

Adobe Illustrator File
Format Specification

23 February 1998

Adobe Developer Support

PN LPS5007-02

Adobe Systems Incorporated

Adobe Systems Europe Limited
Adobe House, Mid New Cultins
Edinburgh EH11 4DU
Scotland, United Kingdom
+44-131-453-2211

Adobe Systems Japan
Yebisu Garden Place Tower
4-20-3 Ebisu, Shibuya-ku
Tokyo 150 Japan
+81-3-5423-8100

Corporate Headquarters
345 Park Avenue
San Jose, CA 95110-2704
(408) 536-6000 Main Number

Eastern Regional Office
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120

Copyright

 1998 by Adobe Systems Incorporated. All rights reserved.

NOTICE: All information contained herein is the property of Adobe Systems Incorporated. Many of
the intellectual and technical concepts contained herein are proprietary to Adobe, are protected as trade
secrets, and are made available only to Adobe licensees for their internal use.

No part of this publication (whether in hardcopy or electronic form) may be reproduced or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of the publisher. Any information referred to herein is furnished under license
with Adobe and may only be used, copied, transmitted, stored, or printed in accordance with the terms
of such license, or in the accompanying Materials Release Form from Adobe.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name
PostScript in the text are references to the PostScript language as defined by Adobe Systems
Incorporated unless otherwise stated. The name PostScript also is used as a product trademark for
Adobe Systems' implementation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this document that use “PostScript language” as an adjective phrase are so constructed to
reinforce that the name refers to the standard language definition as set forth by Adobe Systems
Incorporated.

Acrobat, Adobe, Adobe Illustrator, Adobe Garamond, the Adobe logo, Carta, Display PostScript,
Distiller, FrameMaker, Lithos, Sonata, and TranScript are registered trademarks and Acrobat
Exchange, Acrobat Reader, and the PostScript logo are trademarks of Adobe Systems Incorporated.
AppleTalk, LocalTalk, Macintosh, and LaserWriter are registered trademarks of Apple Computer, Inc.
IBM is a registered trademark of International Business Machines Corporation. ITC Stone is a
registered trademark of International Typeface Corporation. C EXECUTIVE is a registered trademark
and CE-VIEW is a trademark of JMI Software Consultants, Inc. Helvetica, Palatino, and Times are
trademarks of Linotype-Hell AG and/or its subsidiaries. X Window System is a trademark of the
Massachusetts Institute of Technology. Microsoft and MS-DOS are registered trademarks and
Windows is a trademark of Microsoft Corporation. Times New Roman is a registered trademark of The
Monotype Corporation PLC. NeXT is a trademark of NeXT Computer, Inc. Sun, Sun-3 and SunOS
are trademarks of Sun Microsystems, Inc. SPARC is a registered trademark of SPARC International,
Inc. Products bearing the SPARC trademark are based on an architecture developed by Sun
Microsystems, Inc. SPARCstation is a registered trademark and is a trademark of SPARC
International, Inc., licensed exclusively to Sun Microsystems, Inc. UNIX is a trademark registered in
the United States and other countries, licensed exclusively through X/Open Company, Limited. Other
brand or product names are the trademarks or registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party
rights.

iii

Contents

1 Introduction 7
Reporting Errors in this Document 7
Adobe Illustrator Format Structure 8
Procedure Sets 8
Comments 9
Extending the Format With Comments and X Operators 10
Syntax in Backus-Naur Form 11
Encapsulated PostScript Format 13
Revisable vs. Final Form 13

2 Prolog 14
Header 14
Artwork and Ruler Origin 30

3 Script Setup 31
Specifying Particular Fonts 32
Initializing Resources 32
Fonts and Encodings 32
Pattern Definition 34
Gradients 38

4 Global Objects 51
Name Collisions in Global Objects 51

5 Script Body 52
Locked Object Operator 54
Paint Style 54
Paths 54
Color 59
Overprint Operators 62
Containers 63
Text as Masks 65

6 Guides 66
Guide Operator 66

iv 23 February 1998

7 Object Tags 67

8 Rendering Images (Raster Objects) 68
XI Image Operator 68
XF Linked Image Operator 69
XG Image Link Operator 69
Examples 69

9 Layers 71
Layer Name — Ln Operator 71
Begin Layer — Lb Operator 71
Layers Example 72

10 Multi-layer Masks 75
Begin Multi-layer Mask — Mb Operator 76
Define Multi-layer Mask — Md Operator 76
End Multi-layer Mask — MB Operator 76
Multi-layer Mask Example 76

11 Color Palette 78
Begin Palette — Pb Operator 78
End Palette — PB Operator 79
Palette Cell None — Pn Operator 79

12 Attributes 81

13 Hyphenation Language — XL Operator 83

14 Nonprinting Elements 84

15 Text 85
Revisable and Final-Form Text 85
Text Syntax Summary 86
Text Operators Summary 87
Text Operator Details 93
Text Examples 103

16 Placed Art 107
Placed Art Operators 107
Placed Art Comments 108

17 Graphs 109
Syntax 109
Graph Objects 111

18 Script Trailer 114

19 Platform-Specific Issues 115
Adobe Illustrator on the Macintosh 115
Controlling the Grid in Windows and NeXT Versions 118

20 Adobe Illustrator on the Clipboard 120

21 Implementation Issues 121
Identifying Adobe Illustrator File Format Versions 121
Opening Adobe Illustrator 88 files in Illustrator 6.0 122
Adobe Illustrator 6.0 EPS Parser Limitation 122

Contents v

22 List of Operators 123
Gradient Operators 126
Layer Operators 129
Multilayer Masking 130
Color Palette 130
Attributes 130
Text Operators 130

23 Document Syntax Summary 135

Appendix A: Graph Functional Specification 145

A.1 Operators in the Functional Spec 146

A.2 End of the Functional Specification 153

A.3 Graph Customizations 153

Appendix B: Changes Since Earlier Versions 161

vi 23 February 1998

7

Adobe Illustrator File
Format Specification

1 Introduction

Adobe Illustrator files can be found in several different formats. These
formats, and the glyphs that identify them throughout this document, are as
follows:

• Adobe Illustrator 1.0/1.1

• Adobe Illustrator 88

• Adobe Illustrator 3.0/3.2

• Adobe Illustrator 4.0

• Adobe Illustrator 5.0/5.5

• Adobe Illustrator 5.

x

, Japanese Edition

• Adobe Illustrator 6.0

• Adobe Illustrator 7.0

• Adobe Illustrator EPS (Encapsulated PostScript)

Unless noted by the presence of a glyph or otherwise stated in the text,
information in this document applies to all versions of Adobe Illustrator files.

Each successive version of Adobe Illustrator introduced new features and
capabilities. For the most part, these features are reflected in the content of
the Adobe Illustrator document files. Therefore, most remarks that apply to
early versions of Adobe Illustrator files also apply to later versions, and later
versions exhibit the added complexity of their more advanced feature sets.

1.1 Reporting Errors in this Document

Adobe makes every effort to ensure that this document is accurate and
complete. Please address comments and corrections to

1.0/1.1

88

3.0/3.2

4.0

5.0/5.5

Japan

6.0

7.0

EPS

8 Adobe Illustrator File Format Specification 23 February 1998

devsup-person@adobe.com

. Adobe will update the document periodically to
incorporate reader comments.

1.2 Adobe Illustrator Format Structure

The documents (files) created by Adobe Illustrator are PostScript language
documents. These documents conform to Adobe Systems’

Document
Structuring Conventions

, as defined in Appendix G of

PostScript Language
Reference Manual, Second Edition

, Addison-Wesley, ISBN 0-201-18127-4.
A PostScript language document description that minimally conforms to the
Document Structuring Conventions has two main parts: a

prolog

 and a

script

.

• The prolog encapsulates information needed by other programs to
interpret the file, such as the bounding box that contains all marks on the
page. It also contains lists of PostScript language

resources

 that the page
requires. Such resources include fonts and procedure definitions, which
are logically grouped into sets called

procsets

. Procsets contain explicit
methods for initializing and terminating their procedures.

• The script describes the graphic elements on the page. It consists of
references to the operators and procedures in the prolog, together with
operands and data. A script has three logical sections:

– A

setup

 sequence that initializes and activates the resources defined in
the prolog

– A sequence of

descriptive operators

– A

trailer

 that deactivates resources.

The script holds the operators, which are sequences of graphic elements
and which are written in the language defined by procsets in the prolog.
These sequences consist of collections of data elements, graphic attribute
definitions, and calls to the procedures defined in the procsets.

Documents that conform to the Document Structuring Conventions maintain
strict separation between the functions of prolog and script: other than
definitions, no PostScript code is executed in the prolog, and no new
procedures or global variables are defined in the script. However, the script
may well set the value of global variables or modify the behavior of
procedures defined in the prolog.

1.3 Procedure Sets

Procedures are PostScript language objects, described in

PostScript
Language Reference Manual, Second Edition

. Adobe Illustrator groups
related procedures into sets and inserts them as required into the printable
PostScript files or EPS files it generates. These procedure sets, commonly
called procsets, are referenced by comments in the prolog of an Adobe

1 Introduction 9

Illustrator file. When Adobe Illustrator opens a file in Adobe Illustrator
format, it parses the file’s prolog to determine what procsets are required for
the file. Because the files do not contain the procsets themselves, the files can
be considerably smaller than EPS or generic PostScript files that describe the
same images.

Readers familiar with the PostScript language will note, on consulting the list
of Adobe Illustrator operators (section 22 on page 123), that Adobe Illustrator
documents make use of operators that are not explained in

PostScript
Language Reference Manual, Second Edition

. These operators are defined by
Adobe Illustrator in the procsets it inserts into generated EPS and PostScript
language files. Because the PostScript language allows a document to define
new operators in its prolog in this way, Adobe Illustrator format cannot
properly be considered an extension of the PostScript language. In fact,
Adobe Illustrator format is a subset of the PostScript language because it
does not make use of all features of the language.

Adobe licenses the Adobe Illustrator procsets for use by developers outside
the company. However, the procsets are largely undocumented and
unsupported. Developers who wish to receive permission to use and
distribute the procsets should contact the Adobe Developers Association at
the telephone number (408) 536-9000 or the e-mail address

devsup-person@adobe.com

.

1.4 Comments

The PostScript language treats as a comment any line where the first non-
whitespace character is the percent character,

%

. Comments in the PostScript
language and the Adobe Illustrator format serve three very different purposes.

• Standard comments are used to document code in the file, as they do in
other languages. These comments are meant for human readers, but may
also convey meaning to an application or PostScript interpreter when used
with certain operators. Standard comments begin with a single percent
character:

%Standard Comment

.

• Structural comments are used to express the structure of the file, according
to the Document Structuring Conventions (DSC). Structural comments
begin with two percent characters:

%%Structural Comment

.

• Pseudo comments are used by applications but are generally ignored by
the PostScript interpreter during printing. They allow nonprinting
information to be stored in a file using operators that would otherwise
result in printed output. Pseudo comments begin with percent and
underscore characters:

%_Pseudo Comment

.

10 Adobe Illustrator File Format Specification 23 February 1998

1.4.1 Standard Comments

Standard comments have a special meaning when they begin with the
characters

%AI

n_Keyword

, where

n

 indicates the Adobe Illustrator version in
which

Keyword

 was introduced. These comments are typically used with
operators to transmit information to an application or to the PostScript
interpreter at print time. For example, the

XI

 image operator uses structural
comments to bound a raster (pixmap or bitmap) image within an Adobe
Illustrator file.

%AI5_BeginRaster

[0.2049 0 0 0.198 783 164] 0 0 526 620 526 620 1 1 0 0 0 0 XI

%FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF780000000000000000000

…Remainder of ASCII pixmap omitted…

%AI5_EndRaster

1.4.2 Structural Comments

In structural comments, the initial

%

 character is followed by a second

%

character and a keyword. Many structural comments require information in
addition to the keyword. This information is represented as arguments, which
are separated from the keyword by a colon and continue on to the newline
character that terminates the comment. Thus, all structural comments in a file
(following the first one) have the following form:

%%

Keyword

{:

arguments

}

1.4.3 Pseudo Comments

Pseudo comments in Adobe Illustrator format begin with the percent and
underline character pair,

%_.

Pseudo comments are generally ignored by the
PostScript interpreter but are used by Adobe Illustrator and other applications
that read and parse Adobe Illustrator files. For example, the

%_Bs

 comments
in the following fragment define a gradient that is stored in a file but may not
print — it will print only if it is used to paint a printable object. Note also the
required comments that mark the beginning and end of the gradient
definition.

%AI5_BeginGradient: (Green & Blue)

(Green & Blue) 0 2 Bd

[

1 0.75 0 0 1 50 100 %_Bs

0.6 0 1 0 1 50 0 %_Bs

BD

%AI5_EndGradient

1.5 Extending the Format With Comments and X Operators

Beginning with version 5, Adobe Illustrator introduced multicharacter
operators that begin with the

X

 character (the

XI

 image operator discussed in

1 Introduction 11

1.4.1, “Standard Comments,” is one example). These operators, together with
standard and pseudo comments, have been used to extend the Adobe
Illustrator file format in a backwards-compatible way because they are
understood by newer versions of Illustrator but ignored by earlier versions.
Table 1 summarizes the way X operators, standard comments, and pseudo
comments are used by newer applications, older applications, and the
PostScript interpreter.

Standard comments marked as “conditional” in the table are used by newer
applications or PostScript interpreters only when they have relevance — for
example, when they are associated with an

X

 operator. As described in
section1.4.1, “Standard Comments,” the image operator

XI

 uses comments to
bracket image data. If an older application does not understand the

XI

operator, it ignores it along with the comments and image data. If the

XI

operator is understood, then both the application and the PostScript
interpreter read the comments and image data.

Pseudo-comments are generally ignored during printing but are used by
applications. This allows nonprinting information to be stored in the file.

With a knowledge of how future versions of Adobe Illustrator will extend the
file format, application developers can design parsers with enough flexibility
to read newer files while gracefully ignoring newer operators and comments.

1.6 Syntax in Backus-Naur Form

The syntax of Adobe Illustrator document format is summarized using BNF
(Backus-Naur form) notation in this document. BNF definitions take the
following form:

<xyz>::= <abc> {<def>}* ghi |
<k> j

A token enclosed in angle brackets names a class of document component,
while plain text appears verbatim in the file, perhaps with some obvious
substitution. The grammar rules have two parts:

• On the left of the ::= definition symbol is the name of a class of
component. In the example above, the class is

xyz

.

Table 1

Relevance of comments and X operators

File Element
Newer
Applications

Older
Applications

PostScript
Interpreter

X-operator understood ignored understood

Standard Comments conditional ignored conditional

Pseudo Comments understood understood ignored

12 Adobe Illustrator File Format Specification 23 February 1998

• On the right of the definition symbol is a set of one or more alternative
forms that an

xyz

 component might take in the document. The syntax of
the right side of the BNF expressions is as follows:

If there are alternative forms of the component, they are separated by the
vertical bar character (|).

The notation

{<abc>}

 denotes zero or one instance of

<abc>

.

The notation

{<abc>}*

 denotes zero or more instances of

<abc>

.

The notation

<abc>+

 means one or more instances of

<abc>

.

The alternative forms are separated by the vertical bar character (|).

Single letter components, such as

<A>

, refer to the corresponding
operator

A

.

For example, at the highest level, an Adobe Illustrator document is composed
of a prolog and a script. In BNF, this relationship is expressed as follows:

<document> ::= <prolog>
<script>

The prolog and script can further be defined in BNF as

<prolog> ::= %!PS-Adobe-

M

 EPSF-

N

(or

 %!PS-Adobe-

M

)

<header comments>
%%EndComments
%%BeginProlog
{<proc set>}*

(not required, but is normally present)

%%EndProlog

<script> ::= <setup>
{<layer>}*|{<object>}*
{<page trailer>}
<document trailer>
%%EOF

To describe the entire file structure, the BNF form would next define the
components of

<header comments>

,

<proc set>

, and so on, continuing until
all the variables in the structure were defined. See “List of Operators” on
page 123 for a complete BNF summary of Adobe Illustrator file structure.

The syntax and semantics of the individual operators of the Adobe Illustrator
format are defined in later sections of this document. Each operator definition
follows this form:

operand

1

…operand

m

op –

The functionality of the

op

 operator is explained immediately after the syntax
description, (that is, in the position of this paragraph).

1 Introduction 13

The above notation means that the operator

op

 takes operands from

1

 through

m

 and performs some operation. Each operand is characterized either by its
data type (for example,

integer

) or a more meaningful name, such as

linewidth

. In the latter case, the range of legitimate values appears in the
description. A dash (–) on the left of the operator indicates that an operator
requires no operands; a dash on the right indicates that the operator leaves
nothing on the stack.

1.7 Encapsulated PostScript Format

Adobe Illustrator can store a document in

encapsulated PostScript file

 (EPS)
format; however, its default native format is not an official EPS format. EPS
format is described in Appendix H of

PostScript Language Reference
Manual, Second Edition

. EPS format is closely related to Adobe Illustrator
format, but this document does not go into much detail on EPS files, except to
point out how they differ from Adobe Illustrator format.

1.8 Revisable vs. Final Form

Documents in Adobe Illustrator format (including Adobe Illustrator EPS) are
in

revisable form

. Documents in revisable form contain information
(nonprinting gradient definitions, for example) that is needed when the
document is opened and edited by an application, but is not required for
printing the image described in the document. Printable documents, which do
not contain information not needed for printing, are said to be in

final form

.

Note that final-form documents can still be parsed and edited. However,
because final-form documents include only information needed for printing,
some of the data relationships between objects in the file may be missing
when the file is opened by an application.

14 Adobe Illustrator File Format Specification 23 February 1998

2 Prolog

The BNF syntax for an Adobe Illustrator document prolog is:

<prolog> ::= %!PS-Adobe-

M

 EPSF-

N

(or

 %!PS-Adobe-

M

)

<header>
%%BeginProlog
{<procset>}*

(not required, but is normally present)

%%EndProlog

<header> ::= <header comments>
%%EndComments

<procset> %%IncludeResource:procset <name>

(or)

%%BeginResource:…
…
%%EndResource

%!PS-Adobe-

M

 EPSF-

N

(or

 %!PS-Adobe-

M

)

The first line of the file is a unique comment that identifies the version of the
Document Structuring Conventions (DSC) to which the document conforms.
The first line may also specify that the file conforms to a version of the
Encapsulated PostScript File format (EPSF). Both numbers must correspond
to the specific versions used in writing out the file. For example, the comment

%!PS-Adobe-3.0 EPSF-3.0

indicates that the file conforms to DSC version 3.0 and EPSF version 3.0.

%%BeginProlog

The

%%BeginProlog

 comment marks the beginning of the prolog section.

%%EndProlog

The

%%EndProlog

 comment marks the end of the prolog section.

2.1 Header

The header for the prolog body of an Adobe Illustrator document follows the
version-identifying first line of the file. The syntax for the prolog header is

<header> ::= <header comments>
%%EndComments

%%EndComments

The

%%EndComments

 comment marks the end of the header part of the
prolog.

The sequence of header comments is a subset of those listed in Figure 1 on
page 15. The syntax for each comment is described informally. Almost all
header comments are optional. Comments required by Adobe Illustrator in all
documents are marked

[Required]

. Some comments are required only if a
specific feature is used in an illustration. Such comments are marked

2 Prolog 15

[As Necessary]

. When a comment is specific to an Adobe Illustrator version,
it is identified by version number. For example:

%AI5_

Keyword

{:

arguments

}

Specific to version

In most cases, a comment specific to an Adobe Illustrator version also has
meaning to later versions. The braces in the examples indicate elements that
may be omitted from the comment, depending on the requirements of the
keyword.

Figure 1

Typical Adobe Illustrator 6.0 header comments

%%Creator: Adobe Illustrator(r) 6.0

%%For: (John Doe) (John Doe Design)

%%Title: (LayeredGradients.ai)

%%CreationDate: (5/9/96) (3:57 PM)

%%BoundingBox: 224 631 268 661

%%HiResBoundingBox: 224.065 631 268 660.5208

%%DocumentProcessColors: Cyan Magenta Yellow

%%DocumentCustomColors: (PANTONE 156 CV)

%%CMYKCustomColor: 0.5 0.5 0.5 0.5 (PANTONE 156 CV)

%%DocumentFonts: CooperBlack

%%+ Minion-Regular

%%DocumentFiles: WrathOfRalph

%%DocumentNeededResources: procset Adobe_level2_AI5 1.0 0

%%+ procset Adobe_typography_AI5 1.0 0

%%+ procset Adobe_screens_AI5 1.0 0

%%+ procset Adobe_blend_AI5 1.0 0

%%+ procset Adobe_Illustrator_AI6_vars Adobe_Illustrator_AI6

%%+ procset Adobe_Illustrator_AI5 1.0 0

%AI5_FileFormat 2.0

%AI3_ColorUsage: Color

%%AI6_ColorSeparationSet: 1 1 (AI6 Default Color Separation Set)

%%+ Options: 1 16 0 1 0 1 1 1 0 1 1 1 1 18 0 0 0 0 0 0 0 0 -1 -1

%%+ PPD: 1 21 0 0 60 45 2 2 1 0 0 1 0 0 0 0 0 0 0 0 0 0 ()

%AI3_TemplateBox: 306 396 306 396

%AI3_TileBox: 31 31 583 761

%AI3_DocumentPreview: None

%AI5_ArtSize: 612 792

%AI5_RulerUnits: 2

%AI5_ArtFlags: 1 0 0 1 0 0 0 1 0

%AI5_TargetResolution: 800

%AI5_NumLayers: 2

%AI5_OpenToView: -78 780 1 826 581 58 0 1 2 40

%AI5_OpenViewLayers: 77

%%EndComments

2.1.1 Header Comments

The individual lines in the header are specified as follows.

%%Creator: Adobe Illustrator(r)

version

The

 %%Creator

 comment identifies the application that generated the
PostScript language document. The version number (version 6.0 in Figure 1)
is arbitrary text, terminated by a newline character.

5.0/5.5

16 Adobe Illustrator File Format Specification 23 February 1998

%%For:

 (username) (organization)

The

%%For

 comment identifies the user who created the file and the
organization to which the user belongs. Both username and organization are
valid PostScript language strings. The PostScript language string escape
sequences for including characters outside the printable ASCII character set
and for representing special characters such as “(” and “)” are discussed in
PostScript Language Reference Manual, Second Edition.

%%Title: (illustration title) The %%Title comment provides an arbitrary text title for the document. The
title is a valid PostScript language string.

%%CreationDate: (date) (time)
The %%CreationDate comment gives the date and time that the document
was created. The variables date and time are valid PostScript language
strings.

%%BoundingBox: llx lly urx ury
[Required] The %%BoundingBox comment specifies the imaginary box that
encloses all marks painted on the page. Specify the integer coordinates in the
default user coordinate system. Negative numbers are allowed.

If a high-resolution bounding box is specified (as described below), the limits
of the bounding box are derived from the high-resolution bounding box. To
generate the lower left and upper right limits of the bounding box, the
high-resolution bounding box llx and lly values are rounded down, and urx and
ury values are rounded up.

%%HiResBoundingBox: llx lly urx ury
The %%HiResBoundingBox is contained within the bounding box
described above. Therefore, the high-resolution bounding box may be
slightly smaller than the bounding box.

The high-resolution bounding box is used for accurate placement of the
Adobe Illustrator file as an EPS document. Accurate placement may be
required by high-resolution printing devices and by applications, such as
FrameMaker®, that can place EPS files within their documents.

%%DocumentProcessColors: keyword
The %%DocumentProcessColors comment specifies which of the process
colors identified by the keywords Cyan , Magenta , Yellow , and Black the
document uses. This comment is used primarily by programs producing color
separations.

%%DocumentCustomColors: (customcolorname)
%%+ (customcolorname)

[As Necessary] The %%DocumentCustomColors comment enumerates
the names of the custom colors used in the document. The names are valid

2 Prolog 17

PostScript language strings enclosed in parentheses. For example, the
PANTONE® colors are identified by names such as PANTONE 156 CV. You
may continue the list of custom color names on subsequent lines, each of
which must begin with the %%+ prefix.

%%CMYKCustomColor: cyan magenta yellow black (customcolorname)
%%+ cyan magenta yellow black (customcolorname)

[As Necessary] The %%CMYKCustomColor comment specifies an
approximation for the named custom color in terms of the four components
of process color: cyan, magenta, yellow, and black. Each component value
must be a real number in the range 0.0 to 1.0. The component values are
analogous to the arguments to the PostScript language operator
setcmykcolor .

%%DocumentFonts: font…
%%+font…
[As Necessary] The %%DocumentFonts comment enumerates the names
of the PostScript language font programs that the document uses. Fonts listed
in the %%DocumentFonts comment are also included in any files which are
themselves included (placed) within an Adobe Illustrator document. Omit
this comment if the document uses no fonts.

You may need to download a font to the PostScript interpreter before it can
properly execute a document description.

%%DocumentNeededFonts: font…
[As Necessary] The %%DocumentNeededFonts comment is

included in EPS files. It is followed by a list of fonts that the document
requires but are not contained in the file. See PostScript Language Reference
Manual, Second Edition, Appendix G, for details about this comment.

%%DocumentSuppliedFonts: font…
[As Necessary] The %%DocumentSuppliedFonts comment is

included in EPS files. It is followed by a list of fonts that have been provided
in the file. See PostScript Language Reference Manual, Second Edition,
Appendix G, for details about this comment.

%%DocumentFiles: filename
%%+filename…
[As Necessary] The %%DocumentFiles comment names the files that a
program must import to render the illustration. Another comment
(%%IncludeFile) marks the site within the illustration at which the file is
needed. Omit this comment if no files are to be imported into the document.
See section 16, “Placed Art,” for more information on including files.

7.0

7.0

18 Adobe Illustrator File Format Specification 23 February 1998

%%DocumentSuppliedResources: procset name1 version revision
%%+ procset name2 version revision

These comments indicate that the named
procedure sets and resources are both required and defined by the document.
The %%+ procset construction indicates a continuation of the
%%DocumentSuppliedResources comment.

Comments appear only for the actual procedure sets needed by the
illustration; they are not present when the file is saved in its “no-header”
form.

%%DocumentNeededResources: procset name version revision
 This comment lists the procsets that are required

by the document but are not included within it.

%AI5_FileFormat version This comment is included in EPS files. It specifies which version of
Adobe Illustrator created the file. Note that the creator is identified even when
a file is saved to be compatible with an earlier version of Adobe Illustrator.
The version parameter maps to Adobe Illustrator versions as shown in the
following table.

%AI5_ArtSize: height width This comment specifies the size of the artboard in points.

%AI5_RulerUnits: units This comment specifies the ruler or “General” ruler units, as shown
in the following table.

Table 2 AI File Format Versions and AI Versions

%AI5_FileFormat Version Adobe Illustrator Version

3 7.0

2.1 6.0.1

2.0 6.0

2.5 5.5

1.2 5.0.1

1.1 5.0

Table 3 %AI5_RulerUnits Parameters

Value of Unit Parameter Meaning

0 inches

1 millimeters

2 points

3 picas

3.0/3.2 6.05.0/5.5

3.0/3.2 6.05.0/5.5

5.0/5.5

5.0/5.5

5.0/5.5

2 Prolog 19

%AI5_ArtFlags: page_setup tiles placed_images patterns split_paths tile_page screens autoscreens gradients
The nine parameters following this comment are flags that describe

the settings found in the Document Setup dialog. The meanings of their
values are shown in the following table.

4 centimeters

Table 4 %AI5_ArtFlags Parameters

Flag Name
Flag
Value

Meaning

page_setup
1
0

Use page setup.
Do not use page setup.

tiles
1
0

Use print tiles.
Do not use print tiles.

placed_images
1
0

Show placed images.
Do not show placed images.

patterns
1
0

Preview patterns.
Do not preview patterns.

split_paths
1
0

Split long paths.
Do not split long paths.

tile_page
1
0

Tile full pages.
Do not tile full pages.

screens
1
0

Use printer’s default screens.
Do not use printer’s default screens.

autoscreens
1
0

Use auto default screens.
Do not use auto default screens.
This flag is ignored when flag 7 is false.

gradients
1
0

Use compatible gradient printing.
Do not use compatible gradient printing.

Table 3 %AI5_RulerUnits Parameters (Continued)

Value of Unit Parameter Meaning

5.0/5.5

20 Adobe Illustrator File Format Specification 23 February 1998

%AI5_TargetResolution: resolution
This comment specifies the target output resolution.

%AI5_NumLayers: num_layers
This comment specifies the number of layers present in the

document.

%AI5_OpenToView: ulx uly zoom w h view_style ruler tiling ul_monx ul_mony grid snap_grid
The twelve parameters following this comment describe the open

state of the document window. The meanings of the parameter values are
described in the following table.

%AI5_OpenViewLayers: layer_number
The parameter following this comment specifies the number of the

layer to be displayed when the document is opened. If more than one layer is
to be displayed, additional parameters follow on separate lines.

Table 5 %AI5_OpenToView Parameters

Parameter Value Meaning

ulx, uly integer The position, in artwork coordinates, of the top left corner of
the artwork window.

zoom integer The zoom factor (a negative number represents a zoom
factor of1/x).

w, h real Width and height of the artwork window, in pixels.

view_style integer The view style:
25 = artwork
26 = preview
30 = preview selection

ruler boolean Determines whether or not to display the ruler:
1 = Show Ruler
0 = Hide ruler

tiling boolean Determines whether or not to display tiling:
1 = Show tiling
0 = Hide tiling

ul_monx
ul_mony

integer The upper left position of the artwork window on the
monitor.

grid boolean Determines whether or not to display grid:
1 = Show grid
0 = Hide grid

snap_grid boolean Determines whether or not to snap to grid:
1 = Snap to grid
0 = Do not snap to grid

5.0/5.5

5.0/5.5

5.0/5.5

5.0/5.5

2 Prolog 21

%%IncludeResource: procset name version revision
 This comment lists a specific resource to include

in a document. It is present only when the file is saved in its “no-header”
format.

%%RGBCustomColor: red green blue (customcolorname)
[As Necessary] The %%RGBCustomColor comment lists the

RGB custom color names used in the artwork in terms of the three
components of RGB color: red, green, and blue. Each component value must
be a real number in the range 0.0 to 1.0. The component values are analogous
to the arguments to the PostScript language operator setrgbcolor .

%AI3_TemplateBox: llx lly urx ury
The %AI3_TemplateBox comment specifies the

bounding box that encloses all samples in the document’s template. For more
information on templates, see Adobe Illustrator User Guide. Specify the
coordinates as integers or reals in the default user coordinate system. Each
sample in the template is assumed to be 1⁄72 inch square. The width (urx–llx)
and height (ury–lly) of the template box must be integers. If a document has
no template, the width and the height of the template box must be zero.

When Adobe Illustrator opens a document, it centers the coordinate ((llx +
urx)⁄2, (lly + ury)⁄2) in the drawing area.

 This comment is named %%TemplateBox .

%AI3_TemplateFile: pathname
[As necessary] The %AI3_TemplateFile

comment specifies the template for the illustration. If no name is given, no
template is used. The format for specifying the template is:

<volume name>::<directory id (a number)>:<filename>

%AI3_TileBox: llx lly urx ury The %AI3_TileBox comment is used only on the
Macintosh version of Adobe Illustrator. It specifies the bounding box of the
imageable area of the current page size. See Adobe Illustrator User Guide for
more information about tiles and the drawing area. The initial ruler position is
centered in this box.

 This comment is named %%TileBox .

%AI3_DocumentPreview: keyword
The %AI3_DocumentPreview comment

describes the type of preview image contained in the file. If no preview is
included, keyword is None .

3.0/3.2 6.05.0/5.5

7.0

3.0/3.2 6.05.0/5.5

4.0 88

3.0/3.2 6.05.0/5.5

3.0/3.2 6.05.0/5.5

4.0 88

3.0/3.2 6.05.0/5.5

22 Adobe Illustrator File Format Specification 23 February 1998

%AI3_ColorUsage: keyword The %AI3_ColorUsage comment indicates
whether the document uses only black or colored ink, indicated by the
keyword Black&White or Color , respectively.

 This comment is named %%ColorUsage .

%%AI3_PaperRect: ulx uly lrx lry
This comment describes the paper rectangle, relative to the

imageable area, by specifying two points at opposite corners of the rectangle.

Coordinate system values increase left to right, top to bottom. The origin is
the upper left corner of the imageable area. The paper rectangle is described
in the following order: ulx uly lrx lry where point ul is the upper left corner of
the paper and point lr is the lower right corner of the paper.

%AI7_ImageSettings: flag This comment specifies whether or not linked images are
embedded in the file. The value of flag is:
1 if images are embedded;
0 if images are not embedded.

%AI7_GridSettings: horiz_space horiz_subdiv vert_space vert_subdiv back style
gridcolorR gridcolorG gridcolorB subdivcolorR subdivcolorG subdivcolorB

This comment describes gridlines. The parameters are described in
the following table.

Table 6 %AI7_GridSettings Parameters

Parameter Type Meaning

horiz_space integer The number of horizontal points between gridlines.

horiz_subdiv integer The number of horizontal subdivisions. This corresponds to the
“Gridline every:” setting in the “Guides & Grid” preferences
dialog.

vert_space integer The number of vertical points between gridlines. In version 7.0,
must be equal to horiz_space.

vert_subdiv integer The number of vertical subdivisions. In version 7.0, must be
equal to horiz_subdiv.

back boolean Specifies gridlines in front or in back of the artwork.
1 = gridlines in back;
0 = gridlines in front.

style integer Specifies grid style. In version 7.0, only two styles are used:
0 = Lines
1 = Dots.

3.0/3.2 6.05.0/5.5

4.0 88

3.0/3.2

7.0

7.0

2 Prolog 23

%%AI6_ColorSeparationSet Comment

The %%AI6_ColorSeparationSet comment provides a means to enable
users easily to specify a set of color separation parameters by name.

%%AI6_ColorSeparationSet: version magicNumber setname
The version argument identifies the separation set comment. In

Adobe Illustrator 6.0, values of version not equal to 1 are ignored. With this
scheme, future versions of Illustrator may create a new comment format
without affecting previous versions.

The magicNumber argument is ignored.

The setname argument is reserved for future use. It associates the comment
and subcomment information with a name so that the user can quickly switch
between separation sets.

SubComments to %%AI6_ColorSeparationSet

Subcomments of %%AI6_ColorSeparationSet are identified as lines that
follow %%AI6_ColorSeparationSet: . Subcomments begin with the
characters %%+ and have the following form:

%%+ subcommentname: version magicNumber argument1 … argumentN

The version and magicNumber arguments are identical to the version and
magicNumber arguments to the %%AI6_ColorSeparationSet comment.
However, the magicNumber argument is used in subcomments.

The version and magicNumber fields allow future expansion of
subcomments. Adding newer versions of subcomments after older versions
facilitates backwards compatibility. For example, if a version = 2
subcomment is introduced, the developer can add this new subcomment
version after the older version = 1 subcomment. Newer versions of Illustrator
will recognize the new comment and override the older information; older
versions of Illustrator will ignore the newer comment and use the older
information.

gridcolorR
gridcolorG
gridcolorB

real RGB components of the gridlines.

subdivcolorR
subdivcolorG
subdivcolorB

real RGB components of the subdivisions.

Table 6 %AI7_GridSettings Parameters (Continued)

Parameter Type Meaning

6.0

24 Adobe Illustrator File Format Specification 23 February 1998

%%++ Options Subcomment to %AI6_ColorSeparationSet

%%++ Options: version magicNumber separate level2 ASCIIOutput portrait emulsiondown
negative overprintblack convertoprocess previewart usedefaultmarks layers
bleed artbounds.left artbounds.top artbounds.right artbounds.bottom
cropbounds.left cropbounds.top cropbounds.right cropbounds.bottom
halftoneindex pagesizeindex

The arguments to %%++ Options have the following meanings:

version = 1 (indicates version1).

magicNumber = 16 in version 1.

level2 = 1 to separate the output.
= 0 for composite output.

separate = 1 for Level 2 output.
= 0 for Level 1 output (user input from Print dialog).

ASCIIOutput = 1 for ASCII output of images.
= 0 for binary output of images (user input from print dialog).

portrait = 1 for portrait orientation.
= 0 for landscape orientation.

emulsiondown = 1 for emulsion down.
= 0 for emulsion up.

negative = 1 for a negative image.
= 0 for a positive image.

overprintblack = True to overprint black; False otherwise.

convertoprocess = True to convert to process color; False otherwise.

previewart = True to preview artwork; False otherwise.

usedefaultmarks = True to use default crop marks; False otherwise.

layers = 1 if separating printable layers.
= 2 if separating visible layers.
= 3 if separating all layers.

bleed A real number, expressed in points, that specifies the distance to outset the
crop marks from the crop bounds. It also specifies the distance that artwork
can extend beyond the crop bounds.

2 Prolog 25

This bleed area extends from cropbounds to cropbounds.left – bleed,
cropbounds.right + bleed, cropbounds.top + bleed, and
cropbounds.bottom – bleed. Note that cropbounds and artbounds are
referenced to default user space, where the origin is at the lower left and the
x and y axes extend positive right and positive up, respectively (see section
2.2, “Artwork and Ruler Origin,” on page 30).

artbounds.left
artbounds.top

artbounds.right
artbounds.bottom Real numbers, expressed in points. These values indicate the user-defined

location of the artwork relative to the separation page size in the default user
space coordinate system. Users often move their artwork on the separation
page to save film.

The location of the artbounds boundary is independent of the artwork in the
Illustrator document. The size of the boundary is tied to the size of the
artwork in the Illustrator document. If a user sets the artbounds boundary in
the separation dialog, then increases the size of the artwork in the Illustrator
document and attempts to separate without resetting the boundary in the
separation dialog, he will be presented with an alert warning him of clipped
separation output. No warning is presented if the artwork is moved or
decreased in size in the Illustrator document.

cropbounds.left
cropbounds.top

cropbounds.right
cropbounds.bottom Real numbers, expressed in points relative to the separation page size. The

cropbounds boundary crops the artbounds boundary on the separation page
and, in conjunction with the bleed argument, identifies where the separation
marks are to be placed.

halftoneIndex A zero-based index into the halftone list that specifies the separation halftone.
The %%+ Halftone subcomment builds the halftone list.

pageindex A zero-based index into the page list that specifies the separation page size.
The %%+ PageSize subcomment builds the pagesize list.

%%+ PPD Subcomment to %AI6_ColorSeparationSet

%%+ PPD: version magicNumber customAvailable rollFedDevice
defaultHalftone.frequency defaultHalftone.angle defaultHalftone.screenIndex
defaultHalftone.transferIndex deviceAdjust.a deviceAdjust.b deviceAdjust.c
deviceAdjust.d deviceAdjust.h deviceAdjust.v customMaximum.h
customMaximum.v customImageArea.left customImageArea.top
customImageArea.right customImageArea.bottom ppdFile.vRefNum
ppdFile.dirID ppdFile.fileName

26 Adobe Illustrator File Format Specification 23 February 1998

version = 1 (indicates version1).

magicNumber = 21 in version 1.

customAvailable A boolean value taken from the ParamCustomPageSize or VariablePaperSize
keys in the PPD file for the output device.

RollFedDevice = True if the HWMargins key does not exist in the PPD file.

defaultHalftone.frequency
defaultHalftone.angle

defaultHalftone.screenIndex
defaultHalftone.transferIndexFrom the ScreenFreq, ScreenAngle, ScreenProc, Transfer,

DefaultScreenProc and DefaultTransfer PPD keys. The screenIndex is a
zero-based index into the screen procedure string list (see the StringAdd
subcomment below). The transferIndex is a zero-based index into the transfer
procedure string list (see StringAdd).

deviceAdjustMatrix.a
deviceAdjustMatrix.b
deviceAdjustMatrix.c
deviceAdjustMatrix.d
deviceAdjustMatrix.e
deviceAdjustMatrix.h
deviceAdjustMatrix.v Reserved for future use.

customMaximum.h
customMaximum.v Taken from the ParamCustomPageSize or MaxMediaWidth or

MaxMediaHeight keys in the PPD file.

customImageArea.left
customImageArea.top

customImageArea.right
customImageArea.bottomTaken from the HWMargins PPD key, or derived from the customMaximum.h

and customMaximum.v arguments.

ppdFile.vRefNum (Macintosh only) The volume reference number (not a WDRefNum) of the
PPD file location.

ppdFile.dirID (Macintosh only) The directoryID of the ppd file location.

ppdFile.fileName The file name of the PPD file.

%%+ StringAdd and %%+ StringSplit Subcomments to
%AI6_ColorSeparationSet

%%+ StringAdd: version magicNumber listID stringLength string

%%+ StringSplit: version magicNumber listID stringLength string

2 Prolog 27

Many PostScript procedures are extracted from the PPD file for the output
device. The %%+ StringSplit subcomment stores these strings in one of three
string lists:

• The screen list contains procedures for halftone screens.

• The transfer list contains procedures for transfer functions.

• The pagesize initialization list contains procedures for setting up a page
environment.

Strings that would cause a comment line to exceed 255 characters are split
into multiple lines with the %%+ StringSplit subcomment.

version = 1 (indicates version1).

magicNumber = 3 in version 1.

listID = 1 for the screen procedure string list.
= 2 for the transfer procedure string list.
= 3 for the page size initialization procedure string list.

stringLength The length of the string.

string The string data. The string starts one space after the stringLength argument
and extends for stringLength bytes.

%%+ Halftone Subcomment to %AI6_ColorSeparationSet

%%+ Halftone: version magicNumber halftoneName translatedName unused cyan.angle
cyan.frequency cyan.screen cyan.transfer magenta.angle magenta.frequency
magenta.screen magenta.transfer yellow.angle yellow.frequency
yellow.screen yellow.transfer black.angle black.frequency black.screen
black.transfer custom.angle custom.frequency custom.screen custom.transfer

Most of these arguments are the angle, frequency, screen and transfer values
for the four process colors plus the values for the custom color (spot color)
plates.

version = 1 (indicates version1).

magicNumber = 23 in version 1.

halftoneName The halftone name is extracted from the ColorSepScreenFreq,
ColorSepScreenAngle, ColorSepScreenProc and ColorSepTransfer PPD
keys.

translatedName The translated name is extracted from the ColorSepScreenFreq,
ColorSepScreenAngle, ColorSepScreenProc and ColorSepTransfer PPD
keys.

28 Adobe Illustrator File Format Specification 23 February 1998

cyan.angle
magenta.angle

yellow.angle
black.angle

custom.angle The screen angles are extracted from the ColorSepScreenAngle PPD key.

cyan.frequency
magenta.frequency

yellow.frequency
black.frequency

custom.frequency The screen frequencies are extracted from the ColorSepScreenFreq PPD key.

cyan.screen
magenta.screen

yellow.screen
black.screen

custom.screen A zero-based index into the screen procedure string list. The screen
procedure is extracted from the ColorSepScreenProc PPD key.

cyan.transfer
magenta.transfer

yellow.transfer
black.transfer

custom.transfer A zero-based index into the transfer procedure string list. The transfer
procedure is extracted from the ColorSepTransfer PPD key.

%%+ Process Subcomment to %AI6_ColorSeparationSet

%%+ Process: version magicNumber status frequency angle plate

version = 1 (indicates version1).

magicNumber = 4 in version 1.

status = 0 for “do not separate.”
= 1 for “separate.”
= 2 for “convert to process.” “Convert to process” only applies to custom
plates and should never be set for process color plates.

frequency The screen frequency for the plate.

angle The screen angle for the plate.

plate = 0 for the cyan plate.
= 1 for the magenta plate.
= 2 for the yellow plate.
= 3 for the magenta plate.

2 Prolog 29

%%+ Custom Subcomment to %AI6_ColorSeparationSet

%%+ Custom: version magicNumber status frequency angle colorName

version = 1 (indicates version1).

magicNumber = 4 in version 1.

status = 0 for “do not separate.”
= 1 for “separate.”
= 2 for “convert to process.”

frequency The screen frequency for the plate.

angle The screen angle for the plate.

colorName The name of the custom color.

%%+ PageSize Subcomment to %AI6_ColorSeparationSet

%%+ PageSize: version magicNumber pageProc custom transverse offset width height
imageArea.left imageArea.top imageArea.right imageArea.bottom
mediaName translation

version = 1 (indicates version1).

magicNumber = 12 in version 1.

pageProc A zero-based index into the page size initialization string procedure list.

custom True if this is a custom page entry; False otherwise.

transverse True if the page is transverse; False otherwise. This value may be changed by
the user in a custom page.

offset A real number, expressed in points, that describes the offset between
separation pages.

width A real number, expressed in points, that describes the width of the page. This
value corresponds to the custom maximum for custom pages.

height A real number, expressed in points, that describes the height of the page. This
value corresponds to the custom maximum for custom pages.

imageArea.left
imageArea.top

imageArea.right
imageArea.bottom Real numbers, expressed in points, that describe the imageable boundaries of

the page in default user space, where the origin is at the lower left and the
x and y axes extend positive right and positive up, respectively.

30 Adobe Illustrator File Format Specification 23 February 1998

mediaName The PostScript procedure name used to invoke page setup information.

translation The translated name of mediaName, presented to the user in page setup, print
setup, and print dialogs.

2.2 Artwork and Ruler Origin

All artwork elements, as well as the Bounding Box, Template Box, and Tile
Box, are written out in coordinates relative to the ruler origin, with y
increasing up and x increasing to the right, and bounds in the order left,
bottom, right, top.

The template, if there is one, is always centered on the artboard. If there is no
template associated with the artwork, the %AI3_TemplateBox comment
describes a degenerate box positioned at the center of the artboard. Since it is
written out in ruler-relative coordinates, the center of the template bounding
box can be used to establish the ruler origin by measuring backwards from
the center of the current artboard (that is by measuring x to the left of the
center of the template bounding box and y down from the center). It is done
this way because the size of the artboard may change between the Adobe
Illustrator version under which a file is saved and the version with which it is
subsequently opened. In such a situation, it is the centers of the two artboards
that must be aligned.

That is, when the file is opened, the Template Box rectangle is read in, and
then the ruler origin is calculated as:

x = (artboard width – templateBox.left – templateBox.right) / 2
y = (artboard height + templateBox.top + templateBox.bottom) / 2

(This x,y is in Macintosh coordinate space, where y increases down, unlike
the Adobe Illustrator file format, where y increases up.)

The position of the ruler, of course, is only really meaningful inside Adobe
Illustrator or another application that wishes to import Adobe Illustrator files
while keeping the ruler position intact. For applications that do not care about
the ruler position of Adobe Illustrator, it is sufficient to choose as an origin
any point pertinent to the importing application, such as one of the corners of
the bounding box, and apply to all the points in the artwork the translation
that would take that point to 0,0.

3 Script Setup 31

3 Script Setup

The syntax for the script setup section of an Adobe Illustrator document is

<script> ::= <setup>
{<layer>}*|{<object>}*
{<page trailer>}
<document trailer>
%%EOF

<setup> ::= %%BeginSetup
{%%IncludeFont: font}*
{<procset init>}*

<gradient defs>
<color palette>
<pattern defs>
<gradient defs>
%%EndSetup

<procset init> ::= <dict name>+ /initialize get exec

<gradient defs> ::= <Bn>
<gradient def>+

<gradient def> ::= %AI5_BeginGradient: (gradient name)
<Bd>
{<ramp data>}
<color stops>
<BD>
%AI5_EndGradient

<color palette> ::= %AI5_BeginPalette
<Pb>
<Pn>*
<Pc>*
<PB>
%AI5_EndPalette

<ramp data> ::= [
<%_Br>+

<color stops> ::= [
<%_Bs>+

<page trailer> ::= %%PageTrailer
gsave annotatepage grestore showpage

<document trailer> ::= %%Trailer
{<proc set termination>}*

The following sections describe the individual components of the setup
section of an Adobe Illustrator document.

32 Adobe Illustrator File Format Specification 23 February 1998

3.1 Specifying Particular Fonts

The comment %%IncludeFont specifies a font that appears in the document.
Adobe Illustrator checks to see whether that font is available and uses it if it
is. If the font is not available, Adobe Illustrator uses another font.

3.2 Initializing Resources

Adobe Illustrator customarily initializes those resources (proc sets) required
by the document. A corresponding termination appears in the document
trailer.

3.3 Fonts and Encodings

The mapping between ASCII characters and glyphs in a font is different from
the standard mapping used in a PostScript font. Therefore, to print a
document correctly, the mapping must be changed for each PostScript font
used in an Adobe Illustrator document. The action of altering the mapping
between character codes and glyphs is called re-encoding the font.

The syntax for re-encoding a font in an Adobe Illustrator document is

 ::= [
{<encoding pairs>}*
<TE>
{<re-encoding>}*

<encoding pairs> ::= (list of encoding number–glyph name pairs)

<re-encoding> ::= %AI3_BeginEncoding: newFontName oldFontName
<TZ>
%AI3_EndEncoding

 ::= AdobeType|TrueType

3.3.1 Font Encoding Operators

The TE operator sets the standard encoding for the platform on which the
Adobe Illustrator file is being executed. The TZ operator performs the re-
encoding. After encoding has been specified, the Tf operator can specify the
font name and the font size.

[encodingPairs TE The TE operator sets the standard platform font encoding. Note that there is
no right bracket following the encodingPairs parameter.

3 Script Setup 33

The encodingPairs operand is a list of encoding numbers and literal glyph
names organized as follows:

code 1/name 11/name 12/…/name 1j
code 2/name 21/name 22/…/name 2k
…

code n/name n1/name n2/…/name nl

where each code is in the range 0 to 255 and each name is the literal glyph
name. The / preceding each name is the syntax used to distinguish a
PostScript language literal name from an executable name. This list describes
a set of sequences of glyph names to install in the new encoding vector. Each
sequence begins with the character index of the first name to be replaced.
Subsequent names are replaced up to the next character index entry in
encodingPairs, at which point a new sequence of replacement names begins,
starting with the one at the new character index.

The TZ operator creates a new font from an existing font by changing
portions of the new font’s encoding vector. The operator can take several
forms, as shown in the syntax description below.

[newFontname oldFontName direction fontScript useDefault TZ
[encodingPairs newFontName oldFontName direction fontScript useDefault TZ
[newFontName oldFontName direction fontScript useDefault [w0 w1…wn] TZ
[encodingPairs newFontName oldFontName direction fontScript useDefault [w0 w1…wn] TZ

The first two forms of the TZ operator are for Type 1 font programs; the
second two forms are for Multiple Master typefaces. The forms with the
encodingPairs operand are used when changing font encoding. These
encodings are platform-specific; on some platforms there may be no
encodingPairs operand.

The encodingPairs operand is a list of encoding numbers and literal glyph
names as described for the TE operator.

The newFontName and oldFontName operands are the PostScript names for
the new font and the original font. These names must be the same as the
names given in the %%BeginEncoding comment.

For composite fonts (such as Japanese language fonts), the [encodingPairs
list must have a single left bracket. The direction and fontScript operands for
composite fonts can take the following values:

Operand Value Meaning

direction 0 Horizontal writing

1 Vertical writing

34 Adobe Illustrator File Format Specification 23 February 1998

Note For versions of Adobe Illustrator other than Adobe Illustrator 3.x and Adobe
Illustrator Japanese Edition, there is no direction operand. The Windows
version of Adobe Illustrator Japanese Edition ignores the direction operand.

The defaultEncoding operand controls whether the TE encoding is used (1) or
not (0). The defaultEncoding operand should be 0 if the font is not a standard
encoding Type 1 font (for example, a pi font, non-Roman font, or TrueType
font). If the font is a Multiple Master typeface, the final array operand is the
weightVector of the Multiple Master instance.

Figure 2 shows how to use the TZ operator. The example derives a new font
named _Times-Roman from the original Times-Roman font. It replaces three
sequences of characters within the encoding vector; the first one-character
sequence is number 39, the second one-character sequence is number 96, and
the third sequence replaces the characters numbered 128 and above.

Figure 2 Re-encoding Times Roman with the TZ operator

%%BeginEncoding: _Times-Roman Times-Roman

[39/foo 96/bar 128/bzaa/bazb

/_Times-Roman/Times-Roman 0 0 1 TZ

%%EndEncoding

3.4 Pattern Definition

The script setup section of a document defines the patterns used by Adobe
Illustrator. A pattern is essentially just another Adobe Illustrator illustration
that can be drawn repeatedly. You cannot use placed files nor graph objects
within a pattern, but patterns can include paths and text. Therefore, parts of
the description of how patterns are defined necessarily refers to the
description of how an illustration is described in the document script section.

Each pattern is defined by a rectangle used to tile the drawing area. The
illustration within that rectangle constitutes the pattern used when a path is
stroked or filled with a pattern.

The syntax for a pattern is

<pattern defs> ::= {<pattern>}*

fontScript 0 Roman typefaces

1 Japanese typefaces

2 Traditional Chinese typefaces

3 Korean typefaces

25 Simplified Chinese typefaces

Operand Value Meaning

3 Script Setup 35

<pattern> ::= %AI3_BeginPattern: (patternname)
<E>
%AI3_EndPattern

(patternname) llx lly urx ury [<pattern layer list>] E
The E operator defines a new pattern called patternname using the layer list
for which the bounding box is specified by (llx, lly) and (urx, ury).

Note Do not confuse the term “layers” as used in this section with the document
layers feature introduced in Adobe Illustrator 5.0. The layers discussed here
simply describe the paint order of objects.

The syntax for the list of layers in a pattern is as follows:

<pattern layer list> : := {<pattern layer>}*

<pattern layer> ::= <@>
<&>

Each layer of the pattern consists of two parts. The first part defines the color
to be used for filling and stroking the pattern. The second part defines the
other style parameters and the paths for drawing the pattern.

(colordefinition) @ The @ operator defines the color and overprinting style for the associated
layer in the pattern. The colordefinition parameter begins with a specification
of the overprinting option. For more information on overprinting, see the
definitions of operators O and R in section 5.4, “Color.” The filling or
stroking color is then defined using the simple gray operators (g and G), the
process color operators (k and K), or the custom color operators (x and X). All
color operators are defined in section 5.4, “Color.”

(tiledefinition) & The & operator defines the tile for the pattern layer that includes the drawing
styles and illustration components. This is identical to the representation of
objects in the document script except that the color components and both
parts of the object are specified separately as PostScript language strings,
which are enclosed in parentheses. The use of strings limits the size of a
pattern layer definition to 64K bytes.

Whenever a pattern background is filled or stroked, the first layer of the
pattern defines the background for the tile. If the pattern tile rectangle is filled
but not stroked, then you can use the special _ (underbar) operator to specify
a fill. If the pattern tile rectangle is stroked, then normal path construction of
the rectangle specifies the pattern tile to stroke. (Breaking down the filling
and stroking of the pattern tile results in performance optimization when
imaging.)

– _ The _ (underbar) operator signals the pattern machinery that the tile rectangle
for the path is to be filled with the fill color previously specified to the @
operator. Figure 3 shows an example pattern definition.

36 Adobe Illustrator File Format Specification 23 February 1998

Figure 3 An example pattern definition

%AI3_BeginPattern: (no vegetation)

(no vegetation) 6.4 6.4 113.5 103 [

%AI3_Tile

(0 O 0 R 0.06 0.09 0.23 0 (PANTONE 468 CV) 0 x 0.06 0.09 \

0.23 0 (PANTONE 468 CV) 0 X) @

(

%AI6_BeginPatternLayer

800 Ar

0 J 0 j 3.6 w 4 M []0 d

%AI3_Note:

0 D

0 XR

111.7 8.2 m

111.7 101.2 L

8.2 101.2 L

8.2 8.2 L

111.7 8.2 L

f

%AI6_EndPatternLayer

) &

(0 O 0 R 0.18 0.3 0.56 0 (PANTONE 465 CV) 0 x 0.18 0.3 0.56 \

0 (PANTONE 465

CV) 0 X) @

(

%AI6_BeginPatternLayer

800 Ar

0 J 0 j 3.6 w 4 M []0 d

%AI3_Note:

0 D

0 XR

111.7 8.2 m

111.7 101.2 L

8.2 101.2 L

8.2 8.2 L

111.7 8.2 L

s

%AI6_EndPatternLayer

) &

] E

%AI3_EndPattern

The example in Figure 3 defines a pattern called “no vegetation” where the
pattern tile is both filled and stroked.

The first line gives the pattern name; the second line specifies the bounding
box for the pattern tile. The fourth line begins a layer list describing the
pattern tile. The first item in the layer list specifies the color
PANTONE 468 CV as the fill color of the pattern tile; the next layer in the
pattern specifies the custom color PANTONE 465 CV as the stroke color of
the pattern tile.

Following the color specification is the drawing of the pattern tile itself. Each
path in the tile pattern layer is specified with a sequence of m (moveto) and L

pattern tile

3 Script Setup 37

(lineto) operations. The first pattern layer is filled (by means of the f
operator); the second layer is stroked (by means of the s operator).

See section 5.2 on page 54 for a description of the style options selected at
the beginning of the tile definition

38 Adobe Illustrator File Format Specification 23 February 1998

3.5 Gradients

Gradients within Adobe Illustrator files are sometimes referred to as blends.
Gradients are global objects, which are defined in the setup section of the file.
Objects that are painted with gradients (instances of the gradient) are found
later in the file and refer to the definition in the setup section.

The description of an Illustrator gradient is basically a description of the
settings in the Adobe Illustrator 6 Gradient palette (Figure 4). The user
interface for the Gradient palette is different in later versions of Illustrator
(the Illustrator 7 Gradient palette is shown in Figure 5), but the gradient
information stored in a document’s data file is the same.

Figure 4 Illustrator 6 Gradient Palette

Functions of the Illustrator 6 Gradient palette have been distributed among
three palettes in Illustrator 7: Gradient, Color, and Swatches (all are shown in
Figure 5). The Gradient palette is used to create gradients and, in
combination with the Color palette and Swatches palette, to modify existing
gradients. The gradient name shown in earlier versions has been abandoned
in Illustrator 7 in favor of choosing a gradient visually from the Swatches
palette. Color specifications for ramp points in the Gradient Ramp are
assigned in the Color palette.

Gradient colors can be assigned as CMYK process color, a spot color, or, (in
Illustrator 7) RGB process color. When a gradient is printed or separated,

5.0/5.5

type

name

colorSpec

colorStyle

0% 100%Gradient Ramp

rampPoint

midPoint
nColors

7.0

7.0

 39

RGB colors and RGB-CMYK mixed-mode gradient colors are all converted
to CMYK process color.

Figure 5 Illustrator 7 Gradient, Color, and Swatches palettes

The BNF syntax of a gradient is as follows:

<gradient defs> ::= <Bn>
<gradient def>+

<gradient def> ::= %AI5_BeginGradient: (gradient name)
<Bd>
{<ramp data>}
<color stops>
<BD>
%AI5_EndGradient

<ramp data> ::= [
<%_Br>+

<color stops> ::= [
<%_Bs>+

7.0

type

colorSpec
colorStyle

Gradient Ramp

rampPoint

midPoint

nColors

40 Adobe Illustrator File Format Specification 23 February 1998

3.5.1 Number of Gradients — Bn Operator

The Bn operator appears in the setup section of the document.

nblends Bn The Bn operator indicates the number of cached gradients, or blends, in the
document. The number of gradients is specified by the integer argument
nblends.

For example, if a document contained a two gradients, the following
description would apply:

%%BeginSetup

2 Bn

The Bn operator is required only if the document contains gradients.
Otherwise, it need not be present.

3.5.2 Gradient Definitions

Following the Bn operator are definitions of all gradients in a document.
Each of these begin with a comment and the name of the gradient:

%AI5_BeginGradient: (gradient name)

Begin Gradient Definition — Bd Operator

A gradient has three basic descriptors: the name, the type, and the number of
colors. These are specified with the gradient description begin operator (Bd),
as follows:

name type nColors Bd The Bd operator is required for each gradient definition. The three arguments
can assume the following values:
name String containing the name of the gradient. This

name is used in subsequent references to the
gradient.

type 0 = Specifies linear gradient.
1 = Specifies radial gradient.

nColors Integer specifying the number of colors in the
gradient.

For example, a linear gradient with two colors might begin as follows:

%AI5_BeginGradient: (Red & Yellow)

(Red & Yellow) 0 2 Bd

 41

Color Stops — %_Bs Operator

Color stop descriptions, equal in number to the number of colors specified in
the gradient, follow the Bd operator. Each gradient has at least two color
stops.

A color stop description has a variable number of arguments, depending on
the type of colors that it contains. The color stop begin operator is %_Bs ,
with the following syntax:

colorSpec colorStyle midPoint rampPoint %_Bs
The arguments can assume the following values:

rampPoint — a number giving the position of a color stop on the gradient ramp. The
gradient ramp is a distance from 0 to 100% of the length along the gradient
vector needed to fully create the gradient. The first ramp point does not have
to be at 0; the last does not have to be at 100. When the gradient has several
ramp points, their values must satisfy the following equation:

rampPoint1 < rampPoint2 < rampPoint3 …

midPoint — specifies the location between two ramp points where there is an equal
mix of the two colors. midPoint is a percentage of the distance between two
ramp points, expressed as a number between 13 and 87. The mid point for the
last color stop is ignored.

colorStyle — indicates the type of color making the color stop. colorStyle can take on
one of three values, as described in the following table.

Table 7 Values for colorStyle Argument

Value colorStyle

0 Gray

1 CMYK

2 RGB

3 CMYK custom color

4 RGB custom color

42 Adobe Illustrator File Format Specification 23 February 1998

colorSpec — indicates the percentage to be used of each color at the color stop ramp
point (except for the custom color name, where the value is a string). The
number of arguments represented by colorSpec depends on the colorStyle of
the color stop, as described in the following table.

The following example is a typical use of the %_Bs operator:

[

0 1 0.6 0 1 50 100 %_Bs

% CMYK ends at 100 percent

0.05 0.2 0.95 0 (Gold) 0 3 50 0 %_Bs

% Custom color starts at 0 percent, midpoint at 50 percent

The following example shows a typical gradient definition:

%%BeginSetup

...

1 Bn

%AI5_BeginGradient: (White & Purple Radial)

(White & Purple Radial) 1 2 Bd

[

0.55 1 0 0 1 50 10 %_Bs

0 0 0 0 1 50 100 %_Bs

BD

%AI5_EndGradient

...

%%EndSetup

Note that the %%BeginSetup and %%EndSetup comments appear only once
in a document file.

Gradient Ramps — %_Br Operator

An additional piece of information is sometimes included in a gradient
description: a description of the gradient ramp, specified by means of the
%_Br operator. If the file is being written for imaging purposes (for example,
sending a PostScript file to a printer or writing an EPS file), this information

Table 8 Number of Arguments and Values for colorSpec

colorStyle
Number of
colorSpec
Arguments

colorSpec Arguments

Gray (0) 1 gray

CMYK (1) 4 cyan magenta yellow black

RGB (2) 7 cyan magenta yellow black red green blue

CMYK custom color (3) 6 cyan magenta yellow black name tint

RGB custom color (4) 10 cyan magenta yellow black red green blue name tint type
(value of type is always 1 for RGB)

 43

is required. If the file is being written for use within Adobe Illustrator or as
common file format, this information can be ignored.

The %_BR operator is defined as follows:

rampSpec rampType %_Br Description of the gradient ramp, including the type of ramp and the color
model used to define the ramp.

rampType — one of four values that describes the type of ramp, as follows:
0 = gray
1 = CMYK color
2 = ramp contains one CMYK custom color
3 = ramp is a gradient between two different CMYK custom colors
4 = RGB color
5 = RGB custom color (blend between tints of same color)
6 = RGB custom colors (blend between two different colors)

rampSpec — one or more strings representing ramp channel designations. The number
of strings depends on the value of rampType, as described in the following
table.

Each ramp channel value is a variable-length string that contains hexadecimal
values suitable for input to the image operator. As an optimization, a single

Table 9 Number of arguments and values for rampSpec

rampType
Number of
rampSpec
Arguments

rampSpec Arguments

0 (Gray) 1 grayRamp

1 (CMYK color) 4 cyanRamp magentaRamp yellowRamp
blackRamp

2 (Custom CMYK color) 5 cyanRamp magentaRamp yellowRamp
blackRamp tintRamp

3 (Custom CMYK colors) 6 cyanRamp magentaRamp yellowRamp
blackRamp tint1Ramp tint2Ramp

4 (RGB color) 7 cyanRamp magentaRamp yellowRamp
blackRamp redRamp greenRamp
blueRamp

5 (Custom RGB color) 8 cyanRamp magentaRamp yellowRamp
blackRamp redRamp greenRamp
blueRamp tint1Ramp

6 (Custom RGB colors) 9 cyanRamp magentaRamp yellowRamp
blackRamp redRamp greenRamp
blueRamp tint1Ramp tint2Ramp

7.0

7.0

7.0

7.0

7.0

7.0

44 Adobe Illustrator File Format Specification 23 February 1998

integer value is written out for strings that would contain the same data
throughout the ramp. For example, the hexadecimal value 01010101 is
written as the integer 1; the value FFFFFFFF is written as the integer 255.

End Gradient Description — BD Operator

The gradient description ends with the required gradient description end
operator BD:

BD Terminate gradient definition.

3.5.3 Gradient Instances

When a gradient is used in to fill an object, a gradient instance is specified.
The BNF syntax for a gradient instances is as follows:

<gradient instance> ::=
<Bb>
<Bh> |
<Bg> |
{<Xm>} |
<Bm> |
<Bc> |
<f>
<BB>

The gradient instance includes information such as the origin point and
transformation matrix for the gradient. The following example shows a filled
path and the section of an Illustrator file that generates it:

Figure 6 A closed rectangular path filled with a gradient.

% The object description (a rectangle).

0 D

246 696 m

246 574 L

36 574 L

36 696 L

246 696 L

% Begin the gradient instance definition.

Bb

1 (Purple, Red & Yellow) 36 696 -30 243 1 0 0 1 0 0 Bg

% Close and fill path, then end the instance definition.

 45

f

0 BB

Note that the path rendering operator f is within the gradient instance
(between the Bb and BB operators). The reason for this is that the gradient
instance information (definition and geometry) replaces Postscript path
rendering procedures on receipt of Bb and restores them on receipt of BB .

The following sections describe the operators used in this gradient instance.

Gradient Instance Begin and End — Bb and BB Operators

A gradient instance must be bracketed with begin (Bb) and end (BB)
operators. The gradient begin operator Bb does not take arguments. The end
instance operator is defined as follows:

flag BB The flag argument can be one of three values, as shown in the following table.

In the example shown in Figure 6, the flag is set to 0 to indicate a gradient fill
with no stroke.

3.5.4 Gradient Geometry — Bg Operator

Gradient geometry defines much of the appearance of the gradient within the
path. The operator to specify the gradient geometry is Bg . It is defined as
follows:

flag name xOrigin yOrigin angle length a b c d tx ty Bg

flag — This argument defines how the gradient will be rendered, as described in
the following table. For simple filled paths, flag takes the value 1.

Table 10 Values for BB flag argument

Value Action

0 Do not stroke path (take no action).

1 Stroke path.

2 Close path, stroke path.

Table 11 Values for Bg flag argument

Value Action

0 Do not issue a clip (default value—not always specified).

1 Issue a clip.

46 Adobe Illustrator File Format Specification 23 February 1998

name — This argument refers to the gradient to be used in the fill. The name of a
gradient is defined in the gradient description in the setup section of the file.

The next four arguments define the gradient vector, which determines the
gradient’s appearance.

xOrigin yOrigin — These arguments give the origin of the gradient in page coordinates. The
origin can be located anywhere on the artwork, and corresponds to 0 on the
gradient ramp. In the example shown in Figure 6, the origin is at the upper
left corner of the rectangle.

angle — This argument specifies the direction of the gradient vector, in degrees.
The gradient ramp extends from the origin at the value of angle, which is
measured counterclockwise from the x axis.

The example in Figure 6 uses an angle of –30 degrees, and is roughly the
direction shown in Figure 7.

Figure 7 Gradient rotated in instance definition.

length — This argument specifies the distance over which the gradient ramp is
applied. The ramp will be scaled so that its 100% value is the end of the
length.

2 Disable rendering.

Table 11 Values for Bg flag argument (Continued)

Value Action

angle
x axis

Length

Origin
Angle

Origin

Angle is still –30°
because transformation
matrix handles rotation

Gradient before rotation Gradient after 30 degree rotation

 47

a b c d tx ty —The last six values used by the Bg operator make up a transformation
matrix. When a gradient is first applied to an object, these values are the
identity matrix. If the user transforms the object, the user transformation
matrix is concatenated to the gradient instance’s matrix. For a definition of
the transformation matrix and its notation with PostScript language
operators, refer to the discussion on coordinate systems and transformations
in PostScript Language Reference Manual, Second Edition

From the viewpoint of the user, the origin of the artwork is set to the bottom
left corner of the virtual art board in a first quadrant coordinate system.
However, if you zoom out to the view limit, you will see a larger canvas that
represents the entire imageable area available for the artwork. The origin of
this canvas is in the upper left corner, with coordinates (–4014, 4716)
expressed in the system of the virtual art board. When you save a file, Adobe
Illustrator transforms the origins of gradient definitions into the coordinate
system of the larger canvas. This transformation often yields large values for
tx and ty in a gradient instance, and large values for xOrigin and yOrigin in
palette gradient definitions. When the gradient is actually applied to an
object, Adobe Illustrator recomputes the transformation matrix for that
instance of the gradient. The following expressions illustrate how to calculate
new x and y coordinates from the values of a b c d tx ty.

#define xOrigin –4014

#define yOrigin 4716

x_new = a * (x_old – xOrigin) - c * (y_old – yOrigin) + tx +

xOrigin

y_new = –b * (x_old – xOrigin) + d *(y_old – yOrigin) + ty +

yOrigin

a b c d x y Xm The Xm operator and its parameters are additional information written out as
part of a linear gradient definition. The Xm operator appears after the Bg
operator. Its parameters are six floating point values, which describe the
overall matrix applied to the gradient. Xm is used by Level 3 PostScript
interpreters to print the gradient. When Adobe Illustrator reads the file, the
Xm operator is ignored. Therefore, the inclusion of Xm is optional unless the
file is to be printed using the Adobe Illustrator Level 3 procset.

3.5.5 Radial Gradients

The meaning of the gradient vector is different for radial gradients than for
linear gradients. The vector origin is the center of the circle containing the
radial gradient; the vector length is the radius of the that circle. The vector
angle is not used by radial blends, but is preserved and used if the user
changes the gradient from radial to linear.

7.0

48 Adobe Illustrator File Format Specification 23 February 1998

Gradient Hilights — Bh Operator

Radial gradients have an additional attribute called a hilight, specified by the
Bh operator. The hilight serves at the starting point for the gradient ramp as it
expands outward. It is still contained within the gradient vector circle.

Figure 8 Radial gradient hilights.

The hilight is specified by the Bh operator, defined as follows:

xHilight yHilight angle length Bh
Arguments to the Bh operator are as follows:

xHilight yHilight — These arguments specify the hilight placement, in x and y offsets from the
gradient vector origin.

angle — This argument is the angle to the hilight point, measured counterclockwise
from the x axis.

length — This argument is the distance of the hilight from the origin, expressed as a
fraction of the radius—a value between 0 and 1.

An example of a radial gradient instance is:

Bb

60 58 44 0.5901 Bh

1 (Yellow & Blue Radial) 208 474 45 141 1 0 0 1 0 0 Bg

f

0 BB

Note Adobe Illustrator ignores the xHilight yHilight values. Instead, it uses the
angle and length to calculate the highlight position. Other applications, such
as Adobe Photoshop, use the x and y offsets directly rather than recalculating
them.

Vector length

Origin

Hilight

Hilight length
Hilight angle

Centered Hilight Offset Hilight

Hilight

Origin

 49

3.5.6 Gradient Imaging — Bm and Bc Operators

Two other operators are used to define gradient instances when imaging.
Imaging includes both printing (generating PostScript files) and writing EPS
files. Imaging operations require writing out gradient ramp data.

The two imaging operators specific to gradients are Bm (gradient matrix) and
Bc (gradient cap). Although required for imaging, these operators are not
essential to Adobe Illustrator file formats.

a b c d tx ty Bm
a b c d tx ty Bc Both Bm and Bc take a two-dimensional transformation matrix as argument.

For a definition of the transformation matrix and its notation with PostScript
language operators, refer to the discussion on coordinate systems and
transformations in PostScript Language Reference Manual, Second Edition.

The Bm and Bc operators specify a transformation matrix perpendicular to
the gradient vector. To image the gradient, they specify a series of adjacent
filled areas that compose the gradient. The Bm operator specifies a gradient
fill between two colors; the Bc operator specifies solid colors at either end of
a linear gradient fill, known as gradient caps. The caps are necessary when a
gradient vector does not extend over the entire filled area of an object. In such
cases, the colors Bc specifies for gradient caps are extrapolations of the
gradient along the gradient vector. A red-to-yellow gradient, for example,
would be supplied a red cap at one end of the vector and a yellow cap at the
other.

The following example shows a linear gradient instance with the Bm and Bc
operators included. It images a purple cap, a purple-to-red gradient matrix, a
red-to-yellow gradient matrix, and a yellow cap.

% The beginning of the instance definition.

Bb

1 (Purple, Red & Yellow) 36 696 -30 243 1 0 0 1 0 0 Bg

10431 -6060 -108 -186 -10341 6849 Bc

105 -61 -108 -186 90 789 Bm

105 -61 -108 -186 195 728 Bm

10431 -6060 -108 -186 300 667 Bc

% Close and fill path, then end the instance definition.

f

0 BB

Gradient caps do not apply to radial blends, so a radial blend requires only a
single Bm operator, as follows:

Bb

0 0 0 0 Bh

1 (Yellow & Blue Radial) 284 263 0 172.27 1 0 0 1 0 0 Bg

172.27 0 0 -172.27 284 263 Bm

50 Adobe Illustrator File Format Specification 23 February 1998

f

0 BB

4 Global Objects 51

4 Global Objects

Global objects are named definitions that are used across objects in the file.
Global objects are defined in the setup section of the file. Patterns and
gradients are examples of global objects. Global objects are stored with the
file even when no object uses them. For example, if a user defines a pattern
and names it “Brick,” that definition remains in the setup section of the file
even though no object in the document is painted with Brick. When the user
does paint an object with Brick, that object refers to the definition to
determine what Brick is. Global objects are not written to the print stream of
a document (a PostScript or EPS file) unless an object in the file actually uses
them.

Note that names that appear in the Illustrator 7 user interface are not those
that appear in the Illustrator data file. The name that is presented to the user is
the collection of characters that appear before the \n character in the data file.

4.1 Name Collisions in Global Objects

A global object such as a gradient or pattern is unique within a single
Illustrator file. However, a global object in a one file may have the same name
as one in another file that refers to an entirely different object. For example,
two gradients in different documents might both be named “Red & Yellow”
but be associated with definitions that have different color styles, ramp
points, and so on.

A name collision occurs when the user opens a file with a named global
object that is different from the one in the currently open file, but that has the
same name. In this case, the newer object definition overwrites the older one.

Note that such name collisions do not occur with placed EPS graphics
because EPS files contain no global objects.

7.0

52 Adobe Illustrator File Format Specification 23 February 1998

5 Script Body

An illustration is composed of a sequence of graphic elements. The
PostScript imaging model is based on opaque ink so that elements later in the
sequence are effectively “on top of” other elements earlier in the sequence.
Thus, later elements can obscure earlier elements.

Fill and stroke attributes are state-based; that is, once set, they remain set
until changed.

The syntax for the sequence of elements is

<object> ::= {<A>} (object locking)
<path object> |
<path mask> |
<composite object> |
<raster object> |
<text object> |
<placed art object> |
<subscriber object> |
<graph object> |
{<XT>} (object tag)
<PostScript document>

<path object> ::= <paint style>
<path geometry>
<path render> | <*> (<*> indicates guide operator)

<path mask> ::= <paint style>
<path geometry>
<h> | <H>
<W>
<path render>

<composite object> ::=
<group object> |
<group with a mask> |
<compound path> |
<compound path mask> |
<wraparound group>

<raster object> ::= <XI> |
<XG>
<XF>

<group object> ::= <u>
<object>+
<U>

5 Script Body 53

<group with a mask> ::=
<q>
{<object>}*
{<masked object>}*
<Q>

<masked object> ::= <mask> | <object>

<mask> ::= <path mask> | <compound path mask>

<compound path> ::= <*u>
<compound path element>+
<*U>

<compound path element> ::=
<path object> | <compound group>

<compound group> ::=
<u>
<compound path element>+
<U>

<compound path mask> ::=
<*u>
<compound path mask element>+
<*U>

<compound path mask element> ::=
<path mask> | <compound mask group>

<compound mask group> ::=
<compound mask bottom group> |
<compound mask non-bottom group>

<compound mask bottom group> ::=
{<A>}
<q>
<path mask>+
<Q>

<compound mask non-bottom group> ::=
{<A>}
<u>
<compound mask group>+
<U>

The following sections explain the individual operators for describing
graphic objects.

54 Adobe Illustrator File Format Specification 23 February 1998

5.1 Locked Object Operator

flag A The A operator specifies whether the object defined immediately after the
operator can be selected when editing the document with Adobe Illustrator.
The flag operand may be either 0 or 1. If flag is 0, the object may be selected
for editing. If flag is 1, the object is “locked” and may not be selected. This
state remains in force for every subsequent element unless specifically
changed.

5.2 Paint Style

Paint style is applied to Adobe Illustrator path-based objects. The BNF syntax
for paint style and its attributes is:

<paint style> ::= {<color> | <overprint> | <path attributes>}*

5.3 Paths

In the PostScript language, you draw by constructing a path and then filling
or stroking it. This section defines the path operators. You can construct only
one path (the current path) at a time. The current path is initially empty. The
painting operators reset it to empty after execution.

The syntax for a path is as follows.

<path geometry> ::= <m>
{<path operator>}*

<path operator> ::= <l> | <L> | <c> | <C> | <v> | <V> | <y> | <Y>

<path render> ::= <N> | (closepath; no fill no stroke)
<n> | (neither fill nor stroke)
<gradient instance>| (fill with gradient)
<F> | (fill)
<f> | (closepath; fill)
<S> | (stroke)
<s> | (closepath; stroke)
 | (fill and stroke)
 (closepath; fill and stroke)

5.3.1 Path Attributes

Path attributes have the following BNF syntax:

5 Script Body 55

<path attributes> ::= <d> |
<D> |
<i> |
<j> |
<J> |
<M> |
<w> |
%AI3_Note: <note>

<note> ::= up to 254 characters of arbitrary text.

The valid path attributes are:

[array] phase d The d operator is equivalent to the PostScript language setdash operator. It
sets the dash pattern parameter in the graphics state, to control the dash
pattern of subsequently stroked paths. The array of values specifies distances
in user space for the length of dashes and gaps, respectively, in the dash
pattern. The phase operand determines the phase of the dash pattern with
respect to the start of the path. It is specified as a distance in user space into
the pattern at which to begin marking the path. The initial dash pattern is a
solid line.

Note Adobe Illustrator does not provide an interface for users to adjust this phase
parameter. Adobe Illustrator preserves this phase for documents that the user
edits and saves.

flatness i The i operator is equivalent to the PostScript language setflat operator, which
sets the flatness parameter in the graphics state. The flatness parameter
specifies the accuracy or smoothness with which curves are rendered as a
sequence of flat line segments. Specifically, it sets the maximum permitted
distance in device pixels between the mathematical path and a given straight
line segment. The default value for the flatness parameter is 0.0. If flatness is
specified as 0, flatness is set by Adobe Illustrator to the flatness parameter in
effect when the prolog was executed; in most cases, that is the device’s
default flatness. This may be the device’s default flatness, it may be a value
you have entered, or it may be a value inherited from an encapsulating
context. Acceptable range is 0 to 100.

flag D The D operator determines the winding order of the object. The filling
operators (for example, the F operator) determine the area to fill based on the
direction of the path, using the non-zero winding order rule. The operand flag
is 0 for a clockwise path direction and 1 for a counter-clockwise direction.

linejoin j The j operator is equivalent to the PostScript language setlinejoin operator,
which sets the line join parameter in the graphics state. This parameter
specifies the shape to put at corners in paths when they are stroked. The
linejoin parameter may be 0 for mitered joins, 1 for round joins, and 2 for
beveled joins. The initial linejoin is 0. See PostScript Language Reference
Manual, Second Edition, for more information.

56 Adobe Illustrator File Format Specification 23 February 1998

linecap J The J operator is equivalent to the PostScript language setlinecap operator,
which sets the line cap parameter in the graphics state. If linecap is 0, Adobe
Illustrator uses butt end caps and squares off line ends. If linecap is 1, it uses
round end caps. If linecap is 2, it uses projecting square end caps. The
projection extends beyond the end of the line by a distance which is half the
line width. The initial linecap value is 0. See PostScript Language Reference
Manual, Second Edition, for more information.

miterlimit M The M operator is equivalent to the PostScript language setmiterlimit
operator, which sets the miter limit parameter in the graphics state. The
miterlimit operand must be a real number greater than one. When you have
specified mitered joins and two line segments meet at a sharp angle, it is
possible for the miter to extend far beyond the thickness of the line stroking
the path. The miter limit imposes a limit on the ratio of the length of the miter
to the line width. When the limit is exceeded, the file prints with a bevel join
instead of a miter. The initial miter limit is 4.

linewidth w The w operator is equivalent to the PostScript language setlinewidth
operator, which sets the line width parameter in the graphics state. This
parameter controls the thickness of the line used to stroke a path and is
specified as a distance in user space. The initial linewidth is 1.0. A line width
of 0 is acceptable; when Adobe Illustrator prints the file, this is interpreted as
the thinnest line width that can be rendered at device resolution (not
recommended on high-resolution devices because the line may be nearly
invisible).

5.3.2 Path Construction Operators

A path is constructed by appending segments which are either straight lines
or Bézier curves. The last point on a segment is called the current point; new
segments are always appended to the current point. The first operator on a
path must be m to establish an initial current point.

As each new segment is appended to the path, Adobe Illustrator marks the
new current point as either a smooth point or a corner point. If the point is
smooth, Adobe Illustrator assumes collinearity of the point and the two
associated Bézier direction points of the segments connected by the point. If
the point is a corner point, there is no assumed constraint. You can think of a
straight line segment as a “degenerate” Bézier curve in which the direction
points are coincident with the end points.

Note Adobe Illustrator enforces an upper limit of 8191 segments on a path. Paths
with more segments should be split into multiple paths so as not to exceed this
limit.

x y m The m operator is equivalent to the PostScript language moveto operator. It
changes the current point to x, y, omitting any connecting line segment. A
path must have m as its first operator.

5 Script Body 57

x y l The l (lowercase L) operator appends a straight line segment from the current
point to x, y. The new current point is a smooth point.

x y L The L operator is similar to the l operator, but the new current point is a
corner.

x1 y1 x2 y2 x3 y3 c The c operator appends a Bézier curve to the path from the current point to
x3, y3 using x1, y1 and x2, y2 as the Bézier direction points. The new current
point is a smooth point.

x1 y1 x2 y2 x3 y3 C The C operator is similar to the c operator, but the new current point is a
corner.

x2 y2 x3 y3 v The v operator adds a Bézier curve segment to the current path between the
current point and the point x3, y3, using the current point and then x2, y2 as the
Bézier direction points. The new current point is a smooth point.

x2 y2 x3 y3 V The V operator is similar to the v operator, but the new current point is a
corner.

x1 y1 x3 y3 y The y operator appends a Bézier curve to the current path between the current
point and the point x3, y3 using x1, y1 and x3, y3 as the Bézier direction points.
The new current point is x3, y3 and is a smooth point.

x1 y1 x3 y3 Y The Y operator is similar to the y operator, but the new current point is a
corner.

x2, y2

current point

x1, y1
x3, y3

x2, y2

current point

x3, y3

current point

x1, y1
x3, y3

58 Adobe Illustrator File Format Specification 23 February 1998

5.3.3 Path Painting Operators

Each of the path painting operators consumes the current path and resets it to
empty.

– N The N operator neither fills nor strokes the current path, leaving it as an open
path (see the F/f and S/s operators). Paths that are invisible in the final
document may be used as templates, alignment marks, and so forth while
using Adobe Illustrator to edit a document.

– n The n operator is similar to the N operator, but first closes the current path.

– F The F operator fills the area enclosed by the current path with the current
filling color or pattern, leaving it as an open path. The inside of the current
path is determined by the zero winding rule. See PostScript Language
Reference Manual, Second Edition for “insideness” testing by the PostScript
interpreter.

– f The f operator is similar to the F operator, but first closes the current path.

– S The S operator strokes the current path with a line using the current stroking
color or pattern. The line width is specified by the graphics state (see the w
operator) and the line is centered on the path with its sides parallel to the
path. The joins between path segments are specified by the line join
parameter in the graphics state (see the j operator), the ends of the path
segments or dash lines within a segment (see the d operator) are specified by
the end cap parameter of the graphics state (see the J operator).

– s The s operator is similar to the S operator, but first closes the current path.

– B The B operator is similar to the F operator, but both fills and strokes the
current path, leaving it as open.

– b The b operator is similar to the B operator, but closes the current path before
filling and stroking it, leaving the path closed.

5.3.4 Filling Paths by Rule — XR Operator

Fill rules determine which points lie “inside” and which “outside” a closed
path. For a complex path, different fill rules often produce different results
when the path is filled (painted). Fill rules are described in section 4.5 of
PostScript Language Reference Manual, Second Edition. In Adobe Illustrator
documents, the fill rule is specified with the XR operator.

6.0

5 Script Body 59

n XR Fill rule choices are non-zero winding number and even-odd.

n 0 = use non-zero winding number fill rule
1 = use even-odd fill rule
(other values are reserved for future versions)

If the value for n is out of bounds (other than 0 or 1), Adobe Illustrator
defaults to n = 0, the non-zero winding number fill rule.

5.3.5 Compound Paths

A compound path is a group of two or more paths that are painted so that
overlapping paths can appear transparent. Letter shapes are often compound
paths—for example, the capital letter A, because it has the enclosed
triangular counter that appears transparent.

Compound paths are equivalent to PostScript language paths; Adobe
Illustrator paths are somewhat simpler. Compound paths act as grouped
objects.

The BNF syntax for compound paths is:

<compound path> ::= <*u>
<compound path element>+
<*U>

<compound path element> ::= <path object> | <compound group>

<compound group> ::= <u>
<compound path element>+
<U>

5.4 Color

The BNF syntax for color and its attributes is:

<color> ::= <fill color> | <stroke color>

<fill color> ::= <g> | (fill black ink only, or)
<k> | (fill process ink, or)
<x> | (fill custom ink, or)
<Xa> | (fill RGB color, or)
<Xx> | (fill custom RGB color, or)
<p> (fill pattern)

60 Adobe Illustrator File Format Specification 23 February 1998

<stroke color> ::= <G> | (stroke black ink only, or)
<K> | (stroke process ink, or)
<X> | (stroke custom ink, or)
<XA> | (stroke RGB color, or)
<XX> | (stroke custom RGB color, or)
<P> (stroke pattern)

5.4.1 Color Operators

The settings for color operators and gray scale can extend to four decimal
places.

gray g The g operator specifies the gray tint to use for filling paths. The gray
operand must be a real number between 0.0 (black) and 1.0 (white).

gray G The G operator is similar to the g operator, but specifies the gray tint to use
for stroking paths. The gray operand must be a real number between 0.0
(black) and 1.0 (white).

cyan magenta yellow black k The k operator is equivalent to the PostScript language setcmykcolor
operator. It specifies the color to use for filling paths. Each operand must be a
real number between 0.0 (minimum intensity) and 1.0 (maximum intensity).
If the setcmykcolor operator is not defined by the PostScript interpreter
(except in the case of creating separations), the Adobe Illustrator prolog
defines it in terms of the original setrgbcolor operator by transforming the
operands as follows.

red = 1 – min(1, cyan + black)

green = 1 – min(1, magenta + black)

blue = 1 – min(1, yellow + black)

The PostScript interpreter automatically performs the conversion from red,
green, and blue to gray for a monochrome output device using the following
formula.

gray = 0.3 × red + 0.59 × green + 0.11 × blue

cyan magenta yellow black K The K operator is similar to the k operator, but specifies the color to use for
stroking paths.

cyan magenta yellow black (name) gray x
The x operator defines a custom color for filling paths. The cyan, magenta,
yellow, and black operands are interpreted in the same way as for the k and K
operators. Adobe Illustrator treats the gray operand the same as for the g/G
operators, and specifies the screen fraction of the custom color in the range
0.0 to 1.0. The name operand is a valid PostScript language string that names
the custom color. For example:

0.45 0 0.25 0 (PANTONE 570 CV) 0 x

5 Script Body 61

The first four operands are CMYK values. name is the name of the color; this
is popped off in execution. The last operand (gray) is the tint value.

A user can specify the tint value in percentages from 0 to 100%. The value is
scaled to the range of 0 to 1 and then subtracted from 1 to determine what is
to be written out in the PostScript language call. A custom color’s CMYK
values are each multiplied by the tint value.

cyan magenta yellow black (name) gray X
The X operator is similar to the x operator, but specifies the custom color to
use for stroking paths.

red green blue Xa – Percent of RGB color fill. The red, green, and blue operands must
be real numbers between 0.0 and 1.0, as defined for the setrgbcolor operator.

red green blue XA – Percent of RGB color stroke. The red, green, and blue operands
must be real numbers between 0.0 and 1.0, as defined for the setrgbcolor
operator.

comp1 … compn name tint type Xx –
Generic custom color fill operator. Xx can be used with any

colorspace, but its original use is limited to RGB custom color fills.

comp1 … compn are color components in a color space that constitute the
custom color.
name is a string that identifies this custom color
tint is a number between 0.0 and 1.0.
type can take the following values:

0 = CMYK custom color
1 = RGB custom color.

Adobe Illustrator 7 usage is limited to RGB color only, in which case the
operator takes the following form:

red green blue name tint 1 Xx –

comp1 … compn name tint type XX –
Generic custom color stroke operator. XX can be used with any

colorspace, but its original use is limited to RGB custom color fills.

comp1 … compn are color components in a color space that constitute the
custom color.
name is a string that identifies this custom color
tint is a number between 0.0 and 1.0.
type can take the following values:

0 = CMYK custom color
1 = RGB custom color.

7.0

7.0

7.0

7.0

62 Adobe Illustrator File Format Specification 23 February 1998

Adobe Illustrator 7 usage is limited to RGB color only, in which case the
operator takes the following form:

red green blue name tint 1 XX –

(patternname) px py sx sy angle rf r k ka [a b c d tx ty] p
The p operator specifies the pattern for subsequent fill operations. The
patternname operand names the pattern as defined in the script setup
sequence (see section 3, “Script Setup”). The remaining operands specify the
transformations—in order—to be applied to the pattern before using it to fill
a path.

px py Specify the offset from the ruler origin of the origin to be used
for tiling the pattern. Each distance specified in points.

sx sy Specify the scale factors to be applied to the x and y
dimensions, respectively, of the pattern.

angle Specifies the angle in counterclockwise degrees to rotate the
pattern.

rf Flag indicating whether to apply a reflection to the pattern
(1 = true, 0 = false).

r Specifies the angle of the line from the origin about which the
pattern is reflected. Used if the rf operand is non-zero.

k Specifies the shear angle.

ka Specifies the shear axis.

[a b c d tx ty] Specifies the initial matrix to which all other pattern
transformations are to be applied. This matrix describes
transformations that are not otherwise expressible as the single
combination of the other transformations.

(patternname) px py sx sy angle rf r k ka [a b c d tx ty] P
The P operator is similar to the p operator, but specifies the pattern for use in
stroking paths.

5.5 Overprint Operators

The BNF syntax for overprint and its attributes is:

<overprint> ::= <O> | (fill overprint, or)
<R> (stroke overprint)

5 Script Body 63

flag O The O operator specifies whether to use overprinting when filling a path. If
flag is 1, overprinting is used; otherwise, flag must be 0. See Adobe
Illustrator 3.0 Color Guide for a discussion of overprinting in Adobe
Illustrator 3.x documents.

flag R The R operator is similar to the O operator, but specifies whether to use
overprinting when stroking a path.

5.6 Containers

This section describes the ways objects can be organized into groups.

5.6.1 Group Operators

Two operators support Adobe Illustrator’s ability to combine separate graphic
elements into a single object.

The BNF syntax for group object and its attributes is:

<group object> ::= <u>
<object>+
<U>

– u The u operator marks the beginning of a sequence of elements to be grouped
into a composite object. All subsequent graphical elements in the script—
including other groups, and up to a matching U operator—are included in the
group.

– U The U operator marks the end of a sequence of elements to be grouped into a
composite object. A u operator must precede the U operator.

5.6.2 Clipping (Masking) Operators

A mask is an object that allows only objects beneath it in the stacking order to
show through. Objects beneath the mask that lie outside its boundary are
hidden from view.

An object used as a mask and the objects that it masks are bounded in the file
by the q and Q operators as though they were grouped. Masks can be made
from a path, a group of objects, or one or more compound objects. Each new
mask intersects the current clipping path in the same way that the PostScript
language clip operator does — that is, it uses the winding rule as does the fill
operator, and achieves the same coverage.

<group with a mask> ::= <q>
{<object>}*
{<masked object>}*
<Q>

64 Adobe Illustrator File Format Specification 23 February 1998

<masked object> ::= <mask> | <object>

<mask> ::= <path mask> | <compound path mask> | <multi-layer mask>

<compound path mask> ::= <*u>
<compound path mask element>+
<*U>

<compound path mask element> ::=
<path mask> | <compound mask group>

<compound mask group> ::= <compound mask bottom group> |
<compound mask non-bottom group>

<compound mask bottom group> ::=
{<A>}
<q>
<path mask>+
<Q>

<compound mask non-bottom group> ::=
{<A>}
<u>
<compound mask group>+
<U>

<multi-layer mask> ::= <Mb>
<object>+
<Md>
<MB>

<path mask> ::= <paint style>
<path geometry>
<h> | <H>
<W>
<path render>

– q The q operator marks the beginning of a mask (clip path) in a sequence of
grouped objects. The mask is a boundary for subsequent objects in the group,
so that only objects within the boundary are visible when the illustration is
rendered.

– Q The Q operator is similar to the U operator, except that it marks the end of a
sequence of elements containing a mask. It must be paired with a q operator.

– H The H operator neither fills nor strokes the current path, but does not consume
the path. This operator is used when establishing a mask.

– h The h operator is similar to the H operator, but first closes the current path.
This operator is used when establishing a mask.

5 Script Body 65

– W The W operator intersects the current clip path in the graphics state with the
current path and sets a new, reduced clip path in the graphics state. No marks
are made outside the area enclosed by the current clip path by subsequent fill
and stroke operations until a Q operator appears. The Q operator restores the
masking that was in effect at the matching q operator. This operator is used to
establish a mask.

5.7 Text as Masks

You can use text objects as masks by using the Tr operator with a rendermode
of 4 through 7. See section 15.4.5, “Text Rendering,” for a full explanation of
text rendering. When using text objects as masks, the entire text object
becomes the mask. Adobe Illustrator cannot preview this kind of masking on
the screen, although it prints properly. To see the effect of text used as a mask
on the screen, convert the text to outlines.

66 Adobe Illustrator File Format Specification 23 February 1998

6 Guides

Guides act as control lines or shapes, and are similar to the “grid” feature in
some drawing programs. They do not print and do not show up during
preview, but other objects “snap to” guides for positioning. Guides can be
lines or objects.

When you turn an object into a guide, it retains its color and other attribute
information. If and when you release the object from being a guide, its
attributes are restored.

Guides can appear within groups, and guides themselves can be groups.

The BNF syntax for a guide is similar to that for a path object with the
* operator:

<guide> ::= (<path render>) | <*> (<*> indicates guide operator)
<paint style>
<path geometry
(<path render>) | <*>

6.1 Guide Operator

Adobe Illustrator writes guides out to the file in the form of a path. The
* operator begins and ends a path used as a guide. The * operator takes a
string parameter which is one of the path render operators, for example (F)*.
The default form for guides created via the ruler is (N)*. For example:

(N) *

315 1044 m

315 -252 L

(N) *

7 Object Tags 67

7 Object Tags

Object tags are a way of attaching custom information to an Adobe Illustrator
art object. They consist of a tag identifier, a tag type, and data. In Adobe
Illustrator 6.0 there is only one data type, “string”.

String tags are defined as using the XT operator.

identifier string XT identifier is an alpha-numeric string preceded by a front-slash character (/).
The only non-alpha-numeric character that is allowed in the identifier is an
underscore character (_).

string is a PostScript language string to be assigned to the object. It may be an
empty string.

An example of a tag is as follows:

/profits98 ($123000) XT

In an Adobe Illustrator file, object tags follow the object to which they are
assigned. For example, a simple line with a tag is as follows:

490.5 145.5 m

247.5 229.5 l

N

/kAISpecialPathTag (Segment 1) XT

Tags can be assigned to groups and compound paths as shown in the
following example. Note that the string argument is an empty string.

u

302.25 403.5 m

F

190.8446 340.4676 m

273.2478 379.6224 l

302.25 403.5 l

266.846 390.937 l

190.8446 340.4676 l

F

U

/clock_minute_hand () XT

A tag identifier, AdobeURL, was introduced in Adobe Illustrator 7. It is used
to attach URL (Universal Resource Locator) strings to objects. For example,
when the URL http://www.cool-site.com is attached to an object, the
following line appears in the Adobe Illustrator file:

/AdobeURL (http://www.cool-site.com) XT

6.0

7.0

68 Adobe Illustrator File Format Specification 23 February 1998

8 Rendering Images (Raster Objects)

Raster (bitmapped) images in Adobe Illustrator became possible with the
introduction of the XI operator in version 6.

8.1 XI Image Operator

The image operator XI describes a raster image in Adobe Illustrator. A raster
image is so called because it results from rasterizing a vector object. Raster
images are sometimes called a bitmapped images. The image operator was
introduced in version 6.0; earlier versions ignore the XI operator and its
bracketing comments (shown in section 8.4, “Examples”).

Syntax for the XI operator is as follows:

[a b c d tx ty] llx lly urx ury h w bits ImageType AlphaChannelCount reserved bin-ascii ImageMask XI
Arguments to the XI operator specify the location and size of the image, its
pixel bit depth, color type, and other attributes:

[a b c d tx ty]
Image Matrix, as defined in PostScript Language Reference
Manual, Second Edition.

llx lly urx ury Bounds (lower left and upper right x,y coordinates).

h w Size (height and width).

bits Bits per pixel in image map.

ImageType Image color type:
1 = bitmap/grayscale
3 = RGB
4 = CMYK

AlphaChannelCount
Alpha channel count:
0 = version 6.0
other values reserved for future versions.

reserved Reserved for use by future versions.

bin-ascii Encoding type:
0 = ASCII hexadecimal
1 = binary (Motorola®/Macintosh® byte ordering)

6.0

8 Rendering Images (Raster Objects) 69

other values reserved for future versions.
See PostScript Language Reference Manual, Second Edition
for details of encoding options.

ImageMask Image mask (0=opaque, 1=transparent/colorized).

8.2 XF Linked Image Operator

[a b c d tx ty] llx lly urx ury h w bits ImageType AlphaChannelCount reserved bin-ascii ImageMask XF
The XF operator is identical to the XI operator except that it is used when the
actual image data is not included in the file. Thus, no image data follows the
XF operator. The operator indicates that the image data should be read from a
linked file. The operator must be preceded by the XG operator, which
specifies the linked file (see section 8.3, “XG Image Link Operator”).

8.3 XG Image Link Operator

(path) modified XG XG is the image link operator. It must appear prior to the XF operator (see
section 8.2, “XF Linked Image Operator”).

path A string providing the file path of the source data file for the
image that follows. The path name is formatted as appropriate
for the platform. For example a Macintosh file path might be
Macintosh HD:Images:TIFF:Batman
while a Windows path might be
\\PCSERVER\Images\Batman.tif or F:\Images\Batman.tif

modified 0 = The data has not been edited since it was last read.
1 = The data has been edited since it was last read from the file.

8.4 Examples

The following code fragment describes an opaque image (cannot be
colorized) of one bit per pixel.

%AI5_File:

%AI5_BeginRaster

[0.2049 0 0 0.198 783 164] 0 0 526 620 526 620 1 1 0 0 0 0 XI

%FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF780000000000000000000

…Remainder of ASCII pixmap omitted…
%AI5_EndRaster

7.0

7.0

70 Adobe Illustrator File Format Specification 23 February 1998

The following code fragment describes an image mask of one bit per pixel. It
is transparent and can be colorized.

%AI5_File:

%AI5_BeginRaster

[0.2049 0 0 0.198 783 164] 0 0 526 620 526 620 1 1 0 0 0 1 XI

%FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF780000000000000000000

…Remainder of ASCII pixmap omitted…
%AI5_EndRaster

The following code fragment describes a grayscale image.

%AI5_File:

%AI5_BeginRaster

[1 0 0 1 156 586.5] 0 0 144 145 144 145 8 1 0 0 0 0 XI

%00

…Remainder of ASCII pixmap omitted…
%AI5_EndRaster

The following code fragment describes an opaque RGB image.

%AI5_File:

%AI5_BeginRaster

[0.1967 0 0 0.1901 640 644] 0 0 1350 645 1350 645 8 3 0 0 0 0 XI

%00

…Remainder of ASCII pixmap omitted…
%AI5_EndRaster

The following code fragment describes a CMYK image.

%AI5_File:

%AI5_BeginRaster

[0.1967 0 0 0.1901 338 644] 0 0 1350 645 1350 645 8 4 0 0 0 0 XI

%000000FF000000FF000000FF000000FF000000FF000000FF000000FF0000

…Remainder of ASCII pixmap omitted…
%AI5_EndRaster

9 Layers 71

9 Layers

The ability to assign objects to layers was introduced in Adobe Illustrator 5.0/
5.5.

Each layer is provided a name by means of the Ln operator. The objects in
each layer are identified by an introductory begin layer operator (Lb) and a
final end layer operator (LB).

The BNF syntax of a layer is as follows:

<layer> ::= %AI5_BeginLayer
<Lb>
<Ln>
<object definitions>+
<LB>
%AI5_EndLayer

9.1 Layer Name — Ln Operator

name Ln – Each layer is named by the Ln operator. The name associated with each Ln
operator appears in the Layers pop-up window in Adobe Illustrator. The
objects in the named layer are bracketed by the Lb and LB operators.

9.2 Begin Layer — Lb Operator

visible preview enabled printing dimmed hasMultiLayerMasks colorIndex red green blue Lb –
The elements that appear following the Lb operator and before the LB
operator are contained in the named layer. Arguments to the Lb operator
describe the attributes of the layer:

visible 1 = visible; 0 = invisible.

preview 1 = preview; 0 = no preview.

enabled 1 = enabled; 0 = not enabled.

printing 1 = printing layer; 0 = not printing layer.

dimmed 1 = dimmed; 0 = not dimmed.

hasMultiLayerMasks
1 = has multilayer masks;
0 = does not have multilayer masks.

5.0/5.5

72 Adobe Illustrator File Format Specification 23 February 1998

colorIndex This argument can take on values between –1 and 26. Each integer
represents a color that can be assigned to the layer for user
identification purposes. The following table maps each integer to
the color it represents.

red
green
blue The values for these arguments describe the intensities of red,

green, and blue, represented as integers between 0 and 255. For
example,
0 = 0%
127 = 50%
255 = 100%

End Layer — LB Operator

The last object in a layer is followed by the end layer operator, LB .

LB end layer – LB –

9.3 Layers Example

In the following example, two objects have been assigned to different layers.
A circle, filled with a yellow and orange radial gradient, was placed in
Layer 1; a rectangle, filled with a purple, red and yellow gradient, was placed
in Layer 2. In the Layers window, Layer 1 is identified with the color Light
Blue (colorIndex = 0), and Layer 2 is identified with the color Red
(colorIndex = 1).

Light Blue = 0 Red = 1 Green = 2 Blue = 3

Yellow = 4 Magenta = 5 Cyan = 6 Gray = 7

Black = 8 Orange = 9 Dark Green = 10 Teal = 11

Tan = 12 Brown =13 Violet = 14 Gold = 15

Dark Blue = 16 Pink = 17 Lavender = 18 Brick Red = 19

Olive Green = 20 Peach = 21 Burgundy = 22 Grass Green = 23

Ochre = 24 Purple = 25 Light Gray = 26 Other = –1

9 Layers 73

Figure 9 Two objects in different layers

…

%AI5_BeginLayer

1 1 1 1 0 0 0 79 128 255 Lb

(Layer 1) Ln

0 A

1 Ap

0 O

800 Ar

0 J 0 j 1 w 4 M []0 d

%AI3_Note:

0 D

0 XR

237.5 636.4792 m

244.9198 636.4792 250.935 641.8612 250.935 648.5 c

250.935 655.1388 244.9198 660.5208 237.5 660.5208 c

230.0802 660.5208 224.065 655.1388 224.065 648.5 c

224.065 641.8612 230.0802 636.4792 237.5 636.4792 c

Bb

0 0 0 0 Bh

1 (Yellow & Orange Radial) 271.5 629.5 0 12.7475 1 0 0 1 -34 -19 Bg

12.7475 0 0 -12.7475 237.5 648.5 Bm

f

0 BB

LB

%AI5_EndLayer--

%AI5_BeginLayer

1 1 1 1 0 0 1 255 79 79 Lb

(Layer 2) Ln

0 A

0 O

800 Ar

0 J 0 j 1 w 4 M []0 d

%AI3_Note:

0 D

0 XR

268 631 m

268 649 L

245 649 L

245 631 L

268 631 L

Bb

1 (Purple, Red & Yellow) 244.5 640 0 24 1 0 0 1 0 0 Bg

12064.0001 0 0 -22 -11819.5001 651 Bc

12 0 0 -22 244.5 651 Bm

12 0 0 -22 256.5 651 Bm

12064.0001 0 0 -22 268.5 651 Bc

74 Adobe Illustrator File Format Specification 23 February 1998

f

0 BB

LB

%AI5_EndLayer--

…

10 Multi-layer Masks 75

10 Multi-layer Masks

The introduction of layers in Adobe Illustrator 5.0/5.5 created the need for
multi-layer masking. As their name implies, multi-layer masks span layers,
and are used to mask objects that are associated with different layers.

The syntax of a multi-layer mask differs from that of a mask that is used only
on objects in a single layer. Multilayer masks are described by three
operators: Mb, which introduces the masked objects, Md, which describes the
path that defines the mask, and MB, which marks the end of the objects to be
masked.

The BNF syntax of a multi-layer mask is as follows:

<multi-layer mask> ::= <Mb>
<object>+
<Md>
<MB>

As with single-layer masking, multi-layer masking is controlled by the paint
order of the masked objects. Objects in a document are presented in a stream
to the Adobe Illustrator application’s parser, and the order of objects in the
stream defines their paint order. Later objects in paint order overpaint earlier
objects. All objects that appear between the Mb and MB operators in the
stream are masked by the path defined by the Md operator. If the user masks
two objects, then all objects between them in the paint order are also masked.
Paint order can be controlled by moving objects “in front of” or “in back of”
other objects, or by moving them to different layers.

Proper group nesting (described in section 5, “Script Body,” beginning on
page 52) must be maintained between the Mb and MB operators.

Note that multi-layer masks have been abandoned by Adobe Illustrator
beginning with version 7.0. Newer versions either ignore multi-layer masks
or convert them into single-layer masks.

5.0/5.5

76 Adobe Illustrator File Format Specification 23 February 1998

10.1 Begin Multi-layer Mask — Mb Operator

– Mb – The Mb operator marks the beginning of a multi-layer mask. Objects
following the Mb operator and preceding the MB operator are masked.

10.2 Define Multi-layer Mask — Md Operator

– Md – The Md operator defines the multi-layer mask. The mask itself is a path.

10.3 End Multi-layer Mask — MB Operator

– MB – The MB operator marks the end of the objects in a multi-layer mask.

10.4 Multi-layer Mask Example

In the following example, the two objects of Figure 9, which are in different
layers, have been masked with a rectangular multi-layer mask (Figure 10).

Figure 10 Multi-layer Mask

…

Mb

0 A

1 Ap

800 Ar

0 J 0 j 1 w 4 M []0 d

%AI3_Note:

0 D

0 XR

255 623.1667 m

255 662.5 L

234.1667 662.5 L

234.1667 623.1667 L

255 623.1667 L

h

W

n

Md

0 O

10 Multi-layer Masks 77

237.5 636.4792 m

244.9198 636.4792 250.935 641.8612 250.935 648.5 c

250.935 655.1388 244.9198 660.5208 237.5 660.5208 c

230.0802 660.5208 224.065 655.1388 224.065 648.5 c

224.065 641.8612 230.0802 636.4792 237.5 636.4792 c

Bb

0 0 0 0 Bh

1 (Yellow & Orange Radial) 271.5 629.5 0 12.7475 1 0 0 1 -34 -19 Bg

12.7475 0 0 -12.7475 237.5 648.5 Bm

f

0 BB

LB

%AI5_EndLayer--

%AI5_BeginLayer

1 1 1 1 0 1 1 255 79 79 Lb

(Layer 2) Ln

0 A

0 O

800 Ar

0 J 0 j 1 w 4 M []0 d

%AI3_Note:

0 D

0 XR

268 631 m

268 649 L

245 649 L

245 631 L

268 631 L

Bb

1 (Purple, Red & Yellow) 244.5 640 0 24 1 0 0 1 0 0 Bg

12064.0001 0 0 -22 -11819.5001 651 Bc

12 0 0 -22 244.5 651 Bm

12 0 0 -22 256.5 651 Bm

12064.0001 0 0 -22 268.5 651 Bc

f

0 BB

MB

…

78 Adobe Illustrator File Format Specification 23 February 1998

11 Color Palette

The BNF syntax for color palette is as follows:

<color palette> ::= %AI5_BeginPalette
<Pb>
<Pn>*
<Pc>*
<PB>
%AI5_EndPalette

The color palette appears on the Paint Style pop-up window in Adobe
Illustrator 6 and is part of the Swatches palette in Illustrator 7.

Figure 11 Color palette

Entries in the color palette are known as palette cells. Four operators are
associated with palette cells: Pb, which marks the beginning of a series of
palette cell entries; PB which marks the end of the entries; Pc, which
identifies an individual palette cell entry; and Pn, which identifies a palette
cell entry with paint equal to “none.”

11.1 Begin Palette — Pb Operator

topLeftCellIndex selectedIndex Pb –
The Pb operator marks the beginning of a series of palette cell entries.

topLeftCellIndex

selectedIndex

Note that the color palette in Illustrator 6 contains rows of small cells with
larger cells on the right for displaying gradients. Cells are identified by
number, beginning at the upper left corner, as shown in Figure 12.

5.0/5.5

Color Palette

Paint Style window
(Illustrator 6)

Swatches Palette
(Illustrator 7)

11 Color Palette 79

Figure 12 Palette cell numbering, Illustrator 6

Gradients in palette cells are identified by their names and their local gradient
instantiation attributes.

11.2 End Palette — PB Operator

– PB – The PB end palette operator marks the end of a series of palette cell entries.

11.2.1 Palette Cell — Pc Operator

– Pc – The Pc palette cell operator delimits each palette cell entry.

11.3 Palette Cell None — Pn Operator

– Pn – The Pn palette cell operator identifies a cell has having a paint value equal to
“none.”

Gradients are defined in two separate parts. There’s the part in the header,
which defines the color stops, etc. And then when it actually gets used in an
object, there’s the transformation matrix, etc. that are arguments used when
it’s attached to an object. That stuff is part of the <fill color> BNF definition.

The coordinate system. From the user’s point of view, when you run the
program, there is an origin that is set to the bottom left corner of the art
board, and it’s a first quadrant coordinate system. But there’s a translation
that happens when you write out the coordinates into the file. If you zoom
back on the image all the way, you see a larger canvas that represents the
entire imageable artwork AI will allow. And that origin is in the upper left
corner. So you’ll define a blend that, in the palette, has a (0,0) origin. But
when you write out the file, you’ll see these coordinates with values in the
thousands. That’s because the file is written in absolute coordinates relative to
the upper left corner of the imageable space. You’ll see those numbers in files
created by AI, but they’ll be ignored when AI reads a file. They’ll be
recomputed when the gradient is actually applied.

0 1 2 3

4 5 6 7
8

9 10 11 12

13 14 16

…18

17
15

80 Adobe Illustrator File Format Specification 23 February 1998

The following example shows part of the palette entry for the palette shown
in Figure 11.

%AI5_BeginPalette

0 0 Pb % Begin palette cell entries, starting at upper left corner.
Pn % Zeroth cell is color “none.”
Pc % Begin a palette cell entry. First cell is black (gray scale of 1).
1 g

Pc % Begin a palette cell entry. Second cell is white (gray scale of 0).
0 g

Pc % Begin a palette cell entry.
0 0 0 0 k % Third cell is process white (CMYK value of 0, 0, 0, 0).
Pc % Fourth cell is 75% gray.
0.75 g

...

Pc % Eighth cell is instance of Black & White gradient.
Bb % Begin gradient.
2 (Black & White) -4014 4716 0 0 1 0 0 1 0 0 Bg

0 BB % End gradient.
Pc % Ninth cell is 25% Cyan.
0.25 0 0 0 k

...

Pc

1 0.5 1 0 k

Pc % Pc operator follows last cell.
PB % End palette operator.
%AI5_EndPalette

Note that the xOrigin yOrigin arguments to the Bg operator in the above
example are very large (–4014, 4716). These values have no meaning in
gradient instances that are palette cell entries. The xOrigin and yOrigin
arguments are recomputed when an instance of the gradient is used to fill an
object.

Note also that white and black can be specified with two different color
systems, gray scale or CMYK.

12 Attributes 81

12 Attributes

The attributes of an object are displayed in the pop-up window when the user
asks for the attributes of a selected object. Attributes are maintained in the
document file with the Ap and Ar operators.

Figure 13 Viewing object attributes

showCenter Ap – The Ap operator determines whether or not the center point of a path is
displayed. By default, only rectangular (including square) and oval (including
circular) paths have visible center points, but the center point of any path can
be displayed by setting the value of the showCenter argument

showCenter 0 = do not show center point
1 = show center point

resolution Ar – The Ar operator determines the accuracy with which a path is rendered on an
output device. The value of resolution, in dots-per-inch (dpi), is used to
calculate the argument to the setflat operator when an object is rendered in
final form. See PostScript Language Reference Manual, Second Edition for a
description of the setflat operator.

When a path is rendered in PostScript language, it is approximated by
straight line segments. The value of resolution determines how finely the path
is subdivided when Adobe Illustrator generates the printable PostScript file.
The default resolution value of 800 dpi provides single-dot line segments on
an 800 dpi output device. A value of 800 is typically sufficient for higher-
resolution devices also (producing three-dot line segments on a 2400-dpi
imagesetter, for example). Some objects, such as Kanji typeface characters,
may require higher resolution (at the expense of increased rasterization
times). Attributes are specific to objects, so paths that require higher
resolution values can be set independently.

5.0/5.5

82 Adobe Illustrator File Format Specification 23 February 1998

Attributes are written to the document file only when they change. For
example, if all paths in the document have a resolution of 800 dpi, the value
800 is only written once. If a single object in the document is assigned a
different resolution, that resolution appears in the document in object paint
order. The resolution is reset to 800 dpi for objects that follow the singular
object in paint order.

13 Hyphenation Language — XL Operator 83

13 Hyphenation Language — XL Operator

Text hyphenation dictionaries appeared in Adobe Illustrator 5.5. The XL
operator selects a dictionary to use for hyphenating text.

%_ languageID XL The %_ languageID argument to XL specifies a hyphenation dictionary.
Languages are identified by number, as follows:

languageID 0 = U.S. English
1 = U.K. English
2 = French
3 = German
4 = Spanish
5 = Dutch
6 = Italian
7 = Swedish
8 = Norwegian
9 = Finnish
10 = Danish
11 = Hungarian

5.0/5.5

84 Adobe Illustrator File Format Specification 23 February 1998

14 Nonprinting Elements

In general, nonprinting elements of documents are bracketed by comments
and introduced by the Np operator, as follows:

%AI5_Begin_NonPrinting

Np

…object definition…
%AI5_End_NonPrinting--

Nonprinting objects are stored in a document but are not printed because they
are not assigned to an object. For example, gradients and patterns are not
printed if they are not used to paint an object. Such objects are contained in
revisable documents. When a revisable document is opened, the gradients
and patterns that have been defined in it are available to the application even
though no printable objects are using them.

When a document is in final form (a PostScript file ready to be printed),
nonprinting objects are omitted.

Nonprinting layers are not identified by the Np operator. Instead, the printing
argument to the Lp operator determines whether or not the layer is printable.
See page 71 for details.

5.0/5.5

15 Text 85

15 Text

There are three kinds of text in Adobe Illustrator:

• Point text is neither bounded by a path nor on a path. It is created by
clicking the type tool to create an insertion point, then typing. The first line
of the text block begins at the insertion point. A carriage return determines
the line breaks in point text.

• Area text is bounded by a path. It is created by clicking the type tool and
dragging a rectangle, and then starting to type. You can also create area
text by clicking a path, selecting the area type tool, and then typing. A
single text object can contain multiple text area elements.

• Text on a path follows the shape of a path. It is created by clicking a the
path-type tool on a path, then typing.

Text can overflow an area frame and thus not be visible on screen or when
printed. Adobe Illustrator still saves such overflow text to the file, however.
Linked areas allow text to flow from one area to another. Linked areas are
part of the same text object.

Note You cannot link point text or path text to an area text object. All flowed text
must appear in area texts.

Text can be invisible if you set its style to neither fill nor stroke. Such text is
not rendered on the page, but Adobe Illustrator writes the text to the file with
the same structure as if the text were rendered.

15.1 Revisable and Final-Form Text

Adobe Illustrator writes out two kinds of information about text: revisable
information and final-form printing information. Revisable information
consists of those settings the user makes and can examine in the various
dialog boxes of Adobe Illustrator — font size, for example. Final-form
information is regenerated by Adobe Illustrator once the file has been read —
it primarily helps to print text properly. Final-form information consists of
character positioning, text flow from line to line and area to area, and similar
information. This section differentiates between revisable, required
information and final-form information.

Note You can safely leave final-form information out of files and still have Adobe
Illustrator read them correctly and regenerate the information; however, the
file will not be an official EPS file and will not print.

Adobe Illustrator recalculates the values of all final-form operators after
reading the file.

86 Adobe Illustrator File Format Specification 23 February 1998

15.2 Text Syntax Summary

The BNF syntax of text in Adobe Illustrator is as follows:

<text object> ::= <To>
<text at a point> |
<text area> |
<text along a path>
<TO>

<text at a point> ::= <Tp>
<TP>
<text run>+

<text area> ::= <text area element>+
{<overflow text>}

<text area element> ::=<Tp>
<path object>
<TP>
<text run>+

<text along a path> ::= <Tp>
<path object>
<TP>
<text run>+
{<overflow text>}*

<text run> ::= {<text style> |
<paint style> |
<text position> |
<Tk>}*
<text body>

15 Text 87

<text style> ::= <Tr> | (render mode)
<Tf> | (font & size)
<Ts> | (rise and fall)
<Tz> | (text scaling)
<Tt> | (tracking)
<TA> | (automatic kerning)
<TC> | (intercharacter spacing)
<TW> | (interword spacing)
<Ti> | (indents)
<Ta> | (alignment)
<Tq> | (hanging quotations)
<Tl> | (leading)
<TV> | (horizontal or vertical writing)
<Tv> | (rotate characters 90°)
<Ty> | (Kumi orientation)
<TY> | (Kumi orientation, informational

only)
<TG> | (line break)
<Tg> | (binding punctuation)
<Xu> (Japanese layout rules)

<text position> ::= (printing only)
<Tc> | (computed intechar. spacing)
<Tw> | (computed interword space)
<Tm> | (text matrix)
<Td> | (translate)
<T*> | (translate down)
<TR> (reset matrix; found only in

pattern prototypes)

<text body> ::= <Tx> | <Tj> | <T+> | <T–>

<overflow text> ::= {<text style> | <paint style> | <TK>}*
<TX> | <T+>

15.3 Text Operators Summary

The following list of text operators identifies them as revisable or final-form.
For a definition of these terms, see section 15.1 on page 85.

type To [Revisable] This operator begins a text object. The type argument take on
one of the following values:

0 — point text
1 — area text
2 — path text

88 Adobe Illustrator File Format Specification 23 February 1998

TO [Revisable] The TO operator ends a text object and restores the current
transformation matrix.

a b c d tx ty startPt Tp [Revisable] This operator brackets the text path. It concatenates the matrix
parameter with the current transformation matrix (CTM). For text on a path
only, the startPt operand indicates where the text starts on the arc length of
the path by giving a fractional number that signifies its position along the
Bézier segment on which the path starts, beginning with 0. For example, text
that starts in the center of the second Bézier segment would have a startPt of
1.5.

TP [Revisable] The TP operator ends the text path.

15.3.1 Matrix Operators

a b c d tx ty Tm [Final-Form] The Tm operator sets the text matrix for text along a path.

tx ty Td [Final-Form] This operator translates the text matrix by tx and ty. to the
beginning of the next line of text.

T* [Final-Form] The T* operator translates the text matrix by –lineleading, 0 to
the beginning of the next line of text.

a b c d tx ty TR [Final-Form] The TR operator resets the pattern matrix for the pattern
prototype only. See section 3.4, “Pattern Definition” for more information
about patterns.

15.3.2 Text Attribute Operators

render Tr [Revisable] The Tr operator sets the render mode for any text that follows.
The Tx and Tj operators actually render the text. The render argument can
take on one of the following values:

0 — filled text
1 — stroked text
2 — filled and stroked text
3 — invisible text
4 — masked and filled text
5 — masked and stroked text
6 — masked, filled, and stroked text
7 — masked (only) text
8 — filled text followed by render mode 9 (pattern prototype only)
9 — stroked text (preceded by render mode 8 text, pattern prototype only)

Modes 4 through 7 are used within pattern definitions when text, as part of
the pattern, is filled and stroked with two different colors. Modes 8 and 9 are
used in pattern prototypes that contain text objects.

15 Text 89

/_fontname size ascent descent Tf
[Revisable] The Tf operator specifies the re-encoded name of the font to use
and its size in points. The ascent and descent values are used when printing
vertical text, but are ignored when being read by Adobe Illustrator.

The ascent and descent arguments were introduced with Adobe
Illustrator 7.0.

alignment Ta [Revisable] The Ta operator sets text alignment both horizontally and
vertically. The value for alignment can be one of the following:

0—left aligned
1—center aligned
2—right aligned
3—justified (right and left)
4—justified including last line

leading paragraphLeading Tl [Revisable] The Tl (lowercase L) operator sets the leading for the paragraph.
The leading argument sets the leading between lines within a paragraph and
the paragraphLeading argument sets the extra leading between paragraphs.

userTracking Tt [Revisable] The Tt operator sets additional space to add between characters
in units of one thousandth of an em.

minSpace optSpace maxSpace TW
[Revisable] The TW operator sets word spacing, where the minimum,
optimum, and maximum space between words (the size of space characters)
is expressed as a percentage of the width of a regular space character: 100
(100%) equals the width of one space character.

wordSpace Tw [Final-Form] The Tw operator sets computed word spacing.

minSpace optSpace maxSpace TC
[Revisable] The TC operator sets character spacing, where the minimum,
optimum, and maximum space between characters is expressed as a
percentage of the width of a regular space character: 100 (100%) equals the
width of one space character.

charSpace Tc [Final-Form] The Tc operator sets computed character spacing.

rise Ts [Revisable] The Ts operator sets the distance by which a character is raised
above the baseline in superscripting and dropped below the baseline when
subscripting. The argument rise is expressed in points.

7.0

90 Adobe Illustrator File Format Specification 23 February 1998

firstStartIndent otherStartIndent stopIndent Ti
[Revisable] The Ti operator sets the indentation of a paragraph. The
argument otherStartIndent specifies the indentation for the left side of the
paragraph, firstStartIndent specifies a delta from the left side that applies only
to the first line, and stopIndent specifies any right side indentation. The three
arguments are specified in points.

autoKern TA [Revisable] The TA operator specifies whether to use pairwise kerning.
Adobe Illustrator uses the kerning pairs built into the Type 1 font program. If
the autoKern argument is 0, Adobe Illustrator uses no pair kerning; if the
autoKern argument is 1, Adobe Illustrator does use pair kerning.

hangingQuotes Tq [Revisable] The Tq operator determines whether a run of text uses hanging
quotation marks; a hanging quotation mark is one that extends beyond the left
or right edge of the text block. If the hangingQuotes argument is 0, Adobe
Illustrator does not use hanging quotation marks; if the argument is 1, it does.
For the domestic version of Adobe Illustrator, the marks which hang are:
period, comma, semicolon, colon, backquote, left and right single quotes, left
and right double quotes, dash, en-dash, em-dash. That is:

. , ; : ` ‘ ’ “ ” - – —

Note Marks may be different for international editions.

15.3.3 Text Body Operators

textString Tx [Revisable] The Tx operator renders the text associated with a path object.
The text is not justified. The textString argument is a string of text: any series
of ASCII codes in the native platform encoding. The character combination \r
in the string signifies a new paragraph.

textString Tj [Revisable] The Tj operator is identical to the Tx operator except that it
renders a string of justified text.

textString TX [Revisable] Text that overflows the text area (invisible). Equivalent to the Tx
operator.

autoKern kernValue Tk [Revisable] The Tk operator produces kerned text. An autoKern value of 0
indicates manual kerning; a value of 1 indicates automatic kerning. The
kernValue operand sets a kerning value in units of one thousandth of an em.
When autoKern is 0, Adobe Illustrator uses the value in kernValue; when
autoKern is 1, Adobe Illustrator uses the built-in kerning pairs.

autoKern kernValue TK [Revisable] The TK operator is the same as the Tk operator, except that it
applies to overflow text (invisible).

15 Text 91

T+ [Revisable] The T+ operator appears before or after a text run. When it
appears after a text run, it indicates that a non-printing discretionary hyphen
occurs after the text run; when it appears before a text run, it indicates that a
non-printing discretionary hyphen occurs before the text run.

T– [Revisable] The T– operator is similar to the T+ operator, but it indicates that
the last character in the preceding text run was a printed discretionary
hyphen.

15.3.4 Far-Eastern Text Operators

direction TV [Revisable] The TV operator indicates whether the writing is horizontal or
vertical. The default direction value of 0 indicates horizontal writing;
1 indicates vertical writing.

Although this operator is documented as part of Adobe Illustrator 6.0 file
format, non-Japanese versions prior to Illustrator 7.0 post an error when they
encounter this operator. The TV operator should be considered part of Adobe
Illustrator 7.0 (and later) format only.

rotation Tv [Revisable] The Tv operator indicates whether or not Roman characters are
rotated 90 degrees within vertical text. The default rotation value 0 rotates
text 90 degrees clockwise in vertical writing. A rotation value of 1 indicates
non-rotated text, with the result that Roman characters appear in the same
orientation for both vertical and horizontal writing.

Although the Tv operator is documented as part of Adobe Illustrator 6.0 file
format, non-Japanese versions prior to Illustrator 7.0 post an error when they
encounter this operator. The Tv operator should be considered part of
Illustrator 7.0 (and later) format only. Illustrator 7.0 can draw Far Eastern
characters on any system where the necessary Chinese, Japanese, or Korean
fonts are installed. These fonts are collectively called CJK fonts.

If a file contains CJK characters but does not contain a Tv or TV operator, then
the file will read into non-CJK versions of Adobe Illustrator (prior to version
7.0) successfully, but any CJK characters in the file will appear as gibberish.
If a file does contain a Tv or TV operator and is opened in a non-CJK version
of Illustrator earlier than version 5.0, Illustrator will produce an error
message when it attempts to open the file. Therefore, if you are concerned
with maximum compatibility and are not concerned with vertical text, do not
place Tv or TV operators into output files; if you do want to offer vertical text,
give users a choice of writing either Roman or CJK output for compatibility
with non-CJK versions of Illustrator earlier than version 7.0.

bindrepeat Tg [Revisable] The Tg operator controls binding punctuation and the repeat
character. The bindrepeat argument can assume one of the following four
values:

7.0

7.0

7.0

92 Adobe Illustrator File Format Specification 23 February 1998

0 — binding punctuation off, repeat character off.
1 — binding punctuation on, repeat character off.
2 — binding punctuation off, repeat character on.
3 — binding punctuation on, repeat character on.

linebreak TG [Revisable] The TG operator records the user-supplied value of the “Line
Breaking” text field in the Paragraph palette. The value of linebreak is an
integer between zero and 100, representing percent.

%_prop cjkLayout cjkRoman cjkCjk Tu
Japanese layout rules — See Xu.

kumi Ty [Revisable] Pairs of Ty operators mark the beginning and end of text set in Kumi
orientation. In a vertical text layout, Kumi text is oriented horizontally. European
language words and numbers are often represented in Kumi text layout. The value of
kumi determines whether Ty marks the beginning or end of Kumi text:

1—begin Kumi text block.
0—end Kumi text block.

The text bracketed by “1 Ty” and “0 Ty” behaves as though horizontal text
(“0 TV”) were specified.

kumi TY [Revisable] As with the Ty operator, pairs of TY operators mark the beginning and
end of text set in Kumi orientation. TY is used when Kumi orientation does not appear
in set text, but must be recorded for later use. For example, when a Kumi text block is
identified in a line of horizontal text, all the text is set horizontally and the Kumi
attribute is ignored. TY allows the Kumi attribute to be saved in the file and applied
automatically if and when the main body of horizontal text is later set vertically.

The value of kumi determines whether TY marks the beginning or end of
Kumi text:

1—begin Kumi text block.
0—end Kumi text block.

%_prop cjkLayout cjkRoman cjkCjk Xu
[Revisable] The Xu operator specifies Japanese language layout rules. This
operator is internally represented as Tu but externally as Xu so that older
versions of Adobe Illustrator will ignore it.

The parameters represent user settings in the Character palette for Japanese
Layout rules:

prop 0—Proportional CJK off.
1—Proportional CJK on (box checked).

cjkLayout 0—Japanese Layout Rules off.
1—Japanese Layout Rules on (box checked).

cjkRoman CJK/Roman user-entered value, 0 ≤ cjkRoman ≤ 200.
cjkCjk CJK/CJK user-entered value, 0 ≤ cjkCjk ≤ 200.

7.0

7.0

7.0

7.0

7.0

15 Text 93

15.4 Text Operator Details

This section explains more about text in Adobe Illustrator and provides
details of how text operators are used.

15.4.1 Text Attributes

A text attribute is a quality of the text such as font, justification, stroke, or fill.
There are three kinds of text attribute used in Adobe Illustrator: character
style, paragraph style, and paint style (see section 5.2, “Paint Style”).

A character attribute is an attribute such as font size or scale that pertains to
one or more characters. A paragraph attribute pertains to one or more
paragraphs, and includes details such as justification and indentation. A paint
style attribute pertains to any set of characters that all have the same paint
style and character attributes (called a text run). The Adobe Illustrator user
interface lets users apply any kind of paint style to characters—stroke or fill,
stroke width changes, dashed lines, and so forth.

15.4.2 Wraparound Text

Area text objects can also be grouped with paths lying on top so that the text
in the text objects “wraps” around (or avoids) the paths. The BNF syntax for
wraparound text is

<wraparound group> ::= <*w>
{<object>}*
{<wraparound objects>}*
<*W>

<wraparound objects> ::= <text object> |{<object>}*

15.4.2.1 Wraparound Text Operators

Wraparound text begins with the *w operator. Zero or more objects follow,
then a standard Adobe Illustrator text object follows, and is in turn followed
by zero or more Adobe Illustrator graphic objects around which the text will
wrap. The wraparound text group ends with the *W operator.

15.4.3 Text Objects

A text object is bracketed by the To and the TO operators. The To operator
begins a text object, and the TO operator ends it. Between the two can appear
a series of operators that control the text path(s), set the text matrix, and set
various other text attributes. The syntax for a text object is

94 Adobe Illustrator File Format Specification 23 February 1998

<text object> ::= <To>
<text at a point> |
<text area> |
<text along a path>
<TO>

Attributes are modal, that is, once an attribute operator has made a change,
that change stays in force until changed again. While there is no special order
in which the operators must appear, because of modality, operator order may
have a bearing on the end result. See section 15.2, “Text Syntax Summary”
for information about operator order.

Note If the Adobe Illustrator file includes more than one path between the To and
TO delimiters, it must be area text; it means that text can flow from one object
to another.

15.4.3.1 Text Object Operators

type To [Revisable] This operator begins a text object. The type argument can be one
of:

0 point text
1 area text
2 path text

TO [Revisable] The TO operator ends a text object and restores the current
transformation matrix.

15.4.4 Text Paths

A text path is a combination of the current transformation matrix and the path
geometry of a text container—an area or object such as a box, circle, or other
shape.

Within a text object, each text path is bracketed by the Tp and TP operators.
The Tp operator takes as its arguments a transformation matrix and a start
point. The Tp and TP operators appear in every kind of text object. Its purpose
is to provide a matrix for the text object and its container (if any). The
operators vary in their use depending on text type.

15.4.4.1 Text Path Operators

Syntax for the text path operators Tp and TP is:

15 Text 95

a b c d tx ty startPt Tp [Revisable] This operator brackets the text path. It concatenates the matrix
parameter with the current transformation matrix (CTM). For text on a path
only, the startPt operand indicates where the text starts on the arc length of
the path by giving a fractional number that signifies its position along the
Bézier segment on which the path starts, beginning with 0. For example, text
that starts in the center of the second Bézier segment would have a startPt of
1.5.

TP [Revisable] The TP operator ends the text path.

15.4.5 Text Rendering

Text rendering mode is set by a call to the Tr operator. This operator takes as
its argument one of the selectors in Table 12. The Tx (non-justified text) and
Tj (justified text) operators actually render the text.

Table 12 Text rendering modes

Selector Rendering Mode

0 fill text

1 stroke text

2 fill and stroke text

3 text with no fill and no stroke (“invisible”)

4 mask and fill text

5 mask and stroke text

6 mask, fill, and stroke

7 mask (only) text

8 filled text followed by rendertype 9
(pattern prototype only)

9 stroked text preceded by render mode 8 text
(pattern prototype only)

15.4.5.1 Text Rendering Operators

The text rendering operator descriptions are:

render Tr [Revisable] The Tr operator sets the render mode for any text that follows.
The Tx and Tj operators actually render the text. The render argument can be
one of the following values:

0—fill text
1—stroke text
2—fill and stroke text

96 Adobe Illustrator File Format Specification 23 February 1998

3—invisible text
4—mask and fill text
5—mask and stroke text
6—mask, fill, and stroke text
7—mask (only) text
8—filled text followed by render mode 9 (pattern prototype only)
9—stroked text (preceded by render mode 8 text, pattern prototype only)

Modes 4 through 7 are used within pattern definitions when text, as part of
the pattern, is filled and stroked with two different colors. Modes 8 and 9 are
used in pattern prototypes that contain text objects.

textString Tx [Revisable] The Tx operator renders the text associated with a path object.
The text is not justified. The textString argument is a string of text: any series
of ASCII codes in the native platform encoding. The character combination \r
in the string signifies a new paragraph.

textString Tj [Revisable] The Tj operator is identical to the Tx operator except that it
renders a string of justified text.

15.4.6 Kerning

Adobe Illustrator offers two types of kerning. These are:

• Track kerning (Tt). The specified amount of space is added between each
pair of characters. Space is measured in thousandths of an em.

• Pairwise kerning (TA, Tk, TK). The TA (automatic kerning) operator tells
Adobe Illustrator to turn automatic kerning on and use the kerning pairs
specified in the font program itself. The Tk operator also produces kerned
text, either manual or automatic, depending on the value of one of its
operands. Manual kerning overrides automatic kerning. Users can specify
manual kerning in thousandths of an em. The TK operator is identical to
the Tk operator, but applies to overflow text that is not displayed or printed.

Kerning operators help set the style of text runs and overflow text. The BNF
syntax for kerning operators is:

<text run> ::= {<text style> |
<paint style> |
<text position> |
<Tk>}*
<text body>

<overflow text> ::= {<text style> | <paint style> | <TK>}*
<TX> | <T+>

15 Text 97

<text style> ::= <Tr> | (render mode)
<Tf> | (font & size)
<Ts> | (rise and fall)
<Tz> | (text scaling)
<Tt> | (tracking)
<TA> | (automatic kerning)
<TC> | (intercharacter spacing)
<TW> | (interword spacing)
<Ti> | (indents)
<Ta> | (alignment)
<Tq> | (hanging quotations)
<Tl> | (leading)
<TV> | (horizontal or vertical writing)
<Tv> | (rotate characters 90°)
<Ty> | (Kumi orientation)
<TY> | (Kumi orientation, informational

only)
<TG> | (line break)
<Tg> | (binding punctuation)
<Xu> (Japanese layout rules)

15.4.6.1 Kerning Operators

The text kerning operator descriptions are:

userTracking Tt [Revisable] The Tt operator sets additional space to add between characters
in units of one thousandth of an em.

autoKern TA [Revisable] The TA operator specifies whether to use pairwise kerning.
Adobe Illustrator uses the kerning pairs built into the Type 1 font program. If
the autoKern argument is 0, Adobe Illustrator uses no pair kerning; if the
autoKern argument is 1, Adobe Illustrator does use pair kerning.

autoKern kernValue Tk [Revisable] The Tk operator produces kerned text. An autoKern value of 0
indicates manual kerning; a value of 1 indicates automatic kerning. The
kernValue operand sets a kerning value in units of one thousandth of an em.
When autoKern is 0, Adobe Illustrator uses the value in kernValue; when
autoKern is 1, Adobe Illustrator uses the built-in kerning pairs.

autoKern kernValue TK [Revisable] The TK operator is the same as the Tk operator, except that it
applies to overflow text (invisible).

15.4.7 Spacing

Text spacing for both justified and non-justified text is controlled by spacing
control operators. Word spacing and character spacing are controlled
independently. For justified text, minimum, optimum, and maximum spacing
can be specified; for non-justified text, only the optimum value is used.

98 Adobe Illustrator File Format Specification 23 February 1998

• Word spacing (TW). Specifies the minimum, optimum, and maximum
space between words (added to space characters). Measurement is in a
percentage of the width of a regular space character.

• Character spacing (TC). Specifies the minimum, optimum, and maximum
space between characters in the file. Measurement is in a percentage of the
width of a regular space character.

Two other spacing operators also appear in Adobe Illustrator files. They are
final-form.

• Computed word spacing (Tw). This is the actual word spacing for a
particular line of text. It is recomputed on a per-line basis.

• Computed character spacing (Tc). This is the actual character spacing for
a particular line of text. It is recomputed on a per-line basis.

Spacing operators apply to text style and position. The BNF syntax for
spacing operators is:

<text style> ::= <Tr> | (render mode)
<Tf> | (font & size)
<Ts> | (rise and fall)
<Tz> | (text scaling)
<Tt> | (tracking)
<TA> | (automatic kerning)
<TC> | (intercharacter spacing)
<TW> | (interword spacing)
<Ti> | (indents)
<Ta> | (alignment)
<Tq> | (hanging quotations)
<Tl> | (leading)
<TV> | (horizontal or vertical writing)
<Tv> | (rotate characters 90°)
<Ty> | (Kumi orientation)
<TY> | (Kumi orientation, informational

only)
<TG> | (line break)
<Tg> | (binding punctuation)
<Xu> (Japanese layout rules)

<text position> ::= (printing only)
<Tc> | (computed intechar. spacing)
<Tw> | (computed interword space)
<Tm> | (text matrix)
<Td> | (translate)
<T*> | (translate down)
<TR> (reset matrix; found only in pattern prototypes)

15 Text 99

15.4.7.1 Spacing Operators

The text spacing operator descriptions are:

minSpace optSpace maxSpace TW
[Revisable] The TW operator sets word spacing, where the minimum,
optimum, and maximum space between words (the size of space characters)
is expressed as a percentage of the width of a regular space character: 100
(100%) equals the width of one space character.

wordSpace Tw [Final-Form] The Tw operator sets computed word spacing.

minSpace optSpace maxSpace TC
[Revisable] The TC operator sets character spacing, where the minimum,
optimum, and maximum space between characters is expressed as a
percentage of the width of a regular space character: 100 (100%) equals the
width of one space character.

charSpace Tc [Final-Form] The Tc operator sets computed char spacing.

15.4.8 Line and Paragraph Leading

Line and paragraph leading (spacing) is set using the Tl (lowercase L)
operator, in units of one thousandth of an em-square. The BNF syntax for the
leading operator applies to text style:

<text style> ::= <Tr> | (render mode)
<Tf> | (font & size)
<Ts> | (rise and fall)
<Tz> | (text scaling)
<Tt> | (tracking)
<TA> | (automatic kerning)
<TC> | (intercharacter spacing)
<TW> | (interword spacing)
<Ti> | (indents)
<Ta> | (alignment)
<Tq> | (hanging quotations)
<Tl> | (leading)
<TV> | (horizontal or vertical writing)
<Tv> | (rotate characters 90°)
<Ty> | (Kumi orientation)
<TY> | (Kumi orientation, informational

only)
<TG> | (line break)
<Tg> | (binding punctuation)
<Xu> (Japanese layout rules)

100 Adobe Illustrator File Format Specification 23 February 1998

15.4.8.1 Leading Operator

The leading operator description is:

leading paragraphLeading Tl [Revisable] The Tl (lowercase L) operator sets the leading for the paragraph.
The leading argument sets the leading between lines within a paragraph and
the paragraphLeading argument sets the extra leading between paragraphs.

15.4.9 Superscripting and Subscripting

Superscripting and subscripting are set using the Ts operator with
(respectively) positive and negative values expressed in points. The BNF
syntax for the Ts operator applies to text style:

<text style> ::= <Tr> | (render mode)
<Tf> | (font & size)
<Ts> | (rise and fall)
<Tz> | (text scaling)
<Tt> | (tracking)
<TA> | (automatic kerning)
<TC> | (intercharacter spacing)
<TW> | (interword spacing)
<Ti> | (indents)
<Ta> | (alignment)
<Tq> | (hanging quotations)
<Tl> | (leading)
<TV> | (horizontal or vertical writing)
<Tv> | (rotate characters 90°)
<Ty> | (Kumi orientation)
<TY> | (Kumi orientation, informational

only)
<TG> | (line break)
<Tg> | (binding punctuation)
<Xu> (Japanese layout rules)

15.4.9.1 Superscripting and Subscripting Operator

The superscripting and subscripting operator description is:

rise Ts [Revisable] The Ts operator sets the distance by which a character is raised
above the baseline in superscripting and dropped below the baseline when
subscripting. The argument rise is expressed in positive or negative points.

15.4.10 Discretionary Hyphens

The T+ operator appears whenever the user has inserted a discretionary
hyphen.

15 Text 101

The T– operator appears in text wherever a discretionary hyphen prints.

The discretionary hyphen operators apply to body text; because overflow text
does not print, only the T+ operator applies to overflow text. The BNF
summary for the discretionary hyphen operators is:

<text body> ::= <Tx> | <Tj> | <T+> | <T–>

<overflow text> ::= {<text style> | <paint style> | <TK>}*
<TX> | <T+>

15.4.10.1 Discretionary Hyphen Operators

The discretionary hyphen operator descriptions are:

T+ [Revisable] The T+ operator appears before or after a text run. When it
appears after a text run, it indicates that a non-printing discretionary hyphen
occurs after the text run; when it appears before a text run, it indicates that a
non-printing discretionary hyphen occurs before the text run.

T– [Revisable] The T– operator is similar to the T+ operator, but it indicates that
the last character in the preceding text run was a printed discretionary
hyphen.

15.4.11 Alignment and Justification

The Ta operator sets text alignment: left, centered, right, or justified.

The Ti (lowercase i) operator controls line indentation. It takes arguments that
state the values of the left indent, a delta from the left indent for the first line,
and a right indent in points.

The Tz operator condenses or expands the horizontal scaling of a character as
a percentage of the regular font size.

A group of characters that share the same size, paint style, tracking, and so
forth can be written out as a single call to one of the text rendering operators:
Tx (for non-justified text) or Tj (for justified text). See page 96 for a
description of the text rendering operators.

The alignment and justification operators apply to text style. The BNF
summary is:

102 Adobe Illustrator File Format Specification 23 February 1998

<text style> ::= <Tr> | (render mode)
<Tf> | (font & size)
<Ts> | (rise and fall)
<Tz> | (text scaling)
<Tt> | (tracking)
<TA> | (automatic kerning)
<TC> | (intercharacter spacing)
<TW> | (interword spacing)
<Ti> | (indents)
<Ta> | (alignment)
<Tq> | (hanging quotations)
<Tl> | (leading)
<TV> | (horizontal or vertical writing)
<Tv> | (rotate characters 90°)
<Ty> | (Kumi orientation)
<TY> | (Kumi orientation, informational

only)
<TG> | (line break)
<Tg> | (binding punctuation)
<Xu> (Japanese layout rules)

15.4.11.1 Alignment and Justification Operators

The alignment and justification operator descriptions are:

alignment Ta [Revisable] The Ta operator sets text alignment both horizontally and
vertically. The value for alignment can be one of the following:

0—left aligned
1—center aligned
2—right aligned
3—justified (right and left)
4—justified including last line

firstStartIndent otherStartIndent stopIndent Ti
[Revisable] The Ti operator sets the indentation of a paragraph. The
argument otherStartIndent specifies the indentation for the left side of the
paragraph, firstStartIndent specifies a delta from the left side that applies only
to the first line, and stopIndent specifies any right side indentation. The three
arguments are specified in points.

15 Text 103

For rotated paragraphs, the indentation is calculated from the invisible rotated
margins of the paragraph:

parallelScale perpendicularScale Tz
[Revisable] The Tz operator sets the scaling of a line of text in the horizontal
and vertical directions by condensing or expanding the line in terms of a
percentage of the normal font width or height. The values of parallelScale
and perpendicularScale determine the scale factors, as set by user input in
Adobe Illustrator:

parallelScale scaling factor parallel to text line (right scaling field in
Character palette).

perpendicularScalescaling factor perpendicular to text line (left scaling
field in Character palette).

The Tz operator is present in earlier versions of Adobe Illustrator, but was
modified to accommodate vertical text in version 7.0

15.4.12 Setting Far-Eastern Fonts

Adobe Illustrator supports Far-Eastern fonts such as Kanji that use the
83PVRKSJ–H encoding. You can set the type in these fonts both horizontally
and vertically. Far-Eastern fonts are sometimes called CJK (Chinese-
Japanese-Korean) fonts.

15.4.12.1 Setting Horizontal Type in Far-Eastern Text

If you are only concerned with supporting Far-Eastern text in the horizontal
writing direction, set the type with one of the operators used for setting
Roman fonts, but be sure to call out the Far-Eastern font with its PostScript
font name and the 83PVRKSJ–H suffix. Then, in the character string, use the
appropriate two-byte character combinations for the Far-Eastern characters
you wish to show, based on the 83PVRKSJ–H encoding.

15.5 Text Examples

The following examples illustrate the operators used in point text, text on a
path, and area text.

θ

The quick brown

fox jumped …

= rotation angle

rotated
margins

7.0

Japan 7.0

104 Adobe Illustrator File Format Specification 23 February 1998

15.5.1 Point Text

In point text, there is no path geometry. The Tp operator simply passes the
matrix that is associated with the object.

<text at a point> ::= <Tp>
<TP>
<text run>+

For example,

1 0 0 1 103.5 688.5 0 Tp

TP

0 Tr

0 O

0 g

800 Ar

0 J 0 j 1 w 4 M []0 d

%AI3_Note:

0 D

0 XR

/_Helvetica 12 Tf

0 Ts

100 Tz

0 Tt

1 TA

%_ 0 XL

36 0 Xb

XB

0 0 5 TC

100 100 200 TW

0 0 0 Ti

0 Ta

0 0 2 2 3 Th

0 Tq

0 0 Tl

0 Tc

0 Tw

(This is point text) Tx

(\r) TX

15.5.2 Text on a Path

For text on a path, there is no path geometry for the text. The entire text path
is rotated (skewed, etc.). The actual path is bracketed inside Tp and TP. The
startPt parameter is used only for text on a path. It indicates where the text
starts on the path using a decimal number. The integer portion of the number
is the Bézier segment on which the text start is located. The fractional part of
the number represents the position at which the text begins on that segment.

15 Text 105

For example, text that starts in the center of the second of two Bézier
segments would have a startPt of 1.5.

The BNF syntax for text along a path is

<text along a path> ::= <Tp>
<path object>
<TP>
<text run>+
{<overflow text>}*

For example,

-1 0 0 -1 -4014 4716 0.0675 Tp

202.899 374.25 m

230.4305 374.25 286.5 399.9684 286.5 427.5 c

N

TP

0.9885 0.151 -0.151 0.9885 208.4129 374.4603 Tm

0 Tr

0 O

0 g

(T) Tx

0.9734 0.2289 -0.2289 0.9734 216.1119 375.6829 Tm

(h) Tx

0.9628 0.27 -0.27 0.9628 222.833 377.3146 Tm

(i) Tx

0.9527 0.3039 -0.3039 0.9527 225.6023 378.0656 Tm

(s) Tx

0.9338 0.3578 -0.3578 0.9338 234.7611 381.1499 Tm

(i) Tx

0.9223 0.3865 -0.3865 0.9223 237.4237 382.1454 Tm

(s) Tx

0.8931 0.4499 -0.4499 0.8931 246.3572 386.0144 Tm

(p) Tx

0.8685 0.4957 -0.4957 0.8685 252.5786 389.1538 Tm

(a) Tx

0.8463 0.5326 -0.5326 0.8463 258.563 392.6147 Tm

(t) Tx

0.8195 0.573 -0.573 0.8195 261.6362 394.5058 Tm

(h) Tx

0.7585 0.6516 -0.6516 0.7585 270.1332 400.7589 Tm

(t) Tx

0.7057 0.7085 -0.7085 0.7057 273.0183 403.1636 Tm

(e) Tx

0.6048 0.7964 -0.7964 0.6048 278.2454 408.4813 Tm

(x) Tx

0.4877 0.873 -0.873 0.4877 282.2554 413.9789 Tm

(t) Tx

Te
xt

Bézier curve 0

Bézier curve 1

106 Adobe Illustrator File Format Specification 23 February 1998

(This is path text) TX

(\r) TX

15.5.3 Area Text

In area text, each container that text flows into has its own Tp and TP pair and
matrix associated with it. The container also includes information about
stroke and fill for the container. The BNF syntax for area text is

<text area> ::= <text area element>+
{<overflow text>}

<text area element> ::= <Tp>
<path object>
<TP>
<text run>+

For example,

1 0 0 1 193.5442 586.4558 0 Tp

1 Ap

219 535.5442 m

233.0587 535.5442 244.4558 546.9413 244.4558 561 c

244.4558 575.0587 233.0587 586.4558 219 586.4558 c

204.9413 586.4558 193.5442 575.0587 193.5442 561 c

193.5442 546.9413 204.9413 535.5442 219 535.5442 c

n

TP

9.9899 -10.875 Td

0 Tr

0 O

0 g

(Area) Tx

-7.3206 -14.5 Td

(text in a) Tx

3.8921 -14.5 Td

(circle) Tx

(\r) TX

A text area element within a text object may be arbitrarily scaled, skewed,
rotated, and translated using matrix operators. Text attributes such as whether
the text is filled or stroked, its kerning and leading are controlled by attribute
operators.

Adobe Illustrator has three text matrix handling operators that control where
to place the text object. For text on a path, the Tm operator sets the text
matrix. The Td and T* operators translate the text matrix to the start of the
next line of text.

However, the three text matrix operators are final-form. Adobe Illustrator
writes this information when it saves a file but ignores it when reading the
file.

16 Placed Art 107

16 Placed Art

The BNF syntax for placing an EPS file into an Adobe Illustrator document is

<placed art object> ::= <'>
<art reference>
<~>

<art reference> ::= <file reference> | <file inline>

<file reference> ::= %%IncludeFile: <filename>

<file inline> ::= %%BeginDocument:<filename>
… included file contents
%%EndDocument

<filename> ::= platform-specific path name of file

<subscriber object> ::= %AI3_Subscriber:<subscriber ID>
<placed art object>

<subscriber ID> ::= resource number of SECT resource in file

16.1 Placed Art Operators

The placed art operator identifies a document to import into the illustration.
The syntax for the placed art operator is as follows:

[a b c d tx ty] llx lly urx ury (filename) '
The ' (single quote or tick-mark) operator specifies that the document stored
in filename is to be imported into the illustration. The imported file is
assumed to be an EPS-conforming document.

The filename string is the full pathname for the file in the operating system’s
file system. Adobe Illustrator concatenates the matrix operand with the
current transformation matrix to establish a new user space and an origin for
the imported document. See PostScript Language Reference Manual, Second
Edition for more information about transformation matrices. The matrix
handles any rotation and reflection to be applied to the imported document.
The llx lly urx ury operands specify the bounding box from the imported
document as stated by the %%BoundingBox comment in the imported
document’s prolog.

108 Adobe Illustrator File Format Specification 23 February 1998

The ' operator establishes a new user space and sets values for graphic
elements of the graph, equivalent to the following series of operators:

false setoverprint

0 setgray

0 setlinecap

1 setlinewidth

0 setlinejoin

10 setmiterlimit

[] 0 setdash

newpath

– ~ The ~ operator restores the user space in effect when the preceding ' operator
was executed.

16.2 Placed Art Comments

The filename in the %%IncludeFile comment must be the same as that
specified for the ' (single tick-mark) operator. This includes a file by reference
in a given Adobe Illustrator document.

You can also save included files directly (rather than by reference) in an
Adobe Illustrator EPS document. If you wish to do that, replace the
%%IncludeFile comment with the following structure:

%%BeginDocument: filename

… put included file here …

%%EndDocument

Note Although useful for including files in EPS files, the usage shown above is not
part of the Adobe Illustrator file format, and is not recommended.

Adobe Illustrator automatically modifies the %%DocumentFonts ,
%%CustomColors , and %%DocumentFiles comments of the including
document to add information to the corresponding comments of an included
document.

The %%AI3_subscriber comment concerns the Macintosh publish and
subscribe facility available in System 7. It reads in an edition which has been
published as graphics. The section ID shows the resource ID of the section (in
a sect resource), as stored in the file. See Inside Macintosh Volume VI for
more information on publish and subscribe. If you need to use this feature,
you will also need to store the bounds in a bnds resource of the given id
(whose format is a rectangle of Fixed values: left, top, right, bottom), and the
section options in a psop resource of the given id (whose format is a two-byte
integer, value 0).

17 Graphs 109

17 Graphs

The Adobe Illustrator graphs capability builds business graphs, such as bar
(column) graphs and pie charts. Users can build such graphs using the
application’s general drawing abilities, but having Adobe Illustrator itself
build the graphs from numerical data helps assure accuracy.

The Gs operator begins a graph and the GS operator ends it. All graph
operators consist of two characters and begin with G.

A graph in an Adobe Illustrator file has two parts: the functional specification
and the objects that make up the graph. The functional spec acts like an
internal header; it contains information about the graph, such as graph type,
axis parameters, and graph data values. The graph objects are regular Adobe
Illustrator path and text objects, which allows the file to be incorporated as an
EPS file in other files for documents.

On command, Adobe Illustrator can recreate a graph based only on the
functional spec. However, on reading an Adobe Illustrator file that contains a
graph, Adobe Illustrator does not automatically recalculate the graph.
Instead, it displays the graph objects as they appear in the file—exactly as
Adobe Illustrator would treat any other objects in a file.

Note When preparing files that contain graphs for use with Adobe Illustrator, you
must make sure that the functional spec matches the graph objects (if you
choose to supply them). Otherwise, recalculating will result in changes to the
graph.

The functional spec is most useful for writing graph information that Adobe
Illustrator can understand, not for reading graph objects that have been
produced by Adobe Illustrator. The functional spec is presented in
Appendix A on page 145.

17.1 Syntax

The syntax of the graph section is:

<graph object> ::= <Gs>
<graph functional spec>
{<graph customizations>}
<graph group object>
<GS>

110 Adobe Illustrator File Format Specification 23 February 1998

<graph functional spec> ::=
<graph size and dialog values>
{<graph subscriptions>}
<graph axis>
<graph axis>
<graph axis>
<graph table specs>

<graph size and dialog values> ::=
<Gb>
<Gy>
<Gd>

<graph axis> ::= <Ga>
<GA>

<graph table specs> ::=
{<Gw>}*
<Gz>
<Gc>+
<GC>

<graph customizations> ::=
<Gt>
{<graph customization>}*
<GT>

<graph customization> ::=
{<graph customization operator>}*
<GX> | <Gg>
{<Gv>}

<graph customization operator> ::=
{<Gm>}
{<Gf>}
{<Gy>}
{<GD>}
{<Ge>}
{<G1>} (gee-one)
{<Gi>}
{<Gl>} (gee-ell)
{<Gp>}
{<Gx>}
{<Gr>}
{<G+>}
{<Gg>}
{<A>}
{<paint style>}*
{<text style>}

<graph subscriptions> ::=
<Gj>

17 Graphs 111

<graph group object> ::=
<u>
{<graph rendered object>}*
<U>

<graph rendered object> ::=
<object> | <graph group object>
{<Go>}

17.2 Graph Objects

Graph objects make up the second part of the graph. When Adobe Illustrator
loads a file containing a graph, it draws the objects as described by this
section without referring to the functional specification (at will, a user can tell
Adobe Illustrator to recalculate the graph based on the functional spec).

Graph objects are essentially standard Adobe Illustrator objects, use Adobe
Illustrator operators for their construction, and are subject to the current
paint, fill, and stroke styles and the rest of the cumulative settings of the
graphics state. However, in order to allow efficient editing of graphs, Adobe
Illustrator uses a particular hierarchical grouping organization in memory.
This has two effects on the file.

• Each graph object is followed by the Go operator, which tells Adobe
Illustrator what that object is—data point, legend, axis, and so forth.

• Graph objects are grouped in a way representing their hierarchy in
memory using the u and U operators (just as with other Adobe Illustrator
grouped objects). Because this grouping represents a data structure, there
may be in the file one or more “empty” groups of u followed immediately
by U; there may even be nested empty groups.

Note When constructing an Adobe Illustrator file external to Adobe Illustrator
which contains a graph, you must make sure that the organization of the
empty groups is followed accurately.

17.2.1 Organization of Graph Objects

Table 13 shows the hierarchical organization of graph objects. Each group is
bounded by the u and U operators.

112 Adobe Illustrator File Format Specification 23 February 1998

Table 13 Graph Object Organization

Left Axis group
Right Axis group
Legend group
Category Axis group
Data

Series 0
Legend box
Data series 0

Series 1
Legend box
Data series 1

Series n
Legend box
Data series n

Axis

17.2.2 Graph Object Operators

target column row whichAxis Go
After each object that represents a major part of the graph, Adobe Illustrator
must identify it: which part of the graph did Adobe Illustrator just read in?
These parameters specify that. This operator is not needed for any part of the
graph that is not covered by the following parameters. Note that some of the
parameters are not needed for several of the object types, although place-
holders must be used.

target This identifies what the object represents. This identifies which objects
correspond to the target parameter of the Gg (obsolete) and Gx operators.
Some are deduced from their location in the file; others must be specifically
identified. The objects that must be identified are:

1 all series, including legends
2 one series, including legends
4 one data bar/line/wedge
5 all data marks
6 one series’ and its legends’ marks
8 one data line segment’s mark
9 one axis, including text, ticks, line
10 category axis’ main line
15 all legend’s text
20 all labels along category axis
22 entire “shadow” object

GS The graph is finished: both the functional specification and the objects
representing the graph have been written out. This is not unlike the U
operator, which finishes a group.

17 Graphs 113

114 Adobe Illustrator File Format Specification 23 February 1998

18 Script Trailer

The syntax for the script trailer of an Adobe Illustrator document is as
follows.

<document trailer> ::= %%Trailer
{<proc set termination>}*

<proc set termination> ::=
proc_set_name /terminate get exec

For each procedure set (resource) that was initialized in the script setup, the
trailer invokes its terminate procedure in reverse order.

Adobe_Illustrator /terminate get exec

Adobe_pattern /terminate get exec

Adobe_customcolor /terminate get exec

Adobe_cshow /terminate get exec

Adobe_cmykcolor /terminate get exec

19 Platform-Specific Issues 115

19 Platform-Specific Issues

This section describes platform-specific issues of certain Adobe Illustrator
implementations.

19.1 Adobe Illustrator on the Macintosh

On the Macintosh computer, the resource fork of an Adobe Illustrator
document contains several ancillary resources. The following sections
describe these Macintosh-based resources.

19.1.1 PICT Resource

An Adobe Illustrator document may have a graphical screen representation
provided so that a preview of the illustration may be manipulated on the
screen by a page composition system. On the Macintosh, this representation
is saved as a QuickDraw PICT picture resource within the resource fork of
the document. The resource is given a resource type of PICT and a resource
number of 256.

The picture’s picFrame bounding box matches the bounding box of the
illustration. This bounding box is specified in the %%BoundingBox
comment in the prolog header. The width and height of the picFrame are the
same as the width and height, respectively, of the bounding box.

The picture resource is composed of two bitmap images: the image itself and
its mask. If a particular bit is set in the mask, then the corresponding pixel in
the illustration is painted. Otherwise, the corresponding pixel has not been
painted and is transparent.

The mask is placed in the picture first, in the QuickDraw srcBic mode. It
“punches a white hole” in just those areas that are painted. Then the image is
placed in the QuickDraw srcOr mode, which fills in the punched areas, but
leaves the other areas untouched.

19.1.2 TEMP Resource

This resource identifies the name of the document’s template file, if it has
one. The resource has three components (in order):

1. A 32-bit integer containing the directory identifier of the folder containing
the template file. The integer is zero if the document has no template.

2. A Pascal string containing the name of the volume on which the template
file resides. The string is empty if the document has no template.

3. A Pascal string containing the name of the template file itself. The string is
empty if the document has no template.

116 Adobe Illustrator File Format Specification 23 February 1998

The resource is given a type of TEMP and a resource number of 256.

19.1.3 PAGE Resource

This resource contains the x and y coordinates of the document’s page origin
as specified by the Page tool in Adobe Illustrator. The coordinates are in the
default user coordinate system. In this system, the unit length along both axes
is 1⁄72 inch. The resource consists of two 32-bit fixed point numbers. The first
specifies the y coordinate and the second specifies the x coordinate. The
resource is given a type of PAGE and a resource number of 256

19.1.4 PREC Resource

This resource contains the standard 120 byte Macintosh Printing Manager
print record. It describes the document’s user-specified printing references as
selected from the Page Setup and Print dialog boxes. The resource is given a
type of PREC and a resource number of 256.

19.1.5 Save Options and Their Formats

Adobe Illustrator can save a file with or without a preview illustration and in
several different ways. The last four methods write the same data fork to the
file and vary in how and what they write to the resource fork.

• No Preview, omit EPSF header. This option saves an EPSF file and places
no Preview or EPSF header in the file.

• No Preview, include EPSF header. This option saves an EPSF file and
places no Preview in the file, but includes an EPSF header for the file.

• B&W Macintosh PICT. This option writes a Preview in the form of a black
and white Macintosh PICT resource to the resource fork of the file.

• Color Macintosh PICT. This option writes a Preview in the form of a color
Macintosh PICT resource to the resource fork of the file.

• IBM PC (TIFF). This option writes a binary file with a pointer to TIFF
data.

19.1.6 Header Changes Under Windows

Adobe Illustrator for Windows Version 4.x uses a subset of the full Adobe
Illustrator header structure. Figure 14 lists the subset of comments used in the
Windows version header.

19 Platform-Specific Issues 117

Figure 14 . Header contents of Adobe Illustrator for Windows Version 4.x

%%Creator: Adobe Illustrator(TM) version

%%For: (username) (organization)

%%Title: (illustration title)

%%CreationDate: (date) (time)

%%DocumentProcSets: Adobe_Illustrator_ version level revision

%%DocumentSuppliedProcSets: Adobe_Illustrator_ version level

revision

%%Documentfonts: font …

%%+font …

%%BoundingBox: llx lly urx ury

%%TemplateBox: llx lly urx ury

The principal difference for comments that convey arbitrary text information
is how strings of characters are delimited. In documents of some versions of
Adobe Illustrator, the individual strings are valid PostScript language strings;
in other versions, the last text item in a comment is terminated by a newline
character.

Adobe Illustrator for Windows Version 4.x requires four additional comments
to provide information that is otherwise stored in the Macintosh resource fork
by the Macintosh version of Adobe Illustrator.

%%Template: {filename}
%%PageOrigin: x y
%%PrinterName: {printer brand name}
%%PrinterRect: llx lly urx ury

%%Template: {filename} The %%Template comment specifies the full pathname of the template for
the illustration.

%%PageOrigin: x y The %%PageOrigin comment specifies the coordinates of the document’s
page origin (in points) as specified by the Page tool. If you omit this
comment, Adobe Illustrator sets the page origin to the ruler origin. See
section 19.1.3, “PAGE Resource,” for more information about the page
origin.

%%PrinterName: {printer brand name}
The %%PrinterName comment specifies the brand name of the printer for
which the file is being generated—for example “Apple LaserWriter.”

%%PrinterRect: llx lly urx ury The %%PrinterRect comment specifies the bounding box of the image area
of the printer identified in the %%PrinterName comment. The coordinate
system used by this comment is 4th quadrant rather than 1st quadrant as used
in all other structuring comments. This means that 0 on the y axis is at the
upper left (rather than the lower left). If you omit this comment, Adobe
Illustrator sets the default for letter size, portrait orientation as on the Apple
LaserWriter. The Macintosh version of Adobe Illustrator ignores this
comment.

118 Adobe Illustrator File Format Specification 23 February 1998

19.2 Controlling the Grid in Windows and NeXT Versions

A grid allows objects to “snap to” an array of horizontal and vertical
locations on the artwork. The capability of controlling the grid is part of
Adobe Illustrator for Windows Version 4.x and Adobe Illustrator NeXT
Version 3.x. For a description of grid settings in Adobe Illustrator 7, please
refer to the %AI7_GridSettings header comment, discussed on page 22
(section 2.1.1, “Header Comments”).

Adobe Illustrator’s %AI3_Grid comment appears immediately after the
%%EndResource comment and immediately before the %%EndProlog
comment.

%AI3_Grid.version hzSpace vtSpace gridSnap R G B visibility
The %AI3_Grid comment specifies the appearance of the grid and whether an
object should snap to grid lines.

version This is the version number of the grid specification. It is an integer. Note the
decimal point. The current version number is 0.

hzSpace This parameter is the horizontal spacing between grid lines in display pixels.
The grid origin is at the page origin.

vtSpace This is the vertical spacing between grid lines in display pixels.

gridSnap This parameter controls the grid snap: enabled, horizontal, vertical, or both.
The least significant bit specifies horizontal snapping; 0 means snap off, 1
means snap on. The next bit specifies vertical snap, and the next after that
specifies whether the grid is enabled or disabled.

0 no snap specified; snapping disabled
1 horizontal snap specified, snapping disabled
2 vertical snap specified, snapping disabled
3 horizontal and vertical snap specified, snapping disabled
4 no snapping specified, snapping enabled
5 horizontal snap specified, snapping enabled
6 vertical snap specified, snapping enabled
7 horizontal and vertical snap specified, snapping enabled

R G B Three parameters specifying the Red-Green-Blue color for the grid, each in
the range of 0.0 to 1.0.

visibility This is an integer that encodes grid visibility and position. The least
significant bit controls the grid position: 1 means draw grid in front, 0 means
draw it in back of everything else. The next digit encodes grid visibility. This
value is independent of the grid color.

19 Platform-Specific Issues 119

0 invisible grid drawn in back
1 invisible grid drawn in front
2 visible grid drawn in back
3 visible grid drawn in front

120 Adobe Illustrator File Format Specification 23 February 1998

20 Adobe Illustrator on the Clipboard

Beginning with Adobe Illustrator 5.0 and Adobe Illustrator for Windows
Version 4.x, a feature called Adobe Illustrator on the Clipboard (AICB) was
implemented. This feature facilitates cutting and pasting complex Bézier-
based artwork and text effects between applications. The data for AICB is
actually a complete ASCII Adobe Illustrator file as defined in this document.

If you place Adobe Illustrator art on the system clipboard in these versions of
Adobe Illustrator and then switch out of the application, the art is converted
to clipboard data. On Macintosh, this data has a clipboard type of AICB. Note
that Macintosh users can convert the AICB information to type TEXT by
holding down the Control key when switching Adobe Illustrator to the
background. The AICB information can then be pasted directly into a text
editor, if desired.

In Microsoft Windows, the AICB text data is a minimally conforming Adobe
Illustrator file. The ASCII clipboard format name used for AICB is
ADOBE AI3. Programs which support AICB should use this name in
Microsoft Windows.

Many applications support AICB with copy, paste, or both. These
applications include Adobe Streamline, Adobe TypeAlign, Adobe Photoshop,
and Adobe Pagemaker.

21 Implementation Issues 121

21 Implementation Issues

This section provides details of some specific implementation issues.

21.1 Identifying Adobe Illustrator File Format Versions

Adobe Illustrator uses the following methods to detect the version of a file.

21.1.1 Version 1.1 Files

Look for a %%DocumentProcSets comment in the prolog of the file. The
%%DocumentProcSets comment has the following form:

%%DocumentProcSets: <procset name> <version> <revision>

In version 1.1 files, the procset name is Adobe_Illustrator_1.1

21.1.2 Version 88 Files

Look for a %%DocumentProcSets comment in the prolog of the file. The
%%DocumentProcSets comment has the following form:

%%DocumentProcSets: <procset name> <version> <revision>

In version 88 files, at least one of the procset names is one of the following:
Adobe_Illustrator88
Adobe_Illustrator881

21.1.3 Version 3. x Files

Look for a %%DocumentNeededResources continuation line in the prolog
of the file. The %%DocumentNeededResources continuation line has the
following form:

%%+ procset <procset name> <version> <revision>

In version 3.x files, at least one of the procset names is one of the following:
Adobe_Illustrator_AI3
Adobe_IllustratorA_AI3

21.1.4 Version 4. x Files

Look for a %%Creator comment in the prolog of the file. The %%Creator
comment has the following form:

%%Creator: (<creator name> <company>)

In version 4.x files, the creator name contains the string
“Adobe Illustrator (TM) for Windows, version 4”

1.0/1.1

88

3.0/3.2

4.0

122 Adobe Illustrator File Format Specification 23 February 1998

21.1.5 Version 5. x Files

Look for the following comment in the prolog of the file:

%AI5_FileFormat <version>

21.2 Opening Adobe Illustrator 88 files in Illustrator 6.0

Adobe Illustrator 88 files that are to be opened with Adobe Illustrator 6.0
must begin with the following two lines:

%!PS-Adobe-2.0

%%Creator: Adobe Illustrator(TM) 88

The second line need not be present for the file to open successfully with
Adobe Illustrator version 5.5 and earlier.

21.3 Adobe Illustrator 6.0 EPS Parser Limitation

Certain applications use custom fonts that cannot be mapped to the
Macintosh standard character set. Mathematical fonts are typical examples.

These applications can produce EPS files for use with Adobe Illustrator, but
the EPS parser in Adobe Illustrator 6.0 cannot remap the special characters
they contain. Instead, the parser passes them through unmapped. This
strategy often produces characters unintended by the creator of the EPS file.

5.0/5.5

6.088

6.0

22 List of Operators 123

22 List of Operators

A locked

b close, fill and stroke path

B fill and stroke path

c curveto

C curveto

d setdash

D polarized fill style

E pattern

f close & fill path (implicit newpath)

F fill path (implicit newpath)

g fill setgray

G stroke setgray

h closepath

H closepath

i setflat

I (letter I) path text

j setlinejoin

J setlinecap

k fill setcmykcolor

K stroke setcmykcolor

l (letter l) lineto

L lineto

m moveto

M setmiterlimit

124 Adobe Illustrator File Format Specification 23 February 1998

n path neither filled nor stroked (implicit newpath)

N close path neither filled nor stroked (implicit newpath)

Np identify nonprinting objects

O fill overprint

p fill pattern

P stroke pattern

q group (that contains clipping)

Q ungroup (from group that contains clipping

R stroke overprint

s stroke closed path (implicit newpath)

S stroke path (implicit newpath)

u group

U ungroup

v curveto

V curveto

w setlinewidth

W clip

x fill custom color

X stroke custom color

Xa fill setrgbcolor red green blue Xa –
red, green, blue numbers between 0.0 and 1.0

XA stroke setrgbcolor red green blue XA –
red, green, blue numbers between 0.0 and 1.0

5.0/5.5

7.0

7.0

22 List of Operators 125

Xx fill custom color comp1 … compn name tint type Xx –
comp1 … compn Color space component values (or

example, red, green and blue) between
0.0 and 1.0.

name a string that identifies the custom color
tint a number between 0.0 and 1.0.
type 0 = CMYK custom color

1 = RGB custom color.

XX stroke custom color comp1 … compn name tint type XX –
comp1 … compn Color space component values (or

example, red, green and blue) between
0.0 and 1.0.

name a string that identifies the custom color
tint a number between 0.0 and 1.0.
type 0 = CMYK custom color

1 = RGB custom color.

XI image [a b c d tx ty] llx lly urx ury h w bits
ImageType AlphaChannelCount
reserved bin-ascii ImageMask XI

[a b c d tx ty] Image Matrix
ll x lly urx ury Bounds (lower left and upper right x,y

coordinates).
h w Size (height and width).
bits Bits per pixel in image map.
ImageType Image color type

1 = bitmap/grayscale
3 = RGB
4 = CMYK.

AlphaChannelCount Alpha channel count (0 for version 6.0;
other values reserved for future
versions.

reserved Reserved for use by future versions.
bin-ascii Encoding type (0 = ASCII

hexadecimal, 1 = binary (Motorola®
byte ordering), other values reserved.

ImageMask Image mask (0 = opaque,
1 = transparent/colorized).

XF linked image [a b c d tx ty] llx lly urx ury h w bits
ImageType AlphaChannelCount
reserved bin-ascii ImageMask XF

Identical to XI operator, but used with linked image files. Must be
used with XG.

7.0

7.0

6.0

7.0

126 Adobe Illustrator File Format Specification 23 February 1998

XG image link (path) modified XG
path Full path name of linked file.
modified 0 = Image has not been edited since

last read.
1 = Image has been edited since last

read.

XR fill rule n XR
n 0 = use non-zero winding number fill

rule, 1 = use even-odd fill rule.

XT object tag identifier string XT
identifier alpha-numeric string preceded by a

front-slash character.
string alpha-numeric string preceded by a “/”

character

y curveto

Y curveto

Z text

` illustration

~ illustration

_ null

@ pattern ink

& pattern path

* guide object

*u compound path group

*U compound path ungroup

*w wraparound group

*W wraparound ungroup

22.1 Gradient Operators

Bn specify number of cached gradients nGradients Bn –
nGradients Number of gradients in document.

7.0

6.0

6.0

5.0/5.5

22 List of Operators 127

Bd begin gradient definition name type nColors Bd –
name Name of gradient (a string).
type 0 = linear gradient.

1 = radial gradient.
nColors Number of colors in gradient.

%_Bs define autoblend color stopcolorSpec colorStyle midPoint
rampPoint %_Bs

rampPoint Location of a color on the ramp (a
percentage with no limits).

midPoint Location of 50/50 mix between two
colors, values between 13 and 87
percent (ignored for last color stop).

colorStyle
colorSpec The number and meaning of the

arguments to colorSpec depend on the
value of colorStyle, as shown in the
following table.

%_Br autoblend ramp string rampSpec rampType %_Br
rampType
rampSpec The number and meaning of the

arguments to rampSpec depend in the
value of rampType, as shown in the
following table:

colorStyle
Values

Number of
colorSpec
Arguments

colorSpec Arguments

0 = Gray 1 gray

1 = CMYK 4 cyan magenta yellow black

2 = RGB 7 cyan magenta yellow black red
green blue

3 = CMYK
custom

6 cyan magenta yellow black name
tint

4 = RGB
custom

10 cyan magenta yellow black red
green blue name tint type (value of
type is always 1 for RGB)

7.0

7.0

128 Adobe Illustrator File Format Specification 23 February 1998

BD terminate gradient definition – BD –

Bb begin gradient instance – Bb –

BB end gradient instance flag BB –
0 = do not stroke path (no action)
1 = stroke path
2 = close and stroke path

Bc define gradient instance cap (linear only)a b c d tx ty Bc –
a b c d tx ty Matrix values to form unit square to

blend cap.

Bg define gradient instance geometry flag name xOrigin
yOrigin angle length
a b c d tx ty Bg –

flag 1 = issue a clip.
2 = disable rendering.

rampType
Number of
rampSpec
Arguments

rampSpec Arguments

0 = Gray 1 grayRamp

1 = CMYK 4 cyanRamp magentaRamp
yellowRamp blackRamp

2= CMYK
custom
color

5 cyanRamp magentaRamp
yellowRamp blackRamp tintRamp

3 = CMYK
custom
colors

6 cyanRamp magentaRamp
yellowRamp blackRamp
tint1Ramp tint2Ramp

4 = RGB
color

7 cyanRamp magentaRamp
yellowRamp blackRamp redRamp
greenRamp blueRamp

5 = RGB
custom
color

8 cyanRamp magentaRamp
yellowRamp blackRamp redRamp
greenRamp blueRamp tint1Ramp

6 = RGB
custom
colors

9 cyanRamp magentaRamp
yellowRamp blackRamp redRamp
greenRamp blueRamp tint1Ramp
tint2Ramp

7.0

7.0

7.0

22 List of Operators 129

name Name of gradient.
xOrigin, yOrigin Gradient vector origin.
angle Blend vector angle.
length Blend vector length.
a b c d tx ty User matrix values.

Bh define gradient instance highlight
(radial only) xHilight yHilight angle length Bh –

xHilight, yHilight Offset from gradient vector origin to
center of last (highlight) circle.

angle Gradient highlight vector angle.
length Gradient highlight vector length.

Bm set gradient matrix a b c d tx ty Bm –
a b c d tx ty Matrix values to transform unit square

or circle to gradient fill.

Xm Level 3 linear gradient matrix
information for printing. Follows Bg . a b c d x y Xm
a b c d x y Describe overall matrix applied to the

gradient.

22.2 Layer Operators

Lb begin layer visible preview enabled printing
dimmed hasMultiLayerMasks
colorIndex red green blue Lb –

visible 1 = visible; 0 = invisible.
preview 1 = preview; 0 = no preview.
enabled 1 = enabled; 0 = not enabled.
printing 1 = printing layer; 0 = not printing

layer.
dimmed 1 = dimmed; 0 = not dimmed.
hasMultiLayerMasks 1 = has multilayer masks; 0 = does not

have multilayer masks.
colorIndex Identifying color. See page 71.
red 0–255: 0 = 0% red; 255 = 100% red.
green 0–255: 0 = 0% green; 255 = 100%

green.
blue 0–255: 0 = 0% blue; 255 = 100% blue.

Ln layer name name Ln –

LB end layer – LB –

7.0

5.0/5.5

130 Adobe Illustrator File Format Specification 23 February 1998

22.3 Multilayer Masking

Mb begin mask – Mb –

Md define mask – Md –

MB end mask – MB –

22.4 Color Palette

Pb begin palette topLeftCellIndex
selectedIndex Pb –

PB end palette – PB –

Pc palette cell – Pc –

Pn palette cell with paint equal to “none” – Pn –

22.5 Attributes

Ap path center point showCenter Ap –
showCenter 0 = do not show center point

1 = show center point

Ar path resolution resolution Ar –
resolution Dpi value, used to set flatness value for

rendered images.

22.6 Text Operators

Tg repeat character bindrepeat Tg
bindrepeat 0 = binding punctuation off,

 repeat character off
1 = binding punctuation on,
 repeat character off
2 = binding punctuation off,
 repeat character on
3 = binding punctuation on,
 repeat character on

TG line breaking value linebreak TG
linebreak The user-supplied value of the “Line

Breaking” text field in the Paragraph
palette. 0 < linebreak < 100

To begin text object type To –

5.0/5.5

5.0/5.5

5.0/5.5

7.0

7.0

22 List of Operators 131

type 0 = point text
1 = area text
2 = path text

TO end text object – TO –
also pops text matrix

Tp begin text path a b c d tx ty startPt Tp –
a b c d tx ty anchor matrix (concatenated onto CTM

by TP)
startPt start point value

TP end text path – TP –

Tm set text matrix a b c d tx ty Tm –

Td translate text matrix tx ty Td –

TM pop text matrix – TM –

TR reset pattern matrix a b c d tx ty TR –

Tr set render mode render Tr –
render 0 = fill text

1 = stroke text
2 = fill and stroke text
3 = invisible text
4 = mask & fill text
5 = mask & stroke text
6 = mask, fill & stroke
7 = mask (only) text
8 = filled text with stroked text
following (patterned text only)
9 = stroked text (preceded by render
mode 8 text; patterned text only)

Te end render – Te –

Tf set font name, size, ascent, and descent
/_fontname size ascent descent Tf –

fontname name of font
size size of font
ascent used when printing vertically
descent used when printing vertically

Ta set alignment alignment To –

7.0

7.0

132 Adobe Illustrator File Format Specification 23 February 1998

alignment 0 = left aligned
1 = center aligned
2 = right aligned
3 = justified
4 = justified including last line

Tl set leading leading paragraphLeading Tl –

Tt set user tracking userTracking Tt –

Tu See Xu

TV set vertical text direction TV –
direction 0 = horizontal writing

1 = vertical writing

Tv rotate characters 90° rotate Tv –
rotate 0 = rotated characters

1 = unrotated characters

Ty Kumi text orientation kumi Ty –
kumi 1 = begin Kumi text block

0 = end Kumi text block

TY Kumi text orientation in horizontal text (for information only)
kumi TY

kumi 1 = begin Kumi text block
0 = end Kumi text block

TW set word spacing minSpace optSpace maxSpace TW –

Tw set computed word spacingwordSpace Tw

TC set character spacing minSpace optSpace maxSpace TC –

Tc set computed char spacingcharSpace Tc –

Ts set super/subscripting (rise)rise Ts –

Ti set indentation firstStartIndent otherStartIndent
stopIndent Ti –

Tz set text scaling parallelScale perpendicularScale Tz –
parallelScale scaling factor parallel to text line (right

scaling field in Character palette).
perpendicularScale scaling factor perpendicular to text line

(left scaling field in Character palette).

7.0

7.0

7.0

7.0

7.0

22 List of Operators 133

TA set pairwise kerning autoKern TA –
autoKern 0 = no automatic pair kerning

1 = automatic pair kerning

Tq set hanging quotes hangingQuotes Tq –
hangingQuotes 0 = no hanging quotes

1 = hanging quotes

TE Set std platform encoding(encoding pairs) TE –

TZ Set encoding vector (optional encoding pairs)
newFontNameLiteral
oldFontNameLiteral direction
fontScript TZ –

Tx non-justified text textString Tx –

Tj justified text textString Tj –

TX overflow text textString TX –

TS special chars textString justified TS –

Tk kern autoKern kernValue Tk –

autoKern 0 = manual kern
1 = auto kern

kernValue kern value in em/1000 space

TK non-printing kern autoKern kernValue TK –

T* translate matrix to start of new line – T* –

T– print a discretionary hyphen- T– –

T+ discretionary hyphen – T+ –

Th hyphen control hyphenate limitHyphLines
minLeadHyphen minTailHyphen
maxHyphLines Th

hyphenate 0= no auto-hyphenation.
1 = auto-hyphenation.

limitHyphLines 0 = do not limit consecutive hyphens.
1 = limit consecutive hyphens.

minLeadHyphen minimum number of letters allowed
before a hyphen.

minTailHyphen minimum number of letters allowed
after a hyphen

134 Adobe Illustrator File Format Specification 23 February 1998

maxHyphLines maximum number of consecutive
hyphens allowed

Xb begin tab definition numDots numTabs Xb
numDots the distance between automatic dot

leaders.
numTabs number of tabs.

Xe tab description leader decimal tabType tabPosition Xe
leader reserved for future use.
decimal reserved for future use.
tabType 1 = left tab,

2 = center
3 = right
4 = decimal

tabPosition position of tab, in points.

XB end tab definition

Xu Japanese layout rules %_prop cjkLayout cjkRoman cjkCjk Xu
The parameters represent user settings in the Character palette for
Japanese Layout rules:

prop 0 = Proportional CJK off
1 = Proportional CJK on (box checked)

cjkLayout 0 = Japanese Layout Rules off
1 = Japanese Layout Rules on

cjkRoman CJK/Roman user-entered value,
100 < cjkRoman < 200

cjkCJK CJK/CJK user-entered value,
100 < cjkCJK < 200

XL hyphenation language %_ languageID XL
languageID 0 = U.S. English

1 = U.K. English
2 = French
3 = German
4 = Spanish
5 = Dutch
6 = Italian
7 = Swedish
8 = Norwegian
9 = Finnish
10 = Danish
11 = Hungarian

7.0

5.0/5.5

23 Document Syntax Summary 135

23 Document Syntax Summary

The notation {<abc>} denotes zero or one instance of <abc>. The notation
{<abc>}* denotes zero or more instances of <abc>. The notation <abc>+
means one or more instances of <abc>. The alternative forms are separated
by the vertical bar character (|). Single letter components, such as <A> , refer
to the corresponding operator A.

Table 14 Document BNF syntax summary

BNF Syntax
See Page
Number

<document> ::= <prolog>
<script>

12

<prolog> ::= %!PS-Adobe-M EPSF-N (or %!PS-Adobe-M)
<header>
%%BeginProlog
{<procset>}* (not required, normally present)
%%EndProlog

12, 14

<header> ::= <header comments>
%%EndComments

14, 15

<procset> %%IncludeResource:procset <name>
(or)
%%BeginResource:…
…
%%EndResource

14, 18

<script> ::= <setup>
{<layer>}*|{<object>}*
{<page trailer>} (not required, but normally present)
<document trailer>
%%EOF

12, 31

<setup> ::= %%BeginSetup
{%%IncludeFont: font}*
{<procset init>}* (not required, but normally present)

<gradient defs>
<color palette>
<pattern defs>
%%EndSetup

31

<layer> ::= %AI5_BeginLayer
<Lb>
<Ln>
<object>+
<LB>
%AI5_EndLayer

71

136 Adobe Illustrator File Format Specification 23 February 1998

<color palette> ::= %AI5_BeginPalette (not required, but normally present)
<Pb>
<Pn>*
<Pc>*
<PB>
%AI5_EndPalette (not required, but normally present)

31, 78

<procset init> ::= <dict name>+ /initialize get exec
(each procset has an initialize
procedure that is called with
1 or more parameters that are
dict names)

31

 ::= [
{<encoding pairs>}*
<TE>
{<re-encoding>}*

32

<encoding pairs> ::= (list of encoding number–glyph name pairs) 32

<re-encoding> ::= %AI3_BeginEncoding newFontName oldFontName
<TZ>
%AI3_EndEncoding

32

<gradient defs> ::= <Bn> (grouped into printing
<gradient def>+ and nonprinting definitions)

31, 39

<gradient def> ::= %AI5_BeginGradient: (gradient name)
<Bd>
{<ramp data>}
<color stops>
<BD>
%AI5_EndGradient

31, 39

<pattern defs> ::= {<pattern>}* 34

<pattern> ::= %AI3_BeginPattern: (patternname)
<E>
%AI3_EndPattern

35

<pattern layer list> ::= {<pattern layer>}* 35

<pattern layer> ::= <@>
<&>

35

<page trailer> ::= %%PageTrailer
gsave annotatepage grestore showpage

31

<document trailer> ::= %%Trailer
{<proc set termination>}* (not required, but

normally present)

31

Table 14 Document BNF syntax summary (Continued)

BNF Syntax
See Page
Number

23 Document Syntax Summary 137

<object> ::= {<A>} (object locking)
<path object> |
<path mask> |
<composite object> |
<raster object> |
<text object> |
<placed art object> |
<subscriber object> |
<graph object> |
{<XT>} (object tag)
<PostScript document>

52

<guide> ::= (<path render>) | <*> (<*> indicates guide operator)
<paint style>
<path geometry>
(<path render>) | <*>

66

<path object> ::= <paint style>
<path geometry>
<path render> | <*> (<*> indicates guide operator)

52

<path mask> ::= <paint style>
<path geometry>
<h> | <H>
<W>
<path render>

52, 64

<multi-layer mask> ::= <Mb>
<object>+
<Md>
<MB>

75

<paint style> ::= {<color> | <overprint> | <path attributes>}* 54

<path attributes> ::= <d> |
<D> |
<i> |
<j> |
<J> |
<M> |
<w> |
%AI3_Note: <note>

55

<note> ::= up to 254 characters of arbitrary text. 55

<color> ::= <fill color> | <stroke color> 59

Table 14 Document BNF syntax summary (Continued)

BNF Syntax
See Page
Number

138 Adobe Illustrator File Format Specification 23 February 1998

<fill color> ::= <g> | (fill black ink only, or)
<k> | (fill process ink, or)
<x> | (fill custom ink, or)
<Xa> | (fill RGB color, or)
<Xx>| (fill generic custom color, or)
<p> (fill pattern)

59

<stroke color> ::= <G> | (stroke black ink only, or)
<K> | (stroke process ink, or)
<X> | (stroke custom ink, or)
<XA> | (stroke RGB color, or)
<XX>| (stroke generic custom color, or)
<P> (stroke pattern)

60

<ramp data> ::= [
<%_Br>+

31, 39

<color stops> ::= [
<%_Bs>+

31, 39

<overprint> ::= <O> | (fill overprint, or)
<R> (stroke overprint)

62

<path geometry> ::= <m>
{<path operator>}*

54

<path operator> ::= <l> | <L> | <c> | <C> | <v> | <V> | <y> | <Y> 54

<path render> ::= <N> | (closepath, no fill, no stroke; or)
<n> | (neither fill nor stroke; or)
<gradient instance>| (fill with gradient instance)
<F> | (fill; or)
<f> | (closepath, fill; or)
<S> | (stroke; or)
<s> | (closepath, stroke; or)
 | (fill and stroke; or)
 (closepath, fill and stroke)

54

<gradient instance> ::=
<Bb>

<Bh> |
<Bg> |
{<Xm>} |
<Bm> |
<Bc> |
<f> |
<BB>

44

Table 14 Document BNF syntax summary (Continued)

BNF Syntax
See Page
Number

23 Document Syntax Summary 139

<composite object> ::=
<group object> |
<group with a mask> |
<compound path> |
<compound path mask> |
<wraparound group>

52

<group object> ::= <u>
<object>+
<U>

63

<raster object> ::= <XI> |
<XG>
<XF>

68

<group with a mask> ::=
<q>
{<object>}*
{<masked object>}*
<Q>

63

<masked object> ::= <mask> | <object> 64

<mask> ::= <path mask> | <compound path mask> | <multi-layer mask> 64

<compound path> ::= <*u>
<compound path element>+
<*U>

59

<compound path element> ::=
<path object> | <compound group>

59

<compound group> ::=
<u>
<compound path element>+
<U>

59

<compound path mask> ::=
<*u>
<compound path mask element>+
<*U>

64

<compound path mask element> ::=
<path mask> | <compound mask group>

64

<compound mask group> ::=
<compound mask bottom group> |
<compound mask non-bottom group>

64

Table 14 Document BNF syntax summary (Continued)

BNF Syntax
See Page
Number

140 Adobe Illustrator File Format Specification 23 February 1998

<compound mask bottom group> ::=
{<A>}
<q>
<path mask>+
<Q>

64

<compound mask non-bottom group> ::=
{<A>}
<u>
<compound mask group>+
<U>

64

<wraparound group> ::=
<*w>
{<object>}*
{<wraparound objects>}*
<*W>

93

<wraparound objects> ::=
<text object> | <object>

93

<text object> ::= <To>
<text at a point> |
<text area> |
<text along a path>
<TO>

94

<text at a point> ::= <Tp>
<TP>
<text run>+

104

<text area> ::= <text area element>+
{<overflow text>}

106

<text area element> ::=
<Tp>
<path object>
<TP>
<text run>+

106

<text along a path> ::=
<Tp>
<path object>
<TP>
<text run>+
{<overflow text>}*

105

Table 14 Document BNF syntax summary (Continued)

BNF Syntax
See Page
Number

23 Document Syntax Summary 141

<text run> ::= {<text style> |
<paint style> |
<text positions> |
<Tk>}*
<text body>

96

<text style> ::= <Tr> | (render mode)
<Tf> | (font & size)
<Ts> | (rise and fall)
<Tz> | (text scaling)
<Tt> | (tracking)
<TA> | (automatic kerning)
<TC> | (intercharacter spacing)
<TW> | (interword spacing)
<Ti> | (indents)
<Ta> | (alignment)
<Tq> | (hanging quotations)
<Tl> (leading)
<TV> (horizontal or vertical writing)
<Tv> (rotate characters 90°)
<Ty> | (Kumi orientation)
<TY> | (Kumi orientation, informational only)
<TG> | (line break)
<Tg> | (binding punctuation)
<Xu> (Japanese layout rules)

97, 98, 99,
100, 102

<text position> ::= (printing only)
<Tc> | (computed intercharacter spacing)
<Tw> | (computed interword spacing)
<Tm> | (text matrix)
<Td> | (translate)
<T*> | (translate down)
<TR> (reset matrix; found only in pattern

prototypes)

98

<text body> ::= <Tx> | <Tj> | <T+> | <T–> 101

<overflow text> ::= {<text style> | <paint style> | <TK>}*
<TX> | <T+>

96, 101

 ::= AdobeType | TrueType 32

<placed art object> ::=
<’>
<art reference>
<~>

107

<art reference> ::= <file reference> | <file inline> 107

Table 14 Document BNF syntax summary (Continued)

BNF Syntax
See Page
Number

142 Adobe Illustrator File Format Specification 23 February 1998

<file reference> ::= %%IncludeFile: <filename> 107

<file inline> ::= %%BeginDocument:<filename>
… included file contents …
%%EndDocument

107

<filename> ::= platform-specific path name of file 107

<subscriber object> ::=
%AI3_Subscriber:<subscriber ID>
<placed art object>

107

<subscriber ID> ::= resource number of SECT resource in file 107

<graph object> ::= <Gs>
<graph functional spec>
{<graph customizations>}
<graph group object>
<GS>

109

<graph functional spec> ::=
<graph size and dialog values>
{<graph subscriptions>}
<graph axis>
<graph axis>
<graph axis>
<graph table specs>

110

<graph size and dialog values> ::=
<Gb>
<Gy>
<Gd>

110

<graph axis> ::= <Ga>
<GA>

110

<graph table specs> ::=
{<Gw>}*
<Gz>
<Gc>+
<GC>

110

<graph customizations> ::=
<Gt>
{<graph customization>}*
<GT>

110

Table 14 Document BNF syntax summary (Continued)

BNF Syntax
See Page
Number

23 Document Syntax Summary 143

<graph customization> ::=
{<graph customization operator>}*
<GX> | <Gg>
{<Gv>}

110

<graph customization operator> ::=
{<Gm>}
{<Gf>}
{<Gy>}
{<GD>}
{<Ge>}
{<G1>} (gee-one)
{<Gi>}
{<Gl>} (gee-ell)
{<Gp>}
{<Gx>}
{Gr>}
{<G+>}
{<Gg>}
{<A>}
{<paint style>}*
{<text style>}

110

<graph subscriptions> ::=
<Gj>

110

<graph group object> ::=
<u>
{<graph rendered object>}*
<U>

111

<graph rendered object> ::=
<object> | <graph group object>
{<Go>}

111

Table 14 Document BNF syntax summary (Continued)

BNF Syntax
See Page
Number

144 Adobe Illustrator File Format Specification 23 February 1998

145

Appendix A

Graph
Functional Specification

The graph functional specification acts as an internal header. It contains
information about the bounds of the graph, its style, its axes, and the data that
make it up. From the functional spec, Adobe Illustrator can reconstruct the
graph (Adobe Illustrator does not automatically recalculate the graph on
reading in a file); in fact, Adobe Illustrator can reconstruct a graph from no
more than the functional spec and does not require graph objects at all.

Statements in the functional spec take the form of comments, and begin with
the characters %_. This allows an Adobe Illustrator file with a graph in it to
be used as an EPS file, in which comments are not executed. The following
example shows a simple functional spec.

%_Gs

%_548 122 301 440 Gb

%_5 0 0 14 1 1 0 0 3 44 Gy

%_7 2 1 0 90 80 0 Gd

%_1 () Ga 0 14 0 1 0.2 0 1 () GA

%_2 () Ga 0 14 0 5 1 0 0 () GA

%_4 () Ga 0 14 0 5 1 0 0 () GA

%_4 4 1 1 Gz

%_() Gc (FIRSTCOL) Gc (SECONDCOL) Gc (THIRDCOL) Gc (GLOVES) Gc 1

3 1 (BALLS) Gc 2 2 5 (BATS) Gc 3 4 2 Gc GC

The %_Gs operator opens the graph section. The next operator, Gb, defines
the bounds of the graph and determines where Adobe Illustrator draws the
graph’s axes. Gy and Gd apply some of the values from Illustrator’s Graph
Style dialog box. The three GA operators control how values appear on the
axes. The Gz operator works with the GA operator to specify the graph axis.

The Gc operator reads in cell values, one by one, and puts them in the cell
data table—rows and columns like a spreadsheet—from which Adobe
Illustrator constructs its graphs. Operators in Adobe Illustrator are limited to
one string parameter and a maximum of 16 parameters overall; consequently,
there is usually more than one Gc operator to a line. The cells in the series
read from left to right in a row; then the next row down is read in. String

146 Adobe Illustrator File Format Specification 23 February 1998

values appear within parentheses. If a cell holds no value, the file holds its
place with a pair of empty parentheses. In the example

%_() Gc (FIRSTCOL) Gc (SECONDCOL) Gc (THIRDCOL) Gc (GLOVES) Gc 1

3 1 (BALLS) Gc 2 2 5 (BATS) Gc 3 4 2 Gc GC

the contents of row1 column1 is an empty string. Because it must be allowed
to hold a string, the Gc operator follows it (one string allowed per operator).
The contents of row1 column2 is the string FIRSTCOL. Again, because it is a
string, the Gc operator must immediately follow it. The Gc parameter doesn’t
“care” about the coordinates of the parameters it sets, only their number. For
example, if there were 40 numerical data points to place in the table, the first
Gc can place 16, the second Gc can place 16, and the third Gc can place
eight—with no regard to where those 40 data points fall on the table. It is the
order in which they occur within the file that determines their row and
column coordinates.

If you are preparing a file to be used with Adobe Illustrator, label and data
point order is critical to creating an accurate graph.

The final GC ends the data table.

Note Adobe Illustrator notes any edits you make to the graph after you build it
initially; it specifies those edits as a series of changes following the
functional spec. These customizations are covered in section A.3, “Graph
Customizations.”

A.1 Operators in the Functional Spec

Gs This operator signals the beginning the graph object. Must be the first
operator in this graph object. It takes no parameters.

GS This operator signals the end the graph object. It takes no parameters.

left top right bottom Gb The Gb operator shows the bounds of the graph. The parameters are decimal
numbers, in the same coordinate system as other objects. This rectangular
area defines where Adobe Illustrator draws the axes’ lines. The axis labels,
category labels, legend boxes, and legend labels are all slightly outside this
rectangle. The axis lines are drawn exactly on the edges of this rectangle.
This is a pre-customization rectangle. See page 154 for more information.

graphType shadow dataPaintOrder pieLegendStyle drawMarks drawLines drawLinesAsShapes
drawLegendsAcrossTop lineShapeWidth whichAxis [piePercentage piePctDigits] Gy

This operator defines values for the Graph Style dialog box, just as does Gd;
however, these values can be applied to individual series in a graph,
overriding, for that series, the default graph style.

 147

graphType This is the style of graph, for the whole graph (which may be overridden in
any number of series), or for one series. The values for graphType are:

5—grouped column graph
6—stacked column graph
7—line graph
8—pie chart
9—scatter graph
10—area graph

Note The values for scatter and area are in the opposite order from the dialog box
and tools.

shadow This controls whether to create an object showing a shadow when creating
the graphical objects. 1 means draw the shadow. Values: 0 or 1. Default: 0.

dataPointOrder When individual items in a data series overlap graphically, the items
corresponding to the upper rows in the cell table are covered by the graphical
objects corresponding to the lower rows in the cell table. A value of 1 does
the opposite. See the seriesPaintOrder parameter in the Gd operator for more
information.

pieLegendStyle Legends in pie charts can be numerous types; they can be the same as for bar
and line graphs (boxes along the right or top edge, with labels next to them),
a label within each wedge, or none at all. The values are:

14 same as bar/line graphs
15 legends in wedges
16 no legends

drawMarks When creating line and scatter graphs, Adobe Illustrator can place small
marks at the data points or have lines go through them without special marks.
This parameter controls the existence of the marks. 1 means draw marks.
Values: 1 or 0. Default: 0.

drawLines When creating line and scatter graphs, Adobe Illustrator can draw lines that
connect the data points, or not. This parameter controls the existence of the
lines. 1 means draw them. Note that if this and the above value are both zero,
Adobe Illustrator draws nothing within the data area. Values: 1 or 0.
Default 1.

drawLinesAsShapes When creating line and scatter graphs, Adobe Illustrator can use simple lines
to represent the data, or use shapes that represent thick lines. 1 means draw
the shapes. Values: 1 or 0. Default: 0.

Note that if drawLines is 0, this parameter is ignored (but still must be
supplied).

148 Adobe Illustrator File Format Specification 23 February 1998

drawLegendsAcrossTop When creating a graph that contains legends, Adobe Illustrator can either put
the legends on the right edge of the graph, going down, or on top, going left-
to-right. 1 means put them across the top. Values: 0 or 1. Note that this is a
parameter that applies to the graph as a whole and cannot be applied to
individual series (although a value, as a placeholder, must appear here).
Default: 0.

lineShapeWidth If drawLinesAsShapes is on, this is the width (in points) of the shape that is
created. Values: 0.0 to 100.0. Default: 6.

whichAxis This shows which axis (left or right) against which to measure the data.
Often, graphs are created that show trends of two series that have very
different ranges (for instance, net income in millions of dollars against share
price under one hundred dollars). One axis can show values in the millions
while the other shows the values under 100. The values are:

44 Use left axis
45 Use right axis

piePercentage This is a flag that tells Adobe Illustrator to display a percentage number
inside a pie wedge. It is available only for Adobe Illustrator for Windows
Version 4.x. A value of 1 tells Adobe Illustrator to display the percentage; 0
tells it not to display the percentage.

piePctDigits This value tells Adobe Illustrator the number of digits to place after the
decimal point when displaying a percentage in a pie wedge. It is available
only for Adobe Illustrator for Windows Version 4.x.

colWidth cellTableDecimalPrecision seriesPaintOrder useBothAxis barWidthPercentage
groupWidthPercentage drawLinesEdgeToEdge Gd

This operator defines some of the values in the Graph Style dialog box. Each
parameter is defined following. The values for this operator apply to the
entire graph; they cannot be applied to individual series in a graph (a series
corresponds to a column in the cell table).

colWidth This is the default column width of the cell table for this graph, expressed as
the number of characters that will fit in that column. Individual column
widths can be overwritten by the Gw operator. Range: 3 to 20.

cellTableDecimalPrecision This is the number of decimal places shown in the cell table. The values are
kept at full precision; only the display of those values is affected. Range: 0 to
10.

seriesPaintOrder When Adobe Illustrator creates a graph, it creates the objects for each series.
By default, it puts the each subsequent series in front of the previous one: that
is, if they overlap, graphical objects representing later series will display and
print on top of earlier series. A value of 1 displays and print the series in the

 149

opposite order; that is, the first series will be frontmost in the graph and will
paint over other series if they overlap. Note that this does not change the
position of the series; only the painting order. Values: 0 or 1; default value 0.

useBothAxis The user can choose either left, right, or both axes to display, and
independently set the axis numbers and tick placement for each axis. A
parameter value of 1 “copies” the values from one axis to the other. Which
axis is copied depends on which axis has been chosen as the default for all
series (both may have been chosen, in which case Adobe Illustrator ignores
this parameter). If one axis has been chosen, the other axis is copied. Values:
0 or 1. Default: 0.

barWidthPercentage This is the percentage of the width available for a bar that will be used for
that bar. (In the Adobe Illustrator manual, vertical-bar graphs are called
“column graphs.” Use of the term “bar” distinguishes the graphic rectangle
that represents one piece of data in the cell table from a column of cells in the
table). Adobe Illustrator divides the available width of a graph into portions
depending on how many series there are and how many individual bars there
are per series. For example, if this parameter value is 100, for grouped-
column graphs there would be no space at all between individual bars in a
group. The lower the percentage, the more space between individual bars.
The higher, the less—values over 100, which are legal, causes bars to
overlap. See the dataPaintOrder parameter of Gy for how to influence the
paint order of individual overlapping bars. For stacked-column graphs,
individual bars are all in the same stack—the barWidthPercentage and
groupWidthPercentage are multiplied to obtain the real percentage to use for
each stack. If both are 100, no space shows between stacks. One value of 64
and the other of 100, versus both values of 80, shows the same graph for
stacked-column graphs but shows different group and bar spacing for
grouped-column graphs. Range: 1.0 to 1000.0 (that is, one-hundredth of the
available width to ten times the available width).

groupWidthPercentage This is the percentage of the width available for a group (in grouped-column
graphs) or a single stack (in stacked-column graphs) that will be used for that
group or stack. See barWidthPercentage, above, for a fuller description.
Range: 1.0 to 1000.0 (that is, one-hundredth of the available width to ten
times the available width).

drawLinesEdgeToEdge In line graphs, the user can decide whether to leave a little space between the
left and right axes and the beginning and end of the data lines. Usually this is
done to leave room for labels at the bottom of the graphs. This parameter
defines whether or not to draw the lines right to the edges. Note that this
widens the area available for each label along the bottom, because the same
number of labels now have a slightly wider area to draw. 1 means draw all the
way to the edge. Values: 0 or 1. Default: 0.

150 Adobe Illustrator File Format Specification 23 February 1998

leftColumn topRow rightColumn rightRow sectionID Gj
This operator concerns the Macintosh publish and subscribe facility available
in System 7. It reads in an edition which has been published as text. The
bounds (0 is the first column) show how big the section is, although that is
ignored: if the read-in section is larger or smaller than the bounds, they’re re-
set by Adobe Illustrator. The sectionID shows the resource ID of the section
(in a sect resource), as stored in the file. See Inside Macintosh Volume VI for
more information on publish and subscribe. If you need to use this, you will
need to store the sectionHandle in the sect resource with the given ID, the
bounds in a bnds resource of the given ID (whose format is a rectangle of
Fixed values: left, top, right, bottom), and the section options in a psop
resource of the given id (whose format is a two-byte integer, value 0).

whichAxis beforeString Ga This is the beginning of the specification of a graph axis. It continues and
ends with the GA operator.

whichAxis This tells which axis to set to this specification. The values are:

1 Bottom axis
2 Left axis
4 Right axis

beforeString This string is appended to the label next to each axis tick mark; a value of
(units) shows as “100 units” rather than as just 100. These labels show the
numerical representation of the tick, which can include a currency symbol or
some other representation before the value. If the value of beforeString is $,
the axis label becomes $100 instead of 100. Length: up to 9 characters. Note
that any characters other than standard ASCII must be entered as an octal
number with a slash (this is a PostScript standard), so £ and ¥ must be
decoded into their ASCII values.

 151

useManualValues tickMarkType minimumValue maximumValue betweenValue smallTicksPerValue
drawMarksBetweenLabels afterString GA

useManualValues The user can choose to have Adobe Illustrator decide which axis values are
appropriate given the range of the cell data, or the user can specify his own
values (for the current axis, specified by the Ga operator). 1 means use
manual values. Values: 0 or 1. Default: 0.

tickMarkType The user can specify short tick marks, tick marks that stretch to the other
edge of the graph, or none. The values are:

13—no tick marks
14—short tick marks
15—long tick marks

minimumValue If the user has specified manual values for the axis, this parameter supplies
the lower of the two values. Depending on the betweenValue, minimumValue
may correspond to the topmost or bottommost tick mark. Range: any decimal
number.

maximumValue If the user has specified manual values for the axis, this parameter supplies
the higher of the two values. Depending on the betweenValue, maximumValue
may correspond to the topmost or bottommost tick mark. Range: any decimal
number.

betweenValue If the user has specified manual values for the axis, this parameter supplies
the numerical difference between subsequent tick marks. If this number is
positive, then minimumValue shows up on the bottom of the y-axis (on the left
in the case of the x-axis). If this number is negative, then maximumValue
shows up on the bottom of the y-axis (on the left in the case of the x-axis).
Range: any decimal number.

smallTicksPerValue The user may want a graph with tick marks every 10, but labels every 20.
Adobe Illustrator uses smallTicksPerValue to divide betweenValue into
smaller segments and display extra tick marks without displaying labels.

152 Adobe Illustrator File Format Specification 23 February 1998

Adobe Illustrator divides the betweenValue by this number, and zero is a
valid result meaning none. This means that 0 and 1 do the same thing:
produce no small ticks. Range: integers between 0 and 1000. Default: 0.

drawMarksBetweenLabels This applies only to the category axis. Sometimes the user wants tick marks
on the category axis to line up exactly with the labels (usually in the case of
line and area graphs), and sometimes the user wants ticks between the labels
(usually in the case of stacked-column and grouped-column graphs). If 1, the
category axis draws tick marks between the labels. Values: 0 or 1. Default: 0.

afterString As with beforeString in the Ga operator, this string is appended to the label
next to each axis tick mark; a value of (units) shows as “100 units” rather than
as just 100. Length: up to 9 characters. See beforeString for character value
limitations.

rows columns firstDataRow firstDataColumn Gz
This shows the size of the cellTable in rows and columns (1 means 1 row or
column). It also shows the row index and column index of the first row/
column containing data (0 means first row). Only 1 row/column of labels is
allowed, so firstDataRow and firstDataColumn can be only 0 or 1. The other
parameters can be anything from 1 to whatever will fit in memory. There
must be at least one row and one column in the table. This operator must be
followed by however many Gc operators it takes to fill the table with data.

cellValue1 cellValue2 cellValue3 … cellValueX Gc
This operator reads in cell values, one by one, and puts them in the table.
Every cell in the table must be enumerated, even if it’s empty. Use as many
invocations of Gc as necessary until the table is full or until all subsequent
cells are empty. The first cell value goes to the top-left cell, subsequent cells
along the top row are filled until the number of columns (as specified in the
Gz operator) has been reached. Then the next row is filled from left to right.

The number of parameters to Gc doesn’t necessarily match the number of
columns in the table; it is constrained by the following rules: only one
parameter can be a string and there cannot be more than 15 parameters. This
means that if the top row contains any labels, there will probably be many Gc
invocations, each with one parameter; then for the data rows there will be
fewer invocations, each with a greater number of parameters. String
parameters can be any length up to 255 characters (the maximum line length
for Adobe Illustrator is 128 characters), and numerical values can be
anything. Empty cells are denoted by a set of empty parentheses.

For example, the following table and Gc operator and its operands are
equivalent:

 153

FIRSTCOL SECONDCOL THIRDCOL
GLOVES 1 3 1
BALLS 2 2 5
BATS 3 4 2

%_() Gc (FIRSTCOL) Gc (SECONDCOL) Gc (THIRDCOL) Gc (GLOVES) Gc 1

3 1 (BALLS) Gc 2 2 5 (BATS) Gc 3 4 2 Gc GC

col width1 width2 width3 … widthX numParams Gw
This overrides the default column width (expressed as a number of characters
that fit in the table) given in the Gy operator. The first parameter is the
column for which to start setting widths (0 is the first column); the next
parameters (there must be at least one, and can be up to 14) set the width of
that column and the next n (<14). To set the width for more than 14 columns,
use multiple invocations of Gw. If –1 is the column width, it is considered a
placeholder default column width. The operand numParams is the number of
parameters to the operator, including the col parameter.

GC The cell table is finished. This is an indication to Adobe Illustrator that the
temporary state and data structures it has set up to read in the cell table can be
disposed.

A.2 End of the Functional Specification

This ends the functional specification of the graph. All the operators shown
so far should be written out with every line beginning with the PostScript
comment characters %_ (<percent> <underbar>).

A.3 Graph Customizations

After Adobe Illustrator has created the functional specification (and before it
writes any of the graph objects), it tracks any edits that the user may have
made to the graph in the form of changes to that functional spec. Such
changes are called customizations.

Much like Paint Style parameters, Adobe Illustrator maintains a “running”
customization—only the changes to the customization appear in the file. The
Gt and GT operators bracket the customizations.

Adobe Illustrator writes out the GX operator to add the customization to the
list for the graph.

If a GX operator appears before another operator with that parameter has
appeared—anywhere within the entire set of customizations—Adobe
Illustrator assumes that the parameter holds the initial value. For some
parameters, the initial value is not one of the legal values. This means that the
operator which contains this parameter must always appear somewhere in the

154 Adobe Illustrator File Format Specification 23 February 1998

list of customizations before the GX for a customization for which this
parameter is necessary.

For example, if Gx appears in a customization that has been defined to apply
to a column, but the Gr operator has not appeared, it is assumed that the target
column is 0 (zero) since that is the initial value. That is, there is an implicit 0
Gl (zero gee-ell) at the beginning of the list of customizations. This applies to
all operators. Note that some, like Gi, have a default value that is illegal. This
means that before the GX operator appears on a customization that applies to
an axis, there must be a Gi operator.

As another example, the bar design type parameter’s initial value is 0, but
that’s not one of the legal values. Thus, before the GX appears for a bar-
design customization, the operator containing the bar design type—GD—
must appear). For each graph in a file, the value is reset to its initial state; that
is, the “running” customization is not carried from graph to graph.

Note that some operators take parameters that do not have a meaning in the
particular context; in this case, the parameters are used to set structure fields
in the customizations, but they are ignored.

Some fields necessarily do not take a value; there is a special construct for
this: –– (two adjacent hyphens). This construct is used when a customization
sets, for instance, the paint style of a group but the user did not fill in the color
of the group. In the case where the group contains objects of various
strokes—and the user changes the Paint Style without wanting to change the
objects’ strokes—Adobe Illustrator must create a Paint Style that does not
change the stroke style but does change whatever the user wants changed.The
–– parameter and the w operator are used as part of the construction of a “Set
Paint Style” customization, to make sure that this customization will not reset
the stroke width of a target that has previously had its width set by another
“Set Paint Style” customization.

A.3.1 Customization Operators

version Gt This marks the beginning of users’ customizations to the graph.The current
version is 2.

GT This marks the end of the list of customizations.

 155

target graphCustomization Gx This sets up the main part of the customization, itemizing the target of the
customization and the basic customization type. The parameters are:

target is an index into all possible pieces of a graph. This is the object to which the
customization is applied. For each type of target, other parameters to other
operators will have to be filled in. For instance, if the target is one entire axis
(9), the Gi operator should precede the GX operator, denoting which axis is
the target. Initial value: 0. Possible targets are:

0 entire graph
1 all series, including legends
2 one series, including legends
3 one series but not its legend
4 one data bar/line/wedge
5 all data marks
6 one series’ and its legend’s marks
7 one series’ marks, but not legend’s
8 one data line segment’s mark
9 one axis, including text, ticks, line
10 category axis’ main line
11 one axis’ set of major tick marks
12 one axis’ single major tick mark
13 one axis’ set of tick labels
14 one axis’ single tick label
15 all legends’ text
16 one legend’s text
17 one numerical axis’ main line
18 one legend’s box or line, not mark
19 one legend’s mark
20 all labels along category axis
21 one label of category axis
22 entire “shadow” object
23 every tick of one axis
24 all minor (small) ticks of one axis
25 one minor (small) tick of one axis

graphCustomization This parameter enumerates the type of customization. If this is an Adobe
Illustrator Customization, it indicates the illustratorCustomization (see the
Gp operator). Initial value: 0. The values are:

0 Illustrator Customization
1 Set Series’ Graph Style
2 Set Column (Bar) Design
3 Set Mark Design

156 Adobe Illustrator File Format Specification 23 February 1998

illustratorCustomization Gp For customizations that involve general illustrator operators (see list just
below), this operator enumerates the type of customization. This is ignored if
the graphCustomization parameter to the Gx operator indicates that this
customization is a graph-specific customization. Initial value: 0. Values (for
illustratorCustomization) are:

0 Move/Shear/Rotate/Scale
1 Set Paint Style
9 Send To Front/Back
10 Set Character Style
11 Set Layout Style

changeMethod G+ Customizations usually reset properties of objects regardless of the previous
value of the property. A few, however, involve adding or subtracting
something from the previous property. There is an Adobe Illustrator operator
to add two points to the type size; to mimic this customization, the G+
operator indicates that the customization’s values are to be added to the
current values, rather than replacing the values. Initial value: 0. Values (for
changeMethod) are:

0 Reset to new value
1 Add new value to previous value

Note Adding or subtracting values doesn’t apply to the values in the customization
itself. It affects how those values will apply to objects when Adobe Illustrator
recalculates the graph.

sendToFront G1 (gee-one) For the Send-to-Front and Send-to-Back customizations, the parameter
denotes front or back (since the illustratorCustomization parameter of the Gp
operator is the same for both operators). Initial value: 0. Values are:

0 Send to back
1 Send to front

doFill doStroke fillColorStyle strokeColorStyle isAMask Gf
For the Set Paint Style customization, these parameter denote the settings of
the fill and stroke radio buttons that are not covered by the standard Paint
Style operators. For those path objects not in graphs, the operator that finishes
the path object denotes the values. Since this operator does not create a path
object, but merely denotes its properties, there needs to be operators
specifically for these values. The parameters are:

doFill Used to denote that a non-empty fill style has been selected. 1 means that the
customization creates a fill (of style fillStyle, below). Initial value: 0. Values:
0 or 1.

 157

doStroke Same as doFill, except it applies to the stroking. Initial value: 0.

fillStyle Denotes the style of filling for this customization. Initial value: 0. The values
are:

0 black (or white)
1 process
2 pattern
3 custom color
4 blend (applies only to Adobe Illustrator for Windows Version 4.0)

strokeStyle Denotes the style of stroking for this customization. The values are the same
as for fillStyle. Initial value: 0.

isAMask This object has had the Mask box checked in the Paint Style dialog. 1 means
the object is a mask. Initial value: 0. Values: 0 or 1.

column Gl (gee-ell) For targets that are a series or a data point within a series, this is the column
index in the table that corresponds to the series. Note that 0 (zero) means the
first column that contains graphable numeric data; that is, if the first column
consists of labels, then the second column is considered zero. Initial value: 0.

row Gr For targets that are a series or a data point within a series, this is the row
index in the table that corresponds to the index within the series indicated by
the Gl (gee-ell) operator. Note that 0 (zero) means the first row that contains
graphable numeric data; that is, if the first row is labels, then the second row
is considered zero. Initial value: 0.

whichAxis Gi For a customization that applies to an object inside an axis, this operator tells
Adobe Illustrator which axis the object is inside.

whichAxis For targets that are part of an axis, this parameter denotes the axis (left, right,
bottom or top). Initial value: 0.

The values are:

1 Bottom axis
2 Left axis
4 Right axis
8 Top axis (Adobe Illustrator Japanese Edition only)

a b c d h v generalGraphType reserved1 reserved2 Gm
For customizations that use matrices (the graphCustomization parameter in
the Gx operator is Adobe Illustrator Customization, and the
illustratorCustomization parameter in the Gp operator is Move/Shear/Rotate/
Scale). The parameters are:

158 Adobe Illustrator File Format Specification 23 February 1998

a, b, c, d, h, v These are the values for the matrix. They (the h and v) are in artwork-
coordinates, and all are decimal values. Initial values: 0, 0, 0, 0, 0, 0.

generalGraphType Some customizations only look good for certain general types of graphs; that
is, shearing of the bars in stacked-column graphs would not look good if
applied to the data in pie charts, yet when applied to grouped-column graphs
it achieves a good effect. This denotes the general type of graph to which the
customization should be applied. This parameter will have meaning in the
case where the user reads this file into Adobe Illustrator, then changes the
graph type. Initial value: 0. The values are:

1 Grouped- and Stacked-column
2 Scatter and line graphs
3 Pie charts
4 Area graphs
5 All graphs

reserved1 Set to 0.

reserved2 Set to 0.

designName designType repeatPartialType rotateLegend GD
This operator sets up the parameters for bar design customizations (see the
Gp operator).

designName This is the name of the design. The design was set up, just like a pattern, in
the prolog. Initial value: zero-length string.

designType This denotes the type of the design. Initial value: 0. The values are:

6 Vertically-scaled design
7 Uniformly-scaled design
8 Repeating design
9 Sliding design

repeatPartialType For repeating bar design customizations, this denotes whether to chop the
design representing any partial values, or to scale it. Initial value: 0. The
values are:

16 Chop partial values
17 Scale partial values

rotateLegend When using bar designs, the user can have Adobe Illustrator automatically
rotate the design in the legend box. This denotes whether to do it. 1 means
rotate the design in the legend box. Initial value: 0. Values: 0 or 1.

 159

repeatEachValue Ge For customizations that set the bar design (see Gp operator), and for which
the design type is a repeat design (see GD operator), this operator denotes the
value for each repetition of the design. Initial value: 0.0. Values: any decimal
number but zero.

tickValue Gv For targets that are either one tick mark or one tick label, this is the numeric
value corresponding to that tick mark. That is, if the user changes to red the
tick line next to the 100 on the tick axis, this number tells Adobe Illustrator
that any tick line on that axis that corresponds to the value 100 (no matter
how many tick lines there are or what their values), is to be red. Initial value:
0.0. Values: any decimal number.

Note This is the only customization operator that appears after the Gx operator
within one customization.

GX This finalizes the customization, which has been described by any of the
previous values.

target column row whichAxis illustratorCustomization graphCustomization ignored changeMethod Gg

Note This operator is not written by Adobe Illustrator; all the parameters are
redundant with parameters of other, more efficient, operators. While Adobe
Illustrator does currently read this in, and some files written by beta versions
of Adobe Illustrator 3.x may have this operator in it, it is highly
recommended that the other operators be used instead. Future versions may
not read this operator.

This sets up the main part of the customization, itemizing the target of the
customization and the basic customization type. The parameters are:

target See Gx operator.
column See Gl operator.
row See Gr operator.
whichAxis See Gi operator.
illustratorCustomization See Gp operator.
graphCustomization See Gx operator.
ignored Unused. Set to 0 (zero).
changeMethod See G+ operator.

160 Adobe Illustrator File Format Specification 23 February 1998

161

Appendix B

Changes Since Earlier
Versions

Changes since June 1997version

• Included features from Adobe Illustrator version7.

Changes since October 1992 version

• Included features from Adobe Illustrator versions 5 and 6.

• Substantial document reorganization.

Changes since May 4, 1991 version

• Updated entire document to include information on the Adobe Illustrator
3.x and 4.x file formats—DRAFT specification only.

• Reformatted in the new document format.

Changes since July 18, 1990 version

• The description for the operator q was changed from “except that the first
object in the group specifies” to “except that some objects in the group
specify.”

• The cover addresses were updated.

Changes since December 29, 1989 version

• The descriptions for the operators o and a in section 5.7 have been
corrected. (They were reversed.)

162 Adobe Illustrator File Format Specification 23 February 1998

163

Index

Symbols

%_Br operator 42
%_Bs operator 41
& operator 35
' operator 107
* operator 66
@ operator 35
_ (underbar) operator 35
~ operator 108

A

A operator 54
AI3_BeginEncoding comment 32
AI3_ColorUsage comment 22
AI3_DocumentPreview comment 21
AI3_PaperRect comment 22
AI3_TemplateBox comment 21
AI3_TemplateFile comment 21
AI3_TileBox comment 21
AI5_ArtFlags comment 19
AI5_ArtSize comment 18
AI5_Begin_NonPrinting comment

84
AI5_BeginGradient comment 40
AI5_BeginLayer comment 71
AI5_BeginPalette comment 78
AI5_End_NonPrinting comment 84
AI5_EndLayer comment 71
AI5_EndPalette comment 78
AI5_FileFormat comment 18
AI5_NumLayers comment 20
AI5_OpenToView comment 20
AI5_OpenViewLayers comment 20
AI5_TargetResolution comment 20
AI6_ColorSeparationSet comment

23
AI7_ImageSettings comment 22

alignment 101
art, placed 107
artboard 30
attribute, of object 81

B

B operator 58
b operator 58
Backus-Naur form 11
BB operator 45
Bb operator 45
Bc operator 49
BD operator 44
Bd operator 40, 41
BeginProlog comment 14
Bg operator 45
Bh operator 48
bitmapped image 68
blends 38
Bm operator 49
Bn operator 40
BNF 11
bounding box 16, 21
BoundingBox comment 16

C

C operator 57
c operator 57
character attribute 93
CMYKCustomColor comment 17
color 59

operators 60
color palette 78
color separation sets 23
comments 9

pseudo 10
structural 10

164 Index 23 February 1998

containers 63
CreationDate comment 16
Creator comment 15
custom colors 16
Custom comment 29

D

D operator 55
d operator 55
dash pattern 55
document files 17
document fonts 17
document structure 8
Document Structuring Conventions 8
document types 116
DocumentCustomColors comment

16
DocumentFiles comment 17
DocumentFonts comment 17
DocumentNeededFonts comment 17
DocumentNeededResources

comment 18
DocumentProcessColors comment

16
document-supplied resources 18
DocumentSuppliedFonts comment

17
DocumentSuppliedResources

comment 18

E

E operator 35
EndComments comment 14
EndProlog comment 14
EPS format 13
EPSF 14

F

F operator 58
f operator 58
filling rules 58
final form 13
flatness 55
font encoding 32
fonts 32
For comment 16

G

G operator 60
g operator 60
G+ operator 156
G1 operator 156
GA operator 151
Ga operator 150
Gb operator 146
GC operator 153
Gc operator 152
GD operator 158
Gd operator 148
Ge operator 159
Gi operator 157
Gj operator 150
Gl operator 157
global objects 51
Gm operator 157
Go operator 112
Gp operator 156
Gr operator 157
gradient instance 44
gradient palette 38
gradients 38

imaging 49
graphs 109

customizations 153
grid 118
groups 63
GS operator 112, 146
Gs operator 146
GT operator 154
Gt operator 154
guides 66
Gv operator 159
Gw operator 153
GX operator 159
Gx operator 155
Gy operator 146
Gz operator 152

H

H operator 64
h operator 64
Halftone comment 27
header 14
high-resolution 16
HiResBoundingBox comment 16
hyphen 100

hyphenation dictionaries 83

I

i operator 55
image, bitmapped 68
implementation 121
implementation issues 121
IncludeFont comment 32
IncludeResource comment 21

J

J operator 56
j operator 55
justification 101

K

K operator 60
k operator 60
Kanji fonts 103
kerning 96

L

L operator 57
l operator 57
layer 71

pattern 35
leading 99
line cap 56
line join 55
line width 56
lineto operator 37
locked objects 54

M

M operator 56
m operator 56
Macintosh computer 115
mask

clipping 63
multi-layer 75
text as 65

miter limit 56
moveto operator 36, 56

N

N operator 58

Index 165

n operator 58
name collisions 51
NeXT 118
nonprinting elements 84

O

O operator 63
object

attribute 81
raster 68

Options comment 24
overprint 62

P

P operator 62
p operator 62
PAGE resource 116
PageSize comment 29
paint style 54
palette cell 78
path 54

compound 59
construction operators 56
filling rules 58
painting operators 58
resolution 81

pattern 34
pattern definition 36
pattern layer 35
placed art 107
PPD comment 25
PREC resource 116
preview image 21

PICT 115
procedure sets 8
process colors 16
Process comment 28
procsets 18
prolog 8, 14

header 14
pseudo comments 10

Q

Q operator 64
q operator 64

R

R operator 63

radial gradients 47
raster object 68
resolution 81
resource

initialization 32
revisable form 13
RGBCustomColor comment 21
ruler origin 30

S

S operator 58
s operator 58
save options 116
script 8

body 52
setup 31

script trailer 114
separations, color 23
setcmykcolor operator 60
setdash operato 55
setlinecap operator 56
setlinejoin operato 55
setlinewidth operator 56
setmiterlimit operator 56
setrgbcolor operator 60
setup 8
StringAdd comment 26
StringSplit comment 26
structural comments 10
subscript 100
superscript 100

T

T- operator 101
T– operator 91, 101
T* operator 88
T+ operator 91, 100, 101
TA operator 90, 97
Ta operator 89, 102
TC operator 89, 99
Tc operator 89, 99
Td operator 88
TE operator 32
TEMP resource 115
template 21
template file 115

text 85
alignment 101
area 85, 106
attributes 93
final-form 85
justification 101
kerning 96
leading 99
object 93
on a path 85, 104
operators summary 87
point 85
rendering 95
revisable 85
spacing 97
subscript 100
superscript 100
wraparound 93

text container 94
text path 94
Tf operator 32, 89
TG operator 92
Tg operator 91
Ti operator 90, 102
Title comment 16
Tj operator 90, 96
TK operator 90, 97
Tk operator 90, 97
Tl operator 89, 100
Tm operator 88
TO operator 88, 94
To operator 87, 94
TP operator 88, 95
Tp operator 88, 95
Tq operator 90
TR operator 88
Tr operator 88
trailer 8
Ts operator 89, 100
Tt operator 89, 97
Tu operator

 See Xu operator
TV operator 91
Tv operator 91
TW operator 89, 99
Tw operator 89, 99
TX operator 90
Tx operator 90
TY operator 92
Ty operator 92
TZ operator 32, 33

166 Index 23 February 1998

Tz operator 103

U

U operator 63
u operator 63

V

V operator 57
v operator 57

W

W operator 65
w operator 56
winding orde 55
Windows 120

X

X operator 61
x operator 60
XF operator 69
XG operator 69
Xm operator 47
XT operator 67
Xu operator 92

Y

Y operator 57
y operator 57

	Contents
	1 Introduction
	1.1 Reporting Errors in this Document
	1.2 Adobe Illustrator Format Structure
	1.3 Procedure Sets
	1.4 Comments
	1.4.1 Standard Comments
	1.4.2 Structural Comments
	1.4.3 Pseudo Comments

	1.5 Extending the Format With Comments and X Operators
	1.6 Syntax in Backus-Naur Form
	1.7 Encapsulated PostScript Format
	1.8 Revisable vs. Final Form

	2 Prolog
	2.1 Header
	2.1.1 Header Comments
	%%AI6_ColorSeparationSet Comment
	SubComments to %%AI6_ColorSeparationSet
	%%++ Options Subcomment to %AI6_ColorSeparationSet
	%%+ PPD Subcomment to %AI6_ColorSeparationSet
	%%+ StringAdd and %%+ StringSplit Subcomments to %AI6_ColorSeparationSet
	%%+ Halftone Subcomment to %AI6_ColorSeparationSet
	%%+ Process Subcomment to %AI6_ColorSeparationSet
	%%+ Custom Subcomment to %AI6_ColorSeparationSet
	%%+ PageSize Subcomment to %AI6_ColorSeparationSet

	2.2 Artwork and Ruler Origin

	3 Script Setup
	3.1 Specifying Particular Fonts
	3.2 Initializing Resources
	3.3 Fonts and Encodings
	3.3.1 Font Encoding Operators

	3.4 Pattern Definition
	3.5 Gradients
	3.5.1 Number of Gradients — Bn Operator
	3.5.2 Gradient Definitions
	Begin Gradient Definition — Bd Operator
	Color Stops — %_Bs Operator
	Gradient Ramps — %_Br Operator
	End Gradient Description — BD Operator

	3.5.3 Gradient Instances
	Gradient Instance Begin and End — Bb and BB Operators

	3.5.4 Gradient Geometry — Bg Operator
	3.5.5 Radial Gradients
	Gradient Hilights — Bh Operator

	3.5.6 Gradient Imaging — Bm and Bc Operators

	4 Global Objects
	4.1 Name Collisions in Global Objects

	5 Script Body
	5.1 Locked Object Operator
	5.2 Paint Style
	5.3 Paths
	5.3.1 Path Attributes
	5.3.2 Path Construction Operators
	5.3.3 Path Painting Operators
	5.3.4 Filling Paths by Rule — XR Operator
	5.3.5 Compound Paths

	5.4 Color
	5.4.1 Color Operators

	5.5 Overprint Operators
	5.6 Containers
	5.6.1 Group Operators
	5.6.2 Clipping (Masking) Operators

	5.7 Text as Masks

	6 Guides
	6.1 Guide Operator

	7 Object Tags
	8 Rendering Images (Raster Objects)
	8.1 XI Image Operator
	8.2 XF Linked Image Operator
	8.3 XG Image Link Operator
	8.4 Examples

	9 Layers
	9.1 Layer Name — Ln Operator
	9.2 Begin Layer — Lb Operator
	9.3 Layers Example

	10 Multi-layer Masks
	10.1 Begin Multi-layer Mask — Mb Operator
	10.2 Define Multi-layer Mask — Md Operator
	10.3 End Multi-layer Mask — MB Operator
	10.4 Multi-layer Mask Example

	11 Color Palette
	11.1 Begin Palette — Pb Operator
	11.2 End Palette — PB Operator
	11.2.1 Palette Cell — Pc Operator

	11.3 Palette Cell None — Pn Operator

	12 Attributes
	13 Hyphenation Language — XL Operator
	14 Nonprinting Elements
	15 Text
	15.1 Revisable and Final-Form Text
	15.2 Text Syntax Summary
	15.3 Text Operators Summary
	15.3.1 Matrix Operators
	15.3.2 Text Attribute Operators
	15.3.3 Text Body Operators
	15.3.4 Far-Eastern Text Operators

	15.4 Text Operator Details
	15.4.1 Text Attributes
	15.4.2 Wraparound Text
	15.4.2.1 Wraparound Text Operators

	15.4.3 Text Objects
	15.4.3.1 Text Object Operators

	15.4.4 Text Paths
	15.4.4.1 Text Path Operators

	15.4.5 Text Rendering
	15.4.5.1 Text Rendering Operators

	15.4.6 Kerning
	15.4.6.1 Kerning Operators

	15.4.7 Spacing
	15.4.7.1 Spacing Operators

	15.4.8 Line and Paragraph Leading
	15.4.8.1 Leading Operator

	15.4.9 Superscripting and Subscripting
	15.4.9.1 Superscripting and Subscripting Operator

	15.4.10 Discretionary Hyphens
	15.4.10.1 Discretionary Hyphen Operators

	15.4.11 Alignment and Justification
	15.4.11.1 Alignment and Justification Operators

	15.4.12 Setting Far-Eastern Fonts
	15.4.12.1 Setting Horizontal Type in Far-Eastern Text

	15.5 Text Examples
	15.5.1 Point Text
	15.5.2 Text on a Path
	15.5.3 Area Text

	16 Placed Art
	16.1 Placed Art Operators
	16.2 Placed Art Comments

	17 Graphs
	17.1 Syntax
	17.2 Graph Objects
	17.2.1 Organization of Graph Objects
	17.2.2 Graph Object Operators

	18 Script Trailer
	19 Platform-Specific Issues
	19.1 Adobe Illustrator on the Macintosh
	19.1.1 PICT Resource
	19.1.2 TEMP Resource
	19.1.3 PAGE Resource
	19.1.4 PREC Resource
	19.1.5 Save Options and Their Formats
	19.1.6 Header Changes Under Windows

	19.2 Controlling the Grid in Windows and NeXT Versions

	20 Adobe Illustrator on the Clipboard
	21 Implementation Issues
	21.1 Identifying Adobe Illustrator File Format Versions
	21.1.1 Version 1.1 Files
	21.1.2 Version 88 Files
	21.1.3 Version 3.x Files
	21.1.4 Version 4.x Files
	21.1.5 Version 5.x Files

	21.2 Opening Adobe Illustrator 88 files in Illustrator 6.0
	21.3 Adobe Illustrator 6.0 EPS Parser Limitation

	22 List of Operators
	22.1 Gradient Operators
	22.2 Layer Operators
	22.3 Multilayer Masking
	22.4 Color Palette
	22.5 Attributes
	22.6 Text Operators

	23 Document Syntax Summary
	Graph Functional�Specification
	A.1 Operators in the Functional Spec
	A.2 End of the Functional Specification
	A.3 Graph Customizations
	A.3.1 Customization Operators

	Changes Since Earlier Versions
	Index

