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Abstract- This paper decribes a series of experiments 
using co-evolution of artificial neural networks on a 
game called Kalah. The technique employed closely 
follows the one used by Chellapilla and Fogel to evolve 
the successful checkers program Anaconda. The 
experiments aim to provide insight on the effect of 
including piece differential information, a basic yet 
crucial piece of expert knowledge, into the neural 
network inputs. 

1 Introduction 

The domain of intellectual games is an excellent testbed 
for evolutionary machine learning techniques. The nature 
of games is one of a “micro world”, where a small set of 
rules determines all possible states, thereby avoiding the 
noisiness of real-world problems. Furthermore, traditional 
games like chess and checkers are acknowledged to 
require intelligence to play, and the successfulness of the 
technique is measured simply by the program’s playing 
strength. 

Co-evolutionary techniques have been applied to 
several games in the past, including chess (Kendall & 
Whitwell 2001), go (Richards et al 1998, Lubberts & 
Miikkulainen 2001), and othello (Moriarty & 
Miikkulainen 1995). However, possibly the most 
successful demonstration of the machine learning 
capability of evolutionary computation in the creating of a 
game-playing program was performed by Kumar 
Chellapilla and David Fogel in the creation of their 
checkers program Anaconda (Chellapilla & Fogel 1999, 
Chellapilla & Fogel 2001, Fogel 2002). This program, 
created using co-evolution of artificial neural networks 
without expert knowledge, is able to play checkers at 
Master level, and is a definite success story for 
evolutionary computing. 

However, the authors in their creation of Anaconda 
included two pieces of basic checkers information in their 
neural network designs. The first was piece differential 
information, i.e. the difference in the total value of all of 
the player’s pieces versus the opponent’s. The second was 
spatial information, i.e. the geographical location of the 
squares on the board, which is not immediately apparent 
to the neural networks as the board is represented as a 32-
element vector. Both of these pieces of information were 

regarded by the authors as basic information that even 
beginning checkers players would know, and hence their 
inclusion does not constitute “expert knowledge”. 

This research looks into the effects of the inclusion of 
the first of these pieces of knowledge, piece differential 
information. We do so by reproducing Chellapilla and 
Fogel’s work on a simpler game, namely the seed-sowing 
game of Kalah. By using a simpler game with several 
similarities to checkers, experiments can be conducted in 
a much shorter time frame and yet are still relevant to the 
previous work. 

In Section 2, we will provide an overview of the 
techniques used to create Anaconda, and also discuss why 
we feel the issue of piece differential information is 
important. We will introduce the game of Kalah in 
Section 3, and explain our reasons for choosing this game 
for this research. Section 4 describes our experimental 
setup. Section 5 presents our experimental results and 
analyses. We will conclude our findings in Section 6, and 
suggest some possible future research avenues in Section 
7. 

2 Anaconda: Co-Evolution on Checkers 

In 1999, Kumar Chellapilla and David Fogel used the co-
evolutionary technique to evolve a program that plays 
checkers (Chellapilla & Fogel 1999). Without using any 
form of expert checkers knowledge other than the rules of 
the game and basic piece differential information, they 
managed to generate using the co-evolution of artificial 
neural networks a checkers program that played at Class 
‘A’ level. The neural networks would take as input a 
board position, and output a value that expresses the 
desirability of the position for the player to move. These 
neural networks formed the evaluation function of a basic 
alpha-beta search algorithm. 

Chellapilla and Fogel followed up their work in 2001 
by expanding their neural networks to include spatial 
information, and was able to create a program that played 
at Master level (Chellapilla & Fogel 2001). They named 
their program Anaconda, after its ability to restrict the 
mobility of its opponents in games. 

2.1 The Evolution of Anaconda 
The Anaconda program is nothing more than the basic 
alpha-beta algorithm that can be found in most basic AI 
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textbooks. The key to its playing strength, however, lies 
in the accuracy of its evaluation function, and Anaconda’s 
evaluation function was generated using the co-evolution 
of artificial neural networks. 

The initial population of the evolutionary process 
consisted of 15 fully connected feed-forward neural 
networks, labeled P,,for i = 1,…,15. Each neural network 
had 32 input nodes, denoting a particular board position. 
Each node takes a value from {-K, -1, 0, 1, K}, where K is 
the value assigned for a king (the value of K differs 
between neural networks), 1 represents a regular checker, 
and 0 denotes an empty square. A positive value shows 
that the piece belongs to the player to move, and a 
negative value shows that it belongs to the opponent. 

These input nodes were fully connected to a hidden 
layer with 40 nodes, which were in turn fully connected to 
a second hidden layer with 10 nodes. These final 10 
nodes were connected to a single output node that returns 
a value between –1.0 and 1.0, which is the neural 
network’s evaluation of the input position; a value closer 
to 1.0 denotes a better position for the player to move, and 
correspondingly a value closer to –1.0 denotes a worse 
position. The nonlinear function at each node was the 
hyperbolic tangent (tanh bounded by ±1). Each of the 
original 32 input nodes were also directly connected to 
the output node. In addition, piece differential information 
in the form of the total of all the input nodes was also fed 
directly to the output node. This gives 1741 connections. 
See figure 1. 

Figure 1: Neural Network Architecture for Class 
‘A’ Version of Anaconda (Direct PDI) 

In the initial 15 neural networks, the Nw = 1741 
connection weights were generated randomly from a 
uniform distribution over [-0.2, 0.2], with the initial value 
of K set to 2.0. Each connection also had an associated 
bias σi(j), for j = 1,…,Nw, which were all set initially to 
0.05. Reproduction is achieved solely via mutation (no 
crossover operation is used). Specifically, for each parent 
Pi, an offspring P’i was created by 

 
 σ’i(j) = σi(j) exp (τ N (0, 1) ) 
 w’i(j) = wi(j) + σ’i(j) Nj(0, 1) 
 K’i = Ki exp ( ( 1/sqrt(2) ) N(0, 1) ) 
 

 where τ = 1/sqrt(2 sqrt(Nw)) = 0.1095, and Nj(0, 
1) is a standard Gaussian random variable resampled for 
every j. Furthermore, the value of K’i was constrained to 
be within [1.0, 3.0], such that the value is reset to the limit 
if it is exceeded. 

In the first generation, each of the 15 initial neural 
networks produces a single offspring using this mutation 
method, resulting in a population of 30. These neural 
networks form the evaluation function for a depth-4 
alpha-beta search algorithm with the “quiescent search” 
refinement of increasing the search depth by 2 if the 
position contains forced captures. 

Each of these 30 players was tested in turn by 
randomly selecting 5 opponents from the rest of the 
population; the player plays first, and the opponent plays 
second. The players are awarded 1 point for a win, 0 
points for a draw and –2 points for a loss, the game being 
adjudged a draw after 100 moves. There were therefore 
150 games per generation, and at the end of all the games 
the 15 players with the highest scores are retained as 
parents for the next generation, with the remaining 15 
discarded. After 250 generations, the authors tested the 
best-evolved network against human opposition at the 
free gaming website www.zone.com, and found that it 
could play at Class ‘A’ level. 

In 2001, Chellapilla and Fogel extended their work by 
including spatial information into their neural network 
inputs. Human players, who play the game on a 2D 
checkerboard, can see the geographical locations of each 
square. Since the original neural network design 
expressed the positions as 32-element vectors, the neural 
networks do not have this information. The authors added 
this information into the design using an additional 
hidden pre-processing layer of 91 nodes that covered nxn 
square overlapping subsections of the board. Each of the 
36 3x3 square subsections of the board were given as 
inputs to 36 nodes in the pre-processing layer, as well as 
the 25 4x4 subsections, and so on. These 91 nodes were 
fully connected to the original 40-node first hidden layer, 
resulting in 5046 connections. The rest of the 
experimental setup remained the same. 
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Due to the increased size of the neural networks, the 
evolution was run for 840 generations. The best-evolved 
network (Anaconda) was once again tested at 
www.zone.com, and it was found to play at Master level. 
Additionally, Anaconda was able to beat the online 
version of Chinook, the World Man-Machine Checkers 
champion and probably the strongest checkers playing 
entity in the world, at Novice level. 

2.2 The Issue of Piece Differential Information 
It is important to note that the aim of Chellapilla and 
Fogel’s work was not to create the strongest possible 
checkers player. Rather, their intention was to show that 
their evolutionary computing approach would be able to 
automatically generate a player that can develop the 
complex strategies required to play a game like checkers 
without the need for expert knowledge. To that effect, 
they deliberately refused to include any of the features 
used in other manually tuned evaluation functions (e.g. 
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runaway or trapped checkers) other than basic spatial and 
piece differential information. Viewed in this light, the 
fact that their evolved program could play at the Master 
level is impressive. 

One question that might arise regarding Anaconda is 
how great a part the piece differential information played 
in the playing strength of the program. According to the 
authors, piece differential information (PDI) is a basic 
piece of checkers knowledge that any novice checkers 
player would understand, and therefore it was included as 
a direct input to the output node of the neural networks. 
However, in the technical sense, PDI can still be 
considered “expert knowledge”, since it is clear from 
previous experience that PDI is one of the, if not the most 
important piece of knowledge required for the playing of 
checkers. If we take as a baseline a player that simply 
maximizes piece differential (henceforth referred to as the 
Piece Differential Player PDP), how long would it take 
the evolutionary process to evolve a player that surpasses 
the PDP if PDI is not included in the design? 

Another issue concerning the use of PDI is the 
authors’ decision to connect it directly to the output node. 
Essentially, this precludes any computation on PDI other 
than a linear relation to the output node. Is this necessarily 
the best use of PDI? The authors’ reasoning no doubt was 
that since each input had a direct connection to the output 
node as well, the evolutionary process via these 
connections could eventually derive PDI. After all, PDI is 
nothing more than the total of all inputs. Is this 
assumption correct? 

These are some of the questions that this research aims 
to answer. 

3 Kalah 

Mancala games refer to a class of sowing games 
(Erickson 1994) widely played in Africa and Asia, of 
which there are over 1000 variants known. These games 
are played using a number of pits (either carved into a 
board or simply dug out from the ground) and several 
tokens. In a typical Mancala-type game, a move consists 
in part of removing all seeds from a pit, and then placing 
(“sowing”) them one at a time into successive adjacent 
pits. The variants of the game are primarily due to 
different turn-end rules, capture rules and winning 
conditions. 

Kalah is one of the variants of Mancala, and arguably 
the most popular. The rest of this section presents the 
rules of Kalah, along with the reasons why we chose 
Kalah as the basis of our experiments. 

3.1 Rules of Kalah 
Kalah is played on a board with 2 rows of 6 pits, with a 
larger scoring pit (or kalaha) at either end of the rows. 
The initial position has 6 tokens (or seeds) placed in each 
of the 12 smaller pits. The two players sit on the north and 
south sides of the board. The scoring pit to the right of 

each player belongs to that player. For the purposes of 
this study, we assume that south moves first. See figure 2. 
 

South Player 

North Player 

South Player’s 
Scoring Pit 

North Player’s 
Scoring Pit 

6 6 6 6 6 6

6 6 6 6 6 6

Figure 2: Starting Position for Kalah 

The players move alternately. A move consists of 
removing all seeds from one of the 6 pits closest to the 
player (the source pit), and then placing (“sowing”) these 
seeds one at a time into successive pits in an anti-
clockwise direction, including his own scoring pit but 
excluding his opponent’s scoring pit. Should the source 
pit contain enough seeds to go around the board (i.e. it 
has 13 seeds or more), the source pit itself is skipped. The 
last pit to receive a seed is called the destination pit. 

If the destination pit is the scoring pit, the moving 
player immediately gets another move. This is known as a 
move-again. 

If the destination pit is an empty pit on the player’s 
side of the board, and the pit directly opposite the 
destination pit is non-empty, then all seeds from both said 
pits are removed and placed into the moving player’s 
scoring pit. This is known as a capture. 

If the player to move has no moves (i.e. all of his pits 
are empty), then all remaining seeds are placed into his 
opponent’s scoring pit The game ends when one player 
has 37 or more seeds in his scoring pit, whereupon that 
player is the winner. If both players have exactly 36 seeds 
in their scoring pits, the game is a tie. 

3.2 Why Kalah? 
Ideally, we would have liked to use checkers for our 
experiments since this was the domain chosen by 
Chellapilla and Fogel, whose work we wish to examine. 
However, checkers can be a long game that lasts over 100 
moves, and as a result it takes a long time to evolve a 
checkers player (e.g. the Master version of Anaconda 
took 6 months to evolve). Therefore, we needed to select 
a shorter game, so that our experiments could be 
completed in a reasonable amount of time. 

To that end, we decided on Kalah due to its many 
similarities to checkers. The branching factor of checkers 
has been estimated to be 2.84; Kalah has a similar 
branching factor of about 4. Like checkers, piece 
differential is possibly the single most important piece of 
knowledge for playing of Kalah, but other strategies exist. 
However, unlike checkers, Kalah is a monotonically 
diminishing game, in that a position can never be repeated 



in a particular game (contrast this with Awari, another 
Mancala variant, where repeat positions are possible), and 
the numbers of seeds in play always decreases. As a 
result, games of Kalah seldom last more than 30 moves. 
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It is almost certain that Kalah is a solvable game, given 
the fact that Awari, a more complicated Mancala variant, 
was recently solved (Romein & Bal 2002). Furthermore, a 
slightly different version of Kalah was solved for all 
initial board configurations with 1 to 6 pits on the board 
and 1 to 6 seeds in each pit, excluding the maximum case 
of 6 pits and 6 seeds (Irving et al 2000). However, this 
does not matter to our investigation, as Kalah remains an 
excellent game with which to analyze the effects of the 
co-evolutionary process. 

4 Experimental Setup 

The aim of our experiments is to judge the effect of PDI 
in the co-evolutionary process on evolution time and 
playing strength. The setup of our experiments follow 
those used by Chellapilla and Fogel as closely as possible, 
with the necessary alterations for the game of Kalah 
(however, we exclude spatial information since it is not 
immediately clear how such information pertains to 
Kalah). Therefore, the architectures of each neural 
network is the same as theirs, except for the following 
changes: (1) The inputs have 14 nodes representing the 
current board position, where each input is an integer 
equal to the number of seeds in the corresponding pit; and 
(2) The hidden layer architecture is 20/10. This is used 
because Kalah has less than half the number of inputs as 
checkers, and for the sake of faster evolutionary time, we 
halved the number of nodes in the first hidden layer. 

The evolutions were performed on 3 different 
configurations with differing treatments of PDI. Direct 
PDI is the configuration used in Anaconda, where PDI is 
connected directly to the output node, as shown 
previously in figure 1. Indirect PDI treats the PDI as 
another input, and connects the PDI to the hidden layer. 
This configuration is shown in figure 3. NoPDI removes 
the PDI, as shown in figure 4. For Kalah, PDI is the 
difference between the values of the two scoring pits. 

Figure 3: Neural Network Architecture with PDI 
Treated as Standard Input (Indirect PDI) 

Figure 4: Neural Network Architecture with no 
PDI (No PDI) 

During the evolutionary process, where each player 
plays against 5 random opponents, the players were 
awarded 2 points for a win, 1 point for a draw and 0 
points for a loss. We record the total score of the top 15 
players after every generation. When or if this total score 
reaches a consistent 150 points, this represents a point of 
stability for the process. 

As a baseline comparison, we make use of the piece 
differential player (PDP) with a depth-4 search. Every 
generation, we take the top 5 evolved neural networks and 
play them against PDP as both the first and second player 
at a depth 4 search. This is done as a measure of the 
evolved networks’ playing strength as the co-evolution 
process goes on. 

In any case, we terminate our experiments after 1000 
generations. 

5 Results and Analyses 

After 1000 generations, we competed the top neural 
network for each setup against each other as both first and 
second players. The results showed an obvious hierarchy 
in playing strength. DirectPDI won all its games against 
both IndirectPDI and NoPDI. Similarly, IndirectPDI won 
both its games against NoPDI. Hence, the order of 
playing strength of the three setups is (1) DirectPDI, (2) 
IndirectPDI and (3) NoPDI. 

For the rest of this section, we will analyze each setup 
more closely in turn, and try to explain these results. 

 

Input Hidden 
Layer #1 

Hidden 
Layer #2 

Output 

PDI 

5.1 No PDI 
NoPDI is the most basic setup, which contains no PDI in 
the design. Chellapilla and Fogel’s reasoning for 
including PDI is that it is information that any beginner 
checkers player would know, and therefore there is no 
reason why the neural networks should have to discover 
this information on its own. After all, this information 
exists in the basic board position. 

In our experiment, NoPDI arrives at one stabilization 
point after about 90 generations, where the top 15 players 
in the evolution all achieve maximum score. This stable 
period continues until about generation 470, when it 
manages to climb out of this local optimal. The evolution 



progresses until about generation 700, when the second 
and final stable period is reached. See figure 5. 

Figure 5: Combined Scores of Top 15 Players 
During Evolution for NoPDI 

The playing strength of the evolved players in the first 
stabilization period is exceedingly poor. In fact, it loses 
every game as both first and second player against PDP 
during this period. Therefore, without PDI, the evolved 
players are unable to reach the level of a PDP at this 
point. In the second stable period, NoPDI is able to win 
most of its games as first player against PDP, but none as 
second player. This suggests that while NoPDI is able to 
evolve into a good Kalah player if it moves first, it is 
unable to develop any strategy as second player. The 
results of NoPDI against PDP are given in figure 6, which 
is a stacked bar graph. Wins against PDP are awarded 2 
points, draws 1 and losses 0. The first player results are 
above the second player results. 

Figure 6: Scores vs. PDP for NoPDI 

NoPDI eventually manages to evolve a satisfactory 
Kalah player that wins most of its games playing first 
against PDP. While it is able to fit the criteria given in the 
evolutionary process (i.e. it is able to win as first player), 
it is unable to do much more than that. It is reasonable to 
say that NoPDI is not much stronger than a piece 
differential player. 

5.2 Direct PDI 
The DirectPDI configuration is the one used for 
Anaconda, where the PDI is a direct input to the output 
node. In this case, the only difference with the NoPDI 

setup is a single input node with a single connection to the 
output node. 

It took about 650 generations for DirectPDI to 
stabilize. From then on, until our limit of 1000 
generations, the top 15 players continued to achieve the 
maximum score during evolution. See figure 7. 
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Figure 7: Combined Scores of Top 15 Players 
During Evolution for DirectPDI 

From the stabilization point of around generation 650 
onwards, the top 5 players in DirectPDI beat PDP in 
practically every game as both first and second player. 
This shows that it was able to achieve a playing strength 
above the criteria of the evolution, which only required 
the neural networks to do well as first player. This is 
shown graphically in figure 8, where the maximum score 
is reached after generation 650.  
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Figure 8: Scores vs. PDP for DirectPDI 
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One possible explanation of how DirectPDI is able to 

play well as second player is the way it treats PDI. Since 
PDI is a direct connection to the output node, DirectPDI 
can essential simulate PDP using simply this node. The 
rest of the neural network setup can then be used to seek 
out strategies beyond PDI, which is what is required to 
play well as second player. 

5.3 Indirect PDI 
The IndirectPDI configuration treats PDI as simply 
another input node, and feeds this information into the 
hidden layers (as well as directly to the output node). 



Figure 9: Combined Scores of Top 15 Players 
During Evolution for IndirectPDI 

IndirectPDI does not appear to fully stabilize, even 
after 1000 generations. While there are detectable periods 
where the top 15 evolved players achieve the maximum 
score, there are still times up until the very last generation 
where a significant change in playing strength is being 
discovered. See figure 9. 

Because it has not yet reached a final stabilization 
period, its results against PDP are still wildly fluctuating. 
However, it is clear that IndirectPDI has better success 
playing second than NoPDI, and is therefore a better 
player overall. However, compared to DirectPDI, 
IndirectPDI after 1000 generations is obviously weaker. 
See figure 10. 

Even though IndirectPDI has not stabilized, it is 
already obviously stronger than having no PDI 
whatsoever. However, note that the only difference 
between the architecture of IndirectPDI and NoPDI is an 
additional input node that contains nothing more than the 
difference between two other nodes (representing the 
scoring pits). Therefore, simply adding a very simple 
preprocessing node significantly increases the playing 
strength. It is clear that PDI, although “basic” knowledge 
that any beginning Kalah player would know, must be 
considered “expert” knowledge to the evolutionary 
process. 

Figure 10: Scores vs. PDP for IndirectPDI 

Further, note that IndirectPDI is the same as 
DirectPDI, except that it has 20 additional connections 
between the PDI input node and the first hidden layer. 
Therefore, conceptually, IndirectPDI must be 
computationally more powerful than DirectPDI. 

However, DirectPDI evolved to be a much stronger 
player in a faster timeframe. This shows that the 
appropriate neural network architecture can aid the co-
evolutionary process in arriving at a good solution. It is 
possible that the additional connections in fact interfered 
with the usage of PDI in the playing strategy. 
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6 Conclusions 

This research looked into the effect of different treatments 
of PDI in the co-evolutionary process, using Kalah as the 
testbed. Three configurations of neural networks were 
used, namely NoPDI, IndirectPDI and DirectPDI. After 
the experiments of 1000 generations, it was found that the 
ranking in ascending order of playing strength for the 
three approaches were as listed above. 

The setup with no PDI information was unable to 
achieve a playing strength that was much better than a 
piece differential player. It could beat PDP as first player, 
but loses all games as second player. 

By simply adding an additional node containing PDI 
and connecting it directly to the output node, the playing 
strength increased dramatically. The final players could 
beat PDP in all games, as both first and second player. It 
is obvious that PDI is a significant piece of information, 
and there are doubts to whether the co-evolutionary 
process could ever arrive at a strategy equivalent to 
DirectPDI with the NoPDI setup. Therefore, PDI must be 
considered expert knowledge. 

IndirectPDI treated the PDI as an additional input to 
the hidden layers. This configuration is exactly the same 
as DirectPDI, but with additional connections. However, 
these additional connections extended the time required 
for stabilization to beyond 1000 generations, and 
therefore was detrimental to the effort to create a strong 
player in a reasonable amount of time. Theoretically, the 
IndirectPDI setup would achieve a playing strength at 
least equal to DirectPDI, but this may take many 
additional generations. 
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7 Future Work 

The effect of PDI is just one of several aspects of the co-
evolutionary process that should be examined. When 
Chellapilla and Fogel designed their experiments while 
creating Anaconda, most of the parameters were decided 
either arbitrarily or heuristically. For example, the 40/10 
hidden layer architecture was used because a similar 
design proved successful in Fogel’s previous tic-tac-toe 
experiments (which used a 20/10 architecture). While 
their design successfully created a Master level checkers 
player, there is no evidence that it is anywhere close to 
optimal. The obvious question then would be, how can 
the design be improved to create an even stronger 
program? 

More research is needed to understand the relative 
importance of the parameters. These include the neural 



network architecture; size of the neural networks; size of 
populations; mutation method; scoring method; search 
depth; and additional expert knowledge. Such 
experiments can be conducted using Kalah or a similar 
game. 

Games like checkers and Kalah tend to confer a 
significant advantage to the first player. In such cases, 
programs using a single evaluation function may be 
unable to play well as both first and second player. This 
suggests that competitive co-evolution (Rosin and Belew, 
1996, Lubberts & Miikkulainen 2001), where two 
populations simultaneously evolve strategies to overcome 
the opposing population, may be a fruitful avenue. Using 
this method, two separate neural networks, one for the 
first player and the other for the second player, can then 
be evolved. 

Since Anaconda’s performance has shown that the 
process is capable of producing a strong game playing 
program, another possible research direction is to use 
evolutionary computing to produce the strongest game 
playing program possible. With such an aim, we no 
longer have to restrict ourselves to the barest minimum of 
expert information and techniques, like Chellapilla and 
Fogel did. Therefore, the multitude of game-playing 
techniques like opening books and endgame databases 
can be included, both during the evolutionary process and 
in the final program. 
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