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 A system is composed of components; a  component is something you understand 

Professor Howard Aiken, quoted by K.E. Iverson 
 

Abstract 

Iverson has greatly enlarged the mathematical notion of 
function composition and made it available to computer 
programmers. This paper explains the concept, and uses 
practical examples to show how concise, powerful 
programs can be written and read. Alternative forms are 
given, and ways of overcoming initial difficulties are 
explained. 
 The systematic use of composition extends the well-
known advantages of APL; namely conciseness, 
consistency, and generality. 
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1    Introduction     
 
Mathematicians form a new function h from given 
functions g and f by the rule that h(x) = g[f(x)]. 
This composite h, which inherits many of the properties of 
the functions which compose it, is often  written g oooo f or 
gf, but sometimes f oooo g or f g [18; 21; 22; 2; 20; 36].   
We can investigate the properties of composite functions as 
we can other functions; for instance a numeric function can 
be differentiated. Examples in mathematical literature seem 
restricted to monadic functions with scalar arguments. 
Iverson has increased the possibilities, making function 
composition the central feature in J, his new Executable 
Mathematical Notation.  
 Composition is not restricted to verbs (functions); new 
adverbs (monadic operators) and conjunctions (dyadic 
operators) can also be composed and used with composed 
verbs  to  solve  practical  problems.  The formal  rules  for 
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composition  are  given  in  Iverson’s Dictionary [16], 
which  must  be  consulted  for  a  complete description  of 
symbols and syntax. There are several introductions to the 
notation [e.g. 11-13; 16; 23-27; 31]. 
 The purpose of this paper is to help those who try to 
master the new style of programming by providing 
annotated examples taken from experience in using and 
teaching this splendidly concise and versatile notation. 
 
2    What is function composition? 
 
Combination of two or more functions creates a composite 
function.  For example, compose a new function by 
combining the functions -: (halve) and  - (negate): 
    (-:@-)  0 1 2 3 

0 _0.5 _1 _1.5  
 As usual, expressions in parentheses must be evaluated 
before being used; here this evaluation is  function 
composition. Negate  applies to the argument, and the 
conjunction @ (atop) passes the result to halve. Because 
adverbs and conjunctions are evaluated before verbs [16, 
p.79], the parentheses are not necessary and the same result 
is given by:  -:@-  0 1 2 3 
 A composite function  can be given a name; e.g. 
h=.+:@+,  which doubles the sum if there are two 
arguments, and doubles the complex conjugate if there is 
only one. The example illustrates that the trident (verb 
conjunction verb) is a verb [16, p.82]. 
 Function composition is not, in general, commutative. 
Taking an example from James [18, p.72-73], define    g=. 
>: and f=. *: (>: is increment;  *: is square).    If 
h=. g@f  and  e=. f@g   then  h 2  is  5  whereas  e 
2  is  9 
 If  v=. h"0 then v is composed by the trident (verb 
conjunction noun) and is therefore a new verb [16, p.82], 
composed using a verb which is itself composite. The rank 
conjunction (") restricts the rank of h to 0; i.e. h applies 
to the rank-0 cells of its argument [16, p.75-78]. 
 Composite functions are entities with their own 
properties; e.g. we may take derivatives of composite 
numeric functions.  If   y=. h x=. i.5,   then v D.1 



 

 

gives the first derivative of the composite function v: 
    v D.1 x    is    0 2 4 6 8 
h"0 is a verb, D. is a conjunction, and the combination 
(verb conjunction) is an adverb [16, p.83]. Consequently  
d=. h"0 D. is an adverb; and because the combination 
(noun adverb) is a verb [16, p.83],(1 d)and (2 d) are 
also verbs. They give the first and second derivatives 
respectively of the composite verb h: 
    x,y,(1 d y),: 2 d y 

0 1  2  3  4 

1 2  5 10 17 

2 4 10 20 34 

2 2  2  2  2 

 Another example of a verb composed by a noun and 
adverb is amend, which implements scattered indexing. 
The noun gives the indices of cells to be amended; } is the 
amend adverb [16 p.161; 28;29]: 
  y=. i.3 4  [  n=. 1 1 ; 2 2; 0 3 

  amend=. n} 

  97 98 99 amend y 

0  1  2 99 

4 97  6  7 

8  9 98 11 

 A new verb can be composed by bonding a noun to a 
verb with a conjunction; e.g. %&180 divides its argument 
by 180. 
 
3   Compositions of 2 or 3 verbs 

The following (and similar) values confirm that in what 
follows the composite functions on the left give the same 
results as execution of the expressions on the right. 
   f=. %  [. g=. +  [. h=. * 

   x=. 2 [ y=. 5 

 [ and  ]  are verbs that return their left and right 
arguments respectively. [. and ]. are analogous 
conjunctions [16 p.155,156]. 
 
3.1  Composition of  2 verbs used as dyad 

 x g@h y    ↔↔↔↔       g (x h y)  Atop 

 x g&h y    ↔↔↔↔ (h x) g (h y)    With 

 x (g h) y  ↔↔↔↔     x g (h y)   A hook 
 
3.2  Composition of 2 verbs used as monad 

     g@h y        ↔↔↔↔  g (h y)            Atop 

      g&h y         ↔↔↔↔  g (h y)            With 

      (g h) y     ↔↔↔↔  y g (h y)   A hook 
3.3  Composition of 3 verbs    Forks 

 x (f g h) y ↔↔↔↔ (x f y) g (x h y) 

   (f g h) y ↔↔↔↔   (f y) g (h y) 

 The trains in parentheses on the left are forks, and the 
fork contributes the key idea in function composition. Here 
are some variants: 
   (] g h) y   ↔↔↔↔    (g h) y 

 x ([ g h@]) y ↔↔↔↔  x (g h) y 

 x (] g h) y  ↔↔↔↔   y g (x h y) 
 x ([ g h) y  ↔↔↔↔    x g ( x h y) 
 x (f@[ g h@]) y ↔↔↔↔ (f x) g (h y)  

 “Adverbs and conjunctions are executed before verbs, 
and the left argument of an adverb or conjunction is the 
entire verb phrase that precedes it” [16 p.79]. Hence, 
although execution proceeds from right to left, a sequence 
of verbs joined by conjunctions is parsed as if  
parenthesized from left to right. The consequences of this 
are easily overlooked. When in doubt, consult the boxed 
display and use parentheses to control the desired order of 
execution: 
   f@g@h           f@(g@h) 

+-----------+    +-----------+ 
¦+-----+¦@¦h¦    ¦f¦@¦+-----+¦ 
¦¦f¦@¦g¦¦ ¦ ¦    ¦ ¦ ¦¦g¦@¦h¦¦ 
¦+-----+¦ ¦ ¦    ¦ ¦ ¦+-----+¦ 
+-----------+    +-----------+ 
 The boxed display of the verb tree display is an example 
[16, Appendix]: 
  tree=. 5!:4@<      e=. f@g@h 

  tree               tree 'e' 

+------------+               +- f 
¦+------+¦@¦<¦         +- @ --- g 
¦¦5¦!:¦4¦¦ ¦ ¦   -- @ --- h 
¦+------+¦ ¦ ¦ 
+------------+ 
 Because conjunctions have long left-scope and short 
right-scope, the phrase defining tree (noun conjunction 
noun conjunction verb) parses as  ((n c n) c v), 
which in turn resolves into (v c v), and finally to verb 
[16, p.82-83].  Similar utilities are: 
   linear=. 5!:5@<    Linear display 
   erase=. 4!:55@;:        Erase objects 
   setrl=. 9!:1              Set random link 
   nc=. 4!:0@<        Name class 

4   Trains 



 

 

“The first example of a train was provided by the fork, 
defined by Iverson and McDonnell [17] as a formalization 
of the informal use in mathematics of expression such as 
f+g and f-g to denote the sum and difference of 
functions” [8, p.74; see also 22 p.43, 57]. It is probably true 
to say that the fork plays the central role in tacit definition; 
i.e. in writing programs that make no explicit reference to 
the arguments. 
 Iverson defines a train as an isolated sequence which the 
parsing rules do not resolve into a single part of speech [16, 
p.81-83]. Meanings are assigned to 25 tridents (trains of 3 
elements) and 12 bidents (trains of 2 elements).  Eight of 
these resolve to verbs (functions), and are therefore 
examples of function composition. Compositions resulting 
in adverbs (monadic operators) and conjunctions (dyadic 
operators) are also implemented and prove useful in 
programming; see Sections 8 and 9. 
 It is important to distinguish between a simple sentence 
(as in a typical APL program) and a train, which, though it 
may look similar, involves composition. A sentence such as 
f g h y  (where f , g,  and h are verbs and y is a 
noun) can be immediately executed and involves no 
composition. The sentence f@g@h y usually produces the 
same result,   but there is an essential difference: whereas 
the functions in f g h y are applied independently, one 
after the other, f@g@h and the train (f g h) are both 
unified functions, with individual properties (such as rank). 
The functions enclosed within them are no longer 
independent. 
 Because expressions within parentheses are evaluated 
before being applied, the train (f g h) is composed as a 
single entity before execution begins. 
 It is easily shown that g h y is not necessarily the same 
as g@h y, and that  g@h y  is not necessarily the same 
as the fork ([: g h) y ([:  makes g a monad). 
    e=. [: g h  [.  f=. g@h  

    g=. +/      [.  h=. +/"1 

    y=. i.3 4 

g h y  and  h g y  and  e y all give 66, whereas 
f y gives 6 22 38. 
  The ranks of any verb, including composite verbs, can be 
displayed by using the adverb basic (b.) thus: 
   g@h b. 0 yields  1 1 1. The 3 numbers give the 
rank of the monad, and the ranks of the left and right 
arguments of the dyad. The conjunction at (@:), however, 
is equivalent to atop(@) except that the ranks of its results 
are unbounded. Thus if p=. g@:h then p does not 
inherit the rank of h; and p y is  66. 

5   Composition by forks and conjunctions 

A fork is a train of 3 verbs; e.g. mean=. +/ % #  
defines the arithmetic mean to be the sum (of the items) 
divided by the number (of items).  This is similar to the 
mathematician’s expression f + g  [22, p.43, 57].  The 
central function (or root) is a dyad, and takes for its 
arguments the results of the other two functions. The tree 
display shows why the word fork is appropriate: 
    tree 'mean' 
   +- / --- + 
 --+- % 
   +- # 
 Verb trains with an odd number of elements of three or 
more are evaluated from the right in groups of three as 
forks. To avoid domain errors, first erase any existing 
assignments:    erase 'f g h i j k' 
  g h i j k 
+-----------+ 
¦g¦h¦+-----+¦ 
¦ ¦ ¦¦i¦j¦k¦¦ 
¦ ¦ ¦+-----+¦ 
+-----------+ 
 Many examples in this paper are trains with an odd 
number of verbs, easily read as successive forks (tridents) 
from right to left. 
 The fork (i j k) is evaluated first, and its result is the 
right-tine of the next fork: (g h(i j k)).  Verbs within a 
fork may be either primitive or composite, the latter being 
unified by conjunctions (commonly @) or parentheses. 
 A hook is a train of just two elements (Sections 3.1, 3.2), 
thus providing a meaning for trains of even length. 
Examples of hooks are given in Section 6. 
   f g h i j k    i.e. f (g h (i j k)) 
+---------------+ 
¦f¦+-----------+¦ 
¦ ¦¦g¦h¦+-----+¦¦ 
¦ ¦¦ ¦ ¦¦i¦j¦k¦¦¦ 
¦ ¦¦ ¦ ¦+-----+¦¦ 
¦ ¦+-----------+¦ 
+---------------+ 
 For readability I use spaces to separate the elements in a 
train, but leave no spaces on either side of a conjunction. 
This makes it easier to see the existence of trains; 
conjunctions being the glue that composes the entities 
(commonly verbs) participating in the trains. Contrast the 
following definitions of rss (square root of sums of 
squares): 
        rss=. %:@(+/@*:)    Conjunctions 
   rss=. [: %: +/@*:   A fork 
   rss 
+------------------+ 
¦[:¦%:¦+----------+¦ 
¦  ¦  ¦¦+---+¦@¦*:¦¦ 



 

 

¦  ¦  ¦¦¦+¦/¦¦ ¦  ¦¦ 
¦  ¦  ¦¦+---+¦ ¦  ¦¦ 
¦  ¦  ¦+----------+¦ 
+------------------+ 
   rss 3 4 gives  5 
 Cap ([:) completes a fork by making the verb on its 
right apply monadically.  A train of 5 verbs: 
       rss=. [: %: [: +/ *:   
 Read this:  square root of sum of squares. It begins on 
the right with  square (*:) and ends with square root (%:), 
which is its inverse. This pattern often occurs when 
functions are composed, and the conjunction under (&.)is 
provided to make use of it.  Thus: 
        rss=. +/&.*:  
 Read this: sum under square. 
   g&.h y    ↔    f g (h y)   
where f is the inverse of h . If  h has no inverse, its 
obverse can be defined [16,  p.28, 133, 177]. 
 Although the domain of [: is empty, it is useful also in 
other ways − as indeed are verbs that always give the same 
result (like 0:), or merely return an argument, (like [ and ] 
); e.g. we might define the absolute value and the residue as  
abs=. | : [:  and  res=. [: : | in order that 
both 2 abs 3 and  res 3  will give domain errors. 

5.1   A truth table as a fork 

     2 2 2 #: i. 2^3 

This expression produces an 8 by 3 truth table. An APL 
programmer will immediately see that the symbols must 
represent encode or antibase (#:),  iota (i.), and  power 
(^). An expression such as this is easily written as a fork. 
   tt=. #&2 #: i.@(2&^)    A train of 3 verbs 
 The root verb is #:. The other two verbs are composite, 
constructed with the conjunctions & and @. I use only 
necessary parentheses; but when in doubt use fully 
parenthesized expressions, and then remove parentheses, 
one set after another, to discover which ones are needed. 
Boxed displays are an invaluable aid for understanding and 
correcting  syntax. Without parentheses, i.@2&^ would 
be interpreted as (i.@2)&^, and because @ does not take 
noun arguments [16, p.172], this gives a domain error. tt 
can  be defined as a train of 5 or even 7 verbs: 
 tt=. #&2 #: [: i. 2&^  

 tt=. (] # 2:) #: [: i. 2: ^ ]   
 Note, however, that 2: is not a noun; it is a verb that 
always returns the result 2.  The boxed display shows how 
it is parsed as a collection of forks. 
+----------------------------+ 
¦+------+¦#:¦+--------------+¦ 

¦¦]¦#¦2:¦¦  ¦¦[:¦i.¦+------+¦¦ 
¦+------+¦  ¦¦  ¦  ¦¦2:¦^¦]¦¦¦ 
¦        ¦  ¦¦  ¦  ¦+------+¦¦ 
¦        ¦  ¦+--------------+¦ 
+----------------------------+ 
This is equivalent to the example g h i j k  in Section 
5, except that g is itself a fork:  (] # 2:)Note, too, how 
often we find that programs call for an odd number of 
verbs. Forks appear strange at first,  but we soon learn to 
see forks everywhere! 
 Because they make no explicit reference to any 
arguments, these are tacit definitions. With practice it 
becomes natural to think directly in this mode. It may help 
to start with an explicit definition, similar to an APL 
expression. First write a character string with x. and y. 
representing the left and right arguments: 
   s=. '(y. # 2) #: i. 2^y.' 
   e=. 3 : s     Explicit definition 
   t=. 13 : s    Tacit definition [7; 16, p.129] 
   linear 't'    Linear display 
(] # 2:) #: ([: i. 2: ^ ])      
 The rightmost parentheses are displayed for readability. 
 Iverson introduced the monadic base-function in 1962 to 
describe the microprogramming used for indexing in the 
IBM 7090 computer [10, p. 73]. Although not included in 
APL\360 [6, p.21], it is implemented in J  [16, p.143-144]. 
Using antibase-2, we get a simpler solution either with 
conjunctions or as a train of 7 verbs: 
  tt=. #:@i.@(2&^)        Conjunctions 
  tt=. [: #: [: i. 2: ^ ] Train of 7 verbs 

6    Hooks 

A hook is a train of 2 verbs. Because a train of verbs,  such 
as (f g h)and (g h), had not previously been 
assigned meanings, Iverson was free to specify their 
interpretation.  He defined them to be forks and hooks 
resulting in composed verbs as described in Section 3.   
 It is important to distinguish g h y  and (g h)y. The 
first involves no composition: g applies to the result 
produced by applying h  to the argument. The second, in 
contrast, requires the resolution of the parenthetical 
expression before any action involving y is taken. In a 
hook, the left-function is always a dyad, and the right-
function is always a monad. 

6.1   Bordering a table 

A hook can append means to the columns or rows of a 
table, or border a table with row and column sums: 
   h=. , mean     A hook 



 

 

   h y=. i.3 4   Append column means 
0 1  2  3 

4 5  6  7 

8 9 10 11 

4 5  6  7 

   h"1 y  Append means to the rank-1 cells of y 
0 1  2  3 1.5 

4 5  6  7 5.5 

8 9 10 11 9.5 

   cols=. ,: +/&.>     A hook with &. 
   rows=. ; ,.@:(+/"1) A hook with @:  
   rows 
+---------------------+ 
¦;¦+-----------------+¦ 
¦ ¦¦,.¦@:¦+---------+¦¦ 
¦ ¦¦  ¦  ¦¦+---+¦"¦1¦¦¦ 
¦ ¦¦  ¦  ¦¦¦+¦/¦¦ ¦ ¦¦¦ 
¦ ¦¦  ¦  ¦¦+---+¦ ¦ ¦¦¦ 
¦ ¦¦  ¦  ¦+---------+¦¦ 
¦ ¦+-----------------+¦ 
+---------------------+ 
 Note that although the outermost structure is a hook, this 
is not to be confused with f g h i j k given in Section 5.  
The latter is a train of verbs. The present example contains 
two conjunctions (@: and "), one adverb (/ ), and a noun 
(1).  There are no forks. 
 Parentheses are required to prevent the interpretation: 
   (,.@:+)/"1 

The at conjunction (@:)prevents stitch (,.) from 
inheriting the rank of +/"1, as it would if atop (@) were 
used.   $ ,.@(+/"1)  y is  3 1 1 
     $ ,.@:(+/"1) y is  3 1 
 Alternatively, we can write rows as a train of 4 verbs, 
ending on the left in a hook.  No parentheses are needed.      
        rows=. ; [: ,. +/"1 
   rows 

+---------------------+ 
¦;¦+-----------------+¦ 
¦ ¦¦[:¦,.¦+---------+¦¦ 
¦ ¦¦  ¦  ¦¦+---+¦"¦1¦¦¦ 
¦ ¦¦  ¦  ¦¦¦+¦/¦¦ ¦ ¦¦¦ 
¦ ¦¦  ¦  ¦¦+---+¦ ¦ ¦¦¦ 
¦ ¦¦  ¦  ¦+---------+¦¦ 
¦ ¦+-----------------+¦ 
+---------------------+ 
 Compose  the function totals: 

   totals=. cols@rows 

   totals y 

+--------------+ 
¦0 1  2  3  ¦ 6¦ 
¦4 5  6  7  ¦22¦ 
¦8 9 10 11  ¦38¦ 
+-----------+--¦ 
¦12 15 18 21¦66¦ 
+--------------+ 
 The dyad in the hook sometimes requires commute (~); 
e.g. select the non-negative items from a list, y 
   setrl 7^5 

   y=. 10-~?10#20 

   h=. >:&0   or alternatively  h=. >: 0: 
   (h y) # y  gives the required selection. 
 The commute adverb (~) enables us to place the monadic 
verb on the right and so form a hook: 
   y #~ h y 

   select=. #~ h 

or use the fork alternative: 
   select=. (h # ]) 

6.2    A Markov Chain example  
  
m is the transitional frequency matrix for an embedded 
Markov chain from a Scottish coalfield  [5,  p.157-161]: 
 0 11 36 21 52 

28  0  4  4  0 

34  2  0 45 13 

29  1 45  0  3 

28 23  9  8  0 

 Begin by replacing the 0s on the diagonal by 1000. The 
indices of the diagonal elements are given by: 
   diag=. (<0 1)&|: 

   ixd=. [: <"1 $ #: diag@i.@$ 

A train  of 5 verbs − again an odd number. 
   ix=. ixd@] 

   ix m 

+-------------------+ 
¦0 0¦1 1¦2 2¦3 3¦4 4¦ 
+-------------------+ 
   amend=. [`ix`]} 

   n=. 1000 amend m 

 amend is a verb composed from a  gerund (which has 
the force of a noun) and an adverb (}).   The conjunction 
(`) ties three verbs together to compose the gerund [1; 8; 
and especially 16, p.161]. The three verbs specify 



 

 

respectively the source, the indices of cells to be amended, 
and the target. 
 The diagonal elements are next replaced by: 
  (the square of  the row sums) divided by (the grand sum). 
    g=. *:@(+/"1) % +/@,   A  fork 

    5 ": z=. (amend~ g) n  A  hook 
232   11   36   21   52 

 28  199    4    4    0 

 34    2  222   45   13 

 29    1   45  215    3 

 28   23    9    8  211 

 The fork (g amend ])can take the place of the 
hook(amend~ g). An iterative process is then used to 
find the expected transitional probability matrix [5].  
 

7   Function composition in practice 

Annotated examples from a variety of programming 
applications demonstrate composition in practice. 
 
7.1   Surface areas and volumes of spheres 
 

The surface area of a sphere is given by: 
  surface=. 4&*@o.@*:      Conjunctions 
  surface=. 4: * [: o. *:  Train 
 Read this: 4 times the result of applying  o.  
monadically to the square of the argument. 
  surface 2 3 4 5 

50.2655 113.097 201.062 314.159 

 The volume of a sphere is given by: 
  vol=. 4r3&*@o.@(^&3)     Conjunctions 
  vol=. 4r3"_ * [: o. ^&3  Train 
where 4r3"_  is a verb returning 4 over 3 
 Read this: (The rational number 4 over 3) times the 
result of applying o. to the cube of  the argument. 
  vol 2 3 4 5 

33.5103 113.097 268.083 523.599 

 The fork ([: ^ 3:)can substitute for ^&3, but  
perhaps the form given is clearer. Taste changes as 
possibilities become more familiar. 
 
7.2  Heron’s formula for the area of an oblique 
triangle, given sides a, b, c 

      √√√√ s (s - a) (s - b) (s - c)    where 
 s is half the semi-perimeter  -:(a + b + c) 
 Consider various ways of composing  a function area  

    s=. -:@(+/)       s is half the sum 
    s=. [: -: +/      Avoids parentheses 
    h=. -~ s  A hook commuting the arguments 
    h=. s - ]                  A fork 
    g=. s , s - ]     A train of 5 verbs 

    area=. %:@(*/@(s , s - ])) 

    area=. [: %: [: */ s , s - ] 

 A train of 9 verbs (again an odd number) with no 
parentheses.  Read it: The square root of the product of s  
and the differences between s  and each side.  
However  s is a verb and not a noun. 
    area 15 17 20 is  124.274 
7.3   Angles A, B, C of a triangle whose sides are   
given 
 
 rfd=. %&180@o.     Radians from degrees 
 rfd=. o. % 180"_   (180"_ is a verb) 
 dfr=. rfd^:_1      Degrees from radians 
 arctan=. dfr@(_3&o.)      Arctangent 
 arctan=. [: dfr _3"_ o. ] 5 verbs 
 The formula is 
   tan (A % 2) ↔↔↔↔   r % (s - a) 
with similar relations for angles B and C.    s as before. 

r ↔↔↔↔ %:{(s - a) (s - b) (s - c)% s} 

Take a top-down approach: 
 erase 'n' 
 r=. %:@(numerator % denominator) 
 r=. [: %: n % s      Train of 5 verbs 
 n=. */@(s - ]) 

 n=. [: */ s - ]      Train of 5 verbs 
 tanA2=. r % s - {.   Train of 5 verbs 
 A=. +:@arctan@tanA2  Conjunctions 
 A=. [: +: [: arctan tanA2   5 verbs
 Immediate execution is then: 
    A 0 1 2 |."0 1 y=. 15 17 20 

46.9722 55.9442 77.0836 

 i.e.  apply A to a cyclic rotation of  y 

 It is tempting to compose the following function: 
    f=. [: A 0 1 2&|."0 1  

But f y  gives a length error because the left argument of 
rotate (|.) is fixed as a vector. To discover how to correct 
this, define the explicit verb: 
  e=. 3 : 'A 0 1 2 |."0 1 y.' 
  e y  is  then   46.9722 55.9442 77.0836 
Convert to tacit form and display the result: 



 

 

   g=. 13 : 'A 0 1 2 |."0 1 y.' 

   linear 'g' 

[: A 0 1 2"_ |."0 1 ] 

Note that    0 1 2"_  is a verb but 0 1 is a noun. 
   angles=. [: A 0 1 2"_ |."0 1 ] 

   angles 

+-------------------------------+ 
¦[:¦A¦+------------------------+¦ 
¦  ¦ ¦¦+---------+¦+--------+¦]¦¦ 
¦  ¦ ¦¦¦0 1 2¦"¦_¦¦¦|.¦"¦0 1¦¦ ¦¦ 
¦  ¦ ¦¦+---------+¦+--------+¦ ¦¦ 
¦  ¦ ¦+------------------------+¦ 
+-------------------------------+ 

 The display shows  a train of  5 verbs 
7.4    Find substrings common to two strings 

Use an equals table to detect substrings in common. 
Because the oblique adverb (/.) applies its verb to 
diagonals descending to the left, we reverse the second 
string. 
 x=. 0 1 2  [ y=. 4 5 1 2 

 equ=. =/ |. 

 x equ y 

0 0 0 0 
0 1 0 0 
1 0 0 0 

   ]b=. x [/.@equ y 
0 0 0 
0 0 0 
0 1 1 
0 0 0 
0 0 0 
0 0 0 

 Use the rank-1 cells (rows) of b to compress the left 
argument. All cells in the result are empty except for those 
containing  atoms of any substring in common. 

   b #&.>"1 x 
+----+                ]m=. >:i.3 4 
¦¦ ¦ ¦              1  2  3  4 
++-+-¦              5  6  7  8 
¦¦ ¦ ¦              9 10 11 12 
++-+-¦ 
¦¦1¦2¦                ]/. m 
++-+-¦              1  0  0 
¦¦ ¦ ¦              2  5  0 
++-+-¦              3  6  9 
¦¦ ¦ ¦              4  7 10 
++-+-¦              8 11  0 
¦¦ ¦ ¦             12  0  0 

+----+ 
 The example on the right shows how ]/. works, and 
further exploration using  </. is helpful. Short diagonals 
are padded, which leads to an error when the suffix of x 
happens to equal the prefix of y: 

   x=. 1 2 3 [ y=. 2 3 5 4 

   x equ y  

0 0 0 0         b=. x ]/.@equ y 

0 0 0 1              b #&.>"1 x 
0 0 1 0 

 This incorrectly reports finding the substring  1 2  
instead of   2 3 . The error is prevented by padding the 
end of the equal table with zeros: 
   equ=. (=/ |.) ,"1 #@[ # 0: 

   x equ y 

0 0 0 0 0 0 0 

0 0 0 1 0 0 0 

0 0 1 0 0 0 0 

   x=. 1 2 3 0 5 6 

   y=. 1 2 8 0 5 6 3 0 

   x (=/ |.) y 

0 0 0 0 0 0 0 1      Note that there are two 
0 0 0 0 0 0 1 0      substrings on one diagonal 
0 1 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 

0 0 0 1 0 0 0 0 

0 0 1 0 0 0 0 0 

 A fork uses equ to find the substrings: 
   h=. [/.@equ #&.>"1 [ 

 Note that when a verb is used with the adverb each  
(&.>) − i.e. under open − and its argument is not boxed, 
the rank-0 cells of the result are always boxed. 
   ]&.> i.2 3 

+-----+ 
¦0¦1¦2¦ 
+-+-+-¦ 
¦3¦4¦5¦ 
+-----+ 

 Ravel after appending a column of empty cells to keep 
substrings separated, and to ensure that there will be an 
empty cell at the beginning to define the fret for the cut: 

   g=. ,@((<$0)&,.) 

 Cut using the empty cells as frets: 
   f=. <;._1 

 Less (-.)  removes all empty cells: 
   e=. -.&(<$0) 



 

 

 Compose a function using the at conjunction @ 
   x e@f@g@h y 

+-------------------+ 
¦+---+¦+---+¦+-----+¦ 
¦¦3¦0¦¦¦1¦2¦¦¦0¦5¦6¦¦ 
¦+---+¦+---+¦+-----+¦ 
+-------------------+ 

 Finally, raze the contents of the boxes: 
   ss=. ;&.>@e@f@g@h 

   x ss y              y ss x 

+-------------+     +-------------+ 
¦3 0¦1 2¦0 5 6¦     ¦1 2¦0 5 6¦3 0¦ 
+-------------+     +-------------+ 

7.5    Find the pivot of a matrix 

This is an essential step in computing the eigenvalues of a 
symmetric matrix by Jacobi's method [28; 25]. The pivot is 
the largest absolute value in the upper triangle. We are to 
find its indices and place certain computed values within an 
identity matrix at positions determined by the location of 
the pivot. We are not concerned here with the computation 
of the values to be placed in the matrix; we simply use the 
values 96 97 98 99. 
  utm=. [: , </~@i.@#  Upper triangle mask 
  ut=. utm # ,         Upper triangle 

ixp=. $ #: (i. >./)@|@ut { utm #  
,@i.@$     Indices of pivot 

  pivot=. <@ixp { ] Signed value of the pivot 
The permutations and indices for amend are: 
  perm=. 0 0&{ ; ] ; |. ; 1 1&{ 

  ixa=. perm@ixp@{.@]                
The argument for ixa  is   y,:  = i. # y 
  imat=. {:@]       Amend the last item 
  amend=. [`ixa`imat }    Gerund 

Create a test matrix: 
     setrl 7^5 

For  smatrix  see Section 7.6. 

   t=. smatrix 100%~ 50-~ ?6 6$100 

   y=. _0.5 (0 0; 2 4; 4 2)} t 

   6.2 ": y  
 _0.50  0.12 _0.11 _0.09  0.11  0.18 
  0.12  0.53  0.08 _0.11  0.08 _0.23 
 _0.11  0.08  0.45 _0.15 _0.50  0.23 
 _0.09 _0.11 _0.15  0.11 _0.12 _0.05 
  0.11  0.08 _0.50 _0.12  0.59  0.40 
  0.18 _0.23  0.23 _0.05  0.40  0.64 

   pivot y 

_0.5 

   ixp y 

2 4 

   96 97 98 99 amend y ,: =i.#y 

1 0  0 0  0 0 

0 1  0 0  0 0 

0 0 96 0 97 0 

0 0  0 1  0 0 

0 0 98 0 99 0 

0 0  0 0  0 1 

  In studying this example it will be helpful also to execute 
the following: 
    utm y 

    ut y 

    ixa y,:=i.#y 

    imat y,:=i.#y 

7.6    Determinants and the area of a triangle 

When two functions are composed as  u . v this is called 
the dot product. The inner product (matrix multiplication) 
and the determinant are two important examples: 
      ip=. +/ . * and  det=. -/ . * 
 (Note that a space between / and  . is required) 
 The inner product has many applications. It can, for 
example, be used in a fork to produce a  matrix that is 
symmetric about its main diagonal, as required for Jacobi’s 
method of computing eigenvalues. 
    smatrix=. |: ip ]            
    smatrix i.3 4 

 80  92 104 116 

 92 107 122 137 

104 122 140 158 

116 137 158 179 

 Table t gives the co-ordinates of points a, b, c at 
the corners of a triangle. If  this table is bordered by a 
column of 1s, the determinant of the resulting 3 by 3 matrix 
is twice the area of the triangle [19, p.3]. 

a=.0.5 1.25 [ b=.4.4 2.45 [ c=.2.6 0.2 
    (,"1 1:) t=. > a;b;c     A hook 
0.5 1.25 1 

4.4 2.45 1 

2.6  0.2 1 

    area=. -:@det@(,"1 1:)  



 

 

 The determinant (and hence the area) is positive or 
negative depending upon the sense of the circuit; positive if 
counterclockwise and negative if clockwise [19; 33].  
 A.F.Mobius (1827) was the first to recognize the 
geometrical significance of the sign of the determinant, an 
idea that proved fundamental to many of his important 
discoveries. His work was greatly extended by Hermann 
Grassmann [19, p.16-20; 9]. 
    area > a;b;c       area > a;c;b 

_3.3075             3.3075 

 

8    Composition of Adverbs  

The sentence  f&.g y means: first  compute   g y , 
then apply f to the result, and finally apply the function 
that is inverse to g.  Read this: f under g.   In this paper we 
use +/&.*: +/&.>  #&.> ]&.> ;&.>  ,&.> 
and   area&.> These are all examples of the train   v c 
v  (verb conjunction verb) that composes a new verb.  We 
have also seen that a fragment can stand on its own; as in 
(&.>)and ("1) and  (D.1); these are new adverbs 
composed by the trains c v (conjunction verb) and c n 
(conjunction noun).  
 Hui and Iverson have defined 6 tridents (trains of 3) and 
7 bidents (trains of 2) that compose adverbs; and 13 tridents 
and 1 bident that compose conjunctions [8, p.76;16, p.82-
83]. 
    _9: to 9: are constant functions that give the results 
_9 to 9. But any noun can be made into a constant 
function by the adverb  a=. "_ 
    g=. [: i. 6:   

    h=. (i.2 3) a  

    f=. g : h 

    f 7 

0 1 2 3 4 5 

    8 f 10 

0 1 2 

3 4 5 

 Like verbs, adverbs and conjunctions can be defined 
explicitly. Iverson has given a number of examples [e.g.12, 
p.113; 13, p.27, 33; 14, p.26, 39, 47, 48, 104; 15, p.80; 16, 
p.19, 20, 41, 56, 58). In one of these he defined an adverb 
for Newton’s method of computing a root by means of the 
derivative [14, p.104].  
 Thomson has published an interesting extension of this, 
which includes finding the roots of multivariable functions 
and non-linear curve fitting [35]. 
   Consider the polynomial with one variable:  
  (1*x^2) + (_1*x^1) + (_2*x^0) 

 Its tacit definition is: ff=. #.&1 _1 _2 "0 

 If   x=. 0 1 2 3    its value is   _2 _2 0 4, 
which shows that 2 is a root; i.e. ff 2 is 0. 
   Because derivatives are obtained by the conjunction D. 
the first derivative is given by the adverb D=. D.1  
and a Newton-Raphson step is therefore: 
 x - (ff x) % ff D x  or     _2 3 2 2.2 
    This is easily recast into a verb in either explicit (e) or 
tacit form (t): 
 e=. 3 : 'y. - (ff y.) % (ff D y.)'  

   t=. ] - ff % ff D  

Three applications of t : 
      t t t x  or    t^:3 x      
_1.01176 2.01176 2 2.00005.   
   The limit, given by  t ^:_ x,  is     _1 2 2 2 
 An adverb can be used whenever an expression 
containing a verb would be applicable to other verbs. The 
transformation is easily written in explicit form.  The 1 
preceding the : (and which must be  separated from it by a 
space) refers to the valence of an adverb: 

   Newton=. 1 : '] - x. % x. D'  

 The x. represents the function that will be the argument 
to the adverb Newton.   
] stands for the noun that will be the argument to the newly 
composed verb.  The tacit form of the adverb is created in 
a similar way, but is not so easily interpreted: 
   t=. 11 : '] - x. % x. D'  

   linear 't' 

(([.+) ([. % ([. D))) (]`-`) \ 

   A train of  adverbs composes a new adverb; so we define 
limit as an adverb, and then create the adverb N 
   limit=. ^:_ 

   N=. Newton limit 

Trying 6 different starting points, roots are found at  _1 
and  2 
   ff N _2 + i.6 

_1 _1 _1 2 2 2 

   ff _1 2  Verifies that these are indeed roots. 
0 0 

    As Thomson shows, the problem of finding roots when 
there are several variables is solved in a similar way. The 
diagrams in his paper [35, p.213] are very helpful in 
understanding the motivation, and should be consulted. He 
begins with two functions, f and g , which I express as 
verb trains as follows: 
    f=. [: <: *:@{. * {: 

    g=. 2&o.@{. +  1&o.@{: 

    h=. f , g      A  fork 



 

 

 Taking  starting points on the x-y plane, the first step 
in the iterative procedure is given by any of the following 
(a) Immediate execution, (b) a verb in explicit definition, 
(c) a verb in tacit definition, and (d) by an adverb. 
     y=. 5 0 

(a) y - (h y) (%.|:) h  D y                   

(b) e=.3 : 'y. - (h y.)(%.|:)h D y.' 

(c) t=. ] - h (%.|:) h D 

(d) a=. 1 : '] - x. (%.|:) x. D' 

 With 6 different starting points, we find the co-ordinates 
of  the 4 points of intersection shown on Thomson’s x-y 
graph. Our purpose is to show how adverbs can be 
composed. The choice of starting points and the validity of 
the computed results are not relevant here. 

y=.>5 0;1 1;1 4;0.5 4.5;0.5 4.8;1 5 

  7.2": y,"1 h a limit ("1) y   

   5.00   0.00   4.67   0.05 

   1.00   1.00   1.86   0.29 

   1.00   4.00   0.49   4.23 

   0.50   4.50   0.49   4.23 

   0.50   4.80   0.44   5.15 

   1.00   5.00   0.44   5.15 

9    Composition of  Conjunctions 

A conjunction can be  used when an expression containing 
two verbs is generalized so that other verbs can be 
substituted. Defined adverbs and conjunctions are miniature 
computer programs with both verb and  noun arguments.  
The following example, which is an expanded version from 
Iverson [14, p.36], employs two defined conjunctions. The 
object is to plot one monadic function against another. 
 First define the two functions: f is the sine; in this case g 
merely returns its argument, but in practice it can be 
replaced by another of interest; e.g. Iverson uses the 
hyperbolic cosine [14, p.80]. 
     f=. 1&o. [. g=. ] 

s gives the dimensions of the plot, and x the values of the 
argument. 
     s=. 10 20 [ x=. -:i.8 

 To scale the y-axis in a descending direction, execute 
function f and subtract each resulting value from the 
largest value. The smallest value is then zero. The obvious 
way to do this is to apply the verb u0 atop f, but in order 
to illustrate another feature of the language we define the 
adverb u instead. The system distinguishes u0 and u  
for us by  their name classes [16, Appendix]. 
     u0=. >./ - ]                A verb 

     u=. u0@                         An adverb 
    (u0@f x) -: f u x       These match 
 Now scale the x -axis so that its smallest value is zero. 
     v0=. ] - <./      Verb  
     v=. v0@           Adverb 
     z0=. (f u x) ,: (g v x)   

 Parentheses on the right are introduced for clarity. 
 z0 is a table with two rows; the first gives the values 
along the y-axis and the second values along the x-axis. 
 Scale them from 0 to 1 by dividing the rows by their 
biggest values. 
    a=. z0 % >./"1 z0 Immediate execution 
    scale=. ] % >./"1     A  fork 
 The following then match: 
    a -: scale (f u x) ,: (g v x) 

 Gather these procedures into a conjunction: 

  N2=. 2 : 'scale@(x. u ,: y. v)@]' 

The definition begins with a left argument of 2, which is 
chosen because this is the valence of a conjunction. 
 The following then match: 
     a -: f N2 g x 

 N2 is the explicit definition of a conjunction that lets us 
follow the same procedure when providing different pairs 
of functions as arguments. x. and y. refer to these 
(monadic) arguments. 
 A tacit definition is also possible, but great care must be 
taken to include parentheses. It is important to display the 
boxed form to be sure that the definition has been written to 
give the desired parsing. 
   N=. scale@(([. u) ,: (]. v))@] 
   N 
+--------------------------------+ 
¦+--------------------------+¦@¦]¦ 
¦¦scale¦@¦+----------------+¦¦ ¦ ¦ 
¦¦     ¦ ¦¦+----+¦,:¦+----+¦¦¦ ¦ ¦ 
¦¦     ¦ ¦¦¦[.¦u¦¦  ¦¦].¦v¦¦¦¦ ¦ ¦ 
¦¦     ¦ ¦¦+----+¦  ¦+----+¦¦¦ ¦ ¦ 
¦¦     ¦ ¦+----------------+¦¦ ¦ ¦ 
¦+--------------------------+¦ ¦ ¦ 
+--------------------------------+ 
 Because explicit definitions are close to the form used in 
immediate execution, they are easily adopted by 
programmers. In learning to write tacit definitions, use a left 
argument of 12 for automatic translation [7, p.204-206; 16, 
p.129]. 

N12=. 12 : 'scale@(x. u ,: y. v)@]' 

 A similar facility is available for verbs and adverbs  by 
using 13 and 11 respectively. 



 

 

 The values of x and y are then scaled: multiplied by the 
decremented values of s and rounded. The reason for 
decrementing s is that whereas s gives the number of 
rows and columns, the axes have an origin of 0. Finally the 
scaled data are encoded into linear indices within the 
array(i.s)and used to select one or other of the 
characters specified in h. 
   round=. <.@+&0.5 

   r=. [ #. [: |:@round <:@[ * ] 

   ]b=. s r a 

140 63 25 8 31 74 136 199 

   h=. {&'.*' 

   ]z=. h (i. s) e. b 

      ........*........... 

      .....*.....*........ 

      .................... 

      ...*..........*..... 

      .................... 

      .................... 

      ................*... 

      *................... 

      .................... 

      ...................* 

 Conjunction VS uses conjunction N and the defined 
verbs h and r to produce a plot of y against x. Noun-
arguments are given by verbs [ and  ], while verb-
arguments are given by conjunctions [. and ]. 

VS=.12 : '[: h i.@[ e. [ r x. N y.' 

     z-: s f VS g x.       These match 
 A fuller plot is given by:   
     25 90 f VS g 4%~ i.60 

10   Geometry and Graphics 

 Geometrical examples in 2- and 3-dimensions are readily 
visualised. The principles illustrated are of rather general 
applicability, especially for graphics. 

10.1 A hidden line problem: classify points by 
their signed distance from a given line: 

Given two points  a and b  defining a line, and a third 
point c on one side of it, classify a collection of points into 
three groups: those on the same side as c; those on the 
other side; and those collinear with a and  b.  

a=.0.5 1.25 [ b=.4.4 2.45 [ c=.2.6 0.2 

The collection of points is given by table p.  
  p=. > 3.5 5.1; 7 2.2; 1.3 3.6; 

        3.3 2.9; 0.2 _0.5; 5.7 3.2; 

         6 _1.1; 6 2.942 
 Combine a and b with each point in turn, and find the 
areas of all triangles so formed. The perpendicular distance 
from the apex of a triangle to its base is found by doubling 
the area and dividing by the length of the base. class 
appends the sign of the area and the distance, and sorts the 
output by the signed size of the distance. 

  A=. [: area"2 ,"2 1 

  base=. [: +/&.*: -/ 

  d=. +:@] % base@[    Distance to the line 
   

  class=. \:@A { ] ,"1 *@A ,. [ d A 
+-------------------------------------------+ 
¦+------+¦{¦+------------------------------+¦ 
¦¦\:¦@¦A¦¦ ¦¦]¦+-----+¦+------------------+¦¦ 
¦+------+¦ ¦¦ ¦¦,¦"¦1¦¦¦+-----+¦,.¦+-----+¦¦¦ 
¦        ¦ ¦¦ ¦+-----+¦¦¦*¦@¦A¦¦  ¦¦[¦d¦A¦¦¦¦ 
¦        ¦ ¦¦ ¦       ¦¦+-----+¦  ¦+-----+¦¦¦ 
¦        ¦ ¦¦ ¦       ¦+------------------+¦¦ 
¦        ¦ ¦+------------------------------+¦ 
+-------------------------------------------+ 

When reading this definition, first note the conjunctions, 
and then count the number of forks. 
  z=.(a,:b) class c,p,-:a+b 

  5.2 9.3 3 9.4": z   Format the table 

 3.50    5.100  1   2.7975 

 1.30    3.600  1   2.0108 

 3.30    2.900  1   0.7536 

 5.70    3.200  1   0.3345 

 2.45    1.850  0   0.0000   -:a+b 

 6.00    2.942 _1  _0.0003 
 7.00    2.200 _1  _1.0036 

 0.20   _0.500 _1  _1.5844 

 2.60    0.200 _1  _1.6211   Point c 
 6.00   _1.100 _1  _3.8636 

.  Three points lie on the same side of  the line a−−−−b as c; 
four lie on the other side; one is nearly collinear with a−b. 

10.2  Complex numbers: easy and useful 

 “Knowing that if you double a force you double the vector 
that represents it, Hamilton looked  on 2 times as the 
operator that doubles: it is a special case of what he called a 
tensor, an operator that stretches (not to be confused with 
the modern use of the word.). In the same way -1 times is  
a reversor. Moreover if  √2 times is applied twice it 
doubles; and if √-1 is applied twice it reverses. 



 

 

Consequently i  times (where i is √-1  ) is a versor, or 
operator that rotates a vector without changing its length; it 
is taken as producing a counter-clockwise rotation of 90°. 
Application of  2i times would then be the composition of 
a rotation, a stretch, and a reversal).”  [27, p.568]. Using 
the new notation: 
   2&* 1 2             _1&* 1 2 

2 4                 _1 _2 

   g=. ] * [: %: 2: 

   g 1 2               g g 1 2 

1.41421 2.82843      2 4 

   h=. ] * [: %: _1: 

   h h 1 2 

_1 _2 

 A complex number is simply the unification of the co-
ordinates of the x and y axes.  Mathematicians normally 
use the symbol i  to join what are (unfortunately) called the 
real and imaginary parts. There is nothing imaginary about 
so-called imaginary numbers. Sylvester refused to follow 
the convention and used the symbol θθθθ instead. Iverson uses 
j; e.g. p=. 1j2  represents the point with co-ordinates 
1 on the x-axis and  2 on the y-axis. 
   2&* p               _1&* p 

2j4                  _1j_2 

   g p                 g g p 

1.41421j2.82843      2j4 

   h p                 h h p  

_2j1                 _1j_2 

 A unit vector at an angle of 60°°°° from the x-axis, and a 
vector length 2 with an angle of 1 radian, are written: 
   1ad60                2ar1 

0.5j0.8660254        1.0806j1.68294 

 Separating the two parts: 
   +. 1ad60 

0.5 0.8660254 
 The monad r. gives the co-ordinates of unit vectors; i.e. 
points on the unit circle. The dyad r. converts from  polar 
to Cartesian co-ordinates: 
   r. rfd 60           2 r. rfd 60 

0.5j0.8660254         1j1.73205 

 The hypotenuse of a right-angled triangle with sides 3  
and 4  is therefore: 
   +/&.*:@+. 3j4    
5 

10.3    The area of a polygon 

First compute the co-ordinates of the vertices of a regular 
hexagon. 1j0 is a unit  vector along x,  i.e.  (1 0). To 

reverse it to _1j0 in three steps requires not the square 
root of _1 but the cube root. The first step is therefore to:  

        +. a=. 3%:_1 

0.5 0.8660254 

   +. a^0            +. a^3 
1 0              _1 1.22461e_16 
 Three steps take us only half way round;  six steps 
complete the regular hexagon:  
   ,. +. a^i.6 
   1           0 
 0.5   0.8660254 
_0.5   0.8660254 
  _1 1.22461e_16 
_0.5  _0.8660254 
 0.5  _0.8660254 

The general case is then: 
   poly=. (-: %: _1:) ^ i. 
   polygon=. ,.@+.@poly 

   hex=. polygon 6 

   polygon 4 

           1           0 
 6.12303e_17           1 
          _1 1.22461e_16 
_1.83691e_16          _1 

   polygon 5 

        1          0 
 0.309017  0.9510565 
_0.809017  0.5877853 
_0.809017 _0.5877853 
 0.309017 _0.9510565 

 To compute the area of a polygon, choose any point on 
the plane, and from it complete the set of triangles with this 
point as a corner and a side of the polygon as a side of the 
triangle.  Take the arbitrary point:  p=. 4 _3 
 To include all sides, the cycle must be complete:  
   hex , {. hex  This is a hook  (, {.) 
 The 6 sides are defined by boxed pairs of corners:  
      y=. 2 <\ (, {.) hex 
 Bond the point; append it to each of the sides in turn; so 
completing 6 triangles:  
    p&,each y where each=. &.> 
 The train (conjunction verb) gives an adverb. The adverb 
each(or  under open) opens each box, applies its verb, 
and then closes the box.  Each of the boxes defines a 
triangle, and the sum of the signed areas of these triangles is 
the area of the polygon: 
+/ > area each p&,each 2 <\ (, {.) hex 

2.598 



 

 

or, using  &.> 
+/ > area&.> p&,&.> 2 <\ (, {.) hex 

or, using the rank conjunction instead of  boxes: 
  +/area"2 (2) p&,"1 2\ (, {.) hex 

 The verb u in the phrase  a u\ y  is applied 
(monadically) to each infix of length a. Because a is the 
argument of u\ (and not of u), the verb u cannot have 
a left argument. p&,"1 2  is monadic, thus: 
s=. '+/ > area each p&,each 2 <\ (, 
{.) y.' 

    e=. 3 : s 

    e hex 

2.59808 
        T=. 13 : s     Convert to tacit definition 
    linear 'T' 

[: +/ [: > [: area&.> [: 4 _3&,&.> 
2: <\ (, {.) 

 Build the triangles by composing simple functions:     
  h=. 2: <\ ] , {. and  p&,&.> h hex 
We can change p only by freeing it from the verb to which 
it is bonded. It can then be made an argument to the fork: 
    g=. [ ,&.> h@] 

 Because the arguments must be in agreement [16,  p.78; 
29, p.137-140), p must be boxed: p=. <4 _3. The 
boxed co-ordinates of the corners of the triangles are then 
given by  p g hex. It remains to open the boxes; 
determine the areas; and sum the areas. 
    f=.  area&.>@g 

 >@area&.>@g  is parsed as (>@area)&.>@g  
Parentheses are not needed, however,  if we write a fork: 
    poly=. [: +/ >@f 

    p poly hex 

2.59808 

  Does the position of the point make any difference to the 
result?  Try a series of points simultaneously: 
     p=. <"1 i. 6 3 2 

  The result of  h hex  is a vector of 6 boxes, each 2 by 
2, and  p is a table of 6 by 3 boxes, each box containing a 
vector of  2 elements.  Thus  p g hex  is a 6 by 3 array 
of boxes, each with a 3 by 3 matrix defining a triangle: 
   p g hex 
+-----------------------------------+ 
¦  0     1  ¦  2     3  ¦  4     5  ¦ 
¦  1     0  ¦  1     0  ¦  1     0  ¦ 
¦0.5 0.866  ¦0.5 0.866  ¦0.5 0.866  ¦ 
+-----------+-----------+-----------¦ 
     ...        ...        ... 
 
+-----------+-----------+-----------¦ 

¦ 30     31 ¦ 32     33 ¦ 34     35 ¦ 
¦0.5 _0.866 ¦0.5 _0.866 ¦0.5 _0.866 ¦ 
¦  1      0 ¦  1      0 ¦  1      0 ¦ 
+-----------------------------------+ 
 This is the general case, but we need  a special case in 
which all values in a given column are the same: e.g. 
     p=. 6 3$ 4 _3; 0 0; 1 2 

The result of  p g hex  is again a 6 by 3 table of boxes, 
but this time each column specifies the 6 triangles formed 
by one of  the 3 points together with each of the 6 sides in 
turn, and this is what we want: 
    p g hex 
+-----------------------------------+ 
¦  4    _3  ¦  0     0  ¦  1     2  ¦ 
¦  1     0  ¦  1     0  ¦  1     0  ¦ 
¦0.5 0.866  ¦0.5 0.866  ¦0.5 0.866  ¦ 
+-----------+-----------+-----------¦ 
 
      ...        ...        ...  
+-----------+-----------+-----------¦ 
¦  4     _3 ¦  0      0 ¦  1      2 ¦ 
¦0.5 _0.866 ¦0.5 _0.866 ¦0.5 _0.866 ¦ 
¦  1      0 ¦  1      0 ¦  1      0 ¦ 
+-----------------------------------+ 
    area each p g hex 

+-------------------+ 
¦_0.549¦0.433¦_0.5  ¦ 
+------+-----+------¦ 
¦1.933 ¦0.433¦_0.567¦ 
+------+-----+------¦ 
   ...   ...   ...   

+------+-----+------¦ 
¦_2.049¦0.433¦0.5   ¦ 
+-------------------+ 
 The numbers in the middle column are all the same,  
because in that case the “arbitrary” point is at the origin, 
from which all corners of the hexagon are equidistant. 
 The area of the polygon is the sum of the areas of the 
triangles in any column of p g hex:  
    +/ > area each p g hex 

2.59808 2.59808 2.59808 

 Composing a function: 
    poly=. [: +/ >@(area each@g) 

    poly=. [: +/ [: > area&.>@g  

    p poly hex is   2.598 2.598 2.598 
  We see that the position of the arbitrary point does not 
affect the value given for the area of the polygon.  
 Finally we show that the area is unaffected by rotation. 
Create a rotation matrix for a random rotation angle. 
    setrl 7^5          Set Random Link 
    y=. 100 %~ ?10000 



 

 

 13.15 
    rot=. 2 1&o. ,: _1 1"_ * 1 2&o. 

    rotate=. rot@rfd 

Apply this rotation; make an arbitrary translation; and 
confirm that the area is unchanged:    

    2 3 +"1 hex +/ .* rotate y 

2.97378  3.2275 
2.28987  3.95707 
1.31609  3.72957 
1.02622  2.7725 
1.71013  2.04293 
2.68391  2.27043 

   p poly hex 

2.59808 2.59808 2.59808 

10.4    The line of intersection of two planes 

This is one of the first problems to be encountered in 3-
dimensional geometry: the gable of a house is an example; 
to make a picture of any object bounded by plane sides we 
need only draw edges − which are  lines of intersection. 
 Taking an example from Murdoch [32, p.206-207], the 
equations of two planes are: 
            x - 2y + 4z = 6 
     2x + y - 3z  = 8 
 Represent this information by a 2 by 4 matrix: 
    m=. 1 _2 4 6,: 2 1 _3 8 

    n=. |: m          Transpose 
 The direction numbers of the line of intersection are 
given by the determinants of  three minors: 
   k=. 1 2, 2 0,: 0 1 

   h=. det@(k&{"1 2)@}: 

   h n 

2 11 5 

 Normalize to get the direction cosines: 
   (h n) % rss h n 

0.1632993 0.8981462 0.4082483 

   norm=. % rss       A hook 
   dc=. norm@h 

 Every point on the line must satisfy the equations for both 
lines. Set z to 0 and use matrix divide to find the co-
ordinates of one point on the line:    
   ct=. 0: ,~ {: %. |:@(2&{.)@}: 
   ct n 
4.4 _0.8 0 

 These are the constant terms of the parametric equation. 
Reset random link and choose 5 random parameters: 
   setrl 7^5 

   ]t=. 0.1* 50-~?5#100 
_3.7 2.5 _0.5 0.3 _2.9 
 The co-ordinates of five random points on the line of 
intersection are then: 
    ]z=. (ct n) +"1 (dc n) *"1 0 t 
3.79579   _4.12314   _1.51052 
4.80825    1.44537    1.02062 
4.31835   _1.24907 _0.2041241 
4.44899 _0.5305561  0.1224745 
3.92643   _3.40462   _1.18392 
 The parametric equation of the line of intersection is: 
   pequ=. ct@[ +"1 dc@[ *"1 0 ] 
   z-: n pequ t      These match 
 Verify that these points satisfy the equations of the two 
planes, thus showing that the line lies in each of the planes, 
and is therefore the line of intersection [32, p.207]. 
    (n pequ t) +/ .* }:n 
6 8 
6 8 
6 8 
6 8 
6 8 
 Find the  normals to the two planes: 
    normal=. norm@}:"1                   
    normal m 
0.2182179 _0.4364358  0.8728716 
0.5345225  0.2672612 _0.8017837 
 Show that these are indeed normal to the planes: on each 
plane choose two arbitrary points; the line joining any two 
points on the plane is perpendicular to the normal.  
   (8 1 0-2 0 1) +/ .* normal {.m 

1.11022e_16 

   (1 6 0- 5.5 0 1) +/ .* normal{:m 

1.11022e_16 

 The perpendicular distances from the origin to each plane 
[32, p.204]: 
   dist=. ({: % rss@}:)"1 

   dist m 

1.30931 2.13809 

 The points where the normals from the origin meet the 
planes: 
   (dist * normal) {.m   

0.2857143 _0.5714286 1.14286 

   (dist * normal) {: m   

1.14286 0.5714286 _1.71429 

 Proof  that these points lie on their respective planes: 
   1 _2 4 +/ .* (dist * normal) {.m   
6 
   2 1 _3 +/ .* (dist * normal) {:m   
8 



 

 

 The angle between the planes is the angle between their 
normals: 
   'ab'=. (normal {.m);normal {:m 
   dfr _2 o. a +/ .* b 
134.415 
   dfr _2 o. a +/ .* -b 
45.5847 
 The two normals define a plane perpendicular to the line 
of intersection; consequently their vector cross-product is 
the line of intersection:     
   u=. 1&|.@[ * _1&|.@] 
   v=. _1&|.@[ * 1&|.@] 
   vcp=. u - v 

   c=. a vcp b 

   c +/ .* a,.b      c  is normal to  a−−−−b 
0 0 
 The direction cosines of the line of intersection has been 
given in two ways:    
  (dc n) -: norm c     These match 

10.5   Projection of a line onto a given plane 

This construction  is used in computer graphics − the plane 
being the video screen or the bed of a plotter. The line itself 
is often the intersection of two planes. 
 Vector  p makes angles of  110 80 22 degrees to the 
Cartesian axes  x ,  y and  z .  Project it onto the plane   x 
- 2y + 4z = 6, whose normal is a. 
 Compute the direction cosines of p: 
   ]p=. 2 o. rfd 110 80 22  

_0.3420201 0.1736482 0.9271839 

 q is the normal to the plane p −−−− a; and r, which is the 
normal to the plane a−−−−q, is the required projection of p. 
   q=. norm p vcp a 

   r=. norm a vcp q 

   ]z=. norm a vcp norm p vcp a 

_0.6419622 0.6094676 0.4652244 

 The required function is composed by a train of 5 verbs: 
   proj=. [: norm ] vcp norm@vcp  

    z -: p proj a      These match 
 Show that z lies in the given plane, whose normal is a: 

    a +/ .* p proj a 

0 

 A stereographic projection helps in visualizing these 
relations in 3-dimensions and confirming the results. 

10.6    Volume of a Parallelepiped 

Background and motivation for this example is given in 
another paper [30]. A parallelepiped is a solid with three 
pairs of parallel faces each of which is a parallelogram. The 
lengths of the three edges and the angles between them are 
given in a table.  The data define the unit cell of the mineral 
chalcanthite, CuSO4.5H2O. 

 (;:'a b c'),: ;:'alpha beta gamma'    

+----------------+ 
¦a    ¦b   ¦c    ¦  axial lengths 
+-----+----+-----¦ 
¦alpha¦beta¦gamma¦  interaxial angles 
+----------------+ 
  <"0 ch=. 6.11 10.673 5.95,: 

           97.583 107.167 77.55 

+--------------------+ 
¦6.11  ¦10.673 ¦5.95 ¦ 
+------+-------+-----¦ 
¦97.583¦107.167¦77.55¦ 
+--------------------+ 
   The formula for the volume is:    

 abc √√√√(1- cos2 alpha - cos2 beta - 
cos2 gamma +  2 cos alpha . cos beta 
. cos gamma) 

 Define utility functions: 
    sin=. 1&o.                sine of angle (radians) 
    cos=. 2&o.                cosine of angle (radians) 
    cosd=. cos@rfd    cosine of angle (degrees) 
 The formula for the volume is a fork, though it is 
interesting to note that the root (*) is elided in the usual 
mathematical expression.  The volume is determined by the 
square root of a function of the angles, which is then 
multiplied by a scaling factor dependent only on the lengths 
of the sides. The formula is therefore a  fork of the form:    
volume=. f * %:@g 
 Because we know that f is the product of the lengths 
and  g is some function of the cosines of the angles, the 
fork is written more completely as: 
         volume=. */@{. * %:@h@cosd@{: 
  The formula for h is given as follows: 
   1 - a2 - b2 - c2 + 2d          
 Rearrange it as 
   1 + 2d - (a2 + b2 + c2)     
 or, using increment  
   (>: 2d) - (a2 + b2 + c2)  
 Erase any existing assignments:    erase 'p q' 
  Once again we have a fork, and we can write: 
   h=. p - q       where p and q are: 
   p=. >:@+:@(*/)  1 + twice the product. 



 

 

   q=. +/@*:       Sum of squares 
   volume ch 

361.035 

 There is another approach. The Grassmann Determinant 
Principle for space [19, p.3-33] permits the volume of a 
space-segment to be computed from the determinant of the 
matrix defining the co-ordinates of its corners. This has a 
mineralogical origin, because Grassmann called the space-
segment a spat, from Kalkspat, the German word for calcite 
(CaCO3), a common mineral which cleaves readily into 
parallelepipeds. Grassmann’s work is of immense 
importance [4], but his original publications are notoriously 
difficult. Hyde, however, published a readable introduction 
[9]. 
 The function h is equivalent to the determinant of the 
matrix given by the fork: 
 g=. (0 3 2, 3 0 1,: 2 1 0)"_ { 1&, 

     g 
+---------------------+ 
¦+---------+¦{¦+-----+¦ 
¦¦0 3 2¦"¦_¦¦ ¦¦1¦&¦,¦¦ 
¦¦3 0 1¦ ¦ ¦¦ ¦+-----+¦ 
¦¦2 1 0¦ ¦ ¦¦ ¦       ¦ 
¦+---------+¦ ¦       ¦ 
+---------------------+ 

   h=. det@g 

   volume=. */@{. * %:@h@cosd@{: 

   volume ch 

361.035 

  The data were given in the usual way as lengths of the 
sides and the angles between them, but the solution is much 
simpler if the data are given instead as three vectors in a 
Cartesian framework. The transformation involves rather 
cumbersome formulas derived from spherical trigonometry. 
The executable notation given here illustrates algebraic 
manipulation of composite functions. 
 Axial lengths or (depending on context) interaxial angles: 
   a=. 0&{ [.  b=. 1&{ [.  c=. 2&{ 

   axisa=. sin@b , 0: , cos@b 

 cos(rho) and cos(sigma) are based on formulas 
given by Terpstra & Codd [34, p.287].  
 Compare the following versions: 
 CosRho=. (cos@c - */@cos@(a,b)) % 
sin@b     A fork 
 CosRho=. (cos@c - [: */@cos a,b) % 
sin@b    Parentheses required 
 CosRho=. sin@b %~ cos@c - [: /@cos  
a,b      No parentheses 
 CosRho=. sin@b %~ cos@c - cos@a *  
cos@b          No parentheses 

 Read this: cos (rho) is sin b divided into {cos c - ( cos a 
times cos b)} 
   CosSigma=. sin@b %~  
(>:@+:@(*/@cos) - +/@*:@cos)  
   CosSigma=. sin@b %~ [: %:  
>:@+:@(*/@cos) - +/@*:@cos 

 Read this: cos (sigma) is sin b divided into the square 
root of {(1+ twice the product of  the cosines) - the sum of  
the squares of  the cosines} 
 axisb=. CosRho,CosSigma,cos@a 

 dm=. ,&0 0 1 @(axisa,:axisb)@rfd@b 
 dm=. 0 0 1"_ ,~ (axisa,:axisb)@rfd@b 

 dmat=. ({. *"0 1 dm)"2  

 We want dmat to apply to rank-2 cells. 
   ]d=. dmat ch 

5.83779      0 _1.80341 

1.97316 10.394 _1.40843 

      0      0     5.95 

 This matrix is called the d-matrix because it defines the 
unit cell of the direct lattice. Its rows give the Cartesian co-
ordinates of the axes a, b, and c. The volume of the cell is 
simply the determinant of the d-matrix: 
   det d 

361.035 

 Bordering the matrix gives a signed volume: 
   det (,"1 1:) d,0 is     361.035 and  

   det (,"1 1:) 0,d is   _361.035 
 After an arbitrary translation from the origin (moving a 
corner of the cell from the origin to  1 _2 3),  the matrix 
must be bordered to become 4 by 4, but the volume is 
unchanged: 
   e=. 1 _2 3 +"1 d,0 

   det (,"1 1:) e 

361.035 

 Why is the volume of the parallelepiped computed so 
easily as taking the determinant of the 3 by 3 d-matrix?  
The answer is in Grassmann’s extension into three 
dimensions of the method for computing the area of a 
triangle (or polygon). One of the corners of the figure is at 
the origin of the co-ordinate system. Because the co-
ordinates of that corner are  0 0 0, the expected 4 by 4 
matrix degenerates to a 3 by 3; the need to border the 
matrix with 1’s vanishes. Klein gives an excellent 
discussion of  the volume of a tetrahedron [19,  p.29]. 
 The axes of the reciprocal lattice are the normals to the 
faces of the parallelepiped cell.  Just as the d-matrix defines 
the direct lattice, so the r-matrix defines the reciprocal 
lattice. The r-matrix is in fact the transpose of the inverse 



 

 

of the d-matrix. Moreover, the transpose of the inverse of a 
matrix is the same as the inverse of its transpose. 
  cl=. * 1e_15&<@|  Clean very small values 
(cl |:@%. d)  -:  cl %.@|: d   Match 
 Consider now a 5 by 2 by 3 array describing the unit cells 
of five minerals: 
   ch=. chalcanthite=. 6.11 10.673 
5.95,: 97.583 107.167 77.55 

   or=. orthoclase=. 8.562 12.996 
7.193,: 90 116.01 90 

   an=. anorthite=. 8.177 12.877 
14.169,: 93.17 115.85 81.22 

   ax=. axinite=. 7.15 12.57 13.05,: 
91.383 75.5 93.383 

   ky=. kyanite=. 7.12 7.85 5.57,: 
89.983 101.117 106 

   $minerals=. ch,or,an,ax,:ky 
5 2 3 

  Because we assigned dmat a rank of  2, it applies to the 
individual 2 by 3 cells of the array; hence   
   $x=. dmat minerals 
5 3 3 

 volume"2 minerals and  det x both give 
the volumes of the unit cells of all five minerals. 
 The shape of the transpose of the inverse is, however, not 
at all what want:    $ |: %. x   is    3 3 5 
The reason is that while matrix inverse (%.)has a rank of 
2,  the rank of (|:)is unbounded (infinite). This is 
confirmed by using the basic adverb b. which enables the 
ranks of the associated verb to be displayed. This display 
should always be examined when the rank of a composite 
function is in doubt. 
   %. b. 0 

2 _ 2 

   |: b. 0 

_ 1 _ 

 Consequently  it is not the individual 3 by 3 cells that are 
transposed!  Because the rank of u@v is the rank of v, the 
composed function  |:@%. has the required  rank of 2, 
but attempted execution of  %.|: x or  %.@|: x  
give length errors. 
   |:@%. b. 0          %.@|: b. 0 

2 _ 2              _ 1 _ 

   $ |:@%. x 

5 3 3 

 This example demonstrates an important aspect  of  
function composition:  the rank of  u@v is mv lv rv [16, 
p.172]. 

10.7   Rotations and projections 

 When 3-dimensional objects are described by Cartesian 
co-ordinates, they can be rotated by an inner product with a 
3 by 3 matrix. This is analogous to rot in Section 10.3. 
 It is best to define separate matrices for rotations about 
the  x ,  y,  and z axes. Any desired rotation is then given 
by the inner products of these rotation matrices. Assuming 
that the co-ordinates are arranged in an n by 3 matrix, an 
inner product with an appropriate 3  by 2 matrix projects 
them onto the desired graphic plane. This projection matrix 
can be pre-multiplied by the rotation matrices to give a 
single 3 by 2 matrix that both rotates and projects in a 
single inner-product operation [3]. 
 

11   Summary and Conclusions 
 
Iverson  has greatly extended the methods of composition  
familiar to mathematicians, and applies composition to 
adverbs and conjunctions as well as to functions (verbs). 
His contribution  marks an important advance in computer 
programming. Annotated examples show programmers how 
composition is used in practice. 
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