

The Role of Composition in Computer Programming

Donald B. McIntyre
Luachmhor, Church Road, Kinfauns, Perth PH2 7LD, Scotland UK

Telephone: 011-44-(0)1738-860-726
e-mail: donald.mcintyre@almac.co.uk

 A system is composed of components; a component is something you understand

Professor Howard Aiken, quoted by K.E. Iverson

Abstract

Iverson has greatly enlarged the mathematical notion of
function composition and made it available to computer
programmers. This paper explains the concept, and uses
practical examples to show how concise, powerful
programs can be written and read. Alternative forms are
given, and ways of overcoming initial difficulties are
explained.
 The systematic use of composition extends the well-
known advantages of APL; namely conciseness,
consistency, and generality.

Keywords executable mathematical notation, function
composition, composite verbs, adverbs, conjunctions,
trains, forks, hooks, gerunds, geometry, Iverson, APL, J

1 Introduction

Mathematicians form a new function h from given
functions g and f by the rule that h(x) = g[f(x)].
This composite h, which inherits many of the properties of
the functions which compose it, is often written g oooo f or
gf, but sometimes f oooo g or f g [18; 21; 22; 2; 20; 36].
We can investigate the properties of composite functions as
we can other functions; for instance a numeric function can
be differentiated. Examples in mathematical literature seem
restricted to monadic functions with scalar arguments.
Iverson has increased the possibilities, making function
composition the central feature in J, his new Executable
Mathematical Notation.
 Composition is not restricted to verbs (functions); new
adverbs (monadic operators) and conjunctions (dyadic
operators) can also be composed and used with composed
verbs to solve practical problems. The formal rules for

 Copyright ACM: APL95. Reproduced with permission

 Original format: 8.5 x 11in

composition are given in Iverson’s Dictionary [16],
which must be consulted for a complete description of
symbols and syntax. There are several introductions to the
notation [e.g. 11-13; 16; 23-27; 31].
 The purpose of this paper is to help those who try to
master the new style of programming by providing
annotated examples taken from experience in using and
teaching this splendidly concise and versatile notation.

2 What is function composition?

Combination of two or more functions creates a composite
function. For example, compose a new function by
combining the functions -: (halve) and - (negate):
 (-:@-) 0 1 2 3

0 _0.5 _1 _1.5
 As usual, expressions in parentheses must be evaluated
before being used; here this evaluation is function
composition. Negate applies to the argument, and the
conjunction @ (atop) passes the result to halve. Because
adverbs and conjunctions are evaluated before verbs [16,
p.79], the parentheses are not necessary and the same result
is given by: -:@- 0 1 2 3
 A composite function can be given a name; e.g.
h=.+:@+, which doubles the sum if there are two
arguments, and doubles the complex conjugate if there is
only one. The example illustrates that the trident (verb
conjunction verb) is a verb [16, p.82].
 Function composition is not, in general, commutative.
Taking an example from James [18, p.72-73], define g=.
>: and f=. *: (>: is increment; *: is square). If
h=. g@f and e=. f@g then h 2 is 5 whereas e
2 is 9
 If v=. h"0 then v is composed by the trident (verb
conjunction noun) and is therefore a new verb [16, p.82],
composed using a verb which is itself composite. The rank
conjunction (") restricts the rank of h to 0; i.e. h applies
to the rank-0 cells of its argument [16, p.75-78].
 Composite functions are entities with their own
properties; e.g. we may take derivatives of composite
numeric functions. If y=. h x=. i.5, then v D.1

gives the first derivative of the composite function v:
 v D.1 x is 0 2 4 6 8
h"0 is a verb, D. is a conjunction, and the combination
(verb conjunction) is an adverb [16, p.83]. Consequently
d=. h"0 D. is an adverb; and because the combination
(noun adverb) is a verb [16, p.83],(1 d)and (2 d) are
also verbs. They give the first and second derivatives
respectively of the composite verb h:
 x,y,(1 d y),: 2 d y

0 1 2 3 4

1 2 5 10 17

2 4 10 20 34

2 2 2 2 2

 Another example of a verb composed by a noun and
adverb is amend, which implements scattered indexing.
The noun gives the indices of cells to be amended; } is the
amend adverb [16 p.161; 28;29]:
 y=. i.3 4 [n=. 1 1 ; 2 2; 0 3

 amend=. n}

 97 98 99 amend y

0 1 2 99

4 97 6 7

8 9 98 11

 A new verb can be composed by bonding a noun to a
verb with a conjunction; e.g. %&180 divides its argument
by 180.

3 Compositions of 2 or 3 verbs

The following (and similar) values confirm that in what
follows the composite functions on the left give the same
results as execution of the expressions on the right.
 f=. % [. g=. + [. h=. *

 x=. 2 [y=. 5

 [and] are verbs that return their left and right
arguments respectively. [. and]. are analogous
conjunctions [16 p.155,156].

3.1 Composition of 2 verbs used as dyad

 x g@h y ↔↔↔↔ g (x h y) Atop

 x g&h y ↔↔↔↔ (h x) g (h y) With

 x (g h) y ↔↔↔↔ x g (h y) A hook

3.2 Composition of 2 verbs used as monad

 g@h y ↔↔↔↔ g (h y) Atop

 g&h y ↔↔↔↔ g (h y) With

 (g h) y ↔↔↔↔ y g (h y) A hook
3.3 Composition of 3 verbs Forks

 x (f g h) y ↔↔↔↔ (x f y) g (x h y)

 (f g h) y ↔↔↔↔ (f y) g (h y)

 The trains in parentheses on the left are forks, and the
fork contributes the key idea in function composition. Here
are some variants:
 (] g h) y ↔↔↔↔ (g h) y

 x ([g h@]) y ↔↔↔↔ x (g h) y

 x (] g h) y ↔↔↔↔ y g (x h y)
 x ([g h) y ↔↔↔↔ x g (x h y)
 x (f@[g h@]) y ↔↔↔↔ (f x) g (h y)

 “Adverbs and conjunctions are executed before verbs,
and the left argument of an adverb or conjunction is the
entire verb phrase that precedes it” [16 p.79]. Hence,
although execution proceeds from right to left, a sequence
of verbs joined by conjunctions is parsed as if
parenthesized from left to right. The consequences of this
are easily overlooked. When in doubt, consult the boxed
display and use parentheses to control the desired order of
execution:
 f@g@h f@(g@h)

+-----------+ +-----------+
¦+-----+¦@¦h¦ ¦f¦@¦+-----+¦
¦¦f¦@¦g¦¦ ¦ ¦ ¦ ¦ ¦¦g¦@¦h¦¦
¦+-----+¦ ¦ ¦ ¦ ¦ ¦+-----+¦
+-----------+ +-----------+
 The boxed display of the verb tree display is an example
[16, Appendix]:
 tree=. 5!:4@< e=. f@g@h

 tree tree 'e'

+------------+ +- f
¦+------+¦@¦<¦ +- @ --- g
¦¦5¦!:¦4¦¦ ¦ ¦ -- @ --- h
¦+------+¦ ¦ ¦
+------------+
 Because conjunctions have long left-scope and short
right-scope, the phrase defining tree (noun conjunction
noun conjunction verb) parses as ((n c n) c v),
which in turn resolves into (v c v), and finally to verb
[16, p.82-83]. Similar utilities are:
 linear=. 5!:5@< Linear display
 erase=. 4!:55@;: Erase objects
 setrl=. 9!:1 Set random link
 nc=. 4!:0@< Name class

4 Trains

“The first example of a train was provided by the fork,
defined by Iverson and McDonnell [17] as a formalization
of the informal use in mathematics of expression such as
f+g and f-g to denote the sum and difference of
functions” [8, p.74; see also 22 p.43, 57]. It is probably true
to say that the fork plays the central role in tacit definition;
i.e. in writing programs that make no explicit reference to
the arguments.
 Iverson defines a train as an isolated sequence which the
parsing rules do not resolve into a single part of speech [16,
p.81-83]. Meanings are assigned to 25 tridents (trains of 3
elements) and 12 bidents (trains of 2 elements). Eight of
these resolve to verbs (functions), and are therefore
examples of function composition. Compositions resulting
in adverbs (monadic operators) and conjunctions (dyadic
operators) are also implemented and prove useful in
programming; see Sections 8 and 9.
 It is important to distinguish between a simple sentence
(as in a typical APL program) and a train, which, though it
may look similar, involves composition. A sentence such as
f g h y (where f , g, and h are verbs and y is a
noun) can be immediately executed and involves no
composition. The sentence f@g@h y usually produces the
same result, but there is an essential difference: whereas
the functions in f g h y are applied independently, one
after the other, f@g@h and the train (f g h) are both
unified functions, with individual properties (such as rank).
The functions enclosed within them are no longer
independent.
 Because expressions within parentheses are evaluated
before being applied, the train (f g h) is composed as a
single entity before execution begins.
 It is easily shown that g h y is not necessarily the same
as g@h y, and that g@h y is not necessarily the same
as the fork ([: g h) y ([: makes g a monad).
 e=. [: g h [. f=. g@h

 g=. +/ [. h=. +/"1

 y=. i.3 4

g h y and h g y and e y all give 66, whereas
f y gives 6 22 38.
 The ranks of any verb, including composite verbs, can be
displayed by using the adverb basic (b.) thus:
 g@h b. 0 yields 1 1 1. The 3 numbers give the
rank of the monad, and the ranks of the left and right
arguments of the dyad. The conjunction at (@:), however,
is equivalent to atop(@) except that the ranks of its results
are unbounded. Thus if p=. g@:h then p does not
inherit the rank of h; and p y is 66.

5 Composition by forks and conjunctions

A fork is a train of 3 verbs; e.g. mean=. +/ % #
defines the arithmetic mean to be the sum (of the items)
divided by the number (of items). This is similar to the
mathematician’s expression f + g [22, p.43, 57]. The
central function (or root) is a dyad, and takes for its
arguments the results of the other two functions. The tree
display shows why the word fork is appropriate:
 tree 'mean'
 +- / --- +
 --+- %
 +- #
 Verb trains with an odd number of elements of three or
more are evaluated from the right in groups of three as
forks. To avoid domain errors, first erase any existing
assignments: erase 'f g h i j k'
 g h i j k
+-----------+
¦g¦h¦+-----+¦
¦ ¦ ¦¦i¦j¦k¦¦
¦ ¦ ¦+-----+¦
+-----------+
 Many examples in this paper are trains with an odd
number of verbs, easily read as successive forks (tridents)
from right to left.
 The fork (i j k) is evaluated first, and its result is the
right-tine of the next fork: (g h(i j k)). Verbs within a
fork may be either primitive or composite, the latter being
unified by conjunctions (commonly @) or parentheses.
 A hook is a train of just two elements (Sections 3.1, 3.2),
thus providing a meaning for trains of even length.
Examples of hooks are given in Section 6.
 f g h i j k i.e. f (g h (i j k))
+---------------+
¦f¦+-----------+¦
¦ ¦¦g¦h¦+-----+¦¦
¦ ¦¦ ¦ ¦¦i¦j¦k¦¦¦
¦ ¦¦ ¦ ¦+-----+¦¦
¦ ¦+-----------+¦
+---------------+
 For readability I use spaces to separate the elements in a
train, but leave no spaces on either side of a conjunction.
This makes it easier to see the existence of trains;
conjunctions being the glue that composes the entities
(commonly verbs) participating in the trains. Contrast the
following definitions of rss (square root of sums of
squares):
 rss=. %:@(+/@*:) Conjunctions
 rss=. [: %: +/@*: A fork
 rss
+------------------+
¦[:¦%:¦+----------+¦
¦ ¦ ¦¦+---+¦@¦*:¦¦

¦ ¦ ¦¦¦+¦/¦¦ ¦ ¦¦
¦ ¦ ¦¦+---+¦ ¦ ¦¦
¦ ¦ ¦+----------+¦
+------------------+
 rss 3 4 gives 5
 Cap ([:) completes a fork by making the verb on its
right apply monadically. A train of 5 verbs:
 rss=. [: %: [: +/ *:
 Read this: square root of sum of squares. It begins on
the right with square (*:) and ends with square root (%:),
which is its inverse. This pattern often occurs when
functions are composed, and the conjunction under (&.)is
provided to make use of it. Thus:
 rss=. +/&.*:
 Read this: sum under square.
 g&.h y ↔ f g (h y)
where f is the inverse of h . If h has no inverse, its
obverse can be defined [16, p.28, 133, 177].
 Although the domain of [: is empty, it is useful also in
other ways − as indeed are verbs that always give the same
result (like 0:), or merely return an argument, (like [and]
); e.g. we might define the absolute value and the residue as
abs=. | : [: and res=. [: : | in order that
both 2 abs 3 and res 3 will give domain errors.

5.1 A truth table as a fork

 2 2 2 #: i. 2^3

This expression produces an 8 by 3 truth table. An APL
programmer will immediately see that the symbols must
represent encode or antibase (#:), iota (i.), and power
(^). An expression such as this is easily written as a fork.
 tt=. #&2 #: i.@(2&^) A train of 3 verbs
 The root verb is #:. The other two verbs are composite,
constructed with the conjunctions & and @. I use only
necessary parentheses; but when in doubt use fully
parenthesized expressions, and then remove parentheses,
one set after another, to discover which ones are needed.
Boxed displays are an invaluable aid for understanding and
correcting syntax. Without parentheses, i.@2&^ would
be interpreted as (i.@2)&^, and because @ does not take
noun arguments [16, p.172], this gives a domain error. tt
can be defined as a train of 5 or even 7 verbs:
 tt=. #&2 #: [: i. 2&^

 tt=. (] # 2:) #: [: i. 2: ^]
 Note, however, that 2: is not a noun; it is a verb that
always returns the result 2. The boxed display shows how
it is parsed as a collection of forks.
+----------------------------+
¦+------+¦#:¦+--------------+¦

¦¦]¦#¦2:¦¦ ¦¦[:¦i.¦+------+¦¦
¦+------+¦ ¦¦ ¦ ¦¦2:¦^¦]¦¦¦
¦ ¦ ¦¦ ¦ ¦+------+¦¦
¦ ¦ ¦+--------------+¦
+----------------------------+
This is equivalent to the example g h i j k in Section
5, except that g is itself a fork: (] # 2:)Note, too, how
often we find that programs call for an odd number of
verbs. Forks appear strange at first, but we soon learn to
see forks everywhere!
 Because they make no explicit reference to any
arguments, these are tacit definitions. With practice it
becomes natural to think directly in this mode. It may help
to start with an explicit definition, similar to an APL
expression. First write a character string with x. and y.
representing the left and right arguments:
 s=. '(y. # 2) #: i. 2^y.'
 e=. 3 : s Explicit definition
 t=. 13 : s Tacit definition [7; 16, p.129]
 linear 't' Linear display
(] # 2:) #: ([: i. 2: ^])
 The rightmost parentheses are displayed for readability.
 Iverson introduced the monadic base-function in 1962 to
describe the microprogramming used for indexing in the
IBM 7090 computer [10, p. 73]. Although not included in
APL\360 [6, p.21], it is implemented in J [16, p.143-144].
Using antibase-2, we get a simpler solution either with
conjunctions or as a train of 7 verbs:
 tt=. #:@i.@(2&^) Conjunctions
 tt=. [: #: [: i. 2: ^] Train of 7 verbs

6 Hooks

A hook is a train of 2 verbs. Because a train of verbs, such
as (f g h)and (g h), had not previously been
assigned meanings, Iverson was free to specify their
interpretation. He defined them to be forks and hooks
resulting in composed verbs as described in Section 3.
 It is important to distinguish g h y and (g h)y. The
first involves no composition: g applies to the result
produced by applying h to the argument. The second, in
contrast, requires the resolution of the parenthetical
expression before any action involving y is taken. In a
hook, the left-function is always a dyad, and the right-
function is always a monad.

6.1 Bordering a table

A hook can append means to the columns or rows of a
table, or border a table with row and column sums:
 h=. , mean A hook

 h y=. i.3 4 Append column means
0 1 2 3

4 5 6 7

8 9 10 11

4 5 6 7

 h"1 y Append means to the rank-1 cells of y
0 1 2 3 1.5

4 5 6 7 5.5

8 9 10 11 9.5

 cols=. ,: +/&.> A hook with &.
 rows=. ; ,.@:(+/"1) A hook with @:
 rows
+---------------------+
¦;¦+-----------------+¦
¦ ¦¦,.¦@:¦+---------+¦¦
¦ ¦¦ ¦ ¦¦+---+¦"¦1¦¦¦
¦ ¦¦ ¦ ¦¦¦+¦/¦¦ ¦ ¦¦¦
¦ ¦¦ ¦ ¦¦+---+¦ ¦ ¦¦¦
¦ ¦¦ ¦ ¦+---------+¦¦
¦ ¦+-----------------+¦
+---------------------+
 Note that although the outermost structure is a hook, this
is not to be confused with f g h i j k given in Section 5.
The latter is a train of verbs. The present example contains
two conjunctions (@: and "), one adverb (/), and a noun
(1). There are no forks.
 Parentheses are required to prevent the interpretation:
 (,.@:+)/"1

The at conjunction (@:)prevents stitch (,.) from
inheriting the rank of +/"1, as it would if atop (@) were
used. $,.@(+/"1) y is 3 1 1
 $,.@:(+/"1) y is 3 1
 Alternatively, we can write rows as a train of 4 verbs,
ending on the left in a hook. No parentheses are needed.
 rows=. ; [: ,. +/"1
 rows

+---------------------+
¦;¦+-----------------+¦
¦ ¦¦[:¦,.¦+---------+¦¦
¦ ¦¦ ¦ ¦¦+---+¦"¦1¦¦¦
¦ ¦¦ ¦ ¦¦¦+¦/¦¦ ¦ ¦¦¦
¦ ¦¦ ¦ ¦¦+---+¦ ¦ ¦¦¦
¦ ¦¦ ¦ ¦+---------+¦¦
¦ ¦+-----------------+¦
+---------------------+
 Compose the function totals:

 totals=. cols@rows

 totals y

+--------------+
¦0 1 2 3 ¦ 6¦
¦4 5 6 7 ¦22¦
¦8 9 10 11 ¦38¦
+-----------+--¦
¦12 15 18 21¦66¦
+--------------+
 The dyad in the hook sometimes requires commute (~);
e.g. select the non-negative items from a list, y
 setrl 7^5

 y=. 10-~?10#20

 h=. >:&0 or alternatively h=. >: 0:
 (h y) # y gives the required selection.
 The commute adverb (~) enables us to place the monadic
verb on the right and so form a hook:
 y #~ h y

 select=. #~ h

or use the fork alternative:
 select=. (h #])

6.2 A Markov Chain example

m is the transitional frequency matrix for an embedded
Markov chain from a Scottish coalfield [5, p.157-161]:
 0 11 36 21 52

28 0 4 4 0

34 2 0 45 13

29 1 45 0 3

28 23 9 8 0

 Begin by replacing the 0s on the diagonal by 1000. The
indices of the diagonal elements are given by:
 diag=. (<0 1)&|:

 ixd=. [: <"1 $ #: diag@i.@$

A train of 5 verbs − again an odd number.
 ix=. ixd@]

 ix m

+-------------------+
¦0 0¦1 1¦2 2¦3 3¦4 4¦
+-------------------+
 amend=. [`ix`]}

 n=. 1000 amend m

 amend is a verb composed from a gerund (which has
the force of a noun) and an adverb (}). The conjunction
(`) ties three verbs together to compose the gerund [1; 8;
and especially 16, p.161]. The three verbs specify

respectively the source, the indices of cells to be amended,
and the target.
 The diagonal elements are next replaced by:
 (the square of the row sums) divided by (the grand sum).
 g=. *:@(+/"1) % +/@, A fork

 5 ": z=. (amend~ g) n A hook
232 11 36 21 52

 28 199 4 4 0

 34 2 222 45 13

 29 1 45 215 3

 28 23 9 8 211

 The fork (g amend])can take the place of the
hook(amend~ g). An iterative process is then used to
find the expected transitional probability matrix [5].

7 Function composition in practice

Annotated examples from a variety of programming
applications demonstrate composition in practice.

7.1 Surface areas and volumes of spheres

The surface area of a sphere is given by:
 surface=. 4&*@o.@*: Conjunctions
 surface=. 4: * [: o. *: Train
 Read this: 4 times the result of applying o.
monadically to the square of the argument.
 surface 2 3 4 5

50.2655 113.097 201.062 314.159

 The volume of a sphere is given by:
 vol=. 4r3&*@o.@(^&3) Conjunctions
 vol=. 4r3"_ * [: o. ^&3 Train
where 4r3"_ is a verb returning 4 over 3
 Read this: (The rational number 4 over 3) times the
result of applying o. to the cube of the argument.
 vol 2 3 4 5

33.5103 113.097 268.083 523.599

 The fork ([: ^ 3:)can substitute for ^&3, but
perhaps the form given is clearer. Taste changes as
possibilities become more familiar.

7.2 Heron’s formula for the area of an oblique
triangle, given sides a, b, c

 √√√√ s (s - a) (s - b) (s - c) where
 s is half the semi-perimeter -:(a + b + c)
 Consider various ways of composing a function area

 s=. -:@(+/) s is half the sum
 s=. [: -: +/ Avoids parentheses
 h=. -~ s A hook commuting the arguments
 h=. s -] A fork
 g=. s , s -] A train of 5 verbs

 area=. %:@(*/@(s , s -]))

 area=. [: %: [: */ s , s -]

 A train of 9 verbs (again an odd number) with no
parentheses. Read it: The square root of the product of s
and the differences between s and each side.
However s is a verb and not a noun.
 area 15 17 20 is 124.274
7.3 Angles A, B, C of a triangle whose sides are
given

 rfd=. %&180@o. Radians from degrees
 rfd=. o. % 180"_ (180"_ is a verb)
 dfr=. rfd^:_1 Degrees from radians
 arctan=. dfr@(_3&o.) Arctangent
 arctan=. [: dfr _3"_ o.] 5 verbs
 The formula is
 tan (A % 2) ↔↔↔↔ r % (s - a)
with similar relations for angles B and C. s as before.

r ↔↔↔↔ %:{(s - a) (s - b) (s - c)% s}

Take a top-down approach:
 erase 'n'
 r=. %:@(numerator % denominator)
 r=. [: %: n % s Train of 5 verbs
 n=. */@(s -])

 n=. [: */ s -] Train of 5 verbs
 tanA2=. r % s - {. Train of 5 verbs
 A=. +:@arctan@tanA2 Conjunctions
 A=. [: +: [: arctan tanA2 5 verbs
 Immediate execution is then:
 A 0 1 2 |."0 1 y=. 15 17 20

46.9722 55.9442 77.0836

 i.e. apply A to a cyclic rotation of y

 It is tempting to compose the following function:
 f=. [: A 0 1 2&|."0 1

But f y gives a length error because the left argument of
rotate (|.) is fixed as a vector. To discover how to correct
this, define the explicit verb:
 e=. 3 : 'A 0 1 2 |."0 1 y.'
 e y is then 46.9722 55.9442 77.0836
Convert to tacit form and display the result:

 g=. 13 : 'A 0 1 2 |."0 1 y.'

 linear 'g'

[: A 0 1 2"_ |."0 1]

Note that 0 1 2"_ is a verb but 0 1 is a noun.
 angles=. [: A 0 1 2"_ |."0 1]

 angles

+-------------------------------+
¦[:¦A¦+------------------------+¦
¦ ¦ ¦¦+---------+¦+--------+¦]¦¦
¦ ¦ ¦¦¦0 1 2¦"¦_¦¦¦|.¦"¦0 1¦¦ ¦¦
¦ ¦ ¦¦+---------+¦+--------+¦ ¦¦
¦ ¦ ¦+------------------------+¦
+-------------------------------+

 The display shows a train of 5 verbs
7.4 Find substrings common to two strings

Use an equals table to detect substrings in common.
Because the oblique adverb (/.) applies its verb to
diagonals descending to the left, we reverse the second
string.
 x=. 0 1 2 [y=. 4 5 1 2

 equ=. =/ |.

 x equ y

0 0 0 0
0 1 0 0
1 0 0 0

]b=. x [/.@equ y
0 0 0
0 0 0
0 1 1
0 0 0
0 0 0
0 0 0

 Use the rank-1 cells (rows) of b to compress the left
argument. All cells in the result are empty except for those
containing atoms of any substring in common.

 b #&.>"1 x
+----+]m=. >:i.3 4
¦¦ ¦ ¦ 1 2 3 4
++-+-¦ 5 6 7 8
¦¦ ¦ ¦ 9 10 11 12
++-+-¦
¦¦1¦2¦]/. m
++-+-¦ 1 0 0
¦¦ ¦ ¦ 2 5 0
++-+-¦ 3 6 9
¦¦ ¦ ¦ 4 7 10
++-+-¦ 8 11 0
¦¦ ¦ ¦ 12 0 0

+----+
 The example on the right shows how]/. works, and
further exploration using </. is helpful. Short diagonals
are padded, which leads to an error when the suffix of x
happens to equal the prefix of y:

 x=. 1 2 3 [y=. 2 3 5 4

 x equ y

0 0 0 0 b=. x]/.@equ y

0 0 0 1 b #&.>"1 x
0 0 1 0

 This incorrectly reports finding the substring 1 2
instead of 2 3 . The error is prevented by padding the
end of the equal table with zeros:
 equ=. (=/ |.) ,"1 #@[# 0:

 x equ y

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

 x=. 1 2 3 0 5 6

 y=. 1 2 8 0 5 6 3 0

 x (=/ |.) y

0 0 0 0 0 0 0 1 Note that there are two
0 0 0 0 0 0 1 0 substrings on one diagonal
0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

 A fork uses equ to find the substrings:
 h=. [/.@equ #&.>"1 [

 Note that when a verb is used with the adverb each
(&.>) − i.e. under open − and its argument is not boxed,
the rank-0 cells of the result are always boxed.
]&.> i.2 3

+-----+
¦0¦1¦2¦
+-+-+-¦
¦3¦4¦5¦
+-----+

 Ravel after appending a column of empty cells to keep
substrings separated, and to ensure that there will be an
empty cell at the beginning to define the fret for the cut:

 g=. ,@((<$0)&,.)

 Cut using the empty cells as frets:
 f=. <;._1

 Less (-.) removes all empty cells:
 e=. -.&(<$0)

 Compose a function using the at conjunction @
 x e@f@g@h y

+-------------------+
¦+---+¦+---+¦+-----+¦
¦¦3¦0¦¦¦1¦2¦¦¦0¦5¦6¦¦
¦+---+¦+---+¦+-----+¦
+-------------------+

 Finally, raze the contents of the boxes:
 ss=. ;&.>@e@f@g@h

 x ss y y ss x

+-------------+ +-------------+
¦3 0¦1 2¦0 5 6¦ ¦1 2¦0 5 6¦3 0¦
+-------------+ +-------------+

7.5 Find the pivot of a matrix

This is an essential step in computing the eigenvalues of a
symmetric matrix by Jacobi's method [28; 25]. The pivot is
the largest absolute value in the upper triangle. We are to
find its indices and place certain computed values within an
identity matrix at positions determined by the location of
the pivot. We are not concerned here with the computation
of the values to be placed in the matrix; we simply use the
values 96 97 98 99.
 utm=. [: , </~@i.@# Upper triangle mask
 ut=. utm # , Upper triangle

ixp=. $ #: (i. >./)@|@ut { utm #
,@i.@$ Indices of pivot

 pivot=. <@ixp {] Signed value of the pivot
The permutations and indices for amend are:
 perm=. 0 0&{ ;] ; |. ; 1 1&{

 ixa=. perm@ixp@{.@]
The argument for ixa is y,: = i. # y
 imat=. {:@] Amend the last item
 amend=. [`ixa`imat } Gerund

Create a test matrix:
 setrl 7^5

For smatrix see Section 7.6.

 t=. smatrix 100%~ 50-~ ?6 6$100

 y=. _0.5 (0 0; 2 4; 4 2)} t

 6.2 ": y
 _0.50 0.12 _0.11 _0.09 0.11 0.18
 0.12 0.53 0.08 _0.11 0.08 _0.23
 _0.11 0.08 0.45 _0.15 _0.50 0.23
 _0.09 _0.11 _0.15 0.11 _0.12 _0.05
 0.11 0.08 _0.50 _0.12 0.59 0.40
 0.18 _0.23 0.23 _0.05 0.40 0.64

 pivot y

_0.5

 ixp y

2 4

 96 97 98 99 amend y ,: =i.#y

1 0 0 0 0 0

0 1 0 0 0 0

0 0 96 0 97 0

0 0 0 1 0 0

0 0 98 0 99 0

0 0 0 0 0 1

 In studying this example it will be helpful also to execute
the following:
 utm y

 ut y

 ixa y,:=i.#y

 imat y,:=i.#y

7.6 Determinants and the area of a triangle

When two functions are composed as u . v this is called
the dot product. The inner product (matrix multiplication)
and the determinant are two important examples:
 ip=. +/ . * and det=. -/ . *
 (Note that a space between / and . is required)
 The inner product has many applications. It can, for
example, be used in a fork to produce a matrix that is
symmetric about its main diagonal, as required for Jacobi’s
method of computing eigenvalues.
 smatrix=. |: ip]
 smatrix i.3 4

 80 92 104 116

 92 107 122 137

104 122 140 158

116 137 158 179

 Table t gives the co-ordinates of points a, b, c at
the corners of a triangle. If this table is bordered by a
column of 1s, the determinant of the resulting 3 by 3 matrix
is twice the area of the triangle [19, p.3].

a=.0.5 1.25 [b=.4.4 2.45 [c=.2.6 0.2
 (,"1 1:) t=. > a;b;c A hook
0.5 1.25 1

4.4 2.45 1

2.6 0.2 1

 area=. -:@det@(,"1 1:)

 The determinant (and hence the area) is positive or
negative depending upon the sense of the circuit; positive if
counterclockwise and negative if clockwise [19; 33].
 A.F.Mobius (1827) was the first to recognize the
geometrical significance of the sign of the determinant, an
idea that proved fundamental to many of his important
discoveries. His work was greatly extended by Hermann
Grassmann [19, p.16-20; 9].
 area > a;b;c area > a;c;b

_3.3075 3.3075

8 Composition of Adverbs

The sentence f&.g y means: first compute g y ,
then apply f to the result, and finally apply the function
that is inverse to g. Read this: f under g. In this paper we
use +/&.*: +/&.> #&.>]&.> ;&.> ,&.>
and area&.> These are all examples of the train v c
v (verb conjunction verb) that composes a new verb. We
have also seen that a fragment can stand on its own; as in
(&.>)and ("1) and (D.1); these are new adverbs
composed by the trains c v (conjunction verb) and c n
(conjunction noun).
 Hui and Iverson have defined 6 tridents (trains of 3) and
7 bidents (trains of 2) that compose adverbs; and 13 tridents
and 1 bident that compose conjunctions [8, p.76;16, p.82-
83].
 _9: to 9: are constant functions that give the results
_9 to 9. But any noun can be made into a constant
function by the adverb a=. "_
 g=. [: i. 6:

 h=. (i.2 3) a

 f=. g : h

 f 7

0 1 2 3 4 5

 8 f 10

0 1 2

3 4 5

 Like verbs, adverbs and conjunctions can be defined
explicitly. Iverson has given a number of examples [e.g.12,
p.113; 13, p.27, 33; 14, p.26, 39, 47, 48, 104; 15, p.80; 16,
p.19, 20, 41, 56, 58). In one of these he defined an adverb
for Newton’s method of computing a root by means of the
derivative [14, p.104].
 Thomson has published an interesting extension of this,
which includes finding the roots of multivariable functions
and non-linear curve fitting [35].
 Consider the polynomial with one variable:
 (1*x^2) + (_1*x^1) + (_2*x^0)

 Its tacit definition is: ff=. #.&1 _1 _2 "0

 If x=. 0 1 2 3 its value is _2 _2 0 4,
which shows that 2 is a root; i.e. ff 2 is 0.
 Because derivatives are obtained by the conjunction D.
the first derivative is given by the adverb D=. D.1
and a Newton-Raphson step is therefore:
 x - (ff x) % ff D x or _2 3 2 2.2
 This is easily recast into a verb in either explicit (e) or
tacit form (t):
 e=. 3 : 'y. - (ff y.) % (ff D y.)'

 t=.] - ff % ff D

Three applications of t :
 t t t x or t^:3 x
_1.01176 2.01176 2 2.00005.
 The limit, given by t ^:_ x, is _1 2 2 2
 An adverb can be used whenever an expression
containing a verb would be applicable to other verbs. The
transformation is easily written in explicit form. The 1
preceding the : (and which must be separated from it by a
space) refers to the valence of an adverb:

 Newton=. 1 : '] - x. % x. D'

 The x. represents the function that will be the argument
to the adverb Newton.
] stands for the noun that will be the argument to the newly
composed verb. The tacit form of the adverb is created in
a similar way, but is not so easily interpreted:
 t=. 11 : '] - x. % x. D'

 linear 't'

(([.+) ([. % ([. D))) (]`-`) \

 A train of adverbs composes a new adverb; so we define
limit as an adverb, and then create the adverb N
 limit=. ^:_

 N=. Newton limit

Trying 6 different starting points, roots are found at _1
and 2
 ff N _2 + i.6

_1 _1 _1 2 2 2

 ff _1 2 Verifies that these are indeed roots.
0 0

 As Thomson shows, the problem of finding roots when
there are several variables is solved in a similar way. The
diagrams in his paper [35, p.213] are very helpful in
understanding the motivation, and should be consulted. He
begins with two functions, f and g , which I express as
verb trains as follows:
 f=. [: <: *:@{. * {:

 g=. 2&o.@{. + 1&o.@{:

 h=. f , g A fork

 Taking starting points on the x-y plane, the first step
in the iterative procedure is given by any of the following
(a) Immediate execution, (b) a verb in explicit definition,
(c) a verb in tacit definition, and (d) by an adverb.
 y=. 5 0

(a) y - (h y) (%.|:) h D y

(b) e=.3 : 'y. - (h y.)(%.|:)h D y.'

(c) t=.] - h (%.|:) h D

(d) a=. 1 : '] - x. (%.|:) x. D'

 With 6 different starting points, we find the co-ordinates
of the 4 points of intersection shown on Thomson’s x-y
graph. Our purpose is to show how adverbs can be
composed. The choice of starting points and the validity of
the computed results are not relevant here.

y=.>5 0;1 1;1 4;0.5 4.5;0.5 4.8;1 5

 7.2": y,"1 h a limit ("1) y

 5.00 0.00 4.67 0.05

 1.00 1.00 1.86 0.29

 1.00 4.00 0.49 4.23

 0.50 4.50 0.49 4.23

 0.50 4.80 0.44 5.15

 1.00 5.00 0.44 5.15

9 Composition of Conjunctions

A conjunction can be used when an expression containing
two verbs is generalized so that other verbs can be
substituted. Defined adverbs and conjunctions are miniature
computer programs with both verb and noun arguments.
The following example, which is an expanded version from
Iverson [14, p.36], employs two defined conjunctions. The
object is to plot one monadic function against another.
 First define the two functions: f is the sine; in this case g
merely returns its argument, but in practice it can be
replaced by another of interest; e.g. Iverson uses the
hyperbolic cosine [14, p.80].
 f=. 1&o. [. g=.]

s gives the dimensions of the plot, and x the values of the
argument.
 s=. 10 20 [x=. -:i.8

 To scale the y-axis in a descending direction, execute
function f and subtract each resulting value from the
largest value. The smallest value is then zero. The obvious
way to do this is to apply the verb u0 atop f, but in order
to illustrate another feature of the language we define the
adverb u instead. The system distinguishes u0 and u
for us by their name classes [16, Appendix].
 u0=. >./ -] A verb

 u=. u0@ An adverb
 (u0@f x) -: f u x These match
 Now scale the x -axis so that its smallest value is zero.
 v0=.] - <./ Verb
 v=. v0@ Adverb
 z0=. (f u x) ,: (g v x)

 Parentheses on the right are introduced for clarity.
 z0 is a table with two rows; the first gives the values
along the y-axis and the second values along the x-axis.
 Scale them from 0 to 1 by dividing the rows by their
biggest values.
 a=. z0 % >./"1 z0 Immediate execution
 scale=.] % >./"1 A fork
 The following then match:
 a -: scale (f u x) ,: (g v x)

 Gather these procedures into a conjunction:

 N2=. 2 : 'scale@(x. u ,: y. v)@]'

The definition begins with a left argument of 2, which is
chosen because this is the valence of a conjunction.
 The following then match:
 a -: f N2 g x

 N2 is the explicit definition of a conjunction that lets us
follow the same procedure when providing different pairs
of functions as arguments. x. and y. refer to these
(monadic) arguments.
 A tacit definition is also possible, but great care must be
taken to include parentheses. It is important to display the
boxed form to be sure that the definition has been written to
give the desired parsing.
 N=. scale@(([. u) ,: (]. v))@]
 N
+--------------------------------+
¦+--------------------------+¦@¦]¦
¦¦scale¦@¦+----------------+¦¦ ¦ ¦
¦¦ ¦ ¦¦+----+¦,:¦+----+¦¦¦ ¦ ¦
¦¦ ¦ ¦¦¦[.¦u¦¦ ¦¦].¦v¦¦¦¦ ¦ ¦
¦¦ ¦ ¦¦+----+¦ ¦+----+¦¦¦ ¦ ¦
¦¦ ¦ ¦+----------------+¦¦ ¦ ¦
¦+--------------------------+¦ ¦ ¦
+--------------------------------+
 Because explicit definitions are close to the form used in
immediate execution, they are easily adopted by
programmers. In learning to write tacit definitions, use a left
argument of 12 for automatic translation [7, p.204-206; 16,
p.129].

N12=. 12 : 'scale@(x. u ,: y. v)@]'

 A similar facility is available for verbs and adverbs by
using 13 and 11 respectively.

 The values of x and y are then scaled: multiplied by the
decremented values of s and rounded. The reason for
decrementing s is that whereas s gives the number of
rows and columns, the axes have an origin of 0. Finally the
scaled data are encoded into linear indices within the
array(i.s)and used to select one or other of the
characters specified in h.
 round=. <.@+&0.5

 r=. [#. [: |:@round <:@[*]

]b=. s r a

140 63 25 8 31 74 136 199

 h=. {&'.*'

]z=. h (i. s) e. b

 *...........

 *.....*........

 ...*..........*.....

 *...

 *...................

 *

 Conjunction VS uses conjunction N and the defined
verbs h and r to produce a plot of y against x. Noun-
arguments are given by verbs [and], while verb-
arguments are given by conjunctions [. and].

VS=.12 : '[: h i.@[e. [r x. N y.'

 z-: s f VS g x. These match
 A fuller plot is given by:
 25 90 f VS g 4%~ i.60

10 Geometry and Graphics

 Geometrical examples in 2- and 3-dimensions are readily
visualised. The principles illustrated are of rather general
applicability, especially for graphics.

10.1 A hidden line problem: classify points by
their signed distance from a given line:

Given two points a and b defining a line, and a third
point c on one side of it, classify a collection of points into
three groups: those on the same side as c; those on the
other side; and those collinear with a and b.

a=.0.5 1.25 [b=.4.4 2.45 [c=.2.6 0.2

The collection of points is given by table p.
 p=. > 3.5 5.1; 7 2.2; 1.3 3.6;

 3.3 2.9; 0.2 _0.5; 5.7 3.2;

 6 _1.1; 6 2.942
 Combine a and b with each point in turn, and find the
areas of all triangles so formed. The perpendicular distance
from the apex of a triangle to its base is found by doubling
the area and dividing by the length of the base. class
appends the sign of the area and the distance, and sorts the
output by the signed size of the distance.

 A=. [: area"2 ,"2 1

 base=. [: +/&.*: -/

 d=. +:@] % base@[Distance to the line

 class=. \:@A {] ,"1 *@A ,. [d A
+---+
¦+------+¦{¦+------------------------------+¦
¦¦\:¦@¦A¦¦ ¦¦]¦+-----+¦+------------------+¦¦
¦+------+¦ ¦¦ ¦¦,¦"¦1¦¦¦+-----+¦,.¦+-----+¦¦¦
¦ ¦ ¦¦ ¦+-----+¦¦¦*¦@¦A¦¦ ¦¦[¦d¦A¦¦¦¦
¦ ¦ ¦¦ ¦ ¦¦+-----+¦ ¦+-----+¦¦¦
¦ ¦ ¦¦ ¦ ¦+------------------+¦¦
¦ ¦ ¦+------------------------------+¦
+---+

When reading this definition, first note the conjunctions,
and then count the number of forks.
 z=.(a,:b) class c,p,-:a+b

 5.2 9.3 3 9.4": z Format the table

 3.50 5.100 1 2.7975

 1.30 3.600 1 2.0108

 3.30 2.900 1 0.7536

 5.70 3.200 1 0.3345

 2.45 1.850 0 0.0000 -:a+b

 6.00 2.942 _1 _0.0003
 7.00 2.200 _1 _1.0036

 0.20 _0.500 _1 _1.5844

 2.60 0.200 _1 _1.6211 Point c
 6.00 _1.100 _1 _3.8636

. Three points lie on the same side of the line a−−−−b as c;
four lie on the other side; one is nearly collinear with a−b.

10.2 Complex numbers: easy and useful

 “Knowing that if you double a force you double the vector
that represents it, Hamilton looked on 2 times as the
operator that doubles: it is a special case of what he called a
tensor, an operator that stretches (not to be confused with
the modern use of the word.). In the same way -1 times is
a reversor. Moreover if √2 times is applied twice it
doubles; and if √-1 is applied twice it reverses.

Consequently i times (where i is √-1) is a versor, or
operator that rotates a vector without changing its length; it
is taken as producing a counter-clockwise rotation of 90°.
Application of 2i times would then be the composition of
a rotation, a stretch, and a reversal).” [27, p.568]. Using
the new notation:
 2&* 1 2 _1&* 1 2

2 4 _1 _2

 g=.] * [: %: 2:

 g 1 2 g g 1 2

1.41421 2.82843 2 4

 h=.] * [: %: _1:

 h h 1 2

_1 _2

 A complex number is simply the unification of the co-
ordinates of the x and y axes. Mathematicians normally
use the symbol i to join what are (unfortunately) called the
real and imaginary parts. There is nothing imaginary about
so-called imaginary numbers. Sylvester refused to follow
the convention and used the symbol θθθθ instead. Iverson uses
j; e.g. p=. 1j2 represents the point with co-ordinates
1 on the x-axis and 2 on the y-axis.
 2&* p _1&* p

2j4 _1j_2

 g p g g p

1.41421j2.82843 2j4

 h p h h p

_2j1 _1j_2

 A unit vector at an angle of 60°°°° from the x-axis, and a
vector length 2 with an angle of 1 radian, are written:
 1ad60 2ar1

0.5j0.8660254 1.0806j1.68294

 Separating the two parts:
 +. 1ad60

0.5 0.8660254
 The monad r. gives the co-ordinates of unit vectors; i.e.
points on the unit circle. The dyad r. converts from polar
to Cartesian co-ordinates:
 r. rfd 60 2 r. rfd 60

0.5j0.8660254 1j1.73205

 The hypotenuse of a right-angled triangle with sides 3
and 4 is therefore:
 +/&.*:@+. 3j4
5

10.3 The area of a polygon

First compute the co-ordinates of the vertices of a regular
hexagon. 1j0 is a unit vector along x, i.e. (1 0). To

reverse it to _1j0 in three steps requires not the square
root of _1 but the cube root. The first step is therefore to:

 +. a=. 3%:_1

0.5 0.8660254

 +. a^0 +. a^3
1 0 _1 1.22461e_16
 Three steps take us only half way round; six steps
complete the regular hexagon:
 ,. +. a^i.6
 1 0
 0.5 0.8660254
_0.5 0.8660254
 _1 1.22461e_16
_0.5 _0.8660254
 0.5 _0.8660254

The general case is then:
 poly=. (-: %: _1:) ^ i.
 polygon=. ,.@+.@poly

 hex=. polygon 6

 polygon 4

 1 0
 6.12303e_17 1
 _1 1.22461e_16
_1.83691e_16 _1

 polygon 5

 1 0
 0.309017 0.9510565
_0.809017 0.5877853
_0.809017 _0.5877853
 0.309017 _0.9510565

 To compute the area of a polygon, choose any point on
the plane, and from it complete the set of triangles with this
point as a corner and a side of the polygon as a side of the
triangle. Take the arbitrary point: p=. 4 _3
 To include all sides, the cycle must be complete:
 hex , {. hex This is a hook (, {.)
 The 6 sides are defined by boxed pairs of corners:
 y=. 2 <\ (, {.) hex
 Bond the point; append it to each of the sides in turn; so
completing 6 triangles:
 p&,each y where each=. &.>
 The train (conjunction verb) gives an adverb. The adverb
each(or under open) opens each box, applies its verb,
and then closes the box. Each of the boxes defines a
triangle, and the sum of the signed areas of these triangles is
the area of the polygon:
+/ > area each p&,each 2 <\ (, {.) hex

2.598

or, using &.>
+/ > area&.> p&,&.> 2 <\ (, {.) hex

or, using the rank conjunction instead of boxes:
 +/area"2 (2) p&,"1 2\ (, {.) hex

 The verb u in the phrase a u\ y is applied
(monadically) to each infix of length a. Because a is the
argument of u\ (and not of u), the verb u cannot have
a left argument. p&,"1 2 is monadic, thus:
s=. '+/ > area each p&,each 2 <\ (,
{.) y.'

 e=. 3 : s

 e hex

2.59808
 T=. 13 : s Convert to tacit definition
 linear 'T'

[: +/ [: > [: area&.> [: 4 _3&,&.>
2: <\ (, {.)

 Build the triangles by composing simple functions:
 h=. 2: <\] , {. and p&,&.> h hex
We can change p only by freeing it from the verb to which
it is bonded. It can then be made an argument to the fork:
 g=. [,&.> h@]

 Because the arguments must be in agreement [16, p.78;
29, p.137-140), p must be boxed: p=. <4 _3. The
boxed co-ordinates of the corners of the triangles are then
given by p g hex. It remains to open the boxes;
determine the areas; and sum the areas.
 f=. area&.>@g

 >@area&.>@g is parsed as (>@area)&.>@g
Parentheses are not needed, however, if we write a fork:
 poly=. [: +/ >@f

 p poly hex

2.59808

 Does the position of the point make any difference to the
result? Try a series of points simultaneously:
 p=. <"1 i. 6 3 2

 The result of h hex is a vector of 6 boxes, each 2 by
2, and p is a table of 6 by 3 boxes, each box containing a
vector of 2 elements. Thus p g hex is a 6 by 3 array
of boxes, each with a 3 by 3 matrix defining a triangle:
 p g hex
+-----------------------------------+
¦ 0 1 ¦ 2 3 ¦ 4 5 ¦
¦ 1 0 ¦ 1 0 ¦ 1 0 ¦
¦0.5 0.866 ¦0.5 0.866 ¦0.5 0.866 ¦
+-----------+-----------+-----------¦

+-----------+-----------+-----------¦

¦ 30 31 ¦ 32 33 ¦ 34 35 ¦
¦0.5 _0.866 ¦0.5 _0.866 ¦0.5 _0.866 ¦
¦ 1 0 ¦ 1 0 ¦ 1 0 ¦
+-----------------------------------+
 This is the general case, but we need a special case in
which all values in a given column are the same: e.g.
 p=. 6 3$ 4 _3; 0 0; 1 2

The result of p g hex is again a 6 by 3 table of boxes,
but this time each column specifies the 6 triangles formed
by one of the 3 points together with each of the 6 sides in
turn, and this is what we want:
 p g hex
+-----------------------------------+
¦ 4 _3 ¦ 0 0 ¦ 1 2 ¦
¦ 1 0 ¦ 1 0 ¦ 1 0 ¦
¦0.5 0.866 ¦0.5 0.866 ¦0.5 0.866 ¦
+-----------+-----------+-----------¦

+-----------+-----------+-----------¦
¦ 4 _3 ¦ 0 0 ¦ 1 2 ¦
¦0.5 _0.866 ¦0.5 _0.866 ¦0.5 _0.866 ¦
¦ 1 0 ¦ 1 0 ¦ 1 0 ¦
+-----------------------------------+
 area each p g hex

+-------------------+
¦_0.549¦0.433¦_0.5 ¦
+------+-----+------¦
¦1.933 ¦0.433¦_0.567¦
+------+-----+------¦

+------+-----+------¦
¦_2.049¦0.433¦0.5 ¦
+-------------------+
 The numbers in the middle column are all the same,
because in that case the “arbitrary” point is at the origin,
from which all corners of the hexagon are equidistant.
 The area of the polygon is the sum of the areas of the
triangles in any column of p g hex:
 +/ > area each p g hex

2.59808 2.59808 2.59808

 Composing a function:
 poly=. [: +/ >@(area each@g)

 poly=. [: +/ [: > area&.>@g

 p poly hex is 2.598 2.598 2.598
 We see that the position of the arbitrary point does not
affect the value given for the area of the polygon.
 Finally we show that the area is unaffected by rotation.
Create a rotation matrix for a random rotation angle.
 setrl 7^5 Set Random Link
 y=. 100 %~ ?10000

 13.15
 rot=. 2 1&o. ,: _1 1"_ * 1 2&o.

 rotate=. rot@rfd

Apply this rotation; make an arbitrary translation; and
confirm that the area is unchanged:

 2 3 +"1 hex +/ .* rotate y

2.97378 3.2275
2.28987 3.95707
1.31609 3.72957
1.02622 2.7725
1.71013 2.04293
2.68391 2.27043

 p poly hex

2.59808 2.59808 2.59808

10.4 The line of intersection of two planes

This is one of the first problems to be encountered in 3-
dimensional geometry: the gable of a house is an example;
to make a picture of any object bounded by plane sides we
need only draw edges − which are lines of intersection.
 Taking an example from Murdoch [32, p.206-207], the
equations of two planes are:
 x - 2y + 4z = 6
 2x + y - 3z = 8
 Represent this information by a 2 by 4 matrix:
 m=. 1 _2 4 6,: 2 1 _3 8

 n=. |: m Transpose
 The direction numbers of the line of intersection are
given by the determinants of three minors:
 k=. 1 2, 2 0,: 0 1

 h=. det@(k&{"1 2)@}:

 h n

2 11 5

 Normalize to get the direction cosines:
 (h n) % rss h n

0.1632993 0.8981462 0.4082483

 norm=. % rss A hook
 dc=. norm@h

 Every point on the line must satisfy the equations for both
lines. Set z to 0 and use matrix divide to find the co-
ordinates of one point on the line:
 ct=. 0: ,~ {: %. |:@(2&{.)@}:
 ct n
4.4 _0.8 0

 These are the constant terms of the parametric equation.
Reset random link and choose 5 random parameters:
 setrl 7^5

]t=. 0.1* 50-~?5#100
_3.7 2.5 _0.5 0.3 _2.9
 The co-ordinates of five random points on the line of
intersection are then:
]z=. (ct n) +"1 (dc n) *"1 0 t
3.79579 _4.12314 _1.51052
4.80825 1.44537 1.02062
4.31835 _1.24907 _0.2041241
4.44899 _0.5305561 0.1224745
3.92643 _3.40462 _1.18392
 The parametric equation of the line of intersection is:
 pequ=. ct@[+"1 dc@[*"1 0]
 z-: n pequ t These match
 Verify that these points satisfy the equations of the two
planes, thus showing that the line lies in each of the planes,
and is therefore the line of intersection [32, p.207].
 (n pequ t) +/ .* }:n
6 8
6 8
6 8
6 8
6 8
 Find the normals to the two planes:
 normal=. norm@}:"1
 normal m
0.2182179 _0.4364358 0.8728716
0.5345225 0.2672612 _0.8017837
 Show that these are indeed normal to the planes: on each
plane choose two arbitrary points; the line joining any two
points on the plane is perpendicular to the normal.
 (8 1 0-2 0 1) +/ .* normal {.m

1.11022e_16

 (1 6 0- 5.5 0 1) +/ .* normal{:m

1.11022e_16

 The perpendicular distances from the origin to each plane
[32, p.204]:
 dist=. ({: % rss@}:)"1

 dist m

1.30931 2.13809

 The points where the normals from the origin meet the
planes:
 (dist * normal) {.m

0.2857143 _0.5714286 1.14286

 (dist * normal) {: m

1.14286 0.5714286 _1.71429

 Proof that these points lie on their respective planes:
 1 _2 4 +/ .* (dist * normal) {.m
6
 2 1 _3 +/ .* (dist * normal) {:m
8

 The angle between the planes is the angle between their
normals:
 'ab'=. (normal {.m);normal {:m
 dfr _2 o. a +/ .* b
134.415
 dfr _2 o. a +/ .* -b
45.5847
 The two normals define a plane perpendicular to the line
of intersection; consequently their vector cross-product is
the line of intersection:
 u=. 1&|.@[* _1&|.@]
 v=. _1&|.@[* 1&|.@]
 vcp=. u - v

 c=. a vcp b

 c +/ .* a,.b c is normal to a−−−−b
0 0
 The direction cosines of the line of intersection has been
given in two ways:
 (dc n) -: norm c These match

10.5 Projection of a line onto a given plane

This construction is used in computer graphics − the plane
being the video screen or the bed of a plotter. The line itself
is often the intersection of two planes.
 Vector p makes angles of 110 80 22 degrees to the
Cartesian axes x , y and z . Project it onto the plane x
- 2y + 4z = 6, whose normal is a.
 Compute the direction cosines of p:
]p=. 2 o. rfd 110 80 22

_0.3420201 0.1736482 0.9271839

 q is the normal to the plane p −−−− a; and r, which is the
normal to the plane a−−−−q, is the required projection of p.
 q=. norm p vcp a

 r=. norm a vcp q

]z=. norm a vcp norm p vcp a

_0.6419622 0.6094676 0.4652244

 The required function is composed by a train of 5 verbs:
 proj=. [: norm] vcp norm@vcp

 z -: p proj a These match
 Show that z lies in the given plane, whose normal is a:

 a +/ .* p proj a

0

 A stereographic projection helps in visualizing these
relations in 3-dimensions and confirming the results.

10.6 Volume of a Parallelepiped

Background and motivation for this example is given in
another paper [30]. A parallelepiped is a solid with three
pairs of parallel faces each of which is a parallelogram. The
lengths of the three edges and the angles between them are
given in a table. The data define the unit cell of the mineral
chalcanthite, CuSO4.5H2O.

 (;:'a b c'),: ;:'alpha beta gamma'

+----------------+
¦a ¦b ¦c ¦ axial lengths
+-----+----+-----¦
¦alpha¦beta¦gamma¦ interaxial angles
+----------------+
 <"0 ch=. 6.11 10.673 5.95,:

 97.583 107.167 77.55

+--------------------+
¦6.11 ¦10.673 ¦5.95 ¦
+------+-------+-----¦
¦97.583¦107.167¦77.55¦
+--------------------+
 The formula for the volume is:

 abc √√√√(1- cos2 alpha - cos2 beta -
cos2 gamma + 2 cos alpha . cos beta
. cos gamma)

 Define utility functions:
 sin=. 1&o. sine of angle (radians)
 cos=. 2&o. cosine of angle (radians)
 cosd=. cos@rfd cosine of angle (degrees)
 The formula for the volume is a fork, though it is
interesting to note that the root (*) is elided in the usual
mathematical expression. The volume is determined by the
square root of a function of the angles, which is then
multiplied by a scaling factor dependent only on the lengths
of the sides. The formula is therefore a fork of the form:
volume=. f * %:@g
 Because we know that f is the product of the lengths
and g is some function of the cosines of the angles, the
fork is written more completely as:
 volume=. */@{. * %:@h@cosd@{:
 The formula for h is given as follows:
 1 - a2 - b2 - c2 + 2d
 Rearrange it as
 1 + 2d - (a2 + b2 + c2)
 or, using increment
 (>: 2d) - (a2 + b2 + c2)
 Erase any existing assignments: erase 'p q'
 Once again we have a fork, and we can write:
 h=. p - q where p and q are:
 p=. >:@+:@(*/) 1 + twice the product.

 q=. +/@*: Sum of squares
 volume ch

361.035

 There is another approach. The Grassmann Determinant
Principle for space [19, p.3-33] permits the volume of a
space-segment to be computed from the determinant of the
matrix defining the co-ordinates of its corners. This has a
mineralogical origin, because Grassmann called the space-
segment a spat, from Kalkspat, the German word for calcite
(CaCO3), a common mineral which cleaves readily into
parallelepipeds. Grassmann’s work is of immense
importance [4], but his original publications are notoriously
difficult. Hyde, however, published a readable introduction
[9].
 The function h is equivalent to the determinant of the
matrix given by the fork:
 g=. (0 3 2, 3 0 1,: 2 1 0)"_ { 1&,

 g
+---------------------+
¦+---------+¦{¦+-----+¦
¦¦0 3 2¦"¦_¦¦ ¦¦1¦&¦,¦¦
¦¦3 0 1¦ ¦ ¦¦ ¦+-----+¦
¦¦2 1 0¦ ¦ ¦¦ ¦ ¦
¦+---------+¦ ¦ ¦
+---------------------+

 h=. det@g

 volume=. */@{. * %:@h@cosd@{:

 volume ch

361.035

 The data were given in the usual way as lengths of the
sides and the angles between them, but the solution is much
simpler if the data are given instead as three vectors in a
Cartesian framework. The transformation involves rather
cumbersome formulas derived from spherical trigonometry.
The executable notation given here illustrates algebraic
manipulation of composite functions.
 Axial lengths or (depending on context) interaxial angles:
 a=. 0&{ [. b=. 1&{ [. c=. 2&{

 axisa=. sin@b , 0: , cos@b

 cos(rho) and cos(sigma) are based on formulas
given by Terpstra & Codd [34, p.287].
 Compare the following versions:
 CosRho=. (cos@c - */@cos@(a,b)) %
sin@b A fork
 CosRho=. (cos@c - [: */@cos a,b) %
sin@b Parentheses required
 CosRho=. sin@b %~ cos@c - [: /@cos
a,b No parentheses
 CosRho=. sin@b %~ cos@c - cos@a *
cos@b No parentheses

 Read this: cos (rho) is sin b divided into {cos c - (cos a
times cos b)}
 CosSigma=. sin@b %~
(>:@+:@(*/@cos) - +/@*:@cos)
 CosSigma=. sin@b %~ [: %:
>:@+:@(*/@cos) - +/@*:@cos

 Read this: cos (sigma) is sin b divided into the square
root of {(1+ twice the product of the cosines) - the sum of
the squares of the cosines}
 axisb=. CosRho,CosSigma,cos@a

 dm=. ,&0 0 1 @(axisa,:axisb)@rfd@b
 dm=. 0 0 1"_ ,~ (axisa,:axisb)@rfd@b

 dmat=. ({. *"0 1 dm)"2

 We want dmat to apply to rank-2 cells.
]d=. dmat ch

5.83779 0 _1.80341

1.97316 10.394 _1.40843

 0 0 5.95

 This matrix is called the d-matrix because it defines the
unit cell of the direct lattice. Its rows give the Cartesian co-
ordinates of the axes a, b, and c. The volume of the cell is
simply the determinant of the d-matrix:
 det d

361.035

 Bordering the matrix gives a signed volume:
 det (,"1 1:) d,0 is 361.035 and

 det (,"1 1:) 0,d is _361.035
 After an arbitrary translation from the origin (moving a
corner of the cell from the origin to 1 _2 3), the matrix
must be bordered to become 4 by 4, but the volume is
unchanged:
 e=. 1 _2 3 +"1 d,0

 det (,"1 1:) e

361.035

 Why is the volume of the parallelepiped computed so
easily as taking the determinant of the 3 by 3 d-matrix?
The answer is in Grassmann’s extension into three
dimensions of the method for computing the area of a
triangle (or polygon). One of the corners of the figure is at
the origin of the co-ordinate system. Because the co-
ordinates of that corner are 0 0 0, the expected 4 by 4
matrix degenerates to a 3 by 3; the need to border the
matrix with 1’s vanishes. Klein gives an excellent
discussion of the volume of a tetrahedron [19, p.29].
 The axes of the reciprocal lattice are the normals to the
faces of the parallelepiped cell. Just as the d-matrix defines
the direct lattice, so the r-matrix defines the reciprocal
lattice. The r-matrix is in fact the transpose of the inverse

of the d-matrix. Moreover, the transpose of the inverse of a
matrix is the same as the inverse of its transpose.
 cl=. * 1e_15&<@| Clean very small values
(cl |:@%. d) -: cl %.@|: d Match
 Consider now a 5 by 2 by 3 array describing the unit cells
of five minerals:
 ch=. chalcanthite=. 6.11 10.673
5.95,: 97.583 107.167 77.55

 or=. orthoclase=. 8.562 12.996
7.193,: 90 116.01 90

 an=. anorthite=. 8.177 12.877
14.169,: 93.17 115.85 81.22

 ax=. axinite=. 7.15 12.57 13.05,:
91.383 75.5 93.383

 ky=. kyanite=. 7.12 7.85 5.57,:
89.983 101.117 106

 $minerals=. ch,or,an,ax,:ky
5 2 3

 Because we assigned dmat a rank of 2, it applies to the
individual 2 by 3 cells of the array; hence
 $x=. dmat minerals
5 3 3

 volume"2 minerals and det x both give
the volumes of the unit cells of all five minerals.
 The shape of the transpose of the inverse is, however, not
at all what want: $ |: %. x is 3 3 5
The reason is that while matrix inverse (%.)has a rank of
2, the rank of (|:)is unbounded (infinite). This is
confirmed by using the basic adverb b. which enables the
ranks of the associated verb to be displayed. This display
should always be examined when the rank of a composite
function is in doubt.
 %. b. 0

2 _ 2

 |: b. 0

_ 1 _

 Consequently it is not the individual 3 by 3 cells that are
transposed! Because the rank of u@v is the rank of v, the
composed function |:@%. has the required rank of 2,
but attempted execution of %.|: x or %.@|: x
give length errors.
 |:@%. b. 0 %.@|: b. 0

2 _ 2 _ 1 _

 $ |:@%. x

5 3 3

 This example demonstrates an important aspect of
function composition: the rank of u@v is mv lv rv [16,
p.172].

10.7 Rotations and projections

 When 3-dimensional objects are described by Cartesian
co-ordinates, they can be rotated by an inner product with a
3 by 3 matrix. This is analogous to rot in Section 10.3.
 It is best to define separate matrices for rotations about
the x , y, and z axes. Any desired rotation is then given
by the inner products of these rotation matrices. Assuming
that the co-ordinates are arranged in an n by 3 matrix, an
inner product with an appropriate 3 by 2 matrix projects
them onto the desired graphic plane. This projection matrix
can be pre-multiplied by the rotation matrices to give a
single 3 by 2 matrix that both rotates and projects in a
single inner-product operation [3].

11 Summary and Conclusions

Iverson has greatly extended the methods of composition
familiar to mathematicians, and applies composition to
adverbs and conjunctions as well as to functions (verbs).
His contribution marks an important advance in computer
programming. Annotated examples show programmers how
composition is used in practice.

12 Acknowledgements

I am grateful to Kenneth E. Iverson and Roger K.W. Hui
for making this work possible, and for help and advice
given generously on numerous occasions.

13 References

[1] Bernecky, R., and R.K.W. Hui. Gerunds and

representations. APL91 Conference Proceedings,
APL Quote Quad, Vol.21, Number 4 (1991) p.39-45.

[2] Bick, T.A. Introduction to Abstract Mathematics.
Academic Press, New York (1971) p.35.

[3] Bond, W.L. Computation of interfacial angles,
interzonal angles, and clinographic projection by
matrix methods. American Mineralogist, Vol.31
(1946) p.31-42.

[4] Crowe, M.J. A History of Vector Analysis: The
evolution of the idea of a vectorial system.
University of Notre Dame Press. (1967) 270p.

[5] Davis, John C. Markov Chains: In: Statistics and
Data Analysis in Geology. John Wiley & Sons, New
York. 2nd Edition (1986) Chapter 4.

[6] Falkoff, A.D., and K.E. Iverson. The APL Terminal
System: Instructions for Operation. IBM Research,
International Business Machines Corporation,

Thomas J, Watson Research Center, Yorktown
Heights, New York (November 30, 1966) p.21.

[7] Hui, R.K.W., K.E. Iverson, and E.E. McDonnell.
Tacit Definition. APL91 Conference Proceedings,
APL Quote Quad, Vol.21, Number 4 (1991) p.202-
211.

 [8] Hui, R.K.W., and K.E. Iverson. TAGS: Trains,
Agendas, and Gerunds. APL94 Conference
Proceedings, APL Quote Quad, Vol.25, Number 1
(1994) p.74-77.

[9] Hyde, E.W. Grassmann’s Space Analysis. John
Wiley & Sons, New York. Mathematical Monograph
Number 6 (1906) 59p. First edition under the title
Higher Mathematics, 1896. [A simple and concise
presentation of the principles of Grassmann’s Space
Analysis. Grassmann’s original work (1844, 1878,
1894) is very difficult.]

[10] Iverson, K.E. A Programming Language. John
Wiley and Sons, New York (1962) p.73.

[11] Iverson, K.E. A Personal View of APL. IBM Systems
Journal, Vol.30, No.4 (1991) p.582-593.

[12] Iverson, K.E. Arithmetic. Iverson Software, Inc.,
Toronto, Ontario, Canada (1991) 118p.

[13] Iverson, K.E. Programming in J. Iverson Software,
Inc., Toronto, Ontario, Canada (1992). 76p.

[14] Iverson, K.E. Calculus. Iverson Software, Inc.,
Toronto, Ontario, Canada (1993) ISBN 1-895721-
05-9.

[15] Iverson, K.E. J: Introduction and Dictionary.
Version 7. Iverson Software Inc., Toronto, Ontario,
Canada (1993). ISBN 1-895721-06-7

[16] Iverson, K.E. J: Introduction and Dictionary.
Iverson Software Inc., Toronto, Ontario, Canada
(1994) ISBN 1-895721-08-3.

 [17] Iverson, K.E., and E.E. McDonnell. Phrasal Forms.
APL89 Conference Proceedings, APL Quote Quad,
Vol.19, Number 4 (1989) p.197-199.

[18] James, R. (James & James) Mathematics Dictionary.
Van Nostrand Reinhold, New York (1992) 5th
Edition, p.72-73, 175-176.

[19] Klein, F. Elementary Mathematics from an
Advanced Standpoint: Geometry. Dover
Publications, Inc., New York (1939) p.3-33.
Translated from the 3rd German edition, 1925.

[20] Knopp, K. Elements of the Theory of Functions.
Constable, London (1952) p.88.

[21] Kudravtsev, L.D. In: Encyclopaedia of Mathematics.
Kluwer Academic Publishers, Dordrecht,

Netherlands. Vol.2 C (1988), p.283-285; Vol.4
(1989) p.126-131.

[22] March, H.W., and H.C. Wolff. Calculus. McGraw-
Hill, New York (1917) 360p.

[23] McDonnell, E.E. At Play with J. Vector. The
Journal of the British APL Association. Vol. 10, No.
3 (1994) p.100-105.

[24] McDonnell, E.E. At Work and Play with J: Control
Structures in J Version 8. Vector. The Journal of the
British APL Association. Vol. 11, No. 1 (1994)
p.136-138.

[25] McDonnell, E.E. At Work and Play with J (Parallel
Jacobi). Vector. The Journal of the British APL
Association. Vol. 11, No. 3 (1995) p.111-118.

[26] McIntyre, D.B. Mastering J. APL91 Conference
Proceedings, APL Quote Quad, Vol.21, Number 4
(1991) p.264-273.

[27] McIntyre, D.B. Language as an Intellectual Tool:
From Hieroglyphics to APL IBM Systems Journal,
Vol.30, No.4 (1991), p.554-581

[28] McIntyre, D.B. Jacobi's Method for Eigenvalues.
Vector. The Journal of the British APL Association.
Vol. 9, Number 3 (1993a) p.125-133.

[29] McIntyre, D.B. AMENDMENT: “A Change for the
Better”. Vector. The Journal of the British APL
Association. Vol. 9, No. 3 (1993b) p.134-142.

[30] McIntyre, D.B. An Executable Notation, with
Illustrations from Elementary Crystallography. In:
Computers and Geology - 25 years of progress.
Edited by John C. Davis and Ute C. Herzfeld.
Oxford University Press, New York and Oxford.
(1993c) p.231-240.

[31] McIntyre, D.B. J: A First Lesson and J: A Second
Lesson. The Education Vector. In: Vector. The
Journal of the British APL Association. Vol. 10, No.
4 (1994) p.18-29, and Vol.11, No. 1 (1994) p.36-44.

[32] Murdoch, J.C. Linear Algebra for Undergraduates.
John Wiley and Sons, New York. (1957) Appendix
2, Three-dimensional analytic geometry.

[33] Sylvester, J.J. On Staudt’s Theorems concerning the
Contents of Polygons and Polyhedrons, with a Note
on a New Resembling Class of Theorems.
Philosophical Magazine, Vol.4 (1852) p.335-345.
Reprinted in Sylvester’s Collected Works.
Cambridge University. (1904) Vol.1, Number 48,
p.382-391.

[34] Terpstra, P., and L.W. Codd. Crystallometry.
Academic Press, New York. (1961) p.180, 286-287.

[35] Thomson, N. Applying Matrix Divide in APL and J.
APL94 Conference Proceedings, APL Quote Quad,
Vol.25, Number 1 (1994) p.211-215.

[36] Webb, J.R.L. Functions of Several Real Variables.
Ellis Horwood, New York (1991) p.41.

