
. Young modulus [Pa)]
. Young modulus in three main directions of stress [Pa]
. wave number
. wave vector [m™!]
. proportions of experimental set-up [m]
. unit vectors in directions of a wave vector
. Biot parameters
. distances in = coordinate from inner (1) and outer (2)

boundaries of specimen [m)]

. quadratic sum

. slowness vector [s - m™?]

. standard deviation

. time coordinate [s]

. temperature of water bath [C]

. elastic wave (displacement field) [m)]

. amplitude of elastic wave [m]

. volume of solid [m?]

. experimentaly obtained longitudinal and transverse

phase velocities [mm - s7!]

. phase velocity of bulk waves [m - s™]

. phase velocity of incident wave propagating in fluid [m - s™!]
. group velocity of bulk waves [m - s™!]

. cartesian coordinate system [m]

. coordinates defining sets of points of inner (1) and outer (2)

boundaries of specimen [m]

. Christoffel tensor

. angular deviation of specimen or reflector rotation []
. angular coordinate of refracted qL./qT wave’s slowness vector [rad]
. angular coordinate ||

. strain tensor

. normal direction

. density [kg - m™3]

. stress tensor [Pa]

. tangential direction

. Poisson ratio

. angular coordinate [rad]
. angular coordinate between vectors of group and phase velocity [rad]
. angular coordinate of refracted qL/qT wave’s energy fluxes [rad]

. angle of reflector or specimen rotation ||

. angular frequency [s7?]

. Christoffel secular equation in wave vector components
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Abbreviations
A .. anterior anatomical direction
ASCR . Academy of Sciences of the Czech Republic
BMD .. bone mineral density
CAD ... Computer Aided Design
CFRP . Carbon Fiber Reinforced Plastic
CNC . Computer Numerical Control
CT . computed tomography
DXA . dual-energy X-ray absorptiometry
DSO . digital oscilloscope
FEA . finite element analysis
FEM . finite element method
I . inferior
L . longitudinal wave or lateral anatomical direction
M . medial anatomical direction
MIL . mean intercept length
MRI . magnetic resonance imaging
P . posterior anatomical direction
PC . personal computer
PMMA . Polymethylmethacrylate

fiber fibre PS/PR
PT

. Point-Source /Point Receiver
. pure transverse

qL . quasi-longitudinal

qT . quasi-transverse

QUS . quantitative ultrasound
RUS . resonant ultrasound spectroscopy
S . superior

SAW . surface acoustic waves

SOS . speed of sound

SW . software

T, T1, T2 ... transverse

TOF . time of flight

pCT . micro-computed tomography
Introduction

The general purpose of this study is a development of methodology for determination of the elastic
coeflicient of a cortical bone by means of dynamic testing. The elastic properties of single parts of
a human skeleton are necessary to know for modeling the bone tissue-implants interactions as well
as for disease diagnostics purposes. The knowledge of elastic constants of the bone tissue is also
fundamental for a modelling of a mechanical response of bone loading and a micro-mechanical
modelling that conduces to new findings concerning the microstructure of a bone tissue. This
knowledge may, for example, help to answer a bone tissue remodelling problem.

Bone tissue is, from the mechanical point of view, an inhomogeneous,
anisotropic and viscoelastic material with a composite structure. Compared to other tissues
of the human body, the strain of a bone tissue is comparatively small, hence it is possible to
assume a linear dependence between the stress and the strain. The damping of a cortical bone, in
the terms of time dependency on material constants, is relatively small. Therefore, it is possible
to contemplate a cortical bone as a linear elastic material, which is approximately homoge-
nous and anisotropic with an orthotropic material symmetry [LASAYQUES and PITHIOUX, 1998,
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LEE et al., 2002, PITHIOUX et al., 2002, RHO, 1996].

Dynamical mechanical tests are based on the fundamental theory of acoustic waves (also called
elastic waves) propagation in anisotropic homogenous solids. In practise, these techniques are
ultrasonic, it means that mechanical disturbance occurs at frequencies higher than approximately
20 kHz (the upper limit of the human audible range), and pulse transmission, consisting in
measurement time of ultrasonic pulse flight between transmitting and receiving transducers. The
pulse transmission method can be modified to a pulse echo technique, where only one transducer
is used as a transmitter and receiver at the same time. The reflected waves from a specimen
boundary or an acoustic reflector are detected then instead of the refracted ones. The ultrasonic
pulse methods can be adjusted to a contact or immersion experimental set-up.

Contact tests are characterized by a direct contact among the specimen and transducers.
The resultant elastic coefficients are dependent on specimen’s dimensions and density, which
are the easily measurable quantities, particulary in the case of cubical specimens. The contact
technique is very suitable for determination of elastic properties of isotropic solids, however the
measurement in a case of higher crystal symmetries (a bone is regarded to be an orthotropic or
transversely isotropic anisotropic material [LASAYQUES and PITHIOUX, 1998, LEE et al., 2002,
PITHIOUX et al., 2002, RHO, 1996, YOON and KATzZ, 1976]) is embarrassed by requirement of
necessary preparation of specimens for every crystallographic direction.

The immersion pulse transmission technique consists of a specimen immersion into a liquid
between transmitting and receiving ultrasonic transducers. The specimen is rotated and ultraso-
nic waves propagating in various direction through a specimen are detected. Elastic coefficients
of specimen can be obtained either analytically from the velocity measurements in different
directions [ENDERBY et al., 1998, GEISKE and ALLRED, 1974, HARPER and CLARKE, 2002] or
the problem can be solved by a multi-dimensional optimization approach [SACHSE et al., 1998,
SEINER, 2004, SEINER and LANDA, 2005, WU and Ho, 2005] (inverse problem).

This PhD study will start with a literature overview, where the fundamental knowledge of
a bone tissue structure, hierarchy and biomechanical properties will be introduced. The main
scope of this work is the evaluation of elastic properties of a cortical bone, however the research
in mechanical properties of a cancellous bone is no less important and the porosity and fluid flow
of a cancellous bone make this task a much more complex problem. The mechanical properties of
a cortical bone, their experimental and theoretical evaluation as well as advances in modelling of
this porous tissue with a special reference to Biot theory will be also surveyed. The contemporary
state of art in an evaluation of the elastic coefficients of a cortical bone via the ultrasonic pulse
and resonant based techniques will be discussed in the final part of the literature overview.

The successive chapters will be devoted to theoretical background necessary to encompass-
ment of the elastic constants evaluation by the experimental procedure used in this thesis. Widely
known principles such as the Hooke’s law, the Christoffel’s equation, examples of characteristic
surfaces of waves and the application of the Snell-Descartes law to a proposed experimental tech-
nique. Further theoretical part will deal with an original approach to the wave propagation in
a curvilinear anisotropic specimen, which will be explored at the elastic constant evaluation of
a generally shaped bone specimen later on. The last theoretical part will describe an applied
access to the solution of an inverse problem of the Christoffel equation (determination of elastic
coefficients from known velocities of wave propagation) by the optimization procedure which
will be practically utilized during the immersion measurements. The method for the statistical
evaluation of resulting data from optimization procedure will be presented, too.

The description of experimental procedures, list and characterization of specimens prepa-
ration will be accomplished in following chapter. Totally three ultrasonic techniques will be here
planned. The pulse based immersion technique is going to be the most fundamental for purposes
of this study, because of the automated measurement and results evaluation, an absence of a
precise specimen cutting as well as a challenge to solution of the wave propagation through the
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specimen of a general geometry are expected at a contemporary observance of a high result accu-
racy. The other two techniques, the pulse contact technique and the RUS (resonant ultrasound
spectroscopy), will be used for a validation of results eventually results improvement. The result
discussion and concluding remarks will be stated at the end of this work.

Aim of the work

The thesis specific aims are to develop an ultrasonic-pulse immersion scanning device and me-
thodology based on an ultrasonic wave inversion for the evaluation of elastic constants of a
homogenous anisotropic material and its application on an experimental determination of the
elastic constants of the cortical bone. The part of this study is to deal with the solution of an in-
verse problem of Christoffel’s equation for phase velocities and its application to measured data,
to develop the statistical method for evaluation of the stability of inverse problem resulting data,
to propose model of wave propagation through anisotropic solids of a planar, cylindrical and gene-
ral shape, to validate this model on an immersion measurement of composite technical materials
samples and its application to the cortical bone samples, to suggest an usage of the additional
ultrasonic techniques such as the contact ultrasonic-pulse technique and the resonant ultrasound
spectroscopy for an elastic coefficients measurement and their experimental verification on bone
samples, to discuss advantages and disadvantages of particular experimental techniques and to
outline the theoretical parameters for a future research.

Review of literature

Fundamental biomechanical properties of bone

A bone tissue represents a porous tissue containing a fluid phase, a solid matrix, and cells. It
is a living tissue consisting of 25 % fluid. The remaining 75 % of a bone’s structure contains
organic and mineral components [PIEKARSKI, 1970]. These solid and liquid phases are optimally
resolved as a composite structure, which is hierarchically organized from the skeleton to an
organ, tissue, cellular, subcellular and molecular level [TATE, 2003]. The interaction between
solid and fluid phases is important for mechanical (elastic properties, viscoelastic behaviour)
[BUECHNER et al., 2001], metabolic and adaptive behaviour.

A bone tissue consists of a cortical and a cancellous (trabecular) bone. The cortical bone
forms the major (80 % [LIEBSCHNER, 2004]) bone content in the body and it typically occurs in
the diaphysis of long bones such as the radius, tibia and femur. The cancellous bone serves as a
shock absorber and can be found at bones diaphysis and in the cores of flat bones. The cancellous
bone is always protected by a thin layer of the cortical bone.

The skeleton is considered to be a system of bones accomplishing bearing, protecting and dam-
ping functions necessary for survival and mobility of a human [PAUWELS, 1973, PIEKARSKI, 1973].
A bone is an adaptive tissue and has optimal mechanical properties, specific to each part of the
skeleton. The structure of the bone is exposed to dynamic loading, where the functional adap-
tation of the bone is necessary for surviving. The bone tissue remodeling is realized among
osteocytes, osteoblasts and osteoclasts and ensures functional adaptation of the bone. The os-
teocytes are the most frequent cells in the bone and they participate in a mineralized structure
(solid phase) of the bone and their death is associated with a lapse of the the solid matrix
of the bone [JUNQUEIRA et al., 1995]. Osteocytes are thought to be mechanosensors in bone
[BURGER and KLEIN-NULED, 1999]. The transmission of mechanical signals to the cytoskeleton
of osteocyte via the cell surface receptors can arise directly (through the solid matrix of the
tissue) [BURGER and KLEIN-NULED, 1999, CARTER, 1987, HUISKES and HOLLISTER, 1993] or
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indirectly (fluid pressure and shear stress) [COWIN et al., 1991, SMALT et al., 1997] imparted by
the fluid movement.

Physical description of bone

The adaptive response of a bone tissue to mechanical stimuli is described by numerous diffe-
rent parameters such as a magnitude of a stress and a strain, number of loading cycles, strain
tensor and strain energy density. The numerous strain/stress based bone adaptation theories
were published, from the surface modelling as a function of the strain magnitude [FrROST, 1990,
FYHRIE and CARTER, 1986, HUISKES et al., 1987] to the time dependent modelling and remo-
delling [BEAUPRE et al., 1990]. There is a lot of studies which are engaged in an overall relati-
onship between the intensity of a stimulus and the magnitude of the response, but there is a
very little evidence that the magnitudes of strains and stresses directly correlate to the bone’s
morphological response [BROWN et al., 1990, GROSS et al., 1997].

Composite and hierarchical structure of bone

The bone can be also considered as a highly structured composite material, which is composed of
a collagen hydroxyapatite matrix and a hierarchical system of lacunae canals. These tubes permit
the intersticial flow of a fluid through micro porosities [COWIN, 1999, COWIN et al., 1995]. This
flow induces loading, that leads to a change in the fluid velocity or pressure and ensures a tool
by which a physical signal could be translated to the cell [BURGER and KLEIN-NULED, 1999,
JACOBS et al., 1998].

Collagen
molecule

£

Collagen
fibril

Collagen
fiber

10-500 pm

Microstructure Nanostructure

Macrostructure Sub-microstructure Sub-nanostructure

Fig. 1: The hierarchical structural organisation of a bone: (a) cortical and cancellous bone; (b)
osteons with Haversian systems; (c) lamellae; (d) collagen fiber assemblies of collagen fibrils; (e)

bone mineral crystals, collagen molecules, and non-collagenous proteins (After Rho et al 1998)
[RHO et al., 1998]).

The material structure of a bone varies at different scales which perform different mechanical,
biological and chemical functions. The knowledge of mechanical characteristics of these scales is
important for understanding of the mechanical properties of a structural relationship between
them at the various levels of structural organization [LIEBSCHNER, 2004, RHO et al., 1998] (Fi-
gure 1). These levels are: (1) the macrostructure (the cancellous and the cortical bone); (2)
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the microstructure (from 10 to 500 pm: Haversian systems, osteons, single trabeculae); (3) the
sub-microstructure (1 - 10um: lamellae); (4) the nanostructure (from a few hundred nanometers
to 1 pm: fibrillar collagen and embedded mineral); (5) the sub-nanostructure (below a few hun-
dred nanometers: the molecular structure of constituent elements). This hierarchically organized
structure makes the material of a bone heterogeneous and anisotropic, and mechanical properties
vary at these different structural levels [RHO et al., 1998].

Biomechanical characterization of cancellous bone

The cancellous bone is compounded of a system of trabeculae surrounded by a bone marrow.
The cancellous bone has relatively high porosity (50-95 %) [MARTIN et al., 1998] and low density
(0.5-1.0 g/cm?) [RHO, 1996]. From a biomechanical point of view, the elastic properties of
the cancellous bone depend on a volume fraction, trabecular architecture and the elastic tis-
sue properties of the mineralized matrix. A frequently used quantity, the bone mineral density
(BMD) involves both, the volume fraction and the degree of mineralization of a mineralized
matrix, but doesn’t include an information in the trabecular architecture. However, the in-
creasing resolution of imaging techniques (uCT - micro-computed tomography) and MRI -
magnetic resonance imaging) develop the possibility of in vivo analysis of trabecular structure
[MAJUMDAR et al., 1998, MUELLER et al., 1994]. These non-invasive techniques contain a range
of gray values such a indicator of degree of a mineralization of the bone and a prediction of the
apparent elastic moduli of the cancellous bone trabeculas [HOMMINGA et al., 2001]. The further
parameters of the trabecular structure such as a volume fraction, a surface density, a trabecular
thickness, an inter-trabecular spacing, a trabecular number [HILDEBRAND et al., 1999], a con-
nectivity [ODGAARD and GUENDERSEN, 1993] and a fractal dimension [CROSS et al., 1993] can
be determined by the digital image analysis of these gray values maps.

The measurement of an architectural anisotropy of the cancellous bone is possible due to the
methods such as the mean intercept length (MIL) [WHITEHOUSE, 1974] or the volume orientation
distribution [ODGAARD et al., 1990]. These techniques describe the spatial distribution of the
bone architecture with a function that can be approximated by an ellipsoid or spherical Fourier
series. Both approaches lead to the definition of the positive definite second order tensor that
characterizes the three planes of an orthotropic symmetry and a degree of anisotropy of the
cancellous bone.

Experimental determination of mechanical properties of cancellous bone

The measurement of mechanical properties of the cancellous bone in conjunction with the
knowledge of the trabecular architecture is currently one of the most desirable topics in the
bone research. The mathematical basis for assessment of both, the bone elastic properties and
the bone architecture is given by nine orthotropic elastic constants, a volume fraction and a fabric
tensor [COWIN, 1985]. The number of constants must be determined to satisfy these theoretical
relationships by measurement of fabric and mechanical parameters. Several attempts (especially
convectional mechanical tests) were made earlier to measure these constants, but a general and
accurate approach has not been found yet.

The recent development of imaging techniques (¢CT or MRI) in conjunction with new compu-
ter methods such as the finite element analysis FEA and frequent use of ulltrasonic experimental
tests conduce to find the relationship between architectural and mechanical parameters.

Mechanical tests The volume fraction and an apparent density were measured in the ear-
liest studies [CARTER and HAYES, 1977, LINDE et al., 1989] in order to quantify the bone archi-
tecture, whilst the dependence between the bone density end the elastic modulus was found. The
fabric measure was implicated in later studies [GOULET et al., 1994, TURNER et al., 1990] of a
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large number of specimens in order to state the anisotropy of the bone architecture, but only a
subset of the nine orthotropic elastic constants were determined.

Generally, the convectional mechanical probes are not very useful for the measurement of
the anisotropic mechanical properties of bone specimens. For example, to determine the nine
independent elastic coefficients of an orthotropic material, the three tensile or compressive, three
deflection and three torsion tests in different directions are required. These tests require multiple
measuring of the same specimen that is nearly impossible. Just a few efforts to quantify orthotro-
pic elastic coefficients of the cancellous bone are known from the literature [GIESEN et al., 2001,
SNYDER and HAYES, 1990, YAHIA et al., 1988].

An interesting attempt of using a combination of mechanical testing and high-resolution
nonlinear finite element modelling for a comparison of elastic modulus of the trabecular and
the cortical bone was made by Bayraktar [BAYRAKTAR et al., 2004]. Results indicated that the
mean elastic modulus was 10% lower for the trabecular tissue than for the cortical tissue. The
similar conclusion was predicted in earlier work of Turner [TURNER et al., 1999], where acoustic
and nanoindentation measurement technique were compared.

Micro-finite element analysis The micro-finite element analysis [HOMMINGA et al., 2003]
has been developed to calculate the elastic coeflicients computer models of the trabecular micro
architecture. The finite element models are generated from micro-computed tomography (uCT)
images of a region of interest of bone specimen. These images are digitalized in order to rebuild
the original structure of the specimen as a 3D voxel model and a tensor of elastic coefficients is
calculated for a given set of boundary conditions [HOLLISTER and KIKUCHI, 1992].

The results of conventional compression versus the pFE analysis show good agreement
[KABEL et al., 1999] indicating that the FEA approach can provide information similar to mecha-
nical tests. Another study [TAYLOR et al., 2002] has performed a FE and experimental modal
analysis and compared the determined elastic constants with ultrasound results. It has been
shown that a modal analysis can be used, together with FE models incorporating CT scan data,
to determine the distribution of elastic constants throughout a long bone.

The comparison of the experimental techniques such as abilities of the bone mineral density
(BMD) as measured by dual-energy X-ray absorptiometry (DXA), and the quantitative ultra-
sound (QUS) parameter and the speed of sound (SOS) to predict elastic constants as assessed
by uFEA was done in work of van den Bergh [VAN DEN BERGH et al., 2000]. For this purpose,
BMD measurements were performed on bovine specimens, and, in addition, the SOS was measu-
red in three directions. The specimens were uCT-scanned, and elastic constants were determined
in three directions with ¢FEA analysis.

Ultrasound wave propagation Another technique for measuring elastic properties of the
trabecular bone is ultrasound wave propagation. The velocity measurement of longitudinal and
transverse wave velocities propagating through the trabecular microstructure along the princi-
pal material orientations provides calculation of elastic coefficients of an orthotropic material.
However, theoretical limitations arise due to the characteristic length of the inter trabecular spa-
cing with respect to a specimen size that determines together with the selected wavelength the
actual ultrasound propagation mode.

The group of researches (Rho, Ashman, Turner et al. [ASHMAN et al., 1989], [RHO, 1996],
[RHO and AD C.TURNER, 1993], [RHO et al., 1995] and Strelitski [STRELITSKI et al., 1997]) de-
alt with the measurement of orthotropic elastic coefficients by the ultrasound. The three impor-
tant questions were claimed in their earlier work [RHO and AD C.TURNER, 1993]: (1) Is the
Young’s modulus of an individual trabeculae same as that of microspecimens of the cortical
bone? (2) Can the Young’s modulus of the trabecular bone material be extrapolated from the
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Young’s modulus vs. density relationship for a cancellous bone? (3) Can the Young’s modulus
of a cortical bone be extrapolated from the Young’s modulus vs density relationship for a can-
cellous bone? The ultrasonics through transmission tests and a mechanical micro-tensile test were
performed in order to answer these three questions successively: (1)Young’s moduli between the
trabecular and the cortical bone were found significantly different; (2); Results from the multiple
regression analysis showed that the Young’s modulus of the trabecular bone material could be
extrapolated from that of the cancellous bone using a quadratic relationship; (3) The Young’s
modulus of the cortical bone could not be extrapolated from relationships between a density and
the Young’s modulus of the cancellous bone.

The following research has addressed a problem of relations between elastic properties and CT
numbers (density) [RHO et al., 1995]. Mechanical properties of the cortical and the cancellous
bone were determined using an ultrasonic transmission technique. CT values obtained from scans
of the bones in water were corrected to Hounsfield units [HVID et al., 1989]. The correlations
between CT numbers and a mechanical property estimated from the cortical bone were found to
be low, while these relationships for the cancellous bone were found to be higher. These results
suggest that CT values may be useful in predicting mechanical properties only for the cancellous
bone.

The subsequent study [RHO, 1996] mapped the anisotropic elastic properties of the human
tibial cortical and the cancellous bone using the ultrasonic pulse transmission contact technique.
Cortical bone specimens were assumed to be orthotropic with nine independent elastic constants
and were satisfactorily determined. The measurement of elastic properties of the cancellous bone
was a much more complex problem. The cancellous bone was in this measurement also con-
sidered to be a continuous, linearly elastic and anisotropic structure. To assume this material
as a continuous structure, the propagating wavelength must be greater than the characteristic
dimensions of the structure and larger than the cross-sectional dimensions of the specimen. The
elastic properties in three different directions were determined. Their average magnitudes F;, Fs
and Ej3 (standard deviations) are equal to 202(154), 232(180) and 769(534) MPa respectively.
The shear moduli and poisson’s ratios were not measured. The variation of elastic properties
over several orders can be explained by porosity and the inhomogeneity of the structure due to
different load conditions.

The convenience of the ultrasonic pulse through transmission or the echo contact techniques
for measuring elastic properties of the cortical bone at macrostructural level can be deduced from
these works of Rho et al. in fine. The necessity of another experimental technique such as the na-
noindentation [RHO et al., 1997, SILVA et al., 2004, TURNER et al., 1999, ZYSSET et al., 1999]
for the measurement of mechanical properties of the cancellous and the cortical bone at a
microstructural level was proposed.

Anisotropy and elastic properties of the trabecular bone were clearly detected in a recent
study [JORGENSEN and KUNDU, 2002] at the micrometer level. This work uses the V/(z)-curve
method, which involves surface acoustic waves (SAW) that are propagating along the surface
of a specimen. The V(z)-curves are plots of lens output voltage of an acoustic microscope as a
function of the lens focal point position with a respect to the specimen surface. The SAW subject
of interest are Rayleight waves (R-waves) and longitudinal lateral waves (L-waves), which strongly
reflect mechanical properties of a material. Both waves can be recorded and their propagation
velocities can be determined, and when assumption of the trabecular bone density (p) is made,
computation of the Poisson’s ratio (v = 0.23 + 0.07), the Young’s modulus (£ = 19.9 £+ 2.5 GPa),
and the shear modulus (G = 8.4 £+ 0.5 GPa) is possible and the qualitative measure of anisotropy
at the micrometer level is obtained.
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The measured and estimated elastic properties (Young’s modulus) of the trabecular bone
material published in a literature are introduced in the Table 1. The table was presented by
Rho [RHO and AD C.TURNER, 1993] and is extended. The table shows the great variance in
the Young’s modulus (from 0.2 to 20 GPa) and large standard deviations for all different testing
techniques of the trabecular bone measured as a macrostructure. It is evident, that determination
of elastic properties of the cancellous bone at macro and lower hierarchical levels is still a matter
of considerable interest.

Table 1: Estimated and measured elastic modulus (standard deviation) of the trabecular bone
material. Table presented by Rho [RHO and AD C.TURNER, 1993] and is extended. E, G and v
are the Young’s modulus, the shear modullus and the Poisson ratio. E;, Fy and E3 are Young’s
modulus in a proximo-distal, an anterio-posterior and a mediolateral direction.

Literature source

Type of bone

Test method

Estimated elastic module

Wolf (1892)

Human

Hypothesis

17-20 GPa (wet)

Runkle & Pugh (1975)

Human, distal femur

Buckling

8.69 (3.17) GPa (dry)

Townsend et al. (1975)

Human, proximal tibia

Inelastic buckling

11.38 GPa (wet)
14.13GPa (dry)

Ryan & Williams (1986)

Fresh bovine femur

Tensile testing

0.76 (0.39)GPa

Ku et al. (1987)

Fresh frozen human tibia

Three-point bending

3.17(1.5) GPa

Ashman & Rho (1988)

Bovine femur,
human femur

Ultrasonic testing

10.9 (1.6) GPa
12.7 (2.0) GPa

Mente & Lewis (1989) Dried human femur, Cantilever bending with 7.8 (5.4) GPa
fresh human tibia finite element analysis
Ryan & Williams (1989) Bovine femur Tensile testing 1.0 GPa

Choi et al. (1991)

Human tibia

Four-point bending

5.35 (1.36) GPa (wet)

Rho (1993)

Human tibia

Tensile testing

10.4 (3.5) GPa (dry)

Ultrasonic testing 14.8 (1.4) GPa (wet)

Rho (1996) [RHO, 1996] Human tibia Ultrasonic pulse

transmission method E; = 202 (154) MPa

E3 = 232 (180) MPa

E; = 769 (534) MPa (wet)

Strelitzki (1997) [STRELITSKI et al., 1997) Human calcaneus Ultrasonic pulse

transmission method Ey = 440 (125) MPa

E3 = 299 (98) MPa

E7 = 834 (248) MPa (wet)

Jorgensen (2002) [JORGENSEN and KUNDU, 2002] Dog femoral shaft
V() E = 19.9 (2.5) GPa (dry)
curve method G = 8.4 (0.5) GPa

v = 8.4 (0.5)

Theoretical models of wave propagation through porous media

Several theoretical approaches were adapted to model an ultrasonic wave propagation through
the cancellous bone in order to understand the dependence of the ultrasound velocity and the
attenuation upon the material and structural properties of the bone tissue. Different scattering
theories and Biot theory belong among mentioned approaches [HAIRE and LANGTON, 1999]. Also
a new cellular multi-layered models [HUGHES et al., 1999, KACZMAREK et al., 2002] resulting
from Biot theory were invented.

Biot theory The Biot theory is an optional model to the conventional scattering theories
for the prediction of an acoustic wave propagation through the cancellous bone and it can be
also applied to the less porous cortical bone [HAIRE and LANGTON, 1999]. This theory was first
published by the Biot [BioT, 1956a, BioT, 1956b] and it was originally used for geophysical
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purposes. The basic principle of Biot theory is a consideration of the separate motion of the solid
elastic frame and the intersticed fluid. The loss of energy due to frictional and viscous forces
opposing the fluid motion relative to the solid frame is analyzed. This motion is induced by three
acoustic waves (two dilatational and one rotational) propagating through an investigate porous
media. The fast wave represents the fluid and solid vibrating in phase and the slow corresponds to
a vibration in an antiphase. The Biot theory also predicts two modes of wave dispersion separated
by critical frequency: only the fast wave propagates (1st mode) and both fast and slow waves
propagate (2nd mode). The existence of two compressional waves in the cortical bone was first
reported by Lakes [LAKES et al., 1983], but the two compressional waves in the cancellous bone
were discovered due to the recent work of Hosokawa [HOSOKAWA and OTANI, 1997], where an
agreement between a prediction of the phase velocity and a measurement were obtained for both
waves, thereby, the the Biot theory for the cancellous bone was confirmed. The critical frequency
for the cancellous bone was estimated by Hughes [HUGHES et al., 2003].

The Biot theory is applied today to the cancellous bone with some difficulties. The greatest
problem is a necessity of the experimental determination of large number of material and structu-
ral parameters. Originally, the Biot theory defined four nondimensional characteristic parameters
and a characteristic frequency for the elastic waves propagation in a fluid-saturated porous me-
dia in a low-frequency range [B10T, 1956a], and six numerical combinations of the characteristic
parameters of the porous system in a higher frequency range [BioT, 1956b]. Lately, the Biot
theory was modified by Johnson [JOHNSON et al., 1987]. According the review article of Haire
[HAIRE and LANGTON, 1999], following parameters resulting from the Biot theory need to be
determined for the characterization of the cortical and the cancellous bone: three Biot parame-
ters P, Q and R, which are dependent on the intrinsic bulk modulus of the solid material, a
bulk modulus of the solid frame, a bulk modulus of the solid, a shear modulus of the solid frame
and a porosity (the volume fraction of the fluid phase). Additional four parameters describes the
effective density of the solid moving through a liquid, an effective density of the fluid moving
through the solid, an inertial drag that the solid exerts on the fluid and a dynamic tortuosity
defined by Johnson [JOHNSON et al., 1987]. The frequency of propagating waves also needs to
be known. These parameters cannot be easily evaluated in vivo or in vitro. Many attempts to
estimate or to measure these parameters by various groups of researches are overviewed by Haire
[HAIRE and LANGTON, 1999]. The isotropic assumption of an observed material is a further li-
mitation of the Biot theory application to the cancellous bone.

A new anisotropic model was proposed [HUGHES et al., 1999] in order to avoid the difficulties
linked to the Biot theory, i.e. the isotropic behavior and a large number of parameters. This
model consists of a simple layered structure of alternating fluid and solid plates. The geometry of
the model is very simple for the investigation of the ultrasonic propagation through this system
by applying the theory of the wave propagation in alternating solid and fluid layers developed
by the Schoenberg [SCHOENBERG, 1984]. This model predicts two compressional waves for all
propagation angles, except that perpendicular to plates, where there is only one. Two waves
are equivalent to the waves of the first and the second kind of the Biot theory. Schoenberg
theory requires six parameters (densities, speeds in component media and a porosity) and does
not include a viscosity of fluid. The application of the Schoenberg model to the acoustic wave
propagation through cancellous bone was validated experimentally.

Biomechanical characterization of cortical bone

The cortical bone is composed of osteons that are formed parallel to the long axis of the bone.
This arrangement is due to a bone’s ability to organize its structure in order to optimize its stren-
gth according to applied loading in different directions. The cortical bone has a relatively high
density (1.7-2.2-0 g/cm?® [RHO, 1996]) and a low porosity (5-10 % [MARTIN et al., 1998]). The
cortical bone is, from the mechanical point of view, an inhomogeneous, anisotropic, and visco-
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elastic material having a composite structure. Compared to other tissues of the human body, the
strain of a bone tissue is comparatively small, hence it is possible to assume a linear dependence
between the stress and the strain. The porosity can be, contrary to the cancellous bone, vanished
[LAKES et al., 1986], [LAKES et al., 1983], [LASAYQUES and PITHIOUX, 1998], [LEE et al., 2002],
[PITHIOUX et al., 2002], [RHO, 1996] and the trabecular bone can be rated as a homogenous con-
tinuum. The visco-elasticity of the cortical bone is, in the terms of time dependency on material
constants, relatively small. A bone is considered to be a composite structure that consists of
stiff mineral particles embedded in a flexible matrix made of collagen fibres. Mineral particles
are anisotropic, so the cortical bone has anisotropic mechanic properties [FRATZL et al., 1992].
Therefore, it is possible to contemplate a cortical bone as a linear elastic material, which is appro-
ximately homogenous and anisotropic with an orthotropic material symmetry [LEE et al., 2002],
[LASAYQUES and PIrTHIOUX, 1998], [PITHIOUX et al., 2002], [YOON and KATzZ, 1976],

[RHO, 1996]. The greatest strength and stiffness can be found in main loading direction, and has
a structure designed to resist torsional and bending forces where these occur [LAKES et al., 1986,
[PITHIOUX et al., 2002], [RHO, 1996].

Experimental determination of mechanical properties of cortical bone

The determination of the elastic coefficients of a bone tissue is very important for the description
of mechanical properties of bones. Static mechanical tests (e.g. compressive, bending, and torsio-
nal tests) are currently used for assessment of the elastic coefficients of bones. Elastic coefficients
are possible to detect experimentally by means of dynamics tests (ultrasonic tests), such as the
contact pulse transmission technique (contact or specimen immersed in a liquid) or the resonant
ultrasound spectroscopy (RUS).

The knowledge of elastic constants of a bone tissue is fundamental for modelling of the
mechanical response of bone loading. The specification of elastic coefficients of bones is also
very important for micro mechanical modelling that conduces to new findings concerning the
microstructure of a bone tissue. This knowledge may, for example, help to answer a bone tissue
remodelling problem.

Mechanical tests The classical mechanical tests were historically the first attempts of an ex-
perimental observation of cortical bone properties. One of the earliest and very valuable studies
was a work of Park and Lakes [PARK and LAKES, 1986]. This experiment was carried out on
prismatic, square cross sectional bars of a wet and dry cortical bovine bone. The specimens were
subjected to a torsion and strain distribution was measured by strain gauges around the surface of
the bar. However, even through simplicity of this experiment, the Young modulus was firstly spe-
cified and an important conclusion, that the dry and wet bovine bone behaves quite differently was
assessed. In the dry bone, the strain distribution was very close to the linear elastic model, while
the strain distribution of wet followed micropolar (Cosserat) model [PARK and LAKES, 1986].
Another important experiment was performed by Rho [RHO and AD C.TURNER, 1993], where
the Young modulus of the cortical and the cancellous bone was measured ultrasonically and
mechanically (micro-tensile test) and results of the both, the experimental technique and the
bone structure were compared. The ultrasonic and mechanical moduli differed by 11 % for the
specimens of the cortical bone in comparison to 42 % for the trabecular bone.

The classical mechanical tests are still used in more recent studies [DoNG and Guo, 2004,
IvO et al., 2004]. The tensile and torsional testing system [DONG and GuoO, 2004] was used for
an examination of the dependence of the anisotropic elastic properties of the cortical bone as a
transversely isotropic material on its porosity. This study proved, that the longitudinal Young
and shear moduli of the human cortical bone are negatively correlated with the porosity of
the cortical bone. Conversely, the elastic properties in the transverse direction did not have
statistically significant correlations with the porosity of the cortical bone. The experimental
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study of Iyo [IYO et al., 2004] takes advantage of three point bending testing method for the
measuring of anisotropic viscoelastic properties of the cortical bone, where the relaxation process
was investigated for different directions of the cortical bone and experimental results were fitted
to empirically proposed relaxation models of the cortical bone [IYO et al., 2004].

Ultrasonic tests

Contact pulse transmission technique The pulse transmission contact technique is the
simplest experimental technique of elastic constants determination of material properties via the
ultrasound. The two transducers (a transmitter and a receiver) are attached to the examined
material through the contact medium. The planar pulse waves are emitted from the transmitter,
directly through the specimen and detected by the receiver. The thickness of the specimen and
the time of the wave flight through the specimen in the investigated crystallographic direction
is measured and the velocity of wave propagation is calculated. The elastic constants can be
evaluated from velocities analytically [BUSKIRK et al., 1981], [DEGTYAR and ROKHLIN, 1997],
[EVERY and SACHSE, 1990], [RHO, 1996], [ROYER and DIEULESAINT, 1996] or numerically
[BALASUBRAMANIAM and WHITNEY, 1996], [ROKHLIN and WANG, 1992],

[SEINER and LANDA, 2005]. The velocity measurement needs to be performed with a high accu-
racy, hence the precise shape preparation of the specimen is necessary, which is a main disa-
dvantage of this method. The specimen must have a constant thickness, a sufficient dimension
in direction of the wave propagation and a smooth surface.

2

A

Material 10 be
cut away

1

7 -

Fig. 2: Cubic specimen developed by Van Buskirk et al. [BUSKIRK et al., 1981]. (After Rho 1996)
[RHO, 1996]).

The contact pulse transmission technique is most widely used and oldest approach of the bone
elastic constants measurement. The work of Rho [RHO, 1996] is for example a very comprehensive
attempt to improve the contact technique for elastic constant measurement of the cortical bone as
an orthotropic linear elastic material. Eight human tibiae were used in this study. Bones were cut
into cube shaped specimens developed by Van Buskirk [BUSKIRK et al., 1981] (Figure 2) so, that
the velocities of propagation of longitudinal and transversal waves through the specimen could
be measured in each crystallographic direction of orthotropic material symmetry. The average
values of evaluated elastic coefficients of the human cortical bone are introduced in the Table 2.

Table 2: Elastic properties of the human tibial cortical bone obtained by the contact technique.
The table presented by Rho [RHO, 1996]. Values are expressed in GPa.

C11 C12 C13 C22 C23 C33 Cq4 Cs55 C66
19.41 11.32 12.50 20.01 12,55 30.91 5.73 5.18 4.05

Recently, the contact pulse transmission technique was used for elastic properties mapping of
the human mandible cortical bone [SCHWARTZ-DABNEY and DECHOW, 2002],
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[SCHWARTZ-DABNEY and DECHOW, 2003]. This was a problematic issue because of a lack of in-
formation about the principal material axes and a thickness of the cortex lower than in long bones.
This study appeared from a cubic specimen developed by Van Buskirk [BUSKIRK et al., 1981]
and a new cylindrical specimen [SCHWARTZ-DABNEY and DECHOW, 2002] was suggested. All
nine elastic constants of the orthotropic specimen can be evaluated by the contact measurement
of this cylindrical specimen. This technique proposes considerably less wastage of the bone than
the standard technique of machining cubic specimens, and allows for the principal axis deter-
mination. Totally 31 samples of 10 human mandibles [SCHWARTZ-DABNEY and DECHOW, 2003]
were measured and statistically evaluated and a complete map of the orthotropic elastic constant
of the mandibular cortex was drawn.

Immersion pulse transmission technique The immersion technique appears from the
contact technique, but the specimen is not in a direct contact with ultrasonic transducers.
It is widely used for evaluation of technical composite materials (e.g. [DARRAS et al., 1995],
[ENDERBY et al., 1998, [HARPER and CLARKE, 2002, [HINE et al., 1997], [L1AW et al., 1996],
[Wu and Ho, 2005]). The specimen is placed between a transmitter and a receiver and the en-
tire measuring configuration is immersed in the liquid, where the transmitter generates well
defined planar waves. This method allows the specimen rotation in the wide range of directi-
ons and a determination of the phase velocity propagation in these paths. The immersion
technique is non-destructive and does not require the use of samples with precise dimensions
and perfectly parallel faces. The evaluation of velocities of propagation is described by Gieske
[GEISKE and ALLRED, 1974] in a detail. The elastic constants are evaluated from detected veloci-
ties and they are described by Christoffel’s equations [AULD, 1973], [GEISKE and ALLRED, 1974],
[ROYER and DIEULESAINT, 1996], which connect the velocity and shear pulses in the sample to
an elastic stiffness for different angles of a refraction and can be calculated for the orthotropic ma-
terial either analytically [ENDERBY et al., 1998], [HARPER and CLARKE, 2002], [HINE et al., 1997]
or numerically (e.g. Newton-Raphson method [Wu and Ho, 2005]) or the problem can be conver-
ted to a multidimensional optimization approach. The multidimensional optimization approach
can be solved by means of a differential method [SEINER and LANDA, 2005] or by neural network
[SACHSE et al., 1998].

The immersion pulse transmission technique was successfully used for a measurement of elastic
coefficients of a wet bovine cortical femoral bone considered as the orthotopic and transversely iso-
tropic material by Lasaygues and Pithioux [LASAYQUES and PIrTHIOUX, 1998], [PITHIOUX et al., 2002].
Focussed 1MHz frequency transducers were used in this study in order to focus on small surfaces
and to perform the measurement in different points on the sample. The Christoffel’s equation was
in this case solved numerically by using the Newton method. The measurement was performed
only in a few points and all nine elastic constants are stated in the Table 3.

Table 3: Elastic properties of the bovine femoral cortical bone obtained by the immersion
technique. The table presented by Lasaygues and Pithioux [LASAYQUES and PITHIOUX, 1998,
PITHIOUX et al., 2002]. Values are expressed in GPa.

C11 C12 Ci13 C22 C23 C33 C44 C55 C66
2350 76 84 26 820 3460 9.20 6.00 6.28

Previously described attempts didn’t look at a geometrical specification of the measured
specimen, the general shape of the bone was substituted by a plane in the surroundings of
the measurement location. The one case of the wave propagation through the bone-like shape
specimen was performed by Detti [DETTI et al., 2002]. In this study the bone diaphysis was
modeled by a cylindrical hollow tube. The internal cavity of the tube model was assumed to



20 ToMAS GOLDMANN: PROPAGATION OF AcouSTIC WAVES IN COMPOSITE MATERIALS AND CORTICAL BONE

be filled with a medullar marrow, so acoustic waves propagate as in a liquid environment. The
water bath constituted the coupling medium between the acoustic transmitter and the examined
specimen. The theory of rays, which is a special case of the geometrical theory of diffraction for a
homogenous environment [FEKIH and QUENTIN, 1983, FoLAcct and Rosst, 1997] was used in
order to propose the wave propagation in a model situation of the cylindrical tube (Figure 3).

OL< 0 JimL 0>0L JimL

incident ray /\ incident ray

received ray

16W

ray L
--------- ray T

Fig. 3: Two cases of the theory of rays based model of the propagation through the cylindrical tube
specimen in dependence on an angle of the specimen . (After Detti et al 2002 [DETTI et al., 2002]).
« - angle of incidence, o/ rprr, - limit angle of incidence for a longitudinal wave. [DETTI et al., 2002]

However, this model hasn’t dealt with a specimen anisotropy (only the isotropic material
was considered) and a more general geometry. Material properties of the specimen weren’t also
monitored, only the internal and external dimensions and the speed of sound were evaluated.
The proposed method was validated on a bone specimen by the ultrasonic experiment and the
conclusion, that the a prior: chosen cylindrical model is more or less close to the real bone
anatomy, was declared.

Resonant ultrasound spectroscopy (RUS) The resonant ultrasound spectroscopy is an
experimental technique made for the determination of elastic properties of anisotropic materials
developed by Demarest [DEMAREST, 1971]. It is the study of resonant frequencies spectra ob-
tained by a forced mechanical oscillation of a sample at a known frequency of excitation. The
resonant frequency is dependent on its symmetry, density, geometry and boundary condition. The
resonant frequencies can be calculated from known elastic constants, density and dimensions of
the specimen. Inversely, the elastic constants can be determined through the iterative calculations
from the measured resonance frequencies as shown in Figure 4 [ICHITSUBO et al., 2002].

The full matrix of elastic coefficients can be determined by RUS to a great precision with
one measurement, using the specimen with a simple geometry (cube, parallelepiped, cylinder
and sphere). The specimen is supported by its opposite corners between the transmitter and
receiver in the case of the cube or parallelepiped. The RUS has the advantage of a simple sample
handling (no gluing or clamping) since the specimen is held by a contact force and a possibility
of measuring both large and small specimens. Anisotropic samples need not to be oriented with
respect to their crystal symmetry axes.

The usage of the RUS is very suitable for elastic constant measurement of single crystals and
composite or technical materials with low attenuation properties. Some difficulties may occur
while complex materials having the complicated structure and attenuation such as the cortical
bone are being measured. The key factor for the reliable determination is to identify the vibration
modes (eight independent groups for the orthotropic material symmetry - one dilatational, one
torsional, three shear and three bend modes). The exact correspondence between the resonance
peaks and the vibration modes should be known. Otherwise the results should be unrealistic.

The RUS experiment on the cortical bone was performed for example by Lee [LEE et al., 2002].
Cubic-shaped specimens obtained from different locations of the bovine wet femur were used in
this study. Only the lowest mode of resonant frequencies was observed. This mode corresponds
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Fig. 4: Determination of elastic constants from the measurement and calculation of resonance
frequencies by the RUS method. (After Itchisubo et al 2002 [ICHITSUBO et al., 2002]).

to the torsional vibration mode and it is clearly distinguishable, because the torsional frequency
is far from the others [DEMAREST, 1971]. Only the torsional shear elastic constants cs4, c55 and
ces can be evaluated by this technique. Even through the simplicity of this experiment several
serious difficulties have occurred, the noise caused by the resonance of air interfered with the
RUS spectrum and one torsion mode was separated enough to be revealed by the RUS, but the
other two overlapped in the RUS spectrum. The average magnitudes of elastic constants cy4, Cs5
and cgg resulting from this study correspond to 5.1, 4.9 and 4.2 GPa respectively. The following
conclusion was declared by Lee [LEE et al., 2002]: the RUS of cubical specimens was found not
to be an effective tool for the study of damping and anisotropy of the bone because of the over-
lapping resonant peaks due to high damping of the bone at an ultrasonic frequency. The use of
rectangular samples rather than cubes in RUS allows determination of three shear moduli and
three shear damping values. For a future work, experiments using more rectangular specimens
rather than cubes are recommended.

Wang [WANG and LAKES, 2003] suggested usage of shear transducers instead of compressio-
nal ones. This has the following advantages: a meaningfully stronger signal at the fundamental
frequency, a rapid determination of the shear modulus, an identification of the vibration modes
using the polarization of the shear transducers and no resonance of air. Those advantages of shear
transducers were verified experimentally in this work on a technical material, but a verification
on a bone specimen is still missing.

On the other hand, the RUS scanning was used by Kinney [KINNEY et al., 2004] on the
human dentin, which is similar in its composition to a bone. The human dentin was assumed to
be the transversely isotropic material and RUS measurement was performed in the vacuum using
the foil transducers. All five elastic constants of transversely isotropic symmetry was successfully
determined without reporting any involvement and the RUS was rated as a suitable technique
for measuring elastic constants of the dentin.
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Theoretical background

Elastic waves in anisotropic solid
Hooke’s law

For a linear, elastic, homogenous, anisotropic material, assuming small deformations the genera-
lized Hooke’s law

0ij = Cijri€ul (1)

is valid, where 0;; and 5 are the stress and infinitesimal strain tensors and Cjj;j; is stiffness
tensor, of rank four, which expresses linear relation between stress and strain tensors of rank
two. The tensor Cj;; has 81 coefficients and due to a symmetry of the stress and strain tensor

0ij = 0ji (2)
Ekl = €Ik (3)

is this count reduced to 36 and furthermore due to a total differentiability of the deformation
energy [HEARMON, 1961] to 21 coefficients. Then the tensor C;jy; is often rewritten in the shorten
Voight’s notation as a matrix of elastic coefficients ¢;; [CHANDRASEKHARAIAH and DEBNATH, 1994,
HEARMON, 1961].

Christoffel equation

The equation of motion

== O 4
Potr = " gy 0, @)
where p is the mass density, and u(x,t) is a planar elastic wave propagating in direction n through

an observed material, can be obtained by substituting the Hooke’s law into an equation of the
equilibrium of a small volume of solid with no body forces acting

82ui 80‘1‘]‘

considering the infinitesimal strain tensor

A planar elastic wave u(x,t) propagating in a material can be represented by

u= Uei(kx—wt) ’ (7)

where U is the wave amplitude, w is the angular frequency, x is the position vector, and k is the
wave vector. On substituting (7) into (4), it is obvious, that w and Uy must satisfy the following
system of the so-called Christoffel equation

(Cijrikjky — pw?0i) Uy = 0 (8)

where 0, is the Kronecker’s symbol.
The phase velocity of a planar wave (7) and a wave vector k are defined as
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k=Fk-n, (10)

where k is the wave number, and n is the wave normal. Thus, the Christoffel equation can be
rewritten in the terms of the phase velocity

(C’ijklnjnl — pviﬁ,k) =0. (11)

Introducing the Christoffel’s tensor
Li = Cijmnjmn (12)

the Christoffel’s equation becomes
(Tir(n) — pv2ds) Uy = 0 (13)

and it can be treated as an eigenvalue problem of following relation

|Tir, — pv2din] = 0. (14)

It stands of a reason of the equation (13) that resultant phase velocities v, are independent
on the angular frequency w and the magnitude of the wave vector k, they are dependent only
on a direction of the vector k. As it follows from the definition of (12), the Christoffel matrix
I';, is symmetric and positively definitive, therefore its eigenvalues pvi7 are real positive and its
eigenvectors U create an orthogonal triplet. The equation (14) has in general three solutions
corresponding to the different modes of phase velocities propagation in a given direction n.

If the direction of one of vectors U is consistent with n, then this mode is denoted as a
longitudinal mode (L). Other two modes, which are polarized perpendicularly to the k are marked
as transversal (T). Both modes L and T correspond with the solution of the Christoffel equation
for an isotropic solid. For an anisotropic solid, the wave with the polarization closest to n is
called quasi-longitudinal (qL), and others are called quasi-transverse (qT).

The Christoffel’s tensor (12) for general anisotropic solid can be itemized into the following
expressions:

[11 = cund + ceen3 + cssni + 2c16n1n2 + 20150103 + 2056N2n03
Flg = clﬁn% + C26”§ + C45’I”L§ + <012 + Cﬁg)nlng + (014 + 056)n1n3 + (046 + 025)n2n3
F13 = 61571% + c46n§ + 0357L§ + (Cl4 + c5ﬁ)n1n2 + (613 + C55)ﬂ1n3 + (036 + C45)?”LQTL3
F22 = 066n% -+ 02277/% -+ C44TL§ + 2026n1n2 + 2046n1n3 -+ 2024712713 (15)
F23 = 056n% + 62471% + 03471% + <C46 + 625)111?12 + (036 + 045)n1n3 + (023 + 044)n2n3
F33 = c55n% + C447’L§ + ngng) + 2045n1n2 + 2635n1n3 + 2634n2n3
1—‘21 = F12 ;F31 = I‘13 ;F32 = I‘23~

Group velocity

The p (%)213 the eigenvalue of I';x(n) if the secular equation

W2
Flk(l’l) - pﬁézk =0 (16)

is valid. This equation can be written in the form
Q (k,w) = ‘ijijklkl — ,0(4)2(51‘/.3} =0 (17)

after multiplying by k?. This relations represents an implicit dispersion relation w = w(k) for
(qL) and (qT) modes of a wave polarization and it enables the i-th group velocity component to
be evaluated as

ow 081/ 0k;

(va)i = =55 = ~an/0w

(18)
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Written more comprehensively,
grad; )

00 /ow

where the gradient of €2 is taken with the respect to variables k; = 1,2, 3.

The group velocity describes the flux of the energy carried by the wave in contrast to the
phase velocity, which responds to the velocity of the phase fronts traveling. The group and phase
velocities usually differ in both the directions and the magnitude. The corresponding phase and
group velocities satisfy the equation [CHU and ROKHLIN, 1994]

(va) = (19)

VG =V, COSY (20)

where 1 is the angle between the wave vector and the energy flux directions. This equation
means that the ray surface is a tangent surface to the normal surface is a footpoint to the ray
surface [BALASUBRAMANIAM and WHITNEY, 1996]. The slowness surface, which is the inverse
surface to the normal surface and is polar reciprocal to the normal surface and vice versa. These
geometrical relations are defined in the Section and they enable experimentally obtained ray
surfaces to be converted into corresponding normal and contrariwise. However, simple relations
between group velocities and directions of propagation cannot be, in general, derived.

For an elastic half-space, where the free-surface conditions must be considered, the orthogonal
tripled by phase velocities, which are solutions of an equation (8) remain valid, but two other
types of a wave can be observed. These are the head-wave, and the surface wave of a phase velocity
very close to the slowest bulk mode. These waves are strongly attenuated with a distance from
the interface, limiting the bulk solution for unbounded media.

Matrix of elastic coefficients for orthotropic material

The crystallographic axes of the orthotropic system are orthogonal to each other and elastic

constants are invariant to the turning through an angle 7 around any crystallographic axis. The

orthotropic material is described by nine independent elastic constants and the matrix of elastic
coefficients has form

cii ci2 ¢z 0 0

Cl12 Cy2 C3 O 0

o c13 o3 c33 0 0

4 0 0 0 Cq4 0

0 0 0 0 Cs5

0 0 0 0 0 Ce6

, (21)

O OO OO

with the cartesian coordinate system denoted (z;,zs,23), configured identically with the natural
crystallographic axes of a material, is considered.
The Christoffel equation (8) for the orthotropic material and for the wave propagating in z;z,
plane is
clln% + CGG?’L% — pw2 (612 + 066) VANLD) Ul .
2 2 2 =0, (22)
(012 + 066) ning Ce6T] + CooTly — pW U2

for the wave propagating in z;zs plane it is

clln% + C55TL§ — pw2 (Clg -+ 055) nins Ul -0 (23)
(c13 + c55) nang Cs5ni + C33n3 — pw? Us
and for the wave propagating in z,z3 plane it is
CQQTL% + C44’I’L§ — pw2 (623 + C44) TiaT3 U2 _ 0 (24)
(023 + C44) TiaNg c44n§ + 03371% — pw2 U3 '
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The solution of the Christoffel’s coefficients for the orthotropic material is well described in
literature [AULD, 1973, GEISKE and ALLRED, 1974, ROYER and DIEULESAINT, 1996]. The for-
mulae published by Rho [RHO, 1996] derived for the contact pulse transmission technique mea-
surement of the cortical bone specimens (Figure 2) of a cubic shape are, for example, introduced
subsequently. The diagonal coefficients can be determined from ultrasonic measurements in main
crystallographic axes

— o2 2 2
C11 = pVy, Ca2 = PU3, (33 = PUg,
_ 2 _ 2 _ 2
Ca4 = PUg3, C55 = PU13, Ce6 — PU12, (25)
where v; is velocity of quasi-longitudinal wave in direction ¢ and v;; is a velocity of a quasi-

transverse wave traveling in the direction ¢, polarized in direction j. Elastic coefficients outside
the diagonal can be measured by wave propagation in (i + j)/v/2

Clo = \/(011 + co6 — 2pviy) + (C22 + co6 — 2pv3,) — Cos

c13 = \/(611 + €55 — 2pvi3) + (33 + ¢55 — 2pvi3) — G55,

Co3 = \/(022 + Ccqq — 2/)?)%3) + (c33 + Caa — 2/)033) — Cy4 (26)

where v;; is a a velocity of a quasi-longitudinal or a quasi-transverse wave traveling in the direction
(i + 7)/v/2 polarized in the ij plane.

The acoustic energy travels in the anisotropic materials with a group velocity vg which di-
ffers in the direction and the magnitude from the phase velocity. However, in case of immer-
sion measurements (Section ), we directly obtain the phase velocities [ENDERBY et al., 1998,
GEISKE and ALLRED, 1974] instead of group velocities resulting from the PS/PR measurements
(Section ) [SEINER, 2004, SEINER and LANDA, 2003, SEINER and LANDA, 2005].

Matrix of elastic coefficients for transversely isotropic material

The transversely isotropic material symmetry is a special case of the orthotropic symmetry and
it is described by five independent elastic constants

cii ci2 ¢z 0 0 0
ci2 ci1 ¢z 0 0
o — c13 c13 ¢33 0 0
4 0 0 0 Cqq 0
0 0 0 0 Cyq4
0 0 0 0 0 % (611 — 612)

1
and cgg = 2 (c11 — c12) - (27)

|
cooco

An z3 axis is directed along axis of symmetry (a fiber direction in composite materials, a direction
of Haversian system in bones) and plane z;z, is isotropic plane. The Christoffel equation (8) for
the wave propagating in z;zs plane is

c1in? + cyni — pw?  (c13 + cag) ning Ur | _y (28)
(613 + C44) nins 04471% + ngﬂ% — pr U3
and for the wave propagating in x;z3 is
cnnf + CGGTL% — pw2 (612 + 666) ning U1 —0 (29)
(012 + CGG) ning ngn% + cnn% - ,0(422 U2 ’

It is obvious from equations (28) and (29) that two modes of the wave propagation in z;z, exists
, i.e. the qL. and T modes. The unknown elastic constants for the transversely isotropic elastic
material can be obtained by qL. and qT wave propagation measurements in only two planes.
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Characteristic surfaces

Three characteristic surfaces are widely described in literature [HEARMON, 1961, MUSGRAVE, 1970,
ROYER and DIEULESAINT, 1996, SEINER, 2004] in order to illustrate the propagation of acoustic
waves in anisotropic solids or crystals. These surfaces can be defined by means of phase v, and
group velocities v, which are dependent on the normal direction n running along a unit sphere
and they can be treated as three closed surfaces in R®. The characteristic surfaces are valid for all
three modes of the wave propagation (two quasi-transverse qT and one quasi-longitudinal qL).

The normal surface is formed by the radius vector v, = v, (n) which is proportional to the
phase velocity in the normal direction n. The ray surface is a plot of the group velocity vector
v = vg (n) versus corresponding normal direction n.

The inverse surfaces can be constructed to above defined surfaces. The slowness surface is
defined as % (n) and the ray-slowness surface as é (n) for n running along the whole unit sphere
in R? again. The slowness surface can be also defined by means of slowness vectors s

s= (30)
v

The implementation of characteristic surfaces can be summarized as follows: The propagation
of acoustic waves in anisotropic solid is possible to distinguish by twelve closed surfaces in R?3,
because each of three modes of wave propagation (2 x qT and 1 x qL) appertains to the normal
surface, ray surface and two inverse surfaces running in all normal directions along the unit

sphere.

Waves on a solid /fluid interface

The wave propagation in unbounded media have been studied until now. The situation is more
complex if two generally anisotropic materials are in contact at their free surfaces. The model
situation (solution of the Christoffel equation) is the same for both cases, but the interaction of
these waves at a boundary must be dealt with. Let us define the incident wave

Ujnc = Uinc : éu(SinC.x*t)v T < 0 ) (31)

where s denotes the slowness vector, the superscript ;, means the incident wave and the coordi-
nate system is indicated on Figure 5. The incident wave can generate according to the Huygens
principle three reflected and/or transmitted waves (1 x qli, 2x qT). These are

u =0, - ei‘”(s“'x*t), 1 <0, (32)
u, = U, - x50 (33)

where the subscript , is for the reflected waves, the subscript ; is for the transmitted waves and
both subscripts run from 1 to 3 for each mode of the wave propagation. The situation, when only
the reflected waves exist, is called the total reflection and it is determined by critical angle (for
detailed description see [ROYER and DIEULESAINT, 1996]).

The reflection and refraction of elastic waves at a boundary between two anisotropic media
is described by the Snell-Descartes law. Even in our simpler case, where one of the media is
considered to be a non-viscous fluid, evaluation of paths of reflected energy fluxes is a significantly
difficult issue.

An interaction between a single planar wave and an anisotropic plate-like specimen is outlined
in Figure 5. The incident wave of a slowness vector s;,. is refracted into more separate waves in
the specimen, each travelling at its own group velocity in the direction of its energy flux. In Figure
5, only two of these waves (qL and one qT) are shown for clarity. Besides them, one more qT
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Fig. 5: An interaction of a single planar wave with an anisotropic plate-like specimen.

mode can be generated, or the surface wave can arise instead of one of the bulk modes, depending
on the angle of incidence [GEISKE and ALLRED, 1974, ROYER and DIEULESAINT, 1996].

ACCOI‘diI(lg t)o the Snell-Descartes law, the projection of the incident wave slowness into the
fluid

boundary s is conserved, following conditions for refraction angles Gy rand Gy
fluid . fluid .
v, sin « 4 v, sin o (34)
= an = .
ql i qT i
Vg s 5qL UV S 5qT

This relation expresses the Snell-Descartes law for elastic waves on the interface of two anisotropic
media: The slowness vectors of the reflected and refracted waves are contained in the plane of
incidence, defined by a vector normal to the interface and the slowness vector of the incident
wave. The projections of these slowness vectors onto the interface are equal to that of the slowness
vector of the incident wave.

Consequently, the angles 3, and B,7 determine the directions of refracted wave’s slowness
vectors, containing angles Wqand W,p with corresponding energy fluxes. At the second inter-
face, the Snell-Descartes law is implemented again, resulting in a set of separate parallel planar
(transmitted) waves of the same direction as the incident wave.

When the opposite surfaces of the specimen are not perfectly parallel, i.e. the specimen is
slightly wedge-shaped, the transmitted waves are planar again, but their directions may vary from
the direction of the incident wave. Furthermore, other deviations from a perfect rectangularity
of a specimen may distort both the parallelism and the planarity of the transmitted waves.

Ultrasonic evaluation of curvilinear anisotropic samples by the simplified
ray method

The simplified ray method

The well known theory of the acoustic waves propagation in solids was discussed so far. The quite
original approach of the interaction between the planar acoustic wave propagating in a liquid and
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a generally shaped anisotropic specimen is a subject of interest in this chapter. This interaction is
modeled by virtue of simplified ray method [CERVENY, 2001, PSENCIK, 2000]. The technique is
based on a wavefront substitution by the closely localized energy flow (ray) in every geometrical
point. The Chrristoffel’s equation along rays (8) and the ray behaviour at a solid/liguid interface
will be solved numerically afterwards. Rays in immersion are lines perpendicular to the wavefront
- the planar wavefront is replaced by the set of respectively parallel rays.

Subsequent simplifications are used in following considerations:

1. The problem is two dimensional. Only one of the main crystallographic planes of the ortho-
tropic material symmetry is contemplated.

2. The density is uniform in all geometrical points, only the anisotropy rotation in consequence
of a general shape of the specimen is studied. This conduces to preservation of the wave
vector in every ray point inside the specimen.

3. The multistage Runge-Kutta method is not used to the integration of the resultant equation
of motion, the simple summation of time increments through the specimen thickness is
utilized. This simplification significantly accelerates computation and will be discussed
later.

The generalization of the simplified ray method into three dimensions is elementary, however,
the full ray method for an inhomogeneous anisotropic medium should be used, taking the varying
density into the account.

Anisotropic orientation in curvilinear specimen

Let us consider a curvilinear orthotropic homogenous specimen, whose boundaries are described
by the set of points (X}, Y;!) and (X?,Y;?). Continuous boundaries are then replaced by bi-cubic
interpolation of contemplated points. The sample is regarded as unbounded in a direction 4y,
the z is a direction of an incident planar wave propagation. Main directions of the orthotropic
symmetry of the specimen boundary correspond with tangential (7) and normal (v) directions
(Figure 6). The orientation within the specimen is continuously merged to normal and tangent
into the boundary.

T(zy) \Te
T1
o,
P < ¢
y (x’ ) Ve
%] : §
f
(X'& 1y SPECIMEN (Xif Y‘e)
X

Fig. 6: The implementation of geometry and anisotropy of the specimen.

Let us introduce an angle ¢(z,y) as the angle between axes x and 7 in each point of the
specimen. This angle describes the anisotropy orientation in every point simultaneously. The
angle ¢(x,y) can be expressed as
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(X (Y) a2 + o(X%(y))
Q1+ Qo

¢<x ) y) = ) (35)
where ¢; and ¢y are distances of points (z,y) from the boundary along the z axis, X*(y) are
corresponding boundary points and ¢(X(y)) is an anisotropy turning inside these points (Figure
6). Axes 7 and v pass continuously at boundaries into a tangential and a normal direction to the
specimen upon thereby defined anisotropy.

The structure of the ray inside the specimen

Let us define the anisotropy orientation in each point of the sample by means of the angle
¢(z,y). The rays in this media will be designed on the basis of Huygens axiom [HELBIG, 1994,
MUSGRAVE, 1970], thus each point of the current wavefront is a new point source and those
newly generated wavefronts will be superimpose into new wave fronts.

Let us consider an infinitesimal section of the wavefront in an arbitrary point (z,y), which
can be approached by the plane. Let the normal to this wavefront in point (z, y) have a direction
n(z,y). Let us design two anisotropic wavefronts vodt for an infinitesimal time increment dt for
two points of this wavefront. The orientation of these wavefronts is defined by the angle ¢(x,y)
(Figure 7a).

SPECIMEN

T
T
T

1)/

(rtdr,y+dy)

'~ (a) (b)

Fig. 7: (a) The ray increment according to the Huygens axiom; (b) A successive ray construction
through the specimen thickness.

Tho common tangent line of these wavefronts indicates the orientation of a newly superposed
wavefront. Let us label the center of this wavefront as (z +dz,y +dy) and this will be considered
as a new point. The normal of this common tangent line is identical as the normal in a point

(z,9)
n(z,y) =n(z+dz,y +dy) . (36)

The orientation of the wave vector (normal to the wavefront) doesn’t change due to the arbitrarily
chosen initial point.

This direction is possible to determine for every ray at an input interface (X}, Y;!) according
to the Snell-Descartes law. The output interface (X?,Y;?) is a contrariwise determinative for
the refraction back into a liquid. The successive ray design following the particular increments
is demonstrated on the Figure 7b. The construction of every single ray is described by the

subsequent algorithm:
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Fig. 8: The interaction of planar wave with a strongly anisotropic tube. (a) The path of one ray;
(b) The complete interaction.

1. Let us select coordinate y, determining the location of the incident ray in a liquid. The inci-
dent ray point at the input interface of the specimen for this coordinate will be established
consequently (X!, YV} = y).

2. The initial point is (z,y) = (X2, Y}). The time of propagation is ¢ = 0.

3. A new direction of the wave vector n(z,y) is prescribed according to the Snell-Descartes
law. This direction is constant along the entire ray. The anisotropy orientation ¢(x,y) at
the interface point indicates a direction of the tangent line to the interface.

4. The direction corresponding to the group velocity

VG(Sin ¢(.CC, y)7 COS ¢($7 y))
is now calculated for the direction of the wave vector n(z,y) in 7 a v coordinates.
5. The projections of the wave vector into = and y axes, labeled as vE a vy, are computed.

6. A new initial point
r =+ vidt, y =y +vidt (37)

is chosen, where the dt is a small time increment.

7. If a new point (z,y) lies inside the specimen, a time increment ¢ = ¢ + d¢ is added and the
whole algorithms returns to item 4.

8. If the output boundary of the specimen is reached, the point of an incidence at the output
interface is founded and the direction of a refraction according to the Snell-Descartes law
is determined.

An example of a modelling of the complex interaction of a planar wave in an anisotropic
curvilinear specimen is illustrated on Figure 8. The Carbon Fibre Reinforced Plastic (CFRP)
[SEINER, 2004], the material having the transversely isotropic symmetry, is introduced as a model
example.
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The time increment d¢ = 0.05 us was charged during calculations, which corresponds to 100
points of every ray inside the specimen. The stability of computations was validated by a further
step reducing except for 1 ns and no influence upon ray shape and the resultant ray direction
was observed. The time step decreasing considerably slows down the computations and forbids
the inverse problem of the elastic material properties determination.

Determination of elastic coeflicients and error estimation

Determination of elastic coefficients via ultrasonic measurement

The wave propagation in anisotropic solids can be characterised by twelve close characteristic
surfaces in R3 (section ). Arbitrary three characteristic surfaces appertain to three different
modes of the wave propagation (one quasi-longitudinal - qL. and two quasi-transverse - qT) and
remaining nine surfaces can be derived from geometrical relations. These surfaces are results
of a direct problem, which consists in an evaluation of the wave fields in anisotropic media
for known elastic constants. A complete knowledge of the characteristic surfaces is practically
impossible, the measurement of wave velocities propagating through the examined material is
often limited by the sample geometry, so only a part of characteristic surfaces can be obtained,
and measured velocities are also distorted by some experimental error. If some of these surfaces
can be obtained experimentally, the anisotropy of a material can be assessed, or contrariwise, if
the material symmetry is known, elastic coefficient can be determined from velocity measurements
for a specific direction major to the known symmetry.

Direct solution of inverse problem

The vectors of phase and group velocities are identical in the case of the elastic wave propagation
through particular directions of the anisotropic solid of the higher material symmetry (e.g. cubic,
orthotropic or transversely isotropic symmetry). These are axes of the crystallographic symmetry.
Explicit relationships for phase velocities propagating in these directions can be easily derived.
Another significant crystallographic directions are directions, which inhere in crystallographic
planes, but they are not axes of the symmetry. Phase and group velocities are not identical in
these directions, but the analytical relationships for the phase velocities determination can be also
easily arranged especially in directions of the Cartesian coordinate system. The Christoffel matrix
(14) and the solution of eigenvalue problem are significantly simplified under these circumstances.

The direct solution of the inverse problem is equivalent to the solution of the direct problem
and can be resolved by the subsequent procedure:

1. The Christoffel equation (8) and the secular equation (14) assemblage for a given material
symietry.

2. A solution of the direct problem, i.e. selection of above described crystallographic directions
for a given material symmetry, so that the secular equation 14 can be solved analytically
and the phase velocity relationship v, = v, (n, Cj;i;) can be derived.

3. The experimental determination of phase velocities in selected directions and the solution
of system equations for the Cjj.

The example of analytical relations for the orthotropic material are introduced in section
(equations 25 and 26).
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Numerical formulation of inverse problem for phase velocities

The inverse problem denotes a situation, when input data for some algorithm (function, functio-
nal, operator etc.) are to be reconstructed from that algorithm’s results. In our case the inverse
problem consists in determination of elastic coefficients of the examined material from a set of
phase velocities in various directions [BALASUBRAMANIAM and WHITNEY, 1996],
[ROKHLIN and WANG, 1992]. Then the formulation of the corresponding inverse problem is quite
simple. Let us recapitulate that the phase velocities for a given wave normal n are evaluated from
eigenvalues of the Christoffel matrix (14), which is uniquely determined by this wave normal n
and the elastic coefficients c;;.

The superscript exp will be used to distinguish the experimentally obtained velocities (vffp)
from those evaluated for known elastic coefficients via the above described theory (v,).

Let a given wave normal n and a corresponding phase velocity vg™ (n) of at least one mode
of the propagation is available. Then the problem consists in determination of the matrix I (n)
so that some of its eigenvalues are equal to the experimentally obtained velocity v (n). For
a known class of symmetry, the structure of I' (n) is known as well and the problem can be
formulated by the following nonlinear equation in ¢;; :

det[I'(cyj,m) — p(v5"(n))"T] =0, (38)

where I is the unit matrix.

However, the number of unknown elastic coefficients is usually too large to be uniquely de-
termined from such single equation (38). Then the phase velocities is additional directions are
taken and a system of nonlinear equations arises

det [F (cij,n™) — p (v (n(”))2 I} =0
; (39)
det [T (ci5,n) = p (02 (n™))*1] = 0

For exactly correct values of v (M) = v, (n*~N)) the equations (39) are not mutually
independent and they can be satisfied all at once by correct values of c¢;;. When the values
vgr (n(l'”N )) are experimentally distorted, the problem must be solved by an optimization pro-
cedure, which determines the coefficients ¢;; so that the system (39) is optimally satisfied. As a
suitable criterion for optimal satisfaction of (39) the least squares measure

i {det [F (cijy n(”)) —p (v;xp (n(I)))2 I} }2 — IIclzljn , (40)

can be used.
When the solution of the direct problem can be obtained for every n and every c;; in form
v, (¢;5, 1), the whole problem can be reformulated into the minimization of a quadratic sum @

(UQP (cij, n(”)) — vff” (n(”)))2 — min . (41)

Cij

NE

Q=

n=1

Let it be highlighted, that the wave normal n in (39), (40), (41) is known. This fact crucially sim-
plifies both the formulation and the solution of the inverse problem for phase velocities in a com-
parison with a similar problem for group velocities [AUDION, 2002, CASTAGNEDE et al., 1990,
CASTAGNEDE et al., 1991, EVERY and SACHSE, 1990, KiM and SACHSE, 1995, SACHSE et al., 1998,
Wu and Ho, 2005].
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The algorithm developed to solve the optimization problem (41) is universal; it can be applied
to a set of phase velocities in arbitrary general directions of every class of symmetry. Moreover,
by such algorithm, the class of symmetry of the examined material can be estimated when a
sufficient amount of input data is available [SACHSE et al., 1998].

For every wave normal n and for known elastic coefficients c;;, all three eigenvalues of the
Christoffel matrix (14) can be at least numerically evaluated. Then the resultant phase velocities

(1’2’3) , corresponding to particular modes of the propagation, can be compared with the experi-
mental data ve _ in directions n; . If ¢;; is a quess of elastic coefficients, the quadratic sum
(41) takes the form

2

N
Q= Z Vg (Gj 1) — 057 (1)) (42)

The coefficients ¢;; that minimize the function (43) are sought.

For a numerical multidimensional minimization, a preprogrammed Matlab routine fmin-
search.m [Mat, 1999] is used, which employs the simplex search method. It is a direct search
method that does not use numerical or analytic gradients. A simplex in an n-dimensional space
is characterized by the n+1 distinct vectors that are its vertices. In a two-dimensional space, a
simplex is a triangle; in a three-dimensional space, it is a pyramid. At each step of the search,
a new point in or near the current simplex is generated. The function value at the new point is
compared with the function’s values at the vertices of the simplex and, usually, one of the vertices
is replaced by the new point, giving a new simplex. This step is repeated until the diameter of
the simplex is less than the specified tolerance. Such method is especially proper when every eva-
luation of the minimized function is complicated and covers a considerably long time period, as
it is in case of solution of the eigenvalue problem (14). The simplex method was proved suitable
on many of similar optimizing procedures [CASTAINGS et al., 2000, LEMATRE, 2002].

The simplex method is quite immune from discontinuities of the Q (especially if these are far
from the sought minimum [Mat, 1999]), but it can collapse in case of narrow extremes. When the
initial guesses are close to some local extreme, the simplex method can converge to it. Therefore,
the minimization is sometimes repeated by launching the simplex from the found minimum. If it
was a global minimum, the simplex returns to it, if it was local, another extreme would be found.

Error estimation

To estimate the accuracy of the optimization procedure’s results, no appropriate analytical appro-
ach is available. The only possible solution is, thus, the Monte Carlo simulation, based on running
the whole optimization process several times with randomly distorted input data. The Gaussian
statistic made over the set of results is then expected to reveal the reliability of optimized co-
efficients [CHU and ROKHLIN, 1994, DEGTYAR and ROKHLIN, 1997, EVERY and SACHSE, 1992,
SEINER and LANDA, 2005]. In this work, we have treated the wave arrival times to be determined
accurately. In other words, the inaccuracy of the wave front arrival’s detection was expected to be
incomparably smaller than other possible sources of the procedure’s failure taken into an account.
These are the variability of the specimen’s thickness and, even more important, the variability
of the zero angle determination. Both of these inaccuracies were involved in our Monte Carlo
simulations, considering the thickness and the specimen’s orientation to be normally distributed
about the correct values. Moreover, for the bone specimen, some variability of the mass density
was admitted. Then the procedure was repeated 30 times to generate a representative set of
output data.

Although this set cannot be expected to be governed by a normal distribution, its variability
can be approximatively expressed by the usual Gaussian statistic quantities, namely by the
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standard deviations

Lo J\ 12
_ k) _ =
SDij = (m Z (Cij — Cij) ) s <43)
where by the overlining we denote the mean value of cij , averaged for all n passes of the inverse

procedure. In our case, n = 30.
Then we present our results in a form

iy = Cg;zndistorted) + SDU : (44)

where the original procedure’s result cgndmorted) is usually not exactly equal to the mean value
Eij-

Obviously, the presented standard deviations cannot be treated absolutely, but they bring
a valuable insight in how sensitive and stable the optimization procedure is for each particular

coeflicient.

Experiment

The aim of the experimental part of this thesis was to develop a methodology and experimental
devices for the measurement of elastic coefficients of cortical bone samples, which are considered
to be an anisotropic, homogenous and linear elastic solid (according to section ). The experimental
technique should be suitable for a non-destructive measurement of specimens of a general shape.
The methodology and the device should be proposed with a respect to a light preparation of
specimens, the wave propagation in multiple variety of directions without cutting the specimen,
the rapid and simple evaluation of elastic coefficients and experimental errors.

The immersion through the transmission technique was chosen as an optimal experimental
technique for the elastic constants measuring according to above described requirements. The
ultrasonic immersion scanner was built as an appropriate experimental device. Plate shaped
composite anisotropic specimens of well known elastic properties from the previous point source
- point receiver (PS/PR) measurements were used as a test material for immersion measurements
at first. The isotropic PMMA tube shaped specimen was measured afterwards. The bovine femoral
cortical bone, thus the specimen of a general geometry was tested lastly. Additional measurements
of the bone were performed after cutting the bovine femur to cube shaped samples via the contact
pulse transmission technique and the resonant ultrasound spectroscopy.

The PS/PR measurements of a composite material were not a part of this work. They were
achieved previously and they are reported in the master thesis elaborated by Hanus Seiner
[SEINER, 2004]. All others ultrasonic experiments were performed in the Institute of Thermo-
mechanics, Academy of Sciences of the Czech Republic (ASCR) under the supervision of Michal
Landa and with the technical support of Hanus Seiner and Poemysl Urbanek. The preparation of
specimens was ensured in the Institute of Dental Research of the First Medical Faculty of Charles
University and the General Medical Hospital in Prague in cooperations with Lucie Himmlova.

Samples
Test samples

The composite anisotropic and isotropic materials of plate and tube shapes were used in this
study. These materials were utilized as etalon specimens for the experimental device and me-
thodology testing. The plate specimens were made of an unidirectional CFRP (Carbon Fiber
Reinforced Plastic, manufacturer: La-Composite Letov ATG, Ltd., prepreg: Fibredux S913C-
HTA-(12k)-5-40%) with an orientation of fibres parallel to specimen’s surfaces. The material
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symmetry of specimens was presumed as transversally isotropic, where the rotational axis x5 was
given by the direction of the fibres. The dimensions of specimens were 120 mm x 120 mm, the
approximate thicknesses were 1.95, 3.65 and 7.51 mm. All five elastic constants (c11, c12, c13,
¢33 and c44) were known from previous ultrasonic measurements (PS/PR technique) [26, 27,
28]. The tube specimen was made from a PMMA (inner diameter = 24 mm, the outer diameter
= 30 mm). The tube was provided with the slot in the axial direction, so only one wall of the
specimen was exposed to the wave propagation. The similar slot was cut into the bone sample.

Bone samples

For the ultrasonic measurements, a dry bovine cortical femur diaphysis without a marrow was
used. Bovine bones were assumed to be orthotropic and the x3 axis was parallel to the bone fibers.
The x; axis corresponds to a radial direction and the x5 axis corresponds to a circumferential
direction. The orientation of the bone specimen in respect to the cartesian coordinate system is
introduced in Table 4.

Table 4: Bone orientation in respect to the coordinate system.

T Radial direction Anterior-Posterior
z9 Circumferential direction Medial-Lateral
x3  Longitudinal direction Superior-Inferior

The epiphyses of the bovine femur were cut and a marrow was removed. Afterwards, the bone
was boiled, immersed in the lye and sterilized in the autoclave. Then the axial slot was cut in
order to obtain two samples (Specimen I, Specimen II - Figure 10) and then the marrow was
removed.

The shape, thickness and curvature of specimens were measured by a contact probe, which
was located in the CNC milling machine (Micronex FC 16 CNC - Figure 9). The scanned area is
marked on Figure 11. The CAD reconstruction of shape measurements of both parts of the bone
is shown on Figure 10. The knowledge of the specimen shape was important for a modelling of
the wave propagation in an anisotropic media via the simplified ray method and for an evaluation
of elastic constants.

The Specimen I have used for the immersion measurement of an area marked on Figure 11.
All nine elastic coefficients were determined from this sample, except the constant cy3, which was
evaluated via the contact measurement of the specimens 3 and 4. These samples were cut from
the Specimen I (Figure 12). Slice shaped specimens 1,2,5 and 6 were obtained from Specimen I
and they were used for the c33 contact measuring by the contact technique in different locations
of the bone in order to detect the heterogeneity of elastic properties along the bone shape. These
locations are marked by letters A, B, C, D, E and F on each slice of the specimen (Figure 12).
The contact technique was also used for the measurement of elastic constants cy1, c22, ¢33 and c19
of cubic samples 2, 4, 5 and 6 (Figure 13). Moreover cubic samples 2 and 6 were used for the RUS
measurement. The specimen cutting was realized by the virtue of the low speed saw ISOMET.

Experimental devices and techniques
PS/PR technique

Group velocities in various directions in both specimens were experimentally obtained by a point-
source/point-receiver (PS/PR) technique [SEINER and LANDA, 2003, SEINER and LANDA, 2005],
as it is outlined in Figure 14.
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Fig. 9: The bone specimen and its shape measurement.

(a)

Fig. 10: CAD reconstruction of shape measurements of the bovine femur.
(a) Specimen I, (b) Specimen II.
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1 (P-A, radial direction)

3 (S, lonnditudinal
direction)

2 (M-L, circumferential

direction)

direction of scannil

Fig. 11: The specimen I used during the immersion measurement. The circle shows area of the
investigation via the immersion measurement. The arrow shows the range of shape scanning on
the CNC milling machine.

Fig. 12: Cutting the specimen I into slice shaped samples and labeling of different locations along
the slice specimen for a determination of the ¢33 constant.

3 (8, lonnditudinal

1 (P-A,radial direcion)
direction)
2 (ML, crcumferentil

P

direction)

Fig. 13: Cutting the specimen II into cubic samples.
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Fig. 14: Experimental set-up for PS/PR measurement.

stepper motors

translation rotation
PC stage | | stage ‘

PR
system

=T — —
|~ rechiver —— —
oscilloscope | sample_—[—

alele:

Fig. 15: Experimental set-up for immersion measurement.

The point-like source was implemented by a focused laser beam, the point-like receiver by
a miniature piezoelectric transducer. Two receivers (a and [f)were situated on opposite free
surfaces of the specimen, facing each other. The source was equidistantly moving either along
the circle (polar scanning) or along one of the symmetry directions (linear scanning). Then the
signals detected on transducers corresponded to various directions of the wave propagation in
the specimen.

Immersion technique

The ultrasonic immersion scanner (Figure ) was designed to measure the time of flight (TOF)
and the amplitude of received pulse after the transmission through a sample in the Laboratory
of nondestructive testing and material evaluation in the Institute of Thermomechanics, ASCR.
The specimen is rotated and immersed in a water between two ultrasonic transducers. The
transmitting transducer is fixed and the receiving transducer is adjustable by the translation
stage. The scanner allows to measure longitudinal and quasi-transverse waves velocities in a wide
range of directions in order to recover the whole set of elastic constants without cutting the
specimen. The device can be modified for a pulse-echo measurement, using a tile as an acoustic
mirror instead of the receiving transducer.
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The entire experimental process is controlled by a PC using two stepping motors for moving
the sample and the receiver transducer. The entire measuring was controlled by the SW Testpoint.
The high frequency Pulse/Receiver system (JSR Ultrasonics DPR 50+) is used for generating and
receiving a pulse, which is connected with two 2.25 MHz, 0.5 in diameter ultrasonic transducers
made by the Panametrics, Inc. The receiving signals from the sensors were recorded by a digital
oscilloscope (DSO - LeCroy 9304AM).

Contact pulse transmission technique

The simple contact pulse transmission technique was used for a measurement of slice shaped
and cubic specimen (Section ) obtained by the bone cutting. The measurements were performed
by using two longitudinal (Ultran - frequency 2.25 MHz, diameter 0.25”) and two shear (Ultran
- frequency 2 MHz, diameter 0.25”) transducers. The usage of Pulse/Receiver system and the
digital oscilloscope were the same as for the immersion measurement (JSR Ultrasonics DPR 50+
and DSO - LeCroy 9304AM).

Resonant ultrasound spectroscopy

Another experimental ultrasonic based technique useful for determination of matrix elastic co-
efficients is resonant ultrasound spectroscopy (RUS). Principles of this technique are briefly de-
scribed in Section . The RUS technique is based on the measurement of amplitudes of excited
harmonic vibrations and the evaluation of resonant frequencies of an examined specimen of a
known shape, material symmetry and approximately known elastic coefficients. A process of the
RUS measurement is schematically outlined in Figure 4 and can be described by following steps:

1. the specimen preparation. In our case were chosen the cubical specimen no. 4 and 6 (Section
), because these two samples were geometrically the closest to the ideal cube.

2. the calculation of resonant frequencies - a direct problem. This approach is based on the
Hamilton’s variation principle (free vibrations of an elastic solid corresponds to stationary
Lagrangian). The Lagrangian

1 o 1 Oou; Ou;.  Ou,  Ouy
[ == iOis — = Oy (—2 Jy (£ 2 4
9 ///[puzujam 4 Cl]kl(axj + 69@)(8@ + axk)]dv ) ( 5)

where p is the density, u; is the displacement vector, Cj;x; is the tensor of elastic coefficients
and the integration is over the volume of the solid V; is designed for a given system, then
minimized and the whole problem is conveyed to the solution of the eigenvalue problem.
This procedure is described by Demarest [DEMAREST, 1971] in detail.

3. the measurement of a resonant spectrum. During the measurement, cubical samples were
supported by their corners between two ultrasonic transducers (transmitter and receiver).
This bearing provides elastically weak coupling to the transducers, hence a minimal inter-
ference with the vibration, a minimal shift in a resonant frequency and a minimal parasitic
damping is expected [WANG and LAKES, 2003|. The exciting transducer was connected to
the signal generator (Stanford Research Systems - Synthetyzed Function Generator - mo-
del: DS 345, 30 MHz) and the receiver was connected to the Lock-in Amplifier (Stanford
Research Systems - model SR 844 RF). Both devices were linked with a PC, where the
measured data were collected by means of the SW Testpoint. Both transducers, the com-
pressional and shear ones, were used during the measurement. The shear transducer was
used pursuant to a recommendation of Wang [WANG and LAKES, 2003]. The usage of a
shear transducer instead of a compressional one has the advantage of the stronger signal,
easier identification of vibrational modes via changing the polarization of transducers and
an absence of the wave propagation in air.
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4. the evaluation of the measured frequency spectrum and the determination of resonant
frequencies. This task is important for the exact determination of resonant frequencies of
the measured spectrum, which is afterwards used as an input argument into a minimization
(next event). The simplest, but the most inaccurate method is the local maximum search in
the measured spectrum. Further, more advanced approaches may be used for the evaluation
of this problem such as a statistical access [?] or an evaluation of the transfer function from
the measured data [KOZANEK, 1982]. These methods implicate the shape of a resonant
peak and take the measure of a statistical fluctuation (noise).

5. the evaluation of resultant elastic coefficients - an inverse problem. The minimization of
calculated and measured perturbations of resonant frequencies.

Results

Validation of immersion technique via PS/PR measurements

The results from the PS/PR (point-source/point-receiver) technique performed by Seiner and
Landa [SEINER, 2004, SEINER and LANDA, 2003] on the transversely isotropic CFRP composite
specimen of the thickness 7.51 mm (section ) were used for a validation of the immersion technique
methodology and a verification of the function of the acoustic scanner (section ). Coefficients ¢y,
c12 and cqy were determined directly from velocities v(%) (longitudinal mode, v=3.005 mm/ ys),
vT) (transverse mode, polarized normal to the fibres, v¥)=1.447 mm/us) and v*? (transverse
mode, polarized parallel to the fibres, v(7?=1.819 mm /ps) lying in an isotropic plane via the pulse
echo measurement. The relationships between measured phase velocities and elastic constants is
given by the following formulae [EVERY and SACHSE, 2001]:

T1)>2 (T2))2 7 (46)

c11 = ,O(U(L))Q, Cla = €11 — 2,0(1)( , and cq4 = p(v
where p is a density of the examined material (p=1.52 g/cm?). The remaining coefficients ¢;3 and
c33 were evaluated inversely from a set of quasi-longitudinal (qL) group velocities [SEINER, 2004]
experimentally obtained from the PS/PR measurements. A slightly orthotropic behaviour of the
sample was observed by a difference between the coefficient ¢;; determined from the pulse echo
measurements and that from the inversion of PS/PR measurements. This error was removed by

involving both, the quasi-transverse(qT) and the qL. waves into the inversion procedure.

Table 5: The comparison of elastic coefficients of the 7.51 mm thick CFRP plate specimen. Elas-
tic coefficients were experimentally obtained by the PS/PR [SEINER, 2004] and the immersion
measurement (Section ). Values are introduced in GPa.

Elastic constants PS/PR technique Immersion measurement

C11 14.43 15.98
C12 7.79 9.62
C13 6.73 7.09
Ca3 119.54 123.20
Cq4 5.34 5.62

After involving the qT waves velocities, final resultant elastic coefficients are presented in
Table 5. This table also contains the comparison with the immersion measurement (Section ).
Normal surfaces (plots of phase velocities propagating in wave normal directions) for both, the
PS/PR and immersion measurements are introduced in Figure 16.
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Fig. 16: Comparisons of the PS/PR measurement [SEINER, 2004] and the immersion measure-
ment (Section ) of the CFRP plate specimen (thickness 7.51 mm).

Solid lines represent normal surfaces of one qL, qT and pure transversal T waves obtained from PS/PR
measurement. Circles represent adequate values of velocities obtained from the immersion measure-
ment. The horizontal axis v,3 corresponds to the phase velocity propagating in the x3 direction (fiber
direction). The vertical axis v, corresponds to the phase velocity propagating in the z; direction (per-
pendicular to the plate).Values are introduced in [mm/us].

Immersion measurements

The leading experimental data of this work related to the previously described ultrasonic immer-
sion technique (Section ) are introduced in this chapter. The measurement of CFRP plates of
the known material symmetry (transversely isotropic) was evaluated firstly in order to provide a
tuning of the experimental methodology. The ultrasonic pulsed through the transmission method
with the rotating specimen immersed in a water and one stationary and one movable transducer
(Figure ?77?). The stationary transducer was used as a transmitter, the movable transducer served
as a receiver.

The ultrasonic scanning procedure was following. The incident wave propagated through a
water towards the liquid/specimen interface, where the wave was refracted into qL. and qT waves
(Figure 5), or pure longitudinal (L) or pure transverse waves (T') for a propagation in an isotropic
plane, in an agreement with the Snell-Descartes law (34). Both refracted waves continued in the
propagation inclined about the angle of refraction (34) afterwards. Refracted waves were captured
by a movable receiver, which scans in a parallel way to the transmitting transducer edge. Then,
the specimen was rotated about a prescribed angle and the whole process was repeated. The
time of flight (TOF - the time of wave travelling on a path between two transducers) and the
amplitude of a signal were monitored. The measures without a specimen had to be also performed
in order to determine the wave propagation and adjust the experimental device.

The through transmission immersion measurements suggested not to be very reliable, T and
qL modes interfered with each other for some angles of the incident, the qT mode wasn’t apparent
for other angles (Figure 17). This situation occurred for both modes of the measurement, the
propagation in isotropic and anisotropic planes of the specimen. This technique also proved to
be very sensitive to the precise geometry adjustment of the experimental device.

This unsatisfactory results of the through transmission measurement were improved by a
modifying of the experimental set-up into a pulse-echo configuration (Figure 18), using a tile as
an acoustic mirror instead of the receiving transducer. In this set-up, only one transducer was
used as a transmitter and receiver. This transducer was movable in a case of the composite plates
measurement in order to examine different locations of the sample. The measuring procedure was
following.
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Fig. 17: The maps of signal of immersion through transmission measurement. The specimen
CFRP plate, anisotropic plane, thickness 8 mm, incident angels 6°, 8° and 10 °.
gL - quasi-longitudinal wave, qT - quasi-transverse wave

The incident wave traveled towards the specimen interface where it was refracted into the qL
and qT waves around the angle of refraction and hereafter both waves impacted the reflector.
Reflected waves travelled back towards the transducer along the exactly same path as incident
waves and both waves were received. The main advantage of the pulse-echo technique in a com-
parison with the through transmission technique was a clear resolution of qL. and qT modes of
the propagation, the explicit TOF determination and the simple and rapid adjustment of the
experimental device.

The evaluation of elastic coefficients was performed by a solution of the inverse problem for
phase velocities (Section ). Input phase velocities and their directions of the propagation into
the inverse algorithm are obtained from maps of signal (Appendix ??). The stability of resulting
data was evaluated by the statistical method based on the Monte Carlo simulation (Section )
and all output data resulted from the minimization approach are presented in 44 form.

The above described procedure is sufficient for the evaluation of elastic constants of plate
shaped specimens. For the specimen of a general shape and an anisotropy, the wave propagation
was modelled via the simplified ray method (Section ) in two dimensions. This simulation was
used in the case of the wave propagation through the isotropic tube and the bone specimen and
is mentioned in the following chapter.

Evaluation of elastic constants from immersion measurements

Preliminary tests on CFRP Plates The first satisfactory results of the elastic constant mea-
surement of the CFRP (Carbon Fibre Reinforced Plastic) via the ultrasonic immersion technique
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were extracted from the pulse-echo configuration of the measurement (Figure 18). This set-up
consisted of one transmitting and receiving transducer and one acoustic reflector. The specimen
was placed between the transducer and the reflector, and it was rotated in a wide variety of
directions. The entire measuring configuration was immersed in a distilled water. The principle
of this measurement was closely described in the previous section (Section ).

PULSER/RECEIVER
2.25 MHz/0.5"

40103143y

L1

Fig. 18: The diagram of the pulse-echo measurement of CFRP plates.

The specimen was placed in the distance L1=83 mm in front of the transducer, the distance
between the transducer and the reflector was L=232 mm (Figure 18). The temperature varied
during measurements of all three CFRP plates from 20.7°C to 21.5°. Each specimen was examined
in isotropic x125 and anisotropic xz3 planes (Figure 19).

X2
X1
O e e R
Gt it e i X3
e e (e | (Fiber direction)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 19: Coordinates and the fiber direction of CFRP composite specimens.

During the measurement, the time arrival of the wave on its path from the transducer to the
reflector and back without the immersed specimen was detected, then the specimen was rotated
from the angle -40° to the angle 40° per the step of 5°, whereas the zero angle was prescribed
to the parallel position of the specimen to the reflector and the face of the transducer. The
raw data collected from the oscilloscope are introduced in the Appendix 7?7, 77 and 77 in the
form of a signal maps. This figures show the maps of signal for the measurement in isotropic
and anisotropic plane for each of three CFRP plates specimens (thicknesses 1.95, 3.65 and 7.51
mm). Time arrivals (TOF) of L and T waves (pure longitudinal and transverse) in the case of
isotropic plane measurements or qL. and qT (quasi-longitudinal and quasi-transverse) in the case
of anisotropic plane measurements were detected from the maximal amplitudes of the signal.
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Thereby evaluated TOF’s for different angles of the specimen rotations were used as an input
data to the inverse problem (Section ) in the form of phase velocities. The resultant matrix of
elastic coefficients ¢;; (27)

ci1 ci2 c3 0

ci2 ci1 c3 0

o — ci3 ¢z c33 0
Y 0 0 0 Cqq
0 0 0 0 Cqq

0 0 0 0 0 % (cll - 012)

and Ce6 — § (011 - C12)

o O OO
O OO OO

expresses in form (44) calculated from the optimization (41) is presented in the Table 6. The
input inaccuracies involved into the Monte Carlo simulation (Section ) are thicknesses of the
specimen (d==£0.05 mm) and incident angle deviations (o = £0.5°).

Table 6: Resultant elastic coefficients ¢;; of CFRP composite specimens in form (44). Values are
expressed in GPa.

Thickness d [mm|] 1.95+0.05 3.65+0.05 7.51+0.05

c11 [GPa] 1243 £0.44 13.87+0.34  15.98 +0.22
c12 [GPa] 507 +0.74  7.05+051  9.62+0.22
c13 [GPa] 823+099  7.07£0.70  7.09+0.39
c33 [GPa] 125.63 £8.77 123.67 £7.13 123.20 £3.35
cq4 [GPa] 563 +£0.05  5.67+0.06  5.62+0.06
Density p[g/cm3] 1.6 1.6 1.52
10 T T i T 10 T T T T 10
9 9

Bh\;\ , 8\

Fig. 20: Plots of the phase velocities [mm/us| propagating in the wave normal directions through
CFRP plate specimens of 1.95, 3.65 and 7.51 mm thicknesses.

Circles - experimentaly obtained data, Solid lines - phase velocities for calculated c;;.

Horizontal axis - phase velocity in 1 direction (perpendicular to the plate), Vertical axis - phase velocity
in x3 direction (fiber direction).

The normal surfaces (the plot of phase velocity v,(n) versus the wave normal direction) of me-
asured phase velocities of acoustic waves propagating through CFRP plate specimens of different
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thicknesses in the anisotropic zyx3 plane are demonstrated in Figure 20. This figure represents
experimentally obtained phase velocities and their fitting to the normal surfaces evaluated for
¢;; resulting from the minimization (41). The phase velocities of the wave propagating through
the 7.51 mm thick CFRP specimen obtained by the PS/PR and the immersion technique are
compared in Figure 16.

Results for an isotropic PMMA tube The evaluation of an acoustic wave propagation
through the bone specimen of a general shape is not, to my best knowledge, currently solved in
a scientific literature. Only the work of Detti [DETTI et al., 2002] deals with a model of wave
propagation in a cylindrical tube. This theory and the related experiment are described in the
Section in detail.

This part of the experiment is focused on the wave propagation in an isotropic tube made of
PMMA, which is the material of well known elastic properties. The purpose of this experiment is
not only a determination of elastic constants of the specimen, but also an experimental validation
of a simplified ray model described in Chapter . A successive handling of this problem is essential
to the solution of a more complex problem such as the wave propagation and the elastic constant
evaluation of the bone sample (more general geometry, higher class of anisotropic symmetry).

The axial slot was cut in the PMMA tube in order to simplify the propagation of wave through
the specimen; the complicated solution of refracted waves inside the tube (Detti [DETTI et al., 2002])
falls off this way. The measuring configuration is the pulse-echo, immersed in a distilled water,
similar as in the previous chapter (see Figure 18). The transmitting and receiving transducer
is stationary in this case, pointed towards the center of the tube curvature. The three different
modes of the measurement (mode C, D and I) are distinguished.

rotation rotation

incident wave

transmited

wave transmited

wave M

axial plane - —
P incident wave

(a) (b)

Fig. 21: Modes of the wave propagation through the PMMA tube. (a)Mode C, (b) Mode D.

Modes C and D (Figure 21) are intended for the evaluation of elastic coefficients. Both modes
are configured horizontally, so the wave propagation takes place in an axial plane of the tube
and is not being influenced by the curvature of the specimen at all. During the measurement,
the reflector was stationary adjusted parallel to the transducer front. The specimen was rotated
in the range of -50° to 50° per the step of 2° for the mode C and of -40° to 40° per the step of
2° for the mode D. The measurement without the specimen was performed at first in order to
determine the velocity of wave propagation in a water.

Measured raw data from modes C and D are introduced in the form of maps signal in Ap-
pendix ??. The shape of the signal and velocities calculated from dimensions of the experiment
are identical, so the presumption, that wave is propagating in an axial plane of the tube speci-
men is validated. The comparison of a theoretically calculated phase velocities (calculated from
dimensions of the experimental set-up and the specimen) and experimentally obtained data are
shown in Figure 22. The resultant longitudinal and transverse phase velocities are consequent:
vy = 2.764 mm/ps and v = 1.349 mm/pus.
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PMMA tube (vt =2.764mmiys; vI = 1.349 mmips)

v [mmips)

A [mmius]

Fig. 22: Plots of phase velocities in [mm/us| propagating through the bone specimen
Circles - experimentaly obtained data, Solid lines - theoretically calculated phase velocities.
vé - Longitudinal phase velocity, Ug - Transverse phase velocity.

The isotropic material has two independent coefficients and a matrix of elastic coefficients c;;
can be notated in a following form:

€11 Ci2 C12 0 0 0
C12 Ci1 C12 0 0 0
. Ci2 Ci12 Ci11 0 0 0
GTL 0 0 0 L(en—en) 0 0 47)
0 0 0 0 5 (c11 — c12) 0
0 0 0 0 0 5 (c11 — c12)

Both independent constants c¢1; and c¢;2 can be determined from phase velocity measurements of
longitudinal vq% and transversal vg waves by formulae

C11 = P(Ué)zv C12 = C11 — 2p(v$)2 ) (48)

which results in ¢;; = 9.09 GPa and c;5 = 4.76 GPa, for a density of PMMA p = 1.19 g/cm3.

Mode I (Figure 23(a)) is intended for a verification of the simplified ray method, which
was introduced in the Chapter . The input arguments into a 2 dimensional simulation are the
geometry of the specimen, dimensions among the transducer, specimen and reflector, the class
of crystallographic symmetry (isotropic) and parameters fundamental for the satisfaction of the
Snell-Descartes law (34) such as the direction of the incident wave, angles of the wave refraction
and reflection on the specimen/liquid interface and the phase velocity of the wave propagating in
the specimen or in a liquid. The specimen is modelled as stationary and the reflector is modelled
as rotating. The results of the ray method iteration (Section ) are evident from Figure 23.

The ray simulation was validated experimentally. The experimental set-up was adapted from
a model. The dimensions among the transducer, the specimen and reflector as well as specimen
orientation (vertical configuration - mode I Figure 23 (a)) were possibly the closest to the model.
The reflector was rotated in the range of -8° to 8° per the step of 0.2°. The signal map is introduced
in Appendix ??. The calculated phase velocity of longitudinal data and its comparison with the
ray model is outlined in Figure 23 (b); the very good agreement is visible.
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Planar wave interaction with an isotropic PMMA tube
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Fig. 23: The diagram of the wave propagation through the PMMA tube - mode I. (a) The ray
model of wave interaction with the PMMA tube; the specimen is stationary, the reflector is
rotating, (b) The comparison of the ray model and experimentally obtained data.

1 - angle of reflector rotation; b = 0 for reflector position parallel to the transducer face.
At - time difference against ¢y = 0 (At = 0, if ¢» = 0).

Results for a bovine bone All ultrasonic pulse-echo immersion measurements were performed
on one particular place of the dry bovine specimen (Section , Figure 11). The experimental
configuration was similar to the measurement performed on the isotropic PMMA tube (previous
chapter). The indication of modes C,D and I was also adapted from the previous experiment
with respect to the similar geometry of a long bone and a cylindrical tube. The adjustment
of measurements for particulars modes was following (Figure 18): Mode C - L = 219 mm (L -
distance between the transducer and the reflector), T = 19.6 - 20.8°C (T - temperature of the
water bath), rotation of the specimen from -40° to 40 ° per step of 0.2°; Mode D - L = 164 mm,
T = 21.2°C, rotation of the specimen from -40° to 40 ° per step of 0.5°; Mode I - L, = 106 mm,
T= 22.2°, rotation of the reflector from -16° to 16° per step of 0.1°.

Fig. 24: The mode C of the wave propagation through the bone specimen in the z;z3 plane (axial
plane).

Circles - experimentally obtained data, Solid lines - phase velocities for calculated c;;.

qL - quasilongitudinal wave, qT - quasitransverse wave PT - pure transverse wave.

Mode D is used for the determination of elastic coefficients ci1, ¢33, a4, Cs5, Cg6 and ci3 of
the orthotropic material symmetry (6 of totally 9 independent constants). These constants are
calculated by a solution of the inverse optimization from the set of phase velocities qLi, qT and
the PT (Figure 24). The left part of the figure represents a normal surface in an approximately
axial plane of the specimen, if the geometrical conformity with the tube is assumed. Two modes
of the wave propagation qL. and qT were observed. Their phase velocities were calculated from
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maximal amplitudes of a signal arrival (Figure 24, the map of signal). The evaluation of ¢4y and
55 1s only theoretical, because these two constants are calculated by an inverse algorithm from the
PT mode of the wave propagation, which was calculated by the direct solution of the Christoffel
equation (Section , Figure 24 - solid lines) and this mode is not experimentally detected. The
more precise determination of ¢y and cs; via another technique is necessary.

Fig. 25: The mode D of the wave propagation through the bone specimen in the z;x3 plane (axial
plane).

Circles - experimentally obtained data, Solid lines - phase velocities for calculated c;;.

qL - quasilongitudinal wave, qT - quasitransverse wave PT - pure transverse wave.

The mode D (Figure 25) serves as an independent verification of obtained results of the
mode C. Only the quasi-longitudinal mode of the wave propagation was observed during this
experiment.

The mode I serves for the determination of css and cio, where cq5 is calculated from the
relationship 1o + 2¢66 = const. This mode corresponds to the vertical configuration of the me-
asurement, so the wave propagation and the elastic constant evaluation of the bone specimen
with the general geometry of a bone specimen must be resolved via the ray method.

Planar wave interaction with a bone specimen
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Fig. 26: The diagram of the wave propagation through the bovine bone - mode I. (a) The ray
model of the wave interaction with the bovine bone sample; the specimen is stationary, the
reflector is rotating, (b) The comparison of the ray model and experimentally obtained data.

1) - the angle of the reflector rotation; ¢ = 0 for reflector position parallel to the transducer face.

At - the time difference against ¢ = 0 (At = 0, if ¢ = 0).

The experimental procedure and the elastic constant evaluation of the mode I is subsequent.
The input geometry of the bone specimen into the ray algorithm was obtained by the contact
probe (Section ). During the experiment, the bone sample was rotated into the vertical position,
so the wave propagation in the plane perpendicular to the bone axis could be observed. The
experimental set-up was the pulse-echo with the rotating reflector as described in this section
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Table 7: Resultant elastic coefficients ¢;; of the bone specimen in form (44). Values are expressed
in GPa.

Cij Mode C, D Mode I Value of ¢;; [GPa]
c11 X 27.396 £+ 1.557
Ca3 X 34.113 + 1.737
Ci3 X 8.298 £ 5.335
Cas X 20.149 + 1.295
Cs5 X 13.096 £ 3.732
Ceé6 X 4.364 £ 0.073
Cas X 30.250 + 2.811
c12 + 2cgp X 33.890 + 3.583
Calculated cq2 X 25.162

opening. The raw signal maps of the mode I (only qL. mode was observed) as well as modes C
and D are introduced in Appendix ??. Then, the ray algorithm (Section ) is solved for a different
positioning of the specimen Appendix ??7 until the ray model is tuned to the measured data.
This situation, the final tuning in fact, and agreement of experimental data with the ray model
are demonstrated in Figure 26. The Christoffel equation (8) along thereby obtained rays and
behaviour of rays at the solid/specimen interface was numerically solved by means of the inverse
problem (Section ).

The density of the bone specimen, the necessarily known parametr for the solution of the
Christoffel equation, wasn’t experimentally detected by the reason of non-availability of a pro-
per experimental device. The application of some primitive technique, such as the Archimedes
principle, was not possible due to a porosity of the bone. The density of the bovine bone was
finally taken over the literature [LASAYQUES and PITHIOUX, 1998, PITHIOUX et al., 2002] where
the immersion through the transmission ultrasonic technique was used for the determination of
elastic constants of bovine femur. The method of a X-ray tomodensitometry was used in this work
and authors used the value of density p = 1.8 g/cm?® for a calculation of the elastic constant.
This value was also applied in this case of immersion measurements (modes C,D and I) for the
evaluation of all nine elastic constants. The resultant matrix of elastic coefficients ¢;; (27)

cii ci2 ¢z 0 0
Cig € o3 0 0
= c13 co3 ¢33 0 0
Y 0 0 0 Cqq 0
0 0 0 0 ecs55
0 0 0 0 0 Ce6

O O O OO

expresses in form (44) calculated from the optimization (41) is presented in the Table 7. The
input inaccuracies involved into the Monte Carlo simulation (Section ) are the thickness of the
specimen (d = £0.5 mm), the angle of deviations of the sample (mode C,D) or the reflector
(mode I) (v = £0.5°), the temperature of the water bath (T = £1°C) and the specimen density
(p = 1.8+0.1 g/cm?).

The determination of the cy3 is not feasible by means of the immersion technique, the mea-
surement of this constant can be performed via the contact technique for example.
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Contact measurements
Determination of c;3 and improvement of ¢y and cs5 from immersion

In this experiment, the contact pulse transmission technique was used in order to determinate
co3 and improve cyy and css obtained from the immersion measurement. The determination of
co3 from the immersion was not possible at all. Constants ¢y and cs5 were, in the immersion,
obtained from the theoretically calculated pure transverse (PT) wave, so their values are not
experimentally substantiated. The constant cyy needs to be evaluated primarily, because the
knowledge of its value is necessary for the calculation of cy3. Coefficients ¢y and cs; can be
determined from contact measurements of the cubic sample number 5 and 6 and the slice sample
number 5 and 6 (for sample orientation see Section ) by shear transducers. Moreover, the constant
ces can be obtained from this experiment on the cubic sample number 5 and 6. The coefficient
Cog is calculated from the contact measurement on slice samples number 3 and 4 in a direction
diverted from the circumferential direction about an angle of 13°. The longitudinal transducers
(for identification of transducers see Section ) were used for this measurement.

Thicknesses of both cubic samples in all three directions (Table 4) and both slice shaped
samples in the radial direction were measured by the dial indicator. In order to determine the
density of cubic specimens, these specimens were weighed by a laboratory scale. The resultant
density of cubic specimens no. 5 and 6 is 2.1 g/cm®. The density of slice samples were not
measured, the value of 1.8 g/cm? in agreement with literature [LASAYQUES and PITHIOUX, 1998,
PITHIOUX et al., 2002 was considered. Resultant coefficients c44, c55 and cgs (Appendix 14) were
calculated from the velocity measurement by formulae

Caq = P%%/Qa Caq = pvg/g (50)
C55 = Pvg/h Cs5 = PU%/s (51)
C66 — pvg/lv Ce6 = IOU%/27 (52)

where v;/; are velocities measured between shear transducers, propagated in the direction 7 for
the transducer polarized in the direction j, for 7,5 = 1,2, 3.

Table 8: Average elastic coefficients cyq, c55 and cge and their standard deviations in form (44) of
cubic and slice specimens. Values are expressed in GPa.

Specificaton of Average value of Average value of Average value of

c;; [GPa] cube slice cube and slice
C44 10.523 £ 0.343 8.737 £ 0.357 9.333 +£0.942
Cs5 6.943 £0.584 7.039 £ 0.299 7.001 £0.391
C66 6.852 £+ 0.481

The Table 8 represents average values and their standard deviations in form (44) of cubic and
slice specimens. These values are presented separately for each kind of specimen and total values
are also introduced. The reason for this separation is the different location of the slice and cubes
in the original sample of the bovine femur (Figures 12 and 13).

The coefficient co3 was calculated by the formula

Co3 = m\/X2 — 2XA + B — cu, where
X = 2,0’0%, A= Cyq + Coo COS2 9 + C33 SiIl2 19, (53)
B = 022044(1 -+ cos (219))2 + 033044(1 — COS (219))2 + (6?14 + 622633) sin2 <219),

where vy, is the longitudinal wave velocity propagating through slice specimens 3 and 4 in a
direction diverted from the circumferential direction about an angle 1 = 13° and p is the density of
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the bone. This formula was derived from terms of elastic constants - the wave velocity relationship
published by Every [EVERY and SACHSE, 2001]. The velocity v; was measured by ther contact
through transmission technique, using the longitudinal transducers. The input elastic coefficients
into the equation (53) are substituted from average results ofthe contact measurement of cubic
samples 5 and 6 (for a further details see Section ), because required constants can be measured
most precisely due to a possibility of the exact density measurement and both samples are located
approximately in the middle part of the femur close to the place of the immersion measurement.
Values of these input quantities are following: coy = 28.63 GPa, c33 = 39.18 GPa, cyy = 10.52
GPa, v = 13° and p = 2.1 g/cm?. Calculated resultant value of the cy3 is 8.50 GPa.

Contact measurements of cubic and slice shaped bone samples

Further contact pulse transmission experiments were performed on available cube and slice shaped
samples (Section ) in order to obtain the utmost possible information concerning the bone elastic
properties. The main aim of this experimental part is a demonstration of the bone elastic constant
heterogeneity in a geometrical sense. All measurements listed in this chapter were performed by
using a longitudinal ultrasonic transducers (Section ).

Table 9: Values of ¢33 for slice samples measurements.

Measurement c3g3 [GPa] c33 [GPa] c33 [GPa] c33 [GPa]
location Slice #£ 1 Slice # 2 Slice # 5 Slice # 6

A 30,84 30,11 30,85 28,94
B 30,37 29,73 30,92 28,08
C 31,82 32,70 30,48 31,83
D 32,16 32,24 33,30 32,25
E 34,41 31,92 33,75 33,85
F 32,66 33,19 34,92

Evaluation of c33 from slice samples Slice shaped specimens were also used, for the mea-
surements performed by the shear transducers in order to detect cy4 and cs5 (previous section),
for a determination of c33 at a different location of each slice. Totally four slices, marked as the
Specimen 1,256 each at 6 different locations marked as A, B, C, D, E and F) (Figure 12), were
measured. The formula

C33 = pU§/3 y (54)
where p is the density of the bovine cortical bone (p = 1.8g/cm?® [LASAYQUES and PITHIOUX, 1998,
PITHIOUX et al., 2002]) and v /3 is the detected wave velocity in the direction x3 between tran-
sducers polarized in the direction x5, was used for c33 calculation. The resultant values of the ¢33
are presented in Table 9 and their graphical interpretation is represented in Figure 27.

Fig. 27: Plot of ¢33 of slice specimens 1, 2, 5 and 6 at places of measurement A, B, C, D, E, F.

Evaluation of c;;, ¢o» and c33 from cubic samples No. 5 and 6 The elastic constants
11, C20 and c33 of cubic specimens no. 5 and 6 (Figure 13) were measured by the contact pulse
transmission technique by means of longitudinal transducers . The elastic constants were calcu-
lated by a virtue of the following formula:

Cii = p’U,LQ/z y (55)
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where p is a density of the cubic specimen and v;/; is the detected wave velocity in the direction
© = 1,2, 3. The density was determined from dimensions and a weight of the specimen, p5¢ = 2.1
g/cm3. Calculated elastic coefficients and their average values are introduced in Table 10.

Table 10: Values of ¢q1, caz and ¢33 for cubic samples No. 5 and 6 measurements.

cij [GPa] Cube #6 Cube #5 Average

11 22.63 22.62 22.625
€22 29.75 27.50 28.625
€33 40.60 37.76 39.18

Evaluation of ¢ from cubic samples No. 2 and 4 Cubical specimens no. 2 and 4 are
appropriate for an evaluation c;s by the simple through transmission technique, because they are
inclined about an angle ¥ = 30° and 45° respectively to the circumferential direction xy (Figure
13). Both samples are also conducive to the ¢33 measurement.

Table 11: Input parameters into (56) and the resultant value ¢ for the contact measurement of
cubical specimens No. 2 and 4.

Input/Output Value for Value for Average
parameter into (56) cube # 2 cube # 4

c11 [GPal 22.625 22.625
c22 [GPa] 28.625 28.625
ces [GPal 6.85 6.85
vy, [mm/ s 3.10 3.41
p lg/cm?] 2.4 2.1
9 [°] 30 45
c12 [GPa] 9.02 9.24 9.13

The coefficient c;5 can be calculated by the following formula derived on the basis of relati-
onships published by Every [EVERY and SACHSE, 2001]:

Cig = sm(;?ﬂ)\/Xz —2XA + B — C66 5 where
X =2pv2, A = cg6 + c11 €082 + a9 5in* 0, (56)
B = 011666(1 -+ cos (219))2 + 022666(1 — COS (219))2 + (66236 + 011022) Sil’l2 (219),

where vy, is the measured longitudinal velocity propagating through the specimen in the direction
inclined to x5 about the angle ¥ and p is a density of the specimen. Input elastic coefficients c¢;1,
c22 and cgg are substituted into (56) as an average values from contact measurements on samples
no. 5 and 6 (previous paragraph and Section ). The density of both specimens was determined
by specimens by weighting and dimensions measuring. The resultant density of the specimen no.
4 is 2.1 g/cm?3, which corresponds to a density of other cubes, but the density of the specimen
no. 2 is somehow higher, ps = 2.4 g/cm?.

The input parameters into the formula (56) and the resultant coefficient ¢ for the contact
measurement of samples no. 2 and 4 are presented in the Table 11.

RUS measurement

The RUS measurements were performed on specimen no. 4 and 6 which were located on the medial
part of the bone sample in its superior and middle part. The procedure of the measurement and
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the calculation of resonant frequencies were described in Chapter , items 1 to 3. The algorithm for

Table 12: Input parameters into the calculation of resonant frequencies of cubical specimens No.
4 and 6.

cube #4 cube #6
c11 [GPa] 27.40 22.63
C22 [GPa] 30.25 27.5
c33 [GPa] 33.36 37.76
Cyq4q [GPa] 9.33 10.25
cs5 [GPa] 7.00 6.48
Ce66 [GPa] 6.85 7.26
Ci12 [GPa] 9.24 9.13
c13 [GPa] 8.30 8.30
c23 [GPa] 8.50 8.50
density p [g/cm3] 2.1 2.1

dimensions [m]  5.03x5.08x5.16  6.55x6.55x6.54

the evaluation of resonant frequencies was written by Michal Landa and Hanu$ Seiner from the
Institute of Thermomechanics ASCR in the SW environment MATLAB. The input parameters
into this computation are stated in Table 12. Input elastic coefficients are the combination of
results from the immersion and the contact measurements, where elastic constants determined
via contact measurements were preferred due to their higher accuracy.

The RUS scan of each cubical specimen was performed at exciting frequencies from 0.1 to 0.4
MHz. The sample no. 6 was scanned at first by compressional transducers. Then the scanning was
repeated by means of shear transducers, where much stronger signal was observed (Figure 77).
The sample no. 6 was then scanned via shear transducers alone. The calculated resonant frequen-
cies (magenta lines) as well as the comparison with the experimentally obtained resonant spectra
are presented in Appendix ??7. The steps 4 and 5 of the RUS procedure (Section ) weren’t even
evaluated due to problems with the identification of theoretically calculated and experimentally
obtained resonant frequencies. Both resonant frequencies are considerably differing even from
initial resonant frequencies which is evident from the visual comparison of Figures 7?7 and 77.
This fact excludes a reliable evaluation of bone samples elastic constants by the RUS technique.

Discussion

The main goal of this thesis is to deal with possibilities of the experimental determination
of the matrix of elastic coefficients of the cortical bone by means of the dynamical, ultra-
sound based, mechanical tests. The cortical bone can be considered as a linear elastic mate-
rial, which is approximately homogenous and anisotropic with an orthotropic material sym-
metry [LASAYQUES and PITHIOUX, 1998, LEE et al., 2002, PITHIOUX et al., 2002, RHO, 1996,
YooN and KAtz, 1976]. The knowledge of elastic constants of the bone tissue is fundamental
for modelling of a mechanical response of the bone loading. It may be useful for a mathema-
tical modelling of the human skeleton and artificial joints via FEM analysis and results of this
work should be used as an improvement of the input data into these new and existing models.
The specification of elastic coefficients of bones is also very important for a micro-mechanical
modelling that conduces to new findings concerning the microstructure of a bone tissue. This
knowledge may, for example, help to answer a bone tissue remodelling problem. However, the
benefit of this study is not to map or measure elastic constants of a number of bone samples
and their statistical evaluation, but to develop an experimental methodology. This methodology
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should be nondestructive, ultrasound based, appropriate for a rapid measurement, undemanding
a sample preparation and automated the elastic constant result evaluation.

The ultrasonic-pulsed through-transmission method with the specimen immersed in a liquid
between two opposite transducers have been chosen as a suitable technique which satisfies all dec-
lared specifications. This technique was previously used by many authors for an evaluation of elas-
tic constants of technical composite materials [ENDERBY et al., 1998, GEISKE and ALLRED, 1974,
HARPER and CLARKE, 2002, HINE et al., 1997, L1AW et al., 1996, WU and Ho, 2005], but only
Lasaygues and Pithioux [LASAYQUES and PITHIOUX, 1998, PITHIOUX et al., 2002] used this me-
thod for an evaluation of bone elastic coefficients. However, in this work, the general sample
geometry was not considered, the sample was presumed as a plane round examined location. The
focussed transducer was used during the measurement moreover, so very precise adjustment of
the experiment dimensions was necessary.

Test measurements

In this study, quite an original modification of the immersion technique was used. The unfocused
transducers of larger diameters (frequency 2.25 MHz, diameter 0.5”) were used in order to pro-
pagate planar acoustic waves during the measurement. The initial experimental configuration
was through a transmission with a transmitting and a receiving transducer and two degrees of
a freedom. The first degree of freedom was a rotation of the specimen with a view to measure
velocities of waves propagation at various incident angles. The second degree of freedom was a
translation of the receiver for the purpose of detection of maximal signals of refracted waves. The
transmitter was stationary and the entire experimental configuration was immersed in a water.
The task of this acoustic scanner was to monitor the refracted compressional (quasi-longitudinal
qL. waves) and shear (quasi-transversal qT waves) waves originating on the solid/fluid interface
and which obey the Snell descartes laws.

Test measurements of this experimental set-up were performed on composite CFRP (Carbon
Fibre Reinforced Plastic) samples of well known elastic properties [SEINER, 2004],
[SEINER and LANDA, 2003]. The through transmission measurements didn’t acquit well, because
the compression and shear modes of the wave propagation coincided with each other and it was
very difficult to clearly distinguish them. Then, the pulse-echo arrangement of measurement was
used with only one transducer (transmitter and receiver) and one degree of a freedom. The receiver
was replaced by an acoustic reflector, so the refracted waves were reflected towards the receiver
along the exactly same path as the incident waves. The one degree of a freedom consisted in a
rotation of either the specimen or the reflector. The inaccurate translational scanning of maximal
signals thus wasted. The resultant matrix of elastic coefficients was calculated from detected qL
and qT waves by the solution of the Christoffel’s equation via the formulation of an inverse
problem, which led to the numerical multidimensional optimization, which was solved by the
simplex search method. The stability of resulting data was evaluated by the statistical method

based on the Monte-Carlo simulation. Thereby designed pulse-echo measuring configuration was
validated on CFRP plates.

The algorithm based on the simplified ray method was proposed in order to deal with the wave
propagation through an anisotropic specimen of a general geometry. In this algorithm, wavefronts
propagating through the specimen were substituted by closely localized energy flows (rays) in
every geometrical point and the Christoffel’s equation along these rays was solved afterwards by
the numerical minimization of an inverse problem. This theoretical model was validated on the
immersion pulse-echo measurement of the PMMA tube.
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Immersion measurements

Following experiments were performed on the dry bovine femur. Dry bovine bone was used
instead of a wet bone [LAKES et al., 1986, LASAYQUES and PITHIOUX, 1998, LEE et al., 2002,
PITHIOUX et al., 2002, RHO, 1996, YOON and KATz, 1976] for the measurement, because of the
independent determination of elastic properties separately, from the natural visco-elastic behavi-
our of bones. The nearly elastic behaviour of the dry bovine bone against the wet one was firstly
observed by Park and Lakes [PARK and LAKES, 1986]. By this approach, the influences of age,
weight, sample preparation and storage, which affect in particular damping and time dependent
properties of bones, can be avoided. In future, the results for dried bones can be compared with
these obtained on wet samples. Due to the knowledge of elastic properties of dry bones, the
complex visco-elastic behaviour of bones can be decomposed into its elastic and time dependent
parts. Anyway, the elastic coefficients determined for the dried bones should be close to those
obtained from conventional tensile tests, where the dynamic properties of bones result complexly
from their visco-elasticity, material dispersion and attenuation.

The pulse-echo arrangement of the immersion technique, which was successfully tested on
the PMMA tube, was also used for the measurement of the dry bovine bone. The bone sample
was slit into two parts along the bone axis in order to monitor just a simple wave propagation
through one face of the bone and each part was shape-measured. During the experiment, just
one particular place in a middle part of the bone localized on a medial side of the bovine femur
sample was examined. The three different modes of the measurement, modes C, D and I, were
performed.

Modes C and D corresponded to the horizontal positioning of the bone between the transducer
and the reflector where the wave propagation in an axial plane of the bone was observed. The
bone geometry was not solved in these modes, the bone geometry was considered as planar in
the surrounding of a measuring position. This mode was appropriate for evaluation of 6 out of
9 elastic coefficients (c11, ¢33, Caq, Cs5, o6 and c13) of the orthotropic material symmetry. Elastic
coefficients c11, ¢33, cgg and c13 were evaluated from measured qL. and T velocities via the solution
of an inverse problem of the Christoffel equation. Values of ¢4y and cs5 are only theoretical and
don’t correspond to real values, because they can be determined only from a pure transverse
mode of the wave propagation and this mode wasn’t experimentally detected. The velocities of
the pure transverse wave were computed theoretically by the direct solution of the Christoffel
equation.

The mode I corresponded to the vertical configuration of the measurement. In this mode, the
propagation of the planar wave was observed in the plane perpendicular to the long axis of the
bone, so the bone curvature needs to be considered. This is resolved by means of the simplified
ray model and the solution of the Christoffel’s equation along particular rays in the same way as
test measurements of the PMMA tube. The mode I was used for the determination of coefficients
Co2 and cj5. This mode showed to be inadvisable for the evaluation of both elastic constants
(c12 and c99) from the viewpoint of a demand on the automated and rapid evaluation of elastic
coefficients. The reasons for this impropriety are the time-consuming geometry measurements of
every bone sample in a surrounding of the measuring location, which is the input requirement to
the ray algorithm, and the complicated manual tuning of the ray model results in experimentally
obtained velocities, which are very difficult to automatize.

The stability of elastic coefficients of the bovine bone sample resulting from an inverse problem
optimization were evaluated by the simulation based on the Monte-Carlo statistical method.
Input parameters into this simulation were variations of specimen thickness, rotations of a sample
(mode C,D) or a reflector (mode I), a temperature of the water bath and a density of the specimen.
The remaining coefficient co3 wasn’t possible to determine from immersion measurements and
needs to be evaluated via some other technique. The simple contact pulse through transmission
technique was used in our case. The disadvantage of this method is a requirement of the specimen
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sawing to exactly paralel faces. Final resultant coefficients ¢;; can be expressed in the following
form:
Ci11 Ci12 Ci13 0 0 0
C1g C922 Ca3 0 0 0
e | ci e oz 00 _
K 0 0 0 Cqq 0 0
0 0 0 0 Cs5 0

0 0 0 0 0 Ce6

97.396 25.162 8298 0 0 0
95.162 30.250  ? 0 0 0
8208 7?7 34113 0 0 0
0 0 0 20149 0 0 GPa
0 0 0 0  13.096
0 0 0 0 0  4.364

Contact measurements

Additional pulse through transmission contact measurements were performed on the same bone
sample as in the case of immersion measurements in order to obtain the maximum possible
information relevant to bone elastic properties by both kinds of transducers, the compressional
and the shear ones. Two types of specimens, the cube and slice shaped specimens, were prepared
by the dissection of the existing bone sample. The slice specimens were cut from a medial part
and cube specimens were cut from a lateral part of the bovine femur sample. Particular contact
experiments are discussed in following paragraphs.

The first contact measurement was formed with a view to acquire cp3 which wasn’t possible
to evaluate from the immersion experiment. This was performed via the detection of phase
velocity of the longitudinal wave propagating through the specimen, which was cut sideways in
a longitudinal-circumferential plane on a medial side of the bone specimen.

The second experiment took an advantage of the contact measurements by shear transducers.
It was appropriate for the improvement of ¢4y and cs; which were evaluated only theoretically
during immersion measurements. These tests were performed on two slice shaped specimen (a
middle part of the medial side of the bone sample - approximately same location as immersion
measurements) and on two cube specimens (a middle part of the lateral side of the bone sample).
These last cube samples were also appropriate for the determination of cgq. The evaluation of
ces Via the contact technique was more precise than the evaluation via the immersion technique,
because the density of the cubic sample can be easily calculated from the specimen dimensions
and mass.

Another contact measurements were performed on four slice samples in order to observe the
heterogeneity of bone elastic properties in different locations of the bone. The monitoring of one
fairly gainable parameter was presupposed in order to suggest a rapid and simple methodology.
The coefficient c33 expressing an elastic modulus in the direction of the bone long axis was chosen
as a suitable parameter. Slice specimens were obtained by cutting the medial part of bone the
sample (the Specimen I, for better orientation see Figures 10 and 12). Two slices were sawed
from the superior part of the Specimen I and other two from the middle part. All four slices were
cut in the perpendicular plane to the bong long axis. Each slice was examined by compressional
transducers on six different positions. These positions were placed stepwise from a posterior to
an anterior across the medial side of the bovine femur (Figure 12 - locations from A to F). The
raw measured data of the c33 and their fitting by the linear least square method is introduced in
Figure 28. The following conclusion can be deduced from these results: the parameter c33 doesn’t



MECHANIST’S JOTTER 2006, 5-62 (2006) 57

Coq for slices 1,2,5and 6
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Fig. 28: The evaluation of ¢33 coefficients for the contact measurement of slice specimens 1, 2, 5
and 6.

Places of measurement A, B, C, D, E, F.

Symbols - raw data; Solid lines - data fitting by linear least square measure

notably vary along the bone long axis, but grows from the posterior to the anterior side of the
bone sample.

Additional measurements were performed on available cubical specimens in order to acquire
the maximum possible information concerning bone elastic coefficients. The elastic constants ¢y,
C99 and c33 in the main axis of the material symmetry were monitored during these measurements
via contact measurements by longitudinal transducers. These test were performed on two cubical
specimens located in a middle of the bone sample on its lateral side. Resultant values can be
used as an independent verification of immersion measurements; the density of these samples
was accurately measured. Another two cubical samples located on a lateral side of the bone
specimen in its superior part were appropriate for the determination of ¢15 due to their suitable
turning towards axes of the main material symmetry of the bone sample. The resultant value of
¢12 (resultant average value 9.13 GPa) was determined on the basis of contact measurements by
longitudinal transducers and the analytical calculation. The input elastic constants c;1, coo and
cee into this formula were derived from previous contact measurements.

RUS measurements

The RUS experimental technique was applied to measurements of two cubical specimens. This
method was found not to be an effective tool for the determination of elastic constants of the bone
due to sizable differences between theoretically calculated and experimentally obtained resonant
frequencies, which is in line with the observation of Lee [LEE et al., 2002]. One of the possible
reasons for this conclusion may be the influence of a drying process on a bone structure; the bone
structure became cracked in some locations, which may affect resonant frequencies. The influence
of shear transducers usage instead of compressional ones on a strength of the resonant spectrum
signal was discovered, which is consistent with the work of Wang [WANG and LAKES, 2003]. For
the future work, experiments using rectangular fresh bone samples may be recommended.
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Resultant matrix of elastic coefficients obtained via immersion and contact me-
asurements

The combination of advantages of immersion and contact measurements, the final resultant
matrix of elastic coefficients

97396 9.130 8.298 0 0 0
9130 30.250 8.500 0 0 0
8298 8500 34.113 0 0 0

Cij = 0 0 0 9333 0 0 GPa (57)
0 0 0 0 7.001
0 0 0 0 0  6.852

is obtained. Elastic coefficients c¢i1, ¢29, ¢33, and ¢35 are results of the immersion measurement.
Their values are reliably determined from the solution of the inverse problem optimization,
whereas the input velocities into this problem are really experimentally obtained values of the
qL (quasi-longitudinal)and the T (quasi-transverse) waves phase velocities. These values are
dependent on the specimen density, which wasn’t experimentally obtained, but assumed from a
literature, however the variability of the density was involved into the statistical method based
on the Monte-Carlo simulation.

The coefficient co3 is established on the basis of the contact measurement of slice specimens
via longitudinal transducers and a simple calculation, because of its determination via immersion
technique was impossible without additional sample cutting. Two slice specimens designed for
this experiment were located as close to the place of the immersion measurement as possible.

Table 13: Elastic coefficients and their standard deviations (where available)of various bone
specimens obtained from ultrasonic measurements - literature comparison

cij [GPa] This thesis Pithioux Yoon Katz Ashman Rho
Bone Dry bovine Fresh, frozen Dry human Fresh, frozen Fresh, frozen Fresh, frozen
specification femur bovine femur femur human femur human femur human tibia
Ultrasonic Immersion & pulse Immersion Pulse Pulse Pulse Pulse
technique transmission transmission transmission transmission transmission transmission
c11 27.44+1.6 23.5 23.4+0.0031 21.240.5 18.0 19.4+1.3
c22 30.3+2.8 26.0 24.140.0035 21.0+1.4 20.2 20.0+1.4
c33 34.1+1.7 34.6 32.51+0.0044 29.0£1.0 27.6 30.9£1.9
caa 9.3+0.9 9.2 8.740.0013 6.31+0.4 6.23 5.7£0.5
cs5 7.0+£0.4 6.0 6.9£0.0012 6.3+£0.2 5.6 5.240.6
ce6 6.9+0.5 6.3 7.240.0011 5.4+0.2 4.5 4.1£0.5
ci2 9.1 7.6 9.1+0.0038 11.7+0.7 10.0 11.3+0.1
c13 8.3+5.3 8.4 9.1+0.0055 11.1+0.8 10.1 12.5+0.1
c23 8.5 8.2 9.240.0055 12.740.8 10.7 12.6+0.1
cij [GPa] Taylor Van Buskirk Maharidge Lang Lee
Bone Fresh frozen Fresh, frozen Fresh, frozen Fresh, frozen Fresh, bovine
specification human femur bovine femur bovine femur bovine phalanx Femur
Ultrasonic Pulse Pulse Pulse Pulse RUS
technique transmission transmission transmission transmission
c11 24.89 14.1 22.4 19.7 10.8
can 26.16 18.4 25.0 19.7 12.4
c33 33.20 25.0 35.0 32.0 14.3
caa 7.11 7.0 8.2 5.4 5.1
css 6.58 6.3 7.1 5.4 4.9
cee 5.71 5.28 6.1 3.8 4.2
c12 11.18 6.34 14.0 12.1 -
c13 13.59 4.84 15.8 12.6 -
ca23 13.84 6.94 13.6 12.6 -

The resultant value ¢, was substituted into the matrix ¢;; as a result of the similar procedure
as the evaluation of cy3, but it was performed on the cubical specimen. This value acquired from
the contact measurement (c¢{3™) was at a variance with the value obtained from the immersion

measurement (¢/2™), but it is more reliably determined, because ¢3™ is a result of a complex
optimization and a ray simulation, whereas ¢{3" is a result of the simple contact measurement

moreover the density of the measured cube was exactly known. The value ¢{3" is also in line with

the literature referred-to values (Table 13).
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Resultant coefficients ¢4y and cs5 are also evaluated from the contact measurement of two slice
(each slice was scaled in different locations) and two cubic specimens by shear transducers. Their
average values are represented in the matrix ¢;;. The reason for the appliance of ¢4y and c55 from
the contact technique instead of the immersion one is an imprecision of the immersion method
evaluation in the case of both constants that are determined only from theoretical calculations.

The elastic coefficient cgq is used as a result of the contact measurement of two cubical
specimens, because of a possibility of the exact density determination of the cubical specimen.
The value of this constant resulting from the immersion technique is also reliable, but the density
of the bone in the surrounding of the immersion measurement wasn’t experimentally obtained.

The resultant matrix of elastic coefficients (57) of the bovine dry femur evaluated in this thesis
is compared with other data in Table 13. The original presumption, that the dry bone is known
to be stiffer then the wet one [LAKES et al., 1986, LEE et al., 2002, PARK and LAKES, 1986]
was satisfied. This is evident from the comparison of the elastic coefficient measured in this
thesis and the work of Pithioux [PITHIOUX et al., 2002] and from the works of Yoon and Katz
[KATZ et al., 1984, YOON and KATz, 1976] where both, the dry and the wet human femur, were
tested by the same author team and the same methodology. The overall pattern of the highest
elastic coefficient in the longitudinal direction is common to all the results presented in Table
13. The circumferential direction is the second stiffest, and the radial direction is the least stiff.
Remaining coefficients are markedly lower then those in the main axes. Comparing the values of
fresh bones, the elastic coefficients of the bovine and the human bone don’t notably differ, except
those evaluated by the RUS [LEE et al., 2002].

Conclusion

In this thesis, the experimental ultrasound based methodology for the determination of elastic
coefficients of composite materials CFRP (Carbon Fibre Reinforced Plastic) and the cortical
bone tissue were created and evaluated. The use of the pulse ultrasonic technique applied to
immersion measurements (a specimen is immersed in a liquid between ultrasonic transducers)
and the inverse evaluation of all independent elastic coefficients was initially presupposed. The
assumed main contribution of this work to these topical problems was to handle the evaluation
of elastic constants of anisotropic specimens of a general geometry.

For understanding of the inverse process, the essential theory of the acoustic wave propagation
in anisotropic solids was surveyed, including the definition of the group velocity and examples
of the matrix of elastic coefficients assemblage for the orthotropic and the transversely isotropic
material. Characteristic surfaces and analytic relations for the reflection and the refraction of
acoustic waves at the liquid solid interface were also introduced.

The original contribution is an application of the ray method to the evaluation of elastic
constants of curvilinear anisotropic samples. This method is based on the wavefront substitution
by the ray (localized energy flow) and the successive determination of elastic constants by the
numerical solution of the Christoffel equation along these rays at the simultaneous consideration
of the ray behavior at the solid/liquid interface. The inverse problem for phase velocities was
formulated and the sensitivity analysis of inverse approach based on the Monte-Carlo statistical
simulation was outlined in the final theoretical part.

The description of the experimental methodology, the specimen preparation and the result
evaluation were introduced in the following two chapters. The immersion ultrasonic scanner was
built in the Institute of Thermomechanics, AVCR in order to realize the theoretically planned im-
mersion ultrasonic-pulse measurements. This device was tested on CFRP plate samples (transver-
sely isotropic material symmetry) of known elastic coefficients from previously performed PS/PR
(point-source/point-receiver) measurements [SEINER, 2004, SEINER and LANDA, 2003]. Originally
was this experimental set-up suggested as the pulse through transmission, but this configuration
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showed to be unreliable, because the detected qL (quasi-longitudinal) and qT (quasi-transverse)
modes of the wave propagation interfered with one another. Then, the experimental setup was
changed into the pulse-echo configuration by replacing the receiving transducer on behalf of
acoustic reflector, which proved to be a very effective tool. The resultant elastic coefficients eva-
luated by this pulse-echo arrangement revealed a very good agreement with PS/PR experimental
results, and thus the immersion scanner was validated as a reliable device for the evaluation of
the matrix of elastic coefficients of anisotropic solid samples. Another experiment was performed
on the PMMA tube. The PMMA is an isotropic material of very well known elastic properties so
that this tube shaped sample was used as a validation of the simplified ray model for curvilinear
specimens, which was created in advance.

The further immersion experiment was performed on the dry bovine femur diaphysis. The
bone was dried, because our effort was to examine the elastic properties of bones separately from
the natural visco-elastic behaviour. The bone was considered to be a linear elastic material of an
orthotropic material symmetry. The specimen was prepared with a minimal effort, just a rough
preparation was sufficient, which was one of the main reasons for the immersion measurements
election. During the measurements, two experimental modes were settled; the horizontal one
(wave propagation is monitored in a plane of the bone long axis - axial plane) and the vertical one
(wave propagation is monitored in a plane perpendicular to the axial plane). For the horizontal
bone, the geometry surrounding the place of the measurement was considered as planar, so the
contemplation of the curvilinear specimen geometry wasn’t required. This mode was intended for
the evaluation of coeflicients cy1, ¢33, caa, Cs5, cg6 and c;3. Coefficients ¢15 and cyy were determined
from the vertical mode. In this mode, the general specimen geometry was reflected by using the
simplified ray model of the wave propagation. The remaining coefficient cy3 wasn’t possible to
measure without an additional bone sample cutting.

In the subsequent step of the experimental procedure, the bone sample was cut into cubical
and slice shaped specimens in order to perform contact pulse-
transmission measurements. The remaining coefficient co3 was determined at first. Then, coeffi-
cients c44, cs55 and cgg were measured on both kinds of cut specimens to improve values obtained
from the immersion measurement. The cubical specimens were used for the improvement of ¢y,
coo and c33 hereafter. One slice specimen was utilized for the improvement of ¢;5. Remaining slice
specimens cut from a different location of the bone were presumed for the monitoring of the
bone heterogeneity by measuring one parameter (cs3), where the stiffness in the direction of the
bone long axis was growing from a posterior to an anterior through a medial part of the bone,
in contrast to an axial direction where the value of ¢33 wasn’t varied overly.

The additional experimental technique, the resonant ultrasound spectroscopy
(RUS), was tested for the measurement of elastic constants of the bone tissue, but no reaso-
nable results were evaluated.

The resultant matrix of elastic coefficients (57) is a compromise, between the immersion
and the contact measurement, whereas the results from the contact technique performed on
cubical samples were preferred, because of their higher accuracy due to a possibility of the
precise estimation of specimens dimensions and a density.

Specific aims of this thesis, declared in the Chapter , were fulfilled and following concluding
remarks and future scopes can be stated.

The application of the immersion pulse-echo technique appeared to be an effective tool for the
determination of all nine elastic coefficients of the bone cortical tissue considered as the material
of the orthotropic material symmetry. However, only eight elastic constants were evaluated in
this work via the immersion technique. This experimental method is a very appropriate for the
evaluation of five elastic constants without the additional solution of the bone geometry problem.
The application of the ray model in order to deal with the complex bone geometry is necessary
to the assessment of other three coefficients, which involves the elaborated shape measurement of
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the bone sample and the ray model tuning. This fact partially declines the original presumption
of the immersion technique usage as a method conducive to the rapid determination of all nine
elastic coeflicients. The determination of the remaining coefficient by the immersion technique is
a matter of further specimen cutting into the slice-shaped specimens oriented perpendicularly to
the long axis of the bone in order to measure the acoustic wave propagation through the bone
specimen in a superior-inferior anatomical direction. The cutting of the whole bone sample into
slice specimens should be performed as a prospective access to the bone tissue heterogeneity
monitoring along with measuring of the entire set of elastic constants.

This work also proves suitability of the simple pulse-transmission contact technique for the
measurement of all nine elastic coefficients of the cortical bone. This method is a very undeman-
ding in the term of the performance of the respective experiment, but the specimen preparation
is a quite laborious. The combination of the immersion and the contact technique, as it was ac-
complished in this thesis, seems to be a suitable option in the determination of elastic coefficients
of the cortical bone, whereas the criterion of biological material handling and preparation should
be also considered during the decision making within the type of the experimental technique
preference.

Resonant ultrasonic techniques should be also tested for the evaluation of elastic coefficients of
the bone tissue in the future research even through the failure of the RUS measurement realized
in this work. Resonant measurements are depended on many factors such as the very precise
specimen preparation regarding the exact rectangularity of the specimen, the crystallographic
orientation during measurement and factors such as the experimental instrumentation. All these
reasons has great influence on the determination of elastic coefficients via the minimization of
measured and calculated resonant frequencies in the RUS procedure and may also influence the
better identification of vibrational frequencies. Additional devices such as the laser vibrometer
should be used in the conjunction with the RUS in the future in the order to obtain an information
concerning vibrational modes.

The thesis has the interdisciplinary character: it associates the knowledge of medical sciences
and principles of the solid phase mechanics (continuum mechanics, propagation of elastic waves
in solids) and experimental techniques. The work is related to the basic research, the procedure
of the elastic coefficient determination is the unique in the worldwide relevance and results are
widely exercisable in many scientific fields such as the improvement of input data into FEA
models of long bones implants and joint replacements. This work may contribute to the design
innovation of these products and to improve theirs usage in the clinical practice.

The future research should be addicted to the mapping of such acoustical and elastic pa-
rameters that are readily detectable and appropriate for the automatized data evaluation. This
direction is in line with the work of Bensamoun [BENSAMOUN et al., 2004]. Furthermore, the vis-
coelastic behaviour as well as the influence of fluid components on an attenuation of the compact
bone should be investigated via the measuring of the velocities and the attenuation at various
frequencies. Heterogeneous characteristics such as an age, weight, a sample preparation and a
storage should be taken into the account. The influence of the soft tissue should be also observed
and considered in order to improve the in-vivo detection of acoustic parameters.

From the literature overview (Chapter 3) ensues, that investigation of material properties of
not only the cortical, but also the cancellous bone, is the priority challenging task for the contem-
porary research. However, the cortical bone can’t be regarded as a linear elastic continuum due to
its porosity and a fluid flow. The reliable theoretical model of cancelous bone must be proposed
and validated in order to obtain constitutive relations. The several attempts of such model cre-
ation were proposed, from the application of the well known Biot’s theory [HUGHES et al., 2003],
up to the more complicated cellular spring-network model [LADD and KINNEY, 1997], the model
based on continuum micro-mechanics [HELLMICH et al., 2004] or micro-mechanical model, which
also includes fluid flow [GURURAJA et al., 2005]. The numerical FEA models are also currently
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used for the evaluation of the bone’s elastic properties [TAYLOR et al., 2002] or the work of
Jasiuk [JASTUK and OSTOJA-STARZEWSKI, 2004], where the FEA is used for modelling at a sin-
gle lamela level. The validation of such a theoretical model and the formulation of necessary
parameters for the implementation of an experimental methodology is one of most important
tasks in the future research of the bone tissue biomechanics.

Table 14: Resultant elastic coefficients ca4, c55 and cgg obtained by the contact measurement of cubic
and slice samples by shear transducers.

Letters B-F: Transducer positioning on slice specimens (Figure 12); 1: Radial direction, 2: circumferential direction,
3: Longitudinal direction.

Specimen Direction of wave | Transducers | Velocity cij Value of
specification propagation polarization | [mm/us] | specification | c;; [GPa]
Cube #5 3 1 1.913 cs55 7.688

3 2 2.283 c44 10.945

2 1 1.755 ce6 6.468

2 3 2.253 c44 10.657

1 2 1.750 Cc66 6.424

1 3 1.833 c55 7.059

Cube #6 3 1 1.770 cs55 6.578
3 2 2.205 c44 10.208

2 1 1.875 c66 7.387

2 3 2.213 ca4 10.282

1 2 1.843 ce6 7.131

1 3 1.742 cs5 6.374

Slice #5 - B 3 1 1.992 C55 7.145
B 3 2 2.246 c44 9.083

C 3 1 2.049 c55 7.555

C 3 2 2.182 c44 8.567

D 3 1 1.953 c55 6.866

D 3 2 2.196 ca4 8.680

E 3 1 1.982 cs55 7.073

E 3 2 2.256 ca4 9.165
Slice #6 - C 3 1 1.909 c55 6.557
C 3 2 2.108 c44 7.998

D 3 1 1.986 c55 7.096

D 3 2 2.210 ca4 8.793

E 3 1 1.945 C55 6.809

E 3 2 2.214 Ca4 8.819

F 3 1 2.001 c55 7.209

F 3 2 2.210 ca4 8.793
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Annotation

Problem of investigation of residual stresses by means of hole drilling method with infulence of
eccentricity of drilled hole is studied. State of the art is described. Aims of this work are the
description of the problem of the eccentred hole, the determination of the response of the strain
gauges around eccentred hole, and the conception of the method of the residual stresses calcu-
lation, which takes into account the eccentricity of the hole with respect the centre of the strain
gauge rosette. This problem was simulated by means of FEM model and results of this symulation
ware used to found new formula for describing state of the residual stress in a construction. Based
on these results, the procedure of residual stress determination was designed. This methodology
was applied to the outcome of the numerical experiment. Influence of eccentricity of the hole is
described and proposed procedure of investigation can improve residual stress determination.

Seznam pouzitého znaceni

Oznaceni Vyznam

e [ deformace

o [MPa] napéti

E [MPa] modul pruznosti v tahu

w -] Poissonovo ¢islo

A, B,C [MPa™'| analytické koeficienty odvrtavaci metody
A, B [MPa™!] kalibrac¢ni koeficienty odvrtavaci metody
a,b [-] bezrozmérné kalibracni koeficienty odvrtavaci metody
D, q,t[] kombinace deformaci

P,Q,T [MPa] kombinace napéti

Ry [mm] polomér vrtaného otvoru

Dy [mm] primér vrtaného otvoru

Tm  [mm] stfedni polomér tenzometrické rtzice

D [mm] stfedni primér tenzometrické rizice

Uvod

Vyroba soucasti sebou prinasi namahani materialu pfi technologickych operacich, kterym je pii-
slusné soucast podrobena. Vétsina téchto technologickych operaci ma za nésledek vznik zbyt-
kovych napéti. Tato napéti mohou mit rtizny charakter at co se tyce charakteristiky orientace,
hloubkového ¢i plosného gradientu. Znalost zbytkovych napéti se stava podstatnou pri posuzo-
vani zatizeni dané konstrukce. V soucasné dobé je po mnohych vyrobcich tato znalost pozadovana
jejich zadkazniky (napt. [HOLY et al., 2002a], [HOLY et al., 2002b], [DOUBRAVA et al., 2003c]).

V poslednich letech lze zaznamenat znatelny nartist moznosti vypocetni techniky a vzrist
vyznamu numerickych simulaci pfi navrhu vyrobkt. I prfes pokrok ve vykonu a ve vlastnostech
numerickych metod, zvlasté pak metody konecnych prvki, neni v soucasné dobé mozné u vétsiny
soucasti presné namodelovat proces vzniku daného vyrobku, ¢imz by bylo mozné spocist hodnoty
zbytkovych napéti na konci vyrobniho procesu. Z tohoto divodu hraji experimentalni metody
stale vyznamnou roli pfi ur¢ovani hladiny zbytkovych napéti konstrukei.

Experimentalni metody pro urcovani zbytkovych napéti lze rozdélit podle fady kriterii, kdy
muizeme zohlednovat zptisob poskozeni konstrukce po provedeni méfeni, fyzikalni princip me-
tody, ¢ kterého druhu zbytkova napéti dand metoda zjistuje. Lze tedy hovofit o metodéach de-
strukc¢nich, semidestrukénich ¢i nedestrukénich z hlediska miry poskozeni konstrukce, metodach
fyzikalnich, jako jsou metody rentgenové nebo neutronové difrakce [Lu, 1996], Barkhauseniv
Sum [GAUTHIER et al., 1998], akustoelasticita [HE and KOBAYASHI, 2001], [FUKUOKA et al., 1978§]
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aj. a v neposledni fadé metody mechanické — metoda odvrtavaci, metoda paskt, metoda Sach-
sova [HETENYI, 1950] a dalsi.

Jednou z nejrozsifenéjsich experimentalnich metod pro urcovani zbytkovych napéti je me-
toda odvrtavaci. Tato metoda je zaloZena na naruseni silové a momentové rovnovahy uvnitt
télesa vyvrtanim kruhového otvoru, at uz slepého nebo priichoziho. Velikost vyvrtaného otvoru
byjva casto vii¢i rozmérim zkoumané konstrukce zanedbatelné a proto se tato metoda fadi mezi
metody semidestruktivni. Zaznamenani uvolnénych deformaci se nejcastéji provadi pomoci speci-
alni tenzometrické riuzice, kdy vrtani otvoru se provadi do stfedu této riizice. V soucasné dobé se
v publikacich objevuji nové metody vyuzivajici optickych metod sniméani uvolnénych deformaci.
Rovnéz jsou publikovany varianty této metody, kdy misto otvoru je do soucésti vyfrézovana me-
zikruhova drazka. Zmétfené uvolnéné deformace slouzi jako vstup pro metody urcujici zbytkové
napeéti u dané konstrukce. Pocatky odvrtavaci metody sahaji do 30. let 20. stoleti a od té doby
byla publikovana fada metod k vyhodnoceni zbytkovych deformaci ziskanych touto metodou.

Vyrobci rozliéné fady produktt jsou svymi zakazniky donuceni deklarovat hodnoty zbytko-
vych napéti v jejich vyrobcich, kdy pozaduji zjistovani zbytkovych napéti dle uznévanych norem.
Nejcastéji vyzadovana norma zabyvajici se touto otazkou je ASTM STANDARD E837. V této
normé jsou predepsany podminky zhotoveni otvoru a vyhodnoceni napéti. V ptripadé excentricity
vyvrtaného otvoru vuci stfedu tenzometrické rtzice je tato norma konzervativni a neumoziuje
zohlednit vyssi hodnoty excentricity otvoru, s kterymi jsme se setkali pfi praktické aplikaci od-
vrtavaci metody.

V této praci je podan prehled soucasného stavu vyhodnocovani odvrtavaci metody. V dalsi
¢asti je pomoci metody konecénych prvki fesen stav v pripadé otvoru excentrického viici stiedu
tenzometrické rtizice a dale navrzen postup pro zohlednéni excentricity otvoru. Navrzeny postup
byl ovéfen pomoci numerického experimentu a dale aplikovan na realna data.

Prehled o soucasném stavu vyhodnocovani zbytkovych napéti pomoci
odvrtavaci metody

Historie

Zbytkova napéti I. druhu se projevuji tim, Ze po narusSeni silové a momentové rovnovahy vniti-
nich uc¢inkd, dojde ke zméné rozmeért a tvaru zkoumaného télesa. Zbytkova napéti II. druhu
dosahuji rovnovahy v oblasti nékolika zrn a v jednotlivych zrnech jsou homogenni. Zbytkova
napéti III. druhu se projevuji v objemu nékolika atomovych vzdéalenosti a jsou nehomogenni
i v nejmensich oblastech materidlu. Zbytkova napéti téchto t¥i druht se vyskytuji soucasné, i
kdyz pod pojmem zbytkova napéti se v technické praxi zpravidla rozumi pouze zbytkova napéti
I. druhu. Historie pfinesla mnoho metod, kdy naruseni materidlu nebo jeho odebrani uvolni zbyt-
kové deformace. Material je mozné narusovat riiznymi postupy od odebrani vrstev soustruzenim,
odleptavanim, vyfezavanim drazek ¢i vrtanim otvoru. Vrtani otvoru se nabizi jako jednoduse
proveditelné pro vétSinu materialf, které se v konstrukéni praxi pouzivaji.

V ranné podobé tento postup publikoval Mathar [MATHAR, 1934]. Pro méfeni uvolnénych de-
formaci pouzival mechanické tenzometry. Praktické pouziti publikoval naptiklad Soete [SOETE, 1954],
kdy byly feSeny problémy destrukci lodi t¥idy Liberty, zptisobenych zbytkovym napétim. V tomto
pripadé se zavislost mezi uvolnénymi deformacemi a zbytkovym napétim urcovala experimen-
talné. Pro méfeni uvolnénych deformaci se pouzily jednosmérné odporové tenzometry. V rozvi-
nutéjsim stadiu byla tato metoda publikoviana napf. Rendlerem [RENDLER and VIGNESS, 1966].
Zde se k nalezeni vztahti mezi uvolnénymi deformacemi a zbytkovym napétim pouzila experi-
mentalni kalibrace. Tato prace predstavuje zaklad dnes pouzivanych metod a norem. Rozvoj
vypocetni techniky pfinesl moznost pouziti numerickych metod, jako je tfeba metoda konec-
nych prvkt nebo metoda hrani¢nich prvki, coz umoznilo piesnéjsi urceni potiebnych koeficientii.
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Zde je tfeba zminit prace Schajera [SCHAJER, 1981]. V dalsich letech byly publikovany postupy
pro pouziti odvrtavaci metody v piipadé nekonstantniho priibéhu zbytkovych napéti s hloub-
kou [SCHAJER, 1988al, [SCHAJER, 1988b] a v roviné [KABIRI, 1984], [LUH and HEANG, 1999,
[INAWWAR and SHEWCHUK, 1978]. Schajer [SCHAJER and YANG, 1994] rovnéz publikoval modi-
fikaci odvrtavaci metody pro pfipad ortotropickych materiali.

Teoreticky zaklad odvrtavaci metody

Zakladni teorie vychéazi z analytického feseni desky s vyvrtanym priichozim otvorem. Toto feSeni
bylo publikovano Prof. G. Kirchem [TIMOSHENKO and GOODIER, 1951]. Jedn4 se o tenkou desku
zatizenou dvouosou napjatosti a s predpokladanym konstantnim priibéhem napéti s hloubkou.

Obr. 29: Tenka deska s jednoosym naméhanim

Napjatost u tenké desky (obr. 29) zatiZené jednoosou napjatosti o, lze v jakémkoliv bodé
vyjadrit pomoci polarnich soufadnic vztahy:

ol = %(1 + cos 2a) (58)
Oy = %(1 — cos 2a) (59)
o = —% sin 2 (60)

Obr. 30: Tenké deska s jednoosym namahanim s prichozim otvorem

Pro pfipad desky s prichozim otvorem (obr. 30) je napjatost na zdkladé Kirschova FeSeni

vyjadfena vztahy:
y Os 1 O 3 4
=G (1) + 5 (4 G ) eman o
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(o ]- Ox 3
o 5 (1+r_2>_7<1+ﬁ)0082a (62)
Ox 3 4 .
7—7{’@ = ) (1 + i ﬁ) sin 2a (63)
kde: R
=— (R>R
r= g (R > Ry)

Ry ...polomér otvoru
R ...vzdéalenost od stfedu otvoru

Odectenim puvodniho napéti od konecného po odvrtani otvoru ziskdme zménu napéti v bodé
P(R, &) po odvrténi otvoru.

Ao, =o' — o (64)
Aog = 04 — 0g (65)
ATe = To — Tlo (66)

Dosazenim vztaht (58) — (60) a (61) — (63) do vztaht (64) — (66) ziskdme tplny vztah pro
vyjadfeni uvolnénych zbytkovych napéti. Pokud je zkoumany material ve svych mechanickych
vlastnostech homogenni a izotropicky a je-li mozné povazovat zavislost napéti na deformaci za

linearni, pak za pouziti Hookova zakona pro dvojosou napjatost lze popsat uvolnéné deformace
v bodé P(R, «) vztahy:

o.(14+pu)[1 3 4

&= {ﬁ — 5 cos 20 + T ) cos 204} (67)
o.(14+p) [ 1 3 4
fo = o {—ﬁ—&—ﬁcosQoz—mcosQa (68)
Ptedchozi rovnice Ize upravit do nasledujiciho tvaru
e = 0,(A+ Bcos2a), (69)
co = 0(—A + C cos2a), (70)
kde koeficienty A, B a C jsou vyjadreny vztahy
14+p (1

A=—>T— | = 1
2F (7"2) ’ (1)

1 4 1 3
B— M — -2, (72)

2F T+p)rr rt

1+p 4pn 1 3
C = _ _ — 2. 73
oo (7)o ™

Na obr. 31 je znazornén pribéh radidlnich a te¢nych deformaci jako funkci pomérného po-
loméru r. Z obrazku je patrné, ze uvolnéna deformace v zavislosti na vzdalenosti od otvoru se
blizi k nule. Na druhou stranu v blizkosti otvoru je v pripadé skutecného télesa zéna ovlivnéna
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Obr. 31: Pribéh radiélnich a teénych deformaci u desky s vyvrtanym otvorem [tn5, 1985]

vrtanim otvoru. To je diivod, pro¢ se optimalni pomérny polomér r pro umisténi tenzometru dle
normy ASTM nachazi v intervalu (2,5 — 3,4).

Z obrazku je ztejmé, ze v pripadé thlu o« = 0° je v doporucené oblasti, odpovidajici intervalu
r €(2,5— 3,4), radidlni deformace skoro t¥ikrat vétsi nez deformace tangencialni. Z tohoto divodu
je vétsina komercéné dodavanych tenzometrickych riizic vyrobena s tenzometry orientovanymi
v radidlnim smeéru. Vztahy byly odvozeny pro nejednodussi piipad pro jednoosou napjatost.
V redlném télese se vsak predpoklddd napjatost rovinna. Za predpokladu linearné elastického
materialu lze pouzit princip superpozice k ziskani vztahti pro celkovou radidlni deformaci. Piisobi-
li napéti ve sméru osy Y , lze vyjadiit radidlni deformaci v bodé P(R, o) vztahem

e¥ = 0,(A — Bcos2a) (74)

a v pripadé jednoosé napjatosti ve sméru X vztahem

ey = 0,(A+ Bcos2a). (75)

T

Pokud ptisobi obé napéti soucasné, princip superpozice umoziuje secist vztahy (74) a (75).
Vysledny vztah pak popisuje radidlni deformaci pro dvojosou napjatost

e = 0,(A+ Bcos2a) + 0,(A — Bcos2a), (76)
respektive po malych tpravach
e, = Aoy + 0y) + B(o, — 0y) cos 2a. (77)

Rovnice (76) a (77) jsou zakladnimi vztahy pro uréeni dvou hlavnich napéti a thlu jejich nato-
¢eni. Pro urceni téchto tii neznamych je potieba ziskat tfi rovnice. Ty mizeme ziskat naptiklad
vyjadfenim radialnich deformaci ve tfech rtznych smérech. To mize byt provedeno najednou
pomoci tenzometrické ruzice (obr. 32). Za piedpokladu limitni plochy tenzometru a pro pfi-
pad zobrazené 45° rtizice lze pro jednotlivé tenzometry napsat odpovidajici radidlni deformace
tenzometri 1, 2 a 3.

e1 = A(o, + 0y) + B(o, — 0y) cos2a (78)
gy = A(o, + 0y) + B(o, — 0y) cos 2(a + 45°) (79)

g3 = A(o, + 0y) + B(o, — 0y) cos 2(a 4 90°) (80)
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Obr. 32: Schéma tenzometrické ruzice

Reseni téchto rovnic je pak mozné vyjadiit vztahy (81, 82 a 83).

€1+¢€ V2
Omaz = 14A 2 + E\/(gl - €2>2 + (52 - 53)2 (81)
€1+ &9 \/§

Tmin = — 7 T 1B (61— €2)? + (g2 — €3)? (82)

€1 —2e9+¢
taHQCX:#

(83)

€3 —¢&1

Takto urcena napjatost odpovida pouze ideadlnimu pripadu, spliujicimu vyse uvedené pred-
poklady a popisuje napjatost v bodé o soufadnicich (r,«) okolo priichoziho otvoru v nekone¢né
rozlehlé desce a za predpokladu konstantniho pribéhu napéti po hloubce otvoru. Deformace
zmérena skuteénym tenzometrem odpovida prumérné deformaci v radialnim sméru pod plochou
vinuti tenzometru. Ne vSechny smycky vinuti maji smér odpovidajici radidlnimu sméru, takze
do naméfené hodnoty radidlni deformace se projevi i tangencialni slozka uvolnénych deformaci.
Koeficienty A a B pro skutecné tenzometry lze ziskat integraci pres skuteénou plochu vinuti
tenzometru a nebo experimentalni kalibraci.

Experimentalni kalibrace

V nésledujicim odstavci je popis experimentalni kalibrace publikované Rendlerem [RENDLER and VIGNESS,
Autori predpokladali jednoose namahany vzorek, a ze zménu deformace, vyvolanou vyvrtanim
kroku z hloubky z do hloubky z + Az, Ize popsat vztahem

Ac,(a) = K, (a)o, Az, (84)

kde o, je napéti v hloubce z, « je tthel mezi smérem radidlni deformace a osou napéti, ¢, (a) je
radidlni deformace v sméru daném thlem « uvolnéna vyvrtanim kroku o velikosti Az a K, («) je
parametr, ktery je konstantni pro dané z, Az a a.

Pro pfipad vyvrtaného otvoru do koncové hloubky a stavu dvojosé napjatosti, lze radialni
deformaci vyjadrit vztahem

e(a) = K()omar + K(a +90°)0in, (85)

kde tihel « je méfen od sméru 0,4 -
Rendler zavadi funkci K (o) ve zjednoduseném tvaru

K(a) = A+ Bcos(20), (86)
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kde konstanty A a B jsou zavislé na materialu a geometrii vrtaného otvoru. Hodnota K () z
(86) dosazené do (85) pak predstavuje vztah, pomoci néhoz lze ze ti{ signala ze t¥i tenzometri
urcit hlavni napéti a jejich polohu vii¢i geometrii rizice. Pfedpokladem je ale znalost konstant
A a B. Rendler tyto konstanty uréuje pomoci experimentélni kalibrace, kdy v p¥ipadé jednoosé
napjatosti o velikosti o lze tyto konstanty vyjadrit jako

- &1+ ¢E3
A=
oo (87)
— €1 — &3
B p—
=, (33)

za predpokladu, Ze smér prvniho tenzometru je totozny se smérem jednoosé napjatosti.

V pripadé experimentéalni kalibrace je tfeba brat v potaz moznost pritomnosti zbytkovych
napéti v kalibracnim vzorku. Zména deformace zaznamenana po vyvrtani otvoru na zatiZze-
ném vzorku je poté vyvolana, jak aplikovanym zatizenim, tak i zbytkovym napétim pritomnym
ve vzorku. Rendler separuje zbytkova napéti naptiklad zptisobem znazornénym na obr. 33.

(&)

f ) (a)112 MPa
(c) /
gﬂ EOAE—:R EbAETJSG

Ae = A&T —ASR

Obr. 33: Metoda separace zbytkové deformace [RENDLER and VIGNESS, 1966]

Vzorek byl nejprve zatizen tak, aby bylo dosazeno napéti 112 MPa a byla odectena deformace
g, (bod a). Po odvrténi jednoho kroku hloubky byla zaznamendna uvolnénd deformace Aep =
£q — €p. Poté bylo zatiZeni snizeno na hodnotu 14 MPa a byla zaznamenana hodnota deformace
.. Grafickou extrapolaci vzniklé primky do nulové osy byl ziskan bod d odpovidajici deformaci
€4, ktera byla zptsobena zbytkovym napétim. Pokud je ¢y deformace pfi nulovém zatizeni vzorku
pred vyvrtanim pfirtstku hloubky, tak deformace Acr = g9 — €4 odpovida zbytkovému napéti
v materiadlu v pfislusné hloubce vrtu. Prirtistek deformace odpovidajici cisté zatizeni daného
vzorku, je pak dan rozdilem Ae = Aer — Acp.

Postupy pouzivané pro vyhodnocovani zbytkovych napjeti
Normovana metoda ASTM E837

Organizace ASTM vydala normu s oznacenim E837 [E83, 2001], kterd prochéazi aktualizacemi.
Tato norma predpoklada pouziti triprvkové rizice, odpovidajici schématu na obr. 32. Pted-
poklada se vyvrtani otvoru o hloubce odpovidajici 0,4 nasobku stfedniho priméru rizice D
(D = 2r,,) a odméfeni uvolnénych deformaci pomoci piislusnych zafizeni. Pro zavislost mezi
hlavnimi napétimi a radialni uvolnénou deformaci se pouziva vztah analogicky (76):

£, = amar(ﬁ + Bcos 2a) + Umm(fl — Bcos 2a), (89)
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kde konstanty A a B lze vyjadiit nasledujicimi vztahy
A= —a(l+p)/(2E), (90)

B = —b/(2E), (91)

kdy bezrozmérné konstanty @ a b jsou materialové téméf nezavislé [E83, 2001] a jejich hodnoty
pro pruchozi a slepy otvor jsou touto normou tabelovany.

Pomoci tenzometrické rtizice jsou zmeétreny uvolnéné deformace. Norma uvadi pfipustné ge-
ometrie tenzometrickych rtzic vhodnych pro urcovani zbytkovych napéti, kde se nejcastéji pouzi-
vaji rizice t¥iprvkové, ale jsou mozné i jiné geometrie ruzic. Naptiklad Schajer [SCHAJER and TOOTOONIAN,
navrhl Sestiprvkovou rizici, kdy tfi tenzometry v rozlozeni odpovidajici razici 45° maji vinuti
presné v radidlnim sméru a jsou doplnény o tenzometry s vinutim v tangencialnim smeéru. Tyto
tenzometry jsou v pfislusnych dvojicich zapojeny do ptlmostu. Tato tprava by méla zajistit
vyssi citlivost méticiho fetézce. Tenzometrické riizice odpovidajici normé lze nalézt ve vyrobnich
programech vSech vyznamnych producentii tenzometri. Pro méfeni uvolnénych deformaci norma
piedpoklada pouziti tenzometrické aparatury s rozlisenim minimalné +2 - 1075 ym/m. P¥iprava
vzorku pro instalaci tenzometrické rtizice musi byt provedena takovym zpiisobem, aby nedoslo k
ovlivnéni povrchovych zbytkovych napéti.

Vrtany otvor nesmi svymi rozmeéry ohrozit vinuti tenzometra v riizici. Norma uvadi povolenu
vzdalenost 0,3 mm mezi okrajem vrtaného otvoru a koncem vinuti tenzometru. Tento rozmér pak
predstavuje maximalni primér vrtaného otvoru Dy. Minimélni rozmér vrtaného otvoru je pak
uveden jako 60% maximalniho priméru. Norma uvadi doporudené rozméry vrtaného otvoru pro
prislusné tenzometrické rizice. S rostoucim pomérem Dgy/D citlivost roste pfiblizné dle vztahu
(Do/D)?. Excentricita vrtaného otvoru a stfedu riizice by neméla presahovat vétsi z rozmért a
to bud 40,004 - D nebo £0,025 mm.

Vybér vrtaci techniky a nastroje by mél byt proveden s ohledem na minimalizaci, pfipadné
eliminaci plastickych deformaci v okoli otvoru. Technologie vrtani uvadéné touto normou jako
vhodné jsou abrazivni odtryskavani, vrtani s vysokou feznou rychlosti, kdy se pouziva vzduchova
turbinka, ¢i vrtani za nizkych feznych rychlosti. M4 se za to, ze pro vétsinu konstrukénich mate-
rial, s vyjimkou materialti extrémné tvrdych, je nejvhodnéjsi technika vrtani s vysokou feznou
rychlosti.

Vzorek, jehoz tloustka je alespon 1,2 - D, se dle normy oznacuje jako ,tlusty“. V pripadé
tohoto vzorku se provadi vrtani po krocich 0,05 - D do konecné hloubky 0,4 - D. Po odvrtani
kazdého kroku se provede odecteni uvolnénych deformaci. Norma umoziuje pouzit i jinou velikost
vrtacich krokii.

Vzorek, jehoz tloustka je mensi nez 0,4 - D, se oznacuje jako ,tenky“. V tomto pfipadé se
provede pruchozi vrtani a poté se odec¢tou hodnoty uvolnénych deformaci.

V pfipadé, ze tloustka vzorku je v rozmezi (0,4 —1,2) - D, je mozné ziskat pfiblizné vysledky
vyvrtanim prichoziho otvoru a pouzitim interpolace mezi konstantami pro nepriichozi a priichozi
otvor.

Pro kazdou sadu namétrenych deformaci €1, e5 a €3 je potieba spocist kombinace deformaci:

p=(e3+¢e1)/2 (92)
q=(e3—¢e1)/2 (93)
t=(e3+e1 —2e9)/2 (94)

V pripadé ,tlustych®“ vzorkd je potfeba provést test pro ovéieni konstantnosti zbytkovych
napéti v zavislosti na hloubce. V pripadé nesplnéni tohoto testu neni tato metoda vhodna.

Vypocet zbytkovych napéti dle normy E837 predpoklada konstantni pribéh zbytkovych na-
peti.
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Pro ,tenké“ vzorky se meéfenim ziskaji tii hodnoty uvolnénych deformaci €1, €5 a €3, coz
umoznuje urcit hodnoty hlavnich napéti a jejich smér. Norma ptredpoklada, Ze ziskanad napéti
jsou po celé tloustce konstantni. Nejvétsi tahové hlavni napéti o,,., je orientovano tthlem a od
osy tenzometru 1 na obr. 32, kdy thel « Ize spocist vztahem

a= %arctan (t/q) (95)

Hlavni napéti se pak spocitaji dle vztahu

S —— [p/aa T t%} B (96)

V ptipadé ,tlustého* vzorku se postupuje podobné, jako u vzorku ,tenkého“. Pro kazdou sadu
namérenych deformaci z kazdého kroku se odectou hodnoty prislusnych kalibra¢nich konstant a
a b a na jejich zakladé se pak spoctou tfi kombinace napéti P, Q) a T.

Trw 2 )
>b-q
=—F. _ 98
Q = (98)
bt
T=-FE- 2 — (99)
>ob
Uhel « se spoéte dle obdobného vztahu jako v p¥ipadé vzorku ,tenkého*
1 =T
a=3 arctan — (100)
a hlavni napéti s poté urci ze vztahu
Omazy Omin = P+ (Q2 + T2) (101)

V této normé je dale popsan postup experimentélniho uréeni kalibra¢nich konstant @ a b.

Urcovani zbytkovych napéti u napéti nekonstantniho s hloubkou

Metoda ASTM E837, popsana v minulém odstavci, predpoklada priibéh zbytkovych napéti v
zévislosti na hloubce konstantni anebo jen mirné se ménici. Metody umoznujici urc¢it pribéh v
pripadé nekonstantniho napéti budou prfedmétem tohoto pododdilu.

Prirastkova metoda Tato metoda predpokladd méreni uvolnénych deformaci v postupnych
maljch krocich hloubky otvoru. Velikost napéti, které bylo v odvrtaném dilku, se pak vypocita
za predpokladu, ze pfiriistek uvolnéné deformace je cely zptisoben napétim, které bylo piivodné
v odvrtaném dilku hloubky otvoru. Pro kazdy dilek hloubky musi byt pouzity vlastni hodnoty
kalibra¢nich konstant @ a b. Tyto kalibraéni konstanty jsou pro kazdou hloubku diry uréovany
experimentalné postupnym odvrtavanim vzorku se zndmou jednoosou napjatosti. Pfedpoklad, ze
uvolnéné deformace zméfené po vrtani jednoho kroku jsou zptiisobeny pouze zbytkovym napétim
praveé uvnitt dilku, vSak neni spravny. Po vyvrtani prvniho kroku postupné uvolnéné deformace
kombinuji vliv napéti uvnitt odvrtaného dilku a vliv zmény geometrie otvoru. Geometrické zmény
zpusobi dalsi uvolnéni deformaci z napéti z pfedchozich vrtanych krokt. To ma za nasledek, ze
uvolnéné deformace se mohou zvétsovat, i kdyz by novy vrtany dilek nebyl zatizen.
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Metoda prumérnych napéti Tato metoda publikovand Nickolaem [NICKOLA, 1986] méla
prekonat nedostatky prirtistkové metody. Metoda je zalozena na ekvivalentnich konstantnich
napétich, coz jsou konstantni napéti po celé hloubce otvoru, ktera zptsobi stejné uvolnéné defor-
mace jako skutecny nekonstantni pribéh zbytkovych napéti. Ekvivalentni napéti jsou pocitana
za pouziti kalibra¢nich konstant @ a b pro konstantni pole napjatosti a za pouziti zméFenjch
uvolnénych deformaci. V pfipadé metody primeérnych napéti se ekvivalentni konstantni napéti
pocita pomoci uvolnénych deformaci zmérenych pred a po odvrtani dilku hloubky. Predpoklada
se, ze ekvivalentni konstantni napéti po odvrtani dilku hloubky odpovida souc¢tu ekvivalentniho
konstantniho napéti pred vyvrtanim dilku hloubky a napéti uvniti odvrtaného dilku.

U(z+Az)(Z + AZ) =02+ O(AZ)AZ (102)

o...ekvivalentni konstantni napéti uvnitf popisované oblasti
z... hloubka otvoru pred odvrtanim dilku hloubky
Az. .. prirtstek hloubky
z + Az...hloubka otvoru po odvrtani pfirtistku hloubky
Napéti uvnitt kroku se pak spocita na zakladé feseni rovnice (102).

Integralni metoda Integralni metoda patii mezi uznadvané metody pro vyhodnocovani nekon-
stantniho pole zbytkového napéti.

RO T'm

tenzometr

Obr. 34: Integralni metoda — schéma

Tato metoda predpoklada, ze na deformaci uvolnénou po vyvrtani otvoru do hloubky A ma
vliv pribéh zbytkového napéti po celé hloubce otvoru (obr. 34). Deformaci uvolnénou po vyvrtani
otvoru do hloubky & pak lze vyjadrit vztahem

1

h
) = 5 [ {0+ WAoo (01) + 0, (1) + BUL W) ) - o0}, (103)
0
kde 0,(H) a 0,(H) jsou zbytkova napéti ve smérech x a y. Vztah (103) lze piepsat v diskrétnim

tvaru

1 J
ET]‘ = ﬁ Z[c—zﬂ(l -+ M)(Uzi + in) + bji(azi — in)], kde 1 S j S n. (104)
i=1

Pfi pouziti tiiprvkové ruzice vede vztah (104) pfi pouziti (92) — (94) na vztahy

p =, (105)

q = @7 (106)



MECHANIST’S JOTTER 2006, 64-89 (2006) 75

i 63]‘ + €1j — 2€2j

2 5~ (107)
respektive pro napéti
P; = W’ (108)
Q=" (109)
, 90,
T}- _ 03j + 0'12] 02; (110)
Z rovnice (104) pak vyplyva:
14+ p d _
p; = ( = )Zaﬁpi (111)
i=1
1<~
G =5 Db (112)
i=1
1<~
t; = EZbﬁTi (113)
i=1

Slozky napéti P;, Q); a T; odpovidajici j-té vrstvé pak mohou byt urceny na zékladé feseni
rovnic (111) — (113).

1| Ep, &
ajj | (1+p) =1
1 &
Q; = =— Eq; — Zb]ZQZ] (115)
7L i=1
I [ =
Tj=7— | Bt~ > bl (116)
23 L i=1

Hlavni napéti (0,mae,min); Vv j-t€ vrstvé se pak spoctou dle vztahu odpovidjcimu rovnici (101)

(Umaz,min>j = P] + (Q? + ,-T]Q) <1l7>

Rovnice (114) — (116) 1ze zapsat pomoci maticového zapisu, takze napiiklad

AP = Ep/(1+ ), (118)
kde pro pripad ¢tyt krokt lze psat
an Py P1
S E - EE - A IP ) B
(g1 Qg2 Q43 Gaq Py D4

Uréeni matice kalibra¢nich konstant A je pak naznaceno na obr. 35.
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1T 1T o

91 (22

T 1o 14

asi a32 a3s3

G41 Q42 Q43 Q44

Obr. 35: Zatizeni odpovidajici koeficienttim @,;; matice A [SCHAJER, 1988a]

Urceni optimalniho kroku vrtani Integralni metoda je velice citlivd na chybu mefeni uvol-
nénych deformaci. To je zpisobeno Spatnou numerickou podminénosti rovnic (114) — (116).
Mala chyba deformaci p;, g; a t; zpiisobi velkou chybu u napéti P;, ); a T} a nésledné i u
odhadu zbytkovych napéti. Podminénost pak odpovida volbé celkového poctu krokt n. Zucca-
rello [ZUCCARELLO, 1999] publikoval postup pro optimalizaci volby velikosti kroku, tak aby byl
zmensen vliv chyby méfeni na spoc¢teny prubéch zbytkového napéti. Na obr 36 je znazornén pru-
béh, ktery byl ziskan za predpolkladu nahodné chyby zméfené deformace v rozsahu £3um/m a
pii pouziti s pocty konstantné velkych krokii n =4 an =9.

300 T | |

T T
,“‘ Sk. n4 —
n=4---
.l \‘ n=9—-
250 , I\ 1
= |y ) hoooo
B . :/ —\—’"‘/i ~\_. I' -=-"
e I M W
) ' ' \ / \/ '
\/ '\ \
150 F Vs
./
100 | | | | | | |
0 0,1 0,2 0,3 0,4

h/rm

Obr. 36: Vliv poctu konstatnich kroki na spoctena zbytkova napéti pii pouziti integralni metody
[ZUCCARELLO, 1999] (Sk. n. ...skutené napéti)

V soucasnosti je volba poc¢tu krokti kompromisem mezi pozadovanou citlovosti chyby zméte-
nych deformaci a urcenych napéti a pozadavkem na podrobny popis priubéhu zbytkovych napéti
s hloubkou. Za predpokladu konstantni velikosti krokti a obvyklé méfici chyby pii pribéhu od-
vrtavaciho experimentu, vede pouziti vice jak t¥i pfipadné ¢tyr krokt k velké chybé u urcenych
zbytkovych napéti.

Pro zjednoduseni se prepoklddalo pole zbytkového napéti, kdy P=cap=¢ (@ =T =0,
q =1t =0). Z rovnice (118) vychazi

o=[E/(1+p)A- e (120)
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a potom lze na zdkladé (120) vyjadiit vztah mezi vektorem chyb pro napéti Do a deformace De
Do = [E/(1+ p)]A - De. (121)

Cislo podminénosti K (A) matice A pak ukazuje na podminénost (120), malé &slo podminé-
nosti odpovida dobfe podminéné soustavé. Z rovnic (120) a (121) pak vyplyva

D - |ID
Do) _ oz 1D=l 22)
T4l el
kde
_ - —_1
K(A) = [|A] - A (123)

a || A|| je normou matice A. Pfi pouziti spektralni normy lze ¢islo podminénosti vyjadiit ve tvaru

Y S ) [ S ] 4TI
AT (aq)? '

Z rovnice (124) pak vyplyva, Ze pro nalezeni nejmensiho ¢isla podminénosti K (A) musi byt ¢leny
na diagonale konstantni

K(A), = (124)

aj; = konst.. (125)

Metoda mocninné fady Metoda mocninné fady byla publikovana Schajerem [SCHAJER, 1981]
jako priblizna, ale teoreticky akceptovatelnd metoda pro vypocet nekonstantniho pole zbytkové
napjatosti. P¥i pouziti této metody je potfeba spocitat fadu koeficientt %a(h), *a(h), 2a(h) a
%b(h), b(h), 2b(h), které odpovidaji uvolnénym deformacim pii vrtani otvoru do pole zbytko-
vého napéti, které je nahrazeno mocninou fadou s proménou odpovidajici hloubce h;(°c(h) = 1,
Yo(h) = h, 20(h) = h? atd.). Tento vztah je pak pouzit jako bazova funkce v metodé nejmensich
¢tvercti pro analyzu naméfenych dat. Pi zavedeni kombinace napéti ve formé P = (o, + 0,)/2,
Q = (0, —0,)/2 aT = 7,,/2 je metoda nejmensich ¢tverct aplikovana na kazdou uvedenou
kombinaci napéti. Transformované napéti P(h) je spocitano z transformované deformace p(h) za
pouziti vztaht

Xy aea) ram'a 1 [9P ] _ _E_[Sa(hp(h)
> Sonatn) | |7 ) = Tog | Satona ) 02

P(h) =" P +' Ph, (127)

QA Ql

kde °P a P jsou prvni dva ¢leny mocninné fady, kterd popisuje napéti P. Tento vypocet se
obdobné provede pro transformované napéti QQ(h) a T'(h) za pouziti deformaci ¢(h) a t(h) a
koeficienttt b(h) misto @(h). Odvrtavaci metoda nedava uspokojivé vysledky pii pouziti vice jak
prvnich dvou ¢lent mocninné fady ve vyrazu pro napéti. Z tohoto divodu je omezena maxi-
malni hloubka od povrchu omezena hodnotou 0, 5r,,, kde r,, je stfedni polomér tenzometrické
ruzice (vzdalenost stfedi vinuti jednotlivych tenzometrt od stfedu tenzometrické rtizice). Pouziti
metody nejmensich ¢tverci zpiisobuje zaokrouhleni méficich chyb, na druhou stranu v piipadé
nehladkého priitbéhu zbytkovych napéti tento zaokrouhlujici icinek méa vliv na celkovou velikost
spoctenych zbytkovych napéti.

Porovnani vyhodnocovacich metod

Schajer [SCHAJER, 1988a] uvadi srovnani vyse zminénych metod, z kterého vyplyvaji omezeni
pro pouziti. Pro srovnani pouzil data ziskand numerickym experimentem, kdy dana soucast byla
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Obr. 37: Vzajemné porovnani vyhodnocovacich metod [SCHAJER, 1988a]
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Obr. 38: Tenka deska s linearné proménlivym zbytkovym napétim

zatiZena tak, aby pritbéh napéti s hloubkou mél kvadraticky pribéh (o = 1— H —2H?). Z obr. 37
vyplyva porovnani téchto metod.

Vysledkem integralni metody je odstupnovany pribéh napéti vcelku dobtfe odpovidajici sku-
tecnému prubéh napéti. Pribéh napéti ziskany metodou mocninné fady je ¢ara, kterd pomérné
presné kopiruje skuteény prubéh. Metoda prirtistkova a metoda primérnych napéti pak poda
vysledek, ktery se s vétsi hloubkou vzdaluje skutecnému pribéhu. Z uvedeného vyplyva, ze v
pripadé velice hladkého pribéhu napéti je vyhodnéjsi metoda mocninné fady s pouzitim velkého
poc¢tu malych vrtacich krokd. Integralni metoda lépe aproximuje skuteény pribéh v pripadé nah-
Iych zmén. Jeji nevyhodou je potom pouziti dat z malého poc¢tu vrtacich kroki. Tento aspekt je
mozné eliminovat vhodnou volbou velikosti kroku, jak bylo popsano drive.

Modifikace odvrtavaci metody v pripadé plosného gradientu zbytkovych napéti

Urcovani gradientnich zbytkovych napéti pomoci vyvrtéavaci metody bylo popsano Kabirim [KABIRI, 1984].
Pokud je primér vrtaného otvoru pomérné maly, potom je mozné nekonstantni priibéh zbytko-
vych napéti v okoli otvoru nahradit linedrnim pribéhem. Na obr. 38 je zobrazena tenka deska
zatizena linearné proménnymi zbytkovymi napétimi. Pole zbytkového napéti je mozné popsat
vztahy

Op = 0q + Yoo, (128)

oy = 0p + T0y4. (129)

V ptipadé téchto vztahti se predpoklada konstantni pribéh po celé hloubce otvoru. Primérna
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Obr. 39: Schéma pétitenzometrové ruzice podle Kabiriho [KABIRI, 1984]

radialni deformace pro tento pfipad je vyjadiena vztahem

e, = A(oa +0y)/E + B(o, — 0p) cos20/E + Co.sind/E +
+ Co4cos/E + Do.sin39/FE — Dog39/E. (130)

Koeficienty A, B,C a D jsou funkcemi Poissonova ¢isla, poloméru vyvrtaného otvoru, délky a
sitky tenzometru a jeho polohy vzhledem ke stfedu vyvrtaného otvoru. Rovnice (130) obsahuje
pét neznamych: o, , 0, , 0. , 04 a . Kabiri [KABIRI, 1984] navrhl rozloZeni pétitenzometrové
riizice, ktera je zobrazena na obr. 39.

Deformace mohou byt vyjadieny pro kazdy tenzometr z této navrzené ruzice.

g1 = Ao, +0p)/E+ B(og, — 0p) cos 20/ E + Co.sin/E +
+ CogcosV/E + Do.sin39/E — Dog39/E (131)

g9 = A(0a + 0p)/E + B(o, — 0p) cos2(0 + 45°) /E + Co.sin(V + 45°) / E +
+ Cogcos(V 4+ 45°)/E + Do,sin 3(0 + 45°) /E — Dog3(9 + 45°) /E (132)

g3 = Ao, + 0p)/E + B(o, — 0p) cos2(¥ + 90°) /E + +Co.sin(d + 90°)/E +
+ Cogcos(¥ 4+ 90°)/E + Do.sin3(¢ + 90°)/E — Dog3(9 + 90°)/E (133)

ey = Ao, +0p)/E + B(o, — o) cos(2(0 + 180°))/E + +Co.sin(d + 180°) /E +
+ Cogcos(d + 180°)/E + Do, sin3(0 + 180°)/E — Doy3(d0 + 180°)/E (134)

g5 = Ao, + o)/ E + B(o, — o) cos(2(0 + 225°)) /E + Co.sin(0 + 225°) /E +
+ Cogcos(0 + 225°)/E + Do,sin 3(0 + 225°)/E — Dog3(0 + 225°) /E (135)

Reseni rovnic (131) — (135) bylo Kabirim [KABIRI, 1984] provedeno. Pét nezndmych o, , oy , o ,
04 a ¥ mize byt vyjadfeno pomoci vyrazu obsahujici pét namérenych pomérnych deformaci a ko-
eficienty. Napétové gradienty o, a o4 jsou funkcemi rozdili v naméfenych pomérnych deformacich
€1, &4 A &9, E5.
Modifikaci vyse uvedené metody je postup publikovany Luhem a Hwangem [LUH and HEANG, 1999].

Pouzili komer¢éné dostupné tfitenzometrové rizice (obr. 40), kdy po vyvrtani malého otvoru
do stfedu rtizice jsou odméteny tti radialni deformace ! — €. Po odméfeni deformaci je maly
otvor zvétsen vyvrtanim vétsiho otvoru a mohou byt odméieny dalsi tii radialni deformace i —

ell. Pfi pouziti prvnich péti naméfenych deformaci je mozné, jako v predchozim postupu, uréit
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Obr. 40: Schéma ruzice podle Luha [LUH and HEANG, 1999

pét neznamych (o, , 03, , 0. , 04 a V). Zde je vSak na misté vytesit otazku, zda ode¢tené hodnoty
deformaci pfi riznych vzajemnych geometriich otvoru a rtizice nebudou ovlivnéné riiznou chybou
méfenti.

Dva vyse uvedené postupy byly feSeny pro priichozi otvor s predpokladanym konstantnim
priabéhem zbytkovych napéti s hloubkou. V pripadé nepriichoziho otvoru je situace odlisna. V
tomto ptipadé, obdobné jako pro negradientni pole, je potieba uréit koeficienty A, B,C a D. V

vvvvvv

koeficientu numerickym postupem, nejspiSe pomoci metody kone¢nych prvkii.

Pouziti odvrtavaci metody u ortotropnich materiali

V pripadé ortotropniho materidlu by pouziti vztaht pro isotropni material vedlo k nepresnym
vysledkiim. Schajer [SCHAJER and YANG, 1994] publikoval postup, ktery vychézi z analytického
feseni pole posuvil v okoli otvoru v ortotropnim materialu. Uvolnénou deformaci v ptipadé isot-
ropniho materialu je mozné vyjadrit pomoci vztahu

e, = Ao, + 0y) + B(o, — 0y)cos2a + Ctyy sin 2a, (136)
kde A,B a C' jsou kalibracni konstanty zavislé na materialu a geometrii rizice. V pripadé iso-

tropniho materidlu je C' = 2B. Pfi pouziti rizice dle ASTM (obr 32) lze rovnici (136) zapsat
v maticovém tvaru

A+B 0 A-B|[ o, €1
A -C A Toy | = | €2 |- (137)
A—-B 0 A + B 1L Oy i L £3 ]
V pripadé elastického chovani ortotropniho materialu je mozné rovnici (137) zobecnit do tvaru
1 e e e | [ on ] [ e1 ]
\/ﬁ Co1 Co2 (23 Tey | = | €2 | (138)
Y | 31 C3p Cs3 Oy €3

kde elastické poddajnosti c;;—c33 je tfeba spocist pro konkrétni ortotropni material dle vztaht
uvedenych v [SCHAJER and YANG, 1994].

Korekce plasticity

V pripadeé vysokych zbytkovych napéti v dané konstrukei pouzitim metod uvedenych v predcho-
zich oddilech ziskdme neptesné vysledky. Naptiklad norma ASTM uvadi hodnotu pouziti do 0,5
meze kluzu daného materialu. V tomto pripadé je mozné pouzit korekéni postupy upravy koefi-
centll platnych pro elasticky materal. Yan [YAN et al., 1996] uvadi nasledujici postup: Von Mi-
sesova podminka plasticity mize byt vyjdarena ve tvaru

é (01— 02)* + (02 — 03)* + (03 — 01)*] = Konst., (139)



MECHANIST’S JOTTER 2006, 64-89 (2006) 81

kde leva strana rovnice (139) zahrnuje vztah pro deformacni energii. Podle rovnice (139) za¢ne
material klouzat, pokud deformacni energie dosahne urcité hodnoty. Yan zavadi parametr S.
V pripadé rovinné napjatosti a pokud jsou napéti o, a o, orientovana v hlavnich smérech, lze
podminku plasticity vyjadiit vztahem

02 — 0,0y + 0, = 0} (140)
a dle Hookeova zakona plati
1
Ex = E(O'x — Uoy), (141)
1
€y = E(O'y — o). (142)

Leva strana rovnice (140) pak mize byt vyjadiena vztahem

2 2 E
am—axay—i—ayS(l_'uQ) , (143)
kde

S =1+ pu*—p)(+ 512/) — (14— Ap)ELEy, (144)
z Cehoz vyplyva, ze S zastupuje velikost deformacni energie odpovidajici danym napétim. Yan
uvadi zavislost mezi S a zatizenim o, kdy je uvadéna exponencialni zavislost a v ptripadé nizkych
napéti je S zanedbatelné.

Norma ASTM E837 je omezena hodnotou 0, 5 - oy, kdy zacina dochazet k plastizaci na okraji
vrtaného otvoru. Pro tento pfipad Yan oznacil hodnotu S jako S,, z ¢ehoz vyplyva podminka,
ze k plastizaci dojde v pripadé S > §,. Hodnotu S, je mozné urcit experimentalné. V tomto
pripadé Yan navrhuje korekci kalibracnich koeficientt

A= —(aa+ba8), (145)
B/ = —(aB + bBS>7 (146)

kde a4, ba, ap a bg jsou urceny na zakladé regrese vysledkii experimentalnich méteni.

Excentricita otvoru

Pro pfipad excentricity otvoru vuéi stfedu tenzometrické rizice byly publikovany [Lu, 1996]
vztahy, kdy pro pripad priichoziho otvoru je mozné provést korekci. Za predpokladu, ze hlavni
napéti oy svird s osou ' referenéniho souradného systému z'0’y’ tihel ¢ viz obr. 41 je mozZné
sestavit nové vztahy pro uvolnéné deformace ¢, €5, €3 zméfené tenzometrickou rizici

Al B; Cl 01+ 02 €1
Ay By (O (01 —09)cos2¢ | = | & |, (147)
Ag Bg Cg (0‘1 — 0'2) sin 2¢ £3
kde 1
o 2 .
A; 2E(l + p)r; cos 2ay;,
1 3
B; = —5 {(1 — p)ricos20; — (1 — p)ri(1 — 57"12) cos2(6; — ai)} :

C; = —% {(1 — p)rcos20; — (1 — p)r(1 — grf) sin 2(6; — ai)} :
r; = r/R;, kde r je polomér otvoru normalizovany s ohledem na vzdalenost mezi poc¢atkem o
a stredem i-tého tenzometru, thly 6; respektive «; popisuji orientaci respektive natoceni i-tého
tenzometru,  a e jsou pak tihel a velikost excentricity stfedu otvoru o’ vici stfedu rizice o. R je
pak vzdalenost stiedu riizice a stiedu tenzometru. Uhel ¢; pak urcuje orientaci i-tého tenzometru
vici souradnému systému zoy.
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Obr. 41: Schéma riZice s excentrickym otvorem [Lu, 1996]

Problematika vrtani otvoru

Sama technologie vrtani otvoru muize byt zdrojem vzniku zbytkovych napéti. V literatute je
popséno mnoho postupti tvorby otvoru, kdy v dnesni dobé k nejcastéji pouzivanym patii vrtani se
standartnimi feznymi rychlostmi a vrtani za vysokych feznych rychlosti (HSD). Na vysledny tvar
otvoru mé vliv interakce zkoumany material a material nastroje. P¥i pouziti HSD vznika teplo,
které je prenaseno do zkoumaného materidlu a muize ovlivnit signdly snimané z tenzometrické
riizice. Svantner [SVANTNER, 2004] doporucuje dostatecné dlouhé ¢asové prodlevy mezi koncem
vrtani kroku hloubky otvoru a odec¢tenim uvolnénych deformaci.

Dalsi metody vyuzivajici odvrtavaciho principu

Principu uvolnéni zbytkovych napéti pomoci vyvrtani otvoru vyuzivaji i postupy, kdy méreni de-

formace se neprovadi odporovym tenzometrem. Jedna se vétsinou o metody zalozené na optickém

méfeni uvolnénych deformaci. Zde je mozné zminit fotoelasticimetrii, interferometrické moaré
[SCHWARZ et al., 2000}, holografickou interferomtrii [MAKINO and NELSON, 1994], [NELSON et al., 1994],
optickou interferometrii [LIN, 2000] a v neposledni fadé metoda vyuzivajici optické korelace
[FOCHT and SCHIFFNER, 2003], [DIiAzZ et al., 2000]. Jinou alternativou je vrtani mezikruhové

drazky a odecitani deformaci optickou cestou pomoci mikroskopu, jak uvadi Berka [BERKA et al., 1998].
Dalsi alternativni metodou je postup publikovany Wernem [WERN et al., 1997], [IWERN, 1997],

kdy signaly z tenzometrické rtizice dopliiuje o zméreni posunuti ve sméru kolmém k povrchu
vySetfované konstrukce. Zatim vSak nebyla publikovana prakticka aplikace této metody.

Cile

Pii zjistovani zbytkovych napéti pomoci odvrtéavaci metody bylo zjisténo u nékterych méfeni
excentricita otvoru vétsi nez umoznuje norma ASTM E837. Proto byly stanoveny néasledujici
cile:

zjistit stav napjatosti kolem otvoru excentrického viici stfedu tenzometrické rizice

zjistit odezvu tenzometr v okoli otvoru excentrického vici stiedu tenzometrické rtizice

zpracovat metodu pro zohlednéni excentricity otvoru pfi vypoctu zbytkovych napéti

aplikace na experimentalné zjisténa data
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Postup TesSeni

Pro popis stavu napjatosti v okoli otvoru vzniklého aplikaci odvrtavaci metody byla pouzita
metoda koneénych prvkia (MKP). Byl simulovan experiment, ty¢ byla namahina jednoosym
tahem a bylo provedeno postupné vrtani otvoru.

MKP model
ABAQUS/CAE

Modelovani a vypocet byl proveden pomoci programu ABAQUS verze 6.4 a 6.5. Program ABA-
QUS/CAE je program, ktery spojuje modelovéani, analyzu, spravu tloh a vizualizaci vysledki.
Jako vypoé¢tovy program je mozné pouzit ABAQUS/Standard nebo ABAQUS/Explicit. Pro-
stfedi CAE je vytvoreno pomoci interpretacniho jazyka Python, coz umozinuje tvorbu maker pro
zautomatizovani tvorby modelu a vypoc¢tu. Modely vytvofené v prostfedi CAE je mozné para-
metrizovat, coz spolu s vytvofenymi pomocnymi programy umoznuje zautomatizovat vypocty
modeli lisicich se jen nékterymi vlastnostmi.

Popis modelu

Cilem modelu bylo co nejpresnéji simulovat stav pri exeprimentalni kalibraci. Proto byla namode-
lovana ty¢ zatizena jednoosym tahem a na ni se provadélo odvrtani otvoru. Model se sklada ze tii
casti. Téleso tyce, které zprostredkovava prenos zatizeni, detailu, v kterém se nachazi misto vrtu
a pro odecCet radidlnich deformaci byl namodelovan tenzometr, ktery svym tvarem a rozméry
odpovida vinuti tenzometru v tenzometrické riizici. Na pracovisti Ustavu mechaniky Fakulty
strojni CVUT v Praze, odboru pruZnosti a pevnosti se pro aplikaci odvrtéavaci metody pouziva
nejc¢astéji méfici souprava RESTAN dodéna firmou Hottinger Baldwin Messtechnik (HBM), a
pri nami provadénych experimentech se nejcastéji pouziva tenzometricka rizice RY61S vyrabéna
touto firmou.

Obr. 42: Schéma tenzometrické rizice RY61S

Geometrie této rizice je znazornénd na obr. 42. Vinuti bylo namodelovano jako rovinna
soucast, kdy modul pruznosti v tahu materialu vinuti byl zvolen mnohonasobné mensi, nez modul
pruznosti materialu tyce. Pro vytvoreni sité byly pouzity dvouuzlové tycové prvky, programem
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ABAQUS oznacené jako T3D2. Cast ,detail“ byla rozdélena oblasti otvoru na valcovou ¢ast a
dale délena na vrstvy odpovidajici velikosti vrtacich krokt. U této ¢asti byla volena MKP sif s
mensi velikosti prvki.

P <
SRS
SIS
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=

Obr. 43: MKP sit modelu tyce

Pro model tyce byly zvoleny 8 uzlové elementy, které jsou v programu ABAQUS oznaceny
jako C3D8R.

Spojeni modelu tenzometru a modelu zkusebni tyce bylo provedeno pomoci vazby ,tie“, tato
vazba byla pouzita i pro spojeni dilu ,detail“ a ,tyc¢“. V prostiedi ABAQUS vazba ,tie* patii
mezi povrchové vazby a slouzi ke svazani dvou povrchi béhem simulace. Kazdy uzel ,slave®
povrchu se pohybuje stejné jako nejblizsi bod ,master* povrchu. V pripadé strukturalni ana-
Iyzy to znamend, Ze posuvné (pfipadné rotaéni) stupné volnosti jsou svazany. Pro uréeni, ktery
uzel ,slave“ povrchu je svazan s konkrétni ,master® plochou, je rozhodujici nedeformovany tvar
modelu. Standartné vsechny uzly ,slave“ povrchu, které lezi v dané vzdalenosti od ,master”
povrchu, jsou svazany. Ve vychozim nastaveni programu je tato vzdalenost odvozena od velikosti
prvkd ,master” povrchu.

Pro zjisténi stavu uvolnénych deformaci méfrenych tenzometrickou rtzici byla namodelovana
instalace tenzometrii okolo otvoru. Tenzometry byly instalovany paprskovité okolo otvoru s tih-
lovym rozestupem 5°.

Signal z jednotlivych tenzometr byl odecitan jako deformace jednotlivych prvkd na vinuti
a naslednou integraci téchto deformaci, kdy vzhledem ke komplikovanosti vysledného modelu
byla vyuzita objektovost prostiedi CAE a pro vytvoreni cesty pro odecet signalu bylo vytvoreno
pomocné makro.

Odvrtani otvoru bylo namodelovano postupnym odebiranim prvkt z oblasti otvoru. Po ode-
brani vrstvy odpovidajici odvrtani daného kroku byl proveden vypocet a po zkonvergovani vy-
poctu byla odebrana dalsi vrstva. Po ukonceni vypoctu byly vysledky uloZzeny ve vysledkovém
souboru ABAQUSu. Vzhledem ke komplexnosti vysledkového souboru bylo pro ziskani signéla
nutno vytvorit dalsi skript (s. 77?).

Pripad tyce s otvorem ve stiedu rtzice

Po namodelovani zkusebni tyce byl proveden vypocet pro pripad centrického vrtu viici sttedu ten-
zometrické rizice. Ty¢ byla zatizena napétim o velikosti 1 MPa. Signaly ziskané timto vypoctem
byly pouzity pro nalezeni funkce popisujici vztah mezi uvolnénymi deformacemi a zbytkovym
napétim v misté vrtu otvoru.
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Obr. 44: Model ,instalce® MKP tenzometrt

Za predpokladu volby obecné zavislosti deformace na napéti, odpovidajici vztahu pouzitého
Rendlerem (84), je mozné zapsat pro deformaci ve sméru udanym thlem «

e(a) = K(o)o. (148)

Jako bézova funkce pro K (a) byl zvolen rozvoj Fourierovy fady, takze pro vztah mezi napétim
a deformaci v ptfipadé rovinné napjatosti dané velikosti hlavnich napéti o; a o9 plati

e(a) = Z Kjcos(a) + Ljsin(a) | - o1 + Z Kjcos(a+7m/2) + Ljsin(a+ 7/2) | - 09. (149)

Takto ziskané vysledky byly pouzity pro analyzu dat zméFenych pii experimentu zjistovani
zbytkovych napéti na trubkovém ohybu [DOUBRAVA et al., 2003c|, [DOUBRAVA et al., 2004a)].

Ptipad s otvorem excentrickym v1ci stredu rizice

Pro zjisténi vlivu polohy excentrického otvoru vici geometrii tenzometrické razice byl pouzit
kone¢néprvkovy model popsany v predchazejicim odstavci. Namodelovani excentricity bylo pro-
vedeno posuvem tenzometri vuci stfedu otvoru. Pro posuv tenzometri bylo vytvoreno makro
posun_tenz.py. Vstupem tohoto makra je velikost excentricity ex a tihel ¢ udavajici smér po-
suvu otvoru viici ose napéti o;. Po provedeni vypoctu pak bylo mozné s vyuzitim diive uvedenych
maker odecist deformace po vyvrtani otvoru piislusné hloubky. Ziskana data byla vyhodnocena
z pouziti vztahu 149, kdy pro ruzné orientace excentricity byly ziskany rizné keficienty a je-
jich aplikaci pak odlisné zavislosti. Z vysledki [DOUBRAVA et al., 2003a] pak vyplyva nutnost
nalezeni slozitéjsiho vztahu pro uvolnénou deformaci.

Teoreticky popis problému

Pro odvozeni vztahti pro vypocet zbytkovych napéti byla pouzita geometrie tenzometrické ruzice
RY61S firmy HBM. Pro popis deformaci byla zvolena funkce s nasadou dvojnasobné goniome-
trické funkce. Zapis gonimetrické fady byl volen pomoci exponencialniho rozvoje. Potom lze
obecné zapsat deformaci jako funkci napéti a bazové funkce, kdy thel ¢ udava orientaci 1. ten-
zometru vici sméru napéti oy, ¢ je tthel mezi smérem napéti o; a polohou otvoru a ex je velikost
excentricity vyvrtaného otvoru viici stfedu tenzometrické rizice:
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Z Cly - e - (150)

kl=—

Excentricita otvoru se prepoklada po celé hloubce otvoru konstantni. V pfipadé deformace
zmérené 1. tenzometrem po vyvrtani otvoru do hloubky h a pfi zatiZzeni vzorku napétim o, lze
vyjadrit

Tl ) = Z Cpy - efe . el . o). (151)

kl=—K

Obr. 45: Poloha prvniho tenzometru pfi zatizeni oy

Pokud dle obr. 45 plati
==, (152)
lze vztah (151) upravit

0181((,0 1/) Z Ch . 1k'y el(l k) | (153)

kl=—K

Obdobné lze psat vztah pro deformace zmérené tenzometrem 2

Obr. 46: Poloha druhého tenzometru pii zatizeni oy

K

o1 h(@ 1/)2) Z Clill . eilw . eill,bz - 07. (154)

kl=—K
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Pro zvolenou konfiguraci rtzice plati

(O 21/)+§7T, (155)

proto lze (154) upravit

“eb(p Z Oy - eihe . ol Him . g (156)
kl=—K

Analogicky pro deformaci zméfenou tenzometrem c¢islo 3 pii ptisobeni napéti o; a odvrtani
otvoru do hloubky h lze psat:

Obr. 47: Poloha tfetiho tenzometru pri zatizeni o

Nt (p,3h Z Ch . e . ellts . 5 (157)
k=K
a nebot plati
vy =+ 3, (158)
1ze vztah (157) upravit
“e5(p, 1) = Z Ol - e ll+3) gy (159)
e l=—

Obdobné lze zapsat vztahy pro deformace zméfené jednotlivymi tenzometry od napéti oo pii
vyvrtani orvoru do hloubky h. Pro 1. tenzometr

0251 (9027 771 Z Ck 1k<,02 . eilm -0y, (160)
k=K
Pokud plati
T 3
<P2=<P+§7 771=¢+§7T, (161)
lze vztah (160) upravit
K
s s : 3
(g ) = Y Oy eferE) liin g,y (162)

kl=—K
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Obr. 48: Poloha prvniho tenzometru pri zatizeni oy

Pro deformaci zméfenou 2. tenzometrem od napéti o lze psat

725 (92, 1)) Z Cly-e*# &' . gy, (163)
kil=—K

Pokud plati

Obr. 49: Poloha druhého tenzometru pfi zatizeni oo

7r 3
902290+§a 772:154‘177 (164)
1ze vztah (163) upravit
el(p, ) = Z ch . ok t+3) | Gil(wtim) (165)
kl=—K

A konecné pro deformaci zméfenou 3. tenzometrem od napéti oo 1ze psat

0253 (©2,m3) Z C etz el . gy, (166)
kyl=—
Pokud plati
T
8022804’57 N3 =1, (167)

1ze vztah (166) upravit

T2eh (0, 9 Z Ch . eihlet3) 0. (168)

kl=—K
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Obr. 50: Poloha tfetiho tenzometru pfi zatizeni oo

Za ptredpokladu platnosti zakona superpozice je mozné deformace zméfené jednotlivymi ten-
zometry od hlavnich napéti secist. Ze vztahu (151), (160) a (152) lze vyjadrit

K K

. , . o

eh(y) = E Cl - hO0—0) il 5 E : Ch . g-v+3) | gilwtsm )
k;l:—K k,l:—K

a po upravach

K K
5’{(@/}) = Z C,’jl etk R o1+ Z Cz?z L eh(+5) il iRy 3. (169)
kl=—K kil=—K

Podobné ze vztahi (156), (165) a (152) lze vyjadrit

al K
e5(¢) = Z Ch . eFO=¥) L lW43m L 5y Z Ch - ghO—+3) _ llw+im)
k=K N
a poté
K K
. a5 . ) . . .
(W)= Y Cfy-e® im0 g g N Oy @MOTR) T Y gy (170)
k=K W

a déle ze vztaht (159), (168) a (152) lze vyjadrit

K K
)= Y OOV ) gy N O KO gy,
kl=—K kl=—K

K K
eh() = Z Ch . e*r .l Q=R gy Z Ch . eF0t3) (=R g, (171)
kl=—K kl=—K

Pro dalsi tpravy lze zavést substituce a (169) upravit na rovnici

e =Dy -0y + Dyy - 0. (172)
Podobné lze upravit i vztahy (170) a (171).

el = Dyy - 01 + Dyy - 09 (173)

8? = D31 c 01 + D32 + 02 (174)
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Rovnici (172) lze pfendsobit vyrazem Ds,, rovnici (174) vyrazem Dis a vysledky vzdjemné od
sebe odectené daji vztah pro napéti oy

h h
&1 'D32 — &3 'D12

, 175
Dy - D3y — D3y - Do a7)

o1 =

a podobné, kdyz je rovnice (172) pfenasobena vyrazem Ds;, rovnice (174) vyrazem Dy a vysledky
od sebe vzajemné odecteny, vysledkem je vztah pro napéti o,

h h
&1 'D31 — &3 'Dn

09 = . 176
*" Dy Dy — Dy - Dy (176)

Z rovnic (175) a (176) lze dosadit do rovnice (173):
ch— D21(€}11 D3y — €§ : D12) i D22(5}f - D3y — 5]5 : D11) (177)

2 D11 - D3z — D3y - Dig Dig - D31 — D3 - D1
Rovnici (177) 1ze dale upravit na tvar

ES(DH * D3y — Dy - D1g) + 5§(D12 Doy — Dy - DIL) + 5}11(D22 D31 — Dy - D3y) =0 (178)

Hz Hj H1

Vyrazy oznacené v rovnici (178) lze rozepsat , kdy indexy v druhych ¢lenech soucinti byly zamé-
nény k < p,l < s

K K
H, = [ Z cgl.eik(wr’;).eiliw.ei(l—k)w] [ Z Ch - e . i*3 _ei(s—pw] _
D K

kl=—K —
K K ,

— [ Z Ch ek UL ei(lk)lb] [ Z C;];Ls . ePO+5) . ei(SP)w] ) (179)

kil=—K p,s=—K

Vzéjemnym roznasobenim ¢lent ve vyrazu (179) lze ziskat

K
H, = Z Chy - C',?s CelhH3) L eipy . lls—k-p)y (e”%” Lel2 — eis%”> . (180)
k,lp,s=—K

Podobné pro Hy

K K
H, = [ 3y cgl.eikw.ei(Z—k)w] [ S et ei(s—p)w] _
p K

kl=—K ,S=—
K K
. g . _ . s .§ . _
— g C]i:ll . elk’y . ell2 . el(l k)¢ 5 C;}S . elp(7+2) . elzﬂ- . el(‘S p)ﬁ’ (181)
kil=—K p,s=—K
a po uprave
K
i i i —k— ip® = in® is3
H2 — E Clill . Cgs . elk'y . ePY . e1(l+s k—p)y | (elp2 . ell2 . elP2 . elS2TI') (182)
klp,s=—K

a konecné Hj

K K
Hs = [ Z Cpy - e*0t2). ellam . ei(lk)w] [ Z Cﬁs -e? eisi”ei(smw] -
k

J=—K p,s=—K

K K
— [ Con . e0=3) el . ei(l—k)w] [ Z C;})Ls . elPY . ei(s—p)w] (183)
K K

k,l=— p,S=—
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a po upravach
K
. ‘ (ds—lo— T VN kT i3
Hz = g Cpy - Ch - et e?y . ltha=hon)y, (elkz cella™ . elsam  elky -e‘l“) . (184)
K

k,l,p,s=—

Dosazenim vztaht (180), (182) a (184) do (178) lze ziskat vztah, z néhoz je pak mozné vyjadrit
uhel ¥

K
h b iky | Aipy | qstHl—k—p | b KT isT . idw kb kT isSw
E Cip- Cps - €7 -7 W ey ez .2 . ehaT —gl -2 . e¥a" 4
K

kl,p,s=—

in™ R ip Pt is3 ik Pt i3 isd i3 ik Pt
+5g'.elp2 _gg.ellz . e'P2 .elszﬂ+g§'.elk2 .ell27r.els4ﬂ-_gg.ell47r.elk2:| :07 (185)

kde U = el .
Rovnici (185) je mozné vyjadfit ve tvaru

M
> cprum=o. (186)
m=0

Resenim této rovnice je velikost tthlu 1), ktery uréuje orientaci hlavnich napéti a po dosazeni do
(175) a (176) pak i jejich velikosti.

Nasledujici uprava vySe zminénych vztahi, potiebna pro pocitacové zpracovani dané rovnice.
Rovnici (185) lze vyjadiit symbolicky ve tvaru

kals ’ [8? ’ Fklpls + gg ’ FkZpls + 5}SL ' Flgpls] ’ \IIS_H_k_p =0, (187)

kdy ¢leny F,.~F},, popisuji orientaci tenzometrit a ¢len Gy, pak obsahuje kalibraéni koeficienty

urcené na zakladé reseni numerického experimentu.
Urceni kalibrac¢nich koeficientt
Dle vztahu (150) je zavedena funkce pro deformaci v pfipadé zatizeni jednotkovym napétim
K
()= Y, Ci-e™ e =3 Oy Bu(p), (188)
kl=—K
béazovou funkci B, lze pak vyjadrit vztahem
B=le.(i-k-p)®e. (i k-1)] (189)

funkce pro deformaci pak mtize byt vyjadfena vztahem

(e, ) =By, ¥) - C. (190)

V prtipadé znalosti deformaci pro dana ¢ a 1 je mozné pomoci metody nejmensich ¢tverct
(viz napt. [MARES, 2006d]) vyjadiit matici koeficientti p¥i dané volbé bazové funkce

e=B-C, (191)
kde ¢ je vektor odmeétenych deformaci pro prislusna ¢ a ¥
C = [B"B] 'B’-. (192)

V daném piipadé ¢ nabyvalo hodnot (0,355) po 5°, ¢ nabyvalo hodnot (0,345) po 15° a K
udévajici pocet clenti fady bylo zvoleno 5.
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Ovéreni metody na numerickém modelu

Pro ovéreni metody byly provedeny vypocty napéti na zakladé deformaci ,,odmérenych“ na vytvo-
feném konecnéprvkovém modelu. Model byl zatiZen jednoosou napjatosti o velikosti ;=1 MPa.

0.0.1 Data pro ovéreni

Z vysledktl numerické simulace byly ode¢teny data, kterd jsou vynesena v tab. 15. Uhel ¢ udava
orientaci mezi smérem zatizeni a orientaci excentrického otvoru, v je tthel mezi tenzometrem 1 a
smérem zatizeni, v je thel mezi smérem excentricity otvoru a smérem tenzometru 1.

[Overent [ Afmn] [T [0 P17 F1] ]l [ ol | el |

1 0,2 15 ) 20 | -0,2034003046 | -0,04860032732 | 0,03613706667
2 0,3 45 60 | 105 | -0,0169590209 | 0,04707186463 | -0,20248489818
3 0,4 225 | 10 | 235 | -0,4246858225 | -0,06139822517 | 0,08985523435
4 0,5 105 | 100 | 235 | 0,1392641593 | -0,42171154746 | -0,68131726039

Table 15: Data odectenad z MKP modelu pro ovéfeni metody

0.0.2 Vysledky ovéreni

Vyse uvedend data byla podrobena vypoc¢tu pomoci maker uvedenych v piiloze. Vysledky jsou
uvedeny v tab. 16.

| Ovéfeni || ¥ [°] | 01 [MPa] | 0o[MPa] |

1 8 1,05 20,054
2 60 1,03 0,001
3 12 1,06 20,003
1 99 0,97 0,006

Table 16: Vysledky ovéreni

7 uvedenych vysledktl vyplyva, ze odchylka od ocekadvanych hodnot se pohybuje v fadu pro-
cent a je tedy mozné povazovat na zakladé téchto vysledki uvedeny postup jako funkéni.

Experimentalni data

Navrzena metoda byla pouzita na spocteni zbytkovych napéti pro data ziskana v ramci expe-
rimentu provadéného na pracovisti odboru pruznosti a pevnosti tstavu mechaniky pii fesSeni
urc¢ovani zbytkovych napéti u trubkovych ohybt [DOUBRAVA et al., 2003c|. Jednalo se o pro-
blém popisu zbytkovych napéti u trubkového ohybu v pfipadé vynechani technologické operace
zihani a nasledného popousténi s ohledem na mozné snizeni vyrobnich nakladid firmy Modranska
potrubni.

0.0.3 Popis zkoumaného télesa

Zkoumany ohyb byl vyroben z trubky o priméru 273 mm, tloustka stény 16 mm a délky 5,3 m.
Materiél trubky 12 022.1, vyrobce Vitkovice, ¢islo atestu 4639/92, ¢islo tavby 2347. Polomér
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ohybu 1250 mm, kdy polomér ohybu trubky byl pétkrat vétsi nez primeér trubky. Zptisob ohybani
— za tepla s indukénim ohfevem na 920 — 980 °C s ochlazovanim z tvareci teploty na klidném
vzduchu (bez vodni sprchy).

0.0.4 Vyrobni postup

Nejprve byla zhotovena rovna ¢ast trubky (¢ast A) se simulovanym ohfevem shodnym s ohfe-
vem pii ohybéni (ale trubka nebyla ohnuta a zistala rovné). V dalsim kroku doslo ke zhoto-
veni ohybu 90° (¢ast B) tvafenim za tepla s indukénim ohfevem za kontrolovanych podminek
tvareni. Poté byla ¢ast A odfiznuta a podrobena technologické operaci normalizacniho zihani
(920 °C/50 min./ochlazovani na vzduchu).

B , A
|
!
1000 N 550 320
4000 0 1300

Obr. 51: Schéma trubky pfed tvarenim

Na casti B bylo vytypovano 14 mist, v kterych bylo provedeno méfeni. Rozmisténi téchto
mist je na obr. 52.

Obr. 52: Schéma méfenych mist na casti B

0.0.5 Souprava RESTAN

Experiment byl proveden pomoci zafizeni MTS-3000 SINT-RESTAN (RESTAN). Souprava RE-
STAN [sin, 1999] je zafizeni k experimentalnimu urcovani zbytkovych napéti pomoci odvrtévaci
metody. Dodavatelem tohoto zafizeni je firma Hottinger Baldwin Messtechnik a vyrobcem pak
italska firma SINT Technology. Souprava se sklada z vrtaciho pripravku, fidici jednotky, mé-
fici karty a tlakového ventilu. Dale byla souprava doplnéna o PC, o vzduchovy kompresor a
dynamickou mérici tstirednu.
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LTL ventil

Kont. jednotka

0 [ | —
o PC-LPM-16

Mikrotechna M1000
o

olo o o o
o O O .

| o= o= o= o O -

Obr. 53: Mérici Tetézec prfi instalaci zafizeni RESTAN

Vrtaci pripravek

Zakladni konstrukce vrtaciho pripravku je umisténa na trech stavitelnych magnetickych nohéach.
Ty umoznuji nastaveni pfipravku do pozadované polohy, kdy osa vrtaci turbinky je kolmé k
povrchu zkoumané soucasti. Dale je mozny horizontalni posuv v sméru osy x a y. Velikost posuvi
je indikovana meéticimi hodinkami. Pomoci téchto posuvi a mikroskopu je mozné na konci méreni
odecist pripadnou excentricitu otvoru a jeji orientaci vii¢i prvnimu tenzometru. Vrtaci a opticky
¢len je spojen s timto zakladem pomoci pohybového Sroubu, ktery je ovladan krokovym motorem.
Vzduchova turbinka s vrtaci frézou je umisténa na vyklopném rameni, kdy po odklopeni turbinky
je mozny pruzor optickym mikroskopem. Tento mikroskop spolu s posuvnym zafizenim umoznuje
zacileni na stfed tenzometrické rtzice. Do klestiny vzduchové turbinky je umisténa Sestibiita
kuzelova fréza. Uvadéné pracovni otacky jsou 300 000 otacek za minutu pii dodrzeni vyrobcem
pozadované velikosti tlaku.

Ridici elektronicka jednotka

Ridici elektronicka jednotka spravuje viechny vstupy a vystupy. Vstupuje do ni tlakovy vzduch
a Tidi vystupni tlakovy vzduch vstupujici do vrtaci turbinky. Jednotka je propojena s mérici
kartou pomoci plochého kabelu. Déle jsou pfipojeny vystupy z analogové tenzometrické tustfedny
odpovidajici jednotlivym tenzometriim v rtizici, kontakt pro urceni nulové hloubky a kabel pro
fizeni krokového motoru vrtaciho ptripravku. Na celnim panelu je tlakomeér, ktery méfi velikost
tlaku ve vnitinim okruhu tlakového vzduchu.

Regulac¢ni ventil

Tento ventil umoznuje uzavieni vstupu vzduchu od kompresoru. Je vybaven tlakomérem, jenz
méri vystupni tlak. Déale obsahuje filtr, ktery zachytava mechanické necistoty a kondenzovanou
vlhkost, aby nevstupovala do vnitiniho okruhu. Na ventilu je pak mozné nastavit vystupni velikost
tlaku. Pro spravnou funkci se pozaduje velikost 4 bart.
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Mé¥Fici karta

Jedna se o 16 bitovou kartu PC-LPM-16 firmy Nationall Instruments. Karta ma ISA sbérnici.
Vstupni signél je mozny v rozsahu + 5 V a vystupni napéti pak v rozsahu £+ 10 V.

PC

Pro instalaci méfici karty je potieba PC vybavené ISA slotem. Minimélni pozadovana konfigurace
je

o AT 486-66 MHz
e MS-DOS 6.0 (nebo vyssi)
e Windows 3.1 (nebo vyssi)

Déle je pak pozadovano misto na pevném disku potiebné pro instalaci mériciho a vyhodnocova-
ciho softwaru (zhruba 20 MB).

Dynamicka tstfedna M1000

Pro méfeni uvolnénych deformaci byla soupravu doplnéna o méfici tenzometrickou ustfednu. V
popisovaném piipadé byla pouZita analogova dynamické tstfedna M1000 [mik, 1982], vyrobenda
firmou MIKROTECHNA Praha. Tato ustfedna je vybavena ¢tyfmi méficimi kanaly—zesilovace
M 1101 a indikacni jednotkou M 1401. Méfeni na tstiedné je mozné v pilmostovém a nebo v
celomostovém zapojeni. V popisovaném pripadé bylo pouzito ptilmostové zapojeni, kdy pro do-
plnéni pilmostu byly pouzity tenzometrické riizice nainstalované pobliz mista vrtu. Na kazdém
zesilovadi se nastavuje méfici rozsah, kdy interval hodnot je 0,1-20 mV/V. Konkrétni hodnota
rozsahu musi byt volena tak, aby pfi méfeni nedoslo k prekroceni maximalniho dovoleného sig-
nalu. Napajeci napéti se nastavuje pro vSechny kanaly najednou a jsou mozné hodnoty 1, 2, a
4 V. Tato Gstfedna umoznuje pouze manualni vyvazeni métriciho obvodu.

Obr. 54: Experimentalni zjistovani zbytkovych napéti na trubkovém ohybu

Aplikace na experimentalné zmeérena data

Pro piipad pouziti navrhované metody byly vybrany dvé méfend mista: misto 8 (tab. 17 a obr. 55)
a misto 10 (tab. 18 a obr. 56). V misté 8 byla zméfena excentricita 0,2 mm a jeji orientace oproti
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1. tenzometru v ruzici byla v = 30°, v misté 10 pak byla zméfena excentricita o velikosti 0,17 mm
a orientaci v = 85°.

| Almm] [ e [pi] | eofpd] | eslpi] |
0,02 || 023 |-0,11 | -0,03
0,05 || 2,55 | -0,25 | -3,49
011 | 10,32 | 2,21 | -4,43
0,16 | 17,23 | 9,20 | -1,82
024 || 27,02 | 19,36 | 0,79
0,34 || 39,55 | 32,34 | 4,96
0,46 || 54,01 | 46,95 | 8,61
059 || 68,9 | 635 | 15,11
0,74 || 80,57 | 74,7 | 18,06
001 | 95,13 | 87,5 | 21,36
1,10 | 103,21 | 92,52 | 23,37
1,30 | 109,64 | 97,27 | 21,44
1,51 | 113,79 | 98,29 | 20,15

Table 17: Namérend data v misté 8

120 |

100 -

80 I~

60 —

¢ [pm/m]

40

20 — -‘-‘-“-‘-“‘-‘llIl““‘l‘l‘l\l‘.‘.‘-‘.‘.‘.‘.. |

ML

Obr. 55: Namérena data v misté 8

Na zakladé deformaci zméfenych na trubkovém ohybu byla urcena zbytkova napéti ve dvou
vybranych mistech [KAREL DOUBRAVA, 2006]. Data jsou porovnana s vysledky ziskanymi pii
neuvazovani excentricity otvoru [DOUBRAVA et al., 2004b).

Z uvedenych grafti vyplyva rozdil spoc¢tenych napéti pii zahrnuti excentricity otvoru. Tento
rozdil je v fadu procent az desitek procent. U obou vySetfovanych mist vysledky ziskané pri
zahrnuti excentricity dévaji mensi hladinu zbytkovych napéti s rozdilem ca 20%.
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| hlmm] [ eifp] | eofpi] [ esfpi] |
0,02 || 0,1 | 1,47 | 0,64
0,05 || 1,45 | 2,15 | 2,25
0,10 || 2,1 | 549 | 5,34
0,16 || 6,2 | 15,93 | 13,36
0,24 | 15,62 | 235 | 2548
0,34 || 24,8 | 34,14 | 36,11
0,46 || 32,28 | 49,73 | 55,31
0,59 | 38,85 | 65,97 | 75,39
0,74 || 43,04 | 82,98 | 95,68
0,01 || 42,99 | 96,07 | 111,39
1,10 || 38,8 | 105,5 | 122,06
1,30 || 33,31 | 115,97 | 131,53
1,51 || 28,92 | 121,98 | 137,18
1,75 || 23,76 | 128,25 | 143,28
2,00 || 17,92 | 119,43 | 151,38

Table 18: Naméfend data v misté 10
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Obr. 56: Namérena data v misté 10

‘ hlmm] H o1[MPal] ‘ 09|MPa] ‘ WY[°] ‘

0,05 35 -94 0

0,10 -19 -109 163
0,15 -35 -109 163
0,20 -38 -107 157
0,25 -40 -95 157

Table 19: Zbytkova napéti v misté 8
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Obr. 57: Zbytkova napéti v misté 8
| hlmm] || 01[MPa] | 02[MPa] | ¢[°] |
0,05 -38 -76 113
0,10 -76 -122 113
0,15 -87 -123 103
0,20 -94 -136 103
0,25 -75 -114 103
Table 20: Zbytkova napéti v misté 10
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Obr. 58: Zbytkova napéti v misté 10
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Shrnuti a prinosy prace

Shrnuti prace

V kapitole o soucasném stavu byl uveden zevrubny popis metod pro vyhodnocovani zbytkovych
napéti na zakladé deformaci ziskanych odvrtavaci metodou. V dnesni dobé je casto zakazniky
vyzadovana znalost zbytkovych napéti, kdy je nejcastéji vyzadovano urceni zbytkovych napéti
dle normy ASTM E837. Tato norma je rovnéz v piehledu zahrnuta a jsou uvedeny podminky
jejiho pouziti. V oblasti excentricity otvoru tato norma pripousti excentricitu, ktera neprekroci
vétsi z rozmért 0,004-D nebo 0,025 mm. Vzhledem k faktu, ze u nékterych experimentt byla
zjisténa excentricita presahujici vySe uvedenou mez, pristoupilo se k sestaveni metody, ktera
by umoznovala zahrnout excentricitu vrtaného otvoru vici stfedu tenzometrické rifice. Byly
stanoveny nasledujici cile a ty postupné feseny:

0.0.6 Stav napjatosti kolem otvoru excentrického viici sttedu tenzometrické ri-
Zice

Pro zjisténi stavu napjatosti byl sestaven konecnéprvkovy model. Jednalo se o simulaci experi-
mentu pii urcovani kalibracnich koeficientit dle normy ASTM E837. MKP model byl vytvofen
v programu ABAQUS CAE. Prostfedi CAE je vytvofeno pomoci interpreta¢niho jazyka Py-
thon, coz spolu s moznosti parametrizovat MKP model umoznuje urcit stav napjatosti v okoli
excentrického otvoru. Timto je mozné vyse zminény cil povazovat za splnény.

0.0.7 Odezva tenzometri v okoli otvoru excentrického vici stfedu tenzometrické
ruzice

Vytvoreny MKP model byl doplnén o tenzometry, jejichz vinuti bylo namodelovano dle rozmeért
tenzmoterické rtzice RY61S firmy HBM. Byla provedena instalace v okoli excentrického otvoru
a pro danou excentricitu otvoru a jeho orientaci byly odecteny deformace odpovidajici signaliim
danych tenzometri. Pro vyse uvedené bylo sestaveno makro zautomatizujici nac¢itani dat. Timto
je mozné vySe zminény cil povazovat za splnény.

0.0.8 Metoda pro zohlednéni excentricity otvoru pii vypoctu zbytkovych napéti

Byl proveden teoreticky rozbor popisujici vztah mezi uvolnénymi deformacemi zméfenymi tenzo-
metrickou rizici a zbytkovym napétim v pripadé excentrického otvoru za predpokladu konstantni
velikosti excentricity a konstantniho pribéhu zbytkovych napéti s hloubkou. Byla sestavena sou-
stava tfi rovnic, na jejichz zakladé je mozné urcit smér hlavnich napéti a jejich velikost. Metoda
byla ovéfena na datech ziskanych z MKP modelu, kdy maximalni odchylka byla 6%. Timto byl
dany cil splnén.
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0.0.9 Aplikace na experimentalni data

Navrzena metoda byla pouzita na data ziskanad v ramci FeSeni zakézky na zjistovani zbytkovych
napéti na trubkovém ohybu [DOUBRAVA et al., 2003c], [DOUBRAVA et al., 2003b]. Experiment
byl proveden pomoci zarizeni RESTAN. Toto zarfizeni umoznuje urcit excentricitu vyvrtaného
otovoru. Byla vybrana dvé mista a data naméfena béhem vrtani otvoru v téchto dvou mistech byla
vyhodnocena pomoci navrzené metody [KAREL DOUBRAVA, 2006] a zjisténé hodnoty zbytkovych
napéti byly srovnany s hodnotamy ziskanymi v pfipadé neuvazovani excentricity vyvrtaného
otvoru [DOUBRAVA et al., 2004b]. Vysledky téchto dvou pfipadi se lisili zhruba o 20%. Timto
byl splnén i posledni cil predkladané prace.
Na zékladée téchto bodu je mozné konstatovat, ze vSechny stanovené cile byly splnény.

Piinos pro védu

V predkladané praci byl proveden rozbor stavu napjatosti v pripadé otvoru excentrického ke
stfedu tenzometrické rtzice, kdy bylo pouzito konecnéprvkového modelu simulujiciho experi-
mentalni urceni kalibrac¢nich konstant. Byl navrzen postup pro zohlednéni excentricity otvoru pri
urcovani zbytkovych napéti. V literature, mné znamé, byl publikovan postup pouze pro korekci
pripadu s priichozim otvorem. Metoda navrzenad v této praci vychazi z predpokladu konstant-
niho napéti po hloubce otvoru. Ziskané vysledky potom odpovidaji ekvivalentnimu napéti, které
by zpitsobilo danou deformaci. Predpoklada se, ze toto ekvivalentni napéti je s hloubkou kon-
stantni. Zde spatfuji dalsi moznost rozsiteni, kdy kombinaci navrzeného postupu a napiiklad
integralni metody by bylo mozné vyhodnocovat i pribéhy zbytkovych napéti v pfipadé skokoveé
proménlivého pribéhu zbytkovych napéti s hloubkou.

Piinos pro praxi

Odvrtavaci metoda patii v praxi mezi nejcastéji pouzivané experimentalni metody urcovani zbyt-
kovych napéti. Pti méfeni zbytkovych napéti provadénych v laboratorich odboru pruznosti a pev-
nosti, tstavu mechaniky, byla u nékterych testti zjisténa vétsi excentricita otvoru oproti stfedu
tenzometrické ruzice, nez umoznuje norma ASTM E837, kdy tato norma patii mezi mezinarodné
uznavané postupy. Popsana metoda umoznuje zahrnout vliv excentricity otvoru do vypoctu zbyt-
kovych napéti.

V piipadé uvazovani excentricity, ktera je s hloubkou konstantni, je zfejmé, ze geometrie
skutecného excentrického otvoru oproti geometrii idealniho otvoru predstavuje zdroj chyb, kdy
tato chyba bude zrejmé vétsi pro mensi hloubky otvoru. Na druhou stranu uvolnéné deformace
zmérené po odvtrani krokd v pocatecnich hloubkéch jsou fadové souméritelné s méfici chybou
indika¢niho zafizeni. Pfi pouziti popsaného postupu je mozné zvysit citlivost odvrtavaci me-
tody pro pocatecni kroky vrtani otvoru i v pripadé excentricity vyhovujici normé ASTM E&37.
Dalsi mozné vyuziti by bylo mozné v piipadé vrtani otvoru bez moznosti zaméfeni stredu vrta-
ciho nastroje do stfedu tenzometrické rtzice. Zjisténi excentricity by pak bylo mozné napriklad
zachycenim vrtaného mista pomoci digitalni fotografie a jejim naslednym vyhodnocenim.
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V této praci byly feSeny problémy spojené s problematikou excentricity otvoru viiéi stfedu ten-
zometrické razice. Byl popsan soucasny stav problematiky vyhodnocovani zbytkovych napéti
pomoci odvrtavaci metody.

Pro popis napjatosti v okoli excentrického otvoru byl vytvofen numericky model procesu odvr-
tavani. Byly rovnéz namodelovany tenzometry, které odpovidaly skutecnému tvaru tenzometrické
rizice, kdy signaly z téchto tenzometri byly odecitany pomoci sestavenych maker.

Byl proveden rozbor problému excentrického otvoru na jehoz zakladé byl navrzen postup pro
zohlednéni excentricity otvoru pii vypoctu zbytkovych napéti. Byly sestaveny vztahy urcujici za-
vislost mezi zmérenymi deformacemi a zbytkovym napétim. Vysledky numerickych experimenti
pak poslouzily k urceni koeficientti u navrzenych vztahii. Navrzeny postup byl ovéren dosaze-
nim hodnot deformaci odectenych numerickou tenzometrickou rizici. Bylo dosazeno dobré shody
mezi vypoctenym napétim a napétim, jimz byl numericky model zatizen, kdy zjisténd maximalni
odchylka byla 6%.

Bylo provedeno vyhodnoceni dat ziskanych pri experimentalnim meéreni, kdy byl zaznamenan
rozdil oproti vysledktim ziskanym bez uvazovani excentricity otvoru. Tento rozdil se pohyboval
u jednotlivych hloubek v rozmezi procent az desitek procent s primérnou odchylkou ca 20%.

Navrzeny postup umoznuje zahrnout vliv excentricity pfi urcovani zbytkovijch napéti po-
moci odvrtavaci metody. Timto postupem je mozné zvysit citlivost odvrtavaci metody v pripadé
mensich hloubek otvoru a v pripadé excentricity mensi, nez povoluje norma ASTM E&37.
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Geometry and internal structure of thigh bone

The femur,! the longest and strongest bone in the skeleton, is almost perfectly cylindrical in the
greater part of its extent.

{GRrAY, 1918], e.g. at http://www.bartleby.com/107/59.html.
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Geometry and nomenclature of the femur

In the following let us list some comments regarding the terms stated in Figs. 59 and 60.2

Proximal extremity [Upper extremity] presents for examination the head, the neck, the greater
and lesser trochanter.

Caput femoris [L., head of femur| is the proximal end of the femur, articulating with the
acetabulum on the os cozae. Called also femoral head.

Acetabulum [L., vinegar-cruet, from acetum vinegar| is the large cup-shaped cavity on the
lateral surface of the os coxzae in which the head of the femur articulates; called also acetabular
bone, cotyloid cavity, and os acetabuli.

Fovea [L., a pit], i.e., anatomic nomenclature for a small pit in the surface of a structure or
organ.

Fovea capitis femoris, i.e., fovea of head of femur: a depression in the head of the femur where
the ligamentum teres is attached; called also fossa capitis femoris and fossa of head of femur.

Collum femoris [Femoral neck, Neck of femur| is the heavy column of bone connecting the
head of the femur and the shaft. The collum femoris (neck) is broader laterally than medially.

Tuberculum [L., dimension of tuber|, is a general term in anatomical nomenclature for a
tubercle, nodule, or small eminence.

Capsula articularis [L., articular capsule| is the saclike envelope that encloses the cavity of a
synovial joint by attaching to the circumference of the articular end of each involved bone; it
consists of a fibrous membrane and a synovial membrane. Called also joint capsule and synovial
capsule.

Linea intertrochanterica [Anterior intertrochanteric line| is a line running obliquely downward
and medially from the tubercle of the femur, winding around the medial side of the body of the
bone.

Musculus psoas (so’as) major [Greater psoas muscle] is a muscle with origin from the bodies
of the lumbar vertebrae and the intervertebral disks from the twelfth thoracic to the fifth lumbar
vertebrae and from the transverse processes of the lumbar vertebrae, with insertion into the lesser
trochanter of femur, with nerve supply from the lumbar plexus, and whose action flexes the thigh
or trunk.

Vastus [L., great or vast]. Description of muscles, as musculus vastus lateralis.

Musculus quadriceps femoris [Quadriceps muscle of thigh] is a name applied collectively to the
rectus femoris, vastus intermedius, vastus lateralis, and vastus medialis, inserting by a common
tendon that surrounds the patella and ends on the tuberosity of the tibia, and acting to extend
the leg upon the thigh.

Musculus vastus lateralis has origin on capsule of hip joint, lateral aspect of femur. Insertion
point: patella, common tendon of quadriceps femoris. Action: extends leg.

Musculus vastus intermedius (Crureus) is the muscle for extension of the knee joint and thus
extends leg. It origins at anterior and lateral surfaces of the body of the femur in its upper
two-thirds and from the lower part of the lateral intermuscular septum (Septum intermusculare
femoris laterale). Its fibers end in a superficial aponeurosis, which forms the deep part of the
Quadriceps femoris tendon.

Musculus vastus medialis originates on medial aspect of femur. Its insertion is on patella,
common tendon of quadriceps femoris. Action: extends leg.

Septum is an anatomic nomenclature for a dividing wall or partition.

Trochanter major [Greater trochanter| is a broad, flat process at the upper end of the lateral
surface of the femur, to which several muscles are attached.

Trochanter minor [Lesser trochanter| is a short conical process projecting medially from the
lower part of the posterior border of the base of the neck of the femur.

2Cf. [DORLAND and NEWMAN, 2003] and A.D.A.M. Encyclopedia at http://www.mercksource.com.
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Fig. 59: Right femur—Anterior surface
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Musculus piriformis [Piriform muscle] has origin on ilium, second to fourth sacral vertebrae
and insertion on upper border of greater trochanter.

Musculus gemellus inferior [Inferior gemellus muscle| originates from the tuberosity of ischium
and inserts on the greater trochanter of femur. It rotates thigh laterally.

Musculus gemellus superior [Superior gemellus muscle] originates from the spine of ischium
and inserts on the greater trochanter of femur. Action: It rotates thigh laterally.

Obturator [L.| is any structure, natural or artificial, that closes an opening.

Musculus obturatorius internus [Internal obturator muscle| has origin on pelvic surface of hip
bone, margin of obturator foramen, ramus of ischium, inferior ramus of pubis, internal surface
of obturator membrane. The insertion is on greater trochanter of femur. The action is to rotate
thigh laterally.

Musculus glutzeus minimus [Least gluteal muscle] has origin on lateral surface of ilium between
anterior and inferior gluteal lines. Insertion: greater trochanter of femur. Action: abducts, rotates
thigh medially.

Musculus glutzeus medius [Mesogluteus, Middle gluteal muscle] originates on lateral surface
of ilium between anterior and posterior gluteal lines. Insertion is on greater trochanter of femur.
Action: abducts and rotates thigh medially.

Musculus glutzeus maximus [Gluteus maximus muscle] originates posteriorly from the posterior
gluteal line of the ilium, aponeurosis of the erector spinae, dorsal surface of the sacrum, coccyx,
and sacrotuberous ligament. It inserts at the iliotibial band and the gluteal tuberosity of the
femur. The gluteus maximus is the uppermost of the three muscles. Its action is to extend and
outwardly rotate hip, and extend the trunk. The direct attachment to the sacrum it may influence
the stability of the joint.

Musculus articularis genus [Articular muscle of knee] originates at the distal fourth of anterior
surface of shaft of femur. Insertion: synovial membrane of knee joint. Action: lifts capsule of knee
joint.

Epicondylus [Epicondyle] is an eminence upon a bone, above its condyle.

Epicondylus lateralis femoris [Lateral epicondyle of femur] is a projection from the distal end
of the femur, above the lateral condyle, for the attachment of collateral ligaments of the knee.
Called also external epicondyle of femur.

Epicondylus medialis femoris [Medial epicondyle of femur]| is a projection from the distal end
of the femur, above the medial condyle, for the attachment of collateral ligaments of the knee;
called also internal epicondyle of femur.

Condylus (pl. condyli) [L., from Gr. kondylos knuckle, condyle| is a rounded projection on a
bone, usually for articulation with another.

Condylus lateralis femoris [Lateral condyle of femur] is the lateral of the two surfaces at the
distal end of the femur that articulate with the superior surfaces of the head of the tibia. It is
also called external or fibular condyle of femur.

Condylus medialis femoris [Medial condyle of femur| is the medial of the two surfaces at the
distal end of the femur that articulate with the superior surfaces of the head of the tibia. Called
also internal or tibial condyle of femur, and condylus tibialis femoris.

Facies patellaris femoris (Patellar surface of femur) is the smooth anterior continuation of the
condyles that forms the surface of the femur articulating with the patella; called also anterior
intercondylar fossa of femur and patellar fossa of femur.

Tuberculum adductorium femoris [Adductor tubercle of femur] is a small projection from the
upper part of the medial epicondyle of the femur, to which the tendon of the adductor magnus
muscle is attached.

Fossa (pl. fossae), [L.] is a trench, channel, or hollow place.

Fossa trochanterica [Trochanteric fossa] is a deep depression on the medial surface of the
greater trochanter that receives the insertion of the tendon of the obturator externus muscle.



MECHANIST’S JOTTER 2006, 90—116 (2006) 95

Musculus obturatorius externus [External obturator muscle| originates on pubis, ischium, and
superficial surface of obturator membrane. Insertion is on trochanteric fossa of femur. Action:
rotates thigh laterally.

Crest is a projection or projecting structure, or ridge, especially one surmounting a bone or
its border; see also crista and ridge.

Crista intertrochanterica [Intertrochanteric crest| is a prominent ridge running obliquely dow-
nward and medialward from the summit of the greater trochanter on the posterior surface of the
neck of the femur to the lesser trochanter; called also intertrochanteric ridge, linea intertrochan-
terica posterior, and posterior intertrochanteric line.

Musculus quadratus femoris [Quadrate muscle of thigh, Quadratus femoris muscle] originates
on upper part of lateral border of tuberosity of ischium; inserts on quadrate tubercle of femur,
intertrochanteric crest. It adducts, rotates thigh laterally.

Musculus iliacus [Iliac muscle| originates on iliac fossa and base of sacrum; inserts on greater
psoas tendon and lesser trochanter of femur. Action: flexes thigh, trunk on limb.

Musculus pectineus [Pectineal muscle| originates on pectineal line of pubis; inserts on femur
distal to lesser trochanter. Action: flexes, adducts thigh.

Musculus adductor brevis [Short adductor muscle, Short h. of triceps femoris muscle] originates
on outer surface of inferior ramus of pubis; insertion is on upper part of linea aspera of femur.
Action: adducts, rotates, flexes thigh.

Musculus adductor magnus [Great adductor muscle] (2 parts): Deep part originates on inferior
ramus of pubis, ramus of ischium. Superficial part on ischial tuberosity. Deep part inserts on linea
aspera of femur. Superficial part on adductor tubercle of femur. Action: Deep part adducts thigh,
Superficial part extends thigh.

Musculus adductor longus [Long adductor muscle] originates on crest and symphysis of pubis.
Insertion is on linea aspera of femur. Action: adducts, rotates, flexes thigh.

Caput breve musculi bicipitis femoris [Short head of the biceps femoris muscle] is arising from
the linea aspera femoris.

Facies (pl. facies) is a specific surface of a body structure, part, or organ.

Facies articularis ossium is articular surface of bone: the surface by which a bone articulates
with another.

Facies poplitea femoris [Popliteal surface of femur] is the triangular lower third of the posterior
surface of the femur, between the medial and lateral supracondylar lines, which forms the superior
part of the floor of the popliteal fossa; called also planum popliteum femoris.

Musculus plantaris [Plantar muscle] has origin on oblique popliteal ligament, lateral supra-
condylar line of femur; insertion on posterior part of calcaneus. Action: plantar flexes foot.

Epicondylus lateralis femoris [Lateral epicondyle of femur] is a projection from the distal end
of the femur, above the lateral condyle, for the attachment of collateral ligaments of the knee.
Called also external epicondyle of femur.

Musculus popliteus [Popliteal muscle] has origin on lateral condyle of femur, lateral meniscus;
insertion is on posterior surface of tibia. Action: flexes leg, rotates leg medially.

Fossa intercondylaris femoris [Intercondylar fossa of femur] is the posterior depression between
the condyles of the femur; called also fossa intercondyloidea femoris, intercondylar notch of femur,
and popliteal notch or incisure.

Caput laterale musculi gastrocnemii [Lateral head of the gastrocnemius muscle, Lateral gastroc-
nemius muscle| is arising from the lateral condyle and posterior surface of the femur, and the
capsule of the knee joint.

Caput mediale musculi gastrocnemii [Medial head of the gastrocnemius muscle, Medial gastroc-
nemius muscle| is arising from the medial condyle of the femur and the capsule of the knee joint.

Corpus femoris [Body, Shaft] is almost cylindrical in form. It is slightly arched, so as to be
convex in front.
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Fig. 61: Internal structure of the right femur—Anterior surface
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The architecture and internal structure of the femur

John C. Koch?® by mathematical analysis has “shown that in every part of the femur there is a
remarkable adaptation of the inner structure of the bone to the machanical requirements due to
the load on the femur-head.”

It is believed that the following laws of bone structure have been demonstrated for the femur:

1. The inner structure and external form of human bone are closely adapted to the mechanical
conditions existing at every point in the bone.

2. The inner architecture of a normal bone is determined by definite and exact requirements
of mathematical and mechanical laws to produce a maximum of strength with a minimum of
material.*

Trabeculae descend from the periphery of the femoral head toward the medial cortex along
the direction of the resultant compressive force, exactly like the compressive trajectories obtained
theoretically and by the photoelastic method. A bundle of trabeculae follows an arched course
from the lateral to the medial cortex, as do the tensile trajectories derived from theory.®

Trigonum internum femoris [Ward’s triangle] is the space formed by the angle of the trabeculae
(an area of diminished density in the trabecular pattern) in the neck of the femur; a vulnerable
point for fracture. It is evident by X-ray as well as by direct inspection.

Cancellus (pl. cancelli) [L., a lattice] any structure arranged like a lattice. A reticular, spongy,
or lattice-like structure.

Substantia (pl. substantiae) [L., substance, called also matter| is a general anatomical no-
menclature for material of which a tissue, organ, or body is composed.

Substantia spongiosa ossium [Spongy substance of bone, called also Cancellated or Cancellous
bone, Spongy bone, Trabecular substance, and Substantia trabecularis ossium]| is bone substance
made up of thin intersecting lamellae, usually found internal to compact bone.

Corticalis [Cortical] means pertaining to or of the nature of a cortex or bark.

Substantia corticalis ossium [Cortical substance of bone] is the substance comprising the hard
outer layer of a bone.

Cavitas medullaris [Medullary cavity, Marrow cavity, Medullary canal, and Medullary space]
is the space in the diaphysis of a long bone containing the marrow.

Endo [L., inside, within].

Membrana (gen. and pl. membranae) [Membrane| is an anatomic nomenclature for a thin
layer of tissue that covers a surface, lines a cavity, or divides a space or organ.

Endosteum [Medullary membrane] is the tissue lining the medullary cavity of a bone.

Peri (Gr., around, about).

Periosteum (Peri- + Gr. osteon, bone) [Periost] is a specialized connective tissue covering
all bones of the body, and possessing bone-forming potentialities; in adults, it consists of two
layers that are not sharply defined, the external layer being a network of dense connective tissue
containing blood vessels, and the deep layer composed of more loosely arranged collagenous
bundles with spindle-shaped connective tissue cells and a network of thin elastic fibers. Thus, the
periosteum is a fibrous sheath that covers bones. It contains the blood vessels and nerves that
provide nourishment and sensation to the bone.

Epiphysis (pl. epiphyses, Gr.: an ongrowth, excrescence) is the expanded articular end of a
long bone, developed from a secondary ossification center, which during the period of growth is

3[KocH, 1917]. Cf. [GRAY, 1918] at http://www.bartleby.com/107/59.html. See also Wolff and Roux.

4That all is cited from [GRAY, 1918]. There also is the following: Diagram of the lines of stress in the upper
femur, based upon the mathematical analysis of the right femur. These result from the combination of the diffe-
rent kinds of stresses at each point in the femur. (After Koch.) See http://www.bartleby.com/107/illus248.html,
http://www.bartleby.com/107/illus251.html, etc. Cf. second half of http://www.bartleby.com/107/59.html.

5See Fig. 61. Cf. [PAUWELS, 1976], [KocH, 1917], [GRAY, 1918] at http://www.bartleby.com/107/59.html.
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either entirely cartilaginous or is separated from the shaft by the epiphyseal cartilage. Called also
apophysis ossium.

Metaphysis (pl. metaphyses) is the wider part at the extremity of the shaft of a long bone,
adjacent to the epiphyseal disk. During development it contains the growth zone and consists of
spongy bone; in the adult it is continuous with the epiphysis.

Diaphysis (pl. Diaphyses, Gr.: the point of separation between stalk and branch) [Shaft] is the
portion of a long bone formed from a primary center of ossification. It is the elongated cylindrical
portion (the shaft) of a long bone, between the ends or extremities (the epiphyses), which are
usually articular and wider than the shaft; it consists of a tube of compact bone, enclosing the
medullary (marrow) cavity.

Sector of the shaft of a long bone

Osteon (Gr., bone) [Haversian system)] is the basic unit of structure of compact bone, comprising
a haversian canal and its concentrically arranged lamellae, of which there may be 4 to 20, each
3 to 7 micrometres thick, in a single (haversian) system. Such units are directed mainly in the
long axis of the bone.°

Canalis nutricius [Haversian canal, Haversian space, Canalis nutriens, Nutrient canal of bone]
is one of the freely anastomosing channels of the haversian system of compact bone, which contain
blood vessels, lymph vessels, and nerves. Named for CLOPTON HAVERS, English physician and
anatomist, 1650—1702

Volkmann’s canal [ALFRED WILHELM VOLKMANN, German physiologist, 1800—1877] is a
passage other than haversian canals (canales nutricii), for the passage of blood vessels through
bone. It is usually transversely connecting two Haversian canals.

Haversian lamella (L., genitive and plural: lamellae) is one of the concentric bony plates
surrounding a haversian canal.

Collagen fiber [collagenous fiber| is the soft, flexible, white fiber which is the most characteris-
tic constituent of all types of connective tissue, consisting of the protein collagen, and composed
of bundles of fibrils that are in turn made up of smaller units (unit fibrils or microfibrils) which
show a characteristic crossbanding with a major periodicity of approximately 65 nm. In descri-
bing the hierarchy of arrangement of collagen structure, the terms fiber and fibril are sometimes
loosely interchanged.

Interstitial lamella (pl. lamellae) [Ground lamella, Intermediate lamella] is one of the bony
plates that fill in between the haversian systems.

Cement line is a name applied to a line, visible in microscopic examination of bone in cross
section, marking the boundary of an osteon (haversian system).

Circumferential lamella (gen. and pl. lamellae) is one of the layers of bone. There are external
circumferential lamellae and internal circumferential lamellae.

Trabecula (pl. trabeculae) is, in anatomical nomenclature, a supporting or anchoring strand
of connective tissue, such as one extending from a capsule into the substance of the enclosed
organ.

Trabeculae of bone are anastomosing bony spicules in cancellous bone which form a meshwork
of intercommunicating spaces that are filled with bone marrow.

6Cf. [GrAY, 1918] at http://www.bartleby.com/107/18.html
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Fig. 62: Sector of the shaft of a long bone

Locally orthotropic material—the foundation of tissue mechanics

Introduction

As we are going to discuss the locally orthotropic material—the foundation of tissue mechanics we
must spend some time in talk about the problem of biomechanical experiments. At the beginning
we must stated what the biomechanics is. Surely the biomechanics is the mechanics, i.e., the study
of motion and its causes. (See Table of Mechanics, Cyclopaedia, 1728, Fig. 63.) But to what is
this mechanics applied?

There is the point to be considered. It is clear, Rigid Body Mechanics is the mechanics of a
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rigid body. Solid Mechanics is the mechanics of a solid (or, if you like, deformable) body. What
about Biomechanics. Everyone knows the name Biomechanics has originated from biology and
mechanics, and it in the sense: mechanics of biological body. And the word biology means, the
science of life, from the Greek (iog, life, and logos, word or knowledge. Thus, Biomechanics is
the mechanics of a living body (i.e., body that is alive).

Biomechanical experiment is said to be the experimental work in biomechanics mainly pro-
ducing a better knowledge of the mechanical behaviour of some body segment and of the whole
body under impact conditions. Yes, some body segment! But if it should be truly Biomechanical
Experiment then the body segment must be alive. That is inside living body.

There is a wide range of truly biomechanical experiments in which the inverse mechanics
and mathematical optimization methods play the great role. There are some presumptions about
rational behaviour of the living body and some measured data. On this ground the extremalization
of a selected objective function, such one as minimum of the consumed energy or maximum of a
movement speed, is performed.
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The above described approach is well known. A similar approach is possible also in the case
of not entirely pure biomechanical experiments. The experiments performed in vitro are meant.
At the case of experiments in vitro the great question arises: Does the biomaterial behave in
vivo in the same way as in vitro? Besides this question the great spread of in vitro eperimental
data is commonly observed. Also in this case the optimization methods may be of great use.
For example, in the case of an anulus fibrosus of the intervertebral disc there is a possibility
to utilize the method for laminate tube optimization by winding angle control” to predict the
ratio of the first main modulus of elasticity and the second main modulus of elasticity for which
the anatomical winding angle of the collagen fibres is that that maximizes stiffness. As a matter
of fact in the cited example there are some stability problems of solution, but the illustrated
method remains valid. The point being that geometry, internal structure, overall properties,
average loading, fracture modes of body segments like bones, disks, etc, are known, at least to
a certain degree, and thus a capability of an inverse analysis is widely opened to the material
property estimation.

The other question is how to use results of biomechanical experiments, also without questio-
ning the data validity. There is, for example, the possibility of the elastic cortical bone coefficient
determination via ultrasonic measurement, cf. [OR{AS, 2005], [GOLDMANN, 2006], where the cor-
tical bone is regarded as an transversely isotropic material. The data obtained by this way are
regarded as components of the Cartesian compliance tensor. The bone being essentially cylindri-
cal but not thin walled there is need of a sophisticated method of transformation.

Similarly, there are some attempts, [LUKES, 2005], to apportion annulus fibrosus of the inter-
vertebral disc into fibers and test mechanical properties of these separated portions. The obtained
data—data with respect to a Cartesian coordinate system—are to be transformed into the ellip-
tical coordinates of the disc. As this case is by no means thin-walled there is once more necessity
of the concept of locally orthotropic material.

The nomenclature Locally orthotropic material is meant to describe a material assembled of
orthotropic material parts. The point is that every part (may be infinitesimal) can be described
as an orthotropic block, that is a block with a local frame in which the elasticity tensor is of the
special kind. This local frame is in a special way transformed into global reference coordinates.
This local coordinate system describing a locally orthotropic body is called Main reference frame,
i.e., frame coinciding with main directions of the (infinitesimal) orthotropic block.

Another coordinate system, that may be frozen either at the material (deformed with the
body) or at the space (undeformed, i.e., still in the reference state), is the called Globle material
(or space) coordinate system. This system is common for the whole ensemble of othotrpic material
parts. What is essential is that in the Cartesian frame of local orthotropy the tensor components
are physical quantities, i.e., quantities possessing the right units, however the coordinate systems
are distorted in a reference frame of computation (Euclidian spaces with cartesian or noncartesian
coordinates).

Compliance tensor and generalized Hooke’s law of a (possibly infinitesimal) la-
minated block

Consider a laminated block, named orthotropic (elemantary) block and signed as vth block, as
outlined in Figure 64. The coordinate system, v;, is the main material reference frame. The main
stand for alined with the major/minor material axes of the orthotropic material.

Perform the following experiment: Take the block and stretch it in the direction of v; axis
(i.e., in the direction of fibres) in such a manner that the prescribed strain 1 does not break the
linear elasticity conditions. Now measure a stress g7 with which you have pulled the block, and
strains in transverse directions (meant the directions v and v3). These strains are signed &} (i.e.,

"See [MARES, 2005] and [MARES and DANIEL, 2006
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e

Fig. 64: The vth laminated block

a strain in the v, direction, that we call the second main direction, awakened by the strain ¢} in
the v; direction—called the first main direction) and e}, with a similar meaning of the indices.
There are successively the so-called major Poisson ratios

€ €3
Vig=——, Vizs=——=7,
€1 €1
and the minor Poisson ratios
£l 3
Vo1 =—=%, V1= —73,

where the meaning of the indices is analogue to those first mentioned. In this way it is possible
to defined also 153 and v3s. These ratios we will permanently need. Furthermore, from this
experiment we have the ratio

o1

€1

Ell =

called the Hooke’s law for uniaxial stress state. Similarly we may write this law for experiments
in the directions v and v3 as

Now we are on the way to state a compliance tensor. It is acceptable to think about super-
position, i.e., to presume the total strain is a sum of the strain in direction v; uniaxially excited
with stress 011 (i.e., 1), the strain in direction v; uniaxially excited with stress o9y (%), and the
strain in direction v; uniaxially excited with stress o33 (%), namely

1 2 3

or
1 2 3
€11 = &1 — V21€9 — V31E3,
and at last
o — 011 y 022 y 033
11 = 7w — Va0 — V17—
By Es Es3

As the commonly accepted relation between shear stress and strain is

012 = 26120127 023 = 2523G237 031 = 2531G31>
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we may write the compliance relation

1 12 12
1 En iE_2212 B 0 0 0 o1
v | %
€22 - ﬁ Far ;19_?;) 0 0 0 022
v |1 %
€33 _ - ﬁ - EL; Eas (1) 0 0 033
€192 0 0 0 2G1s 0 0 012
€23 0 0 0 0 ﬁ 0 023
€31 0 0 0 0 0 g 031
or, as someone believes, in a more convenient form
gij :Cijklo,kl’
where the compliance tensor
1 v %
B Y 0 (1) — 0 0 0 - E?;;
0 e (1) e 0 0 (1) 0 0
0 (1) e (3 0 0 yTeIm 0 0
v 0 4G12 0 4G12 (1) 0 0 0 0
ij — | —n2 1 __ b3z
{C’ kl} = o 0 0 0 j 0 0 0 o
{is Ik} 0 0 0 0 0 &= 0 & 0
1 1
0 0 e 0 0 (1) e (1) 0
0 0 0 0 0 G 0 G (1)
_u3 _ vo3 1
o 0 0 0 yo 0 0 0 yo

The v above the tensor symbol indicates that the symbol does not symbolize an abstract tensor
but that it stands for the tensor components in the v-frame of reference and {ij[kl} means to
say how the entries are stored in the array, namely that the rows belong successively to the
following couples of the indices (ij = 11,12,13,21,22,23,31,32,33) and the columns to the
couples (kl =11,12,...,33).

A little tedious grapheme arrangement leads to generalized Hooke’s law of the laminated block

in the form

v v 14

ij_ ikl
o’=E",

with components of the elasticity tensor

where

@1 0 0 0 P20 O 0 0 P33
0 G 0 G 0 0 0 0 0
0 0 Gy O 0 0 Gi3 O 0
v 0 Gio 0 Gi 0 0 0 0 0
{ EY,, } = | Pponn O 0 0 Doy 0 0 0 Doz |,
{ij [k} 0 0 0 0 0 Gaz 0 G 0
0 0 Giz 0 0 0 Giz3 O 0
0 0 0 0 0 Gaz 0 G 0
P37 0 0 0 Pg30 0 0 0 Ps333
D1y = %En, D190 = %Elh Dyy33 = WEH’
D11 = szz, D09 = #E227 D933 = WEQ%
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V13 + V12923
N

Va3 + Vo113 1 —viovy

E33 ) CI>3322 = N E33 ) q)3333 =

<I)3311 =

and
N =1 — viav91 — V93V39 — V31113 — Vialagl31 — Vi3V3ala.

It is well known, following energetic purposes, that in a Cartesian reference frame,® like the
v-frame,

v v v v
i _ okl et
EY=E",; and CY =C";

holds which means ®1199 = 9911 and vo1 E11 = v19Fas, etc. The two last equalities imply

Vo3lV31V12 = V13V32021.-

Similarly, for the other two cases. We are going to use this fact at the right time.

Coordinate systems describing a locally orthotropic body

There is the above used main reference frame coinciding with main directions of the (infinitesi-
mal) orthotropic block. These coordinates are denoted v* (a = 1,2,3) and sites of the body are
described by an orthogonal grid drawn through the body in a given (reference-relaxed but not
necessarily unstressed—remember residual stresses) state.

Another coordinate system in use is a global Cartesian coordinate system. This system is
common for the whole ensemble of othotrpic material parts. According to the reference frame
construction the transformation between the main reference frame (main coordinate system, %)
and a global Cartesian reference frame, z%, should be affine, namely via the relation

2% = cos(2”, V)1,

where cos(z%, 1*) means the cosine of an angle contained between the direction of 2%-axis and
vP-axis. The transformation matrix, cos(z%, %), can be given through three consequent rotations

described, according to Fuler’s rotation theorem, using three, so called Fuler, angles in this way:
cos(2*, ") = ABC

where
cosp sing 0
—sinyp cosp 0 |,
0 0 1

'
|

—_

0 0
B=| 0 cosf sinf |,
—sinf cosf

o

and
cosy siny 0
C=| —sinyY cosy 0
0 0 1

As the main frame of reference is orthogonal it is evident that covariant and contravariant
tensor components coincide. The brief account follows:

v v
| Z2 . v v . v .
p)— N e.—= 0 = & .—eJ
ee’= 0/, eej=90,; = 0] =ej=e

8Compare, for instance, [SALENGON, 2001] p. 329.
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and thus, as above uttered,

Eijkl:E:jkl:Eijkzl '

What is essential is that these tensor components are physical quantities, i.e., quantities
possessing the right units, however the coordinate systems are distorted in a reference frame of
computation.

Now we must perform a transformation from the main frozen reference frame, v, into a
frame of computation, say x®. In the frame of computation the tensor entries are not necessarily
physical quantities.

At this stage it is appropriate to mention the metrics. As we presumably take into account
the Euclidian space, the metric is Euclidian one, hg, t.€., in the orthogonal coordinates v* and
x® the metric has components

ove v

=0 and guy= —— ——0.q.
Jab b Jab= 5 Gpb Ocd

These metrics are related to a space (frozen in the space, relaxed, undeformed) frame. There is
also another frame (material frame), the frame that deform with the body. This frame, named

also deformed-with-body reference frame is equipt with another metric, say gib.

Mathematical model of the cortical bone osteon

Introduction

Osteon (Gr., bone) [Haversian system] is the basic unit of structure of compact bone. The os-
teon consists of a number (may be 4 to 20) Haversian lamellae, i.e., the concentric bony plates
surrounding a haversian canal. Each of these lamellae is 3 to 7 microns thick.”

Haversian lamella is composed of collagen fibers. Collagen fiber is the soft, flexible, white fiber
which is the most characteristic constituent of all types of connective tissue, consisting of the
protein collagen, and composed of bundles of fibrils that are in turn made up of smaller units
(unit fibrils or microfibrils) which show a characteristic crossbanding with a major periodicity of
approximately 65 nm.

Frames of reference as a foundation of a mathematical modeling of the osteons

In the mathematical modeling it is essential to constitute a coordinate system. It is true that
abstract tensor notation derives the label from abstract in the meaning unrelated to a specified
coordinate system. Nevertheless, every mechanical modeling is connected with a body and the
body has a geometry that is describable only with a coordinate system. At this stage let us look
at the osteon, Fig. 65, in the b*-direction and draw one lamella of the osteon, say v = 1, together
with the global computational coordinates and one of the infinite number of local Cartesians,
Fig. 66.
The relations between the coordinates of the osteon are (see carefully Fig. 66)

bt = B cos 72,
b = Blsin 57,
b=

g = Vo7 + @)

9Cf. [GrAY, 1918] at http://www.bartleby.com/107/18.html
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Fig. 65: Cortical bone osteon global coordinate system

2 b2
(° = arctan o
/63 — b3.

1.1 = ﬁl — To,
372 = 7noﬁ27
3 =3
61 = xl + 7o,

1
62 = —1'2,
63 _ xS.

The transformation between the z-frame and the ¢-frame we postpone to another opportunity.

The matrices of tensor transformation between the above listed frames are given

10 yia the

following derivatives.

As

we have also

Further,

o cos 3 —pB'sinfp? 0
e sin3? pBlcosf? 0
p 0 0 1
oo,
opb obe ¢
" cos (3* sinf? 0
?’)gb = E—ll sin 3? ﬂ—ll cos 3 0
0 0 1
e (110) o (300
o\ o o) T e !
0 0 1 0 0 1

[LoveELock and RUND, 1989], [SYNGE and SCHILD, 1978].
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&* — Local Cartesian coordinate system

b* — Global Cartesian coordinate system of the osteon

(% — Global computational coordinate system of the osteon

x®» — Global computational coordinate system of the unfolded osteon lamella

Fig. 66: Cortical bone osteon lamella coordinate system

and
o o g cos 3* —?—; sin 3?2 0
o a5 Db = | sinf? f—) cosf> 0 |,
0 0 1
0t 9w OB 7Tcos'52 , 7nsin 32 , 0
Wzﬁ—ﬁcwz Bf’smﬂ ﬂ—‘;cosﬂ 0

0 0 1
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Now, we arrive at the constitution of the metric tensors, g,,. It holds
ds? =gby dz*dz® =doy d3°dA° —=ghy dbdB.
As the b-frame is the Cartesian one (in the Euclidian space),
ds? = db*db® = J,pdb*db’

and thus
, 1 00
Jab= 5ab = 010
0 01
Transforming,
p cos 3? sin3? 0 cos @2 —Lsin@? 0
x ob¢ ob B8t . 2 At 2 . 2 5{0 2
Job= 5 mpled = | —% sin 3% =cos 3% 0 sinf®  -cosf* 0 |,
0 0 1 0 0 1
i.e.,
1 0 1 0 0
go=| 0 (2) o ]=|0 (=) o (193)
0 0 0 0 1

To

2 2
the entry (f—l) = (M) being the “stretching” of the x2-coordinate.

Similarly,
5 ob o cos 3? sin3 0 cos3* —psinf? 0
Jap= Wmécd =| —pB'sin3? Blcosf? 0 sinf* Bleosp? 0 |,
pe 0B 0 0 1 0 0 1
and thus
5 1 0 O
Gab= 0 (51)2 0
0 0 1

Another task to look at is the local coordinate system of the unfolded infinitesimal ply of
the lamella, £%, and the connection between ¢-frame and x-frame, Fig. 67. The &-frame, being
Cartesian, has the metric equal to d,, and thus the tensor transformation must be such that

5o 0z¢ 0z .
ab =Yab= g Db Ged;

i.e., as the directions of respective axes are alined,

- 1 0 0 1 0 0
a—él): 0 LCI’ 0 - 0 7‘0:?11 O
0 0 1 0 0 1
and
1 00 1 0 0
aa
;b: 02 0 ]=|0 == 0
v 00 1 0 0 1

The connection of the main material coordinate system, v*, with the local coordinate system,
&%, of an unrolled infinitesimal ply of a lamella of the osteon is apparent from the Fig. 68. It

holds that
Y 1 0 _ 0 o 1 0 .0
= 0 cosa, sina, ) = 0 cosa, —sina,
b : ovb .
0 —sinq, cosa, 0 sina, cosa,
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d£2 Ak§3
«Q
dg?
51
& unfolded ply
X 51“\ // / b3
« 53 }
& <
) S. L
1 >
KﬁJQ b dp? fiber nnder
A angle «
204
b2 l

Fig. 67: Local coordinate system £* of an unrolled infinitesimal ply of a lamella of the osteon

3 A€3
\a/v
d§3 \
A g
4e? T &

Fig. 68: Main material coordinate system v* of an unrolled infinitesimal part of the lamella

The stress-strain relation of a lamella of the osteon

The components of the stress tensor relevant to the &-frame are the physical ones, i.e., the
components that possess the stress units, MPa. The same holds for strains. Now, imagine that
in a way the stress-strain relation of a very thin unrolled ply of an osteon lamella written in the
main frame of reference was obtained.!! Thus

v v v
i ikl
oV=FE" ",
v, v.ov
5”:(1”,6“7“ )

are the relations derived for an infinitesimal curved block regarded, or really adjusted, as rectan-
gular. From the entries of the metric tensor of the x-frame, see (193), we can deduced that for

"The Cartesian entries of the elastic and compliance tensor see at [MARES, 2006b.
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x! < r, there is minimal error to put

Lo 0¢ragt b ovk o
ab __prab __ L)
E cd_E cd™ vt Qi E kl agc (%d

But if we take into account the opposite case, the case of an osteon where the thickness is not
negligible compared with the radius, we must take deeper analysis:

©  Qx° 0P Ejb OEe gt 0x° 0aP 9EL OE® Y Ovk vt oge ¢

op 1)

T 9ge 9cb T gpr Ps  OEe OEb Qv Ovd M 9ge 9gd  Dxs

That is
1 0 0
o Ov* Jg° ot :
= =| 0 ™=cosqa, sinaq,
oxb 9L Oxb 0 gl
B Sin ¢y, COS (¢,
and
1 0 0
ox*  OJx* 0¢° v o
o~ e rortaT cosq, —ersina,
0 sin v, CoS (v,
Similarly,
1 0 0
ot Ov* 0z° 0 8 ,
95 ~ 9w 1] 1co.s o, sina, |,
0 —f'sina, cosa,
1 0 0
op*  0B* dx° g 1.
= = - cosq, —=rsina, |
ovd  Qxc Ovb s A ’
0 sinq, CoS (v,
and
2 92
a a C
oy O O cos 3 sin (3 0
W D O —cosaysin 3?2 cosa,cos 32 sinay, |,
s . . 2 . 2
sin vy, sin 3 —sinq,, cos 3° cosa,
bt Obe e cos 32 —cosaysinf8?  sina, sin 32
02 2 . 2
= = | sinf* cosa,cos(* —sina, cosf
ovd  OJxc b .
0 sin v, COS (v,

Elastic strain energy of the osteon

The elastic strain energy is the functional

a = /eabach“bcd ds2,
Q

where the differential element of a volume in a curvilinear coordinate system is related to the
differentials of the coordinates by the square root of the determinate of the metric tensor g,
e.g., in the g-frame,

1

" = pldpldPast,

dQ = |goy

and the invariant
cd rrab
b€ EY 4
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must be the function of the integrative coordinates. Nevertheless, components of the acting
tensors may be relevant to any, but for all the same, coordinate system. If specified, in the case
of the osteon,

2
np B a b v k l
_ 1 B loq OB OB ij o dv 2 101 103
a—/Z/ﬁ /gabg a7 E kl—aﬁc—aﬁddﬁ dgtdg?,
0

ny, being the number of the osteon lamellae, 7, the inner radius of the v-th lamella, 7,1, outer
radius of the osteon, and [ the regarded length of the osteon.

Method of femoral diafysis analysis

At a paper'? the geometry and internal structure of thigh bone have been described. At another
paper® a method of mathematical description of an osteon has been proposed. At this stage let
us use the description to analyse the shaft of a thigh bone.

Fig. 69: Relation between the coordinate systems of long bone osteons

Osteons of a cortical bone

Let us pursue the model according to Fig. 69—something like a pair of osteons embedded in
interstitial bone tissue, for our purposes considered as homogeneous isotropic material. For one
osteon it holds that elastic strain energy of the osteon is the functionall*

ay = / cape B ,dQ, (194)

Q

12IMARES, 2006a)
13IMARES, 2006c]
14MARES, 2006¢]|
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where, in the -frame,!®

1

T3 = pldpldpPdpd.

Now, we must collect the set of osteons into one whole, i.e., into the cylinder of the cortical

diaphysis of a long bone. More for convenience than for absolute accuracy, let us assume the

contour of the femur diaphysis as a hollow circular shaft with inner diameter, R;, and outer

diameter, R,, respectively. The number of the osteons being n, every one of them, with its

own global Cartesian coordinate system (a,b,...,n), consists of a number of lamellae, n, (¢ =

a,b,...,n) of known winding angles, o’ (v =1,2,...,n,). Besides the global Cartesian coordinate

system of the diaphysis, z*, consider the global cylindrical coordinate system of the diaphysis, 6.
The elastic energy stored in the hollow cylindrical shaft of the diaphysis, a, may be, as every

integral, decomposed into the sum of integrals over disjunct subsets of the considered part of the
diaphysis volume, 2. Thus,

a= / e € A+ / e B, dQ =) / e, dQ,

Q (=1 Q (=1 Q

dQ = |goy

E® . being the elasticity (stiffness) tensor of the interstitial lamellae modeled as a transversally
isotropic material (this choice will be discussed later), £ , elasticity (stiffness) tensor of the
osteons as described at another place,'® €, the volume of /-th osteon. The point of expressing
the elastic energy in this way is the comfortable integration over the osteons with [-frames as
the chosen coordinates and over the entire cross section of diaphysis in the global cylindrical
coordinate system of the diaphysis, 6°.

At this stage we must spend some time with discussion about the modeling the interstitial
lamellae as the transversely isotropic material with elasticity (stiffness) tensor £. The choice of
the interstitial lamellae model have been motivated by the long range of experimental works and
published models of cortical bones as a homogeneous transversally isotropic material.!” As the
elasticity tensor,

€11 0 0 0 €12 0 0 0 €13
0 G12 0 Glz 0 0 0 0 0
0 0 Giz 0 0 0 Gz 0 0
2 0 G2 0 G 0 O 0 0 O
{gijkl} = €12 0 0 0 €929 0 0 0 €93 s
{43 Tk} 0 0 0 0 0 Gazs 0 Gag O
0 0 Giz 0 0 0 Gz 0 0
0 O 0 0 0 Gag 0 Gy 0
€13 0 0 0 €23 0 0 0 €33

is cylindrically orthotropic (transversely isotropic, i.e., the case when ej; = €9, €66 = 0.5(e11+€92)
with axis parallel to axes 23, a3,0?,... it is not problem to performed the integration on any
cylindrical coordinates. The magnitude of the constants, written in matrix form

enn e ez 0 0 0
€12 €y €3 0 0 0
e;3 e ez 0 0 0

0 0 0 €44 0 0 ’

0 0 0 0 €55 0

0 0 0 0 0 €66

E =

15See once more [MARES, 2006¢].
16/MARES, 2006b]
17Cf., e.g., [ORiAS, 2005] or [GOLDMANN, 2006].
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where ey = Ghi3,e55 = Gos, eg6 = (12, were measured by numerous author via ultrasonic tech-
nique, for a list of them see Tab. 21.18

[GPal [1] 2] 8] [4] [5] (6] M 8 9 0]
enn  274+1.6 16.75+2.27 23.4%+0.0031 21.2+0.5 18.0 19.4+13 2489 141 224 19.7
e2o  30.3£2.8 19.66+£2.09 24.1+0.0035 21.0+1.4 20.2 20.0£1.4 26.16 184 250 19.7
ess 34117 27.33+1.64 32.540.0044 29.0+1.0 27.6 30.9+19 3320 250 350 32.0
ess 9.3+0.9  6.2240.31  87+0.0013  6.3+04 623 5705 711 70 82 54
ess  T.0£0.4 5.65£0.53  6.9£0.0012 6.3£0.2 5.6 52+06 658 63 7.1 54
6 6.9+ 0.5 4.64+0.43  7.240.0011  5.440.2 45 41£05 571 528 6.1 3.8
€12 9.1 9.1£0.0038 11.740.7 10.0 11.3+0.1 11.18 6.34 14.0 12.1

e13 8.3£5.3 9.1£0.0055 11.1£0.8 10.1 12.5£0.1 13.59 4.84 15.8 12.6
€23 8.5 9.2£0.0055 12.7£0.8 10.7 12.6£0.1 13.84 6.94 13.6 12.6
[1] (Goldmann, 2006) [6] (Rho, 1996)
[2] (Orias, 2005) [7] (Taylor et al., 2002)
[3] (Yoon, Katz, 1976) [8] (Buskirk et al., 1981)
[4] (Katz et al., 1984) [9] (Maharidge, 1984)
[5] (Ashman et al., 1984) [0] (Lang, 1970)

Table 21: Nearly cylindrically orthotropic (transversely isotropic), in a way Catrensian, elastisity
coefficients of a cortical bone

The assessment of the material characteristic of a single lamella of an osteon

If the locally orthotropic characteristics of a single lamella of an osteon were known, the model
would be completed. There is a great challenge to a biomechanical experimenter: To disintegrate
the osteon into lamellae and test, in a way, the mechanical behaviour. As such experiments
were not accomplished, at least to the author knowledge, we must assess the characteristic in
another way. Thus, let us, at this section, pursue the material characteristic of a single lamella
of an osteon to meet some of the above cited transversely isotropic coefficients, i.e., tune the
entry of the elasticity tensor of the osteon lamella to have the overall properties such that the
one measured under presumption that the cortical bone is a homogenous transversely isotropic
hollow cylinder.

Now, let us accept the assumption that we know the geometry, i.e., the number, location, and
dimensions of the osteons, and that the interstitial tissue is transversely isotropic with the same
characteristic as the material characteristics of the transversely isotropic (averaging) model.'?
Taking moreover into account the requirement that the elastic energy of both models should be
the same, under the same (reasonable) strain, than we could write

a=q,

where the elastic energy of our lamellar (locally orthotropic model)

n B n B
a = / 5abacd5abcd dQ + Z / EabECdEabcd dQ2 — Z / eabECdE“bcd dQ2

s =1¢, =1¢,
and the elastic energy of the transversely isotropic (averaging) model

o= / eape€ , dQ.
Q

¥Borrowed from [GOLDMANN, 2006] and [OR{As, 2005].
19]0Orias, 2005], [GOLDMANN, 2006].
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If, moreover, all osteons are the same the elastic energy equality holds for any osteon:

/8ab€chade dQ:/Eabz’degabd dQ.

a Qa

As the last equation would hold for any (reasonable) strain we may set up a number of indepen-
dent equations, one of them, e.g. for the strain

z z

e'= ¢ (a constant), &%= 0 (ab # 11),

/ Eym dQ — / i dO,
Qq

a

could look like

after substitution

Tv41

l 21
o 021 928 v vk ou
1 ab 2 151 193
/ /ﬂ/auaﬁE“alaldﬁdﬁdﬁ
0

v=1 Ty 0

I 74

B c d
[ [ e

The other equalities constructed in a similar manner will yield a system of equations. As the
number of the material constants in our locally orthotropic model of osteon lamellae is nine (E;,
Ess, Es3, V19, Va3, V31, G1a, Gas, Gi31), the number of the equations ought to be no less than nine.
To resolved this system in the case of a redundant number of equations, it is best to use the
pseudoinverse method based on the singular decomposition.

Let us accomplish, as an illustration, the above mention example of the equality of the osteon
elastic energy:

1na Tu41 27r8181 Y 3ka
1 20z py OV oV 2 141 133
[ 35 [0 5 B G 049 05 = 021D
0 v=1 Tu
ne AL 2T cos (3? cos (32 cos (32
/ ﬂl/ —cosaysinf3? | ® | —cosaysinf3? | @ | —cosa,sin? | @
v=t 9 sin oy, sin 32 sin oy, sin 32 sin oy, sin 32
cos 32 ,
® [ — cosay sin 32 2Egm d32dptdsE =7 (ri — r%) Ei11-
sin oy, sin 32
As
2w
3
4
/cos dg = i
0
2

/cos3ﬁsinﬁdﬂ =0,

0
2

1
/Cos2ﬂsin25dﬁ =5
0
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2

/cosﬂsingﬂdﬁ =0,

0

. 3
sin* 8dg = —,
4
0
it holds
3 T .2 s ™ T o2
T 0 0 0 e 1SvCy 0 1SuCy — 55
T 2 ™ T2 s
0 =30 TSuC  —C, 0 0 T5vCy 0 0
0 15uCy —%s?j 150Gy 0 0 —%312, 0 0
Tv+1 w2 ™ T2 s
Na Py ) 0 ) ZCV ZSVCV _ZCV 304 0 , ZSVCV , 0 , , 02 )
i s T T T
2 [0 ae 0 00 B e 0 Eaa eid
s T T T s
v=1 ry ZSVCI/ 0 0 ) 0 _TSUCV Tsycy 0 9 TSVCV _TSVCV
™ ™ ™ ™
0 TS0 =S, TSy 30 . 02 , =15 , ()2 , , ()3
s s T T s
L T R R e O oy TR S A A
s s s s s
—15 0 0 0 TG, s 0 =Sy S,

v
::Eabcd dﬁl =T (nga+1 — T%) 81111.

Presuming that all the lamellae are of the same behaviour we have

N1 3m 3 3r . T
Z 9 (Tu+12 - Tuz) <@1111Z + (I)2222Z cos’ a, + (I)sssz sin® oy, — @11225 cos® ay, —

v=1

T 37 : . .
—®1133 3 sin? o, + <I>22337 cos? o, sin? o, — Giam cos? a, + Gog3m cos? a, sin? v, — G317 sin? oz,,) =

=T (7”721(14_1 — T’%) 51111.

Prediction of the bone cross-section geometry

The problem remaining is the bad knowledge of the bone cross-section geometry in particular
the knowledge of the osteon lamela winding angle.

There is the opportunity to utilize the optimization approach. According to the author?® the
best arrangement, in the case of an unknown combination of the loads, is the winding angle +45°.
This result is not in the full agreement with published findings,?! nevertheless there are some
hints in the question why the arrangement is not met.

The orther way is to tune the angle or the ratios of material tensor entries to meet the known
fracture modes, under appropriate type of loading, with maximal stress.
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