
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001 461

Look-Ahead Based Fuzzy Decision Tree Induction
Ming Dong, Student Member, IEEE,and Ravi Kothari, Senior Member, IEEE

Abstract—Decision tree induction is typically based on a
top-down greedy algorithm that makes locally optimal decisions
at each node. Due to the greedy and local nature of the decisions
made at each node, there is considerable possibility of instances at
the node being split along branches such that instances along some
or all of the branches require a large number of additional nodes
for classification. In this paper, we present a computationally
efficient way of incorporating look-ahead into fuzzy decision tree
induction. Our algorithm is based on establishing the decision
at each internal node by jointly optimizing the node splitting
criterion (information gain or gain ratio) and the classifiability
of instances along each branch of the node. Simulations results
confirm that the use of the proposed look-ahead method leads to
smaller decision trees and as a consequence better test perfor-
mance.

Index Terms—Decision tree, classification, fuzzy ID3, fuzzy sys-
tems, gain ratio.

I. INTRODUCTION

DECISION trees represent a simple and powerful method
of induction from labeled instances [1], [2]. At a given

node of the tree, astopping criterion(based on the fraction of
instances correctly classified or the cardinality of the compatible
instances or some other similar measure) is used to determine if
additional child nodes are necessary. If additional child nodes
are required, they are added based on anode splitting criterion
and the process is repeated for each of the new internal nodes
until a completely discriminating tree is obtained. This standard
approach to decision tree construction thus, corresponds to a
top-down greedy algorithm that makes locally optimal decisions
at each node.

One of the strengths of decision trees compared to other
methods of induction is the ease with which they can be
extended to nonnumeric domains. This allows decision trees to
be used in situations where considerable cognitive uncertainty
is present and the representation of the instances is in terms
of symbolic or fuzzy attributes [3]–[8]. The uncertainty may
be present in obtaining numeric values of the attributes or in
obtaining the exact class to which a specific instance belongs.
Fuzzy decision trees have also been used either in conjunction
with or as precursors to other empirical model construction
paradigms [9]–[11]. Of course, there exists close parallels
between the development in the areas of crisp and fuzzy
decision tree induction.

One of the challenges in decision tree induction is to develop
algorithms that produce decision trees of small size and depth.
In part, smaller decision trees lead to lesser computational ex-
pense in determining the class of a test instance. More signifi-

Manuscript received November 17, 2000; revised February 26, 2001.
The authors are with the Artificial Neural Systems Laboratory, Department

of Electrical and Computer Engineering and Computer Science, University of
Cincinnati, Cincinnati, OH 45221-0030 USA.

Publisher Item Identifier S 1063-6706(01)04534-9.

cantly, however, larger decision trees lead to poorer generaliza-
tion (test) performance [12]. Motivated by these considerations,
a large number of algorithms have been proposed toward pro-
ducing smaller decision trees. Broadly these may be classified
into three categories.

1) The first category includes those efforts that are based
on different criteria to split the instances at each node.
Some examples of the different node splitting criteria
include entropy or its variants [1], the chi-square
statistic [13], [14], the G statistic [14], and the GINI
index of diversity [12]. Despite these efforts, there
appears to be no single node splitting that performs
the best in all cases [15], [16]; nonetheless there is
little doubt that random splitting performs the worst.

2) The second category is based on pruning a decision
tree either during the construction of the tree or after
the tree has been constructed. In either case, the idea
is to remove branches will little statistical validity (see
for example, [17], [18]).

3) The third category of efforts toward producing smaller
decision trees is motivated by the fact that a locally
optimum decision at a node may give rise to the
possibility of instances at the node being split along
branches, such that instances along some or all of
the branches require a large number of additional
nodes for classification. The so calledlook-ahead
methodsattempt to establish a decision at a node by
analyzing the classifiability of instances along each of
the branches of a split [19]–[21]. Surprisingly, mixed
results (ranging from look-aheadmakes no difference
to look-aheadproduces larger trees[21]) are reported
in the literature when look-ahead is used.

Of these approaches, look-ahead has been the least frequently
studied. In addition, the fact that it produces mixed results is
counter intuitive. In this paper, we propose a novel method of
evaluating the classifiability of instances along the branches of
a node split [22]. Based on this method, we propose a fuzzy de-
cision tree induction algorithm that utilizes look-ahead to pro-
duce smaller decision trees. We have organized the rest of the
paper as follows. In Section II, we briefly review Fuzzy ID3
(F-ID3) [5] as well as the gain ratio (GR) method [2] and in
that context, establish the need for examining the structure of
the instances in each branch of a node. In Section III, we pro-
pose a new mechanism for look-ahead and propose a look-ahead
based fuzzy decision tree induction algorithm. Experimental re-
sults and presented in Section IV and our conclusions appear in
Section V.

II. FUZZY DECISION TREE INDUCTION

In this section, we introduce the notation used in the rest of
the paper and briefly examine the popular F-ID3 algorithm [5]

1063–6706/01$10.00 © 2001 IEEE

462 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

TABLE I
SYNTHETIC DATA TO MOTIVATE THE NEED FORLOOK-AHEAD. NUMBERS IN THE TABLE ARE THE MEMBERSHIPVALUES

as well as the GR [2] method of inducing decision trees. Though
we integrate the proposed look-ahead method with F-ID3 and
GR, it is in fact easy to integrate it with other node splitting
criterion, for example, the one based on minimum classification
ambiguity [4].

Let the universe of objects be described byattributes
. An attribute takes values of fuzzy

subsets . There are a total of training
instances. Based on the attributes, an object is classified into

fuzzy subsets .
F-ID3 is based on an adaptation of the classical definition of

entropy. This adaptation, or fuzzy entropy as it is also called, for
a subset can be defined as

(1)

where, is the relative frequency of theth subset of at-
tribute with respect to and defined as

(2)

and is the cardinality of a fuzzy set [4], [18]. The attribute
chosen to split the instances at a given node is based o,

(3)

where, returns that value of the index for which is
the smallest and

(4)

It is easy to see that choosing an attribute to split the instances
based on the above equations results in the maximum decrease
in fuzzy entropy, i.e., one that maximizes the cardinality of com-
patible instances.

F-ID3, however, has an obvious drawback just like ID3 al-
gorithm. It favors attributes with a large number of possible
attribute values. To discourage a large number of partitions, a
factor based on the entropy of the size of the splits was pro-
posed giving rise to the GR measure [2]. More specifically

(5)

where is the information gain defined as with
being the fuzzy entropy at a node, is as given by (4) and

is the information value of attribute defined as

(6)

One problem is that GR might choose attributes with very low
IV scores, rather than those with high information gain. To avoid
this, we can simply calculate the average fuzzy entropy value for
all the attributes at a node then select only from among those
with below average fuzzy entropy values.

Irrespective of whether information gain or the gain ratio is
used, the construction of a decision tree represents a greedy
search strategy that implements a locally optimum decision at
each node. The difficulty is that a combination of locally op-
timal decisions can not guarantee the global optimum tree i.e., a
tree with smallest size. Indeed it is an NP-hard problem to find
the smallest tree or one with the least number of leaves [18].

To illustrate this further and to motivate the consideration of
look-ahead in the construction of a decision tree we present an
illustrative example. Consider the data in Table I, which is a
modification of the data used in [4]. There are four attributes.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001 463

Fig. 1. The decision trees generated by choosing the attribute with the lowest fuzzy entropy at each node (top). The bottom panel shows an alternative and smaller
decision tree that is possible. In these trees, a node is considered terminal if the cardinalityM(�) is less than one.

These attributes and the values they can assume are defined
below

There are three classes with class labelsPlan A , Plan
B, andPlan C . The numbers in Table I are the membership
values. Membership values are not probabilities, thus, it is not
necessary for membership values of all linguistic terms of an
attribute to add to one.

The construction of the tree, based on F-ID3 proceeds as fol-
lows. At the root node, the fuzzy entropy for all the attributes
based on (4) are

Thus, using (3), we choose the attributeOutlook , which has
the lowest fuzzy entropy at the root node. Repeating this further
for each of the child nodes, we arrive at the decision tree shown
in the top panel of Fig. 1. On the contrary, if attributeWind
(which does not have the lowest fuzzy entropy but leads to a
simpler distribution of patterns at the child nodes) is chosen,

a smaller sized tree is obtained as shown in the bottom panel
of Fig. 1. In these trees, a node is considered terminal if the
cardinality of incorrectly classified instances is less than
one. It is because of this that one finds all child nodes with the
same class label. This implies that at the parent node was
greater than 1; however at each the child nodes is less
than 1. This example, though simple, illustrates that choosing an
attribute based on jointly considering the node splitting criterion
(information gain here) and classifiability of the instances along
all the child branches can lead to smaller decision trees1 .

A similar situation arises when GR is considered as shown
below

As before we would still chooseOutlook which has the
highest GR at the root node. In this case, the overall tree has 19
nodes (not shown), which is still larger than that shown in the
bottom panel of Fig. 1.

III. L OOKAHEAD BASED FUZZY DECISIONTREEINDUCTION

The goal of look-ahead is to evaluate the classifiability of in-
stances that are split along branches of a give node.The question

1This smaller tree was actually obtained using the algorithm we propose in
this paper. Details of this algorithm appear in Section III.

464 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

is how to evaluate the classifiability?Prior efforts (within the
context of crisp decision trees) used a classifier parameterized
identically to the one producing the split to evaluate the classi-
fiability of the instances along each branch of the split. For ex-
ample, when a linear discriminant is used to split the instances,
then a linear discriminant is used to evaluate the instances in
each of the two subsets of instances resulting from the split. This
corresponds to a single step look-ahead. The difficulty however,
is that to obtain a good estimate of the classifiability one would
typically need a multilevel look-ahead. Even so, it is possible
that in a situation where three–step look-ahead is used, a very
different outcome would result if a four-step look-ahead is used.
The argument can be generalized and it becomes clear that if a
classifier is actually used to evaluate the classifiability then an
exhaustive look-ahead is necessary. Clearly, this is not feasible
in all but the most trivial of cases. As earlier efforts used a few
(one or two mostly) step look-ahead, they did not consistently
obtain better results [19]–[21]. Indeed, in some cases they ob-
tained poorer results with look-ahead than without.

We propose to characterize the classifiability of instances that
are split along branches of a give node using a nonparametric
method. The motivation for our approach can be more easily
explained within the context of a crisp dataset. Consider a two-
class situation with attributes. In dimensions (vari-
ables and one for the class label), one may thus, visualize a sur-
face. When the instances of a class are interlaced with another
class, this surface is rough. However, when there are compact
and disjoint class regions, this surface is considerably smoother.
This is akin to visualizing the class label as defining the surface
in dimensions. Fig. 2 shows the distribution of some instances
in two-dimensions (2-D). The third dimension is the class label
(zero for one class and one for the other). It is clear that the distri-
bution in the bottom panel is more amenable to subsequent clas-
sification. It may also be observed that the surface formed by the
class label is considerably smoother in the bottom panel. Thus,
we propose to evaluate the classifiability of instances that are
split along branches of a give node in terms of the smoothness
of the class label surface of instances assigned to that branch.
A widely used way of characterizing the smoothness (or rough-
ness) of a surface in image processing is through the use of a
cooccurrence matrix [23] and we adopt it here with some mod-
ifications to characterize the texture of the class-label surface2 .

In the following, we formally define the characterization of
the class-label surface.

Definition 1: Let
denote the membership value of instancefor the th

value of th attribute. The distance between instanceand is
defined by

(7)

For any instance in the data set, we can find those instances
that are within a circular neighborhood of radius, of instance

2It is conceivable that there are other methods of evaluating the classifiability.
For example, one can use the purity of thek-nearest neighbors of an instance. It
is not immediately clear if any advantage is obtained by such a method over the
one proposed here. Our choice of a texture based method however does conform
to the intuitive notion of class label surface roughness as used here.

Fig. 2. Three-dimensional plot to show the smoothness of the surface caused
by different distribution of instances. The distribution in the top panel is harder
to classify (rough surface); the one on the bottom is easier to classify (smoother
surface).

, based on the distance defined above. We can then define the
local cooccurrence matrix for instance as follows.

Definition 2: Let denote the
membership value of instance for class and let

. The local cooccurrence ma-
trix of instance is defined by

(8)

The size of the local cooccurrence matrix is (recall that
is the number of classes). It captures the distribution of instances
around a specific instance. In other words, the element

of matrix shows the number of class
instances that are within the neighborhoodof instance when
instance belongs to classwith membership .

Note, child nodes are created when an attribute is used to
split the instances at a given node. We can get the cooccurrence
matrix for each branch (after theth attribute is selected) by
simply adding the cooccurrence matrix of all the instances along
that branch and the overall cooccurrence matrix of the instances
by summing the cooccurrence matrix along each branch.

Definition 3: Local coccurrence matrix after attributeis
selected

(9)

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001 465

where denotes any instance in theth child node of current
node.

Note that in the ideal case (perfect classifiability) matrix
becomes a diagonal matrix. In general, the off-diagonal

terms correspond to instances of different classes that occur
with a neighborhood of radius. We first normalize such
that the sum of the elements of is one. Thus, we can
define the classifiability, as

(10)

where is an element in rowand column of the matrix .
The look-ahead term allows us to formulate an objective

function that allows a decision to be made at a node so as to
jointly optimize the node splitting criterion (information gain,
GR, or any other chosen criterion) as well as classifiability of
instances along all branches of the node. More specifically, we
define the following objective function

(11)

where, can be equal to as defined in (4) or be equal to
as defined in (5), and represents the look-ahead term

discussed above. An attributeselected to split the instances at
a given node is then based on

(12)

Equations (9)–(12) can then be used to choose an attribute to
split the instances at a particular node. The resulting split in this
case corresponds to one that maximizes the number of correct
classifications at the node as well as facilitates the classification
of the instances in each branch of the node. In the next section,
we present some experimental results obtained using the pro-
posed algorithm. Of course, whenin (11) is 0, the proposed
algorithm becomes identical to the F-ID3 algorithm or the GR
algorithm (depending on what is defined as).

IV. EXPERIMENTAL RESULTS

We present results with seven data sets to illustrate that the
proposed look-ahead based fuzzy decision tree induction algo-
rithm can produce smaller trees. Except for the first simulation,
all data sets can be obtained from the University of California,
Irvine, Machine Learning Repository [24] or from the restricted
area of the UCI Machine Learning Repository [25].

For each of the data sets we obtain the performance of Fuzzy
ID3 based on information gain by itself (IG), Fuzzy ID3 com-
bined with the proposed method of look-ahead (IGLA), GR
by itself and GR combined with the proposed method of look-
ahead (GR LA). In general, it is possible to incorporate the pro-
posed method of look-ahead with other node splitting criterion
(for example, with the minimum classification ambiguity [4]).

We followed a consistent method of fuzzifying the data for all
cases. When an attribute is categorical, the fuzzification is quite
straightforward. We just treat each of the possible values of the
attribute as a fuzzy subset. In this case, the membership value

in a fuzzy subset is either zero or one. For numerical attributes,
we use the -means clustering algorithm to cluster the attribute
values in to three clusters representing three linguistic terms

. The choice of the number of clusters is arbitrary
though we were guided by the notion that a value can typically
be thought of as being low, average, or high. We generate the
memberships based on a triangular membership function and
the three cluster centers (with)
obtained through -means clustering. Specifically

(13)

(14)

(15)

In all our simulations, the class label isnot fuzzified, i.e., each
instance belongs to a single class.

When separate training and testing data sets are present, re-
sults are reported based on construction of the decision tree with
the training data and subsequent labeling of the instances in the
testing data. When no separate training and testing data sets are
present, we ran the algorithm three times. For each of the runs,
we randomly divided the available data into two partitions—a
training partition and a test partition. In this case, numbers re-
ported are based on averaging over the three runs. The inference
rule for the testing data is quite simple. Assume at some node,
we choose attribute to split the data. When a test instance
comes in, it goes toth child node if it has the highest member-
ship value in th possible value of attribute . This means that
the fuzzy inference is actually the same as the nonfuzzy infer-
ence with the nonfuzzy partition for continuous features using
three intervals:

. These intervals correspond to the
three membership functions defined in (13)–(15). We repeat this
procedure until we arrive at a leaf node where we classify the
instance according to the class label at that leaf node.

A. Data Set I: The Illustrative Example of Section II

The first simulation is based on the example data set of Sec-
tion II. To decide on the attribute to select based on the proposed
method, we first obtain the local cooccurrence matrix and clas-
sifiability of the instances along the branches of the root node
using (9) and (10) for each of the attributes as

and

and

466 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

TABLE II
EXPERIMENTAL RESULTS. TRAINING AND TESTING ACCUARCY IS EXPRESSED INPERCENTAGES.NODES IN THEDECISION TREE WERE ADDED UNTIL FEWER

THANERRORTOLERANCEINSTANCES ARE INERROR. WHEN THECLASS LABLE IS CRISP, THESUM OF THEINCONSISTANTCARDINALITIES EQUALS THE NUMBER OF

INSTANCESMISCLASSIFIED.PERFORMANCE ISREPORTED FORIG, IG+LA (INFORMATION GAIN WITH THE PROPOSED MEHTOD OF LOOK-AHEAD),GR,AND GR+LA
(GAIN RATION WITH THE PROPOSED METHOD OF LOOK-AHEAD)BASED ALGORITHMS. .

and

and

From the above, it is clear that the use of the attributeWind
results in much greater classifiability. Using (11) and (12) we
also obtain the attributeWind as the attribute of choice for the
root node. Proceeding in this way, we obtain the decision tree
shown in bottom panel of Fig. 1. Comparing it to the original
decision tree, it is clear that the one obtained using the proposed
algorithm is significantly smaller.

B. MONK’s Problem

For the next three simulations, we consider the well known
MONK’s data sets available at the UCI Machine Learning
Repository [24]. The MONK’s data sets are actually three
subproblems. The domains for all MONK’s problems are the
same. There are 432 instances that belong to two classes and

each instance is described by seven attributes .
Among the seven attributes, there is one ID attribute (a unique
symbol for each instance), which is not related to classification
and is ignored in our simulations.

Data Set II: MONK-1 Problem: The target concept as-
sociated with the MONK-1 problem is or

. Table II summarizes the results obtained. It
is clear that the use of look-ahead results in better perfor-
mance. F-ID3 has 85 nodes while F-ID3LA has only 41
nodes. The results with GR and GRLA are similar. The
testing accuracy is also better.
Data Set III: MONK-2 Problem: The target concept associ-
ated with the MONK-2 problem is: exactly two of

.
Table II shows the results obtained. As in the previous case,
the use of the proposed look-ahead method results in a con-
siderable improvement.
Data Set IV: MONK-3 Problem: The target concept as-
sociated with the MONK-3 problem is (and

) or (and). 5% noise is added
to the training set. Results obtained are shown in Table II.

In this case, there is only a slight improvement. This is
because of the agreement of the first term and the second

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001 467

TABLE III
EFFECT OFVARYING � ON THE IG+LA AND GR+LA A LGORITHMS FOR THEMONK-1 DATA SET.

TABLE IV
EFFECT OFVARYING r ON THE IG+LA AND GR+LA A LGORITHMS FOR THEMONK-1 DATA SET.

term of (11). In other words, an attribute that has highest in-
formation gain, happens to have the highest classifiability.
This, however, is usually not the case.

C. Data Set V: Breast Cancer Data

For the next simulation we consider a real world dataset,
i.e., the breast cancer data available in the restricted area of the
UCI Machine Learning Repository [25]. The dataset has 286 in-
stances that are described by nine attributes and belong to two
classes: no-recurrence-events and recurrence-events. There are
a total of nine instances that have missing attribute values. We
removed those nine instances and used the remaining 277 in-
stances. As there is no separate testing data in this case, we used
70% of the data for training and 30% of the data for testing.
The algorithm was run thrice, each time with a randomly sam-
pled training data set (70% of the total data) and a testing data
set (30% of the total data). Average of the results obtained are
shown in Table II and reflect both a smaller decision tree ob-
tained as well as a slight improvement in test performance.

D. Data Set VI: Wisconsin Breast Cancer Data

For the following simulation, we took the Wisconsin Breast
Cancer data. Each pattern in the data set has nine inputs and an
associated class label (benign or malignant). The two classes are
known to be linearly inseparable. The total number of instances
are 699 (458 benign, and 241 malignant), of which 16 instances
have a single missing attribute. We removed those 16 instances
and used the remaining 683 instances. As there is no separate
testing data in this case, we used 50% of the data for training and
50% of the data for testing. In part, the reason for the equal split
in this case as opposed to the 70%–30% split of the previous
simulation is that there are a larger number of instances and
using 50% of the data for training resulted in a sufficiently large
training data set. As before, the algorithm was run thrice, each

time with a randomly sampled training data set (50% of the total
data) and a testing data set (50% of the total data). Average of
the results obtained are shown in Table II.

E. Data Set VII: Glass Identification Data

For the final simulation, we consider the glass identification
data set. There are totally 214 instances and each instance is de-
scribed by ten attributes (including an Id attribute). All attributes
are continuous valued. There are two classes: window glass and
nonwindow glass. As there is no separate testing data in this
case, we used 70% of the data for training and 30% of the data
for testing. As before, the algorithm was run thrice, each time
with a randomly sampled training data set (70% of the total data)
and a testing data set (30% of the total data). The results obtained
are shown in Table II.

A final comment about the simulations. In general, there is
no definite way of knowing an appropriate value to use for
[see (8)] and [see (11)]. Increasing the value ofresults in
a larger emphasis being placed on the classifiability term and a
smaller emphasis being placed on the information gain (or GR)
term. In general, we found to consistently provide good
results. In all our simulations was fixed at one. in general
should increase linearly with, the number of attributes. In-
deed, should be large enough such that at least a few instances
are present within that neighborhood of each instance.should
also be small enough such that classifiability is evaluated lo-
cally. Table III shows the effect of varying for the MONK-1
data set when IGLA is used and when GRLA is used and
Table IV shows the effect of varying for the same data set.
As these tables show there exist a considerable range of values
for and for which the same results are obtained. However,
as the first row of Table IV shows that whenis small then it
is possible that there are not enough instances in the neighbor-
hood of an instance making it difficult to evaluate classifiability.
In that case, the algorithm degrades to one without look-ahead,
i.e., plain IG or the GR algorithms.

468 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 3, JUNE 2001

V. CONCLUSION

In this paper we presented a novel approach for evaluating
the classifiability of instances based on evaluating the texture
of the class label surface. Based on that, we also proposed an
algorithm for fuzzy decision tree induction using look-ahead.
The proposed method of look-ahead when combined with ei-
ther information gain or with gain ratio outperforms standalone
information gain and gain ratio respectively. More specifically,
it results in smaller decision trees and as a consequence better
generalization (test) performance.

The proposed algorithm does require additional computation
when compared to F-ID3 or GR. In particular, the look-ahead
term requires finding instances that are within a distance
from a given instance. The inter-instance distance, however, can
be computed once, stored, and does not need to be computed at
each node. This additional time may well be justified in most sit-
uations in light of the considerably improved performance that
results from the decision trees constructed using the proposed
algorithm.

The method of look-ahead proposed in this paper can also be
used in crisp decision tree induction. Within the context of crisp
decision tree induction, it is common to use a linear discriminant
at each node. One step, or a few-step look-ahead, when used, is
also based on a linear discriminant. Since exhaustive look-ahead
is not feasible, it is conceivable that entirely different results
are obtained with a -step look-ahead when compared to
those obtained using a-step look-ahead. In addition, the use of
a linear discriminant in doing the look-ahead implicitly assumes
a model that is satisfied by the data distribution. The proposed
method of look-ahead is nonparametric and therefore does not
suffer from the bias of an assumed model.

REFERENCES

[1] J. R. Quinlan, “Induction of decision trees,”Mach. Learn., vol. 1, pp.
81–106, 1986.

[2] , C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann, 1993.

[3] R. L. P. Chang and T. Pavlidis, “Fuzzy decision tree algorithms,”IEEE
Trans. Syst., Man, Cybern., vol. SMC-7, pp. 28–35, 1977.

[4] Y. Yuan and M. J. Shaw, “Induction of fuzzy decision trees,”Fuzzy Sets
Syst., vol. 69, pp. 125–139, 1995.

[5] K. J. Cios and L. M. Sztandera, “Continuous ID3 algorithm with fuzzy
entropy measures,”Proc. IEEE Int. Conf. Fuzzy Syst., pp. 469–476,
1992.

[6] C. Z. Janikow, “Exemplar learning in fuzzy decision trees,”Proc. FUZZ-
IEEE, pp. 1500–1505, 1996.

[7] , “Fuzzy decision trees: Issues and methods,”IEEE Trans. Syst.,
Man, Cybern., vol. 28, no. 1, pp. 1–14, 1998.

[8] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from
examples,”IEEE Trans. Syst. Man, Cybern., vol. 22, pp. 1414–1427,
1992.

[9] L. M. Sztandera, “Fuzzy neural trees,”Encyclopedia Comput. Sci.
Technol., vol. 40, no. 25, pp. 87–104, 1999.

[10] K. J. Cios and L. M. Sztandera, “Ontogenic neuro-fuzzy algorithm:
F-CID3,” Neurocomputing, vol. 14, no. 4, pp. 383–402, 1997.

[11] L. M. Sztandera, “Fuzzy neural trees,”Inf. Sci. , vol. 90, no. 1/4, pp.
155–177, 1996.

[12] L. Breiman, J. H. Friedman, J. A. Olshen, and C. J. Stone,Classification
and Regression Trees. Belmont, CA: Wadsworth , 1984.

[13] A. Hart,Research and Developments in Expert Systems, M. Bramer, Ed,
Cambridge: Cambridge University Press, 1984. .

[14] J. Mingers, “Expert systems—Experiments with rule induction,”J.
Oper. Res., vol. 38, pp. 39–47, 1987.

[15] , “An empirical comparison of selection measures for decision-tree
induction,”Machine Learning, vol. 3, pp. 319–342, 1989.

[16] W. Buntine and T. Niblett, “A further comparison of splitting rules for
decision-tree induction,”Machine Learning, vol. 8, pp. 75–85, 1989.

[17] J. R. Quinlan, “Simplifying decision trees,”Int. J. Man-Machine Studies,
vol. 27, pp. 221–234, 1987.

[18] X. Wang, B. Chen, G. Qian, and F. Ye, “On the optimization of fuzzy
decision trees,”Fuzzy Sets Syst., vol. 112, pp. 117–125, 2000.

[19] J. R. Quinlan and R. M. Cameron-Jones, “Oversearching and layered
search in empirical learning,” inProc. 14th Int. Conf. Artificial Intelli-
gence. San Mateo, California, 1995, pp. 1019–1024.

[20] J. F. Elder, “Heuristic search for model structure,” inLearning from
Data: Artificial Intelligence and Statistics V, Lecture Notes in Statistics,
D. Fischer and H.-J. Lenz, Eds. Vienna, Austria, Germany: Springer-
Verlag, 1995, vol. 112, pp. 131–142.

[21] S. K. Murthy and S. Salzberg, “Lookahead and pathology in decision
tree induction,” inProc. 14th Int. Conf. Artificial Intell.. San Mateo, CA,
1995, pp. 1025–1031.

[22] R. Kothari and M. Dong,Lecture Notes in Pattern Recognition, S. K. Pal
and A. Pal, Eds, Singapore: World Scientific , 2000.

[23] R. M. Haralick and L. G. Shapiro,Computer Robot Vision. Reading,
MA: Addison-Wesley, 1992.

[24] C. J. Merz and P. M. Murphy. (1996) UCI Repository of Machine
Learning Databases. Department of Information and Computer Sci-
ence, University of California, Irvine, CA. [Online]. Available: http://
www.ics.uci.edu/~mlearn/MLRepository.html

[25] , (1996) UCI Repository of Machine Learning Databases. Depart-
ment of Information and Computer Science, University of California,
Irvine, CA. [Online]. Available: http:// www.ics.uci.edu/~mlearn/ML-
Repository.html

