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Abstract

In this paper, we consider the class of linear space time block codes (STBCs) that possess the

following properties: i) enabling full antenna diversity, ii) preserving the modulus of information symbols,

and iii) achieving the maximum rate of one symbol per channel use under i) and ii). We first provide an

alternative construction for full-diversity rate-one STBCs that are based on linear constellation precoding

(LCP). In sharp contrast to existing LCP-based designs, the proposed construction is modulus-preserving,

thanks to an explicit unitary diagonal precoding on symbol blocks combined with an implicit fast-Fourier-

transform (FFT) precoding via circularly shifted transmissions over multiple antennas. Our proposed

construction also allows flexible choices on the precoder size, a feature not available in the original design.

We then demonstrate that quasi-orthogonal (QO) STBCs can be constructed by embedding modulus-

preserving LCP designs into orthogonal structures. Interestingly, QO-STBCs can be interpreted as space-

time-frequency (STF) block codes, that were originally developed for multi-antenna multi-carrier systems,

up to FFT transformations.

Index Terms

Space time block coding, linear constellation precoding, circular delay diversity, quasi-orthogonal,

full antenna diversity, modulus-preserving.

I. INTRODUCTION

Space-time coding (STC) has by now been well documented as an attractive means of achieving high

data rate transmission with robust performance over fading channels. Space time coding amounts to

a two-dimensional coding that maps information bits into parallel transmitted symbols across multiple

antennas (“space”) over a certain time duration (“time”). In this paper we focus on one class of STC,

where the coded transmission is linear with respect to information symbols (the real and imaginary parts)

in both space and time. Let Nt and Nr denote the number of transmit- and receive-antennas in the system.

Collect P information symbols into a vector s = [s1, . . . , sP ]T . Based on the information symbol block

s, a linear space time block code (STBC) constructs a space time transmission matrix as [9], [20]

X =
P∑

p=1

(spAp + s∗pBp), (1)

where Ap and Bp are complex T × Nt matrices. The Nt columns of X are transmitted through Nt

antennas simultaneously in T symbol intervals.

Design of linear STBCs boils down to the construction of matrices {Ap,Bp}P
p=1. The quality of the

design could be judged from various perspectives, as summarized in the following.
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• Diversity order. Diversity order measures the slope of the block-error-rate (or, the bit-error-rate)

versus signal-to-noise-ratio (SNR) on a log-log scale, at the high SNR region. Over flat-fading rich-

scattering channels, the maximum achievable diversity is NtNr. A STBC that achieves a diversity

order of NtNr is called a full-diversity code.

• Rate. The transmission rate of (1) is R = P/T symbols per channel use. High rate STBC is desirable.

• Delay optimality. For the maximum diversity of NtNr to be achieved, it is known that the minimum

possible decoding delay T is equal to Nt. Schemes that achieve maximum diversity with the

minimum delay Nt are called delay optimal [7].

• Modulus. To alleviate possible distortions due to amplifier non-linearity, it is desirable to have small

amplitude variations on the transmitted symbols. A STBC is termed “modulus-preserving”, if each

entry of X has the same modulus as the original information symbol. This means that each entry

of X can be either 0, ejφsp, or e−jφs∗p, where ejφ is a constellation rotation factor.

• Decoding complexity. Collecting full antenna diversity requires maximum likelihood (ML) or near-

ML receivers. Decoding complexity decreases if different parts of s can be decoded separately.

Nice properties on all aspects mentioned above cannot be possessed simultaneously by one particular

linear STBC design. In this paper, we emphasize i) full-diversity, and ii) modulus-preserving properties.

Notice that to achieve full antenna diversity, each symbol has to appear at least once per column of X;

hence at least Nt times in X. On the other hand, the modulus preserving property dictates that TN t

entries of X can host TNt (rotated) symbols at most. Combining these two, we must have PNt ≤ TNt

and R ≤ 1. Thus the transmission rate is no more than one, if both i) and ii) are satisfied. Under i) and

ii), we focus on the maximum-rate designs with R = 1 symbol per channel use.

Now let us briefly comment on existing linear STBC designs. The first category is the orthogonal

space time block code (OSTBC) [1], [7], [20], [22]. OSTBC enables full diversity. The most distinct

feature of OSTBC is that the optimal receiver relies only on simple linear processing for decoding each

information symbol. When Nt = 2, the Alamouti code [1] achieves the maximum rate R = 1. However,

when Nt > 2, OSTBC suffers from rate loss [7], [20], [22], which is a major drawback.

The second category is quasi-orthogonal (QO) STBC [11], [12], [17], [21] that enables higher rate

than OSTBC, but only possesses partial orthogonality among information symbols. Original QO-STBCs

do not collect full antenna diversity [12], [21], which is then recovered through judicious constellation

rotation [17]–[19]. QO-STBC usually preserves the symbol modulus [2], [12], [18], [19].

The third category is the STBC based on linear constellation precoding (LCP), see e.g., [3], [23]

and references therein. The LCP framework provides a systematic way to construct full-diversity rate-
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one delay-optimal STBC [23]. The main criticism of LCP-based STBC is that it does not preserve the

modulus of information symbols due to linear precoding, which leads to a large peak-to-average power

ratio in the transmitted sequence.

The fourth category is high-rate STBC, whose rate is larger than one, and could be as high as N t

symbols per channel use. Examples include diagonal BLAST [4], vertical BLAST [5], linear dispersion

(LD) code [9], and full-diversity full rate (FDFR) designs [6], [14]. Since high rate STBCs cannot achieve

full diversity while preserving the symbol modulus at the same time, we will not focus on them hereafter.

At the outset, let us reiterate that we will consider full-diversity modulus-preserving rate-one linear

STBCs. Our contributions are as follows.

• In Section II, we develop an alternative construction for LCP-based STBCs, that preserves the

symbol modulus. The key idea is to apply the unitary precoding of [23] in two steps: explicit

unitary diagonal precoding on information blocks and implicit FFT precoding via circularly shifted

transmissions (corresponding to the circular delay diversity in [15]) through multiple antennas. This

construction also provides additional flexibility on the choices of the precoder size, which enables

an interesting tradeoff between performance and complexity/delay-optimality.

• In Section III, we demonstrate that QO-STBCs can be constructed by embedding modulus-preserving

LCP designs into orthogonal STBCs, and that they are equivalent to the space-time-frequency

(STF) block codes, originally developed in [13] for multi-antenna orthogonal-frequency-division-

multiplexing (OFDM) systems, up to FFT transformations. We thus offer a unified view that reveals

the hidden links among various existing techniques.

Notation: Bold upper and lower letters denote matrices and column vectors, respectively; (·)T , (·)∗,

and (·)H denote transpose, conjugate, and Hermitian transpose, respectively; ⊗ stands for Kronecker

product; IN is the N × N identity matrix; 0M×N denotes an all-zero matrix of size M × N , and FN

denotes a unitary N × N FFT matrix with the (p+1, q+1)st entry as 1√
N

e−j 2π

N
pq; The matrix D(a) is

diagonal with diagonal elements from the vector a.

II. MODULUS-PRESERVING LCP DESIGN

For brevity, we assume one receive antenna in the system, and denote h = [h 1, . . . , hNt
]T as the channel

vector between Nt transmit antennas and the receive antenna. Denote X as the space time codeword of

dimensionality P × Nt, that is transmitted through Nt antennas in P time slots.

The proposed space-time code is constructed as follows. Denote α as a real constant, whose value will
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be specified later. We set the length P ≥ Nt, and define two matrices as:

Λ(α) = D
(
[1, e−jα, . . . , e−jα(P−1)]

)
, J =


01×(P−1) 1

IP−1 0(P−1)×1


 . (2)

When multiplying a vector a, the matrix Λ(α) performs successive phase rotations on elements of a,

while J performs a circular downshift on a. We construct X via the following steps:

1) collect P information symbols {sp}P
p=1 into a vector, denoted as s = [s1, . . . sP ]T .

2) apply the diagonal precoding (or, successive phase rotation) on s to obtain: s̃ = Λ(α)s.

3) each antenna transmits a circularly shifted version of s̃, with the mth antenna shifting s̃ by (m−1)

times. The P × Nt space-time matrix so constructed is:

X = [s̃,Js̃, . . . ,JNt−1s̃], (3)

with the mth column transmitted through the mth antenna.

When P = Nt, X in (3) is square. For example, when P = 3, 4, 5, the space time matrices are

X3×3 =




s̃1 s̃3 s̃2

s̃2 s̃1 s̃3

s̃3 s̃2 s̃1


 , X4×4 =




s̃1 s̃4 s̃3 s̃2

s̃2 s̃1 s̃4 s̃3

s̃3 s̃2 s̃1 s̃4

s̃4 s̃3 s̃2 s̃1




, X5×5 =




s̃1 s̃5 s̃4 s̃3 s̃2

s̃2 s̃1 s̃5 s̃4 s̃3

s̃3 s̃2 s̃1 s̃5 s̃4

s̃4 s̃3 s̃2 s̃1 s̃5

s̃5 s̃4 s̃3 s̃2 s̃1




. (4)

When P > Nt, X in (3) is a tall matrix. It can be obtained by keeping only the first Nt columns of a

square matrix XP×P .

Next we show how the transmission in (3) is related to the LCP framework in [23]. The vector

containing received symbols in P time slots is:

y = Xh + w = (h1I + h2J + . . . + hNt
JNt−1)︸ ︷︷ ︸

:=H̃

s̃ + w = H̃s̃ + w, (5)

where w is the additive white Gaussian noise. The matrix H̃ =
∑Nt

m=1 hmJm−1 is circulant, and thus can

be decomposed as H̃ = FH
P D(h̃)FP , where h̃ = [H(0), . . . H(P−1)]T with H(p) :=

∑Nt

m=1 hme−j 2π

P
mp

[8, p. 202]. Performing FFT on y, we obtain:

z = FP y = D(h̃)FP Λ(α)︸ ︷︷ ︸
:=Θ

s + FPw︸ ︷︷ ︸
:=n

= D(h̃)Θs + n, (6)

where the resulting noise n is still white.
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Eq. (6) reveals that the proposed transmission falls into the LCP framework of [23]. Indeed, the

information block s is precoded by a matrix Θ, and the symbols in the precoded block Θs go through

diagonal channels contained in D(h̃) sequentially. The difference is that the proposed method diagonally

transmits precoded symbols in the frequency domain, while the original approach in [23] is in the time

domain. Our frequency domain LCP is achieved by time-domain explicit diagonal precoding followed by

implicit FFT precoding via circularly shifted transmissions. Note that our proposed construction does not

change the modulus of the transmitted symbols. This is in sharp contrast to the original LCP construction.

Now, we specify how to choose P and α.

• When Nt = 2d, d = 1, 2, . . . , we set P = Nt and α = π
2P . For constellations carved from a

square lattice, e.g., quadrature-amplitude-modulation (QAM), Θ = FPΛ(α) is optimal in terms

of maximizing the coding gain among all possible linear precoders [23]. Therefore, the proposed

transmission achieves the optimal performance as the original LCP design, meaning that modulus-

preserving property is obtained with no cost at all.

• When Nt �= 2d, we have two choices. One choice is to set P = Nt, and find α through some

heuristic rules [23]. The precoder Θ = FNt
Λ(α), being unitary, may achieve less coding gain than

some non-unitary alternatives [23]. In this setup, the desirable modulus property is obtained at the

expense of some possible performance loss.

The other choice is to let P > Nt, where P is a power of two that leads to an optimal α = π
2P . With

P > Nt, the space time code is not delay-optimal. Increasing P also leads to a slight complexity

increase, as the receiver needs to decode P (rather than N t) symbols jointly. Interestingly, this choice

always has better performance than P = Nt, as evidenced by our numerical results. The flexibility

on the selection of the precoder size is not realized in [23], where P equals N t throughout.

III. EMBEDDING LCP INTO OSTBC AND THE SPACE-TIME-FREQUENCY INTERPRETATION

QO-STBC has been extensively studied in the literature [11], [12], [17], [19], [21]. A very general

formulation for QO-STBC is provided in [18]. On code construction, a recursive method is developed in

[18], while another method is provided in [2] based on linear Hadamard codes. We next present another

construction of QO-OSTBC by embedding the modulus-preserving LCP designs into orthogonal structure.

Thus, our construction provides a different realization of the general formulation in [18]. Although

different QO-STBC constructions are equivalent performance-wise, our approach clearly demonstrates

how modulus-preserving LCP, OSTBC, and QO-STBC are related. And more importantly, our approach

reveals a space-time-frequency interpretation for QO-STBC, which is not available based on other
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constructions. Instead of a general (yet less reader-friendly) presentation, which relies on the general

matrix representation of OSTBC [20], we just specify several important cases in the following.

A. Embedding LCP into the Alamouti Code — Rate-one Quasi-Orthogonal Designs

We first consider embedding LCP into the 2 × 2 Alamouti code [1]. Without loss of generality, we

choose an even P and define K = P/2. We split the symbol vector s into two equi-length sub-blocks

s = [sT
a , sT

b ]T . Based on sa and sb, we construct the LCP codewords Xa and Xb from (3). Embedding

Xa and Xb into the Alamouti structure, the overall space-time codeword is:

Xab =


 Xa Xb

−X∗
b X∗

a


 . (7)

We list the example codes for P = 4 and P = 8 as:

Xqo
4 =




s̃1 s̃2 s̃3 s̃4

s̃2 s̃1 s̃4 s̃3

−s̃∗3 −s̃∗4 s̃∗1 s̃∗2
−s̃∗4 −s̃∗3 s̃∗2 s̃∗1




, Xqo
8 =




s̃1 s̃4 s̃3 s̃2 s̃5 s̃8 s̃7 s̃6

s̃2 s̃1 s̃4 s̃3 s̃6 s̃5 s̃8 s̃7

s̃3 s̃2 s̃1 s̃4 s̃7 s̃6 s̃5 s̃8

s̃4 s̃3 s̃2 s̃1 s̃8 s̃7 s̃6 s̃5

−s̃∗5 −s̃∗8 −s̃∗7 −s̃∗6 s̃∗1 s̃∗4 s̃∗3 s̃∗2
−s̃∗6 −s̃∗5 −s̃∗8 −s̃∗7 s̃∗2 s̃∗1 s̃∗4 s̃∗3
−s̃∗7 −s̃∗6 −s̃∗5 −s̃∗8 s̃∗3 s̃∗2 s̃∗1 s̃∗4
−s̃∗8 −s̃∗7 −s̃∗6 −s̃∗5 s̃∗4 s̃∗3 s̃∗2 s̃∗1




. (8)

It is easy to verify that the Xqo
4 in (8) is equivalent to the 4 × 4 quasi-orthogonal design in [21, Eq.

(6)] by row and column permutations as well as relabelling the symbols. It can be also obtained from

the design in [12, Eq. (5)] by row/column multiplication with −1, row/column permutation, and symbol

relabelling. We will show in Sec. III-C that X in (7) will enable separate decodings on sa and sb; hence,

it is a quasi-orthogonal design. For this reason, we used the notation Xqo. For Nt = 3, 4, any Nt columns

of Xqo
4 can be used as a space-time codeword. For N t = 5, 7, 8, any Nt columns of Xqo

8 can be used as

a codeword. For Nt = 6, one can either use 6 columns of Xqo
8 , which is then not delay-optimal, or one

can directly construct Xqo
6 that is delay-optimal. This delay-optimal Xqo

6 cannot be obtained using the

recursive method in [18] or the Hadamard-code based method in [2].

The X in (7) is one design of full-diversity modulus-preserving rate-one quasi-orthogonal code.
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B. Embedding 2 × 2 LCPs into OSTBC — The ABBA Quasi-Orthogonal Designs

We now consider embedding LCPs into general OSTBCs other than the Alamouti code, where rate-one

designs are not possible. We only consider 2× 2 LCPs, and will not include LCPs with larger size. With

an OSTBC that consists of Ns complex symbols {x1, . . . , xNs
}, we now replace each xi by a 2×2 LCP

in (3) based on si := [s2i−1, s2i]T .

Let us illustrate the construction with the rate 3/4 STBC with Ns = 3. We pick P = 2Ns = 6 symbols,

and divide the vector s = [s1, . . . , s6]T into three 2× 1 sub-vectors s1, s2, and s3. Generating the 2× 2

LCP matrices from {si}3
i=1, and then embedding them into the orthogonal STBC, we obtain:

X̃qo
8 =




s̃1 s̃2 s̃3 s̃4 s̃5 s̃6 0 0

s̃2 s̃1 s̃4 s̃3 s̃6 s̃5 0 0

−s̃∗3 −s̃∗4 s̃∗1 s̃∗2 0 0 s̃5 s̃6

−s̃∗4 −s̃∗3 s̃∗2 s̃∗1 0 0 s̃6 s̃5

−s̃∗5 −s̃∗6 0 0 s̃∗1 s̃∗2 −s̃3 −s̃4

−s̃∗6 −s̃∗5 0 0 s̃∗2 s̃∗1 −s̃4 −s̃3

0 0 −s̃∗5 −s̃∗6 s̃∗3 s̃∗4 s̃1 s̃2

0 0 −s̃∗6 −s̃∗5 s̃∗4 s̃∗3 s̃2 s̃1




. (9)

It is easy to see that X̃qo
8 is equivalent to [19, eq. (30)] up to row and column permutations. This is not

surprising, since the quasi-orthogonal codes in [19] are the ABBA codes of [10], [21]. The ABBA code has

the form


A B

B A


 , where A and B are two OSTBCs based on two different sets of information symbols.

Hence, the ABBA code embeds OSTBCs into a 2 × 2 LCP design. By row and column permutation, it

is equivalent to the embedding of multiple 2 × 2 LCPs into an OSTBC that we presented here.

C. Separable Decoding and the Optimal Constellation Rotation

We illustrate the receiver processing with the codeword based on the Alamouti structure (7). Denote ya

and yb as the received blocks corresponding to the first and second halves of the transmission. Suppose

that we have P antennas, and we collect the channel coefficients into two K × 1 vectors h a, and hb.

With wa and wb denoting the additive noise, we have
ya

yb


 =


 Xa Xb

−X∗
b X∗

a





ha

hb


 +


wa

wb


 . (10)
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Taking the FFT of ya and yb, and conjugating FKyb, we obtain:
 FKya

(FKyb)∗


 =


 D(h̃a) D(h̃b)

−D(h̃∗
b) D(h̃∗

a)




︸ ︷︷ ︸
:=Dab


ΘKsa

ΘKsb


 +


 FKwa

(FKwb)∗


 , (11)

where ΘK = FKD(α) from the results in Sec. III. The matrix Dab has orthogonal columns: DH
abDab =

I2 ⊗ Λ2
equ, where

Λequ =
[
DH(h̃a)D(h̃a) + DH(h̃b)D(h̃b)

] 1
2
. (12)

Left-multiplying eq. (11) by a unitary matrix, we have:
za

zb


 = (DH

abDab)−
1
2 DH

ab︸ ︷︷ ︸
unitary matrix


 FKya

(FKyb)∗


 =


Λequ 0

0 Λequ





ΘKsa

ΘKsb


 +


na

nb


 , (13)

where the post-processing noise [nT
a ,nT

b ]T remains white. Hence, without loss of optimality, sa and sb

can be decoded separately from

za = ΛequΘKsa + na, zb = ΛequΘKsb + nb. (14)

The orthogonality in the Alamouti structure enables the receiver to perform two separate decodings, each

one having a reduced size.

Notice that the precoders are now applied on blocks of size K = P/2. Let us stick to the case K = 2 d,

then the optimal α should be α = π/(2K). For the Xqo
8 , we have K = 4, α = π/8.

Now, let us talk about the ABBA case in Section III-B of embedding 2×2 LCPs into general orthogonal

STBCs. The receiver can be similarly constructed, leading to parallel decodings on multiple 2×1 blocks.

In this case, K = 2, the optimal α = π/4. Hence, after diagonal precoding, half of the symbols are

drawn from the original constellation A, and the other half from the rotated constellation e−j π

4 A. This

result is consistent with [19]. Hence, based on the links of QO-STBCs and embedded LCPs, the optimal

design in [19] coincides with [23] with K = 2, when QAM constellations are considered.

D. The Space-Time-Frequency Interpretation

The system input-output relationship in (11) is identical to the counterpart when an STF block code is

transmitted in a multi-antenna OFDM system [13]. Therefore, surprisingly, the QO-STBC is equivalent

to an STF block code, although they both have appeared for a while in different application scenarios.

To be more specific, let us analyze the code in (7). It is easy to verify that

(I2 ⊗ FK)Xab(I2 ⊗ FH
K) =

√
Nt


 D(ΘKsa) D(ΘKsb)

−D∗(ΘKsb) D∗(ΘKsa)


 . (15)
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The right hand side of (15) is an STF block code with LCP precoding across K diagonal subchannels

and Alamouti coding on each subchannel [13]. Essentially, the QO-STBC in (7) divides the P antennas

into two groups. Each group of K antennas are converted into one virtual antenna with K channel

taps through the circular delay diversity [15]. With FFT operation, each virtual antenna generates K flat

channels in the frequency domain. The transmitter applies LCP across frequencies and Alamouti coding

in space and time.

In summary, QO-STBC can be viewed as the embedding of modulus-preserving LCP into OSTBC,

and it can be interpreted as a space-time-frequency block code after FFT transformations. This novel

viewpoint builds explicit links among various existing approaches. This viewpoint is not available before.

Our approach has the additional benefit that we clearly see how the decodings of individual blocks are

separated via linear processing [c.f. (10)-(14)].

IV. NUMERICAL RESULTS

Recall that in the case of Nt = 2d, our new construction is always preferred over the original LCP

transmission, preserving the symbol modulus at no cost. We next present some numerical results with

Nt �= 2d. We adopt QPSK constellations and use bit error rate (BER) as the figure of merit.

We use the sphere decoder in [16] on the receiver side. For N t = 3, Fig. 1 compares the performance

of the following four setups: i) the original diagonal LCP transmission with the optimized 3×3 precoder

(listed in Sec. VI of [23]); ii) the modulus-preserving delay-optimal X3×3 in (4) with α = π/9; iii)

the modulus-preserving delay-non-optimal X4×3 (the first three columns of X4×4 in (4)); and iv) the

first three columns of the QO-STBC Xqo
4 in (8). For Nt = 5, Fig. 2 compares the performance of the

following four setups: i) the original diagonal LCP transmission with the 5 × 5 Vandermonde precoder

constructed from the roots of x5 = 1+j [23]; ii) the modulus-preserving delay-optimal X5×5 in (4), with

α = 2π/35 from [23]; iii) the first five columns of the modulus-preserving X8×8 (delay non-optimal);

and iv) the columns {1,2,3,5,6} of the quasi-orthogonal code Xqo
8 in (8). From Figs. 1-2, we observe:

• In the case of Nt �= 2d, if we keep the delay optimality with P = Nt, our alternative LCP

transmission with modulus-preserving property could render slight performance loss relative to the

original LCP transmission, as evidenced in Figs. 1 and 2.

• In the case of Nt �= 2d, it is beneficial to adopt our alternative LCP transmission with P > Nt, where

P is a power of 2. This new transmission preserves the modulus and improves the performance, at

the price of a slight increase in decoding complexity and delay.
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• The quasi-orthogonal codes (with optimal constellation design) have better performance than the

STBC based on LCP alone. The QO-STBC exploits the orthogonality in Alamouti structure as

much as possible, so that the LCP encoding and decoding are applied to blocks with halved sizes.

Both complexity reduction and performance improvement are achieved.

V. CONCLUSIONS

In this paper, we investigated full-diversity modulus-preserving rate-one linear STBC. We first presented

an alternative construction for the linear constellation precoding based STBC, where we applied linear

precoding judiciously in two steps: explicit unitary diagonal precoding on symbol blocks and implicit FFT

precoding via circularly shifted transmissions over multiple antennas. Compared with the original LCP

design, our proposed construction possesses two distinct features: i) it preserves the symbol modulus, and

ii) it is flexible on the choices of the precode size, opening room for different performance tradeoffs. We

then demonstrated that quasi-orthogonal STBCs can be constructed by embedding modulus-preserving

LCP designs into orthogonal structures. And interestingly, QO-STBC can be interpreted as a space-time-

frequency block code, which was originally developed for multi-antenna OFDM systems, up to FFT

transformations. We thus offer a unified view that provides new insights into various existing techniques.
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Fig. 1. The comparison results with Nt = 3
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Fig. 2. The comparison results with Nt = 5
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