
An Investigation on Piece Differential Information in Co-Evolution on
Games Using Kalah

Wee-Chong Oon
National University of Singapore

3 Science Drive 2
Singapore 117543

oonwc@comp.nus.edu.sg

Yew-Jin Lim
National University of Singapore

3 Science Drive 2
Singapore 117543

limyewji@comp.nus.edu.sg

Abstract- This paper decribes a series of experiments
using co-evolution of artificial neural networks on a
game called Kalah. The technique employed closely
follows the one used by Chellapilla and Fogel to evolve
the successful checkers program Anaconda. The
experiments aim to provide insight on the effect of
including piece differential information, a basic yet
crucial piece of expert knowledge, into the neural
network inputs.

1 Introduction

The domain of intellectual games is an excellent testbed
for evolutionary machine learning techniques. The nature
of games is one of a “micro world”, where a small set of
rules determines all possible states, thereby avoiding the
noisiness of real-world problems. Furthermore, traditional
games like chess and checkers are acknowledged to
require intelligence to play, and the successfulness of the
technique is measured simply by the program’s playing
strength.

Co-evolutionary techniques have been applied to
several games in the past, including chess (Kendall &
Whitwell 2001), go (Richards et al 1998, Lubberts &
Miikkulainen 2001), and othello (Moriarty &
Miikkulainen 1995). However, possibly the most
successful demonstration of the machine learning
capability of evolutionary computation in the creating of a
game-playing program was performed by Kumar
Chellapilla and David Fogel in the creation of their
checkers program Anaconda (Chellapilla & Fogel 1999,
Chellapilla & Fogel 2001, Fogel 2002). This program,
created using co-evolution of artificial neural networks
without expert knowledge, is able to play checkers at
Master level, and is a definite success story for
evolutionary computing.

However, the authors in their creation of Anaconda
included two pieces of basic checkers information in their
neural network designs. The first was piece differential
information, i.e. the difference in the total value of all of
the player’s pieces versus the opponent’s. The second was
spatial information, i.e. the geographical location of the
squares on the board, which is not immediately apparent
to the neural networks as the board is represented as a 32-
element vector. Both of these pieces of information were

regarded by the authors as basic information that even
beginning checkers players would know, and hence their
inclusion does not constitute “expert knowledge”.

This research looks into the effects of the inclusion of
the first of these pieces of knowledge, piece differential
information. We do so by reproducing Chellapilla and
Fogel’s work on a simpler game, namely the seed-sowing
game of Kalah. By using a simpler game with several
similarities to checkers, experiments can be conducted in
a much shorter time frame and yet are still relevant to the
previous work.

In Section 2, we will provide an overview of the
techniques used to create Anaconda, and also discuss why
we feel the issue of piece differential information is
important. We will introduce the game of Kalah in
Section 3, and explain our reasons for choosing this game
for this research. Section 4 describes our experimental
setup. Section 5 presents our experimental results and
analyses. We will conclude our findings in Section 6, and
suggest some possible future research avenues in Section
7.

2 Anaconda: Co-Evolution on Checkers

In 1999, Kumar Chellapilla and David Fogel used the co-
evolutionary technique to evolve a program that plays
checkers (Chellapilla & Fogel 1999). Without using any
form of expert checkers knowledge other than the rules of
the game and basic piece differential information, they
managed to generate using the co-evolution of artificial
neural networks a checkers program that played at Class
‘A’ level. The neural networks would take as input a
board position, and output a value that expresses the
desirability of the position for the player to move. These
neural networks formed the evaluation function of a basic
alpha-beta search algorithm.

Chellapilla and Fogel followed up their work in 2001
by expanding their neural networks to include spatial
information, and was able to create a program that played
at Master level (Chellapilla & Fogel 2001). They named
their program Anaconda, after its ability to restrict the
mobility of its opponents in games.

2.1 The Evolution of Anaconda
The Anaconda program is nothing more than the basic
alpha-beta algorithm that can be found in most basic AI

mailto:oonwc@comp.nus.edu.sg
mailto:bporto@natural-selection.com
mailto:bporto@natural-selection.com
mailto:bporto@natural-selection.com

textbooks. The key to its playing strength, however, lies
in the accuracy of its evaluation function, and Anaconda’s
evaluation function was generated using the co-evolution
of artificial neural networks.

The initial population of the evolutionary process
consisted of 15 fully connected feed-forward neural
networks, labeled P,,for i = 1,…,15. Each neural network
had 32 input nodes, denoting a particular board position.
Each node takes a value from {-K, -1, 0, 1, K}, where K is
the value assigned for a king (the value of K differs
between neural networks), 1 represents a regular checker,
and 0 denotes an empty square. A positive value shows
that the piece belongs to the player to move, and a
negative value shows that it belongs to the opponent.

These input nodes were fully connected to a hidden
layer with 40 nodes, which were in turn fully connected to
a second hidden layer with 10 nodes. These final 10
nodes were connected to a single output node that returns
a value between –1.0 and 1.0, which is the neural
network’s evaluation of the input position; a value closer
to 1.0 denotes a better position for the player to move, and
correspondingly a value closer to –1.0 denotes a worse
position. The nonlinear function at each node was the
hyperbolic tangent (tanh bounded by ±1). Each of the
original 32 input nodes were also directly connected to
the output node. In addition, piece differential information
in the form of the total of all the input nodes was also fed
directly to the output node. This gives 1741 connections.
See figure 1.

Figure 1: Neural Network Architecture for Class
‘A’ Version of Anaconda (Direct PDI)

In the initial 15 neural networks, the Nw = 1741
connection weights were generated randomly from a
uniform distribution over [-0.2, 0.2], with the initial value
of K set to 2.0. Each connection also had an associated
bias σi(j), for j = 1,…,Nw, which were all set initially to
0.05. Reproduction is achieved solely via mutation (no
crossover operation is used). Specifically, for each parent
Pi, an offspring P’i was created by

 σ’i(j) = σi(j) exp (τ N (0, 1))
 w’i(j) = wi(j) + σ’i(j) Nj(0, 1)
 K’i = Ki exp ((1/sqrt(2)) N(0, 1))

 where τ = 1/sqrt(2 sqrt(Nw)) = 0.1095, and Nj(0,
1) is a standard Gaussian random variable resampled for
every j. Furthermore, the value of K’i was constrained to
be within [1.0, 3.0], such that the value is reset to the limit
if it is exceeded.

In the first generation, each of the 15 initial neural
networks produces a single offspring using this mutation
method, resulting in a population of 30. These neural
networks form the evaluation function for a depth-4
alpha-beta search algorithm with the “quiescent search”
refinement of increasing the search depth by 2 if the
position contains forced captures.

Each of these 30 players was tested in turn by
randomly selecting 5 opponents from the rest of the
population; the player plays first, and the opponent plays
second. The players are awarded 1 point for a win, 0
points for a draw and –2 points for a loss, the game being
adjudged a draw after 100 moves. There were therefore
150 games per generation, and at the end of all the games
the 15 players with the highest scores are retained as
parents for the next generation, with the remaining 15
discarded. After 250 generations, the authors tested the
best-evolved network against human opposition at the
free gaming website www.zone.com, and found that it
could play at Class ‘A’ level.

In 2001, Chellapilla and Fogel extended their work by
including spatial information into their neural network
inputs. Human players, who play the game on a 2D
checkerboard, can see the geographical locations of each
square. Since the original neural network design
expressed the positions as 32-element vectors, the neural
networks do not have this information. The authors added
this information into the design using an additional
hidden pre-processing layer of 91 nodes that covered nxn
square overlapping subsections of the board. Each of the
36 3x3 square subsections of the board were given as
inputs to 36 nodes in the pre-processing layer, as well as
the 25 4x4 subsections, and so on. These 91 nodes were
fully connected to the original 40-node first hidden layer,
resulting in 5046 connections. The rest of the
experimental setup remained the same.

Input
Hidden
Layer #1

Hidden
Layer #2

Output

PDI

Due to the increased size of the neural networks, the
evolution was run for 840 generations. The best-evolved
network (Anaconda) was once again tested at
www.zone.com, and it was found to play at Master level.
Additionally, Anaconda was able to beat the online
version of Chinook, the World Man-Machine Checkers
champion and probably the strongest checkers playing
entity in the world, at Novice level.

2.2 The Issue of Piece Differential Information
It is important to note that the aim of Chellapilla and
Fogel’s work was not to create the strongest possible
checkers player. Rather, their intention was to show that
their evolutionary computing approach would be able to
automatically generate a player that can develop the
complex strategies required to play a game like checkers
without the need for expert knowledge. To that effect,
they deliberately refused to include any of the features
used in other manually tuned evaluation functions (e.g.

http://www.zone.com/
http://www.zone.com/

runaway or trapped checkers) other than basic spatial and
piece differential information. Viewed in this light, the
fact that their evolved program could play at the Master
level is impressive.

One question that might arise regarding Anaconda is
how great a part the piece differential information played
in the playing strength of the program. According to the
authors, piece differential information (PDI) is a basic
piece of checkers knowledge that any novice checkers
player would understand, and therefore it was included as
a direct input to the output node of the neural networks.
However, in the technical sense, PDI can still be
considered “expert knowledge”, since it is clear from
previous experience that PDI is one of the, if not the most
important piece of knowledge required for the playing of
checkers. If we take as a baseline a player that simply
maximizes piece differential (henceforth referred to as the
Piece Differential Player PDP), how long would it take
the evolutionary process to evolve a player that surpasses
the PDP if PDI is not included in the design?

Another issue concerning the use of PDI is the
authors’ decision to connect it directly to the output node.
Essentially, this precludes any computation on PDI other
than a linear relation to the output node. Is this necessarily
the best use of PDI? The authors’ reasoning no doubt was
that since each input had a direct connection to the output
node as well, the evolutionary process via these
connections could eventually derive PDI. After all, PDI is
nothing more than the total of all inputs. Is this
assumption correct?

These are some of the questions that this research aims
to answer.

3 Kalah

Mancala games refer to a class of sowing games
(Erickson 1994) widely played in Africa and Asia, of
which there are over 1000 variants known. These games
are played using a number of pits (either carved into a
board or simply dug out from the ground) and several
tokens. In a typical Mancala-type game, a move consists
in part of removing all seeds from a pit, and then placing
(“sowing”) them one at a time into successive adjacent
pits. The variants of the game are primarily due to
different turn-end rules, capture rules and winning
conditions.

Kalah is one of the variants of Mancala, and arguably
the most popular. The rest of this section presents the
rules of Kalah, along with the reasons why we chose
Kalah as the basis of our experiments.

3.1 Rules of Kalah
Kalah is played on a board with 2 rows of 6 pits, with a
larger scoring pit (or kalaha) at either end of the rows.
The initial position has 6 tokens (or seeds) placed in each
of the 12 smaller pits. The two players sit on the north and
south sides of the board. The scoring pit to the right of

each player belongs to that player. For the purposes of
this study, we assume that south moves first. See figure 2.

South Player

North Player

South Player’s
Scoring Pit

North Player’s
Scoring Pit

6 6 6 6 6 6

6 6 6 6 6 6

Figure 2: Starting Position for Kalah

The players move alternately. A move consists of
removing all seeds from one of the 6 pits closest to the
player (the source pit), and then placing (“sowing”) these
seeds one at a time into successive pits in an anti-
clockwise direction, including his own scoring pit but
excluding his opponent’s scoring pit. Should the source
pit contain enough seeds to go around the board (i.e. it
has 13 seeds or more), the source pit itself is skipped. The
last pit to receive a seed is called the destination pit.

If the destination pit is the scoring pit, the moving
player immediately gets another move. This is known as a
move-again.

If the destination pit is an empty pit on the player’s
side of the board, and the pit directly opposite the
destination pit is non-empty, then all seeds from both said
pits are removed and placed into the moving player’s
scoring pit. This is known as a capture.

If the player to move has no moves (i.e. all of his pits
are empty), then all remaining seeds are placed into his
opponent’s scoring pit The game ends when one player
has 37 or more seeds in his scoring pit, whereupon that
player is the winner. If both players have exactly 36 seeds
in their scoring pits, the game is a tie.

3.2 Why Kalah?
Ideally, we would have liked to use checkers for our
experiments since this was the domain chosen by
Chellapilla and Fogel, whose work we wish to examine.
However, checkers can be a long game that lasts over 100
moves, and as a result it takes a long time to evolve a
checkers player (e.g. the Master version of Anaconda
took 6 months to evolve). Therefore, we needed to select
a shorter game, so that our experiments could be
completed in a reasonable amount of time.

To that end, we decided on Kalah due to its many
similarities to checkers. The branching factor of checkers
has been estimated to be 2.84; Kalah has a similar
branching factor of about 4. Like checkers, piece
differential is possibly the single most important piece of
knowledge for playing of Kalah, but other strategies exist.
However, unlike checkers, Kalah is a monotonically
diminishing game, in that a position can never be repeated

in a particular game (contrast this with Awari, another
Mancala variant, where repeat positions are possible), and
the numbers of seeds in play always decreases. As a
result, games of Kalah seldom last more than 30 moves.

Input
Hidden
Layer #1

Hidden
Layer #2

Output

It is almost certain that Kalah is a solvable game, given
the fact that Awari, a more complicated Mancala variant,
was recently solved (Romein & Bal 2002). Furthermore, a
slightly different version of Kalah was solved for all
initial board configurations with 1 to 6 pits on the board
and 1 to 6 seeds in each pit, excluding the maximum case
of 6 pits and 6 seeds (Irving et al 2000). However, this
does not matter to our investigation, as Kalah remains an
excellent game with which to analyze the effects of the
co-evolutionary process.

4 Experimental Setup

The aim of our experiments is to judge the effect of PDI
in the co-evolutionary process on evolution time and
playing strength. The setup of our experiments follow
those used by Chellapilla and Fogel as closely as possible,
with the necessary alterations for the game of Kalah
(however, we exclude spatial information since it is not
immediately clear how such information pertains to
Kalah). Therefore, the architectures of each neural
network is the same as theirs, except for the following
changes: (1) The inputs have 14 nodes representing the
current board position, where each input is an integer
equal to the number of seeds in the corresponding pit; and
(2) The hidden layer architecture is 20/10. This is used
because Kalah has less than half the number of inputs as
checkers, and for the sake of faster evolutionary time, we
halved the number of nodes in the first hidden layer.

The evolutions were performed on 3 different
configurations with differing treatments of PDI. Direct
PDI is the configuration used in Anaconda, where PDI is
connected directly to the output node, as shown
previously in figure 1. Indirect PDI treats the PDI as
another input, and connects the PDI to the hidden layer.
This configuration is shown in figure 3. NoPDI removes
the PDI, as shown in figure 4. For Kalah, PDI is the
difference between the values of the two scoring pits.

Figure 3: Neural Network Architecture with PDI
Treated as Standard Input (Indirect PDI)

Figure 4: Neural Network Architecture with no
PDI (No PDI)

During the evolutionary process, where each player
plays against 5 random opponents, the players were
awarded 2 points for a win, 1 point for a draw and 0
points for a loss. We record the total score of the top 15
players after every generation. When or if this total score
reaches a consistent 150 points, this represents a point of
stability for the process.

As a baseline comparison, we make use of the piece
differential player (PDP) with a depth-4 search. Every
generation, we take the top 5 evolved neural networks and
play them against PDP as both the first and second player
at a depth 4 search. This is done as a measure of the
evolved networks’ playing strength as the co-evolution
process goes on.

In any case, we terminate our experiments after 1000
generations.

5 Results and Analyses

After 1000 generations, we competed the top neural
network for each setup against each other as both first and
second players. The results showed an obvious hierarchy
in playing strength. DirectPDI won all its games against
both IndirectPDI and NoPDI. Similarly, IndirectPDI won
both its games against NoPDI. Hence, the order of
playing strength of the three setups is (1) DirectPDI, (2)
IndirectPDI and (3) NoPDI.

For the rest of this section, we will analyze each setup
more closely in turn, and try to explain these results.

Input Hidden
Layer #1

Hidden
Layer #2

Output

PDI

5.1 No PDI
NoPDI is the most basic setup, which contains no PDI in
the design. Chellapilla and Fogel’s reasoning for
including PDI is that it is information that any beginner
checkers player would know, and therefore there is no
reason why the neural networks should have to discover
this information on its own. After all, this information
exists in the basic board position.

In our experiment, NoPDI arrives at one stabilization
point after about 90 generations, where the top 15 players
in the evolution all achieve maximum score. This stable
period continues until about generation 470, when it
manages to climb out of this local optimal. The evolution

progresses until about generation 700, when the second
and final stable period is reached. See figure 5.

Figure 5: Combined Scores of Top 15 Players
During Evolution for NoPDI

The playing strength of the evolved players in the first
stabilization period is exceedingly poor. In fact, it loses
every game as both first and second player against PDP
during this period. Therefore, without PDI, the evolved
players are unable to reach the level of a PDP at this
point. In the second stable period, NoPDI is able to win
most of its games as first player against PDP, but none as
second player. This suggests that while NoPDI is able to
evolve into a good Kalah player if it moves first, it is
unable to develop any strategy as second player. The
results of NoPDI against PDP are given in figure 6, which
is a stacked bar graph. Wins against PDP are awarded 2
points, draws 1 and losses 0. The first player results are
above the second player results.

Figure 6: Scores vs. PDP for NoPDI

NoPDI eventually manages to evolve a satisfactory
Kalah player that wins most of its games playing first
against PDP. While it is able to fit the criteria given in the
evolutionary process (i.e. it is able to win as first player),
it is unable to do much more than that. It is reasonable to
say that NoPDI is not much stronger than a piece
differential player.

5.2 Direct PDI
The DirectPDI configuration is the one used for
Anaconda, where the PDI is a direct input to the output
node. In this case, the only difference with the NoPDI

setup is a single input node with a single connection to the
output node.

It took about 650 generations for DirectPDI to
stabilize. From then on, until our limit of 1000
generations, the top 15 players continued to achieve the
maximum score during evolution. See figure 7.

0

50

100

150

1 101 201 301 401 501 601 701 801 901 1001

Generation

Sc
or

e

0

50

100

150

1 101 201 301 401 501 601 701 801 901 1001

Generation

Sc
or

e

Figure 7: Combined Scores of Top 15 Players
During Evolution for DirectPDI

From the stabilization point of around generation 650
onwards, the top 5 players in DirectPDI beat PDP in
practically every game as both first and second player.
This shows that it was able to achieve a playing strength
above the criteria of the evolution, which only required
the neural networks to do well as first player. This is
shown graphically in figure 8, where the maximum score
is reached after generation 650.

0
5

10
15
20

1 101 201 301 401 501 601 701 801 901 1001

Generation

Sc
or

e

Figure 8: Scores vs. PDP for DirectPDI

0

5

10

15

20

1 101 201 301 401 501 601 701 801 901 1001

G eneration

Sc
or

e

One possible explanation of how DirectPDI is able to

play well as second player is the way it treats PDI. Since
PDI is a direct connection to the output node, DirectPDI
can essential simulate PDP using simply this node. The
rest of the neural network setup can then be used to seek
out strategies beyond PDI, which is what is required to
play well as second player.

5.3 Indirect PDI
The IndirectPDI configuration treats PDI as simply
another input node, and feeds this information into the
hidden layers (as well as directly to the output node).

Figure 9: Combined Scores of Top 15 Players
During Evolution for IndirectPDI

IndirectPDI does not appear to fully stabilize, even
after 1000 generations. While there are detectable periods
where the top 15 evolved players achieve the maximum
score, there are still times up until the very last generation
where a significant change in playing strength is being
discovered. See figure 9.

Because it has not yet reached a final stabilization
period, its results against PDP are still wildly fluctuating.
However, it is clear that IndirectPDI has better success
playing second than NoPDI, and is therefore a better
player overall. However, compared to DirectPDI,
IndirectPDI after 1000 generations is obviously weaker.
See figure 10.

Even though IndirectPDI has not stabilized, it is
already obviously stronger than having no PDI
whatsoever. However, note that the only difference
between the architecture of IndirectPDI and NoPDI is an
additional input node that contains nothing more than the
difference between two other nodes (representing the
scoring pits). Therefore, simply adding a very simple
preprocessing node significantly increases the playing
strength. It is clear that PDI, although “basic” knowledge
that any beginning Kalah player would know, must be
considered “expert” knowledge to the evolutionary
process.

Figure 10: Scores vs. PDP for IndirectPDI

Further, note that IndirectPDI is the same as
DirectPDI, except that it has 20 additional connections
between the PDI input node and the first hidden layer.
Therefore, conceptually, IndirectPDI must be
computationally more powerful than DirectPDI.

However, DirectPDI evolved to be a much stronger
player in a faster timeframe. This shows that the
appropriate neural network architecture can aid the co-
evolutionary process in arriving at a good solution. It is
possible that the additional connections in fact interfered
with the usage of PDI in the playing strategy.

0

50

100

150

1 101 201 301 401 501 601 701 801 901 1001

Generation

Sc
or

e

6 Conclusions

This research looked into the effect of different treatments
of PDI in the co-evolutionary process, using Kalah as the
testbed. Three configurations of neural networks were
used, namely NoPDI, IndirectPDI and DirectPDI. After
the experiments of 1000 generations, it was found that the
ranking in ascending order of playing strength for the
three approaches were as listed above.

The setup with no PDI information was unable to
achieve a playing strength that was much better than a
piece differential player. It could beat PDP as first player,
but loses all games as second player.

By simply adding an additional node containing PDI
and connecting it directly to the output node, the playing
strength increased dramatically. The final players could
beat PDP in all games, as both first and second player. It
is obvious that PDI is a significant piece of information,
and there are doubts to whether the co-evolutionary
process could ever arrive at a strategy equivalent to
DirectPDI with the NoPDI setup. Therefore, PDI must be
considered expert knowledge.

IndirectPDI treated the PDI as an additional input to
the hidden layers. This configuration is exactly the same
as DirectPDI, but with additional connections. However,
these additional connections extended the time required
for stabilization to beyond 1000 generations, and
therefore was detrimental to the effort to create a strong
player in a reasonable amount of time. Theoretically, the
IndirectPDI setup would achieve a playing strength at
least equal to DirectPDI, but this may take many
additional generations.

0
5

10
15
20

1 101 201 301 401 501 601 701 801 901 1001

Generation

Sc
or

e

7 Future Work

The effect of PDI is just one of several aspects of the co-
evolutionary process that should be examined. When
Chellapilla and Fogel designed their experiments while
creating Anaconda, most of the parameters were decided
either arbitrarily or heuristically. For example, the 40/10
hidden layer architecture was used because a similar
design proved successful in Fogel’s previous tic-tac-toe
experiments (which used a 20/10 architecture). While
their design successfully created a Master level checkers
player, there is no evidence that it is anywhere close to
optimal. The obvious question then would be, how can
the design be improved to create an even stronger
program?

More research is needed to understand the relative
importance of the parameters. These include the neural

network architecture; size of the neural networks; size of
populations; mutation method; scoring method; search
depth; and additional expert knowledge. Such
experiments can be conducted using Kalah or a similar
game.

Games like checkers and Kalah tend to confer a
significant advantage to the first player. In such cases,
programs using a single evaluation function may be
unable to play well as both first and second player. This
suggests that competitive co-evolution (Rosin and Belew,
1996, Lubberts & Miikkulainen 2001), where two
populations simultaneously evolve strategies to overcome
the opposing population, may be a fruitful avenue. Using
this method, two separate neural networks, one for the
first player and the other for the second player, can then
be evolved.

Since Anaconda’s performance has shown that the
process is capable of producing a strong game playing
program, another possible research direction is to use
evolutionary computing to produce the strongest game
playing program possible. With such an aim, we no
longer have to restrict ourselves to the barest minimum of
expert information and techniques, like Chellapilla and
Fogel did. Therefore, the multitude of game-playing
techniques like opening books and endgame databases
can be included, both during the evolutionary process and
in the final program.

Acknowledgments

We would like to thank Dr. Martin Henz for all his help
and advice in this research.

Bibliography

Chellapilla K. and Fogel D. (1999) “Evolving Neural
Networks to Play Checkers without Expert Knowledge”,
IEEE Trans. on Neural Networks, vol. 10, no. 6, pp.
1382-1391.

Chellapilla K. and Fogel D. (2001) “Evolving an Expert
Checkers Playing Program without using Human
Expertise”, IEEE Trans. on Evolutionary Computation,
vol. 5, no. 5, pp. 422-428.

Erickson J, (1994) “Sowing Games”, in Games of No
Chance, Nowakowski R. (ed.), pp. 198-298, University
Press.

Fogel D. (2002) “Blondie24: Playing at the Edge of AI”,
Academic Press, London, UK.

Irving G., Donkers J., and Uiterwijk J. (2000), “Solving
Kalah”, International Computer Games Association
(ICGA) Journal, Vol. 23, No. 3, pp. 139-147.

Kendall G. and Whitwell G. (2001) “An Evolutionary
Approach for the Tuning of a Chess Evaluation Function
using Population Dynamics”, 2001 IEEE Congress on
Evolutionary Computation (CEC 2001), pp. 995-1002.

Lubberts A. and Miikkulainen R. (2001) “Co-Evolving a
Go-Playing Neural Network”, in Coevolution: Turning
Adaptive Algorithms upon Themselves, Belew R. and
Juille H (eds.), pp. 14-19.

Moriarty D. and Miikulainen R. “Discovering Complex
Othello Strategies Through Evolutionary Neural
Networks”, Connection Science, vol. 7, no. 3-4, pp. 195-
209.

Richards N.; Moriarty D.; McQuesten P.; and
Miikkulainen R. (1998) “Evolving Neural Networks to
Play Go”, 7th International Conference on Genetic
Algorithms.

Romein J. and Bal H. (2002) “Awari is Solved” (note),
International Computer Games Association (ICGA)
Journal, vol. 25, no. 3, pp. 162-165.

Rosin C. And Belew R. (1996), “A Competitive
Approach to Game Learning”, 9th Annual ACM
Conference on Computational Learning Theory (COLT-
96), pp. 292-302.

	Introduction
	Anaconda: Co-Evolution on Checkers
	The Evolution of Anaconda
	The Issue of Piece Differential Information

	Kalah
	Rules of Kalah
	Why Kalah?

	Experimental Setup
	Results and Analyses
	No PDI
	Direct PDI
	Indirect PDI

	Conclusions
	Future Work

